WorldWideScience

Sample records for surge protection devices

  1. Investigation of surge protective devices operation of a wind generator

    International Nuclear Information System (INIS)

    Dimitrov, D.; Vasileva, M.

    2008-01-01

    The interest to the investments in a wind energetics increases in the last years. The wind energetics is the fastest developing direction in the energetics in global scale. The wind energy is more attractive because its prices are lower in comparison of the other technologies for generating energy. The right choice of the surge protective devices has the important meaning on building and exploitation of the wind generators. The aim of this paper is investigation of the surge protective devices operation when they are installation to a wind generator. (authors)

  2. Surge protective device response to steep front transient in low voltage circuit

    Energy Technology Data Exchange (ETDEWEB)

    Marcuz, J.; Binczak, S.; Bilbault, J.M. [Universite de Bourgogne, Dijon (France)], Emails: jerome.marcuz@ laposte.net, stbinc@u-bourgogne.fr, bilbault@u-bourgogne.fr; Girard, F. [ADEE Electronic, Pont de Pany (France)

    2007-07-01

    Surge propagation on cables of electrical or data lines leads to a major protection problem as the number of equipment based on solid-state circuits or microprocessors increases. Sub-microsecond components of real surge waveform has to be taken into account for a proper protection even in the case of surges caused by indirect lightning effects. The response of a model of transient voltage suppressor diode based surge protection device (SPD) to fast front transient is analytically studied, then compared to simulations, including the lines connected to the SPD and to the protected equipment. (author)

  3. Aging assessment of surge protective devices in nuclear power plants

    International Nuclear Information System (INIS)

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters

  4. Performance of Surge Arrester Installation to Enhance Protection

    Directory of Open Access Journals (Sweden)

    Mbunwe Muncho Josephine

    2017-01-01

    Full Text Available The effects of abnormal voltages on power system equipment and appliances in the home have raise concern as most of the equipments are very expensive. Each piece of electrical equipment in an electrical system needs to be protected from surges. To prevent damage to electrical equipment, surge protection considerations are paramount to a well designed electrical system. Lightning discharges are able to damage electric and electronic devices that usually have a low protection level and these are influenced by current or voltage pulses with a relatively low energy, which are induced by lightning currents. This calls for proper designed and configuration of surge arresters for protection on the particular appliances. A more efficient non-linear surge arrester, metal oxide varistor (MOV, should be introduced to handle these surges. This paper shows the selection of arresters laying more emphasis on the arresters for residential areas. In addition, application and installation of the arrester will be determined by the selected arrester. This paper selects the lowest rated surge arrester as it provides insulation when the system is under stress. It also selected station class and distribution class of arresters as they act as an open circuit under normal system operation and to bring the system back to its normal operation mode as the transient voltage is suppressed. Thus, reduces the risk of damage, which the protection measures can be characterized, by the reduction value of the economic loss to an acceptable level.

  5. Surge Protection in Low-Voltage AC Power Circuits: An Anthology

    Science.gov (United States)

    Martzloff, F. D.

    2002-10-01

    The papers included in this part of the Anthology provide basic information on the propagation of surges in low-voltage AC power circuits. The subject was approached by a combination of experiments and theoretical considerations. One important distinction is made between voltage surges and current surges. Historically, voltage surges were the initial concern. After the introduction and widespread use of current-diverting surge-protective devices at the point-of-use, the propagation of current surges became a significant factor. The papers included in this part reflect this dual dichotomy of voltage versus current and impedance mismatch effects versus simple circuit theory.

  6. A Study on the technology of the Protective Device Application for the power Telecommunication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.K.; Lee, S.J.; Choi, H.Y. [Korea Electric Power Research Insitute, Taejeon (Korea, Republic of); Lee, B.H.; Jeon, D.K.; Lee, K.O.; Ahn, C.H.; Kim, S.O.; Kim, J.S. [Electrical Engineering and Science Research Center, Seoul (Korea, Republic of)

    1997-12-31

    In order to protect the power telecommunication system from surge by lightning or switching and ground potential rise, characteristics of surge are analyzed when surge strikes communication system. Surge generator which meets international standard was made and test of protective devices was carried out by using it. Counter measures against surge is established through the analysis of ground potential which varies with transient ground impedance. Also specification for installing protective devices was recommended, which is proper to apply to the field system. (author). 186 refs., 203 figs., 21 tabs.

  7. Efficiency and safety of percuSurge distal protection device in acute ...

    African Journals Online (AJOL)

    user

    2011-04-25

    Apr 25, 2011 ... myocardial infarction. The long-term effects of the distal protection device are still in controversy. The enhanced myocardial efficacy and recovery by aspiration of liberated debris (EMERALD) trial failed to show the effectiveness of the distal protection device in patients with AMI (Yamada and Topol, 2000).

  8. Electromagnetic computation methods for lightning surge protection studies

    CERN Document Server

    Baba, Yoshihiro

    2016-01-01

    This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...

  9. The destruction influence of pulse and surge currents on overvoltage protection

    International Nuclear Information System (INIS)

    Glasa, M.; Huettner, L.

    2012-01-01

    This article deals about the influences caused during the active operation process of the surge arrester against the pulse and surge currents. It also refers about a lightning, the characteristic of lightning and about the lightning (surge) currents caused its influence. One parts of the article is focused on a total elimination of surge current energy, and on an ineffective operation, which leads to partially or totally destruction of a protection element. There is a comparison with two basic types of surge arresters (spark gap and varistor based arresters), and theirs re-effectiveness on prescribed level. (Authors)

  10. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    Science.gov (United States)

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  11. Development of high voltage surge limiting resistor for protection of HV multiplier of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Dewangan, S.; Sharma, D.K.; Bakhtsingh, R.I.

    2013-01-01

    A 3MeV, 10mA DC electron beam accelerator is in commissioning stages at EBC, Kharghar, Navi Mumbai. The accelerating potential of -3MV is generated by a Parallel Coupled Voltage Multiplier (PCVM) scheme using 74 stages of HV rectifier stacks in the 6 kg/cm 2 SF6 gas environment. The HV surges of order of 600kV, 42kA, 10ns is estimated across the rectifier stacks during sparking in the multiplier column. To limit the surge current and protect the rectifier diodes, a non inductive thick film surge limiting resistor (SLR) and protective spark gap is designed and developed. The rectifier stacks with surge limiting resistors at both the ends and protective spark gap in parallel has been successfully tested in simulated surge condition at an impulse voltage of 212kVp, 150ns FWHM and surge energy of 200J, 10ms, 20kV at 6kg/cm 2 SF6 gas environment and found satisfactorily. Subsequently the HV multiplier was installed with this surge protection scheme and is being tested at 1.2 MeV level. This paper describes the design features and test results of the non-inductive surge limiting resistor. (author)

  12. Full scale lightning surge tests of distribution transformers and secondary systems

    International Nuclear Information System (INIS)

    Goedde, G.L.; Dugan, R.C. Sr.; Rowe, L.D.

    1992-01-01

    This paper reports that low-side surges are known to cause failures of distribution transformers. They also subject load devices to overvoltages. A full-scale model of a residential service has been set up in a laboratory and subjected to impulses approximating lightning strokes. The tests were made to determine the impulse characteristics of the secondary system and to test the validity of previous analyses. Among the variables investigated were stroke location, the balance of the surges in the service cable, and the effectiveness of arrester protection. Low-side surges were found to consist of two basic components: the natural frequency of the system and the inductive response of the system to the stoke current. The latter component is responsible for transformer failures while the former may be responsible for discharge spots often found around secondary bushings. Arresters at the service entrance are effective in diverting most of the energy from a lightning strike, but may not protect sensitive loads. Additional local protection is also needed. The tests affirmed previous simulations and uncovered additional phenomena as well

  13. Lightning and surge protection of large ground facilities

    Science.gov (United States)

    Stringfellow, Michael F.

    1988-04-01

    The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.

  14. Microstructural evaluation of a varistor block utilized in high voltage surge arresters

    International Nuclear Information System (INIS)

    Andrade, J.M. de; Dias, R.; Furtado, J.G. de M.; Assuncao, F.C.R.

    2010-01-01

    Varistor is a semiconductor ceramic device characterized to have a high non-linear electrical resistance, it is used as active element of surge arresters with purpose of protecting of electro-electronics systems. Its properties are directly dependents of chemical composition and microstructural characteristics, such as grain size, porosity, twins and phases distribution. This work has the objective to characterize microstructurally a commercial varistor block of ZnO used in high voltage surge arrest and from this characterization to infer aspects about of its electrical macroscopic performance. DRX and SEM-EDS were used for microstructural analysis. The microstructural evaluation allows pointing the critical points of microstructure and, suggest relevant aspects to the improvement of commercial varistor microstructure, optimizing the electrothermal behavior of the device. (author)

  15. Modeling and Controlling Flow Transient in Pipeline Systems: Applied for Reservoir and Pump Systems Combined with Simple Surge Tank

    Directory of Open Access Journals (Sweden)

    Itissam ABUIZIAH

    2014-03-01

    Full Text Available When transient conditions (water hammer exist, the life expectancy of the system can be adversely impacted, resulting in pump and valve failures and catastrophic pipe rupture. Hence, transient control has become an essential requirement for ensuring safe operation of water pipeline systems. To protect the pipeline systems from transient effects, an accurate analysis and suitable protection devices should be used. This paper presents the problem of modeling and simulation of transient phenomena in hydraulic systems based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occuring in the transient. We applied this model for two main pipeline systems: Valve and pump combined with a simple surge tank connected to reservoir. The results obtained by using this model indicate that the model is an efficient tool for water hammer analysis. Moreover, using a simple surge tank reduces the unfavorable effects of transients by reducing pressure fluctuations.

  16. A new on-line leakage current monitoring system of ZnO surge arresters

    International Nuclear Information System (INIS)

    Lee, Bok-Hee; Kang, Sung-Man

    2005-01-01

    This paper presents a new on-line leakage current monitoring system of zinc oxide (ZnO) surge arresters. To effectively diagnose the deterioration of ZnO surge arresters, a new algorithm and on-line leakage current detection device, which uses the time-delay addition method, for discriminating the resistive and capacitive currents was developed to use in the aging test and durability evaluation for ZnO arrester blocks. A computer-based measurement system of the resistive leakage current, the on-line monitoring device can detect accurately the leakage currents flowing through ZnO surge arresters for power frequency ac applied voltages. The proposed on-line leakage current monitoring device of ZnO surge arresters is more highly sensitive and gives more linear response than the existing devices using the detection method of the third harmonic leakage currents. Therefore, the proposed leakage current monitoring device can be useful for predicting the defects and performance deterioration of ZnO surge arresters in power system applications

  17. Protection device for a thermonuclear device

    International Nuclear Information System (INIS)

    Kawashima, Shuichi.

    1986-01-01

    Purpose: To exactly detect the void coefficients of coolants even under high magnetic fields thereby detect the overheat of a thermonuclear device at an early stage. Constitution: The protecting device of this invention comprises a laser beam generation device, a laser beam detection device and an accident detection device. The laser generation device always generates laser beams, which are permeated through coolants and detected by the laser beam detection device, the optical amount of which is transmitted to the accident detection device. The accident detection device judges the excess or insufficiency of the detected optical amount with respect to the optical amount of the laser beams under the stationary state as a reference and issues an accident signal. Since only the optical cables that do not undergo the effect of the magnetic fields are exposed to high magnetic fields in the protection device of this invention, a high reliability can be maintained. (Kamimura, M.)

  18. Harmful effects of lightning surge discharge on communications terminal equipments

    International Nuclear Information System (INIS)

    Liang, Sisi; Xu, Xiaoying; Tao, Zhigang; Dai, Yanling

    2013-01-01

    The interference problem of lightning surges on electronic and telecommunication products were examined, and a series of experiments were conducted to analyze the failure situations to find out the mechanisms of failures caused by the lightning surge. In addition, the ways in which lightning surges damaged equipment were deduced. It was found that failure positions were scattered and appeared in groups, and most of them were ground discharge. Internet access transformer had high withstand-voltage under the lightning pulse, and the lightning surge seldom passed through the internet access transformer. The lightning current can release to the ground via the computer network adapter of the terminal user. The study will help to improve the performance of lightning surge protection circuit and protection level.

  19. Nuclear reactor safety protection device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Noguchi, Atomi; Matsumiya, Shoichi; Furusato, Ken-ichiro; Arita, Setsuo.

    1994-01-01

    The device of the present invention extremely reduces a probability of causing unnecessary scram of a nuclear reactor. That is, four control devices receive signals from each of four sensors and output four trip signals respectively in a quardruplicated control device. Each of the trip signals and each of trip signals via a delay circuit are inputted to a logical sum element. The output of the logical sum circuit is inputted to a decision of majority circuit. The decision of majority circuit controls a scram pilot valve which conducts scram of the reactor by way of a solenoid coils. With such procedures, even if surge noises of a short pulse width are mixed to the sensor signals and short trip signals are outputted, there is no worry that the scram pilot valve is actuated. Accordingly, factors of lowering nuclear plant operation efficiency due to erroneous reactor scram can be reduced. (I.S.)

  20. Overview and Design Considerations of Storm Surge Barriers

    NARCIS (Netherlands)

    Mooyaart, L.F.; Jonkman, S.N.

    2017-01-01

    The risk of flooding in coastal zones is expected to increase due to sea level rise and economic development. In larger bays, estuaries, and coastal waterways, storm surge barriers can be constructed to temporarily close off these systems during storm surges to provide coastal flood protection.

  1. Electromotive force analysis of current transformer during lightning surge inflow using Fourier series expansion

    Directory of Open Access Journals (Sweden)

    Youngsun Kim

    2017-05-01

    Full Text Available The most common structure used for current transformers (CTs consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM. The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.

  2. Electromotive force analysis of current transformer during lightning surge inflow using Fourier series expansion

    Science.gov (United States)

    Kim, Youngsun

    2017-05-01

    The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.

  3. Cerebral ischemic lesions detected with diffusion-weighted magnetic resonance imaging after carotid artery stenting: Comparison of several anti-embolic protection devices.

    Science.gov (United States)

    Taha, Mahmoud M; Maeda, Masayuki; Sakaida, Hiroshi; Kawaguchi, Kenji; Toma, Naoki; Yamamoto, Akitaka; Hirose, Tomofumi; Miura, Youichi; Fujimoto, Masashi; Matsushima, Satoshi; Taki, Waro

    2009-09-01

    Distal embolism is an important periprocedural technical complication with carotid angioplasty and carotid artery stenting (CAS). We evaluated the safety and efficacy of protection devices used during CAS by detecting new cerebral ischemic lesions using diffusion-weighted magnetic resonance imaging in 95 patients who underwent 98 CAS procedures: 34 using single PercuSurge GuardWire, 31 using double balloon protection, 15 using proximal flow reverse protection devices, 14 using Naviballoon, and 4 using filter anti-embolic devices. Diffusion-weighted imaging was performed preoperatively and postoperatively to evaluate the presence of any new embolic cerebral lesions. Postoperative diffusion-weighted imaging revealed 117 new ischemic lesions. Three patients had new ischemic stroke, two minor and one major, all ipsilateral to the treated carotid artery. The remaining patients had clinically silent ischemia. The incidence of new embolic lesions was lower using the proximal flow reverse protection device than with the double balloon protection (33% vs. 48.4%), but the volume of ipsilateral new ischemic lesions per patient was 136.6 mm(3) vs. 86.9 mm(3), respectively. Neuroprotection with Naviballoon yielded ipsilateral lesions of large volume (86.6 mm(3)) and higher number (5.7 lesions per patient) than using the filter anti-embolic device (34.8 mm(3) and 1 lesion per patient). New cerebral ischemic lesions after neuroprotected CAS are usually silent. The lower incidence of distal ischemia using proximal flow reverse and double balloon protection devices is limited by the larger volume and higher number of ischemic lesions.

  4. Cerebral ischemic lesions detected with diffusion-weighted magnetic resonance imaging after carotid artery stenting. Comparison of several anti-embolic protection devices

    International Nuclear Information System (INIS)

    Taha, M.M.; Maeda, Masayuki; Sakaida, Hiroshi

    2009-01-01

    Distal embolism is an important periprocedural technical complication with carotid angioplasty and carotid artery stenting (CAS). We evaluated the safety and efficacy of protection devices used during CAS by detecting new cerebral ischemic lesions using diffusion-weighted magnetic resonance imaging in 95 patients who underwent 98 CAS procedures: 34 using single PercuSurge GuardWire, 31 using double balloon protection, 15 using proximal flow reverse protection devices, 14 using Naviballoon, and 4 using filter anti-embolic devices. Diffusion-weighted imaging was performed preoperatively and postoperatively to evaluate the presence of any new embolic cerebral lesions. Postoperative diffusion-weighted imaging revealed 117 new ischemic lesions. Three patients had new ischemic stroke, two minor and one major, all ipsilateral to the treated carotid artery. The remaining patients had clinically silent ischemia. The incidence of new embolic lesions was lower using the proximal flow reverse protection device than with the double balloon protection (33% vs. 48.4%), but the volume of ipsilateral new ischemic lesions per patient was 136.6 mm 3 vs. 86.9 mm 3 , respectively. Neuroprotection with Naviballoon yielded ipsilateral lesions of large volume (86.6 mm 3 ) and higher number (5.7 lesions per patient) than using the filter anti-embolic device (34.8 mm 3 and 1 lesion per patient). New cerebral ischemic lesions after neuroprotected CAS are usually silent. The lower incidence of distal ischemia using proximal flow reverse and double balloon protection devices is limited by the larger volume and higher number of ischemic lesions. (author)

  5. Pre-swirl mechanism in front of a centrifugal compressor: effects on surge line and on unsteady phenomena in surge area

    Directory of Open Access Journals (Sweden)

    Danlos Amélie

    2017-01-01

    Full Text Available Using a pre-swirl mechanism upstream an impeller of a compressor allows to modify its characteristics curve, while weakly damaging its efficiency. Another consequence of the pre-swirl is to push back the surge line limit and to increase the operation zone towards the low flow rate limits. A centrifugal compressor has been modified in order to add a swirl generator device upstream the impeller. The incidence values of blades can vary from 0° (no pre-swirl to ±90°. The variation of the stator blades incidence has several main consequences: to allow a flow rate adjustment with a good efficiency conservation, to increase the angular velocity with a constant shaft power, to produce a displacement of the surge line limit. In this paper, the results of experimental studies are presented to analyze the surge line and the intensity of unsteady phenomena when the compressor works in its surge area.

  6. Evolutionary Optimization for the Number and Capacity of Surge Tanks and Pipeline Diameters in a Transmission Line

    Directory of Open Access Journals (Sweden)

    Gholam Reza Talebzadeh Sarvestani

    2006-09-01

    Full Text Available Controlling the unsteady effects of fluid flow (water hammer is one of the most important monitoring factors for structural protection of transmission pipelines. These effects are controlled by surge tanks, air chambers, pressure relief valves, and check valves. Generally, the critical points are detected by simulating the unsteady flow of the fluid, and accordingly, optimum positioning of the control devices is decided. Among the search methods, Genetic Algorithm (GA is an effective and robust method to solve highly complex optimization problems. Here, for the first time, GA coupled with an unsteady flow simulator is used to optimize the number and capacity of surge tanks in a pipeline system. In addition, the pipeline diameters are optimized for their best performance.

  7. Microstructural evaluation of a varistor block utilized in high voltage surge arresters; Avaliacao microestrutural de um bloco varistor utilizado em para-raios de alta tensao

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J.M. de; Dias, R.; Furtado, J.G. de M., E-mail: jma_ime@yahoo.com.b [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Assuncao, F.C.R. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2010-07-01

    Varistor is a semiconductor ceramic device characterized to have a high non-linear electrical resistance, it is used as active element of surge arresters with purpose of protecting of electro-electronics systems. Its properties are directly dependents of chemical composition and microstructural characteristics, such as grain size, porosity, twins and phases distribution. This work has the objective to characterize microstructurally a commercial varistor block of ZnO used in high voltage surge arrest and from this characterization to infer aspects about of its electrical macroscopic performance. DRX and SEM-EDS were used for microstructural analysis. The microstructural evaluation allows pointing the critical points of microstructure and, suggest relevant aspects to the improvement of commercial varistor microstructure, optimizing the electrothermal behavior of the device. (author)

  8. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  9. Automatic coordination of protection devices in distribution system

    International Nuclear Information System (INIS)

    Comassetto, L.; Bernardon, D.P.; Canha, L.N.; Abaide, A.R.

    2008-01-01

    Among the several components of distribution systems, protection devices present a fundamental importance, since they aim at keeping the physical integrity not only of the system equipment, but also of the electricians' team and the population in general. The existing tools today in the market that carry out the making of protection studies basically draw curves, and need direct user's interference for the protection devices adjustment and coordination analyses of selectivity, being susceptible to the user's mistakes and not always considering the best technical and economical application. In Brazil, the correct application of the protection devices demand a high amount of time, being extremely laborious due to the great number of devices (around 200 devices), besides the very dynamic behaviour of distribution networks and the need for constant system expansion. This article presents a computational tool developed with the objective of automatically determining the adjustments of all protection devices in the distribution networks to obtain the best technical application, optimizing its performance and making easier protection studies. (author)

  10. A simulation method for lightning surge response of switching power

    International Nuclear Information System (INIS)

    Wei, Ming; Chen, Xiang

    2013-01-01

    In order to meet the need of protection design for lighting surge, a prediction method of lightning electromagnetic pulse (LEMP) response which is based on system identification is presented. Experiments of switching power's surge injection were conducted, and the input and output data were sampled, de-noised and de-trended. In addition, the model of energy coupling transfer function was obtained by system identification method. Simulation results show that the system identification method can predict the surge response of linear circuit well. The method proposed in the paper provided a convenient and effective technology for simulation of lightning effect.

  11. Spasm induced by protection balloon during carotid artery stenting

    International Nuclear Information System (INIS)

    Tsutsumi, Masanori; Kazekawa, Kiyoshi; Onizuka, Masanari

    2007-01-01

    The PercuSurge system is a distal balloon embolic protection device used for carotid artery stenting (CAS). We performed a retrospective study on the prognosis and clinical effects of spasms induced by the PercuSurge GuardWire system (PercuSurge-induced spasm). We performed CAS in 118 carotid stenoses using the PercuSurge system. Of the 118 procedures, 31 (26.3%) of the patients experienced PercuSurge-induced spasm, and all underwent postoperative follow-up studies by cerebral angiography and antiplatelet treatment. On follow-up angiograms obtained a mean of 5.2 months (range 3-10 months) after CAS, all 31 PercuSurge-induced spasms had disappeared, and no delayed stenosis was found at the sites where the spasms had occurred. No ischemic events due to the spasms occurred during a mean follow-up of 13 months (range 3-32 months). In the hands of physicians experienced in endovascular surgery, CAS using the PercuSurge system is a safe method with which to treat patients with carotid stenosis. Our study demonstrated that PercuSurge-induced spasms had no morphological or clinical adverse effects. (author)

  12. Cerebral Ischemia Detected with Diffusion-Weighted MR Imaging after Protected Carotid Artery Stenting: Comparison of Distal Balloon and Filter Device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Jung; Jeon, Pyoung [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Roh, Hong Gee [Konkuk University Hospital, Seoul (Korea, Republic of)] (and others)

    2007-08-15

    The aim of this study was to examine the incidence of ischemia during protected carotid artery stenting (CAS) as well as to compare the protective efficacy of the balloon and filter devices on diffusion-weighted MR imaging (DWI). Seventy-one consecutive protected CAS procedures in 70 patients with a severe (> 70%) or symptomatic moderate (> 50%) carotid artery stenosis were examined. A balloon device (PercuSurge GuardWire) and a filter device (FilterWire EX/EZ, Emboshield) was used in 33 cases (CAS-B group) and 38 cases (CAS-F group) to prevent distal embolization, respectively. All the patients underwent DWI within seven days before and after the procedures. The number of new cerebral ischemic lesions on the post-procedural DWI were counted and divided into ipsilateral and contralateral lesions according to the relationship with the stenting side. New cerebral ischemic lesions were detected in 13 (39.4%) out of the 33 CAS-Bs and in 15 (39.5%) out of the 38 CAS-Fs. The mean number of total, ipsilateral and contralateral new cerebral ischemic lesion was 2.39, 1.67 and 0.73 in the CAS-B group and 2.11, 1.32 and 0.79 in the CAS-F group, respectively. No statistical differences were found between the two groups (p = 0.96, 0.74 and 0.65, respectively). The embolic complications encountered included two retinal infarctions and one hemiparesis in the CAS-B group (9.09%), and one retinal infarction, one hemiparesis and one ataxia in the CAS-F group (7.89%). There was a similar incidence of embolic complications in the two groups (p 1.00). The type of distal protection device used such as a balloon and filter does not affect the incidence of cerebral embolization after protected CAS.

  13. Correlación entre ondas de ensayo para dispositivos supresores de sobretensiones Correlation factor between standard surge waves for testing transient overvoltage suppressor devices

    Directory of Open Access Journals (Sweden)

    Julio Guillermo Zola

    2008-06-01

    Full Text Available Existe un variado número de ondas impulsivas estándar que se utilizan para ensayar el funcionamiento de los dispositivos supresores de sobretensiones transitorias. En particular, resultan de importancia los ensayos que comprueban la corriente máxima de impulso de descarga. Se analiza en este trabajo la relación existente entre estas distintas formas de ondas impulsivas, de forma tal de poder obtener una correlación entre ellas para aplicar una u otra con similares resultados. Las conclusiones que se alcanzan a partir de un desarrollo teórico simplificado son corroboradas mediante medición en laboratorio y simulación.A wide number of standard surge waves current for testing the behavior of transient overvoltage suppressor devices are currently being used. The value of pick surge current is one of the most important tests. The ratio between the surge waves to obtain a correlation factor between them, so they can be applied to get equivalent results is analyzed in this paper. The theoretical conclusions are verified by simulation and laboratory measurements.

  14. Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes.

    Science.gov (United States)

    Georgescu, Dan; Payne, Marielle; Olson, Randall J

    2007-03-01

    To objectively compare the postocclusion vacuum surge among different phacoemulsification machines and devices. Experimental study. Infiniti, Legacy, Millennium, and Sovereign were tested in an eye-bank eye. All the machines were tested with 20-gauge non-ABS tips, 430 mm Hg vacuum pressure, 24 ml/minute aspiration rate, peristaltic pump, and 75 cm bottle height. In addition, Infiniti and Legacy were also tested with 20-gauge bypass tips (ABS), 125 cm bottle height, and 40 ml/minute flow rate. We also tested 19-gauge tips with Infiniti and Sovereign and the venturi pump for Millennium. Significant differences were found between all the machines tested with Millennium peristaltic generating the least and Millennium Venturi the most surge. ABS tips significantly decreased the surge for Legacy but not for Infiniti. Cruise Control (CC) had a significant effect on Sovereign but not on Millennium. Increasing the bottle height decreased surge while increasing the flow increased surge for both Infiniti and Legacy. The 19-gauge tips increased surge for both Infiniti and Sovereign. Surge varied over a range of 40 microm to more than 2 mm. ABS and CC decrease surge, especially when the machine is not functioning near the limits of surge prevention. Certain parameters, such as a 19-gauge tip and high flow, dramatically increased surge, whereas elevating the bottle ameliorates it. Understanding the impact of all these features will help in minimizing the problem.

  15. Storm surge evolution and its relationship to climate oscillations at Duck, NC

    Science.gov (United States)

    Munroe, Robert; Curtis, Scott

    2017-07-01

    Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson's correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.

  16. Centrifugal Compressor Surge Controlled

    Science.gov (United States)

    Skoch, Gary J.

    2003-01-01

    It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.

  17. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  18. Protective device for battery to protect against heavy discharge

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-08

    The protective device according to the invention switches the equipment being supplied from the battery at a pre-determined discharge voltage by means of a switching device controlled by monitoring equipment. A semi-conductor element is used as the switching device. The current taken from the battery flows through the semi-conductor element to the equipment and to the monitoring device. When the discharge voltage is reached the semi-conductor element blocks. The semi-conductor switch can consist of transistors. The invention is explained by means of drawings and examples.

  19. Toward an integrated storm surge application: ESA Storm Surge project

    Science.gov (United States)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  20. Assessment of surge arrester failure rate and application studies in Hellenic high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, C.A.; Fotis, G.P.; Gonos, I.F.; Stathopulos, I.A. [National Technical University of Athens, School of Electrical and Computer Engineering, High Voltage Laboratory, 9 Iroon Politechniou St., Zografou Campus, 157 80 Athens (Greece); Ekonomou, L. [A.S.PE.T.E. - School of Pedagogical and Technological Education, Department of Electrical Engineering Educators, N. Heraklion, 141 21 Athens (Greece)

    2010-02-15

    The use of transmission line surge arresters to improve the lightning performance of transmission lines is becoming more common. Especially in areas with high soil resistivity and ground flash density, surge arresters constitute the most effective protection mean. In this paper a methodology for assessing the surge arrester failure rate based on the electrogeometrical model is presented. Critical currents that exceed arresters rated energy stress were estimated by the use of a simulation tool. The methodology is applied on operating Hellenic transmission lines of 150 kV. Several case studies are analyzed by installing surge arresters on different intervals, in relation to the region's tower footing resistance and the ground flash density. The obtained results are compared with real records of outage rate showing the effectiveness of the surge arresters in the reduction of the recorded failure rate. The presented methodology can be proved valuable to the studies of electric power systems designers intending in a more effective lightning protection, reducing the operational costs and providing continuity of service. (author)

  1. Safeguards of basic protection devices, high-protection devices, full-protection devices and school X-ray devices. Guideline for manufacturer and evaluating experts, rev. 1.0; Sicherheitsvorrichtungen von Basisschutzgeraeten, Hochschutzgeraeten, Vollschutzgeraeten und Schulroentgeneinrichtungen. Anforderungen fuer die Bauartpruefung nach der Roentgenverordnung. Leitfaden fuer Hersteller und Gutachter Rev. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, Harald; Grottker, Ulrich; Pullner, Bjoern; Roettger, Annette; Zwiener, Roland

    2017-07-15

    This report describes the PTB requirements for engineered safeguards of basic-protection devices, high-protection devices, full-protection devices and school X-ray devices within the framework of type tests according to the German X-ray Ordinance. It contains detailed requirements for the hard- and software to ensure the required safety level. Especially manufacturers and evaluators of such X-ray tube assemblies are addressed.

  2. Building with Nature: in search of resilient storm surge protection strategies

    NARCIS (Netherlands)

    Slobbe, van E.J.J.; Vriend, de H.J.; Aarninkhof, S.G.J.; Lulofs, K.; Vries, de M.; Dircke, P.

    2013-01-01

    Low-lying, densely populated coastal areas worldwide are under threat, requiring coastal managers to develop new strategies to cope with land subsidence, sea-level rise and the increasing risk of storm-surge-induced floods. Traditional engineering approaches optimizing for safety are often

  3. Gate protective device for SOS array

    Science.gov (United States)

    Meyer, J. E., Jr.; Scott, J. H.

    1972-01-01

    Protective gate device consisting of alternating heavily doped n(+) and p(+) diffusions eliminates breakdown voltages in silicon oxide on sapphire arrays caused by electrostatic discharge from person or equipment. Diffusions are easily produced during normal double epitaxial processing. Devices with nine layers had 27-volt breakdown.

  4. Evaluation of lightning performance of transmission lines protected by metal oxide surge arresters using artificial intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, C.A.; Perantzakis, G. [Technological Educational Institute (TEI) of Lamia, Department of Electrical Engineering, Lamia (Greece); Spanakis, G.E. [School of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece); Karampelas, P. [Hellenic American University, Manchester, NH (United States)

    2012-12-15

    Lightning and switching overvoltages are the main causes for faults in electrical networks. In the last decades, several different conventional methodologies have been used for the adjustment of the lightning performance of high voltage transmission lines, which are protected against lightning using overhead ground wires and surge arresters. The current paper proposes a new developed Artificial Neural Network (ANN), based on the Q-learning algorithm, in order to estimate the lightning failure rate of lines of the Hellenic system. The results obtained by the ANN model exhibit a satisfactory correlation in comparison with the real recorded data or the simulations results taken from a conventional method. (orig.)

  5. Modeling and simulation of storm surge on Staten Island to understand inundation mitigation strategies

    Science.gov (United States)

    Kress, Michael E.; Benimoff, Alan I.; Fritz, William J.; Thatcher, Cindy A.; Blanton, Brian O.; Dzedzits, Eugene

    2016-01-01

    Hurricane Sandy made landfall on October 29, 2012, near Brigantine, New Jersey, and had a transformative impact on Staten Island and the New York Metropolitan area. Of the 43 New York City fatalities, 23 occurred on Staten Island. The borough, with a population of approximately 500,000, experienced some of the most devastating impacts of the storm. Since Hurricane Sandy, protective dunes have been constructed on the southeast shore of Staten Island. ADCIRC+SWAN model simulations run on The City University of New York's Cray XE6M, housed at the College of Staten Island, using updated topographic data show that the coast of Staten Island is still susceptible to tidal surge similar to those generated by Hurricane Sandy. Sandy hindcast simulations of storm surges focusing on Staten Island are in good agreement with observed storm tide measurements. Model results calculated from fine-scaled and coarse-scaled computational grids demonstrate that finer grids better resolve small differences in the topography of critical hydraulic control structures, which affect storm surge inundation levels. The storm surge simulations, based on post-storm topography obtained from high-resolution lidar, provide much-needed information to understand Staten Island's changing vulnerability to storm surge inundation. The results of fine-scale storm surge simulations can be used to inform efforts to improve resiliency to future storms. For example, protective barriers contain planned gaps in the dunes to provide for beach access that may inadvertently increase the vulnerability of the area.

  6. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  7. An application of residual current protective device at electrical installation

    International Nuclear Information System (INIS)

    Firman Silitonga

    2008-01-01

    In an electrical installation, a protection for overload and short circuit are always to be installed. In addition to the installation, it is necessary to be installed a protection device for residual current because both the short circuit and the overload device protection will not work for the residual current. The quantity of the residual current must be defined first at any electrical installation to define an appropriate residual current protection so that not every residual current will break the circuit down. This paper will explain a method how to install a residual protection device for 3500 VA or more at TN and TT of earthing system. (author)

  8. Device Data Protection in Mobile Healthcare Applications

    Science.gov (United States)

    Weerasinghe, Dasun; Rajarajan, Muttukrishnan; Rakocevic, Veselin

    The rapid growth in mobile technology makes the delivery of healthcare data and services on mobile phones a reality. However, the healthcare data is very sensitive and has to be protected against unauthorized access. While most of the development work on security of mobile healthcare today focuses on the data encryption and secure authentication in remote servers, protection of data on the mobile device itself has gained very little attention. This paper analyses the requirements and the architecture for a secure mobile capsule, specially designed to protect the data that is already on the device. The capsule is a downloadable software agent with additional functionalities to enable secure external communication with healthcare service providers, network operators and other relevant communication parties.

  9. Study of the Effective Parameters on the Making Use of Protective Devices

    Directory of Open Access Journals (Sweden)

    Y Tabaraie

    2012-05-01

    Full Text Available

    Background and objectives

    Noise threats health of many groups of industrial workers and causes hearing loss. Use of personal protective device is the best control method to protect against hazardous conditions. Hence, this investigation was carried out to determine situation of using of protective devices and effective parameters on it, in Qom province workers community in 2006.

     

    Methods

    This research is descriptive-sectional study. Sample volume was designed 378 persons working in factories in Qom. First of all, list of Qom factories with noise pollution problems, were collected and 30 important factories among them were selected randomly. In the second stage, 378 persons were selected randomly from workers. The interest information was obtained by questionnaire and collected data were analyzed by SPSS software.

     

    Results

    The obtained results showed that, 83.6% of workers have been using ear protective devices. 296 of them, which were using ear protective devices, had an occupational hygienist in their workplaces. This research also showed that, 109 workers that used ear protective devices, had moderate knowledge level. Moreover, 82.5% of trained workers have used ear protective devices. The statistical analysis of the results showed that there were no significant relationship between use of ear protective devices and existence of occupational hygienist in workplace, knowledge and age of workers, worker’s antecedent, physical health of workers and kind of ear protective devices (p> 0.05. 

     

    Conclusion

    These results showed that among all considered parameters; only four parameters were effective in using ear protective devices; education of workers before employment, head workman and employer’s knowledge level, factories facilitation and kind of ear protective devices.

     

  10. Diffusion-weighted magnetic resonance imaging in carotid angioplasty and stenting with balloon embolic protection devices

    International Nuclear Information System (INIS)

    Asakura, Fumio; Kawaguchi, Kenji; Sakaida, Hiroshi; Toma, Naoki; Matsushima, Satoshi; Kuraishi, Keita; Tanemura, Hiroshi; Miura, Yoichi; Taki, Waro; Maeda, Masayuki

    2006-01-01

    We compared the results of two procedures to protect against distal embolism caused by embolic debris from carotid angioplasty with stent deployment (CAS) using diffusion-weighted magnetic resonance imaging (MRI). The study group comprised 39 men and 3 women (42 and 3 CAS procedures, respectively) with severe carotid stenosis (average age 70.0±6.6 years). During 20 CAS procedures the internal carotid artery was protected with a single balloon. A PercuSurge GuardWire was used for temporary occlusion. During 25 CAS procedures the internal and external carotid arteries were simultaneously temporarily occluded with a PercuSurge GuardWire and a Sentry balloon catheter, respectively. Diffusion-weighted MRI was performed 1 to 3 days after CAS. Data from 26 patients undergoing conventional angiography for diagnosis of cerebral ischemic disease, cerebral aneurysm or brain tumors were included as controls. Diffusion-weighted MRI after conventional diagnostic angiography showed ischemic spots in 3 of the 26 controls (11.5%). Ischemic spots were observed during 11 of 20 CAS procedures with the internal carotid artery protected with a single balloon (55.0%), and were observed during 9 of 25 CAS procedures with both the internal and external carotid arteries protected (36.0%). This difference was significant (P=0.0068). Ischemic lesions appeared not only ipsilateral to the carotid stenosis but also in the contralateral carotid artery (31.9%) and vertebrobasilar territory (25.3%). Better protection was obtained with simultaneous double occlusion of both the internal and external carotid artery than with single protection of the internal carotid artery during CAS. (orig.)

  11. Developing an early warning system for storm surge inundation in the Philippines

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter

  12. Radiological analyses of France Telecom surge arresters. Study performed for the CGT FAPT Cantal

    International Nuclear Information System (INIS)

    2010-02-01

    This document reports the radiological characterization of various versions of surge arresters used in the past to protect telephone lines against over-voltages. These equipment, which use various radioactive materials, were assessed by gamma radiation flow measurements, alpha-beta-gamma count rate measurements, dose rate measurements, gamma spectrometry analyses, tritium emanation test, radon 222 emanation test, smearing. Recommendations are formulated to manage radioactive surge arresters which are still being operated

  13. Use of historical information in extreme storm surges frequency analysis

    Science.gov (United States)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the

  14. Emergency department surge: models and practical implications.

    Science.gov (United States)

    Nager, Alan L; Khanna, Kajal

    2009-08-01

    Emergency Department crowding has long been described. Despite the daily challenges of managing emergency department volume and acuity; a surge response during a disaster entails even greater challenges including collaboration, intervention, and resourcefulness to effectively carry out pediatric disaster management. Understanding surge and how to respond with appropriate planning will lead to success. To achieve this, we sought to analyze models of surge; review regional and national data outlining surge challenges and factors that impact surge; and to outline potential solutions. We conducted a systemic review and included articles and documents that best described the theoretical and practical basis of surge response. We organized the systematic review according to the following questions: What are the elements and models that are delineated by the concept of surge? What is the basis for surge response based on regional and national published sources? What are the broad global solutions? What are the major lessons observed that will impact effective surge capacity? Multiple models of surge are described including public health, facility-based and community-based; a 6-tiered response system; and intrinsic or extrinsic surge capacity. In addition, essential components (4 S's of surge response) are described along with regional and national data outlining surge challenges, impacting factors, global solutions, and lesions observed. There are numerous shortcomings regionally and nationally affecting our ability to provide an effective and coordinated surge response. Planning, education, and training will lead to an effective pediatric disaster management response.

  15. Neutron protection material and neutron protection devices made of such material

    International Nuclear Information System (INIS)

    Ries, W.

    1984-01-01

    This is concerned with a neutron protection material made of thermoplastic or thermosetting plastic from high molecule hydrocarbon compounds with particularly high hydrogen and carbon contents as braking or shielding material (moderator) for fast neutrons. The plastic can contain boron for absorbing low energy neutrons. The material is used to manufacture foil, plates, pipes, shielding walls, components, bodies for radiation protection equipment, devices and plant and for neutron protection clothes. (orig./HP) [de

  16. Electrodynamics properties of auroral surges

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.

    1990-01-01

    The incoherent scatter radar technique provides an excellent means to study the ionization and electric fields associated with auroral precipitation events. One of the most intense and dynamic auroral events is the so-called surge or breakup aurora that accompanies auroral substorms. For their purposes they define a surge as a transient intensification of auroral precipitation that occurs simultaneously with a pronounced negative bay in the ground magnetometer data. They present data obtained during five such events in 1980 and 1981. Prior to the surge, auroral forms move equatorward, develop ray structure, and intensify. The surge is identified by an apparent poleward motion of the aurora producing aurorally associated ionization that extends over several hundred kilometers in latitude. The presurge auroral forms are embedded in a region of northward electric field. The auroral forms that comprise the surge span a region within which the meridional electric field is small and at times southward. A westward electric field is often but not always present within the surge. The behavior of the westward electric field is significantly different from the north-south field, in that sharp spatial gradients are absent even in very disturbed conditions. Although the westward Hall currents are mostly responsible for the negative bays that accompany the surge, at times the westward Pedersen current sustained by the westward electric field can be important. Sudden variations in the H component of the ground magnetogram can be caused by motions of the aurora or by temporal variations in the fields or conductivities. They present a model that simulates the observed changes in electric field and precipitation that accompany surges. The perturbation in the electric field produced by the surge is simulated by adding negative potential in regions of intense precipitation

  17. Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations

    International Nuclear Information System (INIS)

    Jung, Mooncheong; Han, Jaeyoung; Yu, Sangseok

    2016-01-01

    When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink® environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer’s compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

  18. Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mooncheong; Han, Jaeyoung; Yu, Sangseok [Chungnam National Univ., Daejeon (Korea, Republic of)

    2016-05-15

    When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink® environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer’s compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

  19. Microprocessor protection devices: The present and the future

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2008-01-01

    Full Text Available Paper presents the analysis of the basic constructive disadvantages of the present day microprocessor-based protective devices (MBR and offers the basic principles for creating a new MBR that can be used in newly constructed devices.

  20. Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2015-03-01

    defense efforts, and coastal protection measures. These maps can also determine the best areas to build critical structures, or at least determine the level of protection of these structures should they be built in hazard areas. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate countermeasures for a given PSWS.

  1. Staging workers' use of hearing protection devices: application of the transtheoretical model.

    Science.gov (United States)

    Raymond, Delbert M; Lusk, Sally L

    2006-04-01

    The threat of noise-induced hearing loss is a serious concern for many workers. This study explores use of the transtheoretical model as a framework for defining stages of workers' acceptance of hearing protection devices. A secondary analysis was performed using a cross-section of data from a randomized, controlled clinical trial of an intervention to increase use of hearing protection. Use of hearing protection devices was well distributed across the theorized stages of change. Chi-square analysis and analysis of variance revealed significant differences between stages for the variables studied. Discrete stages of hearing protection device use can be identified, laying the foundation for further work investigating use of the transtheoretical model for promoting hearing protection device use. The model can provide a framework for tailoring interventions and evaluating their effects. With further development of the transtheoretical model, nurses may be able to easily identify workers' readiness to use hearing protection devices and tailor training toward that goal.

  2. Power system EMP protection. Final report

    International Nuclear Information System (INIS)

    Marable, J.H.; Barnes, P.R.; Nelson, D.B.

    1975-05-01

    Voltage transients induced in electric power lines and control circuits by the electromagnetic pulse (EMP) from high-altitude nuclear detonations may cause widespread power failure and damage in electric power systems. This report contains a parametric study of EMP power line surges and discusses protective measures to minimize their effects. Since EMP surges have considerably greater rates of rise than lightning surges, recommended standards and test procedures are given to assure that surge arresters protect equipment from damage by EMP. Expected disturbances and damage to power systems are reviewed, and actions are presented which distribution companies can take to counter them. These include backup communications methods, stockpiling of vulnerable parts, repair procedures, and dispatcher actions to prevent blackout from EMP-caused instabilities. A long-range program is presented for improving distributors' protection against EMP. This involves employee training, hardware protection for power and control circuits, and improvement of plans for emergency action. (U.S.)

  3. Novel material and structural design for large-scale marine protective devices

    International Nuclear Information System (INIS)

    Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong

    2015-01-01

    Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance

  4. How to verify lightning protection efficiency for electrical systems? Testing procedures and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Birkl, Josef; Zahlmann, Peter [DEHN and SOEHNE, Neumarkt (Germany)], Emails: Josef.Birkl@technik.dehn.de, Peter.Zahlmann@technik.dehn.de

    2007-07-01

    There are increasing numbers of applications, installing Surge Protective Devices (SPDs), through which partial lightning currents flow, and highly sensitive, electronic devices to be protected closely next to each other due to the design of electric distribution systems and switchgear installations which is getting more and more compact. In these cases, the protective function of the SPDs has to be co-ordinated with the individual immunity of the equipment against energetic, conductive impulse voltages and impulse currents. In order to verify the immunity against partial lightning currents of the complete system laboratory tests on a system level are a suitable approach. The proposed test schemes for complete systems have been successfully performed on various applications. Examples will be presented. (author)

  5. Assessment of the Temporal Evolution of Storm Surge via Land to Water Isopleths in Coastal Louisiana

    Science.gov (United States)

    Siverd, C. G.; Hagen, S. C.; Bilskie, M. V.; Braud, D.; Gao, S.; Peele, H.; Twilley, R.

