WorldWideScience

Sample records for surfactant-templated nanometer-scale porosity

  1. Electrochemistry at Nanometer-Scaled Electrodes

    Science.gov (United States)

    Watkins, John J.; Bo Zhang; White, Henry S.

    2005-01-01

    Electrochemical studies using nanometer-scaled electrodes are leading to better insights into electrochemical kinetics, interfacial structure, and chemical analysis. Various methods of preparing electrodes of nanometer dimensions are discussed and a few examples of their behavior and applications in relatively simple electrochemical experiments…

  2. Optical Properties Of Nanometer-Scale Structures

    CERN Document Server

    Kudykina, T A

    2016-01-01

    Two approaches (micro- and macro- investigations) are used to determine the dimension dependences of the optical parameters of the nanometer-scale layers of materials. It is shown that both an index of refraction and coefficient of absorption depend strongly on the thickness of the layer. In this region of thicknesses, the dimension resonance occurs, where an index of refraction has a maximum and a coefficient of absorption has a minimum. The numerical calculation of the optical parameters of some materials (Ag, Al, Fe, Ge, Si, Se, Te) have been carried out with the use of the experimental data of reflection and transparency of thin layers, obtained in a series of works, and with our formulas for the wave amplitudes and the laws of refractions. The analogues of the Fresnel formulas and the Snell law have been derived from the Maxwell boundary conditions where the absorption and conductivity of media were taken into account. The use of our formulas for the wave amplitudes leads to the fulfillment of the conser...

  3. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities.

  4. Fractal structure and fractal dimension determination at nanometer scale

    Institute of Scientific and Technical Information of China (English)

    张跃; 李启楷; 褚武扬; 王琛; 白春礼

    1999-01-01

    Three-dimensional fractures of different fractal dimensions have been constructed with successive random addition algorithm, the applicability of various dimension determination methods at nanometer scale has been studied. As to the metallic fractures, owing to the limited number of slit islands in a slit plane or limited datum number at nanometer scale, it is difficult to use the area-perimeter method or power spectrum method to determine the fractal dimension. Simulation indicates that box-counting method can be used to determine the fractal dimension at nanometer scale. The dimensions of fractures of valve steel 5Cr21Mn9Ni4N have been determined with STM. Results confirmed that fractal dimension varies with direction at nanometer scale. Our study revealed that, as to theoretical profiles, the dependence of fractal dimension with direction is simply owing to the limited data set number, i.e. the effect of boundaries. However, the dependence of fractal dimension with direction at nanometer scale in rea

  5. Synthesis of 2D Hexagonal Mesoporous Silica Using Amino Acid-based Surfactant Templating

    Directory of Open Access Journals (Sweden)

    Xu Hailan

    2016-01-01

    Full Text Available Ordered 2D hexagonal and parallel arranged pore channel mesoporous silica materials with homogeneous size and spherical shape have been synthesized by using amino acid-based surfactant templating, their ordered mesostructures were characterized by infrared spectroscopy, X-ray diffraction patterns (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and nitrogen sorption analysis.

  6. Self-Assembled Conjugated Polymer Nanometer Scale Devices

    Institute of Scientific and Technical Information of China (English)

    Wenping Hu; Hiroshi Nakashima; Keiichi Torimitsu; Yunqi Liu; Daoben Zhu

    2005-01-01

    @@ 1Introduction Nanometer scale devices, as the next generation devices of electronics, have got a worldwide attention and rapid development recently. Simultaneously, conjugated polymers have been applied in organic electronics successfully because of their outstanding electronic-photonic properties. However, as far as we know few reports have dealt with the fabrication of nanometer scale devices by using conjugated polymers, although the combination of nanometer scale devices and polymers will not only extend conjugated polymers to Nanoelectronics, but also excavate the behaviors of polymer molecules at nano-molecular level, such as the electron transport through polymer molecules. One reason for this case is due to the lack of rigidity for most polymers.It results in the failure to bridge them between electrodes or to stand on substrates, therefore, fails to be characterized by scanning probe microscopy. Another reason is that the non-functionalized end-group of most polymers is impossible to graft on substrates through chemical bonds. Here, we introduce a self-assembled conjugated polymer can be used to fabricate nanodevices by self-assembly. The conjugated polymer is a derivative of poly(p-phenyleneethynylene)s (PPE) with thioacetyl end groups (Fig. 1). In general, it is known that for self-assembling ideal nanojunctions the materials should possess: a) conductivity, b) rigidity (for wiring and bridging between electrodes), and c) connectivity (for covalent attachment to metallic or semiconductor solid surfaces). PPE provides good conductivity owing to its special π-conjugated configuration. It is also believed that in principle PPE molecules possess rigidity because of the presence of the triple bond in their molecules,which prevents the rotation of adjacent phenyl rings with respect to each other.

  7. Probing single nanometer-scale pores with polymeric molecular rulers

    Science.gov (United States)

    Henrickson, Sarah E.; DiMarzio, Edmund A.; Wang, Qian; Stanford, Vincent M.; Kasianowicz, John J.

    2010-04-01

    We previously demonstrated that individual molecules of single-stranded DNA can be driven electrophoretically through a single Staphylococcus aureus α-hemolysin ion channel. Polynucleotides thread through the channel as extended chains and the polymer-induced ionic current blockades exhibit stable modes during the interactions. We show here that polynucleotides can be used to probe structural features of the α-hemolysin channel itself. Specifically, both the pore length and channel aperture profile can be estimated. The results are consistent with the channel crystal structure and suggest that polymer-based "molecular rulers" may prove useful in deducing the structures of nanometer-scale pores in general.

  8. First Observation of Mechanochromism at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    Carpick, R.W.; Sasaki, D.Y.; Burns, A.R.

    1999-07-07

    A mechanically-induced color transition (''mechanochromism'') in polydiacetylene thin films has been generated at the nanometer scale using the tips of two different scanning probe microscopes. A blue-to-red chromatic transition in polydiacetylene molecular trilayer films, polymerized from 10,12-pentacosadiynoic acid (poly-PCDA), was found to result from shear forces acting between the tip and the poly-PCDA molecules, as independently observed with near-field scanning optical microscopy and atomic force microscopy (AFM). Red domains were identified by a fluorescence emission signature. Transformed regions as small as 30 nm in width were observed with AFM. The irreversibly transformed domains preferentially grow along the polymer backbone direction. Significant rearrangement of poly-PCDA bilayer segments is observed by AFM in transformed regions. The removal of these segments appears to be a characteristic feature of the transition. To our knowledge, this is the first observation of nanometer-scale mechanochromism in any material.

  9. Nanometer scale quantum thermometry in a living cell

    CERN Document Server

    Kucsko, G; Yao, N Y; Kubo, M; Noh, H J; Lo, P K; Park, H; Lukin, M D

    2013-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of sub-degree temperature resolution as well as integration within a living system could provide a powerful new tool for many areas of biological research, including temperature-induced control of gene expression and cell-selective treatment of disease. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9 mK/sqrt(Hz)) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate te...

  10. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  11. Mechanical Properties of Materials with Nanometer Scale Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  12. Nanoscience friction and rheology on the nanometer scale

    CERN Document Server

    Meyer, E; Gyalog, T; Overney, R M

    1998-01-01

    Friction force microscopy is an important analytical tool in the field of tribology on the nanometer-scale. The contact area between the probing tip and the sample is reduced to some square nanometers, corresponding to the ideal of a single asperity contact. Traditional concepts, such as friction coefficients, adhesion and elasticity and stick-slip are re-examined with this novel technique. New concepts based upon classical and quantum mechanics are investigated.Contents: Introduction and Motivation; Instruments; Normal Forces at the Atomic Scale; Understanding of Lateral Forces; Dissipation Mechanisms; Nanorheology and Nanoconfinement; Generation of Ultrasonic Waves in Sliding Friction; Friction Force Microscopy Experiments; Appendix: Instrumental Aspects of Force Microscopy.Readership: Graduate and researchers in physics, chemistry and materials science.

  13. Construction of an optical tweezer for nanometer scale rheology

    Indian Academy of Sciences (India)

    A Raghu; Sharath Ananthamurthy

    2005-10-01

    The optical tweezer is a versatile set-up that can be employed in a wide variety of studies investigating the microscopic properties of materials. In particular, this set-up has in recent times been gainfully employed in probing rheological properties of materials that exhibit viscoelasticity. These measurements can provide data at the micro and nanometer scales, not normally accessible by rheometers that are used for measurements on bulk samples. In this work we describe a single laser beam optical tweezer set-up, which is built around an inverted open microscope. The trapped polystyrene particle bead's deviation from the trap potential minimum is monitored by laser back-scattering technique and the bead position measured by a quadrant photodiode detector. Additionally, a provision is made for video microscopic studies on dispersed beads using a CCD camera. A single particle microrheological experiment that can be performed using the set-up is described with relevant calculations.

  14. Method and apparatus for controlled manufacturing of nanometer-scale apertures

    NARCIS (Netherlands)

    Storm, A.J.; Zandbergen, H.W.

    2004-01-01

    The invention relates to a method for manufacturing nanometer-scale apertures, wherein, in an object, in a conventional manner, at least one aperture is provided with a nanometer-scale surface area, after which, by means of an electron beam, energy is supplied to at least the edge of said at least o

  15. Simultaneous Removal of Surfactant Template from MCM-41 and Implantation of Transition Metal Complexes into Mesopores with Supercritical Fluid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The simultaneous removal of up to 92% of the surfactant template and chemical implantation of transition metal complexes into mesopores has been successfully achieved by treating as-synthesized pure siliceous MCM-41 with supercritical CO2 modified with CH2Cl2/MeOH mixture, resulting in the formation of functionalized material with uniform pore structure.

  16. CNTs/mesostructured silica core-shell nanowires via interfacial surfactant templating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; QIAO ShiZhang; YAN ZiFeng; ZHENG HuaJun; LI Li; DING RongGang; LU GaoQing(Max)

    2009-01-01

    Carbon nanotubes (CNTs)/mesostructured silica core-shell nanowires with a carbon nanotube core and controllable highly ordered periodic mesoporous silica shell are syntheiszed via the interfacial surfac-tant template. The core-shell nanowires are characterized by transmission electron microscope (TEM), X-ray diffraction pattern (XRD) and nitrogen sorption/desorption. The results indicate that the core-shell nanowires have highly ordered periodic mesoporous silica shell (space group p6mm), high BET sur-face area and narrow pore size distribution. Moreover, the morphology of core-shell nanowires can be controlled by the pH value. The core-shell nanowires have promising applications in biosensors, nanoprobes and energy storage due to their good dispersibility in polar solvents.

  17. Combining dissimilar materials at nanometer scale for energy harvesting

    Science.gov (United States)

    Kobayashi, Nobuhiko P.

    2010-04-01

    The development of next-generation energy resources that are reliable and economically/environmentally acceptable is a key to harnessing and providing the resources essential for the life of mankind. Our research focuses on the development of novel semiconductor platforms that would significantly benefit energy harvesting, in particular, from light and heat. In these critical applications, traditional semiconductor solid-state devices, such as photovoltaic (PV) and thermoelectric (TE) devices based on a stack of single-crystal semiconductor thin films or single-crystal bulk semiconductor have several drawbacks, for instance; scalability-limits arise when ultra-large-scale implementation is envisioned for PV devices and performance-limits arise for TE devices in which the interplay of both electronic and phonon systems is important. In our research, various types of nanometer-scale semiconductor structures (e.g., nanowires and nanoparticles) coupled to or embedded within a micrometer-scale semiconductor structure (i.e., semiconductor nanomicrometer hybrid platforms) are explored to build a variety of non-conventional PV and TE devices. Two core projects are to develop semiconductor nano-micrometer hybrid platforms based on (1) an ensemble of single-crystal semiconductor nanowires connected to non-single-crystal semiconductor surfaces and (2) semimetallic nanoparticles embedded within a single-crystal semiconductor. The semiconductor nano-micrometer hybrid platforms are studied within the context of their basic electronic, optical, and thermal properties, which will be further assessed and validated by comparison with theoretical approaches to draw comprehensive pictures of physicochemical properties of these semiconductor platforms.

  18. Preparation of High Surface Area, Large Pore Volume Alumina by Using β-Cyclodextrin as a Non-surfactant Template

    Institute of Scientific and Technical Information of China (English)

    Lai Jun WANG; Ming Fen WEN; Yu Shan LI; Dong YANG; Jing CHEN; Chong Li SONG

    2006-01-01

    A series of alumina samples were prepared using β-cyclodextrin as the non-surfactant template. These samples were characterized by XRD, BET and TEM. The results showed that the alumina samples prepared using β-cyclodextrin template had the higher surface areas (124-484 m2/g), larger pore volumes (0.7-1.27 mL/g) and more thermal stability than samples prepared without using β-cyclodextrin.

  19. Dual latex/surfactant templating of hollow spherical silica particles with ordered mesoporous shells.

    Science.gov (United States)

    Tan, Bing; Rankin, Stephen E

    2005-08-30

    Hollow spherical silica particles with hexagonally ordered mesoporous shells are synthesized with the dual use of cetyltrimethylammonium bromide (CTAB) and unmodified polystyrene latex microspheres as templates in concentrated aqueous ammonia. In most of the hollow mesoporous particles, cylindrical pores run parallel to the hollow core due to interactions of CTAB/silica aggregates with the latices. Effects on the product structure of the CTAB:latex ratio, the amount of aqueous ammonia, and the latex size are studied. Hollow particles with hexagonally patterned mesoporous shells are obtained at moderate CTAB:latex ratios. Too little CTAB causes silica shell growth without surfactant templating, and too much induces nucleation of new mesoporous silica particles without latex cores. The concentration of ammonia must be large to induce co-assembly of CTAB, silica, and latex into dispersed particles. The results are consistent with the formation of particles by addition of CTAB/silica aggregates to the surface of latex microspheres. When the size and number density of the latex microspheres are changed, the size of the hollow core and the shell thickness can be controlled. However, if the microspheres are too small (50 nm in this case), agglomerated particles with many hollow voids are obtained, most likely due to colloidal instability.

  20. Optical anisotropy in packed isotropic spherical particles: indication of nanometer scale anisotropy in packing structure.

    Science.gov (United States)

    Yamaguchi, Kohei; Inasawa, Susumu; Yamaguchi, Yukio

    2013-02-28

    We investigated the origin of birefringence in colloidal films of spherical silica particles. Although each particle is optically isotropic in shape, colloidal films formed by drop drying demonstrated birefringence. While periodic particle structures were observed in silica colloidal films, no regular pattern was found in blended films of silica and latex particles. However, since both films showed birefringence, regular film structure patterns were not required to exhibit birefringence. Instead, we propose that nanometer-scale film structure anisotropy causes birefringence. Due to capillary flow from the center to the edge of a cast suspension, particles are more tightly packed in the radial direction. Directional packing results in nanometer-scale anisotropy. The difference in the interparticle distance between radial and circumferential axes was estimated to be 10 nm at most. Nanometer-scale anisotropy in colloidal films and the subsequent optical properties are discussed.

  1. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  2. Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications.

    Science.gov (United States)

    Guldi, Dirk M

    2007-03-28

    This article surveys and highlights the integration of nanometer scale carbon structures--in combination with chromophores that exhibit (i) significant absorption cross section throughout the visible part of the solar spectrum and (ii) good electron donating power--into novel electron donor-acceptor conjugates (i.e., covalent) and hybrids (i.e., non-covalent). The focus of this article is predominantly on performance features--charge-transfer and photovoltaic--of the most promising solar energy conversion systems. Besides documenting fundamental advantages as they emerge around nanometer scale carbon structures, critical evaluations of the most recent developments in the fields are provided.

  3. Method and apparatus for the formation of nanometer-scale electrodes, and such electrodes

    NARCIS (Netherlands)

    Zandbergen, H.W.; Tichelaar, F.D.; Alkemade, P.F.A.

    2006-01-01

    A method for the formation of nanometer-scale electrodes, wherein strip of electrically conductive material, in particular metal, is provided with a longitudinal direction, a width direction and a thickness direction and then, with the aid of an electron beam, a groove is provided in a top surface o

  4. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  5. Formation and properties of 3D metamaterial composites fabricated using nanometer scale laser lithography (Presentation Recording)

    Science.gov (United States)

    Prokes, Sharka M.; Perkins, Frank K.; Glembocki, Orest J.

    2015-08-01

    Metamaterials designed for the visible or near IR wavelengths require patterning on the nanometer scale. To achieve this, e-beam lithography is used, but it is extremely difficult and can only produce 2D structures. A new alternative technique to produce 2D and 3D structures involves laser fabrication using the Nanoscribe 3D laser lithography system. This is a direct laser writing technique which can form arbitrary 3D nanostructures on the nanometer scale and is based on multi-photon polymerization. We are creating 2D and 3D metamaterials via this technique, and subsequently conformally coating them using Atomic Layer Deposition of oxides and Ag. We will discuss the optical properties of these novel composite structures and their potential for dual resonant metamaterials.