    2017-12-01

    The low-lying coastal Louisiana deltaic landscape features an intricate system of fragmented wetlands, natural ridges, man-made navigation canals and flood protection infrastructure. Since 1900 and prior to the landfall of Hurricane Katrina in 2005, Louisiana lost approximately 480,000 ha (1,850 sq mi) of coastal wetlands and an additional 20,000 ha (77 sq mi) due to Katrina. This resulted in a total wetland storm protection value loss of USD 28.3 billion and USD 1.1 billion, respectively (Costanza 2008). To investigate the response of hurricane storm surge (e.g. peak water levels, inundation time and extent) through time due to land loss, hydrodynamic models that represent historical eras of the Louisiana coastal landscape were developed. Land:Water (L:W) isopleths (Gagliano 1970, 1971, Twilley 2016) have been calculated along the coast from the Sabine River to the Pearl River. These isopleths were utilized to create a simplified coastal landscape (bathymetry, topography, bottom roughness) representing circa 2010. Similar methodologies are employed with the objective of developing storm surge models that represent the coastal landscape for past eras. The goal is to temporally examine the evolution of storm surge along coastal Louisiana. The isopleths determined to best represent the Louisiana coast as a result of the methodology devised to develop the simple storm surge model for c.2010 are applied in the development of surge models for historical eras c.1930 and c.1970. The ADvaced CIRCulation (ADCIRC) code (Luettich 2004) is used to perform storm surge simulations with a predetermined suite of hurricane wind and pressure forcings. Hydrologic Unit Code 12 (HUC12) sub-watersheds provide geographical bounds to quantify mean maximum water surface elevations (WSEs), volume of inundation, and area of inundation. HUC12 sub-watersheds also provide a means to compare/contrast these quantified surge parameters on a HUC12-by-HUC12 basis for the c.1930, c.1970 and c.2010

  6. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations

    Science.gov (United States)

    Feng, Xingru; Li, Mingjie; Yin, Baoshu; Yang, Dezhou; Yang, Hongwei

    2018-06-01

    This is a study of the storm surge trends in some of the typhoon-prone coastal areas of China. An unstructured-grid, storm surge-wave-tide coupled model was established for the coastal areas of Zhejiang, Fujian and Guangdong provinces. The coupled model has a high resolution in coastal areas, and the simulated results compared well with the in situ observations and satellite altimeter data. The typhoon-induced storm surges along the coast of the study areas were simulated based on the established coupled model for the past 20 years (1997-2016). The simulated results were used to analyze the trends of the storm surges in the study area. The extreme storm surge trends along the central coast of Fujian Province reached up to 0.06 m/y, significant at the 90% confidence level. The duration of the storm surges greater than 1.0 and 0.7 m had an increasing trend along the coastal area of northern Fujian Province, significant at confidence levels of 70%-91%. The simulated trends of the extreme storm surges were also validated by observations from two tide gauge stations. Further studies show that the correlation coefficient (RTE) between the duration of the storm surge greater than 1 m and the annual ENSO index can reach as high as 0.62, significant at the 99% confidence level. This occurred in a location where the storm surge trend was not significant. For the areas with significant increasing storm surge trends, RTE was small and not significant. This study identified the storm surge trends for the full complex coastline of the study area. These results are useful both for coastal management by the government and for coastal engineering design.

  7. 14 CFR 25.1357 - Circuit protective devices.

    Science.gov (United States)

    2010-01-01

    ... system or connected equipment. (b) The protective and control devices in the generating system must be designed to de-energize and disconnect faulty power sources and power transmission equipment from their...

  8. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The...

  9. Tide-surge interaction in the English Channel

    Directory of Open Access Journals (Sweden)

    D. Idier

    2012-12-01

    Full Text Available The English Channel is characterised by strong tidal currents and a wide tidal range, such that their influence on surges is expected to be non-negligible. In order to better assess storm surges in this zone, tide-surge interactions are investigated. A preliminary data analysis on hourly surges indicates some preferential times of occurrence of large storm surges at rising tide, especially in Dunkerque. To examine this further, a numerical modelling approach is chosen, based on the 2DH shallow-water model (MARS. The surges are computed both with and without tide interaction. For the two selected events (the November 2007 North Sea and March 2008 Atlantic storms, it appears that the instantaneous tide-surge interaction is seen to be non-negligible in the eastern half of the English Channel, reaching values of 74 cm (i.e. 50% of the same event maximal storm surge in the Dover Strait for the studied cases. This interaction decreases in westerly direction. In the risk-analysis community in France, extreme water levels have been determined assuming skew surges and tide as independent. The same hydrodynamic model is used to investigate this dependence in the English Channel. Simple computations are performed with the same meteorological forcing, while varying the tidal amplitude, and the skew surge differences DSS are analysed. Skew surges appear to be tide-dependent, with negligible values of DSS (<0.05 m over a large portion of the English Channel, although reaching several tens of centimetres in some locations (e.g. the Isle of Wight and Dover Strait.

  10. 14 CFR 29.1357 - Circuit protective devices.

    Science.gov (United States)

    2010-01-01

    ... faults or serious malfunction of the system or connected equipment. (b) The protective and control devices in the generating system must be designed to de-energize and disconnect faulty power sources and...

  11. Reduction of the visual impact of overhead transmission line systems through utilisation of line surge arresters as lightning protection

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2008-01-01

    with the Technical University of Denmark, on how to lessen the visual impact of 400 kV overhead line transmission systems. In this paper omission of shield wires combined with installation of a suitable number of line surge arresters is investigated as a possible alternative to transmission lines equipped...... with shielding wires thereby reducing tower height, allowing more compact designs of towers thus minimizing the visual environment impact of the lines. Omission of shield wires in the system and instead utilizing a larger number of surge arresters in the (upper) phases of an overhead line without reduction...... will be investigated by transient simulations on a 400 kV line with either shield wires or line surge arresters. These simulations will also be used to estimate number and location of the line surge arresters in the line to ensure a satisfactory performance of the line when omitting shield wires in the tower top...

  12. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    Energy Technology Data Exchange (ETDEWEB)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim [University of Cincinnati, Department of Aerospace Engineering, Cincinnati, OH (United States); Mohamed, Ashraf [Honeywell Turbo Technologies, Greater Los Angeles, CA (United States)

    2012-09-15

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a ''ported shroud.'' This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved. (orig.)

  13. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    Science.gov (United States)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf

    2012-09-01

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.

  14. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    Science.gov (United States)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  15. Dependable Design Flow for Protection Systems using Programmable Logic Devices

    CERN Document Server

    Kwiatkowski, M

    2011-01-01

    Programmable Logic Devices (PLD) such as Field Programmable Gate Arrays (FPGA) are becoming more prevalent in protection and safety-related electronic systems. When employing such programmable logic devices, extra care and attention needs to be taken. The final synthesis result, used to generate the bit-stream to program the device, must be shown to meet the design’s requirements. This paper describes how to maximize confidence using techniques such as Formal Methods, exhaustive Hardware Description Language (HDL) code simulation and hardware testing. An example is given for one of the critical functions of the Safe Machine Parameters (SMP) system, used in the protection of the Large Hadron Collider (LHC) at CERN. CERN is also working towards an adaptation of the IEC- 61508 lifecycle designed for Machine Protection Systems (MPS), and the High Energy Physics environment, implementation of a protection function in FPGA code is only one small step of this lifecycle. The ultimate aim of this project is to cre...

  16. Analysis of emboli during carotid stenting with distal protection device.

    Science.gov (United States)

    Chen, Chin-I; Iguchi, Yasuyuki; Garami, Zsolt; Malkoff, Marc D; Smalling, Richard W; Campbell, Morgan S; Alexandrov, Andrei V

    2006-01-01

    The newly developed multi-frequency transcranial Doppler (TCD) is able to differentiate gaseous from solid emboli. Our goal was to apply this technology to initially characterize emboli detected during carotid stenting with distal protection. Patients undergoing carotid angiography and stenting were monitored with 2-2.5 MHz TCD (Embo-Dop, DWL) over the middle cerebral artery unilateral to stent deployment. Sonographers insured optimal signal recordings during the procedures. Automated emboli detection and classification software (MultiXLab version 2.0) was applied for offline count and analysis. Monitoring using the Filter Wire EX (Boston Scientific) and ACCUNET system (Guidant Corporation) was performed. A total of 9,649 embolic signals were detected during 11 angiographic and 10 stenting procedures. An observer confirmed the signals using the International Consensus definition. Automated software classified these events into 5,900 gaseous and 3,749 solid emboli. During contrast injections without the protection device, 1,013 emboli were detected with 28% of these being solid. With deployment of the distal protection device, 8,636 emboli were found with 40% being solid (p protection device, 7,395 emboli with 42% solids were detected (p protection device still deployed, yielded 1,241 emboli with 31% solids (NS). Only 1 patient developed transient hemiparesthesia during ballooning that reduced the flow velocity to zero for 14 s. Neither gaseous nor solid emboli resulted in a mean flow velocity decrease or clinical symptoms. Microembolization frequently occurs during stenting even with deployment of the distal protection device. More solid emboli are seen during manipulations associated with lesion crossing. Although novel TCD methods yield a high frequency of embolic signals, further validation of this technique to determine the true nature, size, and number of emboli is needed.

  17. Estimation of digital protection devices applicability on basis of multiple characterizing parameters

    Directory of Open Access Journals (Sweden)

    Dimitar Bogdanov

    2018-01-01

    Full Text Available The contemporary electrical power systems (EPS impose increased requirements for the functionality of the protection systems. The necessity of improved EPS stability is in some extent resulting of the increased integration of renewable sources of electrical energy. The future grid development gives perspective for connection of more converter based generations. The power electronic schemes and associated functional requirements impose necessity of high speed, sensitive, selective and reliable operation of the protection devices. These requirements have always been target of the protection equipment producers and grid operators. The electronic converting schemes specifics impose these requirements for the protection devices in more straightened way, as the converter connected generator may need to trip in shorter time than classical machine generator. In the article is presented a generalized overview of some of the characteristics of the digital “relay” protection devices, and approach for device selection is proposed. Investment planning may utilize such approach in order to have an optimal design from financial point of view.

  18. The use of hearing protection devices by older adults during recreational noise exposure.

    Science.gov (United States)

    Nondahl, D M; Cruickshanks, K J; Dalton, D S; Klein, B E K; Klein, R; Tweed, T S; Wiley, T L

    2006-01-01

    A population-based study to assess the use of hearing protection devices by older adults during noisy recreational activities was performed. The population-based Epidemiology of Hearing Loss Study was designed to measure the prevalence of hearing loss in adults residing in Beaver Dam, Wisconsin. The use of hearing protection devices during noisy recreational activities was assessed by performing three examinations over a period of 10 years (1993-1995, no. of participants (n)=3753, aged 48-92 years; 1998-2000, n=2800, aged 53-97 years; 2003-2005, n=2395, aged 58-100 years). The recreational activities included hunting, target shooting, woodworking/carpentry, metalworking, driving loud recreational vehicles, and performing yard work using either power tools or a chain saw. The prevalence of using hearing protection devices during any of these activities increased with time (9.5%, 15.0%, and 19.9% at baseline, 5 years, and 10 years, respectively). However, the use of hearing protection devices remained low for most activities. Those under the age of 65 were twice as likely to use hearing protection devices during noisy activities than were older adults. Men, those with a hearing handicap, and those with significant tinnitus were more likely to use hearing protection devices. Smokers and the less educated were less likely to use hearing protection devices. The results demonstrated that many adults expose themselves to potentially damaging recreational noise, leaving them at risk for hearing loss.

  19. 30 CFR 75.1723 - Stationary grinding machines; protective devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective....1723 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than... the wheel. (3) Safety washers. (b) Grinding wheels shall be operated within the specifications of the...

  20. Consumer protection issues in energy: a guide for attorneys general. Insulation, solar, automobile device, home devices

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Harry I.; Hulse, William S.; Jones, Robert R.; Langer, Robert M.; Petrucelli, Paul J.; Schroeder, Robert J.

    1979-11-01

    The guide attempts to bring together two important and current issues: energy and consumer protection. Perhaps the most basic consumer-protection issue in the energy area is assuring adequate supplies at adequate prices. It is anticipated, though, that consumers will want to consider new ways to lower enegy consumption and cost, and will thus be susceptible to fraudulent energy claims. Information is prepared on insulation, solar, energy-saving devices for the home, and energy-saving devices for the automobile.

  1. 30 CFR 77.401 - Stationary grinding machines; protective devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.401 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than special bit grinders shall be equipped with...

  2. Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control

    Science.gov (United States)

    Guillou, Erwann

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed

  3. The radiation protective devices for interventional procedures using computed tomography

    International Nuclear Information System (INIS)

    Iida, Hiroji; Chabatake, Mitsuhiro; Shimizu, Mitsuru; Tamura, Sakio

    2002-01-01

    A scattered dose and a surface dose from phantom measurements during interventional procedures with computed tomography (IVR-CT) were evaluated. To reduce the personnel exposure in IVR-CT, the new protective devices were developed and its effect evaluated. Two radiation protection devices were experimentally made using a lead vinyl sheet with lead equivalent 0.125 mmPb. The first device is a lead curtain which shields the space of CT-gantry and phantom for the CT examination. The second device is a lead drape which shields on the phantom surface adjacent to the scanning plane for the CT-fluoroscopy. Scattered dose and phantom surface dose were measured with an abdominal phantom during Cine-CT (130 kV, 150 mA, 5 seconds, 10 mm section thickness). They were measured by using ionization chamber dosimeter. They were measured with and without a lead curtain and a lead drape. Scattered dose rate was measured at distance of 50-150 cm from the scanning plane. And, surface dose was measured at distance of 4-21 cm from the scanning plane on the phantom. On operator's standing position, scattered dose rates were from 8.4 to 11.6 μGy/sec at CT examination. The lead curtain and the lead drape reduced scattered dose rate at distance of 50 cm from the scanning plane by 66% and 58.3% respectively. Surface dose rate were 118 μGy/sec at distance of 5 cm from the scanning plane at CT-fluoroscopy. The lead drape reduced the surface dose by 60.5%. High scattered exposure to personnel may occur during interventional procedures using CT. They were considerably reduced during CT-arteriography by attaching the lead curtain in CT equipment. And they were substantially reduced during CT-fluoroscopy by placing the lead drape adjacent to the scanning plane, in addition, operator's hand would be protected from unnecessary radiation scattered by phantom. It was suggested that the scattered exposure to personnel could be sufficiently reduced by using radiation protection devices in IVR-CT. The

  4. Adjustable radiation protection device of the fluoroscope DG 10

    International Nuclear Information System (INIS)

    Hoermann, D.

    1980-01-01

    In cooperation with the 'VEB Transformatoren- und Roentgenwerk Hermann Matern', Dresden, an adjustable radiation protection device has been developed. This supplementary equipment for fluoroscopes ensures a sufficient protection of the gonads against undesirable X radiation, can be handled easily and does not annoy patients, esp. children

  5. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  6. 48 CFR 252.217-7001 - Surge option.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Surge option. 252.217-7001... Clauses 252.217-7001 Surge option. As prescribed in 217.208-70(b), use the following clause: Surge Option (AUG 1992) (a) General. The Government has the option to— (1) Increase the quantity of supplies or...

  7. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  8. Storm Surge and Tide Interaction: A Complete Paradigm

    Science.gov (United States)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  9. Physical limitations of semiconductor devices defects, reliability and esd protection

    CERN Document Server

    Vashchenko, V A

    2008-01-01

    Provides an important link between the theoretical knowledge in the field of non-linier physics and practical application problems in microelectronics. This title focuses on power semiconductor devices and self-triggering pulsed power devices for ESD protection clamps.

  10. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    Science.gov (United States)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  11. Protective device for organs exposed to medical X-radiation

    International Nuclear Information System (INIS)

    Zimmer, K.

    1978-01-01

    The protective device for male or female gonads consists of a protective screen made of hard lead coated with silicon caoutchouc, a flexible supporting arm, and a base plate on which the supporting arm for the protective screen is monted. The protective screen has got the shape of a dish resp. a pear-shaped contour for male resp. female persons. The base may be arranged on a Bucky table between the legs of the person to be examined by means of suction cups. (DG) [de

  12. Storm surge climatology report

    OpenAIRE

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  13. Effect of piping systems on surge in centrifugal compressors

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2008-01-01

    There is a possibility that the exchange of the piping system may change the surge characteristic of a compressor. The piping system of a plant is not always the same as that of a test site. Then it is important to evaluate the effect of piping systems on surge characteristics in centrifugal compressors. Several turbochargers combined with different piping systems were tested. The lumped parameter model which was simplified to be solved easily was applied for the prediction of surge point. Surge lines were calculated with the linearlized lumped parameter model. The difference between the test and calculated results was within 10 %. Trajectory of surge cycle was also examined by solving the lumped parameter model. Mild surge and deep surge were successfully predicted. This study confirmed that the lumped parameter model was a very useful tool to predict the effect of piping systems on surge characteristics in centrifugal compressors, even though that was a simple model

  14. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Smeulers, J.P.M.; Slot, H.J.; Meulendijks, D.

    2011-01-01

    Surge of turbo compressors can cause large stepwise changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. Surge is usually avoided by an anti surge controller (ASC). However, in spite of the ASC surge cycles may

  15. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Slot, H.J.; Meulendijks, D.; Smeulers, J.P.M.

    2009-01-01

    Surge of turbo compressors can cause large stepwise changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. Surge is usually avoided by an anti surge controller (ASC). However, in spite of the ASC surge cycles may

  16. Coastal emergency managers' preferences for storm surge forecast communication.

    Science.gov (United States)

    Morrow, Betty Hearn; Lazo, Jeffrey K

    2014-01-01

    Storm surge, the most deadly hazard associated with tropical and extratropical cyclones, is the basis for most evacuation decisions by authorities. One factor believed to be associated with evacuation noncompliance is a lack of understanding of storm surge. To address this problem, federal agencies responsible for cyclone forecasts are seeking more effective ways of communicating storm surge threat. To inform this process, they are engaging various partners in the forecast and warning process.This project focuses on emergency managers. Fifty-three emergency managers (EMs) from the Gulf and lower Atlantic coasts were surveyed to elicit their experience with, sources of, and preferences for storm surge information. The emergency managers-who are well seasoned in hurricane response and generally rate the surge risk in their coastal areas above average or extremely high-listed storm surge as their major concern with respect to hurricanes. They reported a general lack of public awareness about surge. Overall they support new ways to convey the potential danger to the public, including the issuance of separate storm surge watches and warnings, and the expression of surge heights using feet above ground level. These EMs would like more maps, graphics, and visual materials for use in communicating with the public. An important concern is the timing of surge forecasts-whether they receive them early enough to be useful in their evacuation decisions.

  17. Impacts of Storm Surge Mitigation Strategies on Aboveground Storage Tank Chemical Spill Transport

    Science.gov (United States)

    Do, C.; Bass, B. J.; Bernier, C.; Samii, A.; Dawson, C.; Bedient, P. B.

    2017-12-01

    The Houston Ship Channel (HSC), located in the hurricane-prone Houston-Galveston region of the upper Texas Coast, is one of the busiest waterways in the United States and is home to one of the largest petrochemical complexes in the world. Due to the proximity of the HSC to Galveston Bay and the Gulf of Mexico, chemical spills resulting from storm surge damage to aboveground storage tanks (ASTs) pose serious threats to the environment, residential communities, and national/international markets whose activities in the HSC generate billions of dollars annually. In an effort to develop a comprehensive storm surge mitigation strategy for Galveston Bay and its constituents, Rice University's Severe Storm Prediction, Education, and Evacuation from Disasters Center proposed two structural storm surge mitigation concepts, the Mid Bay Structure (MBS) and the Lower Bay Structure (LBS) as components of the Houston-Galveston Area Protection System (H-GAPS) project. The MBS consists of levees along the HSC and a navigational gate across the channel, and the LBS consists of a navigation gate and environmental gates across Bolivar Road. The impacts of these two barrier systems on the fate of AST chemical spills in the HSC have previously been unknown. This study applies the coupled 2D SWAN+ADCIRC model to simulate hurricane storm surge circulation within the Gulf of Mexico and Galveston Bay due to a synthetic storm which results in approximately 250-year surge levels in Galveston Bay. The SWAN+ADCIRC model is run using high-resolution computational meshes that incorporate the MBS and LBS scenarios, separately. The resulting wind and water velocities are then fed into a Lagrangian particle transport model to simulate the spill trajectories of the ASTs most likely to fail during the 250-year proxy storm. Results from this study illustrate how each storm surge mitigation strategy impacts the transport of chemical spills (modeled as Lagrangian particles) during storm surge as

  18. Turbine protecting device in a BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Kasuga, Hajime; Oka, Yoko.

    1984-01-01

    Purpose: To prevent highly humid steams from flowing into the turbine upon abnormal reduction in the reactor water level in order to ensure the turbine soundness, as well as in order to trip the turbine with no undesired effect on the reactor. Constitution: A protection device comprising a judging device and a timer are disposed in a BWR type reactor, in order to control a water level signal from a reactor water level gage. If the reactor water level is reduced during rated power operation, steams are kept to be generated due to decay heat although reactor is scramed. When a signal from the reactor water level detector is inputted to the protection device, a trip signal is outputted by way of a judging device after 15 second by means of the timer, when the main steam check valve is closed to trip the turbine. With this delay of time, abrupt increase in the pressure of the reactor due to sudden shutdown can be prevented. (Nakamoto, H)

  19. 30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection; disconnecting devices. Short-circuit protection for trailing cables shall be provided by an automatic circuit...

  20. Analysis of Storm Surge in Hong Kong

    Science.gov (United States)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  1. Related factors to workers' use of hearing protection device in knitting & ppinning factories of Yazd city based on Protection Motivation Theory

    Directory of Open Access Journals (Sweden)

    A. Barkhordi

    2009-10-01

    Full Text Available Background and aimsNoise-Induced Hearing Loss (NIHL is an important occupational disorder. High percentage of workers in occupational environments did not use the hearing protection device against harmful noise. This study was carried out to study factors related to workers' use of Hearing protection Device in Knitting & spinning factories of Yazd city based on protection motivation theory.MethodsIn this cross-sectional analytical study 280 workers of the knitting & spinning factories of Yazd City who exposed to harmful noise (over 85dB selected among the three factories by cluster sampling. The data gathered via exclusive interviews with selected workers  using the questionnaire designed based on protection motivation theory and were analyzedResults42/5 percent of workers permanently used hearing protection devices, and 20/7 percent of workers never use.There was a significant correlation between the age of workers and the mean score components of PMT; perceived severity, perceived vulnerability, perceived response efficacy and protection motivation. There was also a significant correlation between the work experience and the mean score of PMT factors; perceived severity, perceived response efficacy and perceived vulnerability. Also there was a significant correlation between workers' education level and the mean score of perceived response efficacy and there was a significant correlation between protection motivation and the mean score components of PMT; perceived vulnerability, perceived self-efficacy, perceived response efficacy, perceived costs and behaviorConclusionRegarding the significant correlations between the more constructs of PMT and protection motivation of workers for using hearing protective device, designing educational program based on PMT to increase hearing protection devices usage among workers is recommended.

  2. Preventive protection device and method for bottom of reactor pressure vessel

    International Nuclear Information System (INIS)

    Hayashi, Eisaku; Kurosawa, Koichi; Furukawa, Hideyasu; Morinaka, Ren; Enomoto, Kunio; Otaka, Masahiro; Yoshikubo, Fujio; Chiba, Noboru; Sato, Kazunori.

    1995-01-01

    In a preventive protection device for improving stresses in reactor structural components by jetting highly pressurized water with cavitation bubbles from a jetting nozzle toward structural components in a reactor pressure vessel, a fixed structure to a CRD housing is provided with a rotational body attached to the structure, a multi joint arm and a jetting nozzle supported to the multi joint arm. The jetting nozzle is disposed at a position where the center of the jetting deviates from the center of the CRD housing. In addition, a monitoring camera is disposed for displaying the target for preventive protection. The state of stresses on a plurality of targets for preventive protection can be improved by the preventive protection device at a fixed position in the bottom of a reactor pressure vessel where housings stand densely, thereby enabling to attain the preventive protection operation easily and rapidly. (N.H.)

  3. Numerical Evaluation of Storm Surge Indices for Public Advisory Purposes

    Science.gov (United States)

    Bass, B.; Bedient, P. B.; Dawson, C.; Proft, J.

    2016-12-01

    After the devastating hurricane season of 2005, shortcomings with the Saffir-Simpson Hurricane Scale's (SSHS) ability to characterize a tropical cyclones potential to generate storm surge became widely apparent. As a result, several alternative surge indices were proposed to replace the SSHS, including Powell and Reinhold's Integrated Kinetic Energy (IKE) factor, Kantha's Hurricane Surge Index (HSI), and Irish and Resio's Surge Scale (SS). Of the previous, the IKE factor is the only surge index to-date that truly captures a tropical cyclones integrated intensity, size, and wind field distribution. However, since the IKE factor was proposed in 2007, an accurate assessment of this surge index has not been performed. This study provides the first quantitative evaluation of the IKEs ability to serve as a predictor of a tropical cyclones potential surge impacts as compared to other alternative surge indices. Using the tightly coupled ADvanced CIRCulation and Simulating WAves Nearshore models, the surge and wave responses of Hurricane Ike (2008) and 78 synthetic tropical cyclones were evaluated against the SSHS, IKE, HSI and SS. Results along the upper TX coast of the Gulf of Mexico demonstrate that the HSI performs best in capturing the peak surge response of a tropical cyclone, while the IKE accounting for winds greater than tropical storm intensity (IKETS) provides the most accurate estimate of a tropical cyclones regional surge impacts. These results demonstrate that the appropriate selection of a surge index ultimately depends on what information is of interest to be conveyed to the public and/or scientific community.

  4. Gender and other factors associated with the use of hearing protection devices at work

    Directory of Open Access Journals (Sweden)

    Tatiane Costa Meira

    2015-01-01

    Full Text Available OBJECTIVE To analyze whether sociodemographic, occupational, and health-related data are associated with the use of hearing protection devices at work, according to gender.METHODS A cross-sectional study was conducted in 2006, using a random sample of 2,429 workers, aged between 18 and 65 years old, from residential sub-areas in Salvador, BA, Northeastern Brazil. Questionnaires were used to obtain sociodemographic, occupational, and health-related data. Workers who reported that they worked in places where they needed to shout in order to be heard were considered to be exposed to noise. Exposed workers were asked whether they used hearing protection devices, and if so, how frequently. Analyses were conducted according to gender, with estimates made about prevalence of the use of hearing protection devices, prevalence ratios, and their respective 95% confidence intervals.RESULTS Twelve percent (12.3% of study subjects reported that they were exposed to noise while working. Prevalence of the use of hearing protection devices was 59.3% for men and 21.4% for women. Men from higher socioeconomic levels (PR = 1.47; 95%CI 1.14;1.90 and who had previous audiometric tests (PR = 1.47; 95%CI 1.15;1.88 were more likely to use hearing protection devices. For women, greater perceived safety was associated with the use of protection devices (PR = 2.92; 95%CI 1.34;6.34. This perception was specifically related to the presence of supervisors committed to safety (PR = 2.09; 95%CI 1.04;4.21, the existence of clear rules to prevent workplace injuries (PR = 2.81; 95%CI 1.41;5.59, and whether they were informed about workplace safety (PR = 2.42; 95%CI 1.23;4.76.CONCLUSIONS There is a gender bias regarding the use of hearing protection devices that is less favorable to women. The use of such devices among women is positively influenced by their perception of a safe workplace, suggesting that gender should be considered as a factor in hearing conservation programs.

  5. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  6. Volume-based characterization of postocclusion surge.

    Science.gov (United States)

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  7. Observing Storm Surges from Space: A New Opportunity

    Science.gov (United States)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  8. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  9. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Smeulers, J.P.M.; Gonzalez Díez, N.; Slot, H.J.

    2012-01-01

    Surge of turbo compressors can cause large almost step like changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. In spite of an anti-surge controller (ASC), at extreme events surge cycles may occur. In order to

  10. Retinal artery occlusion during carotid artery stenting with distal embolic protection device.

    Science.gov (United States)

    Kohara, Kotaro; Ishikawa, Tatsuya; Kobayashi, Tomonori; Kawamata, Takakazu

    2018-01-01

    Retinal artery occlusion associated with carotid artery stenosis is well known. Although it can also occur at the time of carotid artery stenting, retinal artery occlusion via the collateral circulation of the external carotid artery is rare. We encountered two cases of retinal artery occlusion that were thought to be caused by an embolus from the external carotid artery during carotid artery stenting with a distal embolic protection device for the internal carotid artery. A 71-year-old man presented with central retinal artery occlusion after carotid artery stenting using the Carotid Guardwire PS and a 77-year-old man presented with branch retinal artery occlusion after carotid artery stenting using the FilterWire EZ. Because additional new cerebral ischaemic lesions were not detected in either case by postoperative diffusion-weighted magnetic resonance imaging, it was highly likely that the debris that caused retinal artery occlusion passed through not the internal carotid artery but collaterals to retinal arteries from the external carotid artery, which was not protected by a distal embolic protection device. It is suggested that a distal protection device for the internal carotid artery alone cannot prevent retinal artery embolisation during carotid artery stenting and protection of the external carotid artery is important to avoid retinal artery occlusion.

  11. Active surge control for variable speed axial compressors.

    Science.gov (United States)

    Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan

    2014-09-01

    This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. An Investigation into Power from Pitch-Surge Point-Absorber Wave Energy Converters.

    OpenAIRE

    Chaplin, R. V.; Aggidis, George A.

    2007-01-01

    There is a worldwide opportunity for clean renewable power. The results from the UK Government's "Marine Energy Challenge" showed that marine energy has the potential to become competitive with other forms of energy. The key to success in this lies in a low lifetime-cost of power as delivered to the user. Pitch-surge point-absorber WECs have the potential to do this with average annual powers of around 2 MW in North Atlantic conditions from relatively small devices that would be economically ...

  13. Tests of microprocessor-based relay protection devices: Problems and solutions

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2009-01-01

    Full Text Available Usually, the operational condition of relay protection devices is checked with specific settings used for the relay operation in a certain network point. In the author's opinion in order to verify the proper operation of complex multifunctional microprocessor-based protection devices (MPD at their inspection, start-up after repairs or during periodic tests there is no need to use the actual settings at which the relay is to be operated in a certain network's point. It should be tested for proper operation at several of its most critical preset characteristic points as well as in several preset characteristics constituting its most complicated (combined operation modes, including the dynamic operation modes with preset transition processes specific for standard power networks (not necessarily for a specific point. The proposed set of actions for the unification of software platforms of the modern, microprocessor-based relay protection test systems will enable examination of modern MPD in an absolutely new way. .

  14. Reconnaissance level study Mississippi storm surge barrier

    NARCIS (Netherlands)

    Van Ledden, M.; Lansen, A.J.; De Ridder, H.A.J.; Edge, B.

    2012-01-01

    This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further

  15. Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities.

    Science.gov (United States)

    Yang, Yun; Yu, Dandan; Wang, Hua; Guo, Lin

    2017-12-01

    Currently, with booming development and worldwide usage of rechargeable electrochemical energy storage devices, their safety issues, operation stability, service life, and user experience are garnering special attention. Smart and intelligent energy storage devices with self-protection and self-adaptation abilities aiming to address these challenges are being developed with great urgency. In this Progress Report, we highlight recent achievements in the field of smart energy storage systems that could early-detect incoming internal short circuits and self-protect against thermal runaway. Moreover, intelligent devices that are able to take actions and self-adapt in response to external mechanical disruption or deformation, i.e., exhibiting self-healing or shape-memory behaviors, are discussed. Finally, insights into the future development of smart rechargeable energy storage devices are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Surge analysis of the MAGLEV coil for propulsion and guidance; Jiki fujoshiki tetsudo ni okeru suitei annaiyo coil no surge kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S [Numazu College of Technology, Shizuoka (Japan)

    1995-11-20

    The MAGLEV (magnetically levitated train) is now well along in development testing in Japan. MAGLEV is unlike conventional railways, so various problems lie in the technology of MAGLEV. One of them is surge analysis of the MAGLEV coil for propulsion and guidance (`coil for propulsion` for short). The coil for propulsion is installed on each side of the outdoor guideway. Thus, the power system of MAGLEV is always exposed to lightning and circuit switching. Accordingly, it is very important to do a rational insulation plan to prevent damage when surges enter the coils. In view of this situation I performed experiments using the mini model coils and clarified impulse voltage distribution at the end of each coil and simulated the surge characteristics by giving the inverted L equivalent circuit to the coil for propulsion. As a result, the measured values and calculated values were almost equal in the surge characteristics. Further, the surge characteristics of the Miyazaki test track and the future MAGLEV were examined. 10 refs., 17 figs., 1 tab.

  17. Artificial Neural Network forecasting of storm surge water levels at major estuarine ports to supplement national tide-surge models and improve port resilience planning

    Science.gov (United States)

    French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal

    2017-04-01

    Effective prediction of tidal storm surge is of considerable importance for operators of major ports, since much of their infrastructure is necessarily located close to sea level. Storm surge inundation can damage critical elements of this infrastructure and significantly disrupt port operations and downstream supply chains. The risk of surge inundation is typically approached using extreme value analysis, while short-term forecasting generally relies on coastal shelf-scale tide and surge models. However, extreme value analysis does not provide information on the duration of a surge event and can be sensitive to the assumptions made and the historic data available. Also, whilst regional tide and surge models perform well along open coasts, their fairly coarse spatial resolution means that they do not always provide accurate predictions for estuarine ports. As part of a NERC Environmental Risks to Infrastructure Innovation Programme project, we have developed a tool that is specifically designed to forecast the North Sea storm surges on major ports along the east coast of the UK. Of particular interest is the Port of Immingham, Humber estuary, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. A tidal surge in December 2013, with an estimated return period of 760 years, partly flooded the port, damaged infrastructure and disrupted operations for several weeks. This and other recent surge events highlight the need for additional tools to supplement the national UK Storm Tide Warning Service. Port operators are also keen to have access to less computationally expensive forecasting tools for scenario planning and to improve their resilience to actual events. In this paper, we demonstrate the potential of machine learning methods based on Artificial Neural Networks (ANNs) to generate accurate short-term forecasts of extreme water levels at estuarine North Sea ports such as Immingham. An ANN is

  18. Implementation of Transformer Protection by Intelligent Electronic Device for Different Faults

    OpenAIRE

    Y V Aruna, Beena S

    2015-01-01

    Protection of power system equipments was traditionally done by using electromagnetic relay, static relays, and numerical relays. At present the microprocessor based relays are replacing the old Electromagnetic relays because of their high level accuracy and fast operation. RET670(Transformer protection relay ), an IED (INTELLIGENT ELECTRONIC DEVICE) provides fast and selective protection, monitoring, and control of all types of transformer. The configured IED is tested under diff...

  19. Storm surge modeling of Superstorm Sandy in the New York City Metropolitan area

    Science.gov (United States)

    Benimoff, A. I.; Blanton, B. O.; Dzedzits, E.; Fritz, W. J.; Kress, M.; Muzio, P.; Sela, L.

    2013-12-01

    Even though the New York/New Jersey area does not lie within the typical 'hurricane belt', recent events and the historical record indicate that large infrequent tropical storms have had direct hits on the region, with impacts being amplified due to the nearly right angle bend in the coastline. The recent plan unveiled by New York City's Mayor Bloomberg lays out mitigation strategies to protect the region's communities, infrastructure, and assets from future storms, and numerical simulation of storm surge and wave hazards driven by potential hurricanes plays a central role in developing and evaluating these strategies. To assist in local planning, recovery, and decision-making, we have used the tide, storm surge, and wind wave model ADCIRC+SWAN to simulate storm surge in one of the most populated areas of the United States: the New York City (NYC) metropolitan area. We have generated a new high-resolution triangular finite-element model grid for the region from recent USGS data as well as recent city topographic maps at 2-foot (0.6m) contour intervals, nautical charts, and details of shipping channels. Our hindcast simulations are compared against Superstorm Sandy. We used the City University of New York High Performance Computing Center's Cray XE6tm at the College of Staten Island for these simulations. Hindcasting and analysis of the Superstorm Sandy storm surge and waves indicates that our simulations produce a reasonable representation of actual events. The grid will be used in an ADCIRC-based forecasting system implementation for the region.

  20. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    Directory of Open Access Journals (Sweden)

    D. Vatvani

    2012-07-01

    Full Text Available To simulate winds and water levels, numerical weather prediction (NWP and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006. The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s−1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s−1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term.

    In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects.

    The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010 to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good

  1. Pressure-surge mitigation methods in fluid-conveying piping

    International Nuclear Information System (INIS)

    Shin, Y.W.; Youngdahl, C.K.; Wiedermann, A.H.

    1991-01-01

    Pressure surges in the heat transport system of nuclear reactor plants can affect the safety and reliability of the plants. Hence the pressure surges must be considered in the design, operation, and maintenance of the plants in order to minimize their occurrence and impacts. The objectives of this paper are to review various methods to control or mitigate the pressure surges, to analyze these methods to gain understanding of the mitigation mechanisms, and examine applicability of the methods to nuclear power plants. 6 refs., 13 figs

  2. Coastal ecosystems for protection against storm surge

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    and infrastructure in single catastrophe exceeded Rs. 2750 crore. Economic loss is thus prohibitive and hence unsustainable. This paper acknowledges the intrinsic protective value of coastal sand dunes, vegetation and wetlands as a functional natural defence...

  3. Clothing, equipment and devices for personnel protection: Its selection according to occupational risks

    International Nuclear Information System (INIS)

    1989-01-01

    This Venezuelan standard establishes the selection of the type of clothing, equipment and devices for personnel protection, to be used by workers according to the occupational risk they deal with, in order to avoid or to reduce the factors that can, directly or indirectly, affect their physical integrity. For the risks not contemplated in this norm, the selection of the type of clothing, equipment and devices for personnel protection, must be done following the corresponding international standard [es

  4. Surge dynamics on Bering Glacier, Alaska, in 2008–2011

    Directory of Open Access Journals (Sweden)

    M. Braun

    2012-11-01

    Full Text Available A surge cycle of the Bering Glacier system, Alaska, is examined using observations of surface velocity obtained using synthetic aperture radar (SAR offset tracking, and elevation data obtained from the University of Alaska Fairbanks LiDAR altimetry program. After 13 yr of quiescence, the Bering Glacier system began to surge in May 2008 and had two stages of accelerated flow. During the first stage, flow accelerated progressively for at least 10 months and reached peak observed velocities of ~ 7 m d−1. The second stage likely began in 2010. By 2011 velocities exceeded 9 m d−1 or ~ 18 times quiescent velocities. Fast flow continued into July 2011. Surface morphology indicated slowing by fall 2011; however, it is not entirely clear if the surge is yet over. The quiescent phase was characterized by small-scale acceleration events that increased driving stresses up to 70%. When the surge initiated, synchronous acceleration occurred throughout much of the glacier length. Results suggest that downstream propagation of the surge is closely linked to the evolution of the driving stress during the surge, because driving stress appears to be tied to the amount of resistive stress provided by the bed. In contrast, upstream acceleration and upstream surge propagation is not dependent on driving stress evolution.

  5. Compressor Surge Control Design Using Linear Matrix Inequality Approach

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2017-01-01

    A novel design for active compressor surge control system (ASCS) using linear matrix inequality (LMI) approach is presented and including a case study on piston-actuated active compressor surge control system (PAASCS). The non-linear system dynamics of the PAASCS is transformed into linear parameter varying (LPV) system dynamics. The system parameters are varying as a function of the compressor performance curve slope. A compressor surge stabilization problem is then formulated as a LMI probl...

  6. Wind Power Plant Grounding, Overvoltage Protection, and Insulation Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bolado, O. [IEEE PES Wind Plant Collector System Design Working Group; Bollen, M. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Edds, M. [IEEE PES Wind Plant Collector System Design Working Group; Hejdak, W. J. [IEEE PES Wind Plant Collector System Design Working Group; Houseman, D. [IEEE PES Wind Plant Collector System Design Working Group; Klein, S. [IEEE PES Wind Plant Collector System Design Working Group; Li, Fangxing [ORNL; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Maibach, P. [IEEE PES Wind Plant Collector System Design Working Group; Nicolai, T. [IEEE PES Wind Plant Collector System Design Working Group; Pasupulati, S. V. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Saylors, S. [IEEE PES Wind Plant Collector System Design Working Group; Siebert, T. [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group

    2009-01-01

    Proper insulation coordination is critical to achieving expected life from wind plant equipment. The collector systems of large wind plants require the application of surge arresters to protect the equipment insulation from transient overvoltages. The application of surge arresters is constrained by maximum operating and temporary overvoltage levels. This paper provides a tutorial description of the process of selecting and applying surge arresters to wind plant medium voltage collector systems, with emphasis on the peculiar properties of this application.

  7. Proposed Strategies for DWPF Melter Off-Gas Surge Control

    International Nuclear Information System (INIS)

    CHOI, ALEXANDERS.

    2004-01-01

    Off-gas surging is inherent to the operation of slurry-fed melters. Although the melter design and the feed chemistry are both known to significantly affect off-gas surging, the frequency and intensity of surges are in essence unpredictable. In typical off-gas surges, both condensable and non condensable flows spike simultaneously. Condensable or steam surges have been observed to occur as the boiling water layer occasionally falls into the crevices of the cold cap or flows over the edges of the cold cap, thereby coming in contact with the melt surface. The resulting steam surges can pressurize the melter considerably and, therefore, are responsible for the bulk of pressure transients that propagate throughout the off-gas system. The non condensable surges occur as the calcine gases that have been accumulating within the cold cap finally build up enough pressure to be released through the temporary openings of the cold cap. The analysis of off-gas data has shown that over 90 of the gas released during a surge is due to steam.1 Therefore, it is essential to have a large inventory of water in the cold cap for any significant pressure spikes to occur. With the Melter 2 vapor space temperature typically running at 720C, the water layer in the cold cap will quickly evaporate once the feeding stops, and the potential for any large pressure spikes should practically cease to exist. The analysis also showed that large pressure spikes well above 2 inches H2O cannot occur under the steam surge scenarios described above. More severe conditions should prevail and one such condition would be that the feed materials form a mound with a growing lake on top, while the melt below remains very fluidic due to its low viscosity, thus resulting in greater movements both in the lateral as well as vertical directions. Once the mound begins to grow, its rate should accelerate, since the heat transfer rate to the upper regions of the cold cap is inversely proportional to the cold cap

  8. Protective device for the head of a gushing well

    Energy Technology Data Exchange (ETDEWEB)

    Kutepov, A.I.; Prokopov, O.I.

    1982-01-01

    A protective device is proposed for the head of a gushing well. It includes a housing with assembly for attachment to the pipe string. It is distinguished by the fact that in order to simplify insulation of the device at the well head and to improve its reliable operation, the housing is made in the form of sections, each of which is made in the form of a crimped sleeve with upper and lower flanges on the ends. The lower flange is equipped with a guide bushing installed inside the sleeve and clamps for attaching it in relation to the upper flange.

  9. Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea

    Science.gov (United States)

    Mel, Riccardo; Lionello, Piero

    2014-12-01

    In the Adriatic Sea, storm surges present a significant threat to Venice and to the flat coastal areas of the northern coast of the basin. Sea level forecast is of paramount importance for the management of daily activities and for operating the movable barriers that are presently being built for the protection of the city. In this paper, an EPS (ensemble prediction system) for operational forecasting of storm surge in the northern Adriatic Sea is presented and applied to a 3-month-long period (October-December 2010). The sea level EPS is based on the HYPSE (hydrostatic Padua Sea elevation) model, which is a standard single-layer nonlinear shallow water model, whose forcings (mean sea level pressure and surface wind fields) are provided by the ensemble members of the ECMWF (European Center for Medium-Range Weather Forecasts) EPS. Results are verified against observations at five tide gauges located along the Croatian and Italian coasts of the Adriatic Sea. Forecast uncertainty increases with the predicted value of the storm surge and with the forecast lead time. The EMF (ensemble mean forecast) provided by the EPS has a rms (root mean square) error lower than the DF (deterministic forecast), especially for short (up to 3 days) lead times. Uncertainty for short lead times of the forecast and for small storm surges is mainly caused by uncertainty of the initial condition of the hydrodynamical model. Uncertainty for large lead times and large storm surges is mainly caused by uncertainty in the meteorological forcings. The EPS spread increases with the rms error of the forecast. For large lead times the EPS spread and the forecast error substantially coincide. However, the EPS spread in this study, which does not account for uncertainty in the initial condition, underestimates the error during the early part of the forecast and for small storm surge values. On the contrary, it overestimates the rms error for large surge values. The PF (probability forecast) of the EPS

  10. The Use of a Statistical Model of Storm Surge as a Bias Correction for Dynamical Surge Models and its Applicability along the U.S. East Coast

    Directory of Open Access Journals (Sweden)

    Haydee Salmun

    2015-02-01

    Full Text Available The present study extends the applicability of a statistical model for prediction of storm surge originally developed for The Battery, NY in two ways: I. the statistical model is used as a biascorrection for operationally produced dynamical surge forecasts, and II. the statistical model is applied to the region of the east coast of the U.S. susceptible to winter extratropical storms. The statistical prediction is based on a regression relation between the “storm maximum” storm surge and the storm composite significant wave height predicted ata nearby location. The use of the statistical surge prediction as an alternative bias correction for the National Oceanic and Atmospheric Administration (NOAA operational storm surge forecasts is shownhere to be statistically equivalent to the existing bias correctiontechnique and potentially applicable for much longer forecast lead times as well as for storm surge climate prediction. Applying the statistical model to locations along the east coast shows that the regression relation can be “trained” with data from tide gauge measurements and near-shore buoys along the coast from North Carolina to Maine, and that it provides accurate estimates of storm surge.

  11. Awareness and utilization of protective eye device among welders in ...

    African Journals Online (AJOL)

    Ramakantb

    was a high level of awareness of protective eye devices among the welders (367, 90.6%), being higher among arc welders compared ... each respondent in the field. The welders' ... Thermal retinal damage can also occur from near infrared ...