  6. Nanometer-Scale Pores: Potential Applications for Analyte Detection and DNA Characterization

    Directory of Open Access Journals (Sweden)

    John J. Kasianowicz

    2002-01-01

    Full Text Available Several classes of transmembrane protein ion channels function in vivo as sensitive and selective detection elements for analytes. Recent studies on single channels reconstituted into planar lipid bilayer membranes suggest that nanometer-scale pores can be used to detect, quantitate and characterize a wide range of analytes that includes small ions and single stranded DNA. We briefly review here these studies and identify leaps in technology that, if realized, might lead to innovations for the early detection of cancer.

  7. Dynamic phase microscopy: measurements of translational displacements at sub-nanometer scale

    OpenAIRE

    Tichinsky, V. P.; Kretushev, A. V.; Luskinovich, P. N.

    2006-01-01

    Dynamic phase microscopy has been applied for measurements of nanometer-scale displacements of a piezoelectric scanner. This scanner, which was designed for calibration purposes for scanning probe microscopy and TEM, exhibited a linear and hysteresis-free translation in the 0.05-20 nm range. The voltage-activated motion is described by a coefficient of 0.03 \\pm 0.005 nm/V.

  8. A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells

    Directory of Open Access Journals (Sweden)

    Marlière Christian

    2016-01-01

    Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.

  9. Shape Reconstruction Based on a New Blurring Model at the Micro/Nanometer Scale

    Directory of Open Access Journals (Sweden)

    Yangjie Wei

    2016-02-01

    Full Text Available Real-time observation of three-dimensional (3D information has great significance in nanotechnology. However, normal nanometer scale observation techniques, including transmission electron microscopy (TEM, and scanning probe microscopy (SPM, have some problems to obtain 3D information because they lack non-destructive, intuitive, and fast imaging ability under normal conditions, and optical methods have not widely used in micro/nanometer shape reconstruction due to the practical requirements and the imaging limitations in micro/nano manipulation. In this paper, a high resolution shape reconstruction method based on a new optical blurring model is proposed. Firstly, the heat diffusion physics equation is analyzed and the optical diffraction model is modified to directly explain the basic principles of image blurring resulting from depth variation. Secondly, a blurring imaging model is proposed based on curve fitting of a 4th order polynomial curve. The heat diffusion equations combined with the blurring imaging are introduced, and their solution is transformed into a dynamic optimization problem. Finally, the experiments with a standard nanogrid, an atomic force microscopy (AFM cantilever and a microlens have been conducted. The experiments prove that the proposed method can reconstruct 3D shapes at the micro/nanometer scale, and the minimal reconstruction error is 3 nm.

  10. Polymer Droplet Dynamic Wetting Measurement at the Nanometer Scale on Smooth Surfaces Using Atomic Force Microscopy

    Science.gov (United States)

    Soleymaniha, Mohammadreza; Felts, Jonathan Robert; Anml Team

    2016-11-01

    Fluid spreading is a complex phenomenon driven strongly by intermolecular forces that requires nanometer scale microscopy to observe and understand. We present a technique for measuring molten polymer spreading dynamics with nanometer scale spatial resolution at elevated temperatures on sapphire, silicon oxide and mica using tapping-mode atomic force microscopy (AFM). The experimental setup is used to measure the spreading dynamics of polystyrene droplets with 2 μ m diameters at 115-175 C. Custom image processing algorithms realize the droplet height, radius, volume and contact angle of the droplet over time. The contact angle evolution followed a power law with time with experimental exponent values of -0.26, -0.08, and -0.2 for sapphire, silicon oxide, and mica, respectively at 115 C. The non-zero steady state contact angles result in a slower evolution of contact angle with time compared to Tanner's Law, as expected. We observe local crystallinity on the molten droplet surface, where crystalline structures appear to nucleate at the contact line and migrate toward the top of the droplet. Increasing the temperature from 115 C to 175 C reduced surface crystallinity from 35% to 12%, consistent with increasingly energetically favorable amorphous phase as the temperature approaches the melting temperature. This platform provides a way to measure spreading dynamics of extremely small volumes of heterogeneously complex fluids not possible through other means. Dr.Jonathan Felts is the principal investigator of the ANML research group in Mechanical Engineering Department of Texas A&M University.

  11. Nanometer-Scale Compositional Structure in III-V Semiconductor Heterostructures Characterized by Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Allerman, A.A.; Bi, W.G.; Biefeld, R.M.; Tu, C.W.; Yu, E.T.; Zuo, S.L.

    1998-11-10

    Nanometer-scale compositional structure in InAsxP1.InNYAsxPl.x-Y/InP, grown by gas-source molecular-beam epitaxy and in InAsl-xPJkAsl$b#InAs heterostructures heterostructures grown by metal-organic chemical vapor deposition has been characterized using cross-sectional scanning tunneling microscopy. InAsxP1-x alloy layers are found to contain As-rich and P-rich clusters with boundaries formed preferentially within (T 11) and (111) crystal planes. Similar compositional structure is observed within InNYAsxP1-x-Y alloy layers. Imaging of InAsl-xp@Asl#bY superlattices reveals nanometer-scale clustering within both the hAsI-.p and InAsl$bY alloy layers, with preferential alignment of compositional features in the direction. Instances are observed of compositional structure correlated across a heterojunction interface, with regions whose composition corresponds to a smaller unstrained lattice, constant relative to the surrounding alloy material appearing to propagate across the interface.

  12. Characterization and growth dynamics of barium titanate crystallite on nanometer scale

    Institute of Scientific and Technical Information of China (English)

    Sen Wang; Yue Zhang; Zhen Ji; Yousong Gu; Yunhua Huang; Cheng Zhou

    2005-01-01

    Barium titanate powder on nanometer scale was synthesized by means of co-precipitation. The thermal mass loss, crystal grain growth and phase transition of the barium titanate nanometer powder were investigated by TG (Thermogravimetric)-DTA (Differential scanning calorimetric) and XRD (X-ray powder diffractometer) at different heat treatment temperatures. The results show that amorphous barium titanate powder can transfer into tetragonal symmetry structure after heat treatment. When the heat treatment temperature is below 900℃, the grains grow rapidly because the activation energy at low temperature is greatly less than that at high temperature. By controlling theheat treatment temperature, the optimization of the barium titanate crystallite size and formation of tetragonal phase can be realized.

  13. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Korzeniewski, Carol

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  14. Nanometer-scale lithography of ultrathin films with atomic force microscope

    CERN Document Server

    Kim, J C; Shin, Y W; Park, S W

    1998-01-01

    Ultrathin resist films have been prepared by both Langmuir-Blodgett (LB) and self-assembly (SA) techniques. Nanometer-scale patterning of these thin films has been performed by using the atomic force microscope (AFM) as the exposing tool. The poly (methylphenylmethacrylate) (PMPMA) LB films were prepared and fabricated by AFM lithography. When the exposure was carried out at the bias voltage of -25V, the protruding lines appeared in the exposed regions. The preoptimized LB films at various conditions exhibited 120 nm line resolution. An organosilane monolayer composed of octadecyldimethylsilyl groups was prepared on a Si substrate. It was then patterned through the localized degradation of the monolayer due to anodic reaction induced by an AFM tip. When the bias voltage was -30 V, the protruding lines appeared in the exposed regions.

  15. 3D-SEM Metrology for Coordinate Measurements at the Nanometer Scale

    DEFF Research Database (Denmark)

    Carli, Lorenzo

    The present work deals with a study concerning 3D-SEM metrology as a tool for coordinate measurements at the nanometer scale. The relevance of 3D-SEM, based on stereophotogrammetry technique, has been highlighted with respect to the other measuring instruments nowadays available and the main issues...... to be addressed concerning uncertainty evaluation have been discussed. Most recent developments in the field of micro and nano-metrology, in terms of measuring machines and techniques, are described pointing out advantages and limitations. The importance of multi-sensor and multi-orientation strategy...... to 3D reconstructions, are given and the main phases involved in stereophotogrammetry technique are described underlying the most relevant error sources in the case of 2D and 3D-SEM metrology. An uncertainty evaluation has been thus carried out in accordance with ISO GUM, following a holistic approach...

  16. Parallel nanometer scale fabrication. Final report, September 19, 1989--September 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, K.

    1993-09-01

    Our approach to nanotechnology stresses parallel (as opposed to serial) processing and self-assembly techniques and we have demonstrated a basic parallel nanofabrication process that will enable a wide variety of nanometer-scale structures to be made. The process of nanometer molecular lithography employs two-dimensional biomolecular crystals as patterning elements in the parallel fabrication of structures on the 1--10 nm length scale. We have further demonstrated the fabrication of composite biomolecular/solid state heterostructures of nanometer dimension (nanoheterostructures). We are presently pursuing central issues in the development of nanotechnology such as the understanding and control of fluctuations and structural variations as well as applications of our nanofabrication process. An example of the latter is the formation of porous silicon having monodisperse arrays of silicon ``quantum wires`` to elucidate the role of quantum confinement in the phenomenon of luminescent silicon.

  17. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.

    Science.gov (United States)

    Song, Jinsuk; Han, Oc Hee; Han, Songi

    2015-03-16

    Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs.

  18. Direct observation of nanometer-scale Joule and Peltier effects in phase change memory devices

    Science.gov (United States)

    Grosse, Kyle L.; Xiong, Feng; Hong, Sungduk; King, William P.; Pop, Eric

    2013-05-01

    We measure power dissipation in phase change memory (PCM) devices by scanning Joule expansion microscopy (SJEM) with ˜50 nm spatial and 0.2 K temperature resolution. The temperature rise in the Ge2Sb2Te5 (GST) is dominated by Joule heating, but at the GST-TiW contacts it is a combination of Peltier and current crowding effects. Comparison of SJEM and electrical measurements with simulations of the PCM devices uncovers a thermopower of ˜350 μV K-1 and a contact resistance of ˜2.0 × 10-8 Ω m2 (to TiW) for 25 nm thick films of face centered-cubic crystalline GST. Knowledge of such nanometer-scale Joule, Peltier, and current crowding effects is essential for energy-efficient design of future PCM technology.

  19. Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Shyamal, E-mail: shyamal@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Behera, Akshaya K. [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Banerjee, Amarabha; Tribedi, Lokesh C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Som, Tapobrata [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2012-07-01

    We report the effects of exposing a hydrothermally grown, single crystalline ZnO nanorod array to a beam of 50 keV argon ions at room temperature. High resolution electron microscopy reveals that the ion bombardment results in a nanometer-scale roughening of the nanorod sidewalls, which were almost atomically flat in the pristine sample. Ion bombardment further causes the flat, Almost-Equal-To 100 nm diameter nanorod tips to get sharpened to ultrafine points less than 10 nm across. While tip sharpening is attributed to preferential sputtering, the formation of crystalline surface protuberances can be ascribed to surface instability due to curvature dependent sputtering and surface diffusion under argon-ion bombardment. Both the nanoscale roughening as well as the tip sharpening are expected to favorably impact a wide variety of applications, such as those involving catalysis, gas sensing, solar cells, field emission and gas discharge.

  20. Characterization of Class F Fly Ash Using STXM: Identifying Intraparticle Heterogeneity at Nanometer Scale

    Directory of Open Access Journals (Sweden)

    J. Ha

    2016-01-01

    Full Text Available Chemical and physical characterization of fly ash particles were conducted using scanning transmission X-ray microscopy (STXM. Compositional and spatial investigation and correlation among the main elemental constituents of fly ash (Al, Si, and Fe were conducted based on microscopic and NEXAFS spectral analysis. Homogeneous oxidation and coordination state of Al and Fe were observed whereas Si shows spatial variation in its chemical state. We also identified that Si and Al are spatially correlated at nanometer scale in which high concentration of Si and Al was concurrently and consistently observed within the 30 nm resolution whereas Fe distribution did not show any specific correlation to Al and Si. Results of this study indicate that fly ash chemical composition has heterogeneous distribution depending on the elements which would determine and result in the differences in the reactivity.

  1. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    Science.gov (United States)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  2. Nanometer-scale structural, tribological, and optical properties of ultrathin poly(diacetylene) films

    Energy Technology Data Exchange (ETDEWEB)

    CARPICK,ROBERT W.; SASAKI,DARRYL Y.; BURNS,ALAN R.

    2000-04-17

    The ability to create organized ultrathin films using organic molecules provides systems whose chemical, mechanical, and optical properties can be controlled for specific applications. In particular, polymerization of oriented mono- and multi-layer films containing the diacetylene group has produced a variety of robust, highly oriented, and environmentally responsive films with unique chromatic properties. These two-dimensional poly(diacetylene) (PDA) films, where the conjugation runs parallel to the film surface, have previously been prepared in a variety of forms. Of particular interest is the optical absorption of PDA due to its {pi}-conjugated backbone. A wide variety of PDA materials, including bulk crystals, thin films, and solutions, exhibit a chromatic transition involving a significant shift in absorption from low to high energy bands of the visible spectrum, thus the PDA appears to transform from a blue to a red color. In addition, the red form is highly fluorescent, while the blue form is not. This transition can be brought about by heat binding of specific biological targets and applied stress (mechanochromism), among others. In this paper, the authors discuss the Langmuir deposition of ultrathin PDA films and the subsequent measurement of their structural, optical, and mechanical properties at the nanometer scale. By altering the head group functionality, the authors can choose between mono- and tri-layer PDA film structures. Measurements with the atomic force microscope (AFM) reveal strongly anisotropic friction properties that are correlated with the orientation of the conjugated polymer backbone orientation. Furthermore, the authors can use the AFM tip or a near field scanning optical microscope (NSOM) tip to locally convert the PDA from the blue form to the red form via applied stress. This represents the first time that mechanochromism has been observed at the nanometer scale. Dramatic structural changes are associated with this mechanochromic

  3. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  4. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wehrens, Martijn; Rein ten Wolde, Pieter [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Mugler, Andrew, E-mail: amugler@purdue.edu [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations of the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  5. Nanometer scale mapping of the density of states in an inhomogeneous superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Cren, T.; Roditchev, D.; Sacks, W.; Klein, J. [Univ. Paris 7 et Paris 6 (France). Groupe de Physique des Solides

    2001-04-01

    Using high-speed scanning tunneling spectroscopy (STS), we perform a full mapping of the quasiparticle density of states (DOS) in single crystals of Bi{sub 2-x}Pb{sub x}Sr{sub 2}CaCu{sub 2}0{sub 8+{delta}}. The measurements carried out at 5 K showed a complex spatial pattern of important variations of the local DOS on the nanometer scale. Superconducting areas, characterized by a well-pronounced superconducting gap, are coexisting with regions of a peakless gap structure which we attribute to the pseudogap. Within the large superconducting regions, the spectra reveal strong peak/dip/hump signatures, identical to the pristine Bi{sub 2}Sr{sub 2}CaCu{sub 2}0{sub 8+{delta}} case. On the contrary, in very small superconducting regions this fine structure is attenuated. Such a behavior of the local DOS suggests that the peak/dip/hump fine structure is not only a consequence of the superconducting state, but is also directly related to the scale of the phase coherence. The role of Bi-Pb substitutional disorder is discussed. (orig.)

  6. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap.

    Science.gov (United States)

    Seok, Tae Joon; Jamshidi, Arash; Eggleston, Michael; Wu, Ming C

    2013-07-15

    Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography. We demonstrate strong surface-enhanced Raman spectroscopy (SERS) signal with an enhancement factor exceeding 108 from the arch-dipole antenna array, which is two orders of magnitude stronger than that from the standard dipole antenna array fabricated by e-beam lithography. Since the antenna gap spacing, the critical dimension of the antenna, can be defined by deep-UV lithography, efficient optical antenna arrays with nanometer-scale gap can be mass-produced using current CMOS technology.

  7. Selenate and Selenite Reduction by Nanometer-Scale Zerovalent Iron Particles

    Science.gov (United States)

    Olegario, J. T.; Yee, N. Y.; Manning, B. A.

    2007-12-01

    Selenium oxyanions can be present in agricultural drainage waters, coal mining effluent, and as fission products in radioactive wastes. The objective of this work was to evaluate the effectiveness of both nanometer scale zerovalent iron (nano-Fe) and 100 mesh Fe filings for reduction and immobilization of aqueous selenate Se(VI) and selenite Se(IV). The uptake of Se(VI) and Se(IV) using batch equilibrium, kinetics, and X-ray absorption spectroscopic (XAS) techniques was investigated. In addition, a thorough investigation of the solid phase corrosion products by X-ray diffraction was conducted. The crystalline corrosion product was similar to magnetite, though some distinct differences in the XRD results were noted between Se(IV)- and Se(VI)-treated samples. Application of quantitative X-ray absorption near edge spectroscopy (XANES) revealed that both Se(VI) and Se(IV) were reduced to a mixture of elemental Se(0) plus iron(II) selenide (Se(-II)). The Se local atomic structure in Se(VI)- and Se(IV)-treated nano-Fe was determined using extended x-ray absorption fine structure spectroscopy (EXAFS) and a Se-Se interatomic distance of 2.44 angstroms was revealed. This work suggests that nano-Fe is an efficient material for removing dissolved Se(VI) and Se(IV) from waste waters by formation of an insoluble, reduced FeSe product.

  8. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  9. Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Balke, N.; Jesse, S.; Kim, Y.; Adamczyk, L.; Ivanov, I.; Dudney, N. J.; Kalinin, S. V.

    2010-12-28

    We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (~1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.

  10. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  11. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  12. Nanometer scale assessment of mechanical strain induced in silicon by a periodic line array.

    Science.gov (United States)

    Escoubas, S; Gaudeau, G; Ezzaidi, Y; Thomas, O; Morin, P

    2011-10-01

    Measuring stress and strain, induced by nanostructures, at the nanometer scale is still a challenge. In this work, we investigate the strain induced by sub-micrometric periodic line arrays deposited on single crystal (001) Si substrate. We study the influence of the lines width and the spacing between the lines for two sets of samples: a silicon nitride lines array and a poly-silicon line array capped with a Si3N4 stressor layer. The periodic strain field in mono-crystalline silicon is investigated by High Resolution X-ray Diffraction which is very sensitive to local strain (goniometer with a laboratory source. The line arrays induce a periodic strain field in silicon, which gives rise to distinct satellites in reciprocal space. The intensity envelope of these satellites is related to the strain field in one cell. In order to assess this strain field in silicon, mechanical modeling is necessary. Elastic calculations are performed with a Finite Element Modeling (FEM) code in order to extract the displacement field that is used for structure factor calculations within kinematical approximation. The calculated reciprocal space map is compared to the experimental results in order to validate the strain field. We show that for capped poly arrays, the diffracted intensity envelope is influenced by the spacing between the lines. This area is filled with silicon nitride which induces a noticeable change in displacement and strain field. While for bare stressor arrays the nitride line width is responsible of change in displacement field and thus on the RSM intensity envelope.

  13. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    Science.gov (United States)

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  14. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Kyle L. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Pop, Eric [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  15. In situ formation of nanometer-scale TiO2/SiC functional compositional film on carbon fiber

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chunhua; YIN Yansheng; ZHANG Shuxiang; LIU Wei

    2005-01-01

    In the toluene solution of the precursor Polycarbosilane (PCS) containing low- molecular-mass additive Ti(OC4H9)4, TiO2/SiC nanometer-scale functional compositional film with the surface TiO2 layer on CF was formed in situ by means of polymer-derived precursors. The effects of Ti (OC4H9)4 concentrations and the maturating time were studied on the densification and TiO2 particle size of surface layer. The compositions of film were TiO2 and SiC crystal by XRD. According to the results of ESCA analysis, Ti(OC4H9)4 compound oozed gradiently from the pre-ceramic PCS to the surface layer after maturating time of 100 h. In the conditions of 45wt% Ti (OC4H9)4 and 100 h maturation, the nanometer-scale TiO2 particles on continuous surface layer were formed by SEM photographs. The nanometer-scale TiO2/SiC functional compositional film can modify the resistance to oxidation of carbon fiber.

  16. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    Science.gov (United States)

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K-1. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  17. Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP Force

    Directory of Open Access Journals (Sweden)

    Wen J. Li

    2011-12-01

    Full Text Available We report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional (3D polymer structures using visible light sources instead of ultra-violet (UV light sources or lasers. This method also does not require the conventional micro-photolithographic technique (i.e., photolithographic masks for patterning and fabricating polymer structures such as hydrogels. The major materials and methods required for this novel fabrication technology are: (1 any cross-linked network of photoactive polymers (examples of fabricated poly(ethylene glycol (PEG-diacrylate hydrogel structures are shown in this paper; (2 an Optically-induced Dielectrophoresis (ODEP System which includes an “ODEP chip” (i.e., any chip that changes its surface conductivity when exposed to visible light, an optical microscope, a projector, and a computer; and (3 an animator software hosted on a computer that can generate virtual or dynamic patterns which can be projected onto the “ODEP chip” through the use of a projector and a condenser lens. Essentially, by placing a photosensitive polymer solution inside the microfluidic platform formed by the “ODEP chip” bonded to another substrate, and applying an alternating current (a.c. electrical potential across the polymer solution (typically ~20 Vp-p at 10 kHz, solid polymer micro/nano structures can then be formed on the “ODEP chip” surface when visible-light is projected onto the chip. The 2D lateral geometry (x and y dimensions and the thickness (height of the micro/nano structures are dictated by the image geometry of the visible light projected onto the “ODEP chip” and also the time duration of projection. Typically, after an image projection with intensity ranging from ~0.2 to 0.4 mW/cm2 for 10 s, ~200 nm high structures can be formed. In our current system, the thickness of these polymer structures can be controlled to form from ~200 nanometers to ~3

  18. Giant Peltier Effect in a Submicron-Sized Cu-Ni/Au Junction with Nanometer-Scale Phase Separation

    Science.gov (United States)

    Sugihara, Atsushi; Kodzuka, Masaya; Yakushiji, Kay; Kubota, Hitoshi; Yuasa, Shinji; Yamamoto, Atsushi; Ando, Koji; Takanashi, Koki; Ohkubo, Tadakatsu; Hono, Kazuhiro; Fukushima, Akio

    2010-06-01

    We observed a giant Peltier effect in a submicron Cu-Ni/Au junction. The Peltier coefficient was evaluated to be 480 mV at room temperature from the balance between Joule heating and the Peltier cooling effect in the junction, which is 40 times that expected from the Seebeck coefficients of bulk Au and Cu-Ni alloy. This giant cooling effect lowered the inner temperature of the junction by 160 K. Microstructure analysis with a three-dimensional atom probe suggested that the giant Peltier effect possibly originated from nanometer-scale phase separation in the Cu-Ni layer.

  19. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a SNOM fiber tip

    CERN Document Server

    Atie, Elie M; Eter, Ali El; Salut, Roland; Nedeljkovic, Dusan; Tannous, Tony; Baida, Fadi I; Grosjean, Thierry

    2015-01-01

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nano-meter scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e. in contact to the nano-structures. In these paper, We demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of 'remote' (non contact) sensing on the nano-meter scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM fiber tip, we introduce an ultra-compact, move-able and background-free optical nano-sensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nano-meter accuracy. This work paves the way towards a new class of nano-po...

  20. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jingtian, E-mail: jingtian.fang@utdallas.edu; Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2016-01-21

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ∼66 mV/decade and a drain-induced barrier-lowering of ∼2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  1. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    Science.gov (United States)

    Fang, Jingtian; Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V.

    2016-01-01

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ˜66 mV/decade and a drain-induced barrier-lowering of ˜2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  2. Probing alloy composition gradient and nanometer-scale carrier localization in single AlGaN nanowires by nanocathodoluminescence

    Science.gov (United States)

    Pierret, A.; Bougerol, C.; Gayral, B.; Kociak, M.; Daudin, B.

    2013-08-01

    The optical properties of single AlGaN nanowires grown by plasma-assisted molecular beam epitaxy have been studied by nanocathodoluminescence. Optical emission was found to be position-dependent and to occur in a wide wavelength range, a feature which has been assigned to a composition gradient along the nanowire growth axis, superimposed on local composition fluctuations at the nanometer scale. This behavior is associated with the growth mode of such AlGaN nanowires, which is governed by kinetics, leading to the successive formation of (i) a zone with strong local composition fluctuations followed by (ii) a zone with a marked composition gradient and, eventually, (iii) a zone corresponding to a steady state regime and the formation of a homogeneous alloy.

  3. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Marimpul, Rinaldo; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2016-02-08

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parameters and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.

  4. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  5. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Science.gov (United States)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  6. Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanometer scale thin film material of PtPd alloy supported on glassy carbon (nm-PtPd/GC) was prepared by the electrochemical codeposition method under cyclic voltammetric conditions. STM patterns demonstrated that the prepared thin films are composed of layered crystallites in elliptic form. Electrochemical in situ FTIRS studies explored the abnormal infrared effects (AIREs) of nmPtPd/GC for CO adsorption, which are ( i ) the remarkable enhancement of IR absorption, (ii) the inversion of COad band direction, and (iii) notable increase in the full width at half maximum (FWHM) of COad bands. The results demonstrated also that the enhancement factor of IR absorption varies with the thickness of PtPd alloy film and has reached a maximum value of 38.3 under the experimental conditions.

  7. Heterogeneous nanometer-scale Joule and Peltier effects in sub-25 nm thin phase change memory devices

    Science.gov (United States)

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-01

    We measure heterogeneous power dissipation in phase change memory (PCM) films of 11 and 22 nm thin Ge2Sb2Te5 (GST) by scanning Joule expansion microscopy (SJEM), with sub-50 nm spatial and ˜0.2 K temperature resolution. The heterogeneous Joule and Peltier effects are explained using a finite element analysis (FEA) model with a mixture of hexagonal close-packed and face-centered cubic GST phases. Transfer length method measurements and effective media theory calculations yield the GST resistivity, GST-TiW contact resistivity, and crystal fraction of the GST films at different annealing temperatures. Further comparison of SJEM measurements and FEA modeling also predicts the thermopower of thin GST films. These measurements of nanometer-scale Joule, thermoelectric, and interface effects in PCM films could lead to energy-efficient designs of highly scaled PCM technology.

  8. Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Noy, A; Huser, T; Eaglesham, D; Bakajin, O

    2004-08-25

    A membrane consisting of multiwall carbon nanotubes embedded in a silicon nitride matrix was fabricated for fluid mechanics studies on the nanometer scale. Characterization by tracer diffusion and scanning electron microscopy suggests that the membrane is free of large voids. An upper limit to the diffusive flux of D{sub 2}O of 2.4x10-{sup 8} mole/m{sup 2}-s was determined, indicating extremely slow transport. By contrast, hydrodynamic calculations of water flow across a nanotube membrane of similar specifications predict a much higher molar flux of 1.91 mole/m{sup 2}-s, suggesting that the nanotubes produced possess a 'bamboo' morphology. The carbon nanotube membranes were used to make nanoporous silicon nitride membranes, fabricated by sacrificial removal of the carbon. Nitrogen flow measurements on these structures give a membrane permeance of 4.7x10{sup -4} mole/m{sup 2}-s-Pa at a pore density of 4x10{sup 10} cm{sup -2}. Using a Knudsen diffusion model, the average pore size of this membrane is estimated to be 66 nm, which agrees well with TEM observations of the multiwall carbon nanotube outer diameter. These membranes are a robust platform for the study of confined molecular transport, with applications inseparations and chemical sensing.

  9. Direct sub-nanometer scale electron microscopy analysis of anion incorporation to self-ordered anodic alumina layers

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rovira, L.; Lopez-Haro, M.; Hungria, A.B.; El Amrani, K. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M. [Titania, Ensayos y Proyectos Industriales, S.L. Parque Tecnobahia, Edificio RETSE, Nave 4, 11500 El Puerto de Santa Maria (Cadiz) (Spain); Calvino, J.J. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Botana, F.J., E-mail: javier.botana@uca.e [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-11-15

    Research highlights: {yields} Morphological and chemical characterization at atomic scale of porous alumina layers anodised in ordered regimes. {yields} Characterization based on the use of FEG-SEM, STEM-HAADF, STEM-EELS and STEM-X-EDS. {yields} Nanoscale distribution of P-, C- and S-bearing species in the pore wall. - Abstract: Ordered porous alumina layers prepared by two-step anodising in phosphoric, oxalic and sulphuric acids have been characterized at sub-nanometer scale using electron microscopy techniques. FEG-SEM and STEM-HAADF images allowed estimating the pore size, cell wall and pore wall thicknesses of the layers. Nanoanalytical characterization has been performed by STEM-EELS and STEM-X-EDS. Detailed features of the spatial distribution of anions in the pore wall of the films have been obtained. Maximum concentration of P-species occurs, approximately, at the middle of the pore wall; adjacent to the pore for C-species, whereas the distribution of S-species appears to be uniform.

  10. Echoes in x-ray speckles track nanometer-scale plastic events in colloidal gels under shear

    Science.gov (United States)

    Leheny, Robert; Rogers, Michael; Chen, Kui; Andrzejewski, Lukasz; Narayanan, Suresh; Ramakrishnan, Subramanian; Harden, James

    2015-03-01

    Any solid under applied stress possesses an elastic limit above which it yields. The microscopic signatures of yield are irreversible changes to the material's structure. We describe x-ray photon correlation spectroscopy experiments on a concentrated nanocolloidal gel subject to in situ oscillatory shear strain that provide information about the spatial character of rearrangements above yielding at the nanometer scale. The oscillatory strain causes periodic echoes in the x-ray speckle pattern, creating peaks in the intensity autocorrelation function. The peak amplitudes are attenuated above a threshold strain, signaling the onset of irreversible particle rearrangements. The gel displays strain softening well below the threshold, indicating a range of strains at which deformations are nonlinear but reversible. Above the threshold strain, the peak amplitudes decay exponentially with the number of shear cycles, demonstrating that all regions in the sample are equally susceptible to yielding and that the probability of a region yielding is independent of previous shear history. The wave-vector dependence of the decay rate reveals a power-law distribution in the size of rearranging regions, suggesting a nonequilibrium critical transition at yielding.

  11. Nanometer Scale Distance Measurements for Biological Systems using Gd^3+-based Spin Probes at High Magnetic Fields

    Science.gov (United States)

    Edwards, Devin; Goldfarb, Daniella; Han, Songi; Sherwin, Mark

    2012-02-01

    Determination of nanometer-scale distances is critical for understanding structure and dynamics of proteins. Electron Paramagnetic Resonance (EPR), primarily below 1 T, is used to complement other structural techniques by quantifying sparse distances up to 8 nm in biomolecules labeled with nitroxide-based radicals. EPR becomes more powerful with increasing magnetic fields and frequencies. At 95 GHz (3.5 T), Gd^3+ ions have shown clear advantages over nitroxide probes (Potapov, JACS 2010). We show that these advantages are even more dramatic at 240 GHz (8.5 T). The width of Gd^3+'s central EPR transition narrows with increasing average distance between Gd^3+ ions out to distances as long as 5 nm. This doubles the distances accessible with nitroxides in continuous wave measurements, which can be carried out above the 200K protein-glass transition and with broad distance distributions. Temperature-dependent measurements of the phase memory times at 8.5 T and low temperatures show distance dependence out to 10 nm. Measurements of Gd^3+ labeled Proteorhodopsin confirm that phase memory times remain long enough to observe distance dependence in a spin-labeled protein. This work is supported by the National Science Foundation and the Binational Science Foundation.

  12. Influence of nanometer scale film structure of ZDDP tribofilm on Its mechanical properties: A computational chemistry study

    Science.gov (United States)

    Onodera, Tasuku; Kuriaki, Takanori; Morita, Yusuke; Suzuki, Ai; Koyama, Michihisa; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Del Carpio, Carlos A.; Kubo, Momoji; Minfray, Clotilde; Martin, Jean-Michel; Miyamoto, Akira

    2009-11-01

    We investigated the influence of a nanometer scale film structure of a tribofilm generated from zinc dialkyldithiophosphate (ZDDP) anti-wear additive on its mechanical properties using a combined molecular dynamics (MD) and finite element (FE) method. The frictional behavior of an interface between a native iron oxide layer on steel surface and zinc metaphosphate - regarded as a model material of ZDDP tribofilm - was firstly studied using the MD method. The results showed that the iron atoms in the oxide layer diffused into the phosphate layer during the friction process. The zinc atoms in the phosphate layer also diffused into the oxide layer. Significant interdiffusion of iron and zinc atoms was observed with increasing simulation time. Thus, metallic phosphate with a gradient composition of iron and zinc atoms was formed on the phosphate/oxide interface. We then constructed an axisymmetric nanoindentation simulation model from the MD-derived structures at a certain simulation time and carried out a FE calculation. As a result, we found that the rubbed ZDDP tribofilm, including the phosphate with the gradient composition of metallic atoms, showed larger contact stiffness and hardness. The combined MD/FE simulation indicates that the tribofilm becomes stiffer and harder due to the interdiffusion of iron and zinc atoms on the tribofilm/oxide interface. We have found that the gradient composition formation in ZDDP tribofilm during friction process influences on its mechanical properties.

  13. MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures and Optical Instrumentation for Glacier Ice Studies

    Science.gov (United States)

    Chan, Wing Shan

    MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures: We developed a new actuator microstructure to control the spacing between closely spaced surfaces. Creating and controlling nanometer gaps is of interest in areas such as plasmonics and quantum electronics. For example, energy states in quantum well heterostructures can be tuned by adjusting the physical coupling distance between wells. Unfortunately, such an application calls for active control of a nano-scale air gap between surfaces which are orders of magnitude larger, which is difficult due to stiction forces. A vertical electrostatic wedge actuator was designed to control the air gap between two closely spaced quantum wells in a collapsed cantilever structure. A six-mask fab- rication process was developed and carried out on an InGaAs/InP quantum well het- erostructure on an InP substrate. Upon actuation, the gap spacing between the surfaces was tuned over a maximum range of 55 nm from contact with an applied voltage of 60 V. Challenges in designing and fabricating the device are discussed. Optical Instrumentation for Glacier Ice Studies: We explored new optical instrumentation for glacier ice studies. Glacier ice, such as that of the Greenland and Antarctic ice sheets, is formed by the accumulation of snowfall over hundreds of thousands of years. Not all snowfalls are the same. Their isotopic compositions vary according to the planet's climate at the time, and may contain part of the past atmosphere. The physical properties and chemical content of the ice are therefore proxies of Earth's climate history. In this work, new optical methods and instrumentation based on light scattering and polarization were developed to more efficiently study glacier ice. Field deployments in Antarctica of said instrumentation and results acquired are presented.