  12. Improved PV system reliability results from surge evaluations at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Russell H. Bonn; Sigifredo Gonzalez

    2000-01-01

    Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia

  13. MODELING OF POWER SYSTEMS AND TESTING OF RELAY PROTECTION DEVICES IN REAL AND MODEL TIME

    Directory of Open Access Journals (Sweden)

    I. V. Novash

    2017-01-01

    Full Text Available The methods of modelling of power system modes and of testing of relay protection devices with the aid the simulation complexes in real time and with the help of computer software systems that enables the simulation of virtual time scale are considered. Information input protection signals in the simulation of the virtual model time are being obtained in the computational experiment, whereas the tests of protective devices are carried out with the help of hardware and software test systems with the use of estimated input signals. Study of power system stability when modes of generating and consuming electrical equipment and conditions of devices of relay protection are being changed requires testing with the use of digital simulators in a mode of a closed loop. Herewith feedbacks between a model of the power system operating in a real time and external devices or their models must be determined (modelled. Modelling in real time and the analysis of international experience in the use of digital simulation power systems for real-time simulation (RTDS simulator have been fulfilled. Examples are given of the use of RTDS systems by foreign energy companies to test relay protection systems and control, to test the equipment and devices of automatic control, analysis of cyber security and evaluation of the operation of energy systems under different scenarios of occurrence of emergency situations. Some quantitative data on the distribution of RTDS in different countries and Russia are presented. It is noted that the leading energy universities of Russia use the real-time simulation not only to solve scientific and technical problems, but also to conduct training and laboratory classes on modelling of electric networks and anti-emergency automatic equipment with the students. In order to check serviceability of devices of relay protection without taking into account the reaction of the power system tests can be performed in an open loop mode with the

  14. Storm surge model based on variational data assimilation method

    Directory of Open Access Journals (Sweden)

    Shi-li Huang

    2010-06-01

    Full Text Available By combining computation and observation information, the variational data assimilation method has the ability to eliminate errors caused by the uncertainty of parameters in practical forecasting. It was applied to a storm surge model based on unstructured grids with high spatial resolution meant for improving the forecasting accuracy of the storm surge. By controlling the wind stress drag coefficient, the variation-based model was developed and validated through data assimilation tests in an actual storm surge induced by a typhoon. In the data assimilation tests, the model accurately identified the wind stress drag coefficient and obtained results close to the true state. Then, the actual storm surge induced by Typhoon 0515 was forecast by the developed model, and the results demonstrate its efficiency in practical application.

  15. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    Science.gov (United States)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  16. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  17. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  18. Risk assessment of storm surge disaster based on numerical models and remote sensing

    Science.gov (United States)

    Liu, Qingrong; Ruan, Chengqing; Zhong, Shan; Li, Jian; Yin, Zhonghui; Lian, Xihu

    2018-06-01

    Storm surge is one of the most serious ocean disasters in the world. Risk assessment of storm surge disaster for coastal areas has important implications for planning economic development and reducing disaster losses. Based on risk assessment theory, this paper uses coastal hydrological observations, a numerical storm surge model and multi-source remote sensing data, proposes methods for valuing hazard and vulnerability for storm surge and builds a storm surge risk assessment model. Storm surges in different recurrence periods are simulated in numerical models and the flooding areas and depth are calculated, which are used for assessing the hazard of storm surge; remote sensing data and GIS technology are used for extraction of coastal key objects and classification of coastal land use are identified, which is used for vulnerability assessment of storm surge disaster. The storm surge risk assessment model is applied for a typical coastal city, and the result shows the reliability and validity of the risk assessment model. The building and application of storm surge risk assessment model provides some basis reference for the city development plan and strengthens disaster prevention and mitigation.

  19. Identification of Storm Surge Vulnerable Areas in the Philippines Through Simulations of Typhoon Haiyan-Induced Storm Surge Using Tracks of Historical Tropical Cyclones

    Science.gov (United States)

    Lapidez, John Phillip; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Gonzalo, Lia Anne; Santiago, Joy; Cabacaba, Krichi May; Ramos, Michael Marie Angelo; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 07 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the typhoon's storm surge and strong winds. Storm surges up to a height of 7 meters were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards, the flagship disaster mitigation program of the Department of Science and Technology, Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. DOST-Project NOAH used the Japan Meteorological Agency (JMA) Storm Surge Model, a numerical code that simulates and predicts storm surges spawned by tropical cyclones. Input parameters for the storm surge model include bathymetric data, storm track, central atmospheric pressure, and maximum wind speed. The simulations were made using Haiyan's pressure and wind speed as the forcing parameters. The simulated storm surge height values were added to the maximum tide level obtained from WXTide, software that contains a catalogue of worldwide astronomical tides, to come up with storm tide levels. The resulting water level was used as input to FLO-2D to generate the storm tide inundation maps. One product of this study is a list of the most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions. Another product is the storm tide inundation maps that the local government units can use to develop a Risk-Sensitive Land Use Plan for identifying appropriate areas to build residential buildings

  20. Predicting Typhoon Induced Storm Surges Using the Operational Ocean Forecast System

    Directory of Open Access Journals (Sweden)

    Sung Hyup You

    2010-01-01

    Full Text Available This study was performed to compare storm surges simulated by the operational storm surges/tide forecast system (STORM : Storm surges/Tide Operational Model of the Korea Meteorological Administration (KMA with observations from 30 coastal tidal stations during nine typhoons that occurred between 2005 and 2007. The results (bias showed that for cases of overestimation (or underestimation, storm surges tended to be overestimated (as well as underestimated at all coastal stations. The maximum positive bias was approximately 6.92 cm for Typhoon Ewiniar (2006, while the maximum negative bias was approximately -12.06 cm for Typhoon Khanun (2005. The maximum and minimum root mean square errors (RMSEs were 14.61 and 6.78 cm, which occurred for Typhoons Khanun (2005 and Usagi (2007, respectively. For all nine typhoons, total averaged RMSE was approximately 10.2 cm. Large differences between modeled and observed storm surges occurred in two cases. In the first, a very weak typhoon, such as Typhoon Khanun (2005, caused low storm surges. In the other, exemplified by Typhoon Nari (2007, there were errors in the predicted typhoon strength used as input data for the storm surge model.

  1. Problematic radiation protective devices for X-ray diagnostics

    International Nuclear Information System (INIS)

    Beck, A.; Nanko, N.; Bruggmoser, G.; Eble, M.

    1988-01-01

    The authors report experimental test results of radiation safety glasses with a lead equivalence of 0.5 mm Pb. The glasses were tested on a phantom, with various radiation projections, for their shielding effect with regard to the eye lens. The protective effect at AP projection was 90%, which corresponds to the data given by the manufacturer. But in most cases of interventional radiology, the examiner's eyes are exposed to lateral radiation, due to the positioning of the monitor. In these cases, reflected radiation at the side of the glasses facing the eye may induce a dose to the lens that can be fourfold the dose received without wearing the glasses, so that wearing these glasses may enhance the hazard. Another protective device tested was lead-coated gloves. The manufacturer promises a protective effect of 50% at 100 kV. The experimental test data, obtained by taking into account technical characteristics of angiographic components, confirm a radiation shielding of about 20%. (orig./HP) [de

  2. Present dynamics and future prognosis of a slowly surging glacier

    Directory of Open Access Journals (Sweden)

    G. E. Flowers

    2011-03-01

    Full Text Available Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km2 valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed

  3. 30 CFR 56.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... MINES Materials Storage and Handling § 56.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled or...

  4. 30 CFR 57.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... NONMETAL MINES Materials Storage and Handling § 57.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled...

  5. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  6. FiberNet--a new embolic protection device for carotid artery stenting.

    Science.gov (United States)

    Bauer, C; Franke, J; Bertog, S C; Woerner, V; Ghasemzadeh-Asl, S; Sievert, H

    2014-05-01

    Though distal filter protection during carotid stenting reduces the risk of cerebrovascular events, periprocedural stroke remains a risk despite their broad usage. This observation may be related to the pore size of common filters. The FiberNet distal filter system is unique by its very small pore size (40 µm) as well as its low profile and flexibility. Little data is available regarding the clinical performance and safety of this device. The aim was the evaluation of the safety of the FiberNet embolic protection system during carotid artery stenting. All consecutive patients treated with carotid stenting at our institution using the FiberNet device were systematically followed. Primary endpoint was the rate of all death and stroke within 30 days of the procedure. Carotid artery stenting using the FiberNet embolic protection system was performed in 54 patients. The procedure was technical successful in all patients. Three patients (5.5%) had a TIA. Amauosis fugax occurred in two patients (3.7%). One patient (1.9%) had a minor stroke with hemiparesis of the left arm and face which resolved completely within 48 hr after the procedure. No patient died or suffered a major stroke. The safety and feasibility of the FiberNet distal protection system appears to be at least equivalent to that reported in studies using conventional distal filter protection. Copyright © 2013 Wiley Periodicals, Inc.

  7. The Surge, Wave, and Tide Hydrodynamics (SWaTH) network of the U.S. Geological Survey—Past and future implementation of storm-response monitoring, data collection, and data delivery

    Science.gov (United States)

    Verdi, Richard J.; Lotspeich, R. Russell; Robbins, Jeanne C.; Busciolano, Ronald J.; Mullaney, John R.; Massey, Andrew J.; Banks, William S.; Roland, Mark A.; Jenter, Harry L.; Peppler, Marie C.; Suro, Thomas P.; Schubert, Christopher E.; Nardi, Mark R.

    2017-06-20

    After Hurricane Sandy made landfall along the northeastern Atlantic coast of the United States on October 29, 2012, the U.S. Geological Survey (USGS) carried out scientific investigations to assist with protecting coastal communities and resources from future flooding. The work included development and implementation of the Surge, Wave, and Tide Hydrodynamics (SWaTH) network consisting of more than 900 monitoring stations. The SWaTH network was designed to greatly improve the collection and timely dissemination of information related to storm surge and coastal flooding. The network provides a significant enhancement to USGS data-collection capabilities in the region impacted by Hurricane Sandy and represents a new strategy for observing and monitoring coastal storms, which should result in improved understanding, prediction, and warning of storm-surge impacts and lead to more resilient coastal communities.As innovative as it is, SWaTH evolved from previous USGS efforts to collect storm-surge data needed by others to improve storm-surge modeling, warning, and mitigation. This report discusses the development and implementation of the SWaTH network, and some of the regional stories associated with the landfall of Hurricane Sandy, as well as some previous events that informed the SWaTH development effort. Additional discussions on the mechanics of inundation and how the USGS is working with partners to help protect coastal communities from future storm impacts are also included.

  8. Electronic Systems for the Protection of Superconducting Devices in the LHC

    CERN Document Server

    Denz, R; Mess, K H

    2008-01-01

    The Large Hadron Collider LHC [1] incorporates an unprecedented amount of superconducting components: magnets, bus-bars, and current leads. Most of them require active protection in case of a transition from the superconducting to the resistive state, the so-called quench. The electronic systems ensuring the reliable quench detection and further protection of these devices have been developed and produced over the last years and are currently being put into operation

  9. A study on ship impacting a flexible crashworthy device for protecting bridge pier

    Directory of Open Access Journals (Sweden)

    Yang Liming

    2015-01-01

    Full Text Available As the accident of a vessel impacting a bridge pier will cause serious disaster, such as destroyed bridge, sinking ship and polluting environment, the technology and method to protect bridge pier from ship collision have been widely investigated recently. Due to the huge kinetic energy of large-tonnage ship and the short time duration in the collision, the studies involve impact mechanics. A developed flexible crashworthy device has been developed to protect bridges, which consists of an outer steel-periphery, an inner steel-periphery and the rubber coating SWRCs(soft elements installed between them. When the SWRC crashworthy device is installed, the collision duration under low impact force is prolonged due to its high compliance, which results in the ship having enough time to turn its navigation direction and most of the remainder kinetic energy being carried off by the turned away ship. Consequently, both impact forces on the ship and on the bridge pier decrease markedly. This is the key reason as to why the SWRC crashworthy device can avoid the destruction of both the bridge and the ship. Based on our results of theoretical studies and numerical simulations, the present paper will propose an experiment-adopted a real ship to impact a flexible crashworthy device. The collision test has been performed 12 times with different speed, carrying capacity, and impact angle of the ship. After the experiments, the ship, flexible crashworthy device and the pier are not damaged. The experiments show that the flexible crashworthy device can turn away the impact ship, so that the ship moves along the outer part of the device, which reduces the ship impact force on the bridge pier obviously. It not only protects bridges but also avoids the damage to ships.

  10. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  11. Surge recovery techniques for the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success

  12. Dependence between sea surge, river flow and precipitation in south and west Britain

    Directory of Open Access Journals (Sweden)

    C. Svensson

    2004-01-01

    Full Text Available Estuaries around Great Britain may be at heightened risk of flooding because of the simultaneous occurrence of extreme sea surge and river flow, both of which may be caused by mid-latitude cyclones. A measure especially suited for extremes was employed to estimate dependence between river flow and sea surge. To assist in the interpretation of why flow-surge dependence occurs in some areas and not in others, the dependence between precipitation and surge and between precipitation and river flow was also studied. Case studies of the meteorological situations leading to high surges and/or river flows were also carried out. The present study concerns catchments draining to the south and west coasts of Great Britain. Statistically significant dependence between river flow and daily maximum sea surge may be found at catchments spread along most of this coastline. However, higher dependence is generally found in catchments in hilly areas with a southerly to westerly aspect. Here, precipitation in south-westerly airflow, which is generally the quadrant of prevailing winds, will be enhanced orographically as the first higher ground is encountered. The sloping catchments may respond quickly to the abundant rainfall and the flow peak may arrive in the estuary on the same day as a large sea surge is produced by the winds and low atmospheric pressure associated with the cyclone. There are three regions where flow-surge dependence is strong: the western part of the English south coast, southern Wales and around the Solway Firth. To reduce the influence of tide-surge interaction on the dependence analysis, the dependence between river flow and daily maximum surge occurring at high tide was estimated. The general pattern of areas with higher dependence is similar to that using the daily maximum surge. The dependence between river flow and daily maximum sea surge is often strongest when surge and flow occur on the same day. The west coast from Wales and

  13. Fish protection at steam-electric power plants: alternative screening devices

    International Nuclear Information System (INIS)

    Cannon, J.B.

    1978-01-01

    Since the enactment of the Federal Water Pollution Control Act Amendments of 1972, very few innovations have surfaced that advance the state of intake technology for fish protection at steam-electric power plants. After careful examination of basic hydrology, hydraulics, and ecology of the source water body is completed and after a suitable location for the intake is established, the design process reduces to the development of proper screening techniques and to the provision of a means of preventing resident and migratory species from entering the intake structure. As a result of this design process, three basic fish protection concepts have evolved: fish deterrence, fish collection and removal, and fish diversion. Intake screening devices that protect fish are discussed

  14. Development of wave and surge atlas for the design and protection of coastal bridges in south Louisiana : [tech summary].

    Science.gov (United States)

    2015-02-01

    The failures of highway bridges on the Gulf Coast seen in the aftermath of Hurricane Katrina in 2005 were unprecedented. : In the past four decades, wind waves accompanied by high surges from hurricanes have damaged a number of coastal : bridges alon...

  15. Coastal Storm Surge Analysis: Storm Surge Results. Report 5: Intermediate Submission No. 3

    Science.gov (United States)

    2013-11-01

    Vickery, P., D. Wadhera, A. Cox, V. Cardone , J. Hanson, and B. Blanton. 2012. Coastal storm surge analysis: Storm forcing (Intermediate Submission No...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jeffrey L. Hanson, Michael F. Forte, Brian Blanton

  16. Vulnerability assessment of storm surges in the coastal area of Guangdong Province

    Directory of Open Access Journals (Sweden)

    K. Li

    2011-07-01

    Full Text Available Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei. Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.

  17. Exercising Tactically for Taming Postmeal Glucose Surges

    Directory of Open Access Journals (Sweden)

    Elsamma Chacko

    2016-01-01

    Full Text Available This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20–30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%–80%  VO2max to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  18. Exercising Tactically for Taming Postmeal Glucose Surges.

    Science.gov (United States)

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20-30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%-80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  19. Protection and measurement systems for 500 keV DC industrial accelerator

    International Nuclear Information System (INIS)

    Rajan, R.N.; Saroj, P.C.; Nanu, K.; Sharma, D.K.; Bakhtsingh, R.I.; Pandey, M.K.; Aggarwal, Ritu; Nagesh, K.V.; Sethi, R.C.

    2003-01-01

    A 500 keV, 20 ma electron beam accelerator has been developed and commissioned for industrial processing application at BRIT, Vashi. The 500 kV supply system consists of a 10 kV/2a DC power supply, 15 kW/10 kHz oscillator, 60 kV/10 kHz step-up transformer, and a 10 stage balanced Cockcroft-Walton multiplier. Since this is a high voltage system, and is prone to generate high electrical surges in the event of fault, adequate protection measures have to be incorporated to prevent catastrophic failure to the components of the supply system and also for measurement and control devices. Two level safety protection schemes have been incorporated in this system. This paper describes about various safety measures incorporated in the system and a few system specific measurement schemes

  20. First-in-man use of a novel embolic protection device for patients undergoing transcatheter aortic valve implantation.

    Science.gov (United States)

    Naber, Christoph K; Ghanem, Alexander; Abizaid, Alexander A; Wolf, Alexander; Sinning, Jan-Malte; Werner, Nikos; Nickenig, Georg; Schmitz, Thomas; Grube, Eberhard

    2012-05-15

    We describe the first-in-human experience with a novel cerebral embolic protection device used during transcatheter aortic valve implantation (TAVI). One current challenge of TAVI is the reduction of procedural stroke. Procedural mobilisation of debris is a known source of cerebral embolisation. Mechanical protection by transient filtration of cerebral blood flow might reduce the embolic burden during TAVI. We aimed to evaluate the feasibility and safety of the Claret CE Pro™ cerebral protection device in patients undergoing TAVI. Patients scheduled for TAVI were prospectively enrolled at three centres. The Claret CE Pro™ (Claret Medical, Inc. Santa Rosa, CA, USA) cerebral protection device was placed via the right radial/brachial artery prior to TAVI and was removed after the procedure. The primary endpoint was technical success rate. Secondary endpoints encompassed procedural and 30-day stroke rates, as well as device-related complications. Deployment of the Claret CE Pro™ cerebral protection device was intended for use in 40 patients, 35 devices were implanted into the aortic arch. Technical success rate with delivery of the proximal and distal filter was 60% for the first generation device and 87% for the second-generation device. Delivery times for the first-generation device were 12.4±12.1 minutes and 4.4 ± 2.5 minutes for the second-generation device (pto the Claret CE Pro System was 19.6 ± 3.8 ml. Captured debris was documented in at least 19 of 35 implanted devices (54.3%). No procedural transient ischaemic attacks, minor strokes or major strokes occurred. Thirty-day follow-up showed one minor stroke occurring 30 days after the procedure, and two major strokes both occurring well after the patient had completed TAVI. The use of the Claret CE Pro™ system is feasible and safe. Capture of debris in more than half of the patients provides evidence for the potential to reduce the procedural cerebral embolic burden utilising this dedicated filter

  1. Developing models for patient flow and daily surge capacity research.

    Science.gov (United States)

    Asplin, Brent R; Flottemesch, Thomas J; Gordon, Bradley D

    2006-11-01

    Between 1993 and 2003, visits to U.S. emergency departments (EDs) increased by 26%, to a total of 114 million visits annually. At the same time, the number of U.S. EDs decreased by more than 400, and almost 200,000 inpatient hospital beds were taken out of service. In this context, the adequacy of daily surge capacity within the system is clearly an important issue. However, the research agenda on surge capacity thus far has focused primarily on large-scale disasters, such as pandemic influenza or a serious bioterrorism event. The concept of daily surge capacity and its relationship to the broader research agenda on patient flow is a relatively new area of investigation. In this article, the authors begin by describing the overlap between the research agendas on daily surge capacity and patient flow. Next, they propose two models that have potential applications for both daily surge capacity and hospitalwide patient-flow research. Finally, they identify potential research questions that are based on applications of the proposed research models.

  2. Surge of plasma waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Benhassine, Mohammed

    1985-01-01

    The first part of this research thesis addresses the propagation of waves in a plasma. It presents the equation of propagation of an electromagnetic wave in a plasma without magnetic field, and analyses the propagation in an inhomogeneous medium. The second part addresses the wave-particle interaction: interaction between electrons and an electromagnetic wave, between electrons and an electrostatic wave (trapping), and between electrons and a localised electric field. The third chapter presents the analytic theory of oscillations of a cold plasma (macroscopic equations in Lagrangian coordinates, analytic solution before surge). The next chapter discusses physical interpretations before the wave surge, after the wave surge, and about energy exchange (within or outside of resonance). Numerical simulations and their results are then reported and discussed. The sixth chapter addresses the case of an electrostatic wave surge in a hot plasma. It notably addresses the following aspects: equivalence between the description of moments and the Waterbag model, interaction between non linearity and thermal effects, variation of electric field amplitude with temperature. Results of numerical simulations are presented, and the last part addresses experimental predictions for microwaves-plasma interaction and laser-matter interaction [fr

  3. Tide-surge Interaction Intensified by the Taiwan Strait

    Science.gov (United States)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  4. Evaluating Tree Protection Devices: Effects on Growth and Survival–First-Year Results

    Science.gov (United States)

    L. R. Costello; R. H. Schmidt; Gregory A. Giusti

    1991-01-01

    The protection of seedlings from animal browsing is critical for the survival and growth of many tree species. This is particularly true in wildland areas and arid areas (McAuliffe, 1986), and oftentimes in urban areas. A variety of techniques and devices have been used to protect seedlings, from using straw stubble to milk cartons to plastic or metal screens. Recently...

  5. PV installations, protection and the code

    Energy Technology Data Exchange (ETDEWEB)

    Silecky, L. [Mersen, Toronto, ON (Canada)

    2010-12-15

    This article discussed the need for improved standards in Ontario's solar industry to ensure safety for the systems and also safety for the workers. Photovoltaic cells used in solar arrays can now deliver between 50 vDC to 600 vDC. The workings of such a high voltage photocell must be understood in order to understand its protection needs. Since PVs are semiconductors and susceptible to damage from short circuits and overloads, a fast-acting overcurrent protective device (OCPD) should be used. Combiner boxes are also needed to provide a clean method of safely connecting all the wires that are needed in the system, including surge protection and a means of isolation between the PV array and the inverter. Section 50 of the Canadian Electrical Code outlines the requirements for solar PV systems, but it does not mention the protection of DC circuits, including DC fuse protectors which are manufactured to provide a high degree of protection for the PV array. As the photovoltaic (PV) market continues to grow in Ontario, the PV industry also has a responsibility to ensure it is in compliance with codes and standards related to photovoltaic systems. This author suggested that Article 690 of the National Electric Code (NEC) is a good document to use when determining the requirements for PV systems. 3 figs.

  6. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    Science.gov (United States)

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  7. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.; Dawson, Clint N.

    2014-01-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  8. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  9. Method of and device for querying of protected structured data

    NARCIS (Netherlands)

    Jonker, Willem; Brinkman, Richard; Doumen, J.M.; Schoenmakers, Berry

    2005-01-01

    Method of and device for querying of protected data structured in the form of a tree. A corresponding tree of node polynomials is constructed such that each node polynomial evaluates to zero for an input equal to an identifier assigned to a node name occurring in a branch of the data tree starting

  10. Method of and device for querying of protected structured data

    NARCIS (Netherlands)

    Brinkman, Richard; Doumen, J.M.; Jonker, Willem; Schoenmakers, B.

    Method of and device for querying of protected data structured in the form of a tree. A corresponding tree of node polynomials is constructed such that each node polynomial evaluates to zero for an input equal to an identifier assigned to a node name occurring in a branch of the data tree starting

  11. Structure design of water discharge surge tank of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Fang; Hou Shuqiang

    2015-01-01

    Drainage is an important function of water discharge surge tank in nuclear power plant. There is little wall and beam inside the water discharge surge tank due to the requirement of major work, which is different from the general structure. Taking water discharge surge tank of nuclear power plant for example, concerned problems are expatiated in the structure scheme of water discharge surge tank, and important structural components are analyzed. Structural analysis model is established by ANSYS finite element analysis. A comprehensive and numerical analysis is performed for different combinations of structural model, and the internal force of structure is extracted. Finally, suggestions for design of similar structure are proposed. (authors)

  12. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  13. Comparison of two recent storm surge events based on results of field surveys

    Science.gov (United States)

    Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu

    2017-10-01

    This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.

  14. Improving 200 MW NDHR reactor protection system with GAL devices

    International Nuclear Information System (INIS)

    Shi Mingde; Li Duo; Xie Zhengguo

    1999-01-01

    The emergence of General Array Logic (GAL), a fairly new type of logic devices with the characteristics of user-definable logic functions, have led to a revolutionary change in the design of logical circuits. The improvements of the reactor protection system for the 200 MW nuclear district heating reactor (NDHR) using GAL are covered

  15. Cost estimates for flood resilience and protection strategies in New York City.

    Science.gov (United States)

    Aerts, Jeroen C J H; Botzen, W J Wouter; de Moel, Hans; Bowman, Malcolm

    2013-08-01

    In the aftermaths of Hurricanes Irene, in 2011, and Sandy, in 2012, New York City has come to recognize the critical need to better prepare for future storm surges and to anticipate future trends, such as climate change and socio-economic developments. The research presented in this report assesses the costs of six different flood management strategies to anticipate long-term challenges the City will face. The proposed strategies vary from increasing resilience by upgrading building codes and introducing small scale protection measures, to creating green infrastructure as buffer zones and large protective engineering works such as storm surge barriers. The initial investment costs of alternative strategies vary between $11.6 and $23.8 bn, maximally. We show that a hybrid solution, combining protection of critical infrastructure and resilience measures that can be upgraded over time, is less expensive. However, with increasing risk in the future, storm surge barriers may become cost-effective, as they can provide protection to the largest areas in both New York and New Jersey. © 2013 New York Academy of Sciences.

  16. Determining Storm Surge Return Periods: The Use of Evidence of Historic Events

    DEFF Research Database (Denmark)

    Madsen, Kristine S.; Sørensen, Carlo Sass; Schmith, Torben

    Storm surges are a major concern for many coastal communities, and rising levels of surges is a key concern in relation to climate change. The sea level of a statistical 100-year or 1000-year storm surge event and similar statistical measures are used for spatial planning and emergency preparedness...

  17. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea

    Science.gov (United States)

    Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping

    2017-06-01

    A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.

  18. Distribution of auroral surges in the evening sector

    International Nuclear Information System (INIS)

    Kidd, S.R.; Rostoker, G.

    1991-01-01

    Over the past dacades a large statistical data base has been gathered consisting of both ground-based magnetometer and all-sky camera records from which researchers have inferred the distribution of substorm expansive phase events across the nighttime sector. Almost without exception, the activity distribution has been based on single station data acquired over periods of years. However, to truly establish the occurrence frequency of substorm expansive phase events, it is necessary to view the entire nighttime sector instantaneously in the light of evidence which shows that more than one expansive phase disturbance can be in progress across the broad expanse of the evening sector. In this paper, the authors study the distribution of regions of localized auroral luminosity in the poleward portion of the evening sectorauroral oval using images in the ultraviolet portion of the auroral spectrum acquired by the Viking satellite over 9 months in 1986. They find that auroral surge activity peaks in the hour before local magnetic midnight, with the probability of detecting a surge steadily decreasing to 10% of the probability of finding a surge in the hour prior to midnight as one moves westward towards 1,900 MLT. They show that their conclusion is not dependent on the threshold chosen for surge identification over a reasonable portion of the intensity range covered by the Viking imager. They further show that for the interval of several months near sunspot minimum in 1986 there is better than a 90% chance that no surge will be detected in a 1-hour range of magnetic local time if one were to sample that segment of the auroral oval at any arbitrary time

  19. Photoelectrochemical devices for solar water splitting - materials and challenges.

    Science.gov (United States)

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  20. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  1. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    Science.gov (United States)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-08-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100-year and 1000-year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but found to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows storm surge level maps to be obtained that can be of major interest for coastal planners and decision makers in terms of risk management.

  2. Corrosion and corrosion protection of support structures for offshore wind energy devices (OWEA)

    Energy Technology Data Exchange (ETDEWEB)

    Momber, A. [Muehlhan AG, Schlinckstrasse 3, D-21107 Hamburg (Germany)

    2011-05-15

    The paper provides a review about the corrosion and corrosion protection of offshore wind energy devices (OWEA). Firstly, special features resulting from location and operation of OWEA are being discussed. Secondly, types of corrosion and corrosion phenomena are summarized in a systematic way. Finally, practical solutions to the corrosion protection of OWEA, including steel allowances, cathodic protection and coatings and linings, are discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Community health facility preparedness for a cholera surge in Haiti.

    Science.gov (United States)

    Mobula, Linda Meta; Jacquet, Gabrielle A; Weinhauer, Kristin; Alcidas, Gladys; Thomas, Hans-Muller; Burnham, Gilbert

    2013-01-01

    With increasing population displacement and worsening water insecurity after the 2010 earthquake, Haiti experienced a large cholera outbreak. Our goal was to evaluate the strengths and weaknesses of seven community health facilities' ability to respond to a surge in cholera cases. Since 2010, Catholic Relief Services (CRS) with a number of public and private donors has been working with seven health facilities in an effort to reduce morbidity and mortality from cholera infection. In November 2012, CRS through the Centers for Disease Control and Prevention (CDC)'s support, asked the Johns Hopkins Center for Refugee and Disaster Response to conduct a cholera surge simulation tabletop exercise at these health facilities to improve each facility's response in the event of a cholera surge. Using simulation development guidelines from the Pan American Health Organization and others, a simulation scenario script was produced that included situations of differing severity, supply chain, as well as a surge of patients. A total of 119 hospital staff from seven sites participated in the simulation exercise including community health workers, clinicians, managers, pharmacists, cleaners, and security guards. Clinics that had challenges during the simulated clinical care of patients were those that did not appropriately treat all cholera patients according to protocol, particularly those that were vulnerable, those that would need additional staff to properly treat patients during a surge of cholera, and those that required a better inventory of supplies. Simulation-based activities have the potential to identify healthcare delivery system vulnerabilities that are amenable to intervention prior to a cholera surge.

  4. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    Science.gov (United States)

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  5. The use of hearing protection devices with approach risk perception of noise induced hearing loss in several manufacturing industry

    Directory of Open Access Journals (Sweden)

    Behzad Fouladi Deahghi

    2015-06-01

    Full Text Available Background & Objective : Noise is a widespread physical agent and although is a most risk factors in workplaces that workers of health to exposed. Thus, different actions is done for reduce exposure to it in work places, which one of them is use of hearing protection devices. The use of hearing protection devices with approach risk perception of noise induced hearing loss in several manufacturing industry Method: This study was Cross-sectional study and done in five industrial unit with a sound pressure level more of 85 dB-A with the participation of 340 workers. To collect data , individual risk perception and self-investigator questionnaires were used. After collecting data, statistical analysis including Cronbach's alpha and regression were used to analyze the data. Results : Range use of hearing protection devices during shifts work by workers, respectively equal to: 50.4% sometimes, 31.58% never and 18.2% at all times. Also, results indicate significant differences between individual differences and hearing protection devices. Conclusion : Results of this study showed that individual risk perception as an important factor, can do a significant role in predicting the behavior of personals in the use of hearing protection devices, which should be considered in any design and implementation of hearing protection program.

  6. Condition Assessment of Metal Oxide Surge Arrester Based on Multi-Layer SVM Classifier

    Directory of Open Access Journals (Sweden)

    M Khodsuz

    2015-12-01

    Full Text Available This paper introduces the indicators for surge arrester condition assessment based on the leakage current analysis. Maximum amplitude of fundamental harmonic of the resistive leakage current, maximum amplitude of third harmonic of the resistive leakage current and maximum amplitude of fundamental harmonic of the capacitive leakage current were used as indicators for surge arrester condition monitoring. Also, the effects of operating voltage fluctuation, third harmonic of voltage, overvoltage and surge arrester aging on these indicators were studied. Then, obtained data are applied to the multi-layer support vector machine for recognizing of surge arrester conditions. Obtained results show that introduced indicators have the high ability for evaluation of surge arrester conditions.

  7. A numerical storm surge forecast model with Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Yu Fujiang; Zhang Zhanhai; Lin Yihua

    2001-01-01

    Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum equations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.

  8. Hospital-Based Coalition to Improve Regional Surge Capacity

    Directory of Open Access Journals (Sweden)

    James M. Learning

    2012-12-01

    Full Text Available Introduction: Surge capacity for optimization of access to hospital beds is a limiting factor in response to catastrophic events. Medical facilities, communication tools, manpower, and resource reserves exist to respond to these events. However, these factors may not be optimally functioning to generate an effective and efficient surge response. The objective was to improve the function of these factors.Methods: Regional healthcare facilities and supporting local emergency response agencies developed a coalition (the Healthcare Facilities Partnership of South Central Pennsylvania; HCFP¬SCPA to increase regional surge capacity and emergency preparedness for healthcare facilities. The coalition focused on 6 objectives: (1 increase awareness of capabilities and assets, (2 develop and pilot test advanced planning and exercising of plans in the region, (3 augment written medical mutual aid agreements, (4 develop and strengthen partnership relationships, (5 ensure National Incident Management System compliance, and (6 develop and test a plan for effective utilization of volunteer healthcare professionals.Results: In comparison to baseline measurements, the coalition improved existing areas covered under all 6 objectives documented during a 24-month evaluation period. Enhanced communications between the hospital coalition, and real-time exercises, were used to provide evidence of improved preparedness for putative mass casualty incidents.Conclusion: The HCFP-SCPA successfully increased preparedness and surge capacity through a partnership of regional healthcare facilities and emergency response agencies.

  9. Research and development to protect soldiers from landmines and improvised explosive devices

    CSIR Research Space (South Africa)

    Ahmed, R

    2015-10-01

    Full Text Available Landmines and Improvised Explosive Devices (IEDs) remain a major threat for military vehicles, their occupants and other assets. It is thus imperative that traditional methods of protection need to be adapted or new technologies developed....

  10. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    Science.gov (United States)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2018-04-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  11. Using satellite altimetry and tide gauges for storm surge warning

    DEFF Research Database (Denmark)

    Andersen, O. B.; Cheng, Yongcun; Deng, X.

    2014-01-01

    of Australia. For both locations we have tried to investigate the possibilities and limitations of the use of satellite altimetry to capture high frequency signals (surges) using data from the past 20 years. The two regions are chosen to represent extra-tropical and tropical storm surge conditions. We have...

  12. Intercomparison of radiation protection protection devices in a high-energy stray neutron field. Part III: Instrument response

    Czech Academy of Sciences Publication Activity Database

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernández, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; García, M. J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, T.; Latocha, M.; Mares, V.; Mayer, S.; Radon, T.; Reithmeier, H.; Rollet, S.; Roos, H.; Rühm, W.; Sandri, S.; Schardt, D.; Simmer, G.; Spurný, František; Trompier, F.; Villa-Grasa, C.; Weitzenegger, E.; Wiegel, B.; Wielunski, M.; Wissmann, F.; Zechner, A.; Zielczyński, M.

    2009-01-01

    Roč. 44, 7-8 (2009), s. 673-691 ISSN 1350-4487 R&D Projects: GA AV ČR IAA100480902 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation protection devices * radiation field * detectors * dosemeters Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.973, year: 2009

  13. Privacy Protection for Personal Health Device Communication and Healthcare Building Applications

    Directory of Open Access Journals (Sweden)

    Soon Seok Kim

    2014-01-01

    Full Text Available This paper proposes a new method for protecting patient privacy when communicating with a gateway which collects bioinformation through using personal health devices, a type of biosensor for telemedicine, at home and in other buildings. As the suggested method is designed to conform with ISO/IEEE 11073-20601, which is the international standard, interoperability with various health devices was considered. We believe it will be a highly valuable resource for dealing with basic data because it suggests an additional standard for security with the Continua Health Alliance or related international groups in the future.

  14. Coastal Storm Surge Analysis: Storm Forcing. Report 3. Intermediate Submission No. 1.3

    Science.gov (United States)

    2013-07-01

    The storm surge study considers both tropical storms and extratropical cyclones for determination of return period storm surge elevations. The...Appendix B: Extratropical Cyclone Selection in Support of FEMA Region III Storm Surge Modeling...stations applied in the storm selection process. ............................................. 56  Table B2. Extratropical cyclones selected from the

  15. Respiratory protective device design using control system techniques

    Science.gov (United States)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  16. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    Science.gov (United States)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  17. A novel mechanical design of broken rope protection device for enhancing the safety performances of overhead manned equipment in coal mine

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2015-08-01

    Full Text Available A novel mechanical design of the broken rope protection device is proposed to enhance the safety performances of the overhead manned equipment. According to the operating characteristics and functional requirements of the overhead manned equipment, a three-dimensional mechanical model of the broken rope protection device was redesigned. Based on the known parameters of the mechanical model, the stress and strength of the main components are readjusted using the statics characteristics of finite element analysis. To ensure the reliability of the control system of the broken rope protection device, the process of people’s falling, the response performance of the tension sensor, and the signal extraction of the broken rope are analyzed under different loading and unloading speeds. The working principle of the broken rope protection device is expounded in detail. The experimental results showed that better effect is obtained by the new broken rope protection device, which is characterized by good durability, low investment, and high reliability.

  18. Filtration of nanoparticles - Application to respiratory protecting devices

    International Nuclear Information System (INIS)

    Brochot, C.

    2012-01-01

    This study aims to determine how the respiratory protective devices (RPD), whose performances are qualified for particles above 100 nm, are effective for nanoparticles. Indeed, if the use of a collective filtration is inadequate, wearing a RPD is the last protection recommended. A literature review showed that no research concerned the effectiveness of half-masks for nanoparticles. The test bench ETNA has been sized and built to overcome these lacks. Two half masks were tested according to different configurations: constant flow rate and cyclic flow rate (average flow of 84 L /min), particle size (from 5 to 100 nm), positions of the mask (sealed, usual, or with calibrated leaks). The results show that, since the RPD contain high efficiency filter media (without charged fibers) for the most penetrating particle size (100 nm - 300 nm), the RPD is more efficient for nanoparticles. Furthermore, the results obtained in the presence of actual and calibrated leaks, highlighted the importance of face seal leakages in determining the performance of RPD. A model for calculating the protection factor was established based on the balance between the airflow through the filter and the leak. This model was validated using measurements obtained in the presence of calibrated leaks, and applied for the analysis of our results in usual position. (author)

  19. Experimental Study on Noise Characteristic of Centrifugal Compressor Surge

    OpenAIRE

    Yang, Qichao; Zhao, Yuanyang; SHU, Yue; LI, Xiaosa; LI, Liansheng

    2016-01-01

    The centrifugal air compressor test rig is was designed and established. The experimental study was carried out on the surge characteristics of centrifugal compressor including the pressure in the pipe and the noise characteristics under different rotation speed. The tested results showed that both the suction pressure and discharge pressure fluctuation increase under surge condition and the amplitude of discharge pressure fluctuation is significantly higher than that of suction pressure. In ...

  20. Design considerations for pressure surge protection for marine terminals, based on real case; Consideracoes de projeto para sistemas de protecao contra surtos de pressao em terminais maritimos existentes, a partir de caso real

    Energy Technology Data Exchange (ETDEWEB)

    Allevato, Monica; Miranda, Jades Marques de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Paula, Jair dos Santos de [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Upon the increasing of liquid pumping capacity in maritime terminals and with the developing of quick blockage systems in hydrocarbon ship tankers, is also high the concern with the event of a surge pressure that could result in risky situations, with possible financial damages and environmental accidents of large proportions. On this scenario, the design of hydraulic transient anti-surge systems during crude oil and its products loading or offloading in terminal and tankers, is very important and it involves much more than simple numerical simulation or direct application of theory that takes into account only hydraulic aspects of the system, depending on solid design basis, on practical experience for design and operations and on the knowledge of experts in the field. This paper presents a quick historical background of the national installations, and discuss the main steps for designing hydraulic transient safety systems, taking into account an existing system as guideline for the particularities during the field collection data, the simplification for a representative and efficient numerical modeling and definition of design criteria. This paper discuss also, some of the restrictions of available protection equipment, when applied to existing maritime terminals. (author)

  1. Transcranial Doppler monitoring during stenting of the carotid bifurcation: evaluation of two different distal protection devices in preventing embolization.

    Science.gov (United States)

    Rubartelli, Paolo; Brusa, Giulia; Arrigo, Alessandro; Abbadessa, Francesco; Giachero, Corinna; Vischi, Massimo; Ricca, Maria Maddalena; Ottonello, Gian Andrea

    2006-08-01

    To compare the efficacy of 2 emboli protection devices in preventing embolization during carotid artery stenting (CAS). The GuardWire distal occlusion system (n=19) and the distal FilterWire EX (n=12) were compared in 31 consecutive patients (24 men; mean age 71+/-10 years) monitored with transcranial Doppler for microembolic signals before, during, and after CAS. The choice of the protection device was based on availability and on the patency of the contralateral carotid artery. The baseline characteristics were similar in the patients treated under protection from either device. Placement and retrieval of the protection device, stenting, and postdilation were technically successful in all patients. Two patients suffered a transient ischemic attack shortly after the procedure; no other adverse cardiovascular events occurred at 30 days. Compared to the GuardWire, the use of the FilterWire was associated with more microembolic signals during stent deployment (77.4+/-33.5 versus 1.07+/-1.94, pprotection device (21.4+/-15.4 versus 10.9+/-8.3, p=0.051). Consequently, the total amount of microembolic signals during the procedure was higher when the filter device was employed (183.0+/-42.1 versus 31.7+/-12.0, p<0.0001). The distal occlusion device appears to be more effective than the filter in reducing distal embolization detected by transcranial Doppler monitoring.

  2. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    Science.gov (United States)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability

  3. Effect of switching surges on ehv system design

    Energy Technology Data Exchange (ETDEWEB)

    Baril, G A; McGillis, D

    1966-01-01

    The presence of switching surges imposes certain conditions on the design of ehv system and certain resulting requirements in the basic components of these systems. At extra high voltage, it becomes both a practical as well as an economic necessity to limit the magnitude of switching surge overvoltages. This can be accomplished by the installation of suitable terminal equipment, and for the 735 kV system it was found necessary to install permanently connected shunt reactors on the transmission lines and to provide for the installation of closing resistors on the circuit breakers.

  4. A Numerical Simulation of Extratropical Storm Surge and Hydrodynamic Response in the Bohai Sea

    OpenAIRE

    Ding, Yumei; Ding, Lei

    2014-01-01

    A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the max...

  5. Assessment of water pipes durability under pressure surge

    Science.gov (United States)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  6. Kosovo’s Ground Flash Density and Protection of Transmission Lines of the Kosovo Power System from Atmospheric Discharges

    Directory of Open Access Journals (Sweden)

    Bahri Prebreza

    2018-03-01

    Full Text Available In this paper is presented the protection of transmission power lines of the Kosovo Power System from atmospheric discharges, with the use of surge arresters. Atmospheric discharges represent one of the main causes of interruptions for the Kosovo Power System. In addition, the ground flash density for Kosovo is given. The transmission lines with the worst performance regarding atmospheric discharges are discussed in more detail and are presented recommendations about the surge arresters used to protect the system from these overvoltages. The data provided by the localized lightning system in Kosovo enable us to provide a detailed correlation of the reported outages of the Kosovo Power System and corresponding atmospheric discharges. Recommendations for protection in terms of surge arresters are given followed by subsequent dynamic simulations using MATLAB software.

  7. Characteristics and possibilities of software tool for metal-oxide surge arresters selection

    Directory of Open Access Journals (Sweden)

    Đorđević Dragan

    2012-01-01

    Full Text Available This paper presents a procedure for the selection of metal-oxide surge arresters based on the instructions given in the Siemens and ABB catalogues, respecting their differences and the characteristics and possibilities of the software tool. The software tool was developed during the preparation of a Master's thesis titled, 'Automation of Metal-Oxide Surge Arresters Selection'. An example is presented of the selection of metal-oxide surge arresters using the developed software tool.

  8. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  9. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  10. Influence of Surge on Extreme Roll Amplitudes

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Rognebakke, Olav; Pedersen, Preben Terndrup

    2008-01-01

    Interference of the wave-induced ship surge motion with roll dynamics has been studied. The surge motion has been included in a previously derived hydrodynamic roll prediction model in order to account for the ship speed variation due to the longitudinal incident wave pressure force. Depending...... balanced in order to determine the added thrust term that would represent actions to maintain speed The resulting forward speed variation affects the frequency of encounter and the parametric roll resonant condition is directly influenced by this speed variation. The analysis procedure is demonstrated...... for an example containership sailing mainly in head sea condition and higher sea states. Sensitivity of the results to the added thrust model and vertical motion calculation is discussed....

  11. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Choiniere, Michael [University of Maine; Thiagarajan, Krish P. [University of Maine

    2017-08-01

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. This ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.

  12. Using Satellite Altimetry to Calibrate the Simulation of Typhoon Seth Storm Surge off Southeast China

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2018-04-01

    Full Text Available Satellite altimeters can capture storm surges generated by typhoons and tropical storms, if the satellite flies over at the right time. In this study, we show TOPEX/Poseidon altimeter-observed storm surge features off Southeast China on 10 October 1994 during Typhoon Seth. We then use a three-dimensional, barotropic, finite-volume community ocean model (FVCOM to simulate storm surges. An innovative aspect is that satellite data are used to calibrate the storm surge model to improve model performance, by adjusting model wind forcing fields (the National Center for Environment Prediction (NCEP reanalysis product in reference to the typhoon best-track data. The calibration reduces the along-track root-mean-square (RMS difference between model and altimetric data from 0.15 to 0.10 m. It also reduces the RMS temporal difference from 0.21 to 0.18 m between the model results and independent tide-gauge data at Xiamen. In particular, the calibrated model produces a peak storm surge of 1.01 m at 6:00 10 October 1994 at Xiamen, agreeing with tide-gauge data; while the peak storm surge with the NCEP forcing is 0.71 m only. We further show that the interaction between storm surges and astronomical tides contributes to the peak storm surge by 34% and that the storm surge propagates southwestward as a coastally-trapped Kelvin wave.

  13. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups.