  14. 纳米尺度连接技术的研究现状与展望%Research and application of joining technology at nanometer scale

    Institute of Scientific and Technical Information of China (English)

    何鹏; 矫震; 王君; 林铁松

    2013-01-01

    Nanomaterials have been widely applied due to their unique properties. Joining technology at nanometer scale is gradually developed with the popularity of nanomaterials, which has broad application prospects in the fields of electronics, aerospace, biology, and health care. The microscopic effects of nanomaterials were introduced and the current development of joining technology at nanometer scale were reviewed. Solid state bonding, soldering/brazing and fusion welding were mainly discussed. The differences in some phenomena and physical processes between nanoscale and macroscale were analyzed. In addition , the function of molecular dynamics simulation in nano-join-ing field was pointed out. At last, the application prospect of joining technology at nanometer scale was presented.%纳米材料以其特有的结构和性质而得到了广泛应用,纳米尺度的连接技术也随之逐渐发展起来,在电子、宇航、生物医疗等领域具有广阔的应用前景.介绍了纳米材料的微观效应,并综述了纳米尺度连接技术的研究进展,其中主要介绍了纳米固相连接、纳米钎焊和纳米熔化焊的研究现状,分析了在纳米尺度进行材料连接时,一些现象和物理过程与宏观连接时的区别,同时指出了分子动力学方法在纳米连接领域的作用,最后对纳米尺度连接技术的应用前景进行了展望.

  15. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  16. Magnetization and magnetotransport properties of Cu{sub 60}Fe{sub 20}Ni{sub 20} systems exhibiting magnetic frustration on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Baricco, M.; Bosco, E.; Coisson, M. E-mail: coisson@ien.it; Rizzi, P.; Selvaggini, V.; Tiberto, P

    2003-05-01

    Magnetization and magnetoresistance of as quenched and joule-heated samples of the ternary alloy Cu{sub 60}Fe{sub 20}Ni{sub 20} have been measured at room temperature. Magnetic measurements have been performed up to 700 K. All studied samples display magnetic frustration on the nanometer scale; the size of the magnetically correlated regions can be estimated by properly combining magnetization and resistance data. Annealing promotes the magnetoresistive effect by enhancing the agreement between size of magnetically correlated regions and electron mean free path. The magnetic behaviour of the strongly annealed samples shows the evolution from a still dominant magnetic frustration to the first appearance of hysteretic features.

  17. Influence factors of the nano-meter scale measurement by SEM%扫描电镜测量纳米尺度的影响因素

    Institute of Scientific and Technical Information of China (English)

    傅志强; 贺翠翠; 刘锡贝; 郭俊诚; 赵江勇; 孟凯

    2012-01-01

    According to standard GB/T20307-2006, the measurement of nano-meter scale, selection of standard length and parameters of SEM, the influencing factors including acceleration voltage, beam diameter, work distance and display position were studied on the nano-meter scale TiO2 ,ZnO and Carbon-tube in different test situations. Based on the analysis and discussion, the best method was concluded to improve the accuracy of the nano-scale measurement.%本文从纳米尺度测量、长度标准器选择、扫描电镜参数选取入手,在不同的试验条件下,根据GB/T20307-2006对纳米级尺度进行测量,系统地研究了加速电压、束斑大小、工作距离以及象限位置对纳米级TiO2、ZnO、C纳米管测量结果的影响.通过分析讨论,提出了提高纳米尺度测量精度的最佳方案.

  18. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry, E-mail: thierry.grosjean@univ-fcomte.fr [Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, Département d' Optique P.M. Duffieux, 15B avenue des Montboucons, 25030 Besançon cedex (France); Nedeljkovic, Dusan [Lovalite s.a.s., 7 rue Xavier Marmier, 25000 Besançon (France); Tannous, Tony [Department of Physics, University of Balamand, P.O. Box 100 Tripoli (Lebanon)

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  19. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Science.gov (United States)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Nedeljkovic, Dusan; Tannous, Tony; Baida, Fadi I.; Grosjean, Thierry

    2015-04-01

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of "remote" (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  20. MAGNETO-OPTICAL PROPERTIES OF NANOMETER SCALE Bi:YIG FILMS%Bi:YIG纳米薄膜的磁光特性

    Institute of Scientific and Technical Information of China (English)

    杨青慧; 张怀武; 刘颖力; 文岐业

    2007-01-01

    用射频磁控溅射和快速退火方法制备了纳米量级的Bi:YIG薄膜,研究了薄膜的磁光特性.当晶粒尺寸从150 nm降到80 nm时,透射率和Faraday角的值分别从75%和3.6°变成了80%和4.0°.结果表明:高的透射率和大Faraday角可以在晶粒尺寸为纳米量级的薄膜中共存.%Nanometer scale Bi:YIG films have been obtained by the radio frequency magnetron sputtering method and the rapid thermal annealing method. The magneto-optical properties of the films were investigated. The transmittance and Faraday angle increased from 75% and 3.6° to 80% and 4.0°, respectively, while the grain size decreased from 150nm to 80nm. The results show that the high transmittance property and large Faraday angle can co-exist when the crystalline grain size of the film is on a nanometer scale.

  1. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    Directory of Open Access Journals (Sweden)

    Beth L. Haas

    2014-08-01

    Full Text Available Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane.

  2. Magnetic Properties of Nanometer-Scale NiZnCu Ferrite Thin Films Fabricated by Spray-Spin-Heating-Coating Method

    Institute of Scientific and Technical Information of China (English)

    Yulan JING; Huaiwu ZHANG; lijun JIA; Yu SHI; Yingli LIU

    2004-01-01

    A new nanometer-scale ferrite thin film with excellent high-frequency characteristics has been developed by the spray-spin-heating-coating method. The effects of the ion synthesis mechanism, chemical stoichiometry, fabrication method, and doping content on the magnetic properties and microstructure of the thin films have been analyzed.The films formed between 75℃ and 90℃ by spray-spin-heating-coating methods was discovered with fine grain size of about 21 nm, high saturation magnetization (4πMs) of about 6.5 kGs, coercivity of about 9.8 Oe, as well as initial permeability of about 14.0. These films can be widely used in radio-frequency integrated circuit devices.

  3. Real-time ellipsometric modeling and characterization of the evolution of nanometer-scale Ge islands and pits in Ge homoepitaxy

    Science.gov (United States)

    Akazawa, Housei

    2009-11-01

    Nanometer-scale Ge islands and pits are self-organized during GeH4 vacuum-ultraviolet-excited chemical vapor deposition on a Ge(001) substrate. We carried out simulation and fitting on real-time ellipsometric Ψ -Δ trajectories that reflect undergoing changes in the surface morphology. The islanded Ge epitaxial layer was optically represented by multiple stacked slabs with linearly varying graded indices from the bottom to the top of the islands. The dielectric function of each slab was calculated by mixing the dielectric functions of Ge with that of voids under Bruggeman effective medium approximation. The only model that could reproduce the roughening Ψ -Δ trajectory was preferential nucleation of Ge on the top surface of truncated pyramidal islands after almost 100% of the initial surface had been wet. The smoothing section was consistent with the model assuming nucleation on the sidewalls of islands as well as on the top surface, which led to simultaneous deepening and narrowing of the valleys or pits between the islands. This smoothing model was supported by atomic force microscopy images.

  4. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Nikiforov, Maxim [ORNL; Bradshaw, James A [ORNL; Jesse, Stephen [ORNL; Van Berkel, Gary J [ORNL

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

  5. Metathesis depolymerization for removable surfactant templates.

    Energy Technology Data Exchange (ETDEWEB)

    Zifer, Thomas (Sandia National Laboratories, Livermore, CA); Wheeler, David Roger; Rahimian, Kamayar; McElhanon, James Ross (Sandia National Laboratories, Livermore, CA); Long, Timothy Michael; Jamison, Gregory Marks; Loy, Douglas Anson (Los Alamos National Laboratories, Los Alamos, NM); Kline, Steven R. (National Institute of Standards and Technology, Gaithersburg, MD); Simmons, Blake Alexander (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

  6. Porosity variation in chalk

    DEFF Research Database (Denmark)

    Lind, Ida; Grøn, Peter

    1996-01-01

    Vertical porosity variations in chalk are generally assumed to result from either a vaguely defined combination of primary sedimentary and diagenetic processes or solely to diagenetic processes. In this study, image analysis of backscatter electron images of polished samples and geochemical...... microprobe mapping were applied to measure the porosity variation in a limited number of chalk samples. Microscope data indicate that in all cases the chalk has been subjected to diagenetic processes, but our data suggest that the variations in porosity originate in primary sedimentary differences....

  7. Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires.

    Science.gov (United States)

    Zhang, Guoqiang; Rainville, Christophe; Salmon, Adrian; Takiguchi, Masato; Tateno, Kouta; Gotoh, Hideki

    2015-11-24

    This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.

  8. Relationship between tensile strength and porosity for high porosity metals

    Institute of Scientific and Technical Information of China (English)

    刘培生; 付超; 李铁藩; 师昌绪

    1999-01-01

    An analysis model has been established according to the structure feature of high porosity metals, and the mathematical relationship between the tensile strength and porosity for this material has been derived from the model. Moreover, the corresponding theoretical formula has been proved good to reflect the variation law of tensile strength with porosity for high porosity metals by the example experiment on nickel foam.

  9. Porosity in hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  10. Porosity destruction in carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Ehrenberg, S.N. [Statoil, Stavanger (Norway)

    2006-01-15

    The important thing to understand about carbonate diagenesis is not how porosity is created, but how it is destroyed. Detailed core observations from two deeply-buried carbonate platform successions (the Finnmark platform, offshore north Norway; and the Khuff Formation, offshore Iran) show that in both cases most vertical porosity variation can be accounted for by only two or three factors, namely: (1) stylolite frequency, (2) proportion of argillaceous beds, and (3) anhydrite cement. The spatial distribution of these factors is determined by the depositional distribution of clay minerals (important for localizing chemical compaction) and the occurrence of hypersaline depositional conditions and associated brine reflux (important for localizing anhydrite precipitation and dolomitisation). However, the intensity of chemical compaction and consequent porosity loss in adjacent beds by carbonate cementation also depend upon thermal exposure (temperature as a function of time). Evidence from the Finnmark platform and other examples indicate that the stratigraphic distribution of early-formed dolomite is also important for porosity preservation during burial, but this factor is not apparent in the Khuff dataset. Insofar as the Finnmark and Khuff platforms can be regarded as representative of carbonate reservoirs in general, recognition of the above porosity-controlling factors may provide the basis for general models predicting carbonate reservoir potential both locally (reservoir-model scale) and regionally (exploration-scale). Distributions of clay, anhydrite, and dolomitization should be predictable from stratigraphic architecture, whereas variations in thermal exposure can be mapped from basin analysis. In the present examples at least, factors that do not need to be considered include eogenetic carbonate cementation and dissolution, depositional facies (other than aspects related to clay and anhydrite content), and mesogenetic leaching to create late secondary

  11. Porosity of porous Al alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two porosity models of porous Al alloys with different pore types (ball and polygon shape) were established. The experimental results coincide well with theoretical computations. The porosity of Al alloys (Prc) consists of three parts, porosity caused by preform particles (Prp), additional porosity (Pra), and porosity caused by solidification shrinkage (Prs). Prp is the main part of Prc while Pra is the key for fabricating porous Al alloys successfully in spite of its little contribution to Prc.

  12. Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid

    Science.gov (United States)

    Vlahinic, Ivan

    becomes necessary to describe the fluid flow in a double porosity medium, i.e. a medium containing both macro- and nano-scale porosity. We show that the proposed model can quantitatively capture the key observations that have thus far evaded a simple mechanical description. The materials more closely examined in this work enjoy a wide variety of practical uses. Wood and concrete are used as a basis for infrastructure the world over; porous glass with engineered nanometer-sized openings is used for its sorptive and filtering abilities; KevlarRTM and similar synthetic polymers are used for their high strength-to-weight ratio in creating body armor, ropes, and even sails.

  13. Relationship between elongation and porosity for high porosity metal materials

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A simplified model was proposed targeting at the isotropic high porosity metal materials with well-distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition.

  14. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  15. Suppression of ion-implantation induced porosity in germanium by a silicon dioxide capping layer

    Science.gov (United States)

    Tran, Tuan T.; Alkhaldi, Huda S.; Gandhi, Hemi H.; Pastor, David; Huston, Larissa Q.; Wong-Leung, Jennifer; Aziz, Michael J.; Williams, J. S.

    2016-08-01

    Ion implantation with high ion fluences is indispensable for successful use of germanium (Ge) in the next generation of electronic and photonic devices. However, Ge readily becomes porous after a moderate fluence implant ( ˜1 ×1015 ion cm-2 ) at room temperature, and for heavy ion species such as tin (Sn), holding the target at liquid nitrogen (LN2) temperature suppresses porosity formation only up to a fluence of 2 ×1016 ion cm-2 . We show, using stylus profilometry and electron microscopy, that a nanometer scale capping layer of silicon dioxide significantly suppresses the development of the porous structure in Ge during a S n - implant at a fluence of 4.5 ×1016 ion cm-2 at LN2 temperature. The significant loss of the implanted species through sputtering is also suppressed. The effectiveness of the capping layer in preventing porosity, as well as suppressing sputter removal of Ge, permits the attainment of an implanted Sn concentration in Ge of ˜15 at.% , which is about 2.5 times the maximum value previously attained. The crystallinity of the Ge-Sn layer following pulsed-laser-melting induced solidification is also greatly improved compared with that of uncapped material, thus opening up potential applications of the Ge-Sn alloy as a direct bandgap material fabricated by an ion beam synthesis technique.

  16. Degradation of (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ Solid Oxide Fuel Cell Cathodes at the Nanometer Scale and below.

    Science.gov (United States)

    Ni, Na; Cooper, Samuel J; Williams, Robert; Kemen, Nils; McComb, David W; Skinner, Stephen J

    2016-07-13

    The degradation of intermediate temperature solid oxide fuel cell (ITSOFC) cathodes has been identified as a major issue limiting the development of ITSOFCs as high efficiency energy conversion devices. In this work, the effect of Cr poisoning on (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ (LSCF6428), a particularly promising ITSOFC cathode material, was investigated on symmetrical cells using electrochemical impedance spectroscopy and multiscale structural/chemical analysis by advanced electron and ion microscopy. The systematic combination of bulk and high-resolution analysis on the same cells allows, for the first time, direct correlation of Cr induced performance degradation with subtle and localized structural/chemical changes of the cathode down to the atomic scale. Up to 2 orders of magnitude reduction in conductivity, oxygen surface exchange rate, and diffusivity were observed in Cr poisoned LSCF6428 samples. These effects are associated with the formation of nanometer size SrCrO4; grain boundary segregation of Cr; enhanced B-site element exsolution (both Fe and Co); and reduction in the Fe valence, the latter two being related to Cr substitution in LSCF. The finding that significant degradation of the cathode happens before obvious microscale change points to new critical SOFC degradation mechanisms effective at the nanometer scale and below.

  17. Contact angle hysteresis at the nanometer scale.

    Science.gov (United States)

    Delmas, Mathieu; Monthioux, Marc; Ondarçuhu, Thierry

    2011-04-01

    Using atomic force microscopy with nonconventional carbon tips, the pinning of a liquid contact line on individual nanometric defects was studied. This mechanism is responsible for the occurrence of the contact angle hysteresis. The presence of weak defects which do not contribute to the hysteresis is evidenced for the first time. The dissipated energy associated with strong defects is also measured down to values in the range of kT, which correspond to defect sizes in the order of 1 nm.

  18. Spatially resolved measurement of rock core porosity.

    Science.gov (United States)

    Marica, F; Chen, Q; Hamilton, A; Hall, C; Al, T; Balcom, B J

    2006-01-01

    Density weighted, centric scan, Conical SPRITE MRI techniques are applied in the current work for local porosity measurements in fluid saturated porous media. The methodology is tested on a series of sandstone core samples. These samples vary in both porosity and degree of local heterogeneity due to bedding plane structure. The MRI porosity measurement is in good agreement with traditional gravimetric measurements of porosity. Spatially resolved porosity measurements reveal significant porosity variation in some samples. This novel MRI technique should have applications to the characterization of local porosity in a wide variety of porous media.

  19. Surfactant-templating of Ordered Mesoporous Polymers and Carbons

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Ordered mesoporous materials possess enormous potential for many high-tech applications[1] such as bioreactors, microelectrophoresis, thermal insulation and catalysts. In general, organic porous materials can be prepared by phase-separation and hard templating approach such as those employing colloidal particles[2]. However, due to the volume contraction and swelling, and the structured defects formed during template removal, most of the resulting porous polymer structures are disordered with ...