    Science.gov (United States)

    Jin, Xue; Shi, Xiaoxia; Gao, Jintian; Xu, Tongbin; Yin, Kedong

    2018-03-27

    Storm surge has become an important factor restricting the economic and social development of China's coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  14. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Science.gov (United States)

    Shi, Xiaoxia; Xu, Tongbin; Yin, Kedong

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation. PMID:29584628

  15. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Directory of Open Access Journals (Sweden)

    Xue Jin

    2018-03-01

    Full Text Available Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc., storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  16. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    Science.gov (United States)

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  17. Multidecadal Scale Detection Time for Potentially Increasing Atlantic Storm Surges in a Warming Climate

    Science.gov (United States)

    Lee, Benjamin Seiyon; Haran, Murali; Keller, Klaus

    2017-10-01

    Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).

  18. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  19. Quantification of Sediment Transport During Glacier Surges and its Impact on Landform Architecture

    DEFF Research Database (Denmark)

    Kjær, Kurt H.; Schomacker, Anders; Korsgaard, Niels Jákup

    ) for 1945, prior to the last surge in 1964, and for 2003 in order to assess the effect of the surge on the sediment architecture in the forefield. The pre- and post-surge DEMs allow direct quantification of the sediment volumes that were re-distributed in the forefield by the surging ice mass in 1964...... or glaciofluvial outwash fans. Mapping of the sediment thickness in the glacier forefield shows higher accumulation along ice marginal positions related to wedge formation during extremely rapid ice flow. Fast flow was sustained by overpressurized water causing sediment-bedrock decoupling beneath a thick sediment...... architecture occurs distal to the 1810 ice margin, where the 1890 surge advanced over hitherto undeformed sediments. Proximal to the 1810 ice margin, the landscape have been transgressed by either one or two glaciers (in 1890 and 1964). The most complex landscape architecture is found proximal to the 1964 ice...

  20. MAGNETIC-RECONNECTION GENERATED SHOCK WAVES AS A DRIVER OF SOLAR SURGES

    International Nuclear Information System (INIS)

    Yang, Heesu; Chae, Jongchul; Park, Hyungmin; Song, Dong-uk; Cho, Kyuhyoun; Lim, Eun-Kyung; Lee, Kyoung-sun

    2014-01-01

    We found that a surge consists of multiple shock features. In our high-spatiotemporal spectroscopic observation of the surge, each shock is identified with the sudden appearance of an absorption feature at the blue wings of the Ca II 8542 Å line and Hα line that gradually shifts to the red wings. The shock features overlap with one another with the time interval of 110 s, which is much shorter than the duration of each shock feature, 300-400 s. This finding suggests that the multiple shocks might not have originated from a train of sinusoidal waves generated by oscillations and flows in the photosphere. As we found the signature of the magnetic flux cancelations at the base of the surge, we conclude that the multiple shock waves in charge of the surge were generated by the magnetic reconnection that occurred in the low atmosphere in association with the flux cancelation

  1. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  2. Planning for partnerships: Maximizing surge capacity resources through service learning.

    Science.gov (United States)

    Adams, Lavonne M; Reams, Paula K; Canclini, Sharon B

    2015-01-01

    Infectious disease outbreaks and natural or human-caused disasters can strain the community's surge capacity through sudden demand on healthcare activities. Collaborative partnerships between communities and schools of nursing have the potential to maximize resource availability to meet community needs following a disaster. This article explores how communities can work with schools of nursing to enhance surge capacity through systems thinking, integrated planning, and cooperative efforts.

  3. [Analysis of articles published in Chin J Surg since founded in 1951].

    Science.gov (United States)

    Xia, Shuang; Li, Jing

    2016-01-01

    To discuss the characteristics of the articles published in Chin J Surg from 1951 to 2015. The journals and articles of Acad Surg from 1951 to 1952 and Chin J Surg from 1953 to 2015 were analyzed. The subjects, foundation, basic medical study, international cooperation of the articles were recorded. In 65 years, there were 20 090 academic articles published in Chin J Surg. The proportions of general surgery, orthopedic surgery, thoracocardiac surgery, urology surgery and neurosurgery articles were 34.08%, 17.96%, 13.09%, 11.91% and 5.85%, respectively. There were 14.83% (1 728/11 653) articles receiving foundation, and 9.42% (1 817/19 290) articles reporting basic medical study. There were 14.8% articles from international authors and 119 articles with international cooperation. From 2000 to 2003, 29 articles in original English were published. The coverage of Chin J Surg contains all the fields of surgery. It tends to publish the studies focus on clinical issues.Through reinforcing the content plan and optimizing the show form, the more Chinese surgical research achievements could be shared by the surgeons worldwide.

  4. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: Hansang80@korea.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yoon, Dong-Hee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Lee, Seung-Ryul [Korea Electrotechnology Research Institute, Naeson-dong, Uiwang-si, Gyeonggi-do 437-080 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-01-15

    Highlights: ► It is necessary to study lightning response of the HTS cable. ► The analytic model has been developed for the HTS cable in the Icheon substation. ► Well-designed surge arrester has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  5. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.

    2012-07-01

    Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.

  6. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  7. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    OpenAIRE

    Xue Jin; Xiaoxia Shi; Jintian Gao; Tongbin Xu; Kedong Yin

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is di...

  8. Numerical modelling of tides and storm surges in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sindhu, B.

    were done. A storm surge model was developed to simulate total water levels and derived surges caused by low pressure systems identified during the past 27 years (1974-2000) in the Bay of Bengal. Study also estimated the return levels of extreme sea...

  9. Increased level of morning surge in blood pressure in normotensives: A cross-sectional study from Pakistan

    International Nuclear Information System (INIS)

    Almas, A.; Sultan, F. T.; Kazmi, K.

    2016-01-01

    Objective: To determine the mean morning surge (MS) in blood pressure, the frequency of increased morning surge in normotensive subjects, and to compare those with morning surge with those without MS. Study Design: A cross-sectional, comparative study. Place and Duration of Study: The Department of Medicine, The Aga Khan University Hospital, Karachi, from April 2011 to March 2012. Methodology: Adult normotensive healthy volunteers aged 35 to 65 years were inducted. Their ambulatory blood pressure (ABP) was measured over a 24-hour period, using digital ambulatory blood pressure monitors. Morning surge was calculated as the average of four readings after waking minus the lowest three nocturnal readings. Increased morning surge was defined as > 11 mm Hg in systolic (SBP) or > 12 mm Hg in diastolic (DBP). Dipping was defined as > 10% dipping in blood pressure. Results: Eighty-two healthy volunteers were recruited. Their mean age was 36.9 ± 1.2 years; 74.4 (61%) were men, and 58.5 (48%) woke up for morning prayers. Mean overall SBP was 113 ± 1.6 mm Hg, overall DBP was 73.9 ± 0.7 mm Hg, and overall heart rate was 75 (10) beats/minute. Mean morning surge was 17.6 ± 1.0 mm Hg in SBP and 16.0 ± 0.8 mm Hg in DBP. The frequency of increased morning surge was 66 (80.5%) in SBP, and 57 (69%) in DBP. On comparison of participants with normal morning surge and increased morning surge in SBP, there was a significant difference in non-dipping status (13.4% in normal vs. 18.3% in increased morning surge, p= 0.001). Conclusion: Mean morning surge in SBP and DBP are relatively higher in this subset population in a tertiary care center in Pakistan. These values are higher than those reported in the literature. (author)

  10. Nonconformance in electromechanical output relays of microprocessor-based protection devices under actual operating conditions

    OpenAIRE

    Gurevich, Vladimir

    2006-01-01

    Microprocessor-based protection relays are gradually driving out traditional electromechanical and even electronic protection devices from virtually all fields of power and electrical engineering. In this paper, one of many problems of microprocessor-based relays is discussed: nonconformance of miniature electromechanical output relays under actual operation conditions: switching inductive loads (with tripping CB coils or lockout relay coils) at 220 VDC, and "dry" switching of some control ci...

  11. Device for the burst protection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Daublebsky, P.

    1976-01-01

    The burst protection device has a hood over top and bottom of the pressure vessel with superimposed hinged supports lying in their turn against supporting rings which are connected with each other by vertical bracing. It is proposed to place an intermediate layer between hoods and vertical bracing absorbing thermal stresses, i.e. deforming plastically with gradually increasing pressure, but behaving like a rigid body in the case of shock loads. As a material lead e.g. is proposed. (UWI) [de

  12. Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen

    2014-10-01

    Full Text Available Low-lying coastal regions and their populations are at risk during storm surge events and high freshwater discharges from upriver. An integrated storm surge and flood inundation modeling system was used to simulate storm surge and inundation in the Tsengwen River basin and the adjacent coastal area in southern Taiwan. A three-dimensional hydrodynamic model with an unstructured grid was used, which was driven by the tidal elevation at the open boundaries and freshwater discharge at the upriver boundary. The model was validated against the observed water levels for three typhoon events. The simulation results for the model were in reasonable agreement with the observational data. The model was then applied to investigate the effects of a storm surge, freshwater discharge, and a storm surge combined with freshwater discharge during an extreme typhoon event. The super Typhoon Haiyan (2013 was artificially shifted to hit Taiwan: the modeling results showed that the inundation area and depth would cause severe overbank flow and coastal flooding for a 200 year return period flow. A high-resolution grid model is essential for the accurate simulation of storm surges and inundation.

  13. Awareness training and hearing protection devices: Current practices in the South African mining industry

    CSIR Research Space (South Africa)

    Edwards, A

    2012-09-01

    Full Text Available This presentation outlines the importance of awareness training of managers at all levels and miners regarding the importance of hearing protection devices and adequate knowledge, motivation and training to prevent hearing loss....

  14. Progression of the 2011-2012 Surge of Bering Glacier and Bagley Ice Field, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Stachura, M.; Hale, R.; Trantow, T.; Weltman, A.; Chen, P.

    2012-12-01

    Bering Glacier, Alaska, started a surge in late spring 2011. The surge reached the ice front in May 2011 and extended into Bagley Ice Field by summer 2011. New surge-related crevassing was observed in July 2012. We collected aerial observations, including systematic videographic and photographic imagery, GPS data and laser altimeter data in September 2011 and in July 2012. In this talk, an analysis of surge progression and comparison to the early, mature and late stages of the 1993-1995 surge of Bering Glacier and Bagley Ice Field will be presented. A suite of approaches will be used to this end: Analysis of elevation changes based on CryoSat data, 2009 and 2010 IceBridge data and 2011 and 2012 laser altimeter data collected by our group, geostatistical classification of crevasse types based on imagery, classification of laser altimeter data and analysis of high-resolution satellite imagery (Worldview and GEOS).

  15. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Science.gov (United States)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-07-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  16. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Directory of Open Access Journals (Sweden)

    J. P. Lapidez

    2015-07-01

    Full Text Available Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH which is the flagship disaster mitigation program of the Department of Science and Technology (DOST of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  17. The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016

    Science.gov (United States)

    Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.

    2017-12-01

    Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity

  18. Optical-electronic device based on diffraction optical element for control of special protective tags executed from luminophor

    Science.gov (United States)

    Polyakov, M.; Odinokov, S.

    2017-05-01

    The report focuses on special printing industry, which is called secure printing, which uses printing techniques to prevent forgery or falsification of security documents. The report considered the possibility of establishing a spectral device for determining the authenticity of certain documents that are protected by machine-readable luminophor labels. The device works in two spectral ranges - visible and near infrared that allows to register Stokes and anti-Stokes spectral components of protective tags. The proposed device allows verification of the authenticity of security documents based on multiple criteria in different spectral ranges. It may be used at enterprises related to the production of security printing products, expert units of law enforcement bodies at check of authenticity of banknotes and other structures.

  19. Towards an Active Hearing Protection Device for Musicians =

    Science.gov (United States)

    Bernier, Antoine

    Professional musicians are oftentimes exposed to high levels of sound. Prolonged or severe exposure to high sound levels could lead to permanent hearing loss and compromise their career. The logical solution would be to wear hearing protection devices (HPDs) when appropriate. However, perceptual discomfort associated with wearing HPD can discourage their use by musicians. The perceptual discomfort is caused by two detrimental effects: the occlusion effect and the isolation effect. The occlusion effect is often reported as an augmented, unnatural and annoying perception of one's own voice or instrument mechanically coupled to the head when wearing HPDs. The isolation effect is the unnatural sensation of being isolated from a given sound environment and can be caused by wearing HPDs that do not compensate for psychoacoustical factors and therefore alter the wearer's auditory perception. Both effects are highly unfavorable to the musicians' auditory perception and compromise their capacity to perform to the best of their abilities for their audience. They are among the reasons most often reported by musicians to decide not to wear HPDs. This master's project presents the concept and first prototype of an active HPD for musicians that aims at solving the detrimental effects while protecting the musician's hearing. A solution for the occlusion effect is presented in the form of an earplug complemented with in-ear active noise control. Practical design issues and required trade-off are analyzed through a literature review and the implementation and characterization of an active occlusion effect reduction system, allowing reduction of the occlusion effect between 8.5 and 12 dB at 250 Hz. A solution for the isolation effect is presented in the form of an earplug complemented with digital signal processing capabilities. Factors that may cause the isolation effect are identified through a literature review and corresponding algorithms that aim at re-establishing the

  20. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Directory of Open Access Journals (Sweden)

    Carlos A. Ferreira

    2011-01-01

    Full Text Available A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE. Power Utility Polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TG, Dynamic-Mechanic Analysis (DMA, Fourier Transformed Infrared Spectroscopy (FTIR and Scanning Electronic Microscopy (SEM to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weatherometer, 120 °C, salt spray, immersion in water. After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 kA, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrestor are appropriate for use in electricity distribution networks.

  1. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Carlos A.; Coser, E. [Laboratorio de Materiais Polimericos, Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)], e-mail: ferreira.carlos@ufrgs.br; Angelini, Joceli M.G. [Departamento de Materiais Eletricos, CPqD, Campinas, SP (Brazil); Rossi, Jose A.D. [Materiais Alta Tensao, CPqD, Campinas, SP (Brazil); Martinez, Manuel L.B. [Departamento de Engenharia Eletrica, UNIFEI, Itajuba, MG (Brazil)

    2011-07-01

    A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE). Power utility polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG), Dynamic-Mechanic Analysis (DMA), Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electronic Microscopy (SEM) to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weather meter, 120 deg C, salt spray, immersion in water). After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 k A, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrester are appropriate for use in electricity distribution networks. (author)

  2. Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency

    Science.gov (United States)

    Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.

    2013-01-01

    Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.

  3. The dynamics of surge in compression systems

    Indian Academy of Sciences (India)

    is of interest to study compression-system surge to understand its dynamics in order ... Internal problems like compressor going into rotating stall, resulting in loss of ... of water column, was used for mass-flow measurement at the impeller entry.

  4. Reactor protecting device

    International Nuclear Information System (INIS)

    Ono, Hiroshi; Kasuga, Hajime; Kasuga, Hiroshi.

    1984-01-01

    Purpose: To reduce the recycling flowrate thereby decrease the neutron flux level before the reactor shutdown upon generation of abnormality such as increase in the neutron flux, by setting the safety level lower than the value for generating the reaction scram signal. Constitution: A netron flux safety level setter and an instruction signal generator are disposed between a neutron flux detector and a recycling flowrate control device. A neutron flux safety level lower than the level for generating a reactor scram signal and higher that the level for the ordinary operation is set and, if the detection level for the neutron flux in the reactor core arrives at the safety level, a neutron flux decreasing instruction signal is outputted from the instruction signal generator to the recycling flowrate control device to thereby decrease the recycling flowrate and decrease the neutron flux without reaching the reactor shutdown, whereby the thermal safety of the fuel rod can be maintained and the reactor operation performance can be improved. (Moriyama, K.)

  5. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    Science.gov (United States)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  6. Simulating storm surge inundation and damage potential within complex port facilities

    Science.gov (United States)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular

  7. Chemical characterization of polymeric surge arresters and insulators used in high voltage lines; Caracterizacao quimica de para-raios e isoladores utilizados em linhas de alta tensao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Junior, Joao B. de; Castro Junior, Joao B. de; Silva, Maria Elisa S.R. e; Freitas, Roberto F.S.; Sousa, Ricardo G. de [Lab. de Ciencia e Tecnologia de Polimeros, Dept. de Engenharia Quimica da EE.UFMG, Belo Horizonte, MG (Brazil); Souza, Breno P.G. de [CEMIG Distribuicao S/A, Belo Horizonte, MG (Brazil)], e-mail: bpgsouza@gmail.com

    2011-07-01

    In the last two decades, traditional porcelain and glass surge arresters and insulators, used in the electrical system, have been replaced by polymeric materials. For this type of application it is recommended that these devices have a high resistance to environmental stresses and impacts without suffering degradation process. Considering the environmental conditions these polymers are exposed to, when used for this purpose, studies of their chemical composition are needed. In this work, polymeric materials present in surge arresters and insulators used in electrical system were chemically characterized by Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis showed that the samples tested are made of poly(dimethylsiloxane) - PDMS (silicone) and additives such as alumina trihydrated [Al (OH)3] and calcium carbonate. (author)

  8. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  9. Alternate Care Sites for the Management of Medical Surge in Disasters

    Science.gov (United States)

    2013-12-01

    care facilities are in place  Plan for community based surge hospital bed surge capacity is in place  A 50-bed nursing subunit—per 50,000...attempt to assess the preparedness of the hospital system, HHS/ASPR commissioned The Center for Biosecurity of UPMC to examine various responses to...catastrophic health efforts. The 11 report The Next Challenge in Healthcare Preparedness: Catastrophic Health Events (Center for Biosecurity of UPMC

  10. Usefulness of the protection motivation theory in explaining hearing protection device use among male industrial workers.

    Science.gov (United States)

    Melamed, S; Rabinowitz, S; Feiner, M; Weisberg, E; Ribak, J

    1996-05-01

    The present study examined the usefulness of personal variables: noise annoyance, and components of the protection motivation theory (R. W. Rogers, 1983) along with social-organizational factors in explaining hearing protection device (HPD) use among Israeli manufacturing workers. Participants were 281 men exposed to harmful noise levels for which routine HPD use is required by regulation. In practice, 3 HPD user groups were identified: nonusers (n = 38), occasional users (n = 125), and regular users (n = 118). HPD use was objectively verified. HPD use was primarily related to the personal variables but not to management pressure, coworker pressure, or family support. The most powerful predictors of HPD use were perceived self-efficacy (for long-term HPD use), perceived susceptibility (to hearing loss), and noise annoyance, together explaining 48% of the outcome variance. These findings have implications for interventions aimed at motivating workers to use HPDs regularly.

  11. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    CERN Document Server

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  12. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  13. Experimental Study on Active Control of Surge in a Centrifugal Compression System

    Directory of Open Access Journals (Sweden)

    Nie Chaoqun

    2000-01-01

    Full Text Available An experimental study has been carried out on the active control of surge in a centrifugal compression system. With a computerized on-line control scheme, the surge phenomenon is suppressed and the stable operating range of the system is extended. In order to design the active control scheme and choose the desired parameters of the control system inputs, special emphases have been placed on the development of surge inception and the nonlinear interaction between the system and the actuator. By use of the method designed in the present work, the results of active control onsurge have been demonstrated for the different B parameters, different prescribed criteria and different control frequencies.

  14. Cortisol Interferes with the Estradiol-Induced Surge of Luteinizing Hormone in the Ewe1

    Science.gov (United States)

    Wagenmaker, Elizabeth R.; Breen, Kellie M.; Oakley, Amy E.; Pierce, Bree N.; Tilbrook, Alan J.; Turner, Anne I.; Karsch, Fred J.

    2008-01-01

    Two experiments were conducted to test the hypothesis that cortisol interferes with the positive feedback action of estradiol that induces the luteinizing hormone (LH) surge. Ovariectomized sheep were treated sequentially with progesterone and estradiol to create artificial estrous cycles. Cortisol or vehicle (saline) was infused from 2 h before the estradiol stimulus through the time of the anticipated LH surge in the artificial follicular phase of two successive cycles. The plasma cortisol increment produced by infusion was ∼1.5 times greater than maximal concentrations seen during infusion of endotoxin, which is a model of immune/inflammatory stress. In experiment 1, half of the ewes received vehicle in the first cycle and cortisol in the second; the others were treated in reverse order. All ewes responded with an LH surge. Cortisol delayed the LH surge and reduced its amplitude, but both effects were observed only in the second cycle. Experiment 2 was modified to provide better control for a cycle effect. Four treatment sequences were tested (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-cortisol, cortisol-vehicle. Again, cortisol delayed but did not block the LH surge, and this delay occurred in both cycles. Thus, an elevation in plasma cortisol can interfere with the positive feedback action of estradiol by delaying and attenuating the LH surge. PMID:19056703

  15. Development of Storm Surge Hazard Maps and Advisory System for the Philippines

    Science.gov (United States)

    Santiago, Joy; Mahar Francisco Lagymay, Alfredo; Caro, Carl Vincent; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Garnet Goting, Prince

    2016-04-01

    The Philippines, located in the most active region of cyclogenesis in the world, experiences an average of 20 tropical cyclones annually. Strong winds brought by tropical cyclones, among other factors, cause storm surges that inundate the coastal areas of the country. As an archipelago with the fourth longest coastline in the world, the country is expose to the threats of storm surges. This was manifested by Typhoon Haiyan on 8 November 2013, which devastated the country and left 6,293 deaths and approximately USD 2 billion worth of damages. To prevent such disaster from happening again, the Nationwide Operational Assessment of Hazards (Project NOAH) developed a Storm Surge Advisory (SSA) that aims to warn communities in coastal areas against impending floods due to storm surges. The Japan Meteorological Agency storm surge model was used to simulate 721 tropical cyclones that entered the Philippine Area of Responsibility from 1951-2013. The resulting storm surge time series from the simulations were added to the maximum tide levels from the WXTide software for the 4,996 observation points placed nearshore in the entire country. The storm tide levels were categorized into four groups based on their peak height to create the SSA - SSA 1 (0.01m to 2m), SSA 2 (2.01m to 3m), SSA 3 (3.01m to 4m), and SSA 4 (4m and above). The time series for each advisory level was used in inundation modelling using FLO-2D, a two-dimensional flood modeling software that uses continuity and dynamic wave momentum equation. The model produced probable extent, depth of inundation, and hazard level for each advisory level. The SSA hazard maps are used as reference to warn communities that are likely to be affected by storm surges. Advisory is released 24 hours in advance and is updated every six hours in the Project NOAH website. It is also being utilized in the pre-disaster risk assessment of the national government agencies and local government units in designing appropriate response to

  16. Parameter sensitivity and uncertainty analysis for a storm surge and wave model

    Directory of Open Access Journals (Sweden)

    L. A. Bastidas

    2016-09-01

    Full Text Available Development and simulation of synthetic hurricane tracks is a common methodology used to estimate hurricane hazards in the absence of empirical coastal surge and wave observations. Such methods typically rely on numerical models to translate stochastically generated hurricane wind and pressure forcing into coastal surge and wave estimates. The model output uncertainty associated with selection of appropriate model parameters must therefore be addressed. The computational overburden of probabilistic surge hazard estimates is exacerbated by the high dimensionality of numerical surge and wave models. We present a model parameter sensitivity analysis of the Delft3D model for the simulation of hazards posed by Hurricane Bob (1991 utilizing three theoretical wind distributions (NWS23, modified Rankine, and Holland. The sensitive model parameters (of 11 total considered include wind drag, the depth-induced breaking γB, and the bottom roughness. Several parameters show no sensitivity (threshold depth, eddy viscosity, wave triad parameters, and depth-induced breaking αB and can therefore be excluded to reduce the computational overburden of probabilistic surge hazard estimates. The sensitive model parameters also demonstrate a large number of interactions between parameters and a nonlinear model response. While model outputs showed sensitivity to several parameters, the ability of these parameters to act as tuning parameters for calibration is somewhat limited as proper model calibration is strongly reliant on accurate wind and pressure forcing data. A comparison of the model performance with forcings from the different wind models is also presented.

  17. Brief communication: The Khurdopin glacier surge revisited - extreme flow velocities and formation of a dammed lake in 2017

    Science.gov (United States)

    Steiner, Jakob F.; Kraaijenbrink, Philip D. A.; Jiduc, Sergiu G.; Immerzeel, Walter W.

    2018-01-01

    Glacier surges occur regularly in the Karakoram, but the driving mechanisms, their frequency and its relation to a changing climate remain unclear. In this study, we use digital elevation models and Landsat imagery in combination with high-resolution imagery from the Planet satellite constellation to quantify surface elevation changes and flow velocities during a glacier surge of the Khurdopin Glacier in 2017. Results reveal that an accumulation of ice volume above a clearly defined steep section of the glacier tongue since the last surge in 1999 eventually led to a rapid surge in May 2017 peaking with velocities above 5000 m a-1, which were among the fastest rates globally for a mountain glacier. Our data reveal that velocities on the lower tongue increase steadily during a 4-year build-up phase prior to the actual surge only to then rapidly peak and decrease again within a few months, which confirms earlier observations with a higher frequency of available velocity data. The surge return period between the reported surges remains relatively constant at ca. 20 years. We show the potential of a combination of repeat Planet and ASTER imagery to (a) capture peak surge velocities that are easily missed by less frequent Landsat imagery, (b) observe surface changes that indicate potential drivers of a surge and (c) monitor hazards associated with a surge. At Khurdopin specifically, we observe that the surging glacier blocks the river in the valley and causes a lake to form, which may grow in subsequent years and could pose threats to downstream settlements and infrastructure in the case of a sudden breach.

  18. Web software for the control and management of radiation protection devices in the Cadarache site

    International Nuclear Information System (INIS)

    Beltritti, F.

    2010-01-01

    This series of slides presents how to use a new software dedicated to the management of the periodical controls that have to be performed on the equipment involved in radiation protection. This software is ready to be dispatched on the CEA site of Cadarache. This software gives information on: the device to be controlled, the controls that have to be performed, the procedures to follow to make the test, the equipment necessary for the test particularly the need for radioactive sources, the maintenance of the device, the previous measurements and in the end the device's conformity. An evaluation of the conformity of all the devices present in a building or an area or of a particular type can be easily obtained. (A.C.)

  19. Use of historical information in extreme surge frequency estimation: case of the marine flooding on the La Rochelle site in France

    Science.gov (United States)

    Hamdi, Y.; Bardet, L.; Duluc, C.-M.; Rebour, V.

    2014-09-01

    Nuclear power plants located in the French Atlantic coast are designed to be protected against extreme environmental conditions. The French authorities remain cautious by adopting a strict policy of nuclear plants flood prevention. Although coastal nuclear facilities in France are designed to very low probabilities of failure (e.g. 1000 year surge), exceptional surges (outliers induced by exceptional climatic events) had shown that the extreme sea levels estimated with the current statistical approaches could be underestimated. The estimation of extreme surges then requires the use of a statistical analysis approach having a more solid theoretical motivation. This paper deals with extreme surge frequency estimation using historical information (HI) about events occurred before the systematic record period. It also contributes to addressing the problem of the presence of outliers in data sets. The frequency models presented in the present paper have been quite successful in the field of hydrometeorology and river flooding but they have not been applied to sea levels data sets to prevent marine flooding. In this work, we suggest two methods of incorporating the HI: the Peaks-Over-Threshold method with HI (POTH) and the Block Maxima method with HI (BMH). Two kinds of historical data can be used in the POTH method: classical Historical Maxima (HMax) data, and Over a Threshold Supplementary (OTS) data. In both cases, the data are structured in historical periods and can be used only as complement to the main systematic data. On the other hand, in the BMH method, the basic hypothesis in statistical modeling of HI is that at least one threshold of perception exists for the whole period (historical and systematic) and that during a giving historical period preceding the period of tide gauging, only information about surges above this threshold have been recorded or archived. The two frequency models were applied to a case study from France, at the La Rochelle site where

  20. Use of historical information in extreme-surge frequency estimation: the case of marine flooding on the La Rochelle site in France

    Science.gov (United States)

    Hamdi, Y.; Bardet, L.; Duluc, C.-M.; Rebour, V.

    2015-07-01

    Nuclear power plants located in the French Atlantic coast are designed to be protected against extreme environmental conditions. The French authorities remain cautious by adopting a strict policy of nuclear-plants flood prevention. Although coastal nuclear facilities in France are designed to very low probabilities of failure (e.g., 1000-year surge), exceptional surges (outliers induced by exceptional climatic events) have shown that the extreme sea levels estimated with the current statistical approaches could be underestimated. The estimation of extreme surges then requires the use of a statistical analysis approach having a more solid theoretical motivation. This paper deals with extreme-surge frequency estimation using historical information (HI) about events occurred before the systematic record period. It also contributes to addressing the problem of the presence of outliers in data sets. The frequency models presented in the present paper have been quite successful in the field of hydrometeorology and river flooding but they have not been applied to sea level data sets to prevent marine flooding. In this work, we suggest two methods of incorporating the HI: the peaks-over-threshold method with HI (POTH) and the block maxima method with HI (BMH). Two kinds of historical data can be used in the POTH method: classical historical maxima (HMax) data, and over-a-threshold supplementary (OTS) data. In both cases, the data are structured in historical periods and can be used only as complement to the main systematic data. On the other hand, in the BMH method, the basic hypothesis in statistical modeling of HI is that at least one threshold of perception exists for the whole period (historical and systematic) and that during a giving historical period preceding the period of tide gauging, only information about surges above this threshold have been recorded or archived. The two frequency models were applied to a case study from France, at the La Rochelle site where

  1. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    Science.gov (United States)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as

  2. Three-Dimensional Numerical Analysis of Compound Lining in Complex Underground Surge-Shaft Structure

    Directory of Open Access Journals (Sweden)

    Juntao Chen

    2015-01-01

    Full Text Available The mechanical behavior of lining structure of deep-embedded cylinder surge shaft with multifork tunnel is analyzed using three-dimensional nonlinear FEM. With the elastic-plastic constitutive relations of rock mass imported and the implicit bolt element and distributed concrete cracking model adopted, a computing method of complex surge shaft is presented for the simulation of underground excavations and concrete lining cracks. In order to reflect the interaction and initial gap between rock mass and concrete lining, a three-dimensional nonlinear interface element is adopted, which can take into account both the normal and tangential characteristics. By an actual engineering computation, the distortion characteristics and stress distribution rules of the dimensional multifork surge-shaft lining structure under different behavior are revealed. The results verify the rationality and feasibility of this computation model and method and provide a new idea and reference for the complex surge-shaft design and construction.

  3. New challenge for the radiation protection: devices for the radioactivity dispersion

    International Nuclear Information System (INIS)

    Mora, J. C.; Robles, B.; Cancio, C.

    2006-01-01

    In recent years the terrorist attacks produced in several countries have changed the mind of the security experts. This has also included the Radiation Protection aspects. Newly considered features have required the update of emergency response and preparedness, ad well as a greater emphasis on security. Within the Radiation Protection field has been introduced the radiological and nuclear terrorism definition. almost every organism and research centre involved in Radiation Protection is nowadays working on. The possible terrorist attack scenarios have already been defined and the use of an explosive to disperse radioactive material, known as a Radiation Dispersion Devices (RDD), has been specified as the most probable one. Studies to mitigate against the chance of attack and to mitigate the consequences of any attack with a RDD are complex, due to the innovation that introduce. This leads to a need to take some immediate preventative actions and to carry out additional R and D efforts. This document presents some considerations on the possible RDD design and behaviour in order to prevent and prepare against a possible attack. (Author) 17 refs

  4. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    Science.gov (United States)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  5. Attempt to measure the temperature, pressure and particle velocity of pyrocastic surge with penetrator-type gauge. ; Airdropping experiment at Unzen volcano. Penetrator hoshiki ni yoru kasai surge no ondo, atsuryoku, ryushi sokudo sokutei no kokoromi. ; Unzendake ni okeru toka jikken

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, H. (Science Education Institute of Osaka Prefecture, Osaka (Japan)); Kamata, K.; Sange, K. (Kobe University, Kobe (Japan). Faculty of Science); Nakada, S. (Kyushu University, Fukuoka (Japan). Faculty of Science); Kamata, H. (Geological Survey of Japan, Osaka Office, Osaka (Japan))

    1992-08-01

    This paper describes development of a penetrator intended of measuring temperatures, pressures, and particle velocities of air blasts and pyroclastic surges occurring in volcanos, and its airdropping experiment. This device forms a spear with a total length of 150 cm to 160 cm disposed with wings at the tail, and a stopper to prevent the spear from penetrating into ground deeper than 60 cm. The device for measuring temperatures suspends metal pieces of 16 kinds in total including such metals as lead and tin, and such alloys as eutectic solders and type lead to enable measuring a temperature range from 100[degree]C to 810[degree]C . The device for measuring pressures consists of a square pipe with a length little shorter than one meter, twisted to 22.5[degree] at three locations, each of the 16 faces made from the twisting being attached with two blast meters (using lead and copper foils, serving also as particle velocity meters). Twelve prototype devices have been dropped (not having been recovered yet) on five points of the east side slope of Mt. Unzen using a helicopter. 5 refs., 3 figs.

  6. Balance between Privacy Protecting and Selling User Data of Wearable Devices

    OpenAIRE

    Huang, Kuang-Chiu; Hsu, Jung-Fang

    2017-01-01

    Smart bracelets are capable of identifying individual data, which can synchronize the step count, mileage, calorie consumption, heart rate, sleeping data and even the pictures users uploaded with the APP. This feature is so convenient on one hand but makes us lose control of our privacy on the other hand. With poor privacy protection mechanism embedded in these wearable devices that hackers can easily invade and steal user data. In addition, most smart bracelet companies have not made a clear...

  7. Effect of layout on surge line thermal stratification

    International Nuclear Information System (INIS)

    Lai Jianyong; Huang Wei

    2011-01-01

    In order to analyze and evaluate the effect of layout on the thermal stratification for PWR Pressurizer surge line, numerical simulation by Computational Fluid Dynamics (CFD) method is taken on 6 kinds of layout improvement with 2 improvement schemes, i.e., increasing the obliquity of quasi horizontal section and adding a vertical pipe between the quasi horizontal section and next elbow, and the maximum temperature differences of quasi horizontal section of surge line of various layouts under different flowrate are obtained. The comparison shows that, the increasing of the obliquity of quasi horizontal section can mitigate the thermal stratification phenomena but can not eliminate this phenomena, while the adding of a vertical pipe between the quasi horizontal section and next elbow can effectively mitigate and eliminate the thermal stratification phenomena. (authors)

  8. Distal protection filter device efficacy with carotid artery stenting: comparison between a distal protection filter and a distal protection balloon.

    Science.gov (United States)

    Iko, Minoru; Tsutsumi, Masanori; Aikawa, Hiroshi; Matsumoto, Yoshihisa; Go, Yoshinori; Nii, Kouhei; Abe, Gorou; Ye, Iwae; Nomoto, Yasuyuki; Kazekawa, Kiyoshi

    2013-01-01

    This retrospective study aimed to compare the effectiveness of the embolization prevention mechanism of two types of embolic protection device (EPD)-a distal protection balloon (DPB) and a distal protection filter (DPF). Subjects were 164 patients scheduled to undergo carotid artery stenting: a DPB was used in 82 cases (DPB group) from April 2007 until June 2010, and a DPF was used in 82 cases (DPF group) from July 2010 to July 2011. Rates of positive findings on postoperative diffusion-weighted imaging (DWI) and stroke incidence were compared. Positive postoperative DWI results were found in 34 cases in the DPB group (41.4 %), but in only 22 cases in the DPF group (26.8 %), and there was only a small significant difference within the DPF group. In the DPB group, there was one case of transient ischemic attack (TIA) (1.2 %) and four cases of brain infarction (2 minor strokes, 2 major strokes; 4.9 %), compared to the DFP group with one case of TIA (1.2 %) and no cases of minor or major strokes. In this study, significantly lower rates of occurrence of DWI ischemic lesions and intraoperative embolization were associated with use of the DPF compared to the DPB.

  9. Effects of Hearing Protection Device Attenuation on Unmanned Aerial Vehicle (UAV) Audio Signatures

    Science.gov (United States)

    2016-03-01

    UAV ) Audio Signatures by Melissa Bezandry, Adrienne Raglin, and John Noble Approved for public release; distribution...Research Laboratory Effects of Hearing Protection Device Attenuation on Unmanned Aerial Vehicle ( UAV ) Audio Signatures by Melissa Bezandry...Aerial Vehicle ( UAV ) Audio Signatures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Melissa Bezandry

  10. Safety and effectiveness of the INVATEC MO.MA proximal cerebral protection device during carotid artery stenting: results from the ARMOUR pivotal trial.

    Science.gov (United States)

    Ansel, Gary M; Hopkins, L Nelson; Jaff, Michael R; Rubino, Paolo; Bacharach, J Michael; Scheinert, Dierk; Myla, Subbarao; Das, Tony; Cremonesi, Alberto

    2010-07-01

    The multicenter ARMOUR (ProximAl PRotection with the MO.MA Device DUring CaRotid Stenting) trial evaluated the 30-day safety and effectiveness of the MO.MA Proximal Cerebral Protection Device (Invatec, Roncadelle, Italy) utilized to treat high surgical risk patients undergoing carotid artery stenting (CAS). Distal embolic protection devices (EPD) have been traditionally utilized during CAS. The MO.MA device acts as a balloon occlusion "endovascular clamping" system to achieve cerebral protection prior to crossing the carotid stenosis. This prospective registry enrolled 262 subjects, 37 roll-in and 225 pivotal subjects evaluated with intention to treat (ITT) from September 2007 to February 2009. Subjects underwent CAS using the MO.MA device. The primary endpoint, myocardial infarction, stroke, or death through 30 days (30-day major adverse cardiac and cerebrovascular events [MACCE]) was compared to a performance goal of 13% derived from trials utilizing distal EPD. For the ITT population, the mean age was 74.7 years with 66.7% of the cohort being male. Symptomatic patients comprised 15.1% and 28.9% were octogenarians. Device success was 98.2% and procedural success was 93.2%. The 30-day MACCE rate was 2.7% [95% CI (1.0-5.8%)] with a 30-day major stroke rate of 0.9%. No symptomatic patient suffered a stroke during this trial. The ARMOUR trial demonstrated that the MO.MA(R) Proximal Cerebral Protection Device is safe and effective for high surgical risk patients undergoing CAS. The absence of stroke in symptomatic patients is the lowest rate reported in any independently adjudicated prospective multicenter registry trial to date. (c) 2010 Wiley-Liss, Inc.

  11. Absorbed doses by a technician, with and without (simulating) use of protection devices, in bone scintigraphy examination

    International Nuclear Information System (INIS)

    Jesus Lopes Filho, F. de; Antonio Filho, J.; Colaco, W.; Silveira, S.V. da

    1992-01-01

    The relation between the whole-body dose and the dose localized in body pants of a technician work in nuclear medicine was investigated by dosimetric films and thermoluminescent dosemeters. The investigation was made with and without a suitable protection devices. The results were discussed by a radiological protection view. (C.G.C.)

  12. Fish-protection devices at unscreened water diversions can reduce entrainment: evidence from behavioural laboratory investigations

    Science.gov (United States)

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Kavvas, M. Levent; Cech, Joseph J.; Fangue, Nann A.

    2015-01-01

    Diversion (i.e. extraction) of water from rivers and estuaries can potentially affect native wildlife populations if operation is not carefully managed. For example, open, unmodified water diversions can act as a source of injury or mortality to resident or migratory fishes from entrainment and impingement, and can cause habitat degradation and fragmentation. Fish-protection devices, such as exclusion screens, louvres or sensory deterrents, can physically or behaviourally deter fish from approaching or being entrained into water diversions. However, empirical assessment of their efficacy is often lacking or is investigated only for particular economically or culturally important fishes, such as salmonids. The Southern population of anadromous green sturgeon (Acipenser medirostris) is listed as threatened in California, and there is a high density of water diversions located within their native range (the Sacramento–San Joaquin watershed). Coupled with their unique physiology and behaviour compared with many other fishes native to California, the green sturgeon is susceptible to entrainment into diversions and is an ideal species with which to study the efficacy of mitigation techniques. Therefore, we investigated juvenile green sturgeon (188–202 days post-hatch) in the presence of several fish-protection devices to assess behaviour and entrainment risk. Using a large experimental flume (∼500 kl), we found that compared with an open diversion pipe (control), the addition of a trash-rack box, louvre box, or perforated cylinder on the pipe inlet all significantly reduced the proportion of fish that were entrained through the pipe (P = 0.03, P = 0.028, and P = 0.028, respectively). Likewise, these devices decreased entrainment risk during a single movement past the pipe by between 60 and 96%. These fish-protection devices should decrease the risk of fish entrainment during water-diversion activities. PMID:27293725

  13. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    Science.gov (United States)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  14. Flow in sodium loop surge tank

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1977-01-01

    The alternate liquid flow, the condition of vortex formation, gas entrainment in the discharge and the liquid level characteristics are studied using the models of the vertical and horizontal surge tanks of a sodium circuit with pump and heat exchangers. The conditions for vortex formation are more favourable in the vertical cylindrical tank than in the horizontal tank. The size of the vortex produced in the tank is affected by the initial speed circulation, due as a rule to an unsuitable inlet design. The proposed design considers an inlet below the sodium level using capped perforated pipes. Vortex formation, gas transport to the discharge pipe and turbulences of the liquid in the tank may be prevented by dividing the tank to the discharge and the inlet areas using perforated partitions, and by inserting the discharge cylinder above the discharge pipe outflow. The liquid level in the tank may be calmed by screens or by perforated plates. The adaptation of the surge tank of the sodium circuit will probably eliminate vortex formation and the entrainment of cover gas into the discharge piping and the sodium circuit under nominal conditions. (J.B.)

  15. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.; Altaf, Muhammad; Dawson, C.; Hoteit, Ibrahim; Luo, X.; Mayo, T.

    2012-01-01

    levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge

  16. A simple device to protect against osteoradionecrosis induced by interstitial irradiation

    International Nuclear Information System (INIS)

    Levendag, P.C.; Visch, L.L.; Driver, N.

    1990-01-01

    The incidence of osteoradionecrosis has declined since the introduction of preventive oral hygiene programs and meticulous dental evaluations before and after irradiation. Nevertheless, radiation dose per se still remains an important factor in osteoradionecrosis. Interstitial radiation has received much attention in the past decade since the use of flexible afterloading systems. It has become common practice in large oncology centers to implant radiation carriers in bulky tumor in the oral cavity and/or oropharynx. For interstitial radiation, with or without external radiation, minimal tumor doses are often cited to be more than 70 Gy. Unfortunately, if the mandible receives more than 70 Gy, it is at risk for the development of osteoradionecrosis. Therefore a simple protective lead device has been designed for routine use in brachytherapy in oral cavity tumors to reduce the dose to the mandible. This device will diminish the potential risk of osteoradionecrosis development

  17. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress

    Science.gov (United States)

    Brown, Jennifer M.; Wolf, Judith

    2009-05-01

    We revisit the surge of November 1977, a storm event which caused damage on the Sefton coast in NW England. A hindcast has been made with a coupled surge-tide-wave model, to investigate whether a wave-dependent surface drag is necessary for accurate surge prediction, and also if this can be represented by an optimised Charnock parameter. The Proudman Oceanographic Laboratory Coastal Modelling System-Wave Model (POLCOMS-WAM) has been used to model combined tides, surges, waves and wave-current interaction in the Irish Sea on a 1.85 km grid. This period has been previously thoroughly studied, e.g. Jones and Davies [Jones, J.E., Davies, A.M., 1998. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction. Continental Shelf Research 18(2), 201-251] and we build upon this previous work to validate the POLCOMS-WAM model to test the accuracy of surge elevation predictions in the study area. A one-way nested approach has been set up from larger scale models to the Irish Sea model. It was demonstrated that (as expected) swell from the North Atlantic does not have a significant impact in the eastern Irish Sea. To capture the external surge generated outside of the Irish Sea a (1/9° by 1/6°) model extending beyond the continental shelf edge was run using the POLCOMS model for tide and surge. The model results were compared with tide gauge observations around the eastern Irish Sea. The model was tested with different wind-stress formulations including Smith and Banke [Smith, S.D., Banke, E.G., 1975. Variation of the surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorology Society, 101(429), 665-673] and Charnock [Charnock, H., 1955. Wind-stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350), 639-640]. In order to get a single parameterisation that works with wave-coupling, the wave-derived surface roughness length has been imposed in the surge model

  18. Identification, investigation and analysis of end-of-wind protection devices for vertical and incline shafts.

    CSIR Research Space (South Africa)

    Ottermann, RW

    2000-12-01

    Full Text Available The occurrence and cause of overwind and underwind events in underground mining were investigated in conjunction with devices, which are at present being applied to prevent and control such incidents. Proposals for in-shaft systems to protect...

  19. Passive seismic monitoring of the Bering Glacier during its last surge event

    Science.gov (United States)

    Zhan, Z.

    2017-12-01

    The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.

  20. Parameter identification of ZnO surge arrester models based on genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bayadi, Abdelhafid [Laboratoire d' Automatique de Setif, Departement d' Electrotechnique, Faculte des Sciences de l' Ingenieur, Universite Ferhat ABBAS de Setif, Route de Bejaia Setif 19000 (Algeria)

    2008-07-15

    The correct and adequate modelling of ZnO surge arresters characteristics is very important for insulation coordination studies and systems reliability. In this context many researchers addressed considerable efforts to the development of surge arresters models to reproduce the dynamic characteristics observed in their behaviour when subjected to fast front impulse currents. The difficulties with these models reside essentially in the calculation and the adjustment of their parameters. This paper proposes a new technique based on genetic algorithm to obtain the best possible series of parameter values of ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the predicted results with the experimental results available in the literature. Using the ATP-EMTP package, an application of the arrester model on network system studies is presented and discussed. (author)

  1. Into the Surge of Network-driven Innovation

    DEFF Research Database (Denmark)

    Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank

    2013-01-01

    this is examined from the 1880’s up until today. The contribution of the paper is a societal perspective on innovation, where the difference between industrial society and knowledge society leads into the surge of network-driven innovation. Network-driven innovation is unfolded on top of the known cost- driven...

  2. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, Frank; Heemels, W.P.M.H.; de Jager, Bram; Stoorvogel, Antonie Arij

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  3. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, F.P.T.; Heemels, W.P.M.H.; Jager, de A.G.; Stoorvogel, A.A.

    2002-01-01

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  4. Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment

    Science.gov (United States)

    Lin, N.; Shullman, E.; Xian, S.; Feng, K.

    2017-12-01

    Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).

  5. Brief communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017

    Directory of Open Access Journals (Sweden)

    J. F. Steiner

    2018-01-01

    Full Text Available Glacier surges occur regularly in the Karakoram, but the driving mechanisms, their frequency and its relation to a changing climate remain unclear. In this study, we use digital elevation models and Landsat imagery in combination with high-resolution imagery from the Planet satellite constellation to quantify surface elevation changes and flow velocities during a glacier surge of the Khurdopin Glacier in 2017. Results reveal that an accumulation of ice volume above a clearly defined steep section of the glacier tongue since the last surge in 1999 eventually led to a rapid surge in May 2017 peaking with velocities above 5000 m a−1, which were among the fastest rates globally for a mountain glacier. Our data reveal that velocities on the lower tongue increase steadily during a 4-year build-up phase prior to the actual surge only to then rapidly peak and decrease again within a few months, which confirms earlier observations with a higher frequency of available velocity data. The surge return period between the reported surges remains relatively constant at ca. 20 years. We show the potential of a combination of repeat Planet and ASTER imagery to (a capture peak surge velocities that are easily missed by less frequent Landsat imagery, (b observe surface changes that indicate potential drivers of a surge and (c monitor hazards associated with a surge. At Khurdopin specifically, we observe that the surging glacier blocks the river in the valley and causes a lake to form, which may grow in subsequent years and could pose threats to downstream settlements and infrastructure in the case of a sudden breach.

  6. Association of morning blood pressure surge with carotid intima-media thickness and cardiac dysfunction in patients with cardiac syndrome-X.

    Science.gov (United States)

    Mahfouz, Ragab A; Goda, Mohammad; Galal, Islam; Ghareb, Mohamed S

    2018-05-23

    Background & hypothesis: We hypothesized that exaggerated morning blood pressure surge, may contribute in cardiac dysfunction and arterial stiffness in patients with cardiac syndrome X. Thus we investigated the impact of morning blood pressure surge on cardiac function and carotid intima-media thickness in subjects with cardiac syndrome X. We studied patients with cardiac syndrome X using ambulatory blood pressure monitoring and investigated the association of morning blood pressure surge with carotid intima thickness, left atrial volume index and left ventricular filling (E/e'). Seventy patients with cardiac syndrome X were enrolled for the study and compared with 70 age and sex matched controls. Patients with cardiac syndrome X were stratified based on the systolic morning blood pressure surge value of control subjects to patients with exaggerated blood pressure surge (n = 42) and those with normal morning blood pressure surge (n = 28). Basal heart rate (p blood pressure surge group than those with morning blood pressure surge group. Morning blood pressure surge was significantly correlated with carotid intima-media thickness, high sensitive C-reactive protein, left atrial volume index and E/e' ratio in patients with cardiac syndrome X. In multivariate analysis, exaggerated morning blood pressure surge was the only independent predictor of increased carotid intima-media thickness (OR = 2.379; p blood pressure surge is an independent predictor for arterial stiffness and diastolic dysfunction in patients with cardiac syndrome X.

  7. Influence of a Storm Surge Barrier’s Operation on the Flood Frequency in the Rhine Delta Area

    Directory of Open Access Journals (Sweden)

    Hua Zhong

    2012-05-01

    Full Text Available The Rhine River Delta is crucial to the Dutch economy. The Maeslant barrier was built in 1997 to protect the Rhine estuary, with the city and port of Rotterdam, from storm surges. This research takes a simple approach to quantify the influence of the Maeslant storm surge barrier on design water levels behind the barrier. The dikes in the area are supposed to be able to withstand these levels. Equal Level Curves approach is used to calculate the Rotterdam water levels by using Rhine discharges and sea water levels as input. Their joint probability function generates the occurrence frequency of a certain combination that will lead to a certain high water level in Rotterdam. The results show that the flood frequency in Rotterdam is reduced effectively with the controlled barrier in current and in future scenarios influenced by climate change. In addition, an investigation of the sensitivity of the operational parameters suggests that there is a negligible influence on the high water level frequency when the decision closing water level for the barrier is set higher due to the benefits of navigation (but not exceeding the design safety level 4 m MSL.

  8. A new concept for glacial geological investigations of surges, based on High-Arctic examples (Svalbard)

    Science.gov (United States)

    Lønne, Ida

    2016-01-01

    Svalbard is a key area for the investigation of glacial surges, and almost two centuries worth of field observations exists from this region. Studies have shown that the course of a surge and the associated formation of landforms are strongly influenced by basinal factors, and that the broad range of variables involved can hamper interpretations and comparisons. Based on a review of surges in Svalbard, a new concept for glacial geological investigations has been developed that combines ice-flows, ice-front movements, and morphostratigraphy. The concept is comprised of the following four elements: 1) classification based on the configuration and characteristics of the receiving basin, 2) division of the surge cycle into six stages, 3) guidelines for morphological mapping, and 4) use of an allostratigraphic approach for interpreting ice-front movements. In this context, delineation of the active phase is critical, which include the history of terminus movements, and four main categories of receiving basins are recognized. These are (A) terrestrial basins with deformable substrates, (B) terrestrial basins with poorly deformable substrates, (C) shallow water basins, and (D) deep water basins. The ice-front movement history is reconstructed by coupling information from the proglacial moraines (syn-surge), the supraglacial moraines (post-surge), and the associated traces of meltwater to the surge stages (I-VI). This approach has revealed a critical relationship between the termination of the active phase and three morphological elements, namely, the maximum ice-front position, the maximum moraine extent and the youngest proglacial moraine, which are unique for each of the basins A-D. The concept is thus a novel and more precise approach for mapping the active phase and the active phase duration, as shown by the ∼12-year long surge of Fridtjovbreen, where stage I was 30 months (inception), stage II was 54 months (ice-front advance), stage III was 12 months (stillstand

  9. Improvement of Performance Range of Centrifugal Compressors Gas by Surge Line Modification Using Active Controller Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Pezhman Mohammadi

    2012-04-01

    Full Text Available In this work, surge of prevention is a critical problem in oil and gas industries, particularly when return gas flow or gas flow reduces in transportation of gas pipelines. This paper is illustrated new results about surge control of centrifugal compressors .surge phenomenon is flow unsteady state in compressors which causes damages seriously in compressor construction. Furthermore, it also demonstrates in comparison with anti surge control ،active surge control expands stability range.Active surge control which based on fuzzy logic،is the main idea that used in this investigation. Using fuzzy controller causes an improvement in compressor's condition and increase performance range of the compressor, in addition to prevention of any instability in compressor. The simulation results is also satisfactory.

  10. Information booklet on personal protective equipment: eye and face protection

    International Nuclear Information System (INIS)

    1992-01-01

    In all work places where hazards of various kinds are present and the same cannot be totally controlled by engineering methods, suitable personal protective equipment (PPE) shall be used. There are several types of eye and face protection devices available in the market and it is important that employees use the proper type for the particular job. The main classes of eye and face protection devices required for the industrial operations are as follows: (a) eye protection devices which includes: (i) safety goggles (ii) safety spectacles (iii) safety clipons and eye and face protection devices which are (i) eye shield, (ii) face shield, (iii) wire mesh screen guard. Guide lines for selecting appropriate ear and face protection equipment for nuclear installations are given. (M.K.V.). 4 annexures, 1 appendix

  11. Improvements of Storm Surge Modelling in the Gulf of Venice with Satellite Data: The ESA Due Esurge-Venice Project

    Science.gov (United States)

    De Biasio, F.; Bajo, M.; Vignudelli, S.; Papa, A.; della Valle, A.; Umgiesser, G.; Donlon, C.; Zecchetto, S.

    2016-08-01

    Among the most detrimental natural phenomena, storm surges heavily endanger the environment, the economy and the everyday life of sea-side countries and coastal zones. Considering that 120.000.000 people live in the Mediterranean area, with additional 200.000.000 presences in Summer for tourism purposes, the correct prediction of storm surges is crucial to avoid fatalities and economic losses. Earth Observation (EO) can play an important role in operational storm surge forecasting, yet it is not widely diffused in the storm surge community. In 2011 the European Space Agency (ESA), through its Data User Element (DUE) programme, financed two projects aimed at encouraging the uptake of EO data in this sector: eSurge and eSurge-Venice (eSV). The former was intended to address the issues of a wider users' community, while the latter was focused on a restricted geographical area: the northern Adriatic Sea and the Gulf of Venice. Among the objectives of the two projects there were a number of storm surge hindcast experiments using satellite data, to demonstrate the improvements on the surge forecast brought by EO. We report here the results of the hindcast experiments of the eSV project. They were aimed to test the sensitivity of a storm surge model to a forcing wind field modified with scatterometer data in order to reduce the bias between simulated and observed winds. Hindcast experiments were also performed to test the response of the storm surge model to the assimilation, with a dual 4D-Var system, of satellite altimetry observations as model errors of the initial state of the sea surface level. Remarkable improvements on the storm surge forecast have been obtained for what concerns the modified model wind forcing. Encouraging results have been obtained also in the assimilation experiments.

  12. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling

    Directory of Open Access Journals (Sweden)

    Kyra M. Bryant

    2016-09-01

    Full Text Available As hurricanes continue to threaten coastal communities, accurate storm surge forecasting remains a global priority. Achieving a reliable storm surge prediction necessitates accurate hurricane intensity and wind field information. The wind field must be converted to wind stress, which represents the air-sea momentum flux component required in storm surge and other oceanic models. This conversion requires a multiplicative drag coefficient for the air density and wind speed to represent the air-sea momentum exchange at a given location. Air density is a known parameter and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a century. This review paper examines the lineage of drag coefficient correlations and their acceptance among scientists.

  13. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

    Science.gov (United States)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

    2018-02-01

    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  14. Device for protecting the containment vessel dome of a nuclear reactor

    International Nuclear Information System (INIS)

    Allain, A.; Filloleau, E.; Mulot, P.

    1976-01-01

    A device is disclosed for protecting the dome of a nuclear reactor containment vessel against the upward displacement of the concrete shield slab of said reactor and the resultant effects of tilting of an equipment unit mounted on the shield slab at the periphery of said slab, wherein said device comprises: (1) means for separating the equipment unit into two sections consisting of an upper section and a lower section, said lower section being rigidly fixed to said shield slab and said means being actuated by the upward displacement of said slab, (2) a system for vertical rectilinear guiding of said upper section within the containment vessel, and (3) rigid mechanical components which provide a coupling between the aforesaid upper and lower sections of the equipment unit and exert on said upper section under the action of the tilting motion of said lower section a thrust which causes the upward displacement of said upper section

  15. Disaster metrics: quantitative benchmarking of hospital surge capacity in trauma-related multiple casualty events.

    Science.gov (United States)

    Bayram, Jamil D; Zuabi, Shawki; Subbarao, Italo

    2011-06-01

    Hospital surge capacity in multiple casualty events (MCE) is the core of hospital medical response, and an integral part of the total medical capacity of the community affected. To date, however, there has been no consensus regarding the definition or quantification of hospital surge capacity. The first objective of this study was to quantitatively benchmark the various components of hospital surge capacity pertaining to the care of critically and moderately injured patients in trauma-related MCE. The second objective was to illustrate the applications of those quantitative parameters in local, regional, national, and international disaster planning; in the distribution of patients to various hospitals by prehospital medical services; and in the decision-making process for ambulance diversion. A 2-step approach was adopted in the methodology of this study. First, an extensive literature search was performed, followed by mathematical modeling. Quantitative studies on hospital surge capacity for trauma injuries were used as the framework for our model. The North Atlantic Treaty Organization triage categories (T1-T4) were used in the modeling process for simplicity purposes. Hospital Acute Care Surge Capacity (HACSC) was defined as the maximum number of critical (T1) and moderate (T2) casualties a hospital can adequately care for per hour, after recruiting all possible additional medical assets. HACSC was modeled to be equal to the number of emergency department beds (#EDB), divided by the emergency department time (EDT); HACSC = #EDB/EDT. In trauma-related MCE, the EDT was quantitatively benchmarked to be 2.5 (hours). Because most of the critical and moderate casualties arrive at hospitals within a 6-hour period requiring admission (by definition), the hospital bed surge capacity must match the HACSC at 6 hours to ensure coordinated care, and it was mathematically benchmarked to be 18% of the staffed hospital bed capacity. Defining and quantitatively benchmarking the

  16. Role of exogenous estrogen in initiation of estrus and induction of an LH surge

    Science.gov (United States)

    Among cattle the LH surge that causes ovulation occurs shortly after the onset of a spontaneous estrus. In addition an injection of 100 'g of GnRH can induce an LH surge capable of inducing ovulation. We hypothesized that different preovulatory estradiol profiles would result in different ovulator...

  17. Observing storm surges in the Bay of Bengal from satellite altimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Testut, L.; Unnikrishnan, A.S.

    with the large tidal ranges give rise to extreme sea level in the head bay and surrounding regions. Moreover, low-lying nature of the coast and the dense population in the region make the coasts of the northern Bay of Bengal highly vulnerable to storm surges...-gauge data during the passage of the hurricane Igor that crossed Newfoundland in 2010. For this event, St. John’s tide gauge recorded a maximum surge of 94 cm and Jason-2 (the track located 89 km away from the tide-gauge station) showed positive sea-level...

  18. The Danger of Deja Vu: Why the Iraq Surge is Not a Lesson for Afghanistan

    Science.gov (United States)

    2010-01-01

    JAN 2010 2. REPORT TYPE 3. DATES COVERED 00-12-2009 to 00-01-2010 4. TITLE AND SUBTITLE The danger of deja vu . Why the Iraq surge is not a lesson...of five brigade combat teams — eerily mim- icked the surge number for Iraq. And there was more déjà vu when our senior civilian and military leaders...Department. PERSPECTIVES The danger of déjà vu Why the Iraq surge is not a lesson for Afghanistan BY COL. CHARLES D. ALLEN (RET.) The thing we take hold of

  19. Devices and methods of operation thereof for providing stable flow for centrifugal compressors

    Science.gov (United States)

    Skoch, Gary J. (Inventor); Stevens, Mark A. (Inventor); Jett, Thomas A. (Inventor)

    2008-01-01

    Centrifugal compressor flow stabilizing devices and methods of operation thereof are disclosed that act upon the flow field discharging from the impeller of a centrifugal compressor and modify the flow field ahead of the diffuser vanes such that flow conditions contributing to rotating stall and surge are reduced or even eliminated. In some embodiments, shaped rods and methods of operation thereof are disclosed, whereas in other embodiments reverse-tangent air injection devices and methods are disclosed.

  20. Flood Protection Through Landscape Scale Ecosystem Restoration- Quantifying the Benefits

    Science.gov (United States)

    Pinero, E.

    2017-12-01

    Hurricane Harvey illustrated the risks associated with storm surges on coastal areas, especially during severe storms. One way to address storm surges is to utilize the natural ability of offshore coastal land to dampen their severity. In addition to helping reduce storm surge intensity and related damage, restoring the land will generate numerous co-benefits such as carbon sequestration and water quality improvement. The session will discuss the analytical methodology that helps define what is the most resilient species to take root, and to calculate quantified benefits. It will also address the quantification and monetization of benefits to make the business case for restoration. In 2005, Hurricanes Katrina and Rita damaged levees along the Gulf of Mexico, leading to major forest degradation, habitat deterioration and reduced wildlife use. As a result, this area lost an extensive amount of land, with contiguous sections of wetlands being converted to open water. The Restore the Earth Foundation's North American Amazon project intends to restore one million acres of forests and forested wetlands in the lower Mississippi River Valley. The proposed area for the first phase of this project was once an historic bald cypress forested wetland, which was degraded due to increased salinity levels and extreme fluctuations in hydrology. The Terrebonne and Lafourche Parishes, the "bayou parishes", communities with a combined population of over 200,000, sit on thin fingers of land that are protected by surrounding wetland swamps and wetlands, beyond which is the Gulf of Mexico. The Parishes depend on fishing, hunting, trapping, boat building, off-shore oil and gas production and support activities. Yet these communities are highly vulnerable to risks from natural hazards and future land loss. The ground is at or near sea level and therefore easily inundated by storm surges if not protected by wetlands. While some communities are protected by a levee system, the Terrebonne and

  1. 14 CFR 33.65 - Surge and stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... stall characteristics. When the engine is operated in accordance with operating instructions required by...

  2. Surge control of the electrically driven centrifugal compressor

    NARCIS (Netherlands)

    Boinov, K.O.; Lomonova, E.A.; Vandenput, A.J.A.; Tyagounov, A.

    2006-01-01

    This paper presents a method of the energy efficiency and the operational performance improvement of the electrically driven air compression system. The key innovation of the proposed method-the active surge suppression of the centrifugal compressor by means of the speed control of the electrical

  3. Specific Consideration on Superior Performance and Evaluation Methods of Polymer-housed Surge Arresters

    Science.gov (United States)

    Ishizaki, Yoshihiro; Kobayashi, Misao; Suzuki, Hironori; Futagami, Koichi

    It is very suitable to select the polymer materials for the housings of surge arresters (SAs), because the polymer materials are generally soft and light weight. Therefore, many kinds of polymer-housed SAs using various polymer materials have been developed, and expanding into many countries. Considering these backgrounds, the JEC technical report (JEC-TR) 23002-2008; polymer-housed surge arrester(1) has been established based on the existent relevant standards of arresters, such as JEC-2371-2003; Insulator-housed surge arresters(2) and IEC 60099-4 Edition 2.2, Metal-oxide surge arresters (MOSAs) without gaps for a.c. systems(3) in order to introduce the technology and provide a common guide for testing of polymer-housed SAs. According as the JEC-TR, the various new applications of the polymer-housed SAs, which are caused by superior advantages such as compact, light weight, safe failure mode, anti-seismic performance, anti-pollution performance and cost efficiency design, have been realized recently in Japan. Therefore, this paper gives specific consideration on the superior performance of the polymer-housed SAs and the evaluation methods of the polymer-housed SAs, because there are some issues in the existent standards to be solved.

  4. Intracerebroventricular Infusion of Vasoactive Intestinal Peptide (VIP Rescues the Luteinizing Hormone Surge in Middle-Aged Female Rats

    Directory of Open Access Journals (Sweden)

    Yan eSun

    2012-02-01

    Full Text Available Reproductive aging is characterized by delayed and attenuated luteinizing hormone (LH surges apparent in middle-aged rats. The suprachiasmatic nucleus (SCN contains the circadian clock that is responsible for the timing of diverse neuroendocrine rhythms. Electrophysiological studies suggest vasoactive intestinal peptide (VIP originating from the SCN excites gonadotropin-releasing hormone (GnRH neurons and affects daily patterns of GnRH-LH release. Age-related LH surge dysfunction correlates with reduced VIP mRNA expression in the SCN and fewer GnRH neurons with VIP contacts expressing c-fos, a marker of neuronal activation, on the day of the LH surge. To determine if age-related LH surge dysfunction reflects reduced VIP availability or altered VIP responsiveness under estradiol positive feedback conditions, we assessed the effect of intracerebroventricular (icv VIP infusion on c-fos expression in GnRH neurons and on LH release in ovariohysterectomized, hormone-primed young and middle-aged rats. Icv infusion of VIP between 1300 and 1600 h significantly advanced the time of peak LH release, increased total and peak LH release, and increased the number of GnRH neurons expressing c-fos on the day of the LH surge in middle-aged rats. Surprisingly, icv infusion of VIP in young females significantly reduced the number of GnRH neurons expressing c-fos and delayed and reduced the LH surge. These observations suggest that a critical balance of VIP signaling is required to activate GnRH neurons for an appropriately timed and robust LH surge in young and middle-aged females. Age-related LH surge changes may, in part, result from decreased availability and reduced VIP-mediated neurotransmission under estradiol positive feedback conditions.

  5. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines.

    Science.gov (United States)

    Ward, Matthew S; Georgescu, Dan; Olson, Randall J

    2008-08-01

    To assess how flow and bottle height affect postocclusion surge in the Infiniti (Alcon, Inc.) and Millennium (Bausch & Lomb) peristaltic machines. John A. Moran Eye Center Clinical Laboratories, University of Utah, Salt Lake City, Utah. Postocclusion anterior chamber depth changes were measured in human eye-bank eyes using A-scan. Surge was simulated by clamping the aspiration tubing and releasing it at maximum vacuum. In both machines, surge was measured (1) with aspiration held constant at 12 mL/min and bottle heights at 60, 120, and 180 cm and (2) with bottle height held constant at 60 cm and aspiration rates at 12, 24, and 36 mL/min. Surge decreased approximately 40% with each 60 cm increase in bottle height in the Infiniti. It was constant at all bottle heights in the Millennium. At 12 and 24 mL/min aspiration rates, surge in the Millennium was less than half that in the Infiniti (PInfiniti system and was relatively constant with increasing bottle height in the Millennium system. The Millennium may offer a more stable phacoemulsification platform with respect to surge at a higher aspiration rate.

  6. Elevation Change, Mass Balance, Dynamics, and Surging of Langjökull, Iceland from 1997 to 2007

    OpenAIRE

    Pope, Allen; Willis, Ian Craig; Pálsson, Finnur; Arnold, Neil Stuart; Rees, William Gareth; Björnsson, Helgi; Grey, Lauren

    2016-01-01

    Glaciers and ice caps around the world are changing quickly, with surge-type behaviour superimposed upon climatic forcing. Here, we study Iceland’s second largest ice cap, Langjökull, which has both surge- and non-surge-type outlets. By differencing elevation change with surface mass balance, we estimate the contribution of ice dynamics to elevation change. We use DEMs, in situ stake measurements, regional reanalyses, and a mass balance model to calculate the vertical ice velocity. Thus,...

  7. On-field evaluation of operator lens protective devices in interventional radiology

    International Nuclear Information System (INIS)

    Strocchi, S.; Chiaravalli, A.; Veronese, I.; Novario, R.

    2016-01-01

    The recent publication of the Euratom Directive 2013/59, adopting the reduction of eye lens dose limits from 150 to 20 mSv y"-"1, calls for the development of new tools and methodologies for evaluating the eye lens dose absorbed by the medical staff involved in interventional radiology practices. Moreover, the effectiveness of the protective devices, like leaded glasses, which can be employed for radiation protection purposes, must be tested under typical exposure scenarios. In this work, eye lens dose measurements were carried out on an anthropomorphic phantom simulating a physician bound to perform standard interventional neuroradiology angiographic procedures. The correlation between eye lens doses, in terms of Hp(0.07), and the equivalent dose [again in terms of Hp(0.07)] monthly measured with thermoluminescent dosemeters placed above the lead apron at the chest level was studied, in the presence and in the absence of different types of leaded glasses. (authors)

  8. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    OpenAIRE

    Neumann, James; Ludwig, Lindsay; Verly, Caroleen; Emanuel, Kerry Andrew; Ravela, Srinivas

    2015-01-01

    This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam an area already known to be highly vulnerable to coastal risks. By combining a range of sea level rise scenarios for 2050 with the simulated storm surge level for the 100-year storm surge, we analyze permanently inundated lands and temporary flood zones. As is well-established in the literature, sea level rise will increase the risk of storms by raising the base sea level from which surg...

  9. Plasma sprayed TiC coatings for first wall protection in fusion devices

    International Nuclear Information System (INIS)

    Groot, P.; Laan, J.G. van der; Laas, L.; Mack, M.; Dvorak, M.

    1989-01-01

    For protection of plasma facing components in nuclear fusion devices thick titanium carbide coatings are being developed. Coatings have been produced by plasma spraying at atmospheric pressure (APS) and low pressure (LPPS) and analyzed with respect to microstructure and chemical composition. Thermo-mechanical evaluation has been performed by applying short pulse laser heat flux tests. The influence of coating thickness and porosity on the resistance to spalling by thermal shocks appears to be more important than aspects of chemical composition. (author)

  10. Typhoon Haiyan-Induced Storm Surge Simulation in Metro Manila Using High-Resolution LiDAR Topographic Data

    Science.gov (United States)

    Santiago, J. T.

    2015-12-01

    Storm surge is the abnormal rise in sea water over and above astronomical tides due to a forthcoming storm. Developing an early warning system for storm surges is vital due to the high level of hazard they might cause. On 08 November 2013, Typhoon Haiyan generated storm surges that killed over 6,000 people in the central part of the Philippines. The Nationwide Operational Assessment of Hazards under the Department of Science and Technology was tasked to create storm surge hazard maps for the country's coastal areas. The research project aims to generate storm surge hazard maps that can be used for disaster mitigation and planning. As part of the research, the team explored a scenario wherein a tropical cyclone hits the Metro Manila with strength as strong as Typhoon Haiyan. The area was chosen primarily for its political, economic and cultural significance as the country's capital. Using Japan Meteorological Agency Storm Surge model, FLO2D flooding software, LiDAR topographic data, and GIS technology, the effects of a Haiyan-induced tropical cyclone passing through Metro Manila was examined. The population affected, number of affected critical facilities, and potential evacuation sites were identified. The outputs of this study can be used by the authorities as basis for policies that involve disaster risk reduction and management.

  11. Handbook on care, handling and protection of nuclear medicine instruments

    International Nuclear Information System (INIS)

    2000-11-01

    in Appendix A. This is an ''expert system'' which gives a summary of measures to provide a safe electrical environment for electronic equipment. It will be found useful as a training aid and may also help in the selection of surge suppressors, uninterruptible power supplies, and other protective devices

  12. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    Science.gov (United States)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  13. Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Unnikrishnan, A.S.

    before the high tide. Application of a simple model shows the observed surge peak distribution at Hiron Point can be explained in terms of phase alteration of tide due to surge and surge modulation by tide. The degree of interaction tends to increase...

  14. Model-data comparisons of crevasses in accelerating glaciers exemplified for the 2011-2013 surge of Bering Glacier, Alaska

    Science.gov (United States)

    Trantow, T.; Herzfeld, U. C.

    2017-12-01

    Glacier acceleration, ubiquitous along the periphery of the major icesheets, presents one of the main uncertainties in modeling future global sea-level rise according to the IPCC 5th Assessment Report (2013). The surge phenomenon is one type of glacial acceleration and is the least understood. During a surge, large-scale elevation change and significant crevassing occurs throughout the entire ice system. Crevasses are the most obvious manifestations of the surge dynamics and provide a source of geophysical information that allows reconstruction of deformation processes. The recent surge of the Bering-Bagley Glacier System (BBGS), Alaska, in 2011-2013 provides an excellent test case to study surging through airborne and satellite observations together with numerical modeling. A 3D full-Stokes finite element model of the BBGS has been created using the Elmer/Ice software for structural and dynamical investigations of the surge. A von Mises condition is applied to modeled surface stresses to predict where crevassing would occur during the surge. The model uses CryoSat-2 derived surface topography (Baseline-C), bedrock topography, Glen's flow law with an isothermal assumption and a uniform linear friction law at the ice/bedrock boundary to represent the surge state in early 2011 when peak velocities were observed. Additionally, geostatistical characterization applied to optical satellite imagery provides an observational data set for model-data comparisons. Observed and modeled crevasse characteristics are compared with respect to their location, magnitude and orientation. Similarity mapping applied to the modeled von Mises stress and observed surface roughness values indicates that the two quantities are correlated. Results indicate that large-scale surface crevasses resulting from a surge are connected to the bedrock topography of the glacier system. The model-data comparisons used in this analysis serve to validate the numerical model and provide insight into the

  15. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.

  16. Modeling the Origin and Possible Control of the Wealth Inequality Surge.

    Science.gov (United States)

    Berman, Yonatan; Shapira, Yoash; Ben-Jacob, Eshel

    2015-01-01

    The rapid increase of wealth inequality in the past few decades is a most disturbing social and economic issue of our time. In order to control, and even reverse that surge, its origin and underlying mechanisms should be revealed. One of the challenges in studying these mechanisms is to incorporate realistic individual dynamics in the population level in a self-consistent manner. Our theoretical approach meets the challenge by using interacting multi-agent master-equations to model the dynamics of wealth inequality. The model is solved using stochastic multi-agent iterated maps. Taking into account growth rate, return on capital, private savings and economic mobility, we were able to capture the historical dynamics of wealth inequality in the United States during the course of the 20th century. We show that the fraction of capital income in the national income and the fraction of private savings are the critical factors that govern the wealth inequality dynamics. In addition, we found that economic mobility plays a crucial role in wealth accumulation. Notably, we found that the major decrease in private savings since the 1980s could be associated primarily with the recent surge in wealth inequality and if nothing changes in this respect we predict further increase in wealth inequality in the future. However, the 2007-08 financial crisis brought an opportunity to restrain the wealth inequality surge by increasing private savings. If this trend continues, it may lead to prevention, and even reversing, of the ongoing inequality surge.

  17. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  18. Impact of Cyclone Track Features and Tidal Phase Shift upon Surge Characteristics in the Bay of Bengal along the Bangladesh Coast

    Directory of Open Access Journals (Sweden)

    Mohammad Asad Hussain

    2017-11-01

    Full Text Available The impact of cyclone track features (e.g., cyclone translation speed, cyclone path and cyclone landfall crossing angle in combination with tidal phase shift upon surge characteristics have been investigated at the Bay of Bengal along the Bangladesh coast. A two-dimensional hydrodynamic model in a horizontal direction (2DH coupled with a storm-surge model has been employed for the study. Numerical experiments with three different cyclone translation speeds show that when the surge height is directly forced by the cyclonic wind speed especially within the RWM (Radius of Maximum Wind, faster translation speed produces reduced surge height as the cyclone gets less time to force the water. On the other hand, at locations outside the RMW, surge waves travel as a propagating long wave where higher surges are produced by faster moving cyclones. It is found that surge arrival times are more and more affected by tidal phase when cyclone translation speed is reduced. Analysis of seven hypothetical parallel cyclone paths show that local bathymetry and complex coastline configurations strongly influence the surge height and surge arrival time along the Bangladesh coast. From the analyses of cyclone landfall crossing angles at the Khulna and Chittagong coasts, it is observed that surge durations are the smallest at both the coasts when the coastline crossing angles are the smallest.

  19. Attenuation of earmuffs used simultaneously with respiratory protective devices

    Directory of Open Access Journals (Sweden)

    Emil Kozłowski

    2017-06-01

    Full Text Available Background: In the work environment, apart from the noise, employees may be exposed to other harmful factors. Therefore, they wear hearing protectors and other personal protective equipment. The aim of the study was to determine whether simultaneous use of earmuffs and respiratory protective devices affects the attenuation of earmuffs. Material and Methods: The study was conducted in laboratory conditions using the subjective REAT (Real Ear Attenuation at Threshold and objective MIRE (Microphone in Real Ear methods. The REAT method was used to measure sound attenuation of earmuffs, while MIRE was used to determine changes in attenuation of earmuffs due to the use of other personal protective equipment. Results: The study showed reduction in attenuation of earmuffs due to the use of a full face mask up to 20 dB. Using a full face mask causes that attenuation of earmuffs in the low frequency range is close to zero. Reduction in attenuation due to the use of half masks for complete with particle filters (half masks is 3–15 dB. Simultaneous use of earmuffs and filtering half masks makes small changes in attenuation not exceeding 3 dB. Conclusions: The study showed that full face masks give the greatest reduction in attenuation of earmuffs. On the other hand, the least reduction is observed in the case of filtering half masks. There is a significant difference between the reduction in attenuation of earmuffs worn with half masks for complete with particle filters because they may be equipped with different kind of the head strap. Med Pr 2017;68(3:349–361

  20. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  1. Improvement of the protection devices for JT-60U LHRF antenna system

    International Nuclear Information System (INIS)

    Suzuki, Sadaaki; Seki, Masami; Shinozaki, Shinichi; Sato, Fumiaki; Hiranai, Shinichi; Hasegawa, Koichi; Moriyama, Shinichi; Ishii, Kazuhiro

    2007-09-01

    In the experiments featuring lower hybrid range of frequency (LHRF) system in JT-60U, carbon grills were attached to the plasma-facing part of the antenna in order to avoid the damage by the excessive heat load from the plasma. However some electric discharge traces were found there in the observation after the experiments. To avoid such discharges, improvements of the arc detector and the protection interlock by visible picture detection were tackled. In the arc detector, the amplification circuit was improved in order to obtain shorter response time and higher resolution of optical detection. Moreover, in visible picture detection, a new function of RF-on/off control utilizing PC image processing was added to distinguish the light of the arc from one of the plasma. This report summarizes improvement of the protection interlock device in a LHRF heating system. (author)

  2. Liftoff of the 18 May 1980 surge of Mount St. Helens (USA) and the deposits left behind

    Science.gov (United States)

    Gardner, James E.; Andrews, Benjamin J.; Dennen, Robert

    2017-01-01

    The distance that ground-hugging pyroclastic density currents travel is limited partly by when they reverse buoyancy and liftoff into the atmosphere. It is not clear, however, what deposits are left behind by lofting flows. One current that was seen to liftoff was the surge erupted from Mount St. Helens on the morning of 18 May 1980. Before lofting, it had leveled a large area of thick forest (the blowdown zone). The outer edge of the devastated area—where trees were scorched but left standing (the scorched zone)—is where the surge is thought to have lifted off. Deposits in the outer parts of the blowdown and in the scorched zone were examined at 32 sites. The important finding is that the laterally moving surge traveled through the scorched zone, and hence, the change in tree damage does not mark the runout distance of the surge. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards. We propose, based on interpretation of eyewitness accounts and the impacts of the surge on trees and vehicles, that the surge consisted of a faster, dilute "overcurrent" and a slower "undercurrent," where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that where the overcurrent began to liftoff, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, however, scorching trees, but lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from ˜30 m s-1 when it entered the scorched zone to ˜3 m s-1 at the far end.

  3. InSAR Observations and Finite Element Modeling of Crustal Deformation Around a Surging Glacier, Iceland

    Science.gov (United States)

    Spaans, K.; Auriac, A.; Sigmundsson, F.; Hooper, A. J.; Bjornsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-12-01

    Icelandic ice caps, covering ~11% of the country, are known to be surging glaciers. Such process implies an important local crustal subsidence due to the large ice mass being transported to the ice edge during the surge in a few months only. In 1993-1995, a glacial surge occurred at four neighboring outlet glaciers in the southwestern part of Vatnajökull ice cap, the largest ice cap in Iceland. We estimated that ~16±1 km3 of ice have been moved during this event while the fronts of some of the outlet glaciers advanced by ~1 km.Surface deformation associated with this surge has been surveyed using Interferometric Synthetic Aperture Radar (InSAR) acquisitions from 1992-2002, providing high resolution ground observations of the study area. The data show about 75 mm subsidence at the ice edge of the outlet glaciers following the transport of the large volume of ice during the surge (Fig. 1). The long time span covered by the InSAR images enabled us to remove ~12 mm/yr of uplift occurring in this area due to glacial isostatic adjustment from the retreat of Vatnajökull ice cap since the end of the Little Ice Age in Iceland. We then used finite element modeling to investigate the elastic Earth response to the surge, as well as confirm that no significant viscoelastic deformation occurred as a consequence of the surge. A statistical approach based on Bayes' rule was used to compare the models to the observations and obtain an estimate of the Young's modulus (E) and Poisson's ratio (v) in Iceland. The best-fitting models are those using a one-kilometer thick top layer with v=0.17 and E between 12.9-15.3 GPa underlain by a layer with v=0.25 and E from 67.3 to 81.9 GPa. Results demonstrate that InSAR data and finite element models can be used successfully to reproduce crustal deformation induced by ice mass variations at Icelandic ice caps.Fig. 1: Interferograms spanning 1993 July 31 to 1995 June 19, showing the surge at Tungnaárjökull (Tu.), Skaftárjökull (Sk.) and S

  4. 30 CFR 77.209 - Surge and storage piles.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface... a reclaiming area or in any other area at or near a surge or storage pile where the reclaiming...

  5. Determining Storm Surge Return Periods: The Use of Evidence of Historic Events

    DEFF Research Database (Denmark)

    Madsen, Kristine S.; Sørensen, Carlo Sass; Schmith, Torben

    for tide gauge measurements, with 120 years of data available for the calculations. However, the oldest of these tide gauge stations was set up after a major storm surge in 1872, and no events of similar severity have occurred since. Including the evidence of the historic events from the 18th century...... changes the return period statistics, with a best estimate of a 100 year event changing from 1.5 meters (Sørensen et al. 2013) to 2.6 [2.2 – 2.8] meters (present study) in Køge just south of Copenhagen. Thus, with the tide gauge-based statistics, the storm surge on January 4 2017 was a 100 year event......, but with the revised statistics using historic evidence, much larger events can be expected. Further, we assess the very large impact of sea level rise on the storm surge statistics. As an example, according to the official statistics of southern Copenhagen, the flooding of a present day 100 year event...

  6. Qinshan phase II extension nuclear power project thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong; Ai Honglei

    2010-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid brings on global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor, the loadings at connections of surge line to main pipe and RCP and the displacements of surge line at supports are obtained. (authors)

  7. Machine characteristics, system arrangement, driver and operation effects on surge of dynamic compressor in oil and gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Amin

    2012-12-15

    Working in the surge area will result in an unstable compressor operation, exposing the dynamic compressor (centrifugal compressor or axial compressor) to destructive stress, high vibration and other damaging effects. The destructive power of the surge is enormous, ranging from changes in clearances, which result in a penalty in the compressor efficiency, to destruction of parts leading to bearing, rotor or seal replacements. The effects of compressor characteristics, driver type, compressor accessories, vent valve, check valve, trip delay and operation details on surge events and anti-surge system designs are studied. A case study is also discussed. (orig.)

  8. Storm surge in the Bay of Bengal and Arabian Sea: The problem and its prediction

    Digital Repository Service at National Institute of Oceanography (India)

    Dube, S.K.; Rao, A.D.; Sinha, P.C.; Murty, T.S.; Bahulayan, N.

    to annual economic losses in these countries. Thus, the real time monitoring and warning of storm surge is of great concern for this region. The goal of this paper is to provide an overview of major aspects of the storm surge problem in the Bay of Bengal...

  9. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  10. Characterization of endocrine events during the periestrous period in sheep after estrous synchronization with controlled internal drug release (CIDR) device.

    Science.gov (United States)

    Van Cleeff, J; Karsch, F J; Padmanabhan, V

    1998-01-01

    The Controlled Internal Drug Releasing (CIDR) device is an intravaginal pessary containing progesterone (P4) designed for synchronizing estrus in ruminants. To date, there has been little information available on the timing, duration, and quality of the follicular phase after CIDR removal and how those characteristics compare with natural periovulatory endocrine events. The present communication relates the results of methods we used to characterize the endocrine events that followed CIDR synchronization. Breeding-season ewes were given an injection (10 mg) of Lutalyse (PGF2 alpha), and then studied during three consecutive estrous cycles, beginning in the luteal phase after the estrus induced by PGF2 alpha. Cycle 1 estrus was synchronized with 1 CIDR (Type G) inserted for 8 d beginning 10 d after PGF2 alpha. Cycles 2 and 3 were synchronized with two CIDRs for 8 d beginning 10 d after previous CIDR removal. Cycle 1 estrous behavior and serum gonadotropins showed a follicular phase (the interval from CIDR withdrawal to gonadotropin surge [surge] peak) of 38.2 +/- 1.5 hr. Two CIDRs lengthened the interval to 46.2 +/- 1.5 hr (P synchronization concentrated surges within a 24-hr period in 92% of the ewes in Cycles 1 and 2. Cycles 3 ewes were euthanized at estimated luteal, early follicular, late follicular, LH surge, and secondary FSH rise timepoints. Endocrine data and ovaries showed that 88% of the ewes synchronized with two CIDRs were in the predicted stage of the estrous cycle. These data demonstrate that the CIDR device applied during the luteal phase effectively synchronizes estrus and results in a CIDR removal-to-surge interval of similar length to a natural follicular phase.

  11. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    Science.gov (United States)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  12. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    Science.gov (United States)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  13. [The role of patient flow and surge capacity for in-hospital response in mass casualty events].

    Science.gov (United States)

    Sefrin, Peter; Kuhnigk, Herbert

    2008-03-01

    Mass casualty events make demands on emergency services and disaster control. However, optimized in- hospital response defines the quality of definitive care. Therefore, German federal law governs the role of hospitals in mass casualty incidents. In hospital casualty surge is depending on resources that have to be expanded with a practicable alarm plan. Thus, in-hospital mass casualty management planning is recommended to be organized by specialized persons. To minimise inhospital patient overflow casualty surge principles have to be implemented in both, pre-hospital and in-hospital disaster planning. World soccer championship 2006 facilitated the initiation of surge and damage control principles in in-hospital disaster planning strategies for German hospitals. The presented concept of strict control of in-hospital patient flow using surge principles minimises the risk of in-hospital breakdown and increases definitive hospital treatment capacity in mass casualty incidents.

  14. Technical and economical optimisation of overhead power distribution line lightning protection

    Energy Technology Data Exchange (ETDEWEB)

    Katic, N.A. [Elektrovojvodina Power Distribution Co., Nori Sad (Yugoslavia); Savic, M.S. [University of Belgrade (Yugoslavia). Faculty of Electrical Engineering

    1998-05-01

    The existing methodology for overhead line lightning protection design does not take into account customer and utility costs of line outages. In the paper a new concept of line lightning protection design based on economic optimisation is presented. Different tower types are analysed and for various undelivered energy participation factors optimal line design suggested. In line lightning flashover rate estimation both direct and induced surges are analysed. (author)

  15. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    Directory of Open Access Journals (Sweden)

    J. Feldmann

    2017-08-01

    Full Text Available >Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  16. Influence of Northeast Monsoon cold surges on air quality in Southeast Asia

    Science.gov (United States)

    Ashfold, M. J.; Latif, M. T.; Samah, A. A.; Mead, M. I.; Harris, N. R. P.

    2017-10-01

    Ozone (O3) is an important ground-level pollutant. O3 levels and emissions of O3 precursors have increased significantly over recent decades in East Asia and export of this O3 eastward across the Pacific Ocean is well documented. Here we show that East Asian O3 is also transported southward to tropical Southeast (SE) Asia during the Northeast Monsoon (NEM) season (defined as November to February), and that this transport pathway is especially strong during 'cold surges'. Our analysis employs reanalysis data and measurements from surface sites in Peninsular Malaysia, both covering 2003-2012, along with trajectory calculations. Using a cold surge index (northerly winds at 925 hPa averaged over 105-110°E, 5°N) to define sub-seasonal strengthening of the NEM winds, we find the largest changes in a region covering much of the Indochinese Peninsula and surrounding seas. Here, the levels of O3 and another key pollutant, carbon monoxide, calculated by the Monitoring Atmospheric Composition and Climate (MACC) Reanalysis are on average elevated by, respectively, >40% (∼15 ppb) and >60% (∼80 ppb) during cold surges. Further, in the broader region of SE Asia local afternoon exceedances of the World Health Organization's air quality guideline for O3 (100 μg m-3, or ∼50 ppb, averaged over 8 h) largely occur during these cold surges. Day-to-day variations in available O3 observations at surface sites on the east coast of Peninsular Malaysia and in corresponding parts of the MACC Reanalysis are similar, and are clearly linked to cold surges. However, observed O3 levels are typically ∼10-20 ppb lower than the MACC Reanalysis. We show that these observations are also subject to influence from local urban pollution. In agreement with past work, we find year-to-year variations in cold surge activity related to the El Nino-Southern Oscillation (ENSO), but this does not appear to be the dominant influence of ENSO on atmospheric composition in this region. Overall, our study

  17. Neurokinin-3 Receptor Activation in the Retrochiasmatic Area is Essential for the Full Preovulatory LH Surge in Ewes

    Science.gov (United States)

    Porter, Katrina L.; Hileman, Stanley M.; Hardy, Steven L.; Nestor, Casey C; Lehman, Michael N.; Goodman, Robert L.

    2014-01-01

    Neurokinin B (NKB) is essential for human reproduction and has been shown to stimulate LH secretion in several species, including sheep. Ewes express the neurokinin-3 receptor (NK3R) in the retrochiasmatic area (RCh) and there is one report that placement of senktide, an NK3R agonist, therein stimulates LH secretion that resembles an LH surge in ewes. In this study, we first confirmed that local administration of senktide to the RCh produced a surge-like increase in LH secretion, and then tested the effects of this agonist in two other areas implicated in the control of LH secretion and where NK3R is found in high abundance: the preoptic area (POA) and arcuate nucleus (ARC). Bilateral microimplants containing senktide induced a dramatic surge-like increase in LH when given in the POA similar to that seen with RCh treatment. In contrast, senktide treatment in the ARC resulted in a much smaller, but significant, increase in LH concentrations suggestive of an effect on tonic secretion. The possible role of POA and RCh NK3R activation in the LH surge was next tested by treating ewes with SB222200, an NK3R antagonist, in each area during an E2-induced LH surge. SB222200 in the RCh, but not in the POA, reduced LH surge amplitude by about 40% compared to controls, indicating that NK3R activation in the former region is essential for full expression of the preovulatory LH surge. Based on these data, we propose that NKB actions in the RCh are an important component of the preovulatory LH surge in ewes. PMID:25040132

  18. Designing concept on lightning protection of overhead power distribution line

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shigeru [Central Research Institute of Electric Power Industry, Kanagawa-ken (Japan)], E-mail: yokoyama@criepi.denken.or.jp

    2007-07-01

    The principle is shown for lightning protection of power distribution lines taking the effects of surge arresters, overhead ground wires and their combined use into consideration. Moreover an outline of a rational design method targeting direct lightning hits, induced over voltages and back flow currents from high structures. (author)

  19. Surge and selection: power in the refugee resettlement regime

    OpenAIRE

    Annelisa Lindsay

    2017-01-01

    There is an imbalance of power – and a resulting lack of agency for refugees – in the structure of the current resettlement regime. The top-down process of selection also poses ethical dilemmas, as recent surges in resettlement operations show.

  20. Evaluation of surge transferred overvoltages in distribution transformers

    NARCIS (Netherlands)

    Popov, M.; Sluis, van der L.; Smeets, R.P.P.