  20. Influence of the porosity on the

    NARCIS (Netherlands)

    Jong, P. de; Dijk, W. van; Rooij, M. de

    2011-01-01

    The composition of 23 concrete mixtures was varied in five separate series to evaluate the influence of porosity on the 222Rn exhalation rate. In each series, a range in porosities is obtained by varying (1) the amount of cement, (2) type of cement (Portland or blast furnace slag cement),

  1. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  2. Magnetic anisotropy and porosity of Antarctic chondrites

    OpenAIRE

    Hamano,Yozo/Yomogida,Kiyoshi

    1982-01-01

    Magnetic susceptibility anisotropy and porosity were measured in eleven Antarctic meteorites. These meteorites are ordinary chondrites (H and L type) in various metamorphic stages. Large magnetic anisotropy has been observed in most of the chondrites. The foliation type of the anisotropy, inferred from the shape of the susceptibility ellipsoid indicates that a uniaxial compressional type deformation is responsible for the anisotropy. The degree of the anisotropy and the porosity do not correl...

  3. Fabrication of dual porosity electrode structure

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  4. SALTSTONE VARIABILITY STUDY - MEASUREMENT OF POROSITY

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T; Russell Eibling, R; Ray Schumacher, R

    2007-08-23

    One of the goals of the Saltstone Variability Study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. One of the key performance properties is porosity which is a measure of the volume percent of a cured grout that is occupied by salt solution (for the saturated case). This report presents (1) the results of efforts to develop a method for the measurement of porosity of grout samples and (2) initial results of porosity values for samples that have been previously produced as part of the Saltstone Variability Study. A cost effective measurement method for porosity was developed that provides reproducible results, is relatively fast (30 to 60 minutes per sample) and uses a Mettler Toledo HR83 Moisture Analyzer that is already operational and routinely calibrated at Aiken County Technology Laboratory. The method involves the heating of the sample at 105 C until no further mass loss is observed. This mass loss value, which is due to water evaporation, is then used to calculate the volume percent porosity of the mix. The results of mass loss for mixes at 105 C were equivalent to the results obtained using thermal gravimetric analysis. The method was validated by comparing measurements of mass loss at 105 C for cured portland cement in water mixes to values presented in the literature for this system. A stereopycnometer from Quantachrome Instruments was selected to measure the cured grout bulk densities. Density is a property that is required to calculate the porosities. A stereopycnometer was already operational at Aiken County Technology Laboratory, has been calibrated using a solid stainless steel sphere of known volume, is cost effective and fast ({approx}15 minutes per sample). Cured grout densities are important in their own right because they can be used to project the volume of waste form produced from a given amount of salt feed of known composition. For

  5. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition of the co......Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  6. Porosity, Dispersivity, and Contaminant Transport in Groundwater

    Institute of Scientific and Technical Information of China (English)

    MOIWO Juana P.

    2001-01-01

    Porosity (n) and Dispersivity (D) were modeled in relation to Solute Transport Time (t) in a saturated, homogeneous, isotropic, unconfined aquifer using the MOC model. It was noted that n and D have an important influence on solute transport time t in groundwater, with a consistently strong and direct relationship between n, D, and t. In the case of porosity, the relationship was found to be directly related to t when other aquifer properties remained unchanged. This was also mathematically argued using a form of the flow equation put forward by Henry Darcy (1856). Dispersivity on the other hand had somehow the same relationship with solute transport time t as porosity, but with much less effect. That is, higher dispersions lead to longer solute transport time within the aquifer system. This was because as the individual solute particles set off from the average seepage velocity, they traversed through longer distances due to tortuosity, mechanical mixing, diffusion, and microscopic heterogeneity latent in the porous media. Also when n and D were co- treated over t, n was noted to be dominant over D with regard t. This follows that the effect of porosity on solute transport time far out shadowed that of dispersivity. Stated in other words, the dispersivity of a substance in any porous medium is to a large extent a function of the porosity of that medium.

  7. High=porosity Cenozoic carbonate rocks of South Florida: progressive loss of porosity with depth

    Science.gov (United States)

    Halley, Robert B.; Schmoker, James W.

    1983-01-01

    Porosity measurements by borehole gravity meter in subsurface Cenozoic carbonates of South Florida reveal an extremely porous mass of limestone and dolomite which is transitional in total pore volume between typical porosity values for modern carbonate sediments and ancient carbonate rocks. A persistent decrease of porosity with depth, similar to that of chalks of the Gulf Coast, occurs in these rocks. Carbonate strata with less than 20% porosity are absent from the rocks studied here. Aquifers and aquicludes cannot be distinguished on the basis of porosity. Aquifers are not exceptionally porous when compared to other Tertiary carbonate rocks in South Florida. Permeability in these strata is governed more by the spacial distribution of pore space and matrix than by total volume of porosity present. Dolomite is as porous as, or slightly less porous than, limestones in these rocks. This observation places limits on any model proposed for dolomitization and suggests that dolomitization does not take place by a simple ion-for-ion replacement of magnesium for calcium. Dolomitization may be selective for less porous limestone, or it may involve the incorporation of significant amounts of carbonate as well as magnesium into the rock. The great volume of pore space in these rocks serves to highlight the inefficiency of early diagenesis in reducing carbonate porosity and to emphasize the importance of later porosity reduction which occurs during the burial or late near-surface history of limestones and dolomites.

  8. Graded-porosity heat-pipe wicks

    Science.gov (United States)

    Eninger, J. E.

    1976-01-01

    To maximize the capacity of a nonarterial heat pipe, a wick is considered whose porosity is allowed to vary axially along its length. At every axial location the porosity is set no lower than required to maintain the wick in a nearly saturated state under the maximum heat-transport rate. The result is a wick whose permeability is everywhere as high as possible. The differential equation that governs the optimum porosity variation is solved numerically between a condenser-end boundary condition that just prevents a liquid slug or puddle in the vapor spaces and an evaporator-end boundary condition that just prevents circumferential groove dry-up. Experimental performance measurements for an ammonia heat pipe are presented.

  9. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    (XRD) of shale samples show about 50% silt and high content of kaolinite in the clay fraction when compared with offshore samples from the Central Graben. Porosity measurements from helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance...... (NMR) show that, the MICP porosity is 9-10% points lower than HPMI and NMR porosity. Compressibility result shows that deep shale is stiffer in situ than normally assumed in geotechnical modelling and that static compressibility corresponds with dynamic one only at the begining of unloading stress...... strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...

  10. Packing Bunker and Pile Silos to Minimize Porosity

    Science.gov (United States)

    This article discusses the issue of porosity (i.e., the portion of volume filled with gas) in silages. As porosity increases, the silage is subject to greater losses. Porosity can be reduced by adequately packing the crop at ensiling. To keep porosity below 40% a minimum bulk density of 44 lbs./cu. ...

  11. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  12. Porosity Log Prediction Using Artificial Neural Network

    Science.gov (United States)

    Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier

    2016-08-01

    Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.

  13. Poroelasticity of high porosity chalk under depletion

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2013-01-01

    levels of pore pressure. The chalk is oil-saturated Lixhe chalk from a quarry near Liège, Belgium, with a general porosity of 45%. Additionally, we compare the theoretical lateral stress to the experimentally determined lateral stress at the onset of pore collapse. The static Biot coefficient based...

  14. A simple procedure for estimating soil porosity

    Science.gov (United States)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Holden, Nick

    2016-04-01

    Soil degradation from mismanagement is of international concern. Simple, accessible tools for rapidly assessing impacts of soil management are required. Soil structure is a key component of soil quality and porosity is a useful indicator of structure. We outline a version of a procedure described by Piwowarczyk et al. (2011) used to estimate porosity of samples taken during a soil quality survey of 38 sites across Ireland as part of the Government funded SQUARE (Soil Quality Assessment Research) project. This required intact core (r = 2.5 cm, H = 5cm) samples taken at 5-10 cm and 10-20 cm depth, to be covered with muslin cloth at one end and secured with a jubilee clip. Samples were saturated in sealable water tanks for ≈ 64 hours, then allowed to drain by gravity for 24 hours, at which point Field Capacity (F.C.) was assumed to have been reached, followed by oven drying with weight determined at each stage. This allowed the calculation of bulk density and the estimation of water content at saturation and following gravitational drainage, thus total and functional porosity. The assumption that F.C. was reached following 24 hours of gravitational drainage was based on the Soil Moisture Deficit model used in Ireland to predict when soils are potentially vulnerable to structural damage and used nationally as a management tool. Preliminary results indicate moderately strong, negative correlations between estimated total porosity at 5-10 cm and 10-20 cm depth (rs = -0.7, P soil quality scores of the Visual Evaluation of Soil Structure (VESS) method which was conducted at each survey site. Estimated functional porosity at 5-10 cm depth was found to moderately, negatively correlate with VESS scores (rs = - 0.5, P indicating porosity of a large quantity of samples taken at numerous sites or if done periodically, temporal changes in porosity at a field scale, indicating the impacts of soil management. Reference Piwowarczyk, A., Giuliani, G. & Holden, N.M. 2011. Can soil

  15. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  16. Mechanism and characters of thin film lubrication at nanometer scale

    Institute of Scientific and Technical Information of China (English)

    雒建斌; 温诗铸

    1996-01-01

    Thin film lubrication is a transition region between elastohydrodynamic lubrication and boundary lubrication, A technique of relative optical interference intensity with the resolution of 0.5 nm in the vertical direction and 1.5 nm in the horizontal direction is used in a pure rolling process to measure the film thickness with different lubricants, speeds, loads and substrate surface energy. Experimental data show that the characteristics of thin film lubrication are different from those of elastohydrodynamic lubrication and boundary lubrication. As the rolling speed decreases, a critical film thickness can be found to distinguish thin film lubrication from elastohydrodynamic lubrication. Such thickness is related to the substrate surface energy, atmospheric viscosity of lubricant, etc. A physical model of thin film lubrication with the fluid layer, the ordered liquid layer and the adsorbed layer is proposed and the functions of these different layers are discussed.

  17. Electron Microscopy of Biological Materials at the Nanometer Scale

    Science.gov (United States)

    Kourkoutis, Lena Fitting; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2012-08-01

    Electron microscopy of biological matter uses three different imaging modalities: (a) electron crystallography, (b) single-particle analysis, and (c) electron tomography. Ideally, these imaging modalities are applied to frozen-hydrated samples to ensure an optimal preservation of the structures under scrutiny. Cryo-electron microscopy of biological matter has made important advances in the past decades. It has become a research tool that further expands the scope of structural research into unique areas of cell and molecular biology, and it could augment the materials research portfolio in the study of soft and hybrid materials. This review addresses how researchers using transmission electron microscopy can derive structural information at high spatial resolution from fully hydrated specimens, despite their sensitivity to ionizing radiation, despite the adverse conditions of high vacuum for samples that have to be kept in aqueous environments, and despite their low contrast resulting from weakly scattering building blocks.

  18. Nanometer-scale phase separation in colossal magnetoresistive manganite

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Sahana; Ernst, Stefan; Wirth, Steffen; Steglich, Frank [Max Planck Institute for Chemical Physics of Solids, Noethnizer Strasse 40, 01187, Dresden (Germany); Padmanabhan, B.; Elizabeth, Suja; Bhat, H.L. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2008-07-01

    In strongly correlated electron systems an intrinsic instability of the electronic state and competing long-range interactions may result in the formation of nanometer-sized regions of different phases. We have carried out scanning tunneling microscopy/spectroscopy on single crystals of a colossal magnetoresistive manganite Pr{sub 0.68}Pb{sub 0.32}MnO{sub 3} at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature T{sub M-I}. In this compound, the Curie temperature T{sub C} is lower than T{sub M-I}. Spectroscopic studies revealed inhomogeneous maps of the zero-bias conductance with small patches of metallic clusters on a length scale of 2-3 nm only within a narrow temperature range close to the metal-insulator transition. A detailed analysis of conductance histograms based on these maps gave direct evidence for phase separation into insulating and metallic regions in the paramagnetic metallic state, i.e. for T{sub C} T{sub M-I}.

  19. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun; Wang, Changlei; Gorman, Brian; Yan, Yanfa; Al-Jassim, Mowafak

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  20. Nanometer scale vacuum lithography using plasma polymerization and plasma etching

    CERN Document Server

    Kim, S O

    1998-01-01

    Thin films of plasma polymerization were fabricated through plasma polymerization of interelectrode capacitively coupled gas flow system. After delineating the pattern with an accelerating voltage of 30kV, ranging the dose of 1 approx 500 mu C/cm sup 2 , the pattern was developed with a dry type and formed by plasma etching. By analyzing the molecule structure using FT-IR ( Fourier Transform-Infrared Spectrometry), it was confirmed that the thin films of PPMST (Plasma Polymerized Methylmethacrylate+Styrene+Tetramethyltin) contained the functional radicals of the MST (Methylmethacrylate sub S tyrene+Tetramethyltin) monomer. The Thin films of PPMST had a highly cross-linked structure resulting in a higher molecule weight than the conventional resist. The deposition rate of the PPMST thin films was 230 approx 600 A/min as a function of 50 approx 200 W power and 200 approx 60 A/min as a function 0.1 approx 0.7 Torr pressure. The etching rate of the thin films of PPMST was 875 approx 3520 A/min as a function of 50...

  1. Jet engine applications for materials with nanometer-scale dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, J.W. Jr.

    1995-10-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  2. Jet engine applications for materials with nanometer-scale dimensions

    Science.gov (United States)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  3. Nanometer-scale metal dispersions in polymeric matrices

    Energy Technology Data Exchange (ETDEWEB)

    Shull, K.R.; Cole, D.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Rehn, L.E.; Baldo, P.M. [Argonne National Lab., IL (United States)

    1997-01-01

    Rutherford backscattering spectrometry was used to measure the depth distribution of gold nanoparticles within thin layers of poly(t-butyl acrylate)(PTBA). The gold nanoparticles were created by evaporation of a discontinuous gold layer onto a thin film of PTBA. A second PTBA film was placed onto these samples to create ``sandwiches`` in which the gold existed between two PTBA films. Gold particle diffusion coefficients were measured from gold particle depth distributions in annealed samples for which the molecular weights of the two PTBA layers were identical. The experiments revealed that particle mobility was decreased by 2 to 3 orders of magnitude compared with predictions of the Stokes-Einstein model of particle diffusion. This is attributed to bridging interactions between particles arising from slow exchange kinetics of polymer segments at the polymer/metal interface. Experiments for which the molecular weights of the two polymer films are different, are sensitive to the ability of polymer molecules to pass through the gold particle layer. Experiments done with thermally evaporated particles are consistent with a picture in which polymer molecules are able to freely pass through the gold particle layer. Results with gold deposited by electron-beam evaporation are different: the gold is not able to diffuse and polymer molecules not able to penetrate the gold layer. These results, combined with optical absorption experiments, indicate that much smaller particles are obtained by electron-beam evaporation than by thermal evaporation.

  4. Nanometer-scale lithography on microscopically clean graphene

    DEFF Research Database (Denmark)

    van Dorp, W. F.; Zhang, X.; Feringa, B. L.

    2011-01-01

    to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous......Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal...... lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared...

  5. MEASUREMENT OF NANOMETER SCALE CADMIUM SELENIDE NANOCRYSTALS AND CLUSTER MOLECULES

    Institute of Scientific and Technical Information of China (English)

    Jeffrey Yang

    2003-01-01

    High performance Dynamic Light Scattering (DLS) has been used to determine the hydrodynamic diameters of CdSe nanocrystals as well as CdSe cluster molecules in a size range of 1 to 10 nm (Eichh(o)fer et al., 2001).The method enables the determination of their particle size, including their ligand shells, in solution. The results are consistent with the blue shift of the absorption bands, as well as Transmission Electron Microscope (TEM) experiments.The sizes of the cluster molecules were estimated from space filling models constructed from the results of a single crystal X-ray structure determination. DLS gave comparable results for the size of both types of compound, indicating that it is potentially an important additional measurement technique to TEM, which uses harsh measurement conditions,and to powder X-ray diffraction, which is difficult to interpret below 5 nm.

  6. Nanometer-scale lithography on microscopically clean graphene

    NARCIS (Netherlands)

    Dorp, W.F. van; Zhang, X.; Feringa, B.L.; Wagner, J.B.; Hansen, T.W.; Hosson, J.Th.M. De

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal la

  7. Mechanical properties of materials with nanometer scale dimensions and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Nix, William D. [Stanford Univ., CA (United States)

    2015-08-05

    The three-year grant for which this final report is required extends from 2011 to 2015, including a one-year, no-cost extension. But this is just the latest in a long series of grants from the Division of Materials Sciences of DOE and its predecessor offices and agencies. These include contracts or grants from: the Metallurgy Branch of the U.S. Atomic Energy Commission (from the late 1960s to the mid-1970s), the Materials Science Program of the U.S. Energy Research and Development Administration (from the mid- to late- 1970s), and the Division of Materials Science of the Office of Basic Energy Sciences of the U.S. Department of Energy (from the early 1980s to the present time). Taken all together, these offices have provided nearly continuous support for our research for nearly 50 years. As we have said on many occasions, this research support has been the best we have ever had, by far. As we look back on the nearly five decades of support from the Division of Materials Sciences and the predecessor offices, we find that the continuity of support that we have enjoyed has allowed us to be most productive and terms of papers published, doctoral students graduated and influence on the field of materials science. This report will, of course, cover the three-year period of the present grant, in summary form, but will also make reference to the output that resulted from support of previous grants from the Division of Materials Sciences and its predecessor offices.