    2008-01-01

    The paper presents an analysis of very fast-transient overvoltages that occur because of the capacitive surge transfer from the high-voltage (HV) transformer winding to the low-voltage (LV) transformer winding. The study is done on a 6.6 kV single-phase test transformer. By applying a pulse with a

  1. A Two-Step Method to Select Major Surge-Producing Extratropical Cyclones from a 10,000-Year Stochastic Catalog

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the primary driver of storm surge events along the UK and northwest mainland Europe coastlines. In an effort to evaluate the storm surge risk in coastal communities in this region, a stochastic catalog is developed by perturbing the historical storm seeds of European ETCs to account for 10,000 years of possible ETCs. Numerical simulation of the storm surge generated by the full 10,000-year stochastic catalog, however, is computationally expensive and may take several months to complete with available computational resources. A new statistical regression model is developed to select the major surge-generating events from the stochastic ETC catalog. This regression model is based on the maximum storm surge, obtained via numerical simulations using a calibrated version of the Delft3D-FM hydrodynamic model with a relatively coarse mesh, of 1750 historical ETC events that occurred over the past 38 years in Europe. These numerically-simulated surge values were regressed to the local sea level pressure and the U and V components of the wind field at the location of 196 tide gauge stations near the UK and northwest mainland Europe coastal areas. The regression model suggests that storm surge values in the area of interest are highly correlated to the U- and V-component of wind speed, as well as the sea level pressure. Based on these correlations, the regression model was then used to select surge-generating storms from the 10,000-year stochastic catalog. Results suggest that roughly 105,000 events out of 480,000 stochastic storms are surge-generating events and need to be considered for numerical simulation using a hydrodynamic model. The selected stochastic storms were then simulated in Delft3D-FM, and the final refinement of the storm population was performed based on return period analysis of the 1750 historical event simulations at each of the 196 tide gauges in preparation for Delft3D-FM fine mesh simulations.

  2. Surge of Hispar Glacier, Pakistan, between 2013 and 2017 detected from remote sensing observations

    Science.gov (United States)

    Rashid, Irfan; Abdullah, Tariq; Glasser, Neil F.; Naz, Heena; Romshoo, Shakil Ahmad

    2018-02-01

    This study analyses the behaviour of an actively surging glacier, Hispar, in Pakistan using remote sensing methods. We used 15 m panchromatic band of Landsat 8 OLI from 2013 to 2017 to assess the changes in glacier velocity, glacier geomorphology and supraglacial water bodies. For the velocity estimation, correlation image analysis (CIAS) was used, which is based on normalized cross-correlation (NCC) of satellite data. On-screen digitization was employed to quantify changes in the glacier geomorphology and dynamics of supraglacial water bodies on the glacier. Our velocity estimates indicate that the upper part of the glacier is presently undergoing an active surge which not only affects the debris distribution but also impacts the development of supraglacial water bodies. Velocities in the actively surging part of the main glacier trunk and its three tributaries reach up to 900 m yr- 1. The surge of Hispar also impacts the distribution of supraglacial debris causing folding of the medial moraines features present on the glacier surface. Changes in the number and size of supraglacial lakes and ponds were also observed during the observation period from 2013 to 2017.

  3. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  4. Effects of cluster land reclamation projects on storm surge in Jiaojiang Estuary, China

    Directory of Open Access Journals (Sweden)

    Zhi-lin Sun

    2017-01-01

    Full Text Available Variations in coastline geometry caused by coastal engineering affect tides, storm surges, and storm tides. Three cluster land reclamation projects have been planned for construction in the Jiaojiang Estuary during the period from 2011 to 2023. They will cause significant changes in coastline geometry. In this study, a surge-tide coupled model was established based on a three-dimensional finite-volume coastal ocean model (FVCOM. A series of numerical experiments were carried out to investigate the effects of variations in coastline geometry on tides, storm surges, and storm tides. This model was calibrated using data observed at the Haimen and Ruian gauge stations and then used to reproduce the tides, storm surges, and storm tides in the Jiaojiang Estuary caused by Typhoon Winnie in 1997. Results show that the high tide level, peak storm surge, and high storm tide level at the Haimen Gauge Station increased along with the completion of reclamation projects, and the maximum increments caused by the third project were 0.13 m, 0.50 m, and 0.43 m, respectively. The envelopes with maximum storm tide levels of 7.0 m and 8.0 m inside the river mouth appeared to move seaward, with the latter shifting 1.8 km, 3.3 km, and 4.4 km due to the first project, second project, and third project, respectively. The results achieved in this study contribute to reducing the effects of, and preventing storm disasters after the land reclamation in the Jiaojiang Estuary.

  5. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    Science.gov (United States)

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  6. Model simulation of storm surge potential for Andaman islands

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, V.S.; RameshBabu, V.; Babu, M.T.; Dhinakaran, G.; Rajamanickam, G.V.

    Hydraulics and Oceanography, the Hydrodynamics Module Reference Manual. DHI Water and Environment, Horsholm, Denmark, 58 p. Dube, S.K., Sinha, P C , Rao, A.D., and Rao, G.S., 1985. Numerical modeling of storm surges in the Arabian Sea, Appl. Math Modelling, 9...

  7. Surge capacity principles: care of the critically ill and injured during pandemics and disasters: CHEST consensus statement.

    Science.gov (United States)

    Hick, John L; Einav, Sharon; Hanfling, Dan; Kissoon, Niranjan; Dichter, Jeffrey R; Devereaux, Asha V; Christian, Michael D

    2014-10-01

    This article provides consensus suggestions for expanding critical care surge capacity and extension of critical care service capabilities in disasters or pandemics. It focuses on the principles and frameworks for expansion of intensive care services in hospitals in the developed world. A companion article addresses surge logistics, those elements that provide the capability to deliver mass critical care in disaster events. The suggestions in this article are important for all who are involved in large-scale disasters or pandemics with injured or critically ill multiple patients, including front-line clinicians, hospital administrators, and public health or government officials. The Surge Capacity topic panel developed 23 key questions focused on the following domains: systems issues; equipment, supplies, and pharmaceuticals; staffing; and informatics. Literature searches were conducted to identify evidence on which to base key suggestions. Most reports were small scale, were observational, or used flawed modeling; hence, the level of evidence on which to base recommendations was poor and did not permit the development of evidence-based recommendations. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. Suggestions from the previous task force were also included for validation by the expert panel. This article presents 10 suggestions pertaining to the principles that should guide surge capacity and capability planning for mass critical care, including the role of critical care in disaster planning; the surge continuum; targets of surge response; situational awareness and information sharing; mitigating the impact on critical care; planning for the care of special populations; and service deescalation/cessation (also considered as engineered failure). Future reports on critical care surge should emphasize population-based outcomes as well as logistical details. Planning should be based on the projected number of

  8. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    James E. Neumann

    2015-05-01

    Full Text Available This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam. Permanently inundated lands and temporary flood zones are analyzed by combining sea level rise scenarios for 2050 with simulated storm surge levels for the 100-year event. Our analysis finds that sea level rise through 2050 could increase the effective frequency of the current 100-year storm surge, which is associated with a storm surge of roughly five meters, to once every 49 years. Approximately 10% of the Hanoi region’s GDP is vulnerable to permanent inundation due to sea level rise, and more than 40% is vulnerable to periodic storm surge damage consistent with the current 100-year storm. We conclude that coastal adaptation measures, such as a planned retreat from the sea, and construction of a more substantial seawall and dike system, are needed to respond to these threats.

  9. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  10. Estimating Areas of Vulnerability: Sea Level Rise and Storm Surge Hazards in the National Parks

    Science.gov (United States)

    Caffrey, M.; Beavers, R. L.; Slayton, I. A.

    2013-12-01

    The University of Colorado Boulder in collaboration with the National Park Service has undertaken the task of compiling sea level change and storm surge data for 105 coastal parks. The aim of our research is to highlight areas of the park system that are at increased risk of rapid inundation as well as periodic flooding due to sea level rise and storms. This research will assist park managers and planners in adapting to climate change. The National Park Service incorporates climate change data into many of their planning documents and is willing to implement innovative coastal adaptation strategies. Events such as Hurricane Sandy highlight how impacts of coastal hazards will continue to challenge management of natural and cultural resources and infrastructure along our coastlines. This poster will discuss the current status of this project. We discuss the impacts of Hurricane Sandy as well as the latest sea level rise and storm surge modeling being employed in this project. In addition to evaluating various drivers of relative sea-level change, we discuss how park planners and managers also need to consider projected storm surge values added to sea-level rise magnitudes, which could further complicate the management of coastal lands. Storm surges occurring at coastal parks will continue to change the land and seascapes of these areas, with the potential to completely submerge them. The likelihood of increased storm intensity added to increasing rates of sea-level rise make predicting the reach of future storm surges essential for planning and adaptation purposes. The National Park Service plays a leading role in developing innovative strategies for coastal parks to adapt to sea-level rise and storm surge, whilst coastal storms are opportunities to apply highly focused responses.

  11. Protective coatings for in-vessel fusion devices

    International Nuclear Information System (INIS)

    Brossa, F.

    1984-01-01

    Coatings of Al/Si, SAP (Sintered Aluminium Powder), Al 2 O 3 , TiC (low-Z material) and Ta have been developed for in-vessel component protection. Anodic oxidation, vapor depositions, reactive sputtering, chemical vapor deposition (CVD) and plasma spray have been the coating formation methods studied. AISI 316, 310, 304, Inconel 600 and Mo were adopted as base materials. the coatings were characterized in terms of composition, structure and connection with the supporting material. The behavior of coatings under H + , D + and He + irradiation in the energy range 100 eV-8 keV was tested and compared to the solid massive samples. TiC and Ta coatings were tested with thermal shock under power density pulses of 1 kW/cm 2 generated by an electron beam gun. Temperature-dependence of the erosion of TiC by vacuum arcs in a magnetic field was also studied. TiC coatings have low sputtering values, good resistance to arcing and a high chemical stability. TiC and Ta, CVD and plasma spray coatings are thermal-shock resistant. High thermal loads produce cracks but no spalling. Destruction occurred only after melting of the base material. The plasma spray coating method seems to be most appropriate for developing remote handling applications in fusion devices. (orig.)

  12. Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey

    Science.gov (United States)

    Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.

    2017-12-01

    Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.

  13. Surge ammonium uptake in macroalgae from a coral atoll

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, V.; Wafar, M.V.M.

    of Phycology 36, 680?685. Crossland, C.J., Hatcher, B.G., Smith, S.V., 1991. Role of coral reefs in global ocean production. Coral Reefs 10, 55-64. Danilo, Dy. T., Yap, H.T., 2001. Surge ammonium uptake of the cultured seaweed, Kappaphycus alvarezii (Doty...

  14. Strategic Engagement of Technical Surge Capacity for Intensified Polio Eradication Initiative in Nigeria, 2012-2015.

    Science.gov (United States)

    Yehualashet, Yared G; Mkanda, Pascal; Gasasira, Alex; Erbeto, Tesfaye; Onimisi, Anthony; Horton, Janet; Banda, Richard; Tegegn, Sisay G; Ahmed, Haruna; Afolabi, Oluwole; Wadda, Alieu; Vaz, Rui G; Nsubuga, Peter

    2016-05-01

    Following the 65th World Health Assembly (WHA) resolution on intensification of the Global Poliomyelitis Eradication Initiative (GPEI), the Nigerian government, with support from the World Health Organization (WHO) and other partners, implemented a number of innovative strategies to curb the transmission of wild poliovirus (WPV) in the country. One of the innovations successfully implemented since mid 2012 is the WHO's engagement of surge capacity personnel. The WHO reorganized its functional structure, adopted a transparent recruitment and deployment process, provided focused technical and management training, and applied systematic accountability framework to successfully manage the surge capacity project in close collaboration with the national counterparts and partners. The deployment of the surge capacity personnel was guided by operational and technical requirement analysis. Over 2200 personnel were engaged, of whom 92% were strategically deployed in 11 states classified as high risk on the basis of epidemiological risk analysis and compromised security. These additional personnel were directly engaged in efforts aimed at improving the performance of polio surveillance, vaccination campaigns, increased routine immunization outreach sessions, and strengthening partnership with key stakeholders at the operational level, including community-based organizations. Programmatic interventions were sustained in states in which security was compromised and the risk of polio was high, partly owing to the presence of the surge capacity personnel, who are engaged from the local community. Since mid-2012, significant programmatic progress was registered in the areas of polio supplementary immunization activities, acute flaccid paralysis surveillance, and routine immunization with the support of the surge capacity personnel. As of 19 June 2015, the last case of WPV was reported on 24 July 2014. The surge infrastructure has also been instrumental in building local capacity

  15. Electroconvulsive therapy, hypertensive surge, blood-brain barrier breach, and amnesia

    DEFF Research Database (Denmark)

    Andrade, Chittaranjan; Bolwig, Tom G

    2014-01-01

    Preclinical and clinical evidence show that electroconvulsive therapy (ECT)-induced intraictal surge in blood pressure may result in a small, transient breach in the blood-brain barrier, leading to mild cerebral edema and a possible leach of noxious substances from blood into brain tissues...... convincing evidence of benefits. It is concluded that there is insufficient support, at present, for the hypothesis that the hypertensive surge during ECT and the resultant blood-brain barrier breach contribute meaningfully to ECT-induced cognitive deficits. Future research should address the subset....... These changes may impair neuronal functioning and contribute to the mechanisms underlying ECT-induced cognitive deficits. Some but not all clinical data on the subject suggest that blood pressure changes during ECT correlate with indices of cognitive impairment. In animal models, pharmacological manipulations...

  16. Bridging complexity theory and resilience to develop surge capacity in health systems.

    Science.gov (United States)

    Therrien, Marie-Christine; Normandin, Julie-Maude; Denis, Jean-Louis

    2017-03-20

    Purpose Health systems are periodically confronted by crises - think of Severe Acute Respiratory Syndrome, H1N1, and Ebola - during which they are called upon to manage exceptional situations without interrupting essential services to the population. The ability to accomplish this dual mandate is at the heart of resilience strategies, which in healthcare systems involve developing surge capacity to manage a sudden influx of patients. The paper aims to discuss these issues. Design/methodology/approach This paper relates insights from resilience research to the four "S" of surge capacity (staff, stuff, structures and systems) and proposes a framework based on complexity theory to better understand and assess resilience factors that enable the development of surge capacity in complex health systems. Findings Detailed and dynamic complexities manifest in different challenges during a crisis. Resilience factors are classified according to these types of complexity and along their temporal dimensions: proactive factors that improve preparedness to confront both usual and exceptional requirements, and passive factors that enable response to unexpected demands as they arise during a crisis. The framework is completed by further categorizing resilience factors according to their stabilizing or destabilizing impact, drawing on feedback processes described in complexity theory. Favorable order resilience factors create consistency and act as stabilizing forces in systems, while favorable disorder factors such as diversity and complementarity act as destabilizing forces. Originality/value The framework suggests a balanced and innovative process to integrate these factors in a pragmatic approach built around the fours "S" of surge capacity to increase health system resilience.

  17. On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)

    2009-11-15

    Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

  18. Design And Development Of An Automatic Single Phase Protective Device Using Ssr

    Directory of Open Access Journals (Sweden)

    Michael E.

    2017-10-01

    Full Text Available Since the discovery of energy safety has been a paramount subject matter. This we can see in todays electrical systems where protective devices such as fuse and circuit breakers are used to prevent fire hazards resulting from overload overvoltage and short circuits. However with all the revolution in technology these options may be considered less smart since the fuse made with wire strands calculated for specific current capacity faults permanently when the specified current rating is exceeded. While the circuit breaker which is made up of mechanical switch fails as a result of carbon forming and the wearing away of the contacts because of arcing. As a means of improvement this paper presents the design and development of an automatic single phase protective device using solid state relay SSR. This study is to ensure automatic cut off from power supply in cases of overvoltage above 240 V AC or when overload and short circuit current above 8amps is detected without permanent damage of a fuse placed along current path. Also the design will ensure that there is an automatic close circuit whenever the trigger switch is momentary switch is closed. The system is achieved via the use of PIC micro-controller current sensor and other discrete components. The system is tested and works well inhibiting the frequent faulting of fuses. It also helps to prevent hazard as a result of overvoltage overload and short circuit and ensures a close circuit when the trigger switch is closed.

  19. Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge

    Directory of Open Access Journals (Sweden)

    M. Jay-Allemand

    2011-08-01

    Full Text Available Variegated Glacier (Alaska is known to surge periodically after a sufficient amount of cumulative mass balance is reached, but this observation is difficult to link with changes in the basal conditions. Here, using a 10-yr dataset, consisting of surface topography and surface velocity observations along a flow line for 25 dates, we have reconstructed the evolution of the basal conditions prior to and during the 1982–1983 surge. The model solves the full-Stokes problem along the central flow line using the finite element method. For the 25 dates of the dataset, the basal friction parameter distribution is inferred using the inverse method proposed by Arthern and Gudmundsson (2010. This method is here slightly modified by incorporating a regularisation term in the cost function to avoid short wavelength changes in the friction parameter. Our results indicate that dramatic changes in the basal conditions occurred between 1973 to 1983. Prior to the surge, periodic changes can be observed between winter and summer, with a regular increase of the sliding from 1973 to 1982. During the surge, the basal friction decreased dramatically and an area of very low friction moved from the upper part of the glacier to its terminus. Using a more complex friction law, these changes in basal sliding are then interpreted in terms of basal water pressure. Our results support that dramatic changes took place in the subglacial drainage system of Variegated Glacier, moving from a relatively efficient drainage system prior to the surge to an inefficient one during the surge. By reconstructing the water pressure evolution at the base of the glacier it is possible to propose a scenario for the hydrological history leading to the occurrence of a surge.

  20. Endovascular rescue of a fused monorail balloon and cerebral protection device.

    Science.gov (United States)

    Campbell, John E; Bates, Mark C; Elmore, Michael

    2007-08-01

    To present a case of successful endovascular retrieval of a monorail predilation balloon fused to an embolic protection device (EPD) in the distal internal carotid artery (ICA) of a high-risk symptomatic patient. A 60-year-old man with documented systemic atherosclerotic disease had a severe (>70%) restenosis in the left ICA 3 years after endarterectomy. He was scheduled for carotid artery stenting (CAS) with cerebral protection; however, he developed unstable angina and was transferred to our facility, where the admitting team decided that staged CAS followed by coronary bypass grafting would be the best option. During the CAS procedure, a 6-mm AccuNet filter was passed across the lesion via a 6-F carotid sheath and deployed in the distal ICA without incident. However, the 4-x20-mm predilation monorail balloon was then advanced without visualizing the markers, resulting in inadvertent aggressive interaction that trapped the balloon's tip in the filter. Several maneuvers to separate the devices were unsuccessful. Finally, the filter/balloon combination was moved gently retrograde until the balloon was straddling the subtotal ICA lesion. The lesion was dilated to 4 mm with the balloon, and the sheath was gently advanced across the lesion as the balloon was deflated. Angiography excluded interval occlusion of the filter from the embolic debris during the aforementioned aggressive maneuvers and documented antegrade flow. The filter was slowly withdrawn into the 6-F sheath with simultaneous aspiration. A second 6-mm filter was deployed, and the procedure was completed satisfactorily. The patient did well, with no neurological sequelae. EPDs are an essential in carotid artery stenting and, keeping in mind the potential risks associated with their use, will help the operator avoid complications such as this one.

  1. The effect of wave current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Xie, Lian; Liu, Huiqing; Peng, Machuan

    The effects of wave-current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave-current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.

  2. Fire protection devices in the controlled region of GKN nuclear power station

    International Nuclear Information System (INIS)

    Bernhardt, S.; Grauf, E.

    1976-01-01

    In the GKN nuclear power station ('Neckar reactor'), an 805 MW PWR reactor whose start-up is scheduled for the near future, fire protection measures have been realized that go far beyond those realized in other German nuclear power stations until now. One of the main reasons is that the authorities have been sensibilized by a fire in the refuelling cavity during construction and by the Browns Ferry fire and are therefore extremely thorough in their examination. Further subsections have been added to the fire prevention sections in order to provide better quenching devices for potential fire sites. (orig./AK) [de

  3. On Active Surge Control of Compression Systems via Characteristic Linearization and Model Nonlinearity Cancellation

    Directory of Open Access Journals (Sweden)

    Yohannes S.M. Simamora

    2014-09-01

    Full Text Available A simple approach of active surge control of compression systems is presented. Specifically, nonlinear components of the pressure ratio and rotating speed states of the Moore-Greitzer model are transferred into the input vectors. Subsequently, the compressor characteristic is linearized into two modes, which describe the stable region and the unstable region respectively. As a result, the system’s state and input matrices both appear linear, to which linear realization and analysis are applicable. A linear quadratic regulator plus integrator is then chosen as closed-loop controller. By simulation it was shown that the modified model and characteristics can describe surge behavior, while the closed-loop controller can stabilize the system in the unstable operating region. The last-mentioned was achieved when massflow was 5.38 per cent less than the surge point.

  4. Storm surges-An option for Hamburg, Germany, to mitigate expected future aggravation of risk

    International Nuclear Information System (INIS)

    Storch, Hans von; Goennert, Gabriele; Meine, Manfred

    2008-01-01

    Summary: Rising sea level together with regionally increased storm activity, caused by elevated and increasing levels of greenhouse gases in the atmosphere will in many parts of the world increase the risk of storm surges significantly. Reducing the emissions of greenhouse gases into the atmosphere may mitigate the increasing risks somewhat, but the major task for regional and local stakeholders will be to prepare for appropriate adaptation. In most cases, possible strategies include intensification of coastal defense measures, in particular strengthening dykes, and adaptation to intermittent flooding. In case of Hamburg and the tidal Elbe river a third option seems to be available, which aims at mitigating storm surge risks by applying estuary engineering constructions. This option is sketched in this paper. The option has the potential to significantly reduce the expected future increases of local surge heights

  5. Security Hi-tech Individual Extra-light Device Mask: a new protection for [soccer] players.

    Science.gov (United States)

    Cascone, Piero; Petrucci, Bernardino; Ramieri, Valerio; Marianetti, Titto Matteo; TitoMatteo, Marianetti

    2008-05-01

    Among professional [soccer] players, a relevant incidence of maxillofacial trauma has been reported. The main challenge in these particular patients is to give them the possibility of a very short convalescence period and to make possible their agonistic activity as soon as possible. The authors here present an innovative technique to realize this--the Security Hi-tech Individual Extra-Light Device Mask, a customizable protective shield based on the player's face cast. A completely customized mask was forged over the player's face cast to protect the injured area. This mask shortens convalescence period, and due to its realization, it is comfortable and easy fitting, thus allowing the player to perform at a professional level in his sport activity in the shortest time possible.

  6. Development of an amorphous surge blocker for a high voltage acceleration power supply of the neutral beam injectors

    International Nuclear Information System (INIS)

    Mizuno, Makoto; Ohara, Yoshihiro; Watanabe, Kazuhiro; Ozaki, Akira.

    1993-10-01

    An amorphous surge blocker for a high voltage acceleration power supply for the neutral beam injectors has been developed. Since the saturation magnetic flux density of the amorphous core is higher than that of the ferrite core, the surge blocker made of amorphous cores can be reduced in size appreciably compared to the conventional ferrite surge blocker. A 350 kV, 0.05 volt-second amorphous surge blocker was designed, fabricated and tested. The amorphous core was made by winding an amorphous tape with a film for the layer insulation and was heat-treated to recover the magnetic characteristics. The core is molded by epoxy resin and installed in a FRP insulator tube filled with SF 6 gas for the insulation. The volt-second measured was higher than the designed value and the electrical breakdown along the cores and between layers was not observed. This test result shows that the amorphous surge blocker is applicable for a dc acceleration power supply for high energy neutral beam injectors. (author)

  7. Multidimensional Numerical Modeling of Surges Over Initially Dry Land

    National Research Council Canada - National Science Library

    Berger, R

    2004-01-01

    .... The first test case is for a straight flume and the second contains a reservoir and a horseshoe channel section. It is important that the model match the timing of the surge as well as the height In both cases the ADH compared closely with the flume results.

  8. Application of Detailed Phase Comparison Protection Models for the Analysis of its Operation in Networks with Facts Devices

    Directory of Open Access Journals (Sweden)

    Ruban Nikolay Yu.

    2015-01-01

    Full Text Available The problem of relay protection misoperations in networks with FACTS devices is considered in the paper. It is offered a solution to this problem for a phase comparison protection of transmission power line through the use of its detailed model for the analysis of the functioning for a case of various normal, emergency and post-emergency modes of electric power systems. The research results of this approach are given in the paper.

  9. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique

    Science.gov (United States)

    Krien, Yann; Dudon, Bernard; Roger, Jean; Arnaud, Gael; Zahibo, Narcisse

    2017-09-01

    In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge - up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.

  10. Hospitals Capability in Response to Disasters Considering Surge Capacity Approach

    Directory of Open Access Journals (Sweden)

    Gholamreza Khademipour

    2016-01-01

    Full Text Available Background: The man-made and natural disasters have adverse effects with sound, apparent, and unknown consequences. Among various components of disaster management in health sector, the most important role is performed by health-treatment systems, especially hospitals. Therefore, the present study aimed to evaluate the surge capacity of hospitals of Kerman Province in disaster in 2015. Materials and Methods: This is a quantitative study, conducted on private, military, and medical sciences hospitals of Kerman Province. The sampling method was total count and data collection for the research was done by questionnaire. The first section of the questionnaire included demographic information of the studied hospitals and second part examined the hospital capacity in response to disasters in 4 fields of equipment, physical space, human resources, and applied programs. The extracted data were analyzed by descriptive statistics. Results: The mean capability of implementing the surge capacity programs by hospitals of Kerman Province in disasters and in 4 fields of equipment, physical space, human resources, and applied programs was evaluated as 7.33% (weak. The surge capacity capability of state hospitals in disasters was computed as 8% and compared to private hospitals (6.07% had a more suitable condition. Conclusion: Based on the results of study and significance of preparedness of hospitals in response to disasters, it is proposed that managers of studied hospitals take measures to promote the hospital response capacity to disasters based on 4 components of increasing hospital capacity.

  11. Assessment of storm surge disaster potential for the Andaman Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, V.S.; RameshBabu, V.; Babu, M.T.; Dhinakaran, G.; Rajamanickam, G.V.

    . Supporting volume 1: math- ematical modelling of cyclone surge and related flooding. In: Cy- clone Damage in Bangladesh. United Nations Centre for Regional Development, pp. 9–37. DHI (Danish Hydraulic Institute), 2002. MIKE 21 Coastal Hydrau- lics...

  12. Directional analysis of the storm surge from Hurricane Sandy 2012, with applications to Charleston, New Orleans, and the Philippines.

    Science.gov (United States)

    Drews, Carl; Galarneau, Thomas J

    2015-01-01

    Hurricane Sandy in late October 2012 drove before it a storm surge that rose to 4.28 meters above mean lower low water at The Battery in lower Manhattan, and flooded the Hugh L. Carey automobile tunnel between Brooklyn and The Battery. This study examines the surge event in New York Harbor using the Weather Research and Forecasting (WRF) atmospheric model and the Coupled-Ocean-Atmosphere-Wave- Sediment Transport/Regional Ocean Modeling System (COAWST/ROMS). We present a new technique using directional analysis to calculate and display maps of a coastline's potential for storm surge; these maps are constructed from wind fields blowing from eight fixed compass directions. This analysis approximates the surge observed during Hurricane Sandy. The directional analysis is then applied to surge events at Charleston, South Carolina, New Orleans, Louisiana, and Tacloban City, the Philippines. Emergency managers could use these directional maps to prepare their cities for an approaching storm, on planning horizons from days to years.

  13. Perancangan Sistem Surge Absorber Untuk Mencegah Terjadinya Waterhammer Pada Pipeline Sistem Pendistribusian Avtur Di DPPU Pertamina - Bandara Ngurah Rai

    Directory of Open Access Journals (Sweden)

    Agung Dwi Sulaksono

    2013-03-01

    Full Text Available Aliran fluida transient erat kaitannya dengan fenomena fluida yang dikenal dengan water hammer. Water hammer yang tidak terkendali dapat berakibat buruk pada instalasi sistem perpipaan. Untuk menghindari dampak buruk keberdaan water hammer dapat dilakukan dengan cara memasang komponen perpipaan, salah satunya adalah surge absorber. Sehubungan dengan rencana pengembangan jalur perpipaan serta penambahan kapasitas pompa DPPU Pertamina maka diperlukan kajian mengenai performansi surge absorber yang telah terpasang dan surge absorber yang dibutuhkan untuk mencegah water hammer pada header pit sistem perpipaan DPPU Pertamina yang baru. Kajian tersebut dilakukan dengan cara membuat simulasi yang menmggunakan Method Of Characteristic untuk menyelesaikan persamaan dasar water hammer. Dari hasil kajian yang telah dilakukan, diketahui bahwa delapan buah surge absorber yang terpasang pada sistem perpipaan DPPU Pertamina memiliki volume gas yang masih berada pada range kerjanya . Sedangkan untuk mengatasi water hammer pada jalur pipa tambahan, diperlukan penambahan 4 buah surge absorber yang diletakkan pada sistem perpipaan yang baru.

  14. Optimal Control of a Surge-Mode WEC in Random Waves

    Energy Technology Data Exchange (ETDEWEB)

    Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Ceberio, Olivier [Resolute Marine Energy, Inc., Boston, MA (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Previsic, Mirko [Re Vision Consulting, Sacramento, CA (United States); Scruggs, Jeffrey [Univ. of Michigan, Ann Arbor, MI (United States); Van de Ven, James [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-08-30

    The objective of this project was to develop one or more real-time feedback and feed-forward (MPC) control algorithms for an Oscillating Surge Wave Converter (OSWC) developed by RME called SurgeWEC™ that leverages recent innovations in wave energy converter (WEC) control theory to maximize power production in random wave environments. The control algorithms synthesized innovations in dynamic programming and nonlinear wave dynamics using anticipatory wave sensors and localized sensor measurements; e.g. position and velocity of the WEC Power Take Off (PTO), with predictive wave forecasting data. The result was an advanced control system that uses feedback or feed-forward data from an array of sensor channels comprised of both localized and deployed sensors fused into a single decision process that optimally compensates for uncertainties in the system dynamics, wave forecasts, and sensor measurement errors.

  15. Modeling Tropical Cyclone Storm Surge and Wind Induced Risk Along the Bay of Bengal Coastline Using a Statistical Copula

    Science.gov (United States)

    Bushra, N.; Trepanier, J. C.; Rohli, R. V.

    2017-12-01

    High winds, torrential rain, and storm surges from tropical cyclones (TCs) cause massive destruction to property and cost the lives of many people. The coastline of the Bay of Bengal (BoB) ranks as one of the most susceptible to TC storm surges in the world due to low-lying elevation and a high frequency of occurrence. Bangladesh suffers the most due to its geographical setting and population density. Various models have been developed to predict storm surge in this region but none of them quantify statistical risk with empirical data. This study describes the relationship and dependency between empirical TC storm surge and peak reported wind speed at the BoB using a bivariate statistical copula and data from 1885-2011. An Archimedean, Gumbel copula with margins defined by the empirical distributions is specified as the most appropriate choice for the BoB. The model provides return periods for pairs of TC storm surge and peak wind along the BoB coastline. The BoB can expect a TC with peak reported winds of at least 24 m s-1 and surge heights of at least 4.0 m, on average, once every 3.2 years, with a quartile pointwise confidence interval of 2.7-3.8 years. In addition, the BoB can expect peak reported winds of 62 m s-1 and surge heights of at least 8.0 m, on average, once every 115.4 years, with a quartile pointwise confidence interval of 55.8-381.1 years. The purpose of the analysis is to increase the understanding of these dangerous TC characteristics to reduce fatalities and monetary losses into the future. Application of the copula will mitigate future threats of storm surge impacts on coastal communities of the BoB.

  16. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    Science.gov (United States)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  17. Blowout Surge due to Interaction between a Solar Filament and Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haidong; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Bi, Yi; Hong, Junchao; Chen, Hechao [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Qu, Zhining, E-mail: lhd@ynao.ac.cn [Department of Physics, School of Science, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2017-06-20

    We present an observation of the interaction between a filament and the outer spine-like loops that produces a blowout surge within one footpoint of large-scale coronal loops on 2015 February 6. Based the observation of the AIA 304 and 94 Å, the activated filament is initially embedded below a dome of a fan-spine configuration. Due to the ascending motion, the erupting filament reconnects with the outer spine-like field. We note that the material in the filament blows out along the outer spine-like field to form the surge with a wider spire, and a two-ribbon flare appears at the site of the filament eruption. In this process, small bright blobs appear at the interaction region and stream up along the outer spine-like field and down along the eastern fan-like field. As a result, a leg of the filament becomes radial and the material in it erupts, while another leg forms the new closed loops. Our results confirm that the successive reconnection occurring between the erupting filament and the coronal loops may lead to a strong thermal/magnetic pressure imbalance, resulting in a blowout surge.

  18. Operation of Two-Shaft Gas Turbine in the Range of Open Anti-Surge Valve

    Directory of Open Access Journals (Sweden)

    Dzida Marek

    2017-12-01

    Full Text Available This paper presents experimental tests of full-scale two-shaft gas turbine in the range of open anti-surge valve (ASV. The tests were carried out in a laboratory gas- turbine test stand belonging to Department of Automation and Power Engineering , Faculty of Ocean Engineering and Ship Technology , Gdańsk University of Technology. The tests covered the start-up and low load operation of the turbine set in the range of open anti-surge valve.

  19. Comparative effects of valsartan plus either cilnidipine or hydrochlorothiazide on home morning blood pressure surge evaluated by information and communication technology-based nocturnal home blood pressure monitoring.

    Science.gov (United States)

    Fujiwara, Takeshi; Tomitani, Naoko; Kanegae, Hiroshi; Kario, Kazuomi

    2018-01-01

    The authors tested the hypothesis that a valsartan/cilnidipine combination would suppress the home morning blood pressure (BP) surge (HMBPS) more effectively than a valsartan/hydrochlorothiazide combination in patients with morning hypertension, defined as systolic BP (SBP) ≥135 mm Hg or diastolic BP ≥85 mm Hg assessed by a self-measuring information and communication technology-based home BP monitoring device more than three times before either combination's administration. This was an 8-week prospective, multicenter, randomized, open-label clinical trial. The HMBPS, which is a new index, was defined as the mean morning SBP minus the mean nocturnal SBP, both measured on the same day. The authors randomly allocated 129 patients to the valsartan/cilnidipine (63 patients; mean 68.4 years) or valsartan/hydrochlorothiazide (66 patients; mean 67.3 years) combination groups, and the baseline HMBPS values were 17.4 mm Hg vs 16.9 mm Hg, respectively (P = .820). At the end of the treatment period, the changes in nocturnal SBP and morning SBP from baseline were significant in both the valsartan/cilnidipine and valsartan/hydrochlorothiazide groups (P information and communication technology-based home BP monitoring device may become an alternative to ambulatory BP monitoring, which has been a gold standard to measure nocturnal BP and the morning BP surge. ©2018 Wiley Periodicals, Inc.

  20. Alternate site surge capacity in times of public health disaster maintains trauma center and emergency department integrity: Hurricane Katrina.

    Science.gov (United States)

    Eastman, Alexander L; Rinnert, Kathy J; Nemeth, Ira R; Fowler, Raymond L; Minei, Joseph P

    2007-08-01

    Hospital surge capacity has been advocated to accommodate large increases in demand for healthcare; however, existing urban trauma centers and emergency departments (TC/EDs) face barriers to providing timely care even at baseline patient volumes. The purpose of this study is to describe how alternate-site medical surge capacity absorbed large patient volumes while minimizing impact on routine TC/ED operations immediately after Hurricane Katrina. From September 1 to 16, 2005, an alternate site for medical care was established. Using an off-site space, the Dallas Convention Center Medical Unit (DCCMU) was established to meet the increased demand for care. Data were collected and compared with TC/ED patient volumes to assess impact on existing facilities. During the study period, 23,231 persons displaced by Hurricane Katrina were registered to receive evacuee services in the City of Dallas, Texas. From those displaced, 10,367 visits for emergent or urgent healthcare were seen at the DCCMU. The mean number of daily visits (mean +/- SD) to the DCCMU was 619 +/- 301 visits with a peak on day 3 (n = 1,125). No patients died, 3.2% (n = 257) were observed in the DCCMU, and only 2.9% (n = 236) required transport to a TC/ED. During the same period, the mean number of TC/ED visits at the region's primary provider of indigent care (Hospital 1) was 346 +/- 36 visits. Using historical data from Hospital 1 during the same period of time (341 +/- 41), there was no significant difference in the mean number of TC/ED visits from the previous year (p = 0.26). Alternate-site medical surge capacity provides for safe and effective delivery of care to a large influx of patients seeking urgent and emergent care. This protects the integrity of existing public hospital TC/ED infrastructure and ongoing operations.

  1. The combined risk of extreme tropical cyclone winds and storm surges along the U.S. Gulf of Mexico Coast

    Science.gov (United States)

    Trepanier, J. C.; Yuan, J.; Jagger, T. H.

    2017-03-01

    Tropical cyclones, with their nearshore high wind speeds and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting offshore economic activities. The combined risk of occurrence of tropical cyclone nearshore wind speeds and storm surges is assessed at 22 coastal cities throughout the United States Gulf of Mexico. The models used are extreme value copulas fitted with margins defined by the generalized Pareto distribution or combinations of Weibull, gamma, lognormal, or normal distributions. The statistical relationships between the nearshore wind speed and storm surge are provided for each coastal city prior to the copula model runs using Spearman's rank correlations. The strongest significant relationship between the nearshore wind speed and storm surge exists at Shell Beach, LA (ρ = 0.67), followed by South Padre Island, TX (ρ = 0.64). The extreme value Archimedean copula models for each city then provide return periods for specific nearshore wind speed and storm surge pairs. Of the 22 cities considered, Bay St. Louis, MS, has the shortest return period for a tropical cyclone with at least a 50 ms-1 nearshore wind speed and a 3 m surge (19.5 years, 17.1-23.5). The 90% confidence intervals are created by recalculating the return periods for a fixed set of wind speeds and surge levels using 100 samples of the model parameters. The results of this study can be utilized by policy managers and government officials concerned with coastal populations and economic activity in the Gulf of Mexico.

  2. Strategic Engagement of Technical Surge Capacity for Intensified Polio Eradication Initiative in Nigeria, 2012–2015

    Science.gov (United States)

    Yehualashet, Yared G.; Mkanda, Pascal; Gasasira, Alex; Erbeto, Tesfaye; Onimisi, Anthony; Horton, Janet; Banda, Richard; Tegegn, Sisay G.; Ahmed, Haruna; Afolabi, Oluwole; Wadda, Alieu; Vaz, Rui G.; Nsubuga, Peter

    2016-01-01

    Background. Following the 65th World Health Assembly (WHA) resolution on intensification of the Global Poliomyelitis Eradication Initiative (GPEI), the Nigerian government, with support from the World Health Organization (WHO) and other partners, implemented a number of innovative strategies to curb the transmission of wild poliovirus (WPV) in the country. One of the innovations successfully implemented since mid 2012 is the WHO's engagement of surge capacity personnel. Methods. The WHO reorganized its functional structure, adopted a transparent recruitment and deployment process, provided focused technical and management training, and applied systematic accountability framework to successfully manage the surge capacity project in close collaboration with the national counterparts and partners. The deployment of the surge capacity personnel was guided by operational and technical requirement analysis. Results. Over 2200 personnel were engaged, of whom 92% were strategically deployed in 11 states classified as high risk on the basis of epidemiological risk analysis and compromised security. These additional personnel were directly engaged in efforts aimed at improving the performance of polio surveillance, vaccination campaigns, increased routine immunization outreach sessions, and strengthening partnership with key stakeholders at the operational level, including community-based organizations. Discussion. Programmatic interventions were sustained in states in which security was compromised and the risk of polio was high, partly owing to the presence of the surge capacity personnel, who are engaged from the local community. Since mid-2012, significant programmatic progress was registered in the areas of polio supplementary immunization activities, acute flaccid paralysis surveillance, and routine immunization with the support of the surge capacity personnel. As of 19 June 2015, the last case of WPV was reported on 24 July 2014. The surge infrastructure has

  3. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    Directory of Open Access Journals (Sweden)

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  4. Pancreatic Tissue Transplanted in TheraCyte Encapsulation Devices Is Protected and Prevents Hyperglycemia in a Mouse Model of Immune-Mediated Diabetes.

    Science.gov (United States)

    Boettler, Tobias; Schneider, Darius; Cheng, Yang; Kadoya, Kuniko; Brandon, Eugene P; Martinson, Laura; von Herrath, Matthias

    2016-01-01

    Type 1 diabetes (T1D) is characterized by destruction of glucose-responsive insulin-producing pancreatic β-cells and exhibits immune infiltration of pancreatic islets, where CD8 lymphocytes are most prominent. Curative transplantation of pancreatic islets is seriously hampered by the persistence of autoreactive immune cells that require high doses of immunosuppressive drugs. An elegant approach to confer graft protection while obviating the need for immunosuppression is the use of encapsulation devices that allow for the transfer of oxygen and nutrients, yet prevent immune cells from making direct contact with the islet grafts. Here we demonstrate that macroencapsulation devices (TheraCyte) loaded with neonatal pancreatic tissue and transplanted into RIP-LCMV.GP mice prevented disease onset in a model of virus-induced diabetes mellitus. Histological analyses revealed that insulin-producing cells survived within the device in animal models of diabetes. Our results demonstrate that these encapsulation devices can protect from an immune-mediated attack and can contain a sufficient amount of insulin-producing cells to prevent overt hyperglycemia.

  5. SURGTANK, Steam Pressure, Saturation Temperature or Reactor Surge Tank

    International Nuclear Information System (INIS)

    Gorman, D.J.; Gupta, R.K.

    2001-01-01

    1 - Description of problem or function: SURGTANK generates the steam pressure, saturation temperature, and ambient temperature history for a nuclear reactor steam surge tank (pressurizer) in a state of thermodynamic equilibrium subjected to a liquid insurge described by a specified time history of liquid levels. It is capable also of providing the pressure and saturation temperature history, starting from thermodynamic equilibrium conditions, for the same tank subjected to an out-surge described by a time history of liquid levels. Both operations are available for light- or heavy- water nuclear reactor systems. The tank is assumed to have perfect thermal insulation on its outer wall surfaces. 2 - Method of solution: Surge tank geometry and initial liquid level and saturation pressure are provided as input for the out-surge problem, along with the prescribed time-sequence level history. SURGTANK assumes a reduced pressure for the end of the first change in liquid level and determines the associated change of entropy for the closed system. The assumed pressure is adjusted and the associated change in entropy recalculated until a pressure is attained for which no change occurs. This pressure is recorded and used as the beginning pressure for the next level increment. The system is then re-defined to exclude the small amount of liquid which has left the tank, and a solution for the pressure at the end of the second level increment is obtained. The procedure is terminated when the pressure at the end of the final increment has been determined. Surge tank geometry, thermal conductivity, specific heat, and density of tank walls, initial liquid level, and saturation pressure are provided as input for the insurge problem, along with the prescribed time-sequence level history. SURGTANK assumes a slightly in- creased pressure for the end of the first level, the inner tank sur- face is assumed to follow saturation temperature, linearly with time, throughout the interval, and

  6. Digital protection in power plants. Electrical unit and line protection. Digital protection systems for NPP

    International Nuclear Information System (INIS)

    Kaczmarek, A.

    2000-01-01

    In this presentation author deals with the digital protection systems for nuclear power plants. The evolution of protection devices, protection concept for power plants, concept of functional redundancy, references for digital protection, benefits for the customer well as concept fault recorder are presented. (author)

  7. Investigation of turbocharger compressor surge inception by means of an acoustic two-port model

    Science.gov (United States)

    Kabral, R.; Åbom, M.

    2018-01-01

    The use of centrifugal compressors have increased tremendously in the last decade being implemented in the modern IC engine design as a key component. However, an efficient implementation is restricted by the compression system surge phenomenon. The focus in the investigation of surge inception have mainly been on the aerodynamic field while neglecting the acoustic field. In the present work a new method based on the full acoustic 2-port model is proposed for investigation of centrifugal compressor stall and surge inception. Essentially, the compressor is acoustically decoupled from the compression system, hence enabling the determination of sound generation and the quantification of internal aero-acoustic coupling effects, both independently of the connected pipe system. These frequency dependent quantities are indicating if the compressor is prone to self-sustained oscillations in case of positive feedback when installed in a system. The method is demonstrated on experimentally determined 2-port data of an automotive turbocharger centrifugal compressor under a variety of realistic operating conditions.

  8. A Case Study of Preliminary Cost-Benefit Analysis of Building Levees to Mitigate the Joint Effects of Sea Level Rise and Storm Surge

    Directory of Open Access Journals (Sweden)

    Binbin Peng

    2018-02-01

    Full Text Available Sea-level rise (SLR will magnify the impacts of storm surge; the resulting severe flooding and inundation can cause huge damage to coastal communities. Community leaders are considering implementing adaptation strategies, typically hard engineering projects, to protect coastal assets and resources. It is important to understand the costs and benefits of the proposed project before any decision is made. To mitigate the flooding impact of joint effects of storm surge and SLR, building levee segments is chosen to be a corresponding adaptation strategy to protect the real estate assets in the study area—the City of Miami, FL, USA. This paper uses the classic Cost-Benefit Analysis (CBA to assess the cost efficiency and proposes corresponding improvements in the benefit estimation, by estimating the avoided damages of implementing levee projects. Results show that the city will benefit from implementing levee projects along the Miami River in both a one-time 10 year storm event with SLR and cumulative long-term damage scenarios. This study also suggests that conducting CBA is a critical process before making coastal adaptation planning investment. A more meaningful result of cost effectiveness is estimated by accounting for the appreciation and time value. In addition, a sensitivity analysis is conducted to verify how the choice of discount rate influences the result. Uncertain factors including the rate of SLR, storm intensification, land use changes, and real estate appreciation are further analyzed.