  8. Optical Waveguiding in Individual Nanometer-Scale Organic Fibers

    DEFF Research Database (Denmark)

    Balzer, Frank; Bordo, Vladimir G.; Simonsen, Adam Cohen;

    2003-01-01

    We show by a combination of spectrally resolved fluorescence and atomic force microscopy that individual, single crystalline, needlelike aggregates of hexaphenyl molecules with submicron cross-sectional dimensions act as optical waveguides (“nanofibers”) in the blue spectral range. The nanofibers...... the waveguiding behavior. From measurements of the damping of propagating 425-nm light the imaginary part of the dielectric function of individual nanoscaled organic aggregates is determined....

  9. Reducing the open porosity of pyroboroncarbon articles

    Science.gov (United States)

    Martyushov, G. G.; Zakharevich, A. M.; Pichkhidze, S. Ya.; Koshuro, V. A.

    2016-02-01

    It is established that a decrease in the open porosity of pyroboroncarbon, a pyrolytic glassy composite material of interest for manufacturing prosthetic heart valves (PHVs), can be achieved via impregnation of articles with an alcohol solution of 3-aminopropyltriethoxysilane and subsequent thermal treatment. The maximum roughness height and linear size of open pores on the surface of PHV parts made of pyroboroncarbon can additionally be reduced by final mechanical processing of a silicon oxide film formed on the surface.

  10. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  11. Recovery of Porosity and Permeability for High Plasticity Clays

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Foged, Niels Nielsen

    Clays, which have been loaded to a high stress level, will under certain conditions keep low porosity and permeability due to the high degree of compression. In some situations it seems that porosity and permeability will recover to a very high extent when the clay is unloaded. This seems...... the clay will expand to an even higher porosity....

  12. Longhi Games, Internal Reservoirs, and Cumulate Porosity

    Science.gov (United States)

    Morse, S. A.

    2009-05-01

    Fe in plagioclase at an early age, T-rollers (or not) on the Di-Trid boundary in Fo-Di-Sil, the mantle solidus, origins of anorthosites, esoteric uses of Schreinemakers rules and many more topics are all fresh and pleasant memories of John Longhi's prolific and creative work. The Fram-Longhi experimental effect of pressure on plagioclase partitioning with liquid in mafic rocks became essential to an understanding of multiphase Rayleigh fractionation of plagioclase in big layered intrusions. Only by using the pressure effect could I find a good equation through the data for the Kiglapait intrusion, and that result among others required the existence with probability 1.0 of an internal reservoir (Morse, JPet 2008). Knowledge of cumulate porosity is a crucial key to the understanding of layered igneous rocks. We seek both the initial (inverse packing fraction) and residual porosity to find the time and process path from sedimentation to solidification. In the Kiglapait Lower Zone we have a robust estimate of mean residual porosity from the modes of the excluded phases augite, oxides, sulfide, and apatite. To this we apply the maximum variance of plagioclase composition (the An range) to find an algorithm that extends through the Upper Zone and to other intrusions. Of great importance is that all these measurements were made in grain mounts concentrated from typically about 200 g of core or hand specimen, hence the represented sample volume is thousands of times greater than for a thin section. The resulting distribution and scatter of the An range is novel and remarkable. It is V-shaped in the logarithmic representation of stratigraphic height, running from about 20 mole % at both ends (base to top of the Layered Series) to near-zero at 99 PCS. The intercept of the porosity-An range relation gives An range = 3.5 % at zero residual porosity. Petrographic analysis reveals that for PCS less than 95 and greater than 99.9, the An range is intrinsic, i.e. pre-cumulus, for

  13. Results from a new Cocks-Ashby style porosity model

    Science.gov (United States)

    Barton, Nathan

    2017-01-01

    A new porosity evolution model is described, along with preliminary results. The formulation makes use of a Cocks-Ashby style treatment of porosity kinetics that includes rate dependent flow in the mechanics of porosity growth. The porosity model is implemented in a framework that allows for a variety of strength models to be used for the matrix material, including ones with significant changes in rate sensitivity as a function of strain rate. Results of the effect of changing strain rate sensitivity on porosity evolution are shown. The overall constitutive model update involves the coupled solution of a system of nonlinear equations.

  14. Relative permeability in dual porosity porous media

    Energy Technology Data Exchange (ETDEWEB)

    Deghmoum, A. [SONATRACH CRD, Boumerdes (Algeria); Tiab, D. [Oklahoma Univ., Norman, OK (United States); Mazouzi, A. [SONATRACH PED (Algeria)

    2000-06-01

    One of the important factors in the field of reservoir simulation of dual-porosity systems is reliable relative permeability data. Laboratory limitations hinder measurements. The real behaviour of naturally fractures reservoirs is not reflected in the reservoir core samples, which as a rule originate from zones without induced or natural fractures. Therefore, it is commonly assumed that the relative permeability of a naturally fractured system is a straight line, which can cause errors. The authors undertook to conduct special core analyses on Berea outcrop core samples, to simulate fracture opening through the cutting of the samples to get different fracture apertures, to study the effects of dual porosity on the shape of capillary pressure curves, and to evaluate absolute and relative permeability, as they are affected by fracture opening. The correlation obtained between absolute permeability and fracture aperture was good, and capillary pressure curves permitted the observation of the effect of dual porosity. High residual oil saturation was present in the matrix, since the fractures became the easiest route for water flow, and this situation prevented the use of unsteady-state tests to measure relative permeability on the samples. Instead, the centrifuge technique was successfully used. A naturally fractured reservoir (NFR), the Tin Fouye Tabankort (TFT) reservoir in Algeria was selected to extend the findings. The site was principally selected due to the availability of naturally fractured cores and published data. Core observations, well test analysis and borehole imager tools were all TFT natural fracture indicators presented in the paper. Representative data of relative permeability was obtained by conducting a displacement test on a full diameter core to solve the laboratory limitations. The correlation between permeability and fracture opening was used to estimate the aperture of natural fractures in TFT reservoir. 17 refs., 2 tabs., 24 figs.

  15. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  16. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  17. Porosity of additive manufacturing parts for process monitoring

    Science.gov (United States)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  18. Porosity, permeability, and their relationship in granite, basalt, and tuff

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report.

  19. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  20. The Porosity of Additive Noise Sequences

    CERN Document Server

    Misra, Vinith

    2012-01-01

    Consider a binary additive noise channel with noiseless feedback. When the noise is a stationary and ergodic process $\\mathbf{Z}$, the capacity is $1-\\mathbb{H}(\\mathbf{Z})$ ($\\mathbb{H}(\\cdot)$ denoting the entropy rate). It is shown analogously that when the noise is a deterministic sequence $z^\\infty$, the capacity under finite-state encoding and decoding is $1-\\bar{\\rho}(z^\\infty)$, where $\\bar{\\rho}(\\cdot)$ is Lempel and Ziv's finite-state compressibility. This quantity is termed the \\emph{porosity} $\\underline{\\sigma}(\\cdot)$ of an individual noise sequence. A sequence of schemes are presented that universally achieve porosity for any noise sequence. These converse and achievability results may be interpreted both as a channel-coding counterpart to Ziv and Lempel's work in universal source coding, as well as an extension to the work by Lomnitz and Feder and Shayevitz and Feder on communication across modulo-additive channels. Additionally, a slightly more practical architecture is suggested that draws a...

  1. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  2. Constraining the Porosities of Interstellar Dust Grains

    CERN Document Server

    Heng, Kevin

    2009-01-01

    We present theoretical calculations of the X-ray scattering properties of porous grain aggregates with olivine monomers. The small and large angle scattering properties of these aggregates are governed by the global structure and substructure of the grain, respectively. We construct two diagnostics, R_X and T_X, based on the optical and X-ray properties of the aggregates, and apply them to a Chandra measurement of the dust halo around the Galactic binary GX13+1. Grain aggregates with porosities higher than about 0.55 are ruled out. Future high-precision observations of X-ray dust haloes together with detailed modeling of the X-ray scattering properties of porous grain mixtures will further constrain the presence of porous grain aggregates in a given dust population.

  3. Designed porosity materials in nuclear reactor components

    Science.gov (United States)

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  4. Designed porosity materials in nuclear reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  5. Evaluation of concrete mechanical strength through porosity

    Directory of Open Access Journals (Sweden)

    Olivares, M.

    2004-03-01

    Full Text Available The increasing on voids or pores in any material - if the rest of characteristics remains equal -always causes a decrease in their mechanical strength since the ratio volume/resistant mass is lower Following all these fact a well known conclusion rises: there is a relationship between compacity/porosity and mechanical strengths. The purpose of this research is to establish a new possible correlation between both concrete properties with independence of the proportions, type of cement, size of grain, age, use. etc. So it can be concluded that the results of this research allow the engineer or architect in charge of a restoration or reparation to determine the compression strength of a concrete element. A first step is to determine the porosity through a rather short number of tests. Subsequently, compression strength will be obtained applying just a mathematical formula.

    El aumento de huecos o poros de cualquier material, lo mismo que en otras circunstancias, redunda siempre en una merma de sus resistencias mecánicas, al haber menor volumen-masa resistente. En consecuencia, puede deducirse, que hay una relación entre la compacidad/porosidad y las resistencias mecánicas. En el presente trabajo se estudia una posible correlación entre ambas propiedades del hormigón con independencia de su dosificación, tipo de cemento, granulometría, edad, uso, etc. Las conclusiones obtenidas en la presente investigación permiten al técnico, encargado de una restauración o rehabilitación, determinar la resistencia a compresión de un elemento de hormigón, una vez hallada, de una forma sencilla, la porosidad de una muestra no muy voluminosa, mediante la aplicación de una simple fórmula matemática.

  6. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    Science.gov (United States)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-08-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  7. Electrical Measurement to Assess Hydration Process and the Porosity Formation

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaosheng; XIAO Lianzhen; LI Zongjin

    2008-01-01

    The change of electrical resistivity with time at early ages was used to investigate the hydration process and the porosity development. Porosity reduction process of cement-based materials hydration was developed by a proposed method. The porosity reduction is fast at the setting period. The results find that the pore discontinuity occurs faster at lower water/cement ratios than at higher water/cement ratios which is similar to the results of the Percolation method.

  8. Usage of infinitesimals in the Menger's Sponge model of porosity

    OpenAIRE

    Vita, M. C.; Bartolo, S.; C. Fallico; Veltri, M.

    2011-01-01

    The present work concerns the calculation of the infinitesimal porosity by using the Menger's Sponge model. This computation is based on the grossone theory considering the pore volume estimation for the Menger's Sponge and afterwards the classical definition of the porosity, given by the ratio between the volume of voids and the total volume (voids plus solid phase). The aim is to investigate the different solutions given by the standard characterization of the porosity and the grossone theo...

  9. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

    OpenAIRE

    Slotwinski, John A; Garboczi, Edward J.; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity durin...

  10. Study of NMR porosity for terrestrial formation in China

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowen; XIAO Lizhi; XIE Ranhong; ZHANG Yuanzhong

    2006-01-01

    NMR logging is an effective method for porosity measurement. NMR-derived porosity only comes from the pore fluid and is, in principle, not affected by rock matrix. However, it is found that the difference between NMR-derived and conventional log-derived porosities is often between 2 to 6 pu, which is unacceptable, in terrestrial formation in China. In the paper, the theory of NMR porosity was reviewed. The influence factors on NMR porosity error were analyzed based on NMR core measurements. More than 30 core samples with a wide range of porosities including sandstone, limestone and artificial ceramic were chosen for the conventional and NMR porosity measurements. The current NMR data acquisition method was studied based on laboratory NMR core measurements and found to be not good for terrestrial formation. A new NMR data acquisition method suiting for terrestrial formation in China was proposed and much improved the accuracy of NMR porosity measurement. It is suggested that the analysis of core samples from different regions should be carried out before logging in order to obtain accurate NMR porosity.

  11. Carbonate porosity versus depth: a predictable relation for south Florida.

    Science.gov (United States)

    Schmoker, J.W.; Halley, R.B.

    1982-01-01

    Examines the porosity of limestones and dolomites in the south Florida basin. Porosity data are derived from wire-line measurements which sample large volumes of rock, relative to petrographic methods, and can be examined at vertical scales approaching those of aquifers and hydrocarbon reservoirs. Investigation depths range from the surface to about 5500m. Curves of porosity versus depth, reflecting large-scale porosity-loss processes in the subsurface, are derived for a composite carbonate section and for carbonate strata of different ages and compositions.-from Authors

  12. How gradients in porosity can make a better filter

    Science.gov (United States)

    Griffiths, Ian; Bruna, Maria; Dalwadi, Mohit

    2015-11-01

    Depth filters are a common device for removing contaminants from fluid. Porosity-graded filters, whose porosities decrease with depth, have been shown experimentally to offer improved filtration efficiency over filters with uniform porosity, by allowing contaminants to be trapped more evenly within the filter media. However, experiments are unable to probe the microscopic behavior, and so the underlying mechanisms that are responsible for this improved filtration are unclear. We use homogenization theory to derive a macroscopic model for the fluid flow and particle trapping within a porosity-graded depth filter. We find that gradients in porosity induce a macroscale particle advection in the direction of reducing porosity and show how particle trapping is more evenly spread through the filter for a decreasing porosity compared with a uniform porosity. By quantifying the removal rate, we show how a given operating regime can be fine-tuned to improve filter efficiency. The talk is accompanied by an online demonstration of MEMFI, a software package in which audience members may explore for themselves the effect of porosity gradients in user-specified operating regimes.

  13. Experimental Study on the Porosity Creep Properties of Broken Limestone

    Directory of Open Access Journals (Sweden)

    Li Shun-cai

    2016-01-01

    Full Text Available In the underground engineering, the long-term stability of the surrounding rocks (especially the broken rocks containing water and the ground settlement resulted from the seepage-creep coupling above goaf have been the important research subjects concerning the deep mining. For the broken rock, its porosity is an important structural parameter determining its creep properties, and the porosity change rate is more superior to describe the creep characteristics compared with the strain change rate at a certain direction. In this paper, MTS815.02 Rock Mechanics Test System is used to carry out the creep experiments on water-saturated broken limestone, and then the time curves of porosity and of the porosity change rate are obtained. By regression, we have got the relation equation between the porosity change rate with the instant porosity and the stress level during the creep. The study indicates that when the stress retains a constant level, the relation between the porosity change rate and the instant porosity can be fitted with a cubical polynomial. The obtained creep relation equation between the porosity change rate and the instant porosity and the instant stress provides a necessary state equation for studying the coupling between the seepage and the creep of the broken rock. Furthermore, the seepage in the broken rock has been verified to satisfy the Forchheimer’s non-Darcy flow according to our previous studies, and its seepage properties, k, β and ca can all be expressed respectively as the polynomial of the porosity, so, by combining with these three state equations we have obtained the four essential state equations for solving the coupling problems of the seepage and the creep for the broken rocks.

  14. Porosity and Health: Perspective of Traditional Persian Medicine

    Science.gov (United States)

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-01-01

    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27840513

  15. Whisker Formation in Porosity in Al Alloys

    Science.gov (United States)

    Griffiths, William David; Elsayed, Ahmed; El-Sayed, Mahmoud Ahmed

    2016-12-01

    An examination of the fracture surfaces of tensile test bars from Al alloy castings held in the liquid state for up to 20 minutes revealed porosity which in some cases contained whisker-like features. Energy-dispersive X-ray analysis in a SEM suggested that these might be oxide whiskers forming in an oxide-related pore or double oxide film defect. Such entrainment defects (also known as bifilms) may entrap a small amount of the local atmosphere when they form and become incorporated into the liquid metal. This atmosphere may be predominantly air, which then subsequently reacts with the surrounding melt, firstly by reaction with oxygen and secondly by reaction with nitrogen. A CFD model of the heat distribution associated with the reactions between the interior atmosphere of a double oxide film defect and the surrounding liquid alloy suggested that highly localized increases in temperature, up to about 2000 K to 5000 K (1727 °C to 4727 °C), could occur, over a scale of a few hundred micrometers. Such localized increases in temperature might lead to the evaporation or disassociation of oxide within the pore, followed by condensation, to form the whisker structures observed. Hydrogen might also be expected to diffuse into the bifilm and may play a role in the chemical reactions associated with the development of the bifilm.

  16. Modeling fracture porosity evolution in dolostone

    Science.gov (United States)

    Gale, Julia F. W.; Lander, Robert H.; Reed, Robert M.; Laubach, Stephen E.