  9. Tide-surge historical assessment of extreme water levels for the St. Johns River: 1928-2017

    Science.gov (United States)

    Bacopoulos, Peter

    2017-10-01

    An historical storm population is developed for the St. Johns River, located in northeast Florida-US east coast, via extreme value assessment of an 89-year-long record of hourly water-level data. Storm surge extrema and the corresponding (independent) storm systems are extracted from the historical record as well as the linear and nonlinear trends of mean sea level. Peaks-over-threshold analysis reveals the top 16 most-impactful (storm surge) systems in the general return-period range of 1-100 years. Hurricane Matthew (2016) broke the record with a new absolute maximum water level of 1.56 m, although the peak surge occurred during slack tide level (0.00 m). Hurricanes and tropical systems contribute to return periods of 10-100 years with water levels in the approximate range of 1.3-1.55 m. Extratropical systems and nor'easters contribute to the historical storm population (in the general return-period range of 1-10 years) and are capable of producing extreme storm surges (in the approximate range of 1.15-1.3 m) on par with those generated by hurricanes and tropical systems. The highest astronomical tide is 1.02 m, which by evaluation of the historical record can contribute as much as 94% to the total storm-tide water level. Statically, a hypothetical scenario of Hurricane Matthew's peak surge coinciding with the highest astronomical tide would yield an overall storm-tide water level of 2.58 m, corresponding to an approximate 1000-year return period by historical comparison. Sea-level trends (linear and nonlinear) impact water-level return periods and constitute additional risk hazard for coastal engineering designs.

  10. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  11. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  12. Idealised modelling of storm surges in large-scale coastal basins

    NARCIS (Netherlands)

    Chen, Wenlong

    2015-01-01

    Coastal areas around the world are frequently attacked by various types of storms, threatening human life and property. This study aims to understand storm surge processes in large-scale coastal basins, particularly focusing on the influences of geometry, topography and storm characteristics on the

  13. Study on the stability of waterpower-speed control system for hydropower station with upstream and downstream surge chambers based on regulation modes

    International Nuclear Information System (INIS)

    Chen, J P; Yang, J D; Guo, W C; Teng, Y

    2014-01-01

    In allusion to the hydropower station with upstream and downstream surge chambers, a complete mathematical model of waterpower-speed control system that includes pipeline system and turbine regulation system is established under the premise of the breakthrough of Thoma assumption in this paper. The comprehensive transfer functions and free movement equations that characterize the dynamic characteristics of system are derived when the mode of governor is respectively frequency regulation and power regulation. Then according to Routh- Hurwitz theorem, the stability domain that describes the good or bad of stability is drawn in the coordinate system with the relative areas of upstream and downstream surge chambers as abscissa and ordinate respectively. Finally, the effects of Thoma assumption, flow inertia, regulation modes, and governor parameters on the stability of waterpower-speed control system are analyzed by means of stability domain. The following conclusions have been come to: Thoma assumption made the stability worse. The flow inertia T w has unfavorable effect on the stability of the two regulation modes. The stability of power regulation mode is obviously superior to frequency regulation mode under the same condition, but the parametric variation sensibility of the former is inferior to the latter. For the governor parameters, the stability continually gets better with the increase of temporary droop b t and damping device time constant T d , while the stability of frequency regulation would get worse with the increase of temporary droop b t when the damping device time constant T d takes small value. As the increase of permanent droop b p , the stability of power regulation mode gets worse

  14. Gender differences in use of hearing protection devices among farm operators

    Directory of Open Access Journals (Sweden)

    Marjorie C McCullagh

    2016-01-01

    Full Text Available Purpose: Although farm operators have frequent exposure to hazardous noise and high rates of noise-induced hearing loss, they have low use of hearing protection devices (HPDs. Women represent about one-third of farm operators, and their numbers are climbing. However, among published studies examining use of HPDs in this worker group, none have examined gender-related differences. The purpose of this study was to examine gender-related differences in use of hearing protection and related predictors among farm operators. Materials and Methods: Data previously collected at farm shows and by telephone were analyzed using t-tests and generalized linear model with zero inflated negative binomial (ZINB distribution. Findings: The difference in rate of hearing protector use between men and women farm operators was not significant. There was no difference between men and women in most hearing protector-related attitudes and beliefs. Conclusion: Although men and women farm operators had similar rates of use of hearing protectors when working in high-noise environments, attitudes about HPD use differed. Specifically, interpersonal role modeling was a predictor of HPD use among women, but not for men. This difference suggests that while farm operators of both genders may benefit from interventions designed to reduce barriers to HPD use (e.g., difficulty communicating with co-workers and hearing warning sounds, farm women have unique needs in relation to cognitive-perceptual factors that predict HPD use. Women farm operators may lack role models for use of HPDs (e.g., in peers and advertising, contributing to their less frequent use of protection.

  15. Purple pitcher plant (Sarracenia rosea Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    Directory of Open Access Journals (Sweden)

    Matthew J Abbott

    Full Text Available Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment. There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  16. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    Science.gov (United States)

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  17. Analytical technical of lightning surges induced on grounding mesh of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ikeda, I.; Tani, M.; Yonezawa, T.

    1990-01-01

    An analytical lightning surge technique is needed to make a qualitative and predictive evaluation of transient voltages induced on local grounding meshes and instrumentation cables by a lightning strike on a lightning rod in a PWR plant. This paper discusses an experiment with lightning surge impulses in a PWR plant which was setup to observe lightning caused transient voltages. Experimental data when compared with EMTP simulation results improved the simulation method. The improved method provides a good estimation of induced voltages on grounding meshes and instrumentation cables

  18. Effects of low speed wind on the recognition/identification and pass-through communication tasks of auditory situation awareness afforded by military hearing protection/enhancement devices and tactical communication and protective systems.

    Science.gov (United States)

    Lee, Kichol; Casali, John G

    2016-01-01

    To investigate the effect of controlled low-speed wind-noise on the auditory situation awareness performance afforded by military hearing protection/enhancement devices (HPED) and tactical communication and protective systems (TCAPS). Recognition/identification and pass-through communications tasks were separately conducted under three wind conditions (0, 5, and 10 mph). Subjects wore two in-ear-type TCAPS, one earmuff-type TCAPS, a Combat Arms Earplug in its 'open' or pass-through setting, and an EB-15LE electronic earplug. Devices with electronic gain systems were tested under two gain settings: 'unity' and 'max'. Testing without any device (open ear) was conducted as a control. Ten subjects were recruited from the student population at Virginia Tech. Audiometric requirements were 25 dBHL or better at 500, 1000, 2000, 4000, and 8000 Hz in both ears. Performance on the interaction of communication task-by-device was significantly different only in 0 mph wind speed. The between-device performance differences varied with azimuthal speaker locations. It is evident from this study that stable (non-gusting) wind speeds up to 10 mph did not significantly degrade recognition/identification task performance and pass-through communication performance of the group of HPEDs and TCAPS tested. However, the various devices performed differently as the test sound signal speaker location was varied and it appears that physical as well as electronic features may have contributed to this directional result.

  19. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device

    International Nuclear Information System (INIS)

    Duque, Hildanielle Ramos

    2015-01-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  20. The Development of High-speed Full-function Storm Surge Model and the Case Study of 2013 Typhoon Haiyan

    Science.gov (United States)

    Tsai, Y. L.; Wu, T. R.; Lin, C. Y.; Chuang, M. H.; Lin, C. W.

    2016-02-01

    An ideal storm surge operational model should feature as: 1. Large computational domain which covers the complete typhoon life cycle. 2. Supporting both parametric and atmospheric models. 3. Capable of calculating inundation area for risk assessment. 4. Tides are included for accurate inundation simulation. Literature review shows that not many operational models reach the goals for the fast calculation, and most of the models have limited functions. In this paper, a well-developed COMCOT (COrnell Multi-grid Coupled of Tsunami Model) tsunami model is chosen as the kernel to establish a storm surge model which solves the nonlinear shallow water equations on both spherical and Cartesian coordinates directly. The complete evolution of storm surge including large-scale propagation and small-scale offshore run-up can be simulated by nested-grid scheme. The global tide model TPXO 7.2 established by Oregon State University is coupled to provide astronomical boundary conditions. The atmospheric model named WRF (Weather Research and Forecasting Model) is also coupled to provide metrological fields. The high-efficiency thin-film method is adopted to evaluate the storm surge inundation. Our in-house model has been optimized by OpenMp (Open Multi-Processing) with the performance which is 10 times faster than the original version and makes it an early-warning storm surge model. In this study, the thorough simulation of 2013 Typhoon Haiyan is performed. The detailed results will be presented in Oceanic Science Meeting of 2016 in terms of surge propagation and high-resolution inundation areas.

  1. On the Response of Interleaved Transformer Windings to Surge Voltages

    DEFF Research Database (Denmark)

    Pedersen, A.

    1963-01-01

    The high series capacitance theory for the response of interleaved transformer windings to surge voltages is criticized from the point of view that an increased series capacitance as a result of interleaving is incompatible with the concept of a pure capacitive initial voltage distribution. A new...

  2. Analysis of coastal protection under rising flood risk

    Directory of Open Access Journals (Sweden)

    Megan J. Lickley

    2014-01-01

    Full Text Available Infrastructure located along the U.S. Atlantic and Gulf coasts is exposed to rising risk of flooding from sea level rise, increasing storm surge, and subsidence. In these circumstances coastal management commonly based on 100-year flood maps assuming current climatology is no longer adequate. A dynamic programming cost–benefit analysis is applied to the adaptation decision, illustrated by application to an energy facility in Galveston Bay. Projections of several global climate models provide inputs to estimates of the change in hurricane and storm surge activity as well as the increase in sea level. The projected rise in physical flood risk is combined with estimates of flood damage and protection costs in an analysis of the multi-period nature of adaptation choice. The result is a planning method, using dynamic programming, which is appropriate for investment and abandonment decisions under rising coastal risk.

  3. Numerical experiments of dynamical processes during the 2011-2013 surge of the Bering-Bagley Glacier System, using a full-Stokes finite element model

    Science.gov (United States)

    Trantow, Thomas

    The Bering-Bagley Glacial System (BBGS) is the largest glacier system outside of the Greenland and Antarctic ice sheets, and is the Earth's largest surge-type glacier. Surging is one of three types of glacial acceleration and the least understood one. Understanding glacial acceleration is paramount when trying to explain ice discharge to the oceans and the glacial contribution to sea-level rise, yet there are currently no numerical glacial models that account for surging. The recent 2011-2013 surge of the BBGS provides a rare opportunity to study the surge process through observations and the subsequent data analysis and numerical modeling. Using radar, altimeter, and image data collected from airborne and satellite missions, various descriptions of ice geometry are created at different times throughout the surge. Using geostatistical estimation techniques including variography and ordinary kriging, surface and bedrock Digital Elevation Maps (DEMs) are derived. A time series analysis of elevation change during the current surge is then conducted and validated using a complete error analysis along with airborne observations. The derived DEMs are then used as inputs to a computer simulated model of glacier dynamics in the BBGS. Using the Finite Element software Elmer/Ice, a full-Stokes simulation, with Glen's flow law for temperate ice, is created for numerical experiments. With consideration of free surface evolution, glacial hydrology and surface mass balance, the model is able to predict a variety of field variables including velocity, stress, strain-rate, pressure and surface elevation change at any point forward in time. These outputs are compared and validated using observational data such as CryoSat-2 altimetry, airborne field data, imagery and previous detailed analysis of the BBGS. Preliminary results reveal that certain surge phenomena such as surface elevation changes, surge progression and locations at which the surge starts, can be recreated using the

  4. African Journal of Biotechnology - Vol 10, No 17 (2011)

    African Journals Online (AJOL)

    Effect of temperature and salinity on germination of Achillea fragrantissima ... Efficiency and safety of percuSurge distal protection device in acute ... Effects of different doses of melamine in the diet on melamine concentrations in milk, plasma, ... Schwann cells promote neuronal differentiation of bone marrow stromal cells ...

  5. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  6. Hurricane Rita surge data, southwestern Louisiana and southeastern Texas, September to November 2005

    Science.gov (United States)

    McGee, Benton D.; Goree, Burl B.; Tollett, Roland W.; Woodward, Brenda K.; Kress, Wade H.

    2006-01-01

    Pressure transducers and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network consisting of 47 pressure transducers (sensors) was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast. Quality-assurance measures were used to assess the variability and accuracy of the water-level data recorded by the sensors. Water-level data from sensors were similar to data from co-located sensors, permanent U.S. Geological Survey streamgages, and water-surface elevations performed by field staff. Water-level data from sensors at selected locations were compared to corresponding high-water mark elevations. In general, the water-level data from sensors were similar to elevations of high quality high-water marks, while reporting consistently higher than elevations of lesser quality high-water marks.

  7. Mobile device security for dummies

    CERN Document Server

    Campagna, Rich; Krishnan, Ashwin

    2011-01-01

    The information you need to avoid security threats on corporate mobile devices Mobile devices have essentially replaced computers for corporate users who are on the go and there are millions of networks that have little to no security. This essential guide walks you through the steps for securing a network and building a bulletproof framework that will protect and support mobile devices in the enterprise. Featuring real-world case scenarios, this straightforward guide shares invaluable advice for protecting mobile devices from the loss of sensitive and confidential corporate informati

  8. Predicting the Storm Surge Threat of Hurricane Sandy with the National Weather Service SLOSH Model

    Directory of Open Access Journals (Sweden)

    Cristina Forbes

    2014-05-01

    Full Text Available Numerical simulations of the storm tide that flooded the US Atlantic coastline during Hurricane Sandy (2012 are carried out using the National Weather Service (NWS Sea Lakes and Overland Surges from Hurricanes (SLOSH storm surge prediction model to quantify its ability to replicate the height, timing, evolution and extent of the water that was driven ashore by this large, destructive storm. Recent upgrades to the numerical model, including the incorporation of astronomical tides, are described and simulations with and without these upgrades are contrasted to assess their contributions to the increase in forecast accuracy. It is shown, through comprehensive verifications of SLOSH simulation results against peak water surface elevations measured at the National Oceanic and Atmospheric Administration (NOAA tide gauge stations, by storm surge sensors deployed and hundreds of high water marks collected by the U.S. Geological Survey (USGS, that the SLOSH-simulated water levels at 71% (89% of the data measurement locations have less than 20% (30% relative error. The RMS error between observed and modeled peak water levels is 0.47 m. In addition, the model’s extreme computational efficiency enables it to run large, automated ensembles of predictions in real-time to account for the high variability that can occur in tropical cyclone forecasts, thus furnishing a range of values for the predicted storm surge and inundation threat.

  9. Cerebral protection devices for use during carotid artery angioplasty with stenting: a health technology assessment.

    Science.gov (United States)

    Menon, Devidas; Stafinski, Tania

    2006-01-01

    This study sought to examine the safety, efficacy, and economic implications of the use of cerebral protection devices during carotid artery angioplasty and stenting (CAS) in high-risk patients with severe carotid artery disease (CAD). A comprehensive search for peer- and non-peer-reviewed studies that compared carotid endarterectomy (CEA) or CAS without cerebral protection to CAS with cerebral protection and appeared in the English language literature between January 1990 and January 2005 was completed. Information from studies identified was extracted using a common data abstraction form and then critically appraised against published quality assessment criteria. Of the eight studies found, six provided information on technical or procedural success rates, with values ranging from 95.6 percent to 100 percent. Three of the four studies comparing groups of patients who received CAS with cerebral protection with those who received only CAS reported a non-statistically significantly higher 30-day incidence of death and stroke (major or minor) in the latter group. None of the three studies comparing CAS with cerebral protection to CEA demonstrated a statistically significant difference in the 30-day incidence of death, major stroke, or myocardial infarction between treatment groups. No economic analyses were found. In high-risk patients with severe CAD, the evidence suggests that CAS with cerebral protection may offer a safe and efficacious alternative to CEA, reducing the risk of embolic peri-procedural complications associated with CAS to acceptable levels.

  10. Potential Hydrodynamic Loads on Coastal Bridges in the Greater New York Area due to Extreme Storm Surge and Wave

    Science.gov (United States)

    2018-04-18

    This project makes a computer modeling study on vulnerability of coastal bridges in New York City (NYC) metropolitan region to storm surges and waves. Prediction is made for potential surges and waves in the region and consequent hydrodynamic load an...

  11. 33 CFR 159.75 - Overcurrent protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Overcurrent protection. 159.75...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.75 Overcurrent protection. Overcurrent protection must be provided within the unit to protect subcomponents of the device if the...

  12. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens

    Science.gov (United States)

    Gardner, J. E.; Andrews, B. J.

    2016-12-01

    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  13. Combined effect of upstream surge chamber and sloping ceiling tailrace tunnel on dynamic performance of turbine regulating system of hydroelectric power plant

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong

    2017-01-01

    Highlights: • Nonlinear mathematical model and Hopf bifurcation analysis of turbine regulating system are presented. • Dynamic performance of turbine regulating system under 0.5 times Thoma sectional area is analyzed and a novel dynamic performance is revealed. • Relationship between two bifurcation lines and wave superposition is studied. • Combined effect mechanisms of upstream surge chamber and sloping ceiling tailrace tunnel on stability are revealed and optimization methods are proposed. - Abstract: Based on the nonlinear mathematical model of the turbine regulating system of hydroelectric power plant with upstream surge chamber and sloping ceiling tailrace tunnel and the Hopf bifurcation theory, this paper firstly studies the dynamic performance of the turbine regulating system under 0.5 times Thoma sectional area of surge chamber, and reveals a novel dynamic performance. Then, the relationship between the two bifurcation lines and the wave superposition of upstream surge chamber and sloping ceiling tailrace tunnel is analyzed. Finally, the effect mechanisms of the wave superposition on the system stability are investigated, and the methods to improve the system stability are proposed. The results indicate that: Under the combined effect of upstream surge chamber and sloping ceiling tailrace tunnel, the dynamic performance of the turbine regulating system of hydroelectric power plant shows an obvious difference on the two sides of the critical sectional area of surge chamber. There are two bifurcation lines for the condition of 0.5 times Thoma sectional area, i.e. Bifurcation line 1 and Bifurcation line 2, which represent the stability characteristics of the flow oscillation of “penstock-sloping ceiling tailrace tunnel” and the water-level fluctuation in upstream surge chamber, respectively. The stable domain of the system is determined by Bifurcation line 2. The effect of upstream surge chamber mainly depends on its sectional area, while the

  14. Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakot

    Science.gov (United States)

    Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin

    2017-08-01

    The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.

  15. Different critical perinatal periods and hypothalamic sites of oestradiol action in the defeminisation of luteinising hormone surge and lordosis capacity in the rat.

    Science.gov (United States)

    Sakakibara, M; Deura, C; Minabe, S; Iwata, Y; Uenoyama, Y; Maeda, K-I; Tsukamura, H

    2013-03-01

    Female rats show a gonadotrophin-releasing hormone (GnRH)/luteinising hormone (LH) surge in the presence of a preovulatory level of oestrogen, whereas males do not because of brain defeminisation during the developmental period by perinatal oestrogen converted from androgen. The present study aimed to identify the site(s) of oestrogen action and the critical period for defeminising the mechanism regulating the GnRH/LH surge. Animals given perinatal treatments, such as steroidal manipulations, brain local implantation of oestradiol (E(2) ) or administration of an NMDA antagonist, were examined for their ability to show an E(2) -induced LH surge at adulthood. Lordosis behaviour was examined to compare the mechanisms defeminising the GnRH/LH surge and sexual behaviour. A single s.c. oestradiol-benzoate administration on either the day before birth (E21), the day of birth (D0) or day 5 (D5) postpartum completely abolished the E(2) -induced LH surge at adulthood in female rats, although the same treatment did not inhibit lordosis. Perinatal castration on E21 or D0 partially rescued the E2-induced LH surge in genetically male rats, whereas castration from E21 to D5 totally rescued lordosis. Neonatal E(2) implantation in the anterior hypothalamus including the anteroventral periventricular nucleus (AVPV)/preoptic area (POA) abolished the E(2) -induced LH surge in female rats, whereas E(2) implantation in the mid and posterior hypothalamic regions had no inhibitory effect on the LH surge. Lordosis was not affected by neonatal E(2) implantation in any hypothalamic regions. In male rats, neonatal NMDA antagonist treatment rescued lordosis but not the LH surge. Taken together, these results suggest that an anterior hypothalamic region such as the AVPV/POA region is a perinatal site of oestrogen action where the GnRH/LH regulating system is defeminised to abolish the oestrogen-induced surge. The mechanism for defeminisation of the GnRH/LH surge system might be different from

  16. Functional needs which led to the use of digital computing devices in the protection system of 1300 MW units

    International Nuclear Information System (INIS)

    Dalle, H.

    1986-01-01

    After a review of classical protection functions used in 900 MW power plants, it is concluded that in order to have functioning margins it is useful to calculate more finely the controled parameters. These calculating needs lead to the use of digital computing devices. Drawing profit from the new possibilities one can improve the general performances of the protection system with regard to availability, safety and maintenance. These options in the case of PALUEL led to the realization of SPIN, described here

  17. Adjusting the Parameters of Metal Oxide Gapless Surge Arresters’ Equivalent Circuits Using the Harmony Search Method

    Directory of Open Access Journals (Sweden)

    Christos A. Christodoulou

    2017-12-01

    Full Text Available The appropriate circuit modeling of metal oxide gapless surge arresters is critical for insulation coordination studies. Metal oxide arresters present a dynamic behavior for fast front surges; namely, their residual voltage is dependent on the peak value, as well as the duration of the injected impulse current, and should therefore not only be represented by non-linear elements. The aim of the current work is to adjust the parameters of the most frequently used surge arresters’ circuit models by considering the magnitude of the residual voltage, as well as the dissipated energy for given pulses. In this aim, the harmony search method is implemented to adjust parameter values of the arrester equivalent circuit models. This functions by minimizing a defined objective function that compares the simulation outcomes with the manufacturer’s data and the results obtained from previous methodologies.

  18. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    Science.gov (United States)

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  19. Reactor protection device

    Energy Technology Data Exchange (ETDEWEB)

    Shida, T; Hirose, M

    1977-01-19

    Purpose: To prevent abrupt increase or decrease in the recycling flow rate by comparing output signals from controllers in each of the loops in the recycling flow rate control system to lock the positions of fluid coupling scooping pipes or flow control valves corresponding to the groups generating abnormal signals. Constitution: The recycling flow rate is controlled by the r.p.m. of a motor directly coupled with a recycling pump and the value of r.p.m. is in proportion to the generator frequency varied with the sliding operation of the fluid coupling in MG set. The sliding operation of the fluid coupling is adjusted by a scooping pipe driver. When the device is set to automatic operation, the output signal of the main controller is delivered to the recycling flow rate control system, the output signal of which is input to respective scooping pipe drivers. The loop output signals are supplied to an adder where the deviation signal between both of them are detected and the scooping pipe is locked if the set value is exceeded.

  20. Reactor protection device

    International Nuclear Information System (INIS)

    Shida, Toichi; Hirose, Masao.

    1977-01-01

    Purpose: To prevent abrupt increase or decrease in the recycling flow rate by comparing output signals from controllers in each of the loops in the recycling flow rate control system to thereby lock the positions of fluid coupling scooping pipes or flow control valves corresponding to the groups generating abnormal signals. Constitution: The recycling flow rate is controlled by r.p.m. of a motor directly coupled with a recycling pump and the value of r.p.m. is in proportion to the generator frequency varied with the sliding operation of the fluid coupling in MG set. The sliding operation of the fluid coupling is adjusted by a scooping pipe driver. When the device is set to automatic operation, the output signal of the main controller is delivered to the recycling flow rate control system, the output signal of which is input to respective scooping pipe drivers. The loop output signals are supplied to an adder where the deviation signal between both of them are detected and the scooping pipe is locked if the set value is exceeded. (Yoshino, M.)

  1. Protection for a thermonuclear device

    International Nuclear Information System (INIS)

    Shimada, Ryuichi; Sasatani, Shin-ichi.

    1983-01-01

    Purpose: To suppress an abnormal voltage due to potential changes by a characteristic impedance composed of a discharge gap, a resistance and a capacitor, as well as absorb the energy of the abnormal voltage by properly selecting the current capacity of the resistor. Constitution: An abnormal voltage generated in a current transformer coils is detected by an abnormal voltage detector and an output signal therefrom causes a high voltage generating device to generate a high voltage, whereby electric discharge is taken place across a discharge gap to absorb the energy of the abnormal voltage in a resistor and a capacitor. For the abnormal voltage from the plasmas, the voltage across the transformer coils can be suppressed to some extent by selecting the impedance for the current transformer coils and the impedance for the parallel circuit of the resistor and the capacitor to an appropriate ratio. While on the other hand, after throwing a switcher by the actuation of a switcher control device, the energy for the abnormal voltage can sufficiently be absorbed through the internal resistance of the transformer coils and the resistance for the entire current. (Yoshino, Y.)

  2. On the Importance of the Nonequilibrium Ionization of Si IV and O IV and the Line of Sight in Solar Surges

    Science.gov (United States)

    Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J.

    2018-05-01

    Surges are ubiquitous cool ejections in the solar atmosphere that often appear associated with transient phenomena like UV bursts or coronal jets. Recent observations from the Interface Region Imaging Spectrograph show that surges, although traditionally related to chromospheric lines, can exhibit enhanced emission in Si IV with brighter spectral profiles than for the average transition region (TR). In this paper, we explain why surges are natural sites to show enhanced emissivity in TR lines. We performed 2.5D radiative-MHD numerical experiments using the Bifrost code including the nonequilibrium (NEQ) ionization of silicon and oxygen. A surge is obtained as a by-product of magnetic flux emergence; the TR enveloping the emerged domain is strongly affected by NEQ effects: assuming statistical equilibrium would produce an absence of Si IV and O IV ions in most of the region. Studying the properties of the surge plasma emitting in the Si IV λ1402.77 and O IV λ1401.16 lines, we find that (a) the timescales for the optically thin losses and heat conduction are very short, leading to departures from statistical equilibrium, and (b) the surge emits in Si IV more and has an emissivity ratio of Si IV to O IV larger than a standard TR. Using synthetic spectra, we conclude the importance of line-of-sight effects: given the involved geometry of the surge, the line of sight can cut the emitting layer at small angles and/or cross it multiple times, causing prominent, spatially intermittent brightenings in both Si IV and O IV.

  3. Climate Change Impacts on Flood risk in Urban Areas due to Combined Effects of Extreme Precipitation and Sea Surges

    DEFF Research Database (Denmark)

    Larsen, A. N.; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten

    Climate change will impact the hydrological cycle greatly and lead to increases in flood hazards due to both pluvial and fluvial floods as well as sea surges in many regions. The impacts of the individual effects are analysed for a catchment in Greater Copenhagen. Based on both the present...... surges. Presently the most important hazard is due to extreme precipitation. However, due to climate change impacts the future most important hazard is due to sea surges. The increase in probability of floods is substantial over a 70 year horizon and actions must be taken to decrease either the hazards...

  4. Influence of stent design and use of protection devices on outcome of carotid artery stenting: a pooled analysis of individual patient data.

    Science.gov (United States)

    Wodarg, Fritz; Turner, Elisabeth L; Dobson, Joanna; Ringleb, Peter A; Mali, Willem P; Fraedrich, Gustav; Chatellier, Gilles; Bequemin, Jean-Pierre; Brown, Martin M; Algra, Ale; Mas, Jean-Louis; Jansen, Olav; Bonati, Leo H

    2018-04-19

    Carotid artery stenting is an alternative to endarterectomy for the treatment of symptomatic carotid stenosis but was associated with a higher risk of procedural stroke or death in randomized controlled trials (RCTs). Technical aspects of treatment may partly explain these results. The purpose of this analysis was to investigate the influence of technical aspects such as stent design or the use of protection devices, as well as clinical variables, on procedural risk. We pooled data of 1557 individual patients receiving stent treatment in three large RCTs comparing stenting versus endarterectomy for symptomatic carotid stenosis. The primary outcome event was any procedural stroke or death occurring within 30 days after stenting. Procedural stroke or death occurred significantly more often with the use of open-cell stents (61/595 patients, 10.3%) than with closed-cell stents (58/962 patients, 6.0%; RR 1.76; 95% CI 1.23 to 2.52; P=0.002). Procedural stroke or death occurred in 76/950 patients (8.0%) treated with protection devices (predominantly distal filters) and in 43/607 (7.1%) treated without protection devices (RR 1.10; 95% CI 0.71 to 1.70; P=0.67). Clinical variables predicting the primary outcome event were age, severity of the qualifying event, history of prior stroke, and level of disability at baseline. The effect of stent design remained similar after adjustment for these variables. In symptomatic carotid stenosis, the use of stents with a closed-cell design is independently associated with a lower risk of procedural stroke or death compared with open-cell stents. Filter-type protection devices do not appear to reduce procedural risk. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska

    Science.gov (United States)

    Terenzi, John; Ely, Craig R.; Jorgenson, M. Torre

    2014-01-01

    Coastal regions of Alaska are regularly affected by intense storms of ocean origin, the frequency and intensity of which are expected to increase as a result of global climate change. The Yukon-Kuskokwim Delta (YKD), situated in western Alaska on the eastern edge of the Bering Sea, is one of the largest deltaic systems in North America. Its low relief makes it especially susceptible to storm-driven flood tides and increases in sea level. Little information exists on the extent of flooding caused by storm surges in western Alaska and its effects on salinization, shoreline erosion, permafrost thaw, vegetation, wildlife, and the subsistence-based economy. In this paper, we summarize storm flooding events in the Bering Sea region of western Alaska during 1913 – 2011 and map both the extent of inland flooding caused by autumn storms on the central YKD, using Radarsat-1 and MODIS satellite imagery, and the drift lines, using high-resolution IKONOS satellite imagery and field surveys. The largest storm surges occurred in autumn and were associated with high tides and strong (> 65 km hr-1) southwest winds. Maximum inland extent of flooding from storm surges was 30.3 km in 2005, 27.4 km in 2006, and 32.3 km in 2011, with total flood area covering 47.1%, 32.5%, and 39.4% of the 6730 km2 study area, respectively. Peak stages for the 2005 and 2011 storms were 3.1 m and 3.3 m above mean sea level, respectively—almost as high as the 3.5 m amsl elevation estimated for the largest storm observed (in November 1974). Several historically abandoned village sites lie within the area of inundation of the largest flood events. With projected sea level rise, large storms are expected to become more frequent and cover larger areas, with deleterious effects on freshwater ponds, non-saline habitats, permafrost, and landscapes used by nesting birds and local people.

  6. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  7. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  8. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  9. Use of Lean response to improve pandemic influenza surge in public health laboratories.

    Science.gov (United States)

    Isaac-Renton, Judith L; Chang, Yin; Prystajecky, Natalie; Petric, Martin; Mak, Annie; Abbott, Brendan; Paris, Benjamin; Decker, K C; Pittenger, Lauren; Guercio, Steven; Stott, Jeff; Miller, Joseph D

    2012-01-01

    A novel influenza A (H1N1) virus detected in April 2009 rapidly spread around the world. North American provincial and state laboratories have well-defined roles and responsibilities, including providing accurate, timely test results for patients and information for regional public health and other decision makers. We used the multidisciplinary response and rapid implementation of process changes based on Lean methods at the provincial public health laboratory in British Columbia, Canada, to improve laboratory surge capacity in the 2009 influenza pandemic. Observed and computer simulating evaluation results from rapid processes changes showed that use of Lean tools successfully expanded surge capacity, which enabled response to the 10-fold increase in testing demands.

  10. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad

    2013-08-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  11. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, Ibrahim

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  12. Tropical Cyclone Storm Surge Inundation and Velocity Hazard Mapping of the State of Andhra Pradesh (India) using ADCIRC

    Science.gov (United States)

    Brackins, J. T.; Kalyanapu, A. J.

    2017-12-01

    The Northern Indian Ocean Bay of Bengal region, including parts of India, Bangladesh, Myanmar, and Sri Lanka, is the largest bay in the world and is structured in such a manner as to produce the world's largest tropical cyclone (TC) storm surges (SS), with approximately five surge events greater than 5 meters in magnitude each decade. (Needham et al. 2015). Although some studies have been performed to attempt to capture the magnitude and location of historical surges (Shaji et al. 2014) and to model surges in the immediate sense, there is a notable lack of application to the effects on coastal infrastructure in these areas. Given that these areas are some of the most densely populated and least economically able to prepare and recover, it is important to consider the potential effects of storm surge to discover areas where improvements can be made with the limited resources available to these areas. To this end, an ADvanced-CIRCulation (ADCIRC) model (Luettich and Westerink 2004) was created for the Bay of Bengal, using the General Bathymetric Chart of the Oceans (GEBCO 2014) as bathymetric and topographic data, and a combination of the Joint Typhoon Warning Center (JTWC) and India Meteorological Department (IMD) records for storm tracks. For the state of Andhra Pradesh, several major TC events ranging from 1977 to 2014 were selected to be modeled with the goal of creating hazard maps of storm surge inundation and velocity for the state. These hazard maps would be used to identify high-vulnerability areas with the goal of implementing land-use planning and coastal development practices that will aid in ameliorating both the loss of life and economic damages sustained as a result of these TCs.

  13. Geology of proximal, small-volume trachyte-trachyandesite pyroclastic flows and associated surge deposits, Roccamonfina volcano, Italy

    Science.gov (United States)

    Giannetti, Bernardino

    1998-01-01

    This paper describes the 232 ka B.P. MTTT trachyte-trachyandesite pyroclastic succession of Roccamonfina volcano. This small-volume, proximal sequence crops out along Mulino di Sotto, Paratone, and Pisciariello ravines in the southwest sector of the central caldera, and covers a minimum extent of 3.5 km 2 area. It is made up of seven pyroclastic flows and pyroclastic surge units consisting of trachytic ash matrix containing juvenile trachyandesitic scoria and dense lava fragments, pumice clasts of uncertain trachyandesite, and a foreign trachyandesitic lithic facies. Two stratigraphic markers allow correlation of the units. No paleosoils and Plinian fallout have been observed at the base and within the succession. Some lateral grading of scoria and lithic clasts suggests that MTTT derived from three distinct source vents. The sequence consists of a basal ash flow passing laterally to laminated surge deposits (Unit A). This is overlain by a reversely graded scoria and pumice lapilli flow (Unit B) which is in turn overlain by a thinly cross-stratified scoria lapilli surge (Unit C). Unit C is capped by a prominent ash-and-scoria flow (Unit D). A ground layer (Marker MK1) divides Unit D from a massive ignimbrite which grades upcurrent to sand-wave surge deposits (Unit E). Another ground layer (Marker MK2) separates Unit E from Unit F. This unit consists of a basal ignimbrite passing laterally to bedded surge deposits with convolute structures (subunit Fl), and grading upcurrent to a subhorizontally plane-laminated ash cloud (subunit F2) containing near the top a layer of millimetric lithic clasts embedded in fine ash. The succession is closed by the pyroclastic flow Unit G. Surge Unit C can be interpreted in terms of vertical gradients in turbulence, particle concentration, and velocity during flowage, whereas the bedded surge parts present in the massive deposits of Units A and E-F1 can be related to abrupt changes of velocity down the steep slopes of ravines. Reverse

  14. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    Science.gov (United States)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  15. An experimental description of the flow in a centrifugal compressor from alternate stall to surge

    Science.gov (United States)

    Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.

    2017-08-01

    The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.

  16. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad

    2014-08-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  17. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Mayo, T.; Luo, X.; Dawson, C.; Heemink, A. W.; Hoteit, Ibrahim

    2014-01-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  18. Surge capacity logistics: care of the critically ill and injured during pandemics and disasters: CHEST consensus statement.

    Science.gov (United States)

    Einav, Sharon; Hick, John L; Hanfling, Dan; Erstad, Brian L; Toner, Eric S; Branson, Richard D; Kanter, Robert K; Kissoon, Niranjan; Dichter, Jeffrey R; Devereaux, Asha V; Christian, Michael D

    2014-10-01

    Successful management of a pandemic or disaster requires implementation of preexisting plans to minimize loss of life and maintain control. Managing the expected surges in intensive care capacity requires strategic planning from a systems perspective and includes focused intensive care abilities and requirements as well as all individuals and organizations involved in hospital and regional planning. The suggestions in this article are important for all involved in a large-scale disaster or pandemic, including front-line clinicians, hospital administrators, and public health or government officials. Specifically, this article focuses on surge logistics-those elements that provide the capability to deliver mass critical care. The Surge Capacity topic panel developed 23 key questions focused on the following domains: systems issues; equipment, supplies, and pharmaceuticals; staffing; and informatics. Literature searches were conducted to identify studies upon which evidence-based recommendations could be made. The results were reviewed for relevance to the topic, and the articles were screened by two topic editors for placement within one of the surge domains noted previously. Most reports were small scale, were observational, or used flawed modeling; hence, the level of evidence on which to base recommendations was poor and did not permit the development of evidence-based recommendations. The Surge Capacity topic panel subsequently followed the American College of Chest Physicians (CHEST) Guidelines Oversight Committee's methodology to develop suggestion based on expert opinion using a modified Delphi process. This article presents 22 suggestions pertaining to surge capacity mass critical care, including requirements for equipment, supplies, and pharmaceuticals; staff preparation and organization; methods of mitigating overwhelming patient loads; the role of deployable critical care services; and the use of transportation assets to support the surge response

  19. Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure

    Directory of Open Access Journals (Sweden)

    Yong-liang Zhang

    2010-06-01

    Full Text Available This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.

  20. ISSN 2073 ISSN 2073-9990 East Cent. Afr. J. surg. (Online) 9990 ...

    African Journals Online (AJOL)

    Prof Kakande

    Afr. J. surg. ..... September/October 2003. 3. Hardin R, Stevenson M, Downie W, Wilson G. Assessment of clinical competence using objective ... Michael J. Griesser, Matthew C. Beran, David C. Flanigan, Michael Quackenbush, DO, Corey Van ...

  1. The benefits of designing a stratification system for New York City pediatric intensive care units for use in regional surge capacity planning and management.

    Science.gov (United States)

    Campbell, Christiana

    2010-08-01

    Accurate assessment of New York City (NYC) pediatric intensive care unit (PICU) resources and the ability to surge them during a disaster has been recognized as an important citywide emergency preparedness activity. However, while NYC hospitals with PICUs may be expected to surge in a disaster, few of them have detailed surge capacity plans. This will likely make it difficult for them to realize their full surge capacity both on individual and regional levels. If the pediatric resources that each NYC PICU hospital has can be identified prior to a disaster, this information can be used to both determine appropriate surge capacity goals for each PICU hospital and the additional resources needed to reach those goals. City agencies can then focus citywide planning efforts on making these resources available and more easily anticipate what a hospital will need during a disaster. Communication of this hospital information both prior to and during a surge situation will be aided by a stratification system familiar to both city planners and hospitals. The goal of this project was to design a NYC PICU surge stratification system that would aid physicians, hospitals and city agencies in regional surge capacity planning for critical pediatric patients. This goal was demonstrated through two objectives. The first identified major factors to consider when designing a stratification system. The second devised a preliminary system of PICU stratification based on clinical criteria and resources.

  2. Hindcast and validation of Hurricane Ike waves, forerunner, and storm surge

    NARCIS (Netherlands)

    Hope, M.E.; Westerink, J.J.; Kennedy, A.B.; Kerr, P.C.; Dietrich, J.C.; Dawson, C.; Bender, C.J.; Smith, J.M.; Jensen, R.E.; Zijlema, M.; Holthuijsen, L.H.; Luettich, R.A.; Powell, M.D.; Cardone, V.J.; Cox, A.T.; Pourtaheri, H.; Roberts, H.J.; Atkinson, J.H.; Tanaka, S.; Westerink, H.J.; Westerink, L.G.

    2013-01-01

    Hurricane Ike (2008) made landfall near Galveston, Texas, as a moderate intensity storm. Its large wind field in conjunction with the Louisiana-Texas coastline's broad shelf and large scale concave geometry generated waves and surge that impacted over 1000 km of coastline. Ike's complex and varied

  3. A Tsunami Ball Approach to Storm Surge and Inundation: Application to Hurricane Katrina, 2005

    Directory of Open Access Journals (Sweden)

    Steven N. Ward

    2009-01-01

    Full Text Available Most analyses of storm surge and inundation solve equations of continuity and momentum on fixed finite-difference/finite-element meshes. I develop a completely new approach that uses a momentum equation to accelerate bits or balls of water over variable depth topography. The thickness of the water column at any point equals the volume density of balls there. In addition to being more intuitive than traditional methods, the tsunami ball approach has several advantages. (a By tracking water balls of fixed volume, the continuity equation is satisfied automatically and the advection term in the momentum equation becomes unnecessary. (b The procedure is meshless in the finite-difference/finite-element sense. (c Tsunami balls care little if they find themselves in the ocean or inundating land. (d Tsunami ball calculations of storm surge can be done on a laptop computer. I demonstrate and calibrate the method by simulating storm surge and inundation around New Orleans, Louisiana caused by Hurricane Katrina in 2005 and by comparing model predictions with field observations. To illustrate the flexibility of the tsunami ball technique, I run two “What If” hurricane scenarios—Katrina over Savannah, Georgia and Katrina over Cape Cod, Massachusetts.

  4. Mobile Device Accuracy for Step Counting Across Age Groups.

    Science.gov (United States)

    Modave, François; Guo, Yi; Bian, Jiang; Gurka, Matthew J; Parish, Alice; Smith, Megan D; Lee, Alexandra M; Buford, Thomas W

    2017-06-28

    Only one in five American meets the physical activity recommendations of the Department of Health and Human Services. The proliferation of wearable devices and smartphones for physical activity tracking has led to an increasing number of interventions designed to facilitate regular physical activity, in particular to address the obesity epidemic, but also for cardiovascular disease patients, cancer survivors, and older adults. However, the inconsistent findings pertaining to the accuracy of wearable devices for step counting needs to be addressed, as well as factors known to affect gait (and thus potentially impact accuracy) such as age, body mass index (BMI), or leading arm. We aim to assess the accuracy of recent mobile devices for counting steps, across three different age groups. We recruited 60 participants in three age groups: 18-39 years, 40-64 years, and 65-84 years, who completed two separate 1000 step walks on a treadmill at a self-selected speed between 2 and 3 miles per hour. We tested two smartphones attached on each side of the waist, and five wrist-based devices worn on both wrists (2 devices on one wrist and 3 devices on the other), as well as the Actigraph wGT3X-BT, and swapped sides between each walk. All devices were swapped dominant-to-nondominant side and vice-versa between the two 1000 step walks. The number of steps was recorded with a tally counter. Age, sex, height, weight, and dominant hand were self-reported by each participant. Among the 60 participants, 36 were female (60%) and 54 were right-handed (90%). Median age was 53 years (min=19, max=83), median BMI was 24.1 (min=18.4, max=39.6). There was no significant difference in left- and right-hand step counts by device. Our analyses show that the Fitbit Surge significantly undercounted steps across all age groups. Samsung Gear S2 significantly undercounted steps only for participants among the 40-64 year age group. Finally, the Nexus 6P significantly undercounted steps for the group

  5. Employing high resolution satellite imagery to document a rapid glacier surge in the Karakoram - risks and opportunities for hazard assessment

    Science.gov (United States)

    Steiner, J. F.; Kraaijenbrink, P. D. A.; Jiduc, S. G.; Immerzeel, W. W.

    2017-12-01

    Glacier surges occur regularly in the Karakoram but their driving mechanisms, recurrence and its relation to climatic change remain unclear. Since many glacier tongues in the region reach to very low elevations, local populations are often exposed to glacial hazards. While the scientific interpretation of hazard is one challenge, adequately communicating results to possibly affected stakeholders poses a different set of hurdles. Using DEMs as well as Landsat imagery in combination with high-resolution Planet imagery we quantify surface elevation changes and flow velocities to document a glacier surge of the Khurdopin glacier, located in a remote valley in Pakistan, in the first half of 2017. Results reveal that an accumulation of ice mass leads to a rapid surge in peaking with velocities above 5000 m a-1 or 0.5 m h-1 during a few days. Velocities increase steadily during a four-year build-up phase prior to the actual surge, while the remaining 15 years of the recurring cycle the glacier is quiescent. It is hypothesized that the surge is mainly initiated as a result of increased pressure melting caused by ice accumulation. However, surface observations show increased crevassing and disappearance of supra glacial ponds, which could have led to increased lubrication of the glacier bed. As a consequence of the surging tongue blocking the main valley a lake has formed and grown continuously in size over two months at a rate of up to 3000 m2 per day. Using satellite imagery with a frequent overpass rate we are able to (a) characterize the nature of glacier surges in the region with greater detail and (b) monitor the surge as well as the formation of the lake as it develops. Having developed a connection to local stakeholders we were able to provide rapid hazard assessments to affected communities, which can be employed to define possible actions. We show the potential of satellite imagery - freely available Landsat in combination with commercial Planet imagery -, which

  6. Using 18th century storm-surge data from the Dutch Coast to improve the confidence in flood-risk estimates

    NARCIS (Netherlands)

    Baart, F.; Bakker, M.A.J.; Van Dongeren, A.; Den Heijer, C.; Van Heteren, S.; Smit, M.W.J.; Van Koningsveld, M.; Pool, A.

    2011-01-01

    For the design of cost-effective coastal defence a precise estimate is needed of the 1/10 000 per year storm surge. A more precise estimate requires more observations. Therefore, the three greatest storm surges that hit the northern part of the Holland Coast in the 18th century are reconstructed.

  7. Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.

    1999-01-01

    The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.

  8. Surging Seas Risk Finder: A Tool for Local-Scale Flood Risk Assessments in Coastal Cities

    Science.gov (United States)

    Kulp, S. A.; Strauss, B.

    2015-12-01

    Local decision makers in coastal cities require accurate, accessible, and thorough assessments of flood exposure risk within their individual municipality, in their efforts to mitigate against damage due to future sea level rise. To fill this need, we have developed Climate Central's Surging Seas Risk Finder, an interactive data toolkit which presents our sea level rise and storm surge analysis for every coastal town, city, county, and state within the USA. Using this tool, policy makers can easily zoom in on their local place of interest to receive a detailed flood risk assessment, which synthesizes a wide range of features including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and many other critical facilities. Risk Finder can also be used to identify specific points of interest in danger of exposure at different flood levels. Additionally, this tool provides localized storm surge probabilities and sea level rise projections at tidal gauges along the coast, so that users can quickly understand the risk of flooding in their area over the coming decades.

  9. Control of the Estradiol-Induced Prolactin Surge by the Suprachiasmatic Nucleus

    NARCIS (Netherlands)

    Palm, Inge F.; van der Beek, Eline M.; Swarts, Hans J. M.; van der Vliet, Jan; Wiegant, Victor M.; Buijs, Ruud M.; Kalsbeek, Andries

    2001-01-01

    In the present study we investigated how the suprachiasmatic nucleus (SCN) controls the E(2)-induced PRL surge in female rats. First, the role of vasopressin (VP), a SCN transmitter present in medial preoptic area (MPO) projections and rhythmically released by SCN neurons, as a circadian signal for

  10. Relationships between the luteinizing hormone surge and other characteristics of the menstrual cycle in normally ovulating women.

    Science.gov (United States)

    Direito, Ana; Bailly, Sébastien; Mariani, Aude; Ecochard, René

    2013-01-01

    To describe the LH surge variants in ovulating women and analyze their relationship with the day of ovulation and other hormone levels. Secondary analysis of a prospective cohort observational study. Eight natural family planning clinics. Normally fertile women (n = 107) over 283 cycles. Women collected daily first morning urine, charted basal body temperature and cervical mucus discharge, and underwent serial ovarian ultrasound. Urinary LH, FSH, estrone-3-glucuronide (E3G), pregnanediol-3α-glucuronide (PDG), and day of ovulation by ultrasound (US-DO). Individual LH surges were extremely variable in configuration, amplitude, and duration. The study also showed that LH surges marked by several peaks were associated with statistically significant smaller follicle sizes before rupture and lower LH level on the day of ovulation. LH surges lasting >3 days after ovulation were associated with a lower E3G before ovulation, a smaller corpus luteum 2 days after ovulation, and a lower PDG value during the first 4 days after ovulation. In clinical practice, LH profiles should be compared with the range of profiles observed in normally fertile cycles, not with the mean profile. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Utilizing a Pediatric Disaster Coalition Model to Increase Pediatric Critical Care Surge Capacity in New York City.

    Science.gov (United States)

    Frogel, Michael; Flamm, Avram; Sagy, Mayer; Uraneck, Katharine; Conway, Edward; Ushay, Michael; Greenwald, Bruce M; Pierre, Louisdon; Shah, Vikas; Gaffoor, Mohamed; Cooper, Arthur; Foltin, George

    2017-08-01

    A mass casualty event can result in an overwhelming number of critically injured pediatric victims that exceeds the available capacity of pediatric critical care (PCC) units, both locally and regionally. To address these gaps, the New York City (NYC) Pediatric Disaster Coalition (PDC) was established. The PDC includes experts in emergency preparedness, critical care, surgery, and emergency medicine from 18 of 25 major NYC PCC-capable hospitals. A PCC surge committee created recommendations for making additional PCC beds available with an emphasis on space, staff, stuff (equipment), and systems. The PDC assisted 15 hospitals in creating PCC surge plans by utilizing template plans and site visits. These plans created an additional 153 potential PCC surge beds. Seven hospitals tested their plans through drills. The purpose of this article was to demonstrate the need for planning for disasters involving children and to provide a stepwise, replicable model for establishing a PDC, with one of its primary goals focused on facilitating PCC surge planning. The process we describe for developing a PDC can be replicated to communities of any size, setting, or location. We offer our model as an example for other cities. (Disaster Med Public Health Preparedness. 2017;11:473-478).

  12. Microprocessor protection relays: new prospects or new problems?

    OpenAIRE

    Gurevich, Vladimir

    2006-01-01

    The internal architecture and principles of operation of microprocessor-based devices including so-called "microprocessor protective relays" have little in common with devices called "electric relays". But microprocessor-based relay protection devices are gradually driving out the traditional electromechanical and even electronic relay protection of virtually from all fields of power and electrical engineering. Advantages of microprocessor-based protection means over traditional ones are far ...

  13. Methodology for the assessment of possible damages in low voltage equipment due to lightning surges

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Nelson M.; Kagan, Nelson [University of Sao Paulo (USP), SP (Brazil)], Emails: matsuonm@usp.br, nelsonk@pea.usp.br; Domingues, Ivo T. [AES Eletropaulo, SP (Brazil); Jesus, Nelson C. de [AES Sul, Porto Alegre, RS (Brazil); Silva, Marcelo H.I. da [Grupo Rede, Sao Paulo, SP (Brazil); Takauti, Edson H. [Bandeirante, Sao Paulo, SP (Brazil)

    2007-07-01

    This paper deals with the development of a methodology to assess the possibility of equipment damages in low voltage customers due to lightning surges. The main objective is to incorporate this methodology in a computation system that supports distribution companies to determine the possible causes of equipment damages claimed by customers and to decide whether the claims are to be reimbursed or not. The proposed methodology determines whether a specific customer could be affected by a lightning strike according to his/her location and to the lightning main parameters, by using data from a lightning detection system and from the specific equipment surge withstand capability. A specific study using ATP (Alternative Transients Program) was carried out to assess the propagation of lightning surges in electric power distribution systems and their impact over low voltage customers. On the other hand, the withstand capability of the main household appliances was determined by a series of tests carried out in the University's power quality laboratory. The paper details the modeling used for simulation, such as network configuration, grounding points, and modelling of insulator flashover, distribution transformer, low voltage loads. It also presents some results regarding the evaluation of over voltages in low voltage customers installations. A practical method is proposed for assessing the possibility of equipment damage and describes how the existing uncertainties were handled. Also, some issues regarding the withstand capability of electric household appliances to lightning surges are discussed and some results of the laboratory tests are presented. (author)

  14. Stable isotope and sea-level data from New Guinea supports Antarctic ice-surge theory of ice ages

    International Nuclear Information System (INIS)

    Aharon, P.; Chappell, J.; Compston, W.

    1980-01-01

    Two theories of glaciation which have received considerable attention, the Milankovitch orbital theory and the Antarctic surge hypothesis, are discussed. Oxygen-18 and sea-level data obtained from the coral reefs of Huon Peninsula, Papua New Guinea which contain a particularly good record of the interval 140-105 kyr, are presented. These seem to require an Antarctic surge at 120 kyr and also have a bearing on the role of the Milankovitch factor. (UK)

  15. Stable isotope and sea-level data from New Guinea supports Antarctic ice-surge theory of ice ages

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, P; Chappell, J; Compston, W [Australian National Univ., Canberra. Inst. of Advanced Studies

    1980-02-14

    Two theories of glaciation which have received considerable attention, the Milankovitch orbital theory and the Antarctic surge hypothesis, are discussed. Oxygen-18 and sea-level data obtained from the coral reefs of Huon Peninsula, Papua New Guinea which contain a particularly good record of the interval 140-105 kyr, are presented. These seem to require an Antarctic surge at 120 kyr and also have a bearing on the role of the Milankovitch factor.

  16. ISSN 2073 ISSN 2073-9990 East Cent. Afr. J. surg. (Online) 9990 ...

    African Journals Online (AJOL)

    DELL

    2005-04-10

    Apr 10, 2005 ... J. Gathara1, M. Galukande1, E. Kiguli-Malwadde2 ... The reason for this apparent surge is mostly speculative; presumed change in lifestyle to a .... HBD and breast cancer, cigarette smoking is documented to have an anti ...

  17. Multiobjective optimal placement of switches and protective devices in electric power distribution systems using ant colony optimization

    Energy Technology Data Exchange (ETDEWEB)

    Tippachon, Wiwat; Rerkpreedapong, Dulpichet [Department of Electrical Engineering, Kasetsart University, 50 Phaholyothin Rd., Ladyao, Jatujak, Bangkok 10900 (Thailand)

    2009-07-15

    This paper presents a multiobjective optimization methodology to optimally place switches and protective devices in electric power distribution networks. Identifying the type and location of them is a combinatorial optimization problem described by a nonlinear and nondifferential function. The multiobjective ant colony optimization (MACO) has been applied to this problem to minimize the total cost while simultaneously minimize two distribution network reliability indices including system average interruption frequency index (SAIFI) and system interruption duration index (SAIDI). Actual distribution feeders are used in the tests, and test results have shown that the algorithm can determine the set of optimal nondominated solutions. It allows the utility to obtain the optimal type and location of devices to achieve the best system reliability with the lowest cost. (author)

  18. Ebb-tidal delta morphology in response to a storm surge barrier

    NARCIS (Netherlands)

    Eelkema, M.; Wang, Z.B.; Hibma, A.

    2012-01-01

    The Eastern Scheldt ebb-tidal delta morphology has been adapting for the past 25 years in response to the construction of the Eastern Scheldt storm-surge barrier in 1986. As a result of the barrier, there has been a decrease in tidal amplitudes, volumes, and average flow velocities, and there is

  19. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  20. The effect of reactive ion etch (RIE) process conditions on ReRAM device performance

    Science.gov (United States)

    Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.

    2017-09-01

    The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.

  1. Using 18th century storm-surge data from the Dutch Coast to improve the confidence in flood-risk estimates

    Directory of Open Access Journals (Sweden)

    F. Baart

    2011-10-01

    Full Text Available For the design of cost-effective coastal defence a precise estimate is needed of the 1/10 000 per year storm surge. A more precise estimate requires more observations. Therefore, the three greatest storm surges that hit the northern part of the Holland Coast in the 18th century are reconstructed. The reconstructions are based on paintings, drawings, written records and shell deposits that have recently appeared. The storm-surge levels of these storms have been estimated using numerical modelling of the coastal processes. Here we show how these reconstructions can be used in combination with extreme value statistics to give a more confident estimate of low probability events.

  2. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    Science.gov (United States)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  3. Joint projections of sea level and storm surge using a flood index

    Science.gov (United States)

    Little, C. M.; Lin, N.; Horton, R. M.; Kopp, R. E.; Oppenheimer, M.

    2016-02-01

    Capturing the joint influence of sea level rise (SLR) and tropical cyclones (TCs) on future coastal flood risk poses significant challenges. To address these difficulties, Little et al. (2015) use a proxy of tropical cyclone activity and a probabilistic flood index that aggregates flood height and duration over a wide area (the US East and Gulf coasts). This technique illuminates the individual impacts of TCs and SLR and their correlation across different coupled climate models. By 2080-2099, changes in the flood index relative to 1986-2005 are substantial and positively skewed: a 10th-90th percentile range of 35-350x higher for a high-end business-as-usual emissions scenario (see figure). This aggregated flood index: 1) is a means to consistently combine TC-driven storm surges and SLR; 2) provides a more robust description of historical surge-climate relationships than is available at any one location; and 3) allows the incorporation of a larger climate model ensemble - which is critical to uncertainty characterization. It does not provide a local view of the complete spectrum of flood severity (i.e. return curves). However, alternate techniques that provide localized return curves (e.g. Lin et al., 2012) are computationally intensive, limiting the set of large-scale climate models that can be incorporated, and require several linked statistical and dynamical models, each with structural uncertainties that are difficult to quantify. Here, we present the results of Little et al. (2015) along with: 1) alternate formulations of the flood index; 2) strategies to localize the flood index; and 3) a comparison of flood index projections to those provided by model-based return curves. We look to this interdisciplinary audience for feedback on the advantages and disadvantages of each tool for coastal planning and decision-making. Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke, 2012: Physically based assessment of hurricane surge threat under climate change. Nature

  4. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  5. Techniques in cerebral protection.

    Science.gov (United States)

    Fanelli, Fabrizio; Bezzi, Mario; Boatta, Emanuele; Passariello, Roberto

    2006-10-01

    Carotid angioplasty and stenting is a valid alternative option to conventional carotid endarterectomy in the treatment of carotid artery stenosis. During the stenting process, however, distal embolization can occur with neurological consequences. To avoid this, cerebral protection devices have been introduced. Three principal types of protection system have been developed: distal balloon occlusion, distal filters and proximal protection with or without reversal of flow. As protection devices became the focus of interest by manufactures and physicians, several trials are going on worldwide to analyze the characteristics of each of them and to evaluate their efficacy to reduce the rate of distal embolization.

  6. Cerebral ischemia after filter-protected carotid artery stenting is common and cannot be predicted by the presence of substantial amount of debris captured by the filter device.

    Science.gov (United States)

    Maleux, G; Demaerel, P; Verbeken, E; Daenens, K; Heye, S; Van Sonhoven, F; Nevelsteen, A; Wilms, G

    2006-10-01

    Protected carotid artery stent placement is currently under clinical evaluation as a potential alternative to carotid endarterectomy. The current study was undertaken to determine the incidence of new ischemic lesions found on diffusion-weighted MR imaging (DWI) in nonselected patients after protected carotid artery stent placement using a filter device and to determine the potential relationship between these new ischemic lesions and the presence or absence of a clear amount of debris captured by the neuroprotection filter device. A nonrandomized cohort of 52 patients (40 men, 12 women) presenting with carotid occlusive disease underwent protected carotid artery stent placement using a filter device. DWI obtained 1 day before stent placement was compared with that obtained 1 day after stent placement. In addition, the macroscopic and microscopic analysis of debris captured by the filter device during the carotid stent placement procedure was assessed. Neuroprotected carotid stent placement was technically successful in all 53 procedures but was complicated by a transient ischemic attack in 3 patients (5.6%). In 22 patients (41.5%), new ischemic lesions were found on DWI, and in 21 filter devices (39.6%), a substantial amount of atheromatous plaque and/or fibrin was found. No clear relationship between the presence of debris captured by the filter device and new lesions detected by DWI was found (P = .087; odds ratio 3.067). Neuroprotected carotid artery stent placement will not avoid silent cerebral ischemia. Systematic microscopic analysis of debris captured by the filter device has no predictive value for potential cerebral ischemia after carotid artery stent placement.

  7. ISSN 2073 ISSN 2073-9990 East Cent. Afr. J. surg. (Online) 9990 ...

    African Journals Online (AJOL)

    Prof Kakande

    bacterial culturing and drug sensitivity testing. Data was .... The sample was placed in a sterile transportation/storage container. Following this ..... associated with antibiotic resistance in coliform organisms from community urinary tract infection in ... parenteral drug abuse: presentation, microbiology, and treatment. Am Surg.

  8. Proposal for the award of a blanket order contract for the supply of microprocessor-based protection and control devices for the CERN HV distribution network

    CERN Document Server

    2004-01-01

    This document concerns the award of a blanket contract for the supply of microprocessor-based protection and control devices for the CERN HV distribution network. The Finance Committee is invited to agree to the negotiation of a blanket order contract with SCHNEIDER ELECTRIC (PT), the lowest technically acceptable bidder after realignment, for the supply of microprocessor-based protection and control devices for the CERN HV distribution network for a total amount of 1 900 000 euros (2 924 128 Swiss francs), subject to revision for inflation after 1 January 2007. The rate of exchange used is that stipulated in the tender

  9. Three-dimensional current flow and particle precipitation in a westward travelling surge (observed during the barium-GEOS rocket experiment)

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Pellinen, R.J.; Baumjohann, W.; Nielsen, E.; Marklund, G.; Eliasson, L.

    1983-01-01

    During the Barium-GEOS rocket experiment on September 24, 1979 the passage of a westward travelling surge (WTS) was observed over Scandinavia. Extended instrument networks in that area, viz., the Scandinavian Magnetometer Array, the STARE radars, all-sky cameras, and riometers, allowed simultaneous observation of the two-dimensional character of magnetic and electric field disturbances and particle precipitation associated with the auroral feature. By combination of the different datasets and additional information from particle and electric field measurements aboard the Barium-GEOS rocket it was possible to derive the two-dimensional distribution of ionospheric electric fields and conductivities and to model the three-dimensional current flow in the vicinity of the westward travelling surge. The main feature of the resulting model current system is the presence of a localized upward field-aligned current directed out of the head of the surge and fed by a westward electrojet, which is composed of both Hall and Pedersen currents. Secondary ionospheric currents, e.g. a counterclockwise loop of mainly Hall currents around the leading edge of the surge, are found to be responsible for most of the transient effects observed by ground-based magnetometers as the WTS passed overhead. The most energetic particle precipitation as inferred from cosmic noise absorption measurements and triangulation of auroral arc altitudes is found to be confined to the leading part and central regions of the surge and to travel westward with the visual auroral form

  10. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability

    Science.gov (United States)

    Kääb, Andreas; Leinss, Silvan; Gilbert, Adrien; Bühler, Yves; Gascoin, Simon; Evans, Stephen G.; Bartelt, Perry; Berthier, Etienne; Brun, Fanny; Chao, Wei-An; Farinotti, Daniel; Gimbert, Florent; Guo, Wanqin; Huggel, Christian; Kargel, Jeffrey S.; Leonard, Gregory J.; Tian, Lide; Treichler, Désirée; Yao, Tandong

    2018-02-01

    Surges and glacier avalanches are expressions of glacier instability, and among the most dramatic phenomena in the mountain cryosphere. Until now, the catastrophic collapse of a glacier, combining the large volume of surges and mobility of ice avalanches, has been reported only for the 2002 130 × 106 m3 detachment of Kolka Glacier (Caucasus Mountains), which has been considered a globally singular event. Here, we report on the similar detachment of the entire lower parts of two adjacent glaciers in western Tibet in July and September 2016, leading to an unprecedented pair of giant low-angle ice avalanches with volumes of 68 ± 2 × 106 m3 and 83 ± 2 × 106 m3. On the basis of satellite remote sensing, numerical modelling and field investigations, we find that the twin collapses were caused by climate- and weather-driven external forcing, acting on specific polythermal and soft-bed glacier properties. These factors converged to produce surge-like enhancement of driving stresses and massively reduced basal friction connected to subglacial water and fine-grained bed lithology, to eventually exceed collapse thresholds in resisting forces of the tongues frozen to their bed. Our findings show that large catastrophic instabilities of low-angle glaciers can happen under rare circumstances without historical precedent.

  11. Fast-response protection from high currents

    International Nuclear Information System (INIS)

    Novikov, A.A.

    1989-01-01

    Protection devices for power electronic equipment from shorting current are described. The device is shunted using spark gaps with minimal possible number of spark gaps to protect it. High fast-response (<100 ns) and operation voltage wide range (6-100 kV) are attained using Arkadiev-Marx generator-base trigger devices and air-core pulse transformer

  12. Safety work with MRI devices in medicine

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.

    1999-01-01

    This paper gives the basis of biological effects of physical factors which could affect personnel working on MRI devices and patients, and corresponding protection measures. Medical personnel working with MRI devices and patients could be exposed to static magnetic field, time varying fields and radiofrequency radiation, danger from electric current and chemical matters, and there is a high risk from moving metal objects which could wound the persons near-by. The protection from static magnetic field could be ensured by increasing the distance from the source. If MRI device is put in Faradays cage it could be corresponding protection of radiofrequency radiation. (author)

  13. Evaluation of personal protective devices used in diagnostic radiology; Avaliacao de dispositivos de protecao individual utilizados em radiologia diagnostica

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Fernanda Cristina Salvador

    2006-07-01

    In this work protective devices of five manufacturers were evaluated according to the NBR/IEC 61331-1 and NBR/IEC 61331-3 standards. Three different methodologies (linear interpolation, Archer model and sum of exponentials) were applied for the determination of the attenuation equivalent, since the standard does not indicate how it must be determined. Moreover, the uncertainties associated to each method, and the influence of the number of measurements in the combined uncertainty were estimated. The evaluated manufacture characteristics were: accompanying document, design, materials, dimensions and label marking. For this evaluation a check list about the requirements of the NBR/IEC 61331-3 standard was elaborated. The results showed a great difference between nominal and measured attenuation equivalent values. The comparison of the results using the three methodologies showed small variations among the obtained values and among the associated uncertainties in the different methodologies. It was possible to observe that the number of measurements does not contribute significantly for the increase of the uncertainty in all three methodologies. The best methodology for the laboratory routine is the linear interpolation methodology, with five measurements for each air kerma rate value. The discrepancy between the results obtained in this work and the requirements of the applied standards show the need to adopt a compulsory certification process for protective devices, thus contributing for the increase of the radiation protection of the users. (author)

  14. Mangroves can provide protection against wind damage during storms

    Science.gov (United States)

    Das, Saudamini; Crépin, Anne-Sophie

    2013-12-01

    Research has established that mangroves can protect lives and property from storms by buffering the impacts of storm surges. However, their effects in attenuating wind velocity and providing protection from wind damage during storms are not known. This study examined whether mangroves attenuate damage from cyclonic winds and found that they provide substantial protection to properties, even relatively far away from mangroves and the coast. We devised a theoretical model of wind protection by mangroves and calibrated and applied this model using data from the 1999 cyclone in the Odisha region of India. The model predicted and quantified the actual level of damage reasonably accurately and showed that mangroves reduced wind damage to houses. The wind protection value of mangroves in reducing house damage amounted to approximately US$177 per hectare at 1999 prices. This provides additional evidence of the storm protection ecosystem services that mangroves supply in the region and an additional reason to invest in mangrove ecosystems to provide better adaptability to coastal disasters such as storms.

  15. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep.

    Science.gov (United States)

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-07-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30-90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level.

  16. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    Science.gov (United States)

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from

  17. Structural evaluation method study and procedure development for pressurizer surge line subjected to thermal stratification phenomenon

    International Nuclear Information System (INIS)

    Zhang Yixiong; Yu Xiaofei; Ai Honglei

    2014-01-01

    Thermal stratification phenomenon of pressurizer surge line can lead potential threaten to plant safety. Base on the mechanism of thermal stratification occurrence, Fr number is used to judge whether the stratification occurs or not. Also the method of calculating heat transfer coefficient is investigated. Theoretically the 3-dimension thermal stress induced by thermal stratification is decoupled to 1-dimension global stress and 2-dimension local stress, and the complex 3-dimension problem is simplified into a combination of 1-dimension and 2-dimension to compute the stress. Comply with criterion RCC-M, the complete structure integrity evaluation is accomplished after combining the stress produced by thermal stratification and the stresses produced by the other loadings. In order to match the above combined analysis method, Code SYSTUS and ROCOCO are developed. By means of aforesaid evaluation method and corresponding analysis program, surge line thermal stratification of Qinshan Phase II Extension project is investigated in this paper. And the results show that structural integrity of the pressurizer surge line affected by thermal stratification still satisfies criterion RCC-M. (authors)

  18. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    Science.gov (United States)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  19. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system

    Science.gov (United States)

    Kamb, Barclay

    1987-08-01

    Based on observations of the 1982-1983 surge of Variegated Glacier, Alaska, a model of the surge mechanism is developed in terms of a transition from the normal tunnel configuration of the basal water conduit system to a linked cavity configuration that tends to restrict the flow of water, resulting in increased basal water pressures that cause rapid basal sliding. The linked cavity system consists of basal cavities formed by ice-bedrock separation (cavitation), ˜1 m high and ˜10 m in horizontal dimensions, widely scattered over the glacier bed, and hydraulically linked by narrow connections where separation is minimal (separation gap ≲ 0.1 m). The narrow connections, called orifices, control the water flow through the conduit system; by throttling the flow through the large cavities, the orifices keep the water flux transmitted by the basal water system at normal levels even though the total cavity cross-sectional area (˜200 m2) is much larger than that of a tunnel system (˜10 m2). A physical model of the linked cavity system is formulated in terms of the dimensions of the "typical" cavity and orifice and the numbers of these across the glacier width. The model concentrates on the detailed configuration of the typical orifice and its response to basal water pressure and basal sliding, which determines the water flux carried by the system under given conditions. Configurations are worked out for two idealized orifice types, step orifices that form in the lee of downglacier-facing bedrock steps, and wave orifices that form on the lee slopes of quasisinusoidal bedrock waves and are similar to transverse "N channels." The orifice configurations are obtained from the results of solutions of the basal-sliding-with-separation problem for an ice mass constituting of linear half-space of linear rheology, with nonlinearity introduced by making the viscosity stress-dependent on an intuitive basis. Modification of the orifice shapes by melting of the ice roof due to

  20. The Major Cause of Observed Erosion Surge on the Beaches North ...

    African Journals Online (AJOL)

    Surges in coastal erosion north of Dar es Salaam city have been documented from 1977 to the early 1980s and around 1997/98. Analysis of the wind data shows that the documented increase in coastal erosion coincided with increased wind speeds. Extreme winds in excess of 10-11 m s-1 were experienced during ...

  1. Balancing protection of public health and safety with the free movement of goods in the EU medical device sector : The case of ‘borderline products’ classification

    NARCIS (Netherlands)

    Tseliou, Tasoula

    2015-01-01

    In 2013, the CJEU ruled on the ‘Lyocentre’ case touching upon an important and contemporary issue in the EU Medical Device regime – the classification issue between medical devices and medicinal products. This problem is connected with the internal market v. protection of health dilemma as well as

  2. Quality control devices for intraoperative gamma probes: physical, technical and radiation protection aspects

    International Nuclear Information System (INIS)

    Varela, C.; Diaz, M.; Salvador, F.J.; Hernandez, M.; Jimenez, P.

    2008-01-01

    Now a day, radio guided surgery -a novelty in Nuclear Medicine- is increasingly used. The clinical efficiency of these procedures requires the existence of well-trained professionals and implementation of quality assurance programs. It is essential for achieving the main objective, which is an effective and safe surgical procedure, a reliable performance of the detection device. Probes' parameters must remain within the acceptance limits, so they should be checked periodically. NEMA Standards Publication NU 3-2004 'Performance Measurement and Quality Control Guidelines for Non-Imaging Intraoperative Gamma Probes' recommends 13 tests; although only 3 of them -sensibility in air, visual inspection and power source check- are considered as steadiness tests. Space resolution in a scatter medium is also a test that needs to be carried out. These tests are considerably complex since open radioactive sources are used into a liquid medium in most of the procedures. The immersion of the probe and of the radioactive sources in each case represents both risks of radioactive contamination, and of damages to the equipment. On the other hand, tests in air demand a good reproducibility. Since they are recommended be carried out before any surgery procedure, they also should be easy and quick. This paper presents 3 devices with its accessories for acceptance and quality control tests of intraoperative gamma probes. They were designed and built taking into consideration important aspects of radiological protection to handle the calibration sources and probes, both in air and into a scatter medium. These devices are designed to fit any kind of probe. Regulatory bodies as part of their instrument audits can also use them. (author)

  3. Eye Protection in Kansas Schools.

    Science.gov (United States)

    Hay, Kenneth M.; And Others

    A law passed by a state legislature requires that students in industrial arts shops and science laboratories must wear eye protective devices. Explanatory material presents the text of the bill and guidelines for implementation, including--(1) types of eye hazards, (2) types of protective devices, (3) administrating eye safety equipment, (4)…

  4. Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation

    NARCIS (Netherlands)

    Altaf, M.U.; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, I.

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H? filter. By design, an H? filter is more robust than the common Kalman filter in the sense

  5. Nuclear fast neutron reactor cooled by a liquid metal and of which internal structures are equipped with a thermal protection device

    International Nuclear Information System (INIS)

    Lemercier, G.; Lions, N.

    1986-01-01

    The internal structures of a nuclear fast neutron reactor are covered at least partially, on the most hot side, by a thermal protection device. This device comprises modular plates arranged end to end with a certain play between themselves and taking approximately the shape of the internal structures. Each plate is fixed in its center on the internal structures by a stud. A small plate fixed at one of the corners of each plate and covering partially the adjacent plates ensures the safety fixing of these ones [fr

  6. Development and validation of a surgical workload measure: the surgery task load index (SURG-TLX).

    Science.gov (United States)

    Wilson, Mark R; Poolton, Jamie M; Malhotra, Neha; Ngo, Karen; Bright, Elizabeth; Masters, Rich S W

    2011-09-01

    The purpose of the present study was to develop and validate a multidimensional, surgery-specific workload measure (the SURG-TLX), and to determine its utility in providing diagnostic information about the impact of various sources of stress on the perceived demands of trained surgical operators. As a wide range of stressors have been identified for surgeons in the operating room, the current approach of considering stress as a unidimensional construct may not only limit the degree to which underlying mechanisms may be understood but also the degree to which training interventions may be successfully matched to particular sources of stress. The dimensions of the SURG-TLX were based on two current multidimensional workload measures and developed via focus group discussion. The six dimensions were defined as mental demands, physical demands, temporal demands, task complexity, situational stress, and distractions. Thirty novices were trained on the Fundamentals of Laparoscopic Surgery (FLS) peg transfer task and then completed the task under various conditions designed to manipulate the degree and source of stress experienced: task novelty, physical fatigue, time pressure, evaluation apprehension, multitasking, and distraction. The results were supportive of the discriminant sensitivity of the SURG-TLX to different sources of stress. The sub-factors loaded on the relevant stressors as hypothesized, although the evaluation pressure manipulation was not strong enough to cause a significant rise in situational stress. The present study provides support for the validity of the SURG-TLX instrument and also highlights the importance of considering how different stressors may load surgeons. Implications for categorizing the difficulty of certain procedures, the implementation of new technology in the operating room (man-machine interface issues), and the targeting of stress training strategies to the sources of demand are discussed. Modifications to the scale to enhance

  7. Potential of flow pre-whirl at the compressor inlet of automotive engine turbochargers to enlarge surge margin and overcome packaging limitations

    International Nuclear Information System (INIS)

    Galindo, J.; Serrano, J.R.; Margot, X.; Tiseira, A.; Schorn, N.; Kindl, H.

    2007-01-01

    Due to the packaging constraints to which turbocharged engines are submitted in passenger cars, the inlet duct of the centrifugal compressor often requires a 90 o bend. The compressor inlet perpendicular to its axis disturbs the flow and reduces the compressor performance. This paper presents an interesting solution based on a specifically designed inlet swirl-generator device (SGD) that palliates these negative effects. In addition, the SGD can be used to extend the surge margin of the compressor if the position of the SGD blades is modified in function of the reciprocating engine operation conditions. The paper describes how the swirl level and the pressure losses generated by the device have been characterized in a continuous flow test rig. After this the SGD plus a centrifugal compressor from a turbocharger unit have been tested in a specific turbocharger test bench. The results obtained show the influence of the SGD blades position on the compressor performance. In order to better understand the influence of the SGD on the turbocharger behaviour, the flow velocity triangles near the inducer have been reconstructed using an approach based on CFD calculations

  8. GnRH Neuron Activity and Pituitary Response in Estradiol-Induced vs Proestrous Luteinizing Hormone Surges in Female Mice.

    Science.gov (United States)

    Silveira, Marina A; Burger, Laura L; DeFazio, R Anthony; Wagenmaker, Elizabeth R; Moenter, Suzanne M

    2017-02-01

    During the female reproductive cycle, estradiol exerts negative and positive feedback at both the central level to alter gonadotropin-releasing hormone (GnRH) release and at the pituitary to affect response to GnRH. Many studies of the neurobiologic mechanisms underlying estradiol feedback have been done on ovariectomized, estradiol-replaced (OVX+E) mice. In this model, GnRH neuron activity depends on estradiol and time of day, increasing in estradiol-treated mice in the late afternoon, coincident with a daily luteinizing hormone (LH) surge. Amplitude of this surge appears lower than in proestrous mice, perhaps because other ovarian factors are not replaced. We hypothesized GnRH neuron activity is greater during the proestrous-preovulatory surge than the estradiol-induced surge. GnRH neuron activity was monitored by extracellular recordings from fluorescently tagged GnRH neurons in brain slices in the late afternoon from diestrous, proestrous, and OVX+E mice. Mean GnRH neuron firing rate was low on diestrus; firing rate was similarly increased in proestrous and OVX+E mice. Bursts of action potentials have been associated with hormone release in neuroendocrine systems. Examination of the patterning of action potentials revealed a shift toward longer burst duration in proestrous mice, whereas intervals between spikes were shorter in OVX+E mice. LH response to an early afternoon injection of GnRH was greater in proestrous than diestrous or OVX+E mice. These observations suggest the lower LH surge amplitude observed in the OVX+E model is likely not attributable to altered mean GnRH neuron activity, but because of reduced pituitary sensitivity, subtle shifts in action potential pattern, and/or excitation-secretion coupling in GnRH neurons. Copyright © 2017 by the Endocrine Society.

  9. Fault Tolerant Operation of ISOP Multicell Dc-Dc Converter Using Active Gate Controlled SiC Protection Switch

    Directory of Open Access Journals (Sweden)

    Yusuke Hayashi

    2016-01-01

    Full Text Available An active gate controlled semiconductor protection switch using SiC-MOSFET is proposed to achieve the fault tolerant operation of ISOP (Input Series and Output Parallel connected multicell dc-dc converter. The SiC-MOSFET with high temperature capability simplifies the configuration of the protection circuit, and its on-resistance control by the active gate controller realizes the smooth protection without the voltage and the current surges. The first laboratory prototype of the protection switch is fabricated by using a SiC-MOSFET with a high frequency buck chopper for the active gate controller. The effectiveness of the proposed protection switch is verified, taking the impact of the volume reduction into account.

  10. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, Matthew V.; Hagen, S.C.; Alizad, K.A.; Medeiros, S.C.; Passeri, Davina L.; Needham, H.F.; Cox, A.

    2016-01-01

    This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static (“bathtub”) modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.

  11. Interaction of Shallow Cold Surges with Topography on Scales of 100-1000 Kilometers.

    Science.gov (United States)

    Toth, James John

    1987-09-01

    A shallow cold air mass is defined as one not extending to the top of the mountain ridge with which it interacts. The structure of such an airmass is examined using both observational data and a hydrostatic version of the Colorado State University Regional Atmospheric Modeling System. The prime constraint on a shallow cold surge is that the flow must ultimately be parallel to the mountain ridge. It is found that the effects of this constraint are altered significantly by surface sensible heat flux. Cold surges are slowed during the daylight hours, a result consistent with previous observational studies in Colorado east of the Continental Divide. Two case studies are described in detail, and several other events are cited. Since observations alone do not provide a complete description of diversion of the cold air by the mountain range, numerical model simulations provide additional insight into important mechanisms. A case study on 14 June 1985 is described using observational and model data. The model development of a deep boundary layer within the frontal baroclinic zone is consistent with the observations for this and other cases. This development is due to strong surface heating. Turning off the model shortwave radiation is seen to produce a rapid southward acceleration of the surface front, with very shallow cold air behind the front. Model simulations with specified surface temperature differences confirm the importance of upward heat flux from the surface in slowing the southward movement of the cold surge. It is concluded that the slowing is not due simply to the thermal wind developing in response to the heating of higher terrain to the west. Since surface heating is distributed over a deeper layer on the warm side of the temperature discontinuity, there is frontolysis at the surface. But this modification would develop even over flat terrain. Sloping terrain introduces additional effects. Heating at the western, upslope side of the cold surge inhibits the

  12. Circadian rhythm disruption by a novel running wheel: Roles of exercise and arousal in blockade of the luteinizing hormone surge

    Science.gov (United States)

    Duncan, Marilyn J.; Franklin, Kathleen M.; Peng, Xiaoli; Yun, Christopher; Legan, Sandra J.

    2014-01-01

    Exposure of proestrous Syrian hamsters to a new room, cage, and novel running wheel blocks the luteinizing hormone (LH) surge until the next day in ~75% of hamsters (Legan et al, 2010) [1]. The studies described here tested the hypotheses that 1) exercise and/or 2) orexinergic neurotransmission mediate novel wheel blockade of the LH surge and circadian phase advances. Female hamsters were exposed to a 14L:10D photoperiod and activity rhythms were monitored with infra-red detectors. In Expt. 1, to test the effect of exercise, hamsters received jugular cannulae and on the next day, proestrus (Day 1), shortly before zeitgeber time 5 (ZT 5, 7 hours before lights-off) the hamsters were transported to the laboratory. After obtaining a blood sample at ZT 5, the hamsters were transferred to a new cage with a novel wheel that was either freely rotating (unlocked), or locked until ZT 9, and exposed to constant darkness (DD). Blood samples were collected hourly for 2 days from ZT 5–11 under red light for determination of plasma LH levels by radioimmunoassay. Running rhythms were monitored continuously for the next 10–14 days. The locked wheels were as effective as unlocked wheels in blocking LH surges (no Day 1 LH surge in 6/9 versus 8/8 hamsters, P>0.05) and phase advances in the activity rhythms did not differ between the groups (P= 0.28), suggesting that intense exercise is not essential for novel wheel blockade and phase advance of the proestrous LH surge. Expt. 2 tested whether orexin neurotransmission is essential for these effects. Hamsters were treated the same as in Expt. 1 except they were injected (i.p.) at ZT 4.5 and 5 with either the orexin 1 receptor antagonist SB334867 (15 mg/kg per injection) or vehicle (25% DMSO in 2-hydroxypropyl-beta-cyclodextrin (HCD). SB-334867 inhibited novel wheel blockade of the LH surge (surges blocked in 2/6 SB334867-injected animals versus 16/18 vehicle-injected animals, Pwheel running and circadian phase shifts, indicating that

  13. Blindagem eletromagnética, aterramento e proteção contra surtos de tensão em equipamentos para monitoramento automático do teor de água no solo Electromagnetic shielding, grounding and protection against voltage surges in equipments for automatic soil-water measurements

    Directory of Open Access Journals (Sweden)

    Claudia F. A. Teixeira

    2004-04-01

    Full Text Available O objetivo do presente trabalho foi implementar um sistema de blindagem eletromagnética, aterramento e proteção contra surtos de tensão na instalação de instrumental para o monitoramento automático do teor de água no solo. O experimento foi instalado em Piracicaba, São Paulo, em que os equipamentos utilizados foram um testador de cabos marca Tektronix, que opera pelo princípio da reflectometria no domínio do tempo e um sistema de aquisição de dados marca Campbell Scientific Inc. (CSI, que controla e analisa as formas de onda produzidas pelo testador de cabos. A umidade volumétrica foi obtida indiretamente por meio de sensores inseridos no solo, os quais medem a constante dielétrica do mesmo. Utilizaram-se tubos galvanizados para a blindagem eletromagnética dos cabos e hastes "cooperweld", cordoalha de cobre e terminais bimetálicos para o sistema de aterramento. Para o sistema de proteção eletroeletrônica, utilizaram-se um disjuntor para a separação do circuito de alimentação, protetor de surtos, "no-breaks" e medidor de resistência de terra. Face aos resultados obtidos, pode-se concluir que o sistema proposto, ao utilizar material geralmente preexistente em locais de pesquisa agropecuária, apresentou uma proteção eficaz.The objective of this paper was to implement an electromagnetic shielding, grounding and voltage surge protection in equipments for automatic soil water monitoring. The experiment was carried out in Piracicaba, São Paulo State, Brazil, using a Tektronix Cable Tester (Model 1502 B that operates by time domain reflectometry (TDR and a datalogger (CR10X, Campbell Scientific Inc., CSI to control and analyze the waveforms produced by the cable tester. The water content was indirectly obtained by measuring the dielectric constant through probes inserted in the soil. For electromagnetic shielding the energy and signal cables were inserted in galvanized pipes, linked together by means of copper wire fixed in

  14. Application of Powell's optimization method to surge arrester circuit models' parameters

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, C.A.; Stathopulos, I.A. [National Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., Zografou Campus, 157 80 Athens (Greece); Vita, V.; Ekonomou, L.; Chatzarakis, G.E. [A.S.PE.T.E. - School of Pedagogical and Technological Education, Department of Electrical Engineering Educators, N. Heraklion, 141 21 Athens (Greece)

    2010-08-15

    Powell's optimization method has been used for the evaluation of the surge arrester models parameters. The proper modelling of metal-oxide surge arresters and the right selection of equivalent circuit parameters are very significant issues, since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters' dynamic behavior. The proposed approach selects optimum arrester model equivalent circuit parameter values, minimizing the error between the simulated peak residual voltage value and this given by the manufacturer. Application of the method in performed on a 120 kV metal oxide arrester. The use of the obtained optimum parameter values reduces significantly the relative error between the simulated and manufacturer's peak residual voltage value, presenting the effectiveness of the method. (author)

  15. α-Estrogen and Progesterone Receptors Modulate Kisspeptin Effects on Prolactin: Role in Estradiol-Induced Prolactin Surge in Female Rats.

    Science.gov (United States)

    Aquino, Nayara S S; Araujo-Lopes, Roberta; Henriques, Patricia C; Lopes, Felipe E F; Gusmao, Daniela O; Coimbra, Candido C; Franci, Celso R; Reis, Adelina M; Szawka, Raphael E

    2017-06-01

    Kisspeptin (Kp) regulates prolactin (PRL) in an estradiol-dependent manner. We investigated the interaction between ovarian steroid receptors and Kp in the control of PRL secretion. Intracerebroventricular injections of Kp-10 or Kp-234 were performed in ovariectomized (OVX) rats under different hormonal treatments. Kp-10 increased PRL release and decreased 3,4-dihydroxyphenylacetic acid levels in the median eminence (ME) of OVX rats treated with estradiol (OVX+E), which was prevented by tamoxifen. Whereas these effects of Kp-10 were absent in OVX rats, they were replicated in OVX rats treated with selective agonist of estrogen receptor (ER)α, propylpyrazole triol, but not of ERβ, diarylpropionitrile. Furthermore, the Kp-10-induced increase in PRL was two times higher in OVX+E rats also treated with progesterone (OVX+EP), which was associated with a reduced expression of both tyrosine hydroxylase (TH) and Ser40-phosphorylated TH in the ME. Kp-10 also reduced dopamine levels in the ME of OVX+EP rats, an effect blocked by the progesterone receptor (PR) antagonist RU486. We also determined the effect of Kp antagonism with Kp-234 on the estradiol-induced surges of PRL and luteinizing hormone (LH), using tail-tip blood sampling combined with ultrasensitive enzyme-linked immunosorbent assay. Kp-234 impaired the early phase of the PRL surge and prevented the LH surge in OVX+E rats. Thus, we provide evidence that Kp stimulation of PRL release requires ERα and is potentiated by progesterone via PR activation. Moreover, alongside its essential role in the LH surge, Kp seems to play a role in the peak phase of the estradiol-induced PRL surge. Copyright © 2017 Endocrine Society.

  16. Simulation of Lightning Overvoltage Distribution on Stator Windings of Wind Turbine Generators

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Xue-zhong; WANG Ying; LI Dan-dan

    2011-01-01

    This paper analyzes lightning surge on the stator windings of wind turbine generators. The path of lightning in the wind turbines was analyzed. An equivalent circuit model for megawatt direct-driven wind turbine system was developed, in which high-frequency distributed parameters of the blade conducts, tower, power cables and stator windings of generator were calculated based on finite element method, and the models of converter, grounding, loads, surge protection devices and power grid were established. The voltage distribution along stator windings, when struck by lightning with 10/350 ~ts wave form and different amplitude current between 50 kA and 200 kA, was simulated u- sing electro-magnetic transient analysis method. The simulated results show that the highest coil-to-core voltage peak appears on the last coil or near the neutral of stator windings, and the voltage distribution along the windings is non- uniform initially. The voltage drops of each coil fall from first to last coil, and the highest voltage drop appears on the first coil. The insulation damage may occur on the windings under lightning overvoltage. The surge arresters can re- strain the lightning surge in effect and protect the insulation. The coil-to-core voltage in the end of windings is nearly 19.5 kV under the 200 kA lightning current without surge arresters on the terminal of generator, but is only 2.7 kV with arresters.

  17. Analysis of stratification effects on mechanical integrity of pressurizer surge line

    International Nuclear Information System (INIS)

    Thomas-Solgadi, E.; Taupin, P.; Ensel, C.

    1992-01-01

    Unexpected thermal movements in pressurizer surge lines have been reported by several PWR operating utilities. Sometimes gaps between pipe and pipe whip restraints can become closed and plastic deformations could result. Moreover these movements, which have not been considered at conception, can induce additional stresses, and design limits on fatigue and stresses may be exceeded. These piping movements are caused by thermal stratification phenomenon in the horizontal part of the surge line (difference of temperature between hot leg and pressurizer varying from 30 C to above 160 C). To assess the mechanical consequences of this 3-dimensional phenomenon, FRAMATOME has developed a computer program using simplified models (1 and 2-dimensional). This method integrates past investigations on thermal-hydraulic variation of the stratification based on plant monitoring programs carried out by FRAMATOME since 1981, and based also on thermal-hydraulic tests and thermal-hydraulic computer code results. The methodology developed by FRAMATOME permits the following calculations: movements of the line in the elastic and plastic domains; stresses (Mises criterion -- calculations in compliance with ASME or RCC-M codes); usage factors in different components (elbows, welds, ...); crack propagation taking into account stratification and plastic shakedown

  18. Composition of Groundwater Bacterial Communities before and after Air Surging in a Groundwater Heat Pump System According to a Pyrosequencing Assay

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2017-11-01

    Full Text Available The geothermal energy of groundwater has aroused increasing interest as a solution to climate change. The groundwater heat pumps (GWHP system using groundwater is the most environmentally friendly system to date and has been examined in several studies. However, biological clogging by microorganisms negatively affects the thermal efficiency of the GWHP system. In this study, we employed air surging, the most popular among well management methods, and pyrosequencing to analyze the genetic diversity in bacteria before and after air surging in a geothermal well. Furthermore, the diversity of dominant bacterial genera and those related to clogging were evaluated. The bacterial diversity of the groundwater well increased after air surging. Nevertheless, the proportion of bacterial genera thought to be related to microbiological clogging decreased. In cooling and heating systems based on the geothermal energy of groundwater, the wells should be maintained regularly by air surging to reduce efficiency problems caused by microbiological clogging and to prevent secondary damage to human health, e.g., pneumonia due to human pathogenic bacteria including Pseudomonas aeruginosa and Acinetobacter.

  19. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge

    DEFF Research Database (Denmark)

    Williams, Wilbur P; Jarjisian, Stephan G; Mikkelsen, Jens D

    2011-01-01

    In spontaneously ovulating rodents, the preovulatory LH surge is initiated on the day of proestrus by a timed, stimulatory signal originating from the circadian clock in the suprachiasmatic nucleus (SCN). The present studies explored whether kisspeptin is part of the essential neural circuit...... linking the SCN to the GnRH system to stimulate ovulation in Syrian hamsters (Mesocricetus auratus). Kisspeptin neurons exhibit an estrogen-dependent, daily pattern of cellular activity consistent with a role in the circadian control of the LH surge. The SCN targets kisspeptin neurons via vasopressinergic...... of ovulatory control with interactions among the circadian system, kisspeptin signaling, and a GnRH gating mechanism of control....

  20. 46 CFR 111.51-3 - Protection of vital equipment.

    Science.gov (United States)

    2010-10-01

    ...-GENERAL REQUIREMENTS Coordination of Overcurrent Protective Devices § 111.51-3 Protection of vital equipment. (a) The coordination of overcurrent protective devices must be demonstrated for all potential... 46 Shipping 4 2010-10-01 2010-10-01 false Protection of vital equipment. 111.51-3 Section 111.51-3...