    2010-09-01

    Opening-mode fractures in dolostones buried to depths of ˜1-5 km contain synkinematic dolomite cement, the amount and internal structure of which has a systematic relationship to fracture size. Narrow fractures (cement or cement with a crack-seal texture that indicates multiple incremental openings. Wider fractures can preserve considerable effective porosity, but anomalously thick dolomite cement bridges are commonly present in fractures that are otherwise lined with a thin veneer of cement. Dolomite bridges resemble quartz bridges that are common in fractured sandstones. We developed a geometric crystal growth model for synkinematic dolomite fracture fill in fractured dolostones, where periodic incremental fracture-opening events are introduced with concurrent cement growth. We assumed constant temperature and supersaturation with respect to dolomite. A key assumption in the model is that rapid dolomite accumulation within bridges is governed by high cement-growth rates on repeatedly broken grain surfaces during the process of crack seal. Slower cement-growth rates occur on euhedral crystals. This assumption is made on the basis of a comparison with quartz cement growth in fractured sandstones. Simulations with different fracture-opening rates mimic bridge and lining cement morphologies, including characteristic rhombic shapes of dolomite bridges.

  17. Porosity effects during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: ricardo-cazares@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  18. Porosity and mechanical properties of zirconium ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Buyakova, S., E-mail: sbuyakova@ispms.tsc.ru; Kulkov, S. [Tomsk State University (Russian Federation); Tomsk Polytechnic University (Russian Federation); Institute of Strength Physics and Materials Science RAS (Russian Federation); Sablina, T. [Institute of Strength Physics and Materials Science RAS (Russian Federation)

    2015-11-17

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  19. Ultrahigh porosity in metal-organic frameworks.

    Science.gov (United States)

    Furukawa, Hiroyasu; Ko, Nakeun; Go, Yong Bok; Aratani, Naoki; Choi, Sang Beom; Choi, Eunwoo; Yazaydin, A Ozgür; Snurr, Randall Q; O'Keeffe, Michael; Kim, Jaheon; Yaghi, Omar M

    2010-07-23

    Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms. The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively. Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities. For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram. The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials.

  20. Mechanistic Effects of Porosity on Structural Composite Materials

    Science.gov (United States)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  1. Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace

    Energy Technology Data Exchange (ETDEWEB)

    Dolberg, David M.

    1998-12-31

    This presentation relates to porosity prediction from seismic inversion. The porosity prediction concerns the Lavrans Field of the Halten Terrace on the Norwegian continental shelf. The main themes discussed here cover seismic inversion, rock physics, statistical analysis - verification of well trends, upscaling/sculpting, and implementation. 2 refs., 6 figs.

  2. Preparation of Porosity-Graded SOFC Anode Substrates

    NARCIS (Netherlands)

    Holtappels, P.; Sorof, C.; Verbraeken, M.C.; Rambert, S.; Vogt, U.

    2006-01-01

    Porosity graded anode substrates for solid oxide fuel cells are considered to optimise the gas transport through the substrate by maintaining a high electrochemical activity for fuel oxidation at the anode/solid electrolyte interface. In this work, the fabrication of porosity graded anode substrates

  3. Water uptake in biochars: The roles of porosity and hydrophobicity

    Science.gov (United States)

    We assessed the effects of porosity and hydrophobicity on water uptake by biochars. Biochars were produced from two feedstocks (hazelnut shells and Douglas fir chips) at three production temperatures (370 °C, 500 °C, and 620 °C). To distinguish the effects of porosity from the ...

  4. Casting Porosity-Free Grain Refined Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwam, David [Case Western Reserve University

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  5. Surface Roughness and Porosity of Hydrated Cement Pastes

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2011-01-01

    Full Text Available . Seventy-eight graphs were plotted to describe and analyze the dependences of the height and roughness irregularities on the water-to-cement ratio and on the porosity of the cement hydrates. The results showed unambiguously that the water-to-cement ratio or equivalently the porosity of the specimens has a decisive influence on the irregularities of the fracture surfaces of this material. The experimental results indicated the possibility that the porosity or the value of the water-to-cement ratio might be inferred from the height irregularities of the fracture surfaces. It was hypothesized that there may be a similarly strong correlation between porosity and surface irregularity, on the one hand, and some other highly porous solids, on the other, and thus the same possibility to infer porosity from the surfaces of their fracture remnants.

  6. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification

  7. Porosity in collapsible Ball Grid Array solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, C.A. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., Berkeley, CA (United States). Materials Science Div.

    1998-05-01

    Ball Grid Array (BGA) technology has taken off in recent years due to the increased need for high interconnect density. Opposite to all the advantages BGA packages offer, porosity in collapsible BGA solder joints is often a major concern in the reliability of such packages. The effect of pores on the strength of collapsible BGA solder-joints was studied by manufacturing samples with different degrees of porosity and testing them under a shear load. It was found that the shear strength of the solder joints decreased in a linear fashion with increasing porosity. Failure occurred by internal necking of the interpore matrix. It was confirmed that entrapment of flux residues leads to porosity by manufacturing fluxless samples in a specially made furnace, and comparing them with samples assembled using flux. Also, contamination of Au electrodeposits (in substrate metallization) was determined to cause significant porosity. It was found that hard-Au (Co hardened Au) electrodeposits produce high degrees of porosity even in the absence of flux. Finally, increasing the time the solder spends in the molten state was proven to successfully decrease porosity.

  8. Saturated hydraulic conductivity and porosity within macroaggregates modified by tillage

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.J.; Smucker, A.J.M. (MSU)

    2010-07-20

    Greater knowledge of intraaggregate porosity modifications by tillage conveys new information for identifying additional hydrologic, ion retention, and aggregate stability responses to specific management practices. Macroaggregates, 2 to 4, 4 to 6.3, and 6.3 to 9.5 mm across, were separated into multiple concentric layers and their porosities were determined. Saturated hydraulic conductivity (K{sub s}) of multiple aggregate fractions from two soil types subjected to conventional tillage (CT), no tillage (NT), and native forest (NF) soils were measured individually to identify the effects of tillage on aggregate structure, porosity, and K{sub s}. Intraaggregate porosities were the highest in NF aggregates. Greater porosities were identified in exterior layers of soil aggregates from all treatments. Lowest intraaggregate porosities were observed in the central regions of CT aggregates. Soil aggregates, 6.3 to 9.5 mm across, had the greatest total porosities, averaging 37.5% for both soil types. Long-term CT reduced intraaggregate porosities and K, within macroaggregates, of the same size fraction, from both the Hoytville silty clay loam and Wooster silt loam soil types. Values for K, of NF aggregates, 5.0 x 10{sup -5} cm s{sup -1}, were reduced 50-fold by long-term CT treatments of the Hoytville series. The K, values through Wooster aggregates from NF, 16.0 x 10{sup -5} cm s{sup -1}, were reduced 80-fold by long-term CT treatments. The K{sub s} values through NF and NT aggregates were positively correlated with their intraaggregate porosities (R{sup 2} = 0.84 for NF and R{sup 2} = 0.45 for NT at P < 0.005). Additional studies are needed to identify rates at which pore geometries within macroaggregates are degraded by CT or improved by NT.

  9. Granule Size Distribution and Porosity of Granule Packing

    Institute of Scientific and Technical Information of China (English)

    DAI Shu-hua; SHEN Feng-man; YU Ai-bing

    2008-01-01

    The granule size distribution and the porosity of the granule packing process were researched.For realizing the optimizing control of the whole sintering production process,researchers must know the factors influencing the granule size distribution and the porosity.Therefore,tests were carried out in the laboratory with regard to the influences of the size and size distribution of raw materials and the total moisture content on the size and size distribution of granule.Moreover,tests for finding out the influences of the moisture content and the granule volume fraction on the porosity were also carried out.The results show that (1) the raw material has little influence on granulation when its size is in the range of 0.51 mm to 1.0 mm;(2) the influence of the material size on granule size plays a dominant role,and in contrast,the moisture content creates a minor effect on granule size;(3) in binary packing system,with the increase in the constituent volume fraction,the porosity initially increases and then decreases,and there is a minimum value on the porosity curve of the binary mixture system;(4) the minimum value of the porosity in binary packing system occurs at different locations for different moisture contents,and this value shifts from right to left on the porosity curve with increasing the moisture content;(5) the addition of small granules to the same size component cannot create a significant influence on the porosity,whereas the addition of large granules to the same system can greatly change the porosity.

  10. Porosity and mechanical properties of porous titanium fabricated by gelcasting

    Institute of Scientific and Technical Information of China (English)

    LI Yan; GUO Zhimeng; HAO Junjie; REN Shubin

    2008-01-01

    Porous Ti compacts with large size and complex shape for biomedical applications were fabricated in the porosity range from 40.5% to 53.8% by controlling gelcasting parameters and sintering conditions. The experimental results show that the total porosity and open porosity of porous titanium compacts gelcast from the Ti slurry with 34 vol.% solid loading and sintered at 1100℃ for 1.5h are 46.5% and 40.7%, respectively, and the mechanical properties are as follows: compressive strength 158.6MPa and Young's modulus 8.5GPa, which are similar to those of human cortical bone and appropriate for implanting purpose.

  11. Causes and remedies for porosity in composite manufacturing

    Science.gov (United States)

    Fernlund, G.; Wells, J.; Fahrang, L.; Kay, J.; Poursartip, A.

    2016-07-01

    Porosity is a challenge in virtually all composite processes but in particular in low pressure processes such as out of autoclave processing of prepregs, where the maximum pressure is one atmosphere. This paper discusses the physics behind important transport phenomena that control porosity and how we can use our understanding of the underlying science to develop strategies to achieve low porosity for these materials and processes in an industrial setting. A three step approach is outlined that addresses and discusses: gas evacuation of trapped air, volatiles and off-gassing, and resin infiltration of evacuated void space.

  12. Ultrasonic measurement of porosity in casts and welds

    Science.gov (United States)

    Adler, L.; Wang, S. W.

    1986-01-01

    The development of a quantitative nondestructive method which involves ultrasonic attenuation measurements in frequency domain to determine volume fraction of porosity in aluminum cast is discussed. The aluminum alloy A357 casting samples were produced at the Ohio State University Foundry with controlled porosity contents ranging from 0% to 6%. A computer controlled system was used to direct ultrasonic beam to a test sample to different places to conduct ultrasonic attenuation measurements. The plot of attenuation coefficients as a function of frequency was then evaluated based on existing theories to determine volume fraction of porosity and pore size.

  13. Carbonate porosity: some remarks; Porosidade em reservatorios carbonaticos: algumas consideracoes

    Energy Technology Data Exchange (ETDEWEB)

    Spadini, Adali Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao]. E-mail: spadini@petrobras.com.br; Marcal, Rosely de Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-05-01

    Carbonate rocks are the major reservoirs of the largest super-giants fields in the world, including the Ghawar Field in Saudi Arabia, where the producing oil reservoir is the late Jurassic Arab-D limestone with five million barrels per day. Despite the great susceptibility to early diagenesis, that can dramatically modify the porous media, porosity values of carbonates remain essentially the same as that of deposition before burial. Porosity loss is essentially a subsurface process with a drastic reduction below 2500 m of burial depth. The occurrence of good reservoirs deeply buried, sometimes below 4,000 m, indicate that porosity can be preserved in subsurface in response to a series of mechanisms such as early oil emplacement, framework rigidity, abnormal pore pressure, among others. Percolation of geothermal fluids is a process considered to be responsible for generation of porosity in subsurface resulting in some good reservoir rocks. In Campos Basin, areas with burial around 2000 m, petrophysical data show a cyclic distribution that coincides with the shoaling upward cycles typical of the Albian carbonates. The greatest permeabilities coincide with the grain stones of the top of the cycles while the peloidal/oncolite wackestones/pack stones at the base show low values, reflecting the depositional texture. These relationships indicate that preservation of depositional porosity was very effective. The preservation of high porosity values for all the facies are related to early oil entrance in the reservoirs. In some cases, the presence of porosities of almost 30% in fine-grained peloidal carbonates, 3000 m of burial, without any clear effective preservation mechanism, suggest that corrosive subsurface brines have played an important role in porosity evolution. In Santos Basin, where reservoirs are deeply buried, only the grain stones have preserved porosity. The associated low energy facies has virtually no porosity. In this case, the depositional texture

  14. Electronic neutron sources for compensated porosity well logging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. X.; Antolak, A. J.; Leung, K. -N.

    2012-08-01

    The viability of replacing Americium–Beryllium (Am–Be) radiological neutron sources in compensated porosity nuclear well logging tools with D–T or D–D accelerator-driven neutron sources is explored. The analysis consisted of developing a model for a typical well-logging borehole configuration and computing the helium-3 detector response to varying formation porosities using three different neutron sources (Am–Be, D–D, and D–T). The results indicate that, when normalized to the same source intensity, the use of a D–D neutron source has greater sensitivity for measuring the formation porosity than either an Am–Be or D–T source. The results of the study provide operational requirements that enable compensated porosity well logging with a compact, low power D–D neutron generator, which the current state-of-the-art indicates is technically achievable.

  15. Electronic neutron sources for compensated porosity well logging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.X., E-mail: axchen@sandia.gov [Sandia National Laboratories, Livermore, CA 94550 (United States); Antolak, A.J.; Leung, K.-N. [Sandia National Laboratories, Livermore, CA 94550 (United States)

    2012-08-21

    The viability of replacing Americium-Beryllium (Am-Be) radiological neutron sources in compensated porosity nuclear well logging tools with D-T or D-D accelerator-driven neutron sources is explored. The analysis consisted of developing a model for a typical well-logging borehole configuration and computing the helium-3 detector response to varying formation porosities using three different neutron sources (Am-Be, D-D, and D-T). The results indicate that, when normalized to the same source intensity, the use of a D-D neutron source has greater sensitivity for measuring the formation porosity than either an Am-Be or D-T source. The results of the study provide operational requirements that enable compensated porosity well logging with a compact, low power D-D neutron generator, which the current state-of-the-art indicates is technically achievable.

  16. effects of sintering temperature on the density and porosity of ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... turing. 2. Sintering Mechanism. Sintering occurs by atomic diffusion processes that are stimulated by high .... of the experiments was repeated three times. 3.2. ... test revealed the variation of porosity across the mi- crostructure ...

  17. Porosity and Mechanical Strength of an Autoclaved Clayey Cellular Concrete

    Directory of Open Access Journals (Sweden)

    P. O. Guglielmi

    2010-01-01

    Full Text Available This paper investigates the porosity and the mechanical strength of an Autoclaved Clayey Cellular Concrete (ACCC with the binder produced with 75 wt% kaolinite clay and 25 wt% Portland cement. Aluminum powder was used as foaming agent, from 0.2 wt% to 0.8 wt%, producing specimens with different porosities. The results show that the specimens with higher content of aluminum presented pore coalescence, which can explain the lower porosity of these samples. The porosities obtained with the aluminum contents used in the study were high (approximately 80%, what accounts for the low mechanical strength of the investigated cellular concretes (maximum of 0.62 MPa. Nevertheless, comparing the results obtained in this study to the ones for low temperature clayey aerated concrete with similar compositions, it can be observed that autoclaving is effective for increasing the material mechanical strength.

  18. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  19. Effect of volatile elements on porosity formation in solidifying alloys

    Science.gov (United States)

    Couturier, G.; Rappaz, M.

    2006-03-01

    Besides dissolved gases such as hydrogen, the partial vapour pressure of volatile solute elements, such as zinc, has been accounted for in equations governing the nucleation and growth of pores in solidifying alloys. In particular, a simple analytical solution giving the porosity fraction as a function of the fraction of solid is proposed. This solution is then used to study the influence of zinc on porosity formation in aluminium- and copper-base alloys. It is shown that the zinc vapour pressure is too low to increase the porosity of aluminium-base alloys, whereas it has a significant effect in brasses. Implementing this contribution into an existing software which calculates the pressure drop in the mushy zone and the segregation of dissolved gases, simulations have been performed in order to assess in more realistic situations the influence of volatile solute elements on porosity.

  20. Confocal microscopy description of porosity defects in metallic composite alloys

    Directory of Open Access Journals (Sweden)

    K. Gawdzińska

    2008-03-01

    Full Text Available Possibilit ics of confocal microscopy applications for thc dcscripion of open porosity dcfccts in mctallic composirc alloys arcprcscntcd. This aniclc cbaractcrizcs rhc rncthnd and prcscnts its pssihle applications by describing a rcprcscntnr ivc nrcn of thc cxaminedvoid.

  1. Porosity evolution of upper Miocene reefs, Almeria Province, southern Spain

    Science.gov (United States)

    Armstrong, A.K.; Snavely, P.D.; Addicott, W.O.

    1980-01-01

    Sea cliffs 40 km east of Almeria, southeastern Spain, expose upper Miocene reefs and patch reefs of the Plomo formation. These reefs are formed of scleractinian corals, calcareous algae, and mollusks. The reef cores are as much as 65 m thick and several hundred meters wide. Fore-reef talus beds extend 1,300 m across and are 40 m thick. The reefs and reef breccias are composed of calcific dolomite. They lie on volcanic rocks that have a K-Ar date of 11.5 m.y. and in turn are overlain by the upper Miocene Vicar Formation. In the reef cores and fore-reef breccia beds, porosity is both primary and postdepositional. Primary porosity is of three types: (a) boring clam holes in the scleractinian coral heads, cemented reef rocks, and breccias; (b) intraparticle porosity within the corals, Halimeda plates, and vermetid worm tubes; and (c) interparticle porosity between bioclastic fragments and in the reef breccia. Postdepositional moldic porosity was formed by the solution of aragonitic material such as molluscan and coral fragments. The Plomo reef carbonate rocks have high porosity and permeability, and retain a great amount of depositional porosity. Pores range in size from a few micrometers to 30 cm. The extensive intercrystalline porosity and high permeability resulted from dolomitization of micritic matrix. Dolomite rhombs are between 10 and 30 μ across. More moldic porosity was formed by the dissolution of the calclte bioclasts. Some porosity reduction has occurred by incomplete and partial sparry calcite infilling of interparticular, moldic, and intercrystalline voids. The high porosity and permeability of these reefs make them important targets for petroleum exploration in the western Mediterranean off southern Spain. In these offshore areas in the subsurface the volcanic ridge and the Plomo reef complex are locally onlapped or overlapped by 350 m or more of Miocene(?) and Pliocene fine-grained sedimentary rocks. The possibility exists that the buried Plomo reef

  2. Permeability-porosity relationships of subduction zone sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2011-01-01

    Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.

  3. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    Science.gov (United States)

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity.

  4. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  5. Porosity prediction of calcium phosphate cements based on chemical composition.

    Science.gov (United States)

    Öhman, Caroline; Unosson, Johanna; Carlsson, Elin; Ginebra, Maria Pau; Persson, Cecilia; Engqvist, Håkan

    2015-07-01

    The porosity of calcium phosphate cements has an impact on several important parameters, such as strength, resorbability and bioactivity. A model to predict the porosity for biomedical cements would hence be a useful tool. At the moment such a model only exists for Portland cements. The aim of this study was to develop and validate a first porosity prediction model for calcium phosphate cements. On the basis of chemical reaction, molar weight and density of components, a volume-based model was developed and validated using calcium phosphate cement as model material. 60 mol% β-tricalcium phosphate and 40 mol% monocalcium phosphate monohydrate were mixed with deionized water, at different liquid-to-powder ratios. Samples were set for 24 h at 37°C and 100% relative humidity. Thereafter, samples were dried either under vacuum at room temperature for 24 h or in air at 37 °C for 7 days. Porosity and phase composition were determined. It was found that the two drying protocols led to the formation of brushite and monetite, respectively. The model was found to predict well the experimental values and also data reported in the literature for apatite cements, as deduced from the small absolute average residual errors (brushite, monetite and apatite cements. The model gives a good estimate of the final porosity and has the potential to be used as a porosity prediction tool in the biomedical cement field.

  6. Bone porosity and longevity in early medieval Southern Croatia.

    Science.gov (United States)

    Bečić, Kristijan; Jandrić Bečić, Darija; Definis-Gojanović, Marija; Zekić Tomaš, Sandra; Anterić, Ivana; Bašić, Zeljana

    2014-03-01

    Porosity of the skull and skeletal remains, especially of the orbital roof, are one of the most frequent pathological findings on ancient human skeletal remains. There are several presumed causes of this condition and anthropologists consider skull porosities as a marker of physical and nutritional stress. A total of 115 graves were discovered at the early-medieval graveyard near Zadar (Croatia) that contained 128 partially preserved skeletons. Average estimated age at death was 37.2 ± 12.6 years for men, 31.9 ± 13.9 for women, and 5.3 ± 3.6 years for subadults. Pathological bone porosity was analysed. Cribra orbitalia was observed on 21 skulls (28.7%), signs of temporal porosity were noticed on six skulls and signs of subperiosteal bleeding on three skulls. Nineteen skulls had bone porosities in other areas. There was a significant difference (p = 0.039) in achieved age of adults with and without cribra orbitalia as those with cribra orbitalia lived on average 8.1 years longer. The bone porosity was probably caused by malnutrition that might have had a beneficial effect on longevity of adults, similar to effects of restricted food intake on extending lifespan through epigenetic signatures influencing gene expression.

  7. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    Science.gov (United States)

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  8. Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...

  9. From Bola-Surfactant Templated Bimetal Phosphites to the Design of Crystalline Inorganic Mesoporous Frameworks.

    Science.gov (United States)

    Huang, Hui-Lin; Huang, Wen-Yen; Wang, Sue-Lein

    2017-04-11

    Reproducing inorganic modules in situ for pore augmentation of pure inorganic frameworks is challenging but can be a key to rational synthesis. After the first success of using monoamines of varied lengths as a template in producing a set of building blocks that led to a series of growing channels up to a 72-membered ring (72R), research continued into those building blocks to seek any new topologies from them. In this study, another type of template is reported that can control the same building blocks to repeatedly form in situ. By using long linear-chain bola-type surfactants, two new bimetal phosphites, a monoclinic phase exhibiting remarkable quasi-channels of 1.15 nm and an orthorhombic phase with 28R channels of 1.06 nm have been created. By taking them as the first members, two series of novel topologies can be devised, each having a general formula to predict the size and channel wall compositions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of mesoporous MCM-48 with a mixed non ionic-cationic surfactant templating pathway

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In a hydrothermal system, we studied the influence of nonionic surfactant poly(ethylenglycol) monooctylphenyl ether (OP-10) on the self-assembling process of mesoporous molecular sieve MCM-48 and found that OP-10 can decrease the amount of cationic surfactant needed for the preparation of MCM-48 further by its stronger van der Waals force , shorten the synthetic period and produce MCM-48 with more extensive cross-linked framework. By altering the ratio of nonionic surfactant to cationic surfactant, we could obtain the mesoporous molecular sieves with different structures. When the crystallization temperature exceeded-140℃, OP-10 would separate from miceHe, lose its amphiphilic character, and then hamper the conversion of lamellar mesoporous molecular sieves into microporous materials.

  11. Pore Orientation Effects on the Kinetics of Mesostructure Loss in Surfactant Templated Titania Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Das, Saikat; Nagpure, Suraj R.; Garlapalli, Ravinder Kumar; Wu, Qingliu; Islam, Syed Z.; Strzalka, Joseph; Rankin, Stephen E.

    2016-01-28

    The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonally oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5±0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155±25 kJ/mol) than on unmodified (128 kJ/mol), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89±27 kJ/mol) due to the mix of orientations found in the films. Thus, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase relative to thicker films or films on unmodified substrates, but that alignment of the mesophase in the films stabilizes the mesophase against thermally-induced mesostructure loss.

  12. Synthesis and characterization of pharmaceutical surfactant templated mesoporous silica: Its application to controlled delivery of duloxetine

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Ganesh; Pushparaj, Hemalatha; Peng, Mei Mei; Muthiahpillai, Palanichamy [Department of Chemical Engineering, Hanseo University, Seosan-si 356 706 (Korea, Republic of); Udhumansha, Ubaidulla [Department of Chemical Engineering, Hanseo University, Seosan-si 356 706 (Korea, Republic of); Department of Pharmaceutics, C.L. Baid Metha College of Pharmacy, Chennai (India); Jang, Hyun Tae, E-mail: htjang@hanseo.ac.kr [Department of Chemical Engineering, Hanseo University, Seosan-si 356 706 (Korea, Republic of)

    2014-03-01

    Graphical abstract: - Highlights: • Usefulness of dual pharmaceutical surfactants in silica synthesis was evaluated. • Effects of concentration of secondary template (Tween-40) were studied. • Effects of fixed solvothermal condition on mesostructure formation were studied. • Duloxetine drug loading capability was studied. • Sustained release of duloxetine was evaluated. - Abstract: A new group of mesoporous silica nanoparticles (MSNs) were synthesized using combination pharmaceutical surfactants, Triton X-100 and Tween-40 as template and loaded with duloxetine hydrochloride (DX), for improving the sustained release of DX and patterns with high drug loading. Agglomerated spherical silica MSNs were synthesized by sol–gel and solvothermal methods. The calcined and drug loaded MSNs were characterized using X-ray diffraction (XRD), Braunner–Emmett–Teller (BET), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), diffuse reflectance ultraviolet–visible (DRS-UV–vis) spectroscopy. MSNs with high surface area and pore volume were selected and studied for their DX loading and release. The selected MSNs can accommodate a maximum of 34% DX within it. About 90% was released at 200 h and hence, the synthesized MSNs were capable of engulfing DX and sustain its release. Further form the Ritger and Peppas, Higuchi model for mechanism drug release from all the MSN matrices follows anomalous transport or Non-Fickian diffusion with the ‘r’ and ‘n’ value 0.9 and 0.45 < n < 1, respectively. So, from this study it could be concluded that the MSNs synthesized using pharmaceutical templates were better choice of reservoir for the controlled delivery of drug which requires sustained release.

  13. Pore orientation effects on the kinetics of mesostructure loss in surfactant templated titania thin films.

    Science.gov (United States)

    Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K; Wu, Qingliu; Islam, Syed Z; Strzalka, Joseph; Rankin, Stephen E

    2016-01-28

    The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle X-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonally oriented (o-HCP) thin films (∼60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ mol(-1)) than on unmodified (128 kJ mol(-1)), which implies that the rate difference stems from a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (∼250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ mol(-1)) due to the mix of orientations found in the films. Thus, this kinetic study shows that thin P123-templated o-HCP titania films are not only better able to achieve good orthogonal alignment of the mesophase relative to thicker films or films on unmodified substrates, but that alignment of the mesophase in the films stabilizes the mesophase against thermally-induced mesostructure loss.

  14. Preparation of Mesoporous Nano-Hydroxyapatite Using a Surfactant Template Method for Protein Delivery

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Wu; Xiaofeng Song; Dongsong Li; Jianguo Liu; Peibiao Zhang; Xuesi Chen

    2012-01-01

    Mesoporous nano-hydroxyapatite (n-HA) has gained more and more attention as drug storage and release hosts.The aim of this study is to observe the effect of the ratio of surfactant to the theoretical yield of HA on the mesoporous n-HA,then to reveal the effect of the mesoporous nanostrueture on protein delivery.The mesoporous n-HA was synthesized using the wet precipitation in the presence of cetyltrimethylammonium bromide (CTAB) at ambient temperature and normal atmospheric pressure.The morphology,size,crystalline phase,chemical composition and textural characteristics of the product were well characterized by X-ray Powder Diffraction (XRD),Fourier Transform Infrared Spectroscopy (FTIR),Scanning Electron Microscopy (SEM),Transmission Electron Microscopy (TEM),Dynamic Light Scattering (DLS) and N2 adsorption/desorption,respectively.The protein adsorption/release studies were also carried out by using Bovine Serum Albumin (BSA) as a model protein.The results reveal that the mesoporous n-HA synthesized with CTAB exhibits high pure phase,low crystallinity and the typical characteristics of the mesostructure.The BSA loading increases with the specific surface area and the pore volume of n-HA,and the release rates of BSA are different due to their different pore sizes and pore structures,n-HA synthesized with 0.5% CTAB has the highest BSA loading and the slowest release rate because of its highest surface area and smaller pore size.These mesoporous n-HA materials demonstrate a potential application in the field of protein delivery due to their bioaetive,biocompatible and mesoporous properties.

  15. Triblock siloxane copolymer surfactant: template for spherical mesoporous silica with a hexagonal pore ordering.

    Science.gov (United States)

    Stébé, M J; Emo, M; Forny-Le Follotec, A; Metlas-Komunjer, L; Pezron, I; Blin, J L

    2013-02-01

    Ordered mesoporous silica materials with a spherical morphology have been prepared for the first time through the cooperative templating mechanism (CTM) by using a silicone triblock copolymer as template. The behavior of the pure siloxane copolymer amphiphile in water was first investigated. A direct micellar phase (L(1)) and a hexagonal (H(1)) liquid crystal were found. The determination of the structural parameters by SAXS measurements leads us to conclude that in the hexagonal liquid crystal phase a part of the ethylene oxide group is not hydrated as observed for the micelles. Mesoporous materials were then synthesized from the cooperative templating mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorption-desorption analysis, and transmission and scanning electron microscopy. The results clearly evidence that one can control the morphology and the nanostructuring of the resulting material by modifying the synthesis parameters. Actually, highly ordered mesoporous materials with a spherical morphology have been obtained with a siloxane copolymer/tetramethoxysilane molar ratio of 0.10 after hydrothermal treatment at 100 °C. Our study also supports the fact that the interactions between micelles and the hydrolyzed precursor are one of the key parameters governing the formation of ordered mesostructures through the cooperative templating mechanism. Indeed, we have demonstrated that when the interactions between micelles are important, only wormhole-like structures are recovered.

  16. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  17. Permeability Evolution and the Mechanisms of Porosity Change (Invited)

    Science.gov (United States)

    Zhu, W.; Gribbin, J. L.; Tivey, M. K.

    2013-12-01

    Understanding subsurface fluid flow is of critical importance to such geological and engineering applications as faulting mechanics, hydrothermal venting and resource recovery. Mechanical, chemical and thermal loads can significantly alter microscopic pore geometry and thus affect macroscopic permeability. Recently, we measured the permeability and porosity of massive anhydrite deposits recovered from various seafloor hydrothermal vent fields. Together, these deposits comprise anhydrite samples that have undergone different stages of formation. For anhydrite samples with porosities greater than 5%, the dependence of permeability to porosity change is best characterized by a power-law relationship with an exponent n~9. At porosities less than 5%, a much gentler trend of n~1 is observed. These permeability-porosity relationships (PPRs) in anhydrite deposits are in stark contrast to those of Fontainebleau sandstone, a quartz arenite with various degrees of quartz cementation. Fontainebleau sandstone shows a power-law dependence of PPR with an exponent of n~3 for samples with porosities greater than 7%, and a much steeper trend of n~8 at low porosities [Bourbie and Zinszner, 1985]. Microstructural analysis and numerical models suggest that the significant loss in pore connectivity below 7% is responsible for the steeper PPR trend in Fontainebleau sandstone [Zhu et al., 1995]. In anhydrite deposits, petrographic analyses show evidence for both dissolution and precipitation, consistent with the observed PPRs resulting from pore-size controlled solubility. Precipitation of anhydrite takes place preferentially in large pores within the anhydrite deposits, with precipitation limited in small pores, which is proposed to be due to the change in interfacial energy of the growing crystal (e.g., as described by Emmanuel and Ague [2009]). With abundant large voids in high porosity anhydrite samples, the growth of sulfates would result in a drastic loss of pore connectivity and

  18. Linear vs. nonlinear porosity estimation of NMR oil reservoir data

    Directory of Open Access Journals (Sweden)

    Mohsen Abdou Abou Mandour

    2010-09-01

    Full Text Available Nuclear magnetic resonance is widely used to assess oil reservoir properties especially those that can not be evaluated using conventional techniques. In this regard, porosity determination and the related estimation of the oil present play a very important role in assessing the eco1nomic value of the oil wells. Nuclear Magnetic Resonance data is usually fit to the sum of decaying exponentials. The resulting distribution; i.e. T2 distribution; is directly related to porosity determination. In this work, three reservoir core samples (Tight Sandstone and two Carbonate samples were analyzed. Linear Least Square method (LLS and non-linear least square fitting using Levenberg-Marquardt method were used to calculate the T2 distribution and the resulting incremental porosity. Parametric analysis for the two methods was performed to evaluate the impact of number of exponentials, and effect of the regularization parameter (? on the smoothing of the solution. Effect of the type of solution on porosity determination was carried out. It was found that 12 exponentials is the optimum number of exponentials for both the linear and nonlinear solutions. In the mean time, it was shown that the linear solution begins to be smooth at α = 0.5 which corresponds to the standard industrial value for the regularization parameter. The order of magnitude of time needed for the linear solution is in the range of few minutes while it is in the range of few hours for the nonlinear solution. Regardless of the fact that small differences exist between the linear and nonlinear solutions, these small values make an appreciable difference in porosity. The nonlinear solution predicts 12% less porosity for the tight sandstone sample and 4.5 % and 13 % more porosity in the two carbonate samples respectively.

  19. Porosity and Velocity Relations of Grosmont Formation, Alberta, Canada

    Science.gov (United States)

    Keehm, Y.; Hu, D.

    2010-12-01

    We present results on porosty-velocity relations of Grosmont formation, Alberta, Canada, which is one of largest bitumen carbonate reservoirs. Grosmont formation is divided into four units: LG; UG-1; UG-2; and UG-3 from the bottom. Two lower units are mainly imestone, while upper units are mostly dolomite with vuggy porosity and fractures, which makes the upper units be a good reservoir. Rock physics modeling was then performed to quantify porosity-velocity relations for the four units, which enables us to predict porosity from seismic data. To incorporate the pore-scale details in the modeling, we used DEM (differential effective medium) models. Two lower units are very similar in velocity-porosity domain, thus the relations can be represented by one velocity-porosity model, which is used as our reference model. For the UG-2 unit, we found that one model cannot represent the unit since the degree of fracturing are heterogeneous from location to location. We thus suggested three different DEM models for the UG-2 unit: vuggy-dominant; mildly-fractured; and heavily-fractured. The UG-3 units can be modeled with vuggy porosity, and fractures were not very noticeable. We also investigated the spatial variation of the UG-2 unit, and found that the degree of fracturing is generally proportional to the proximity to the unconformity boundary, where the fresh water invasion can be dominant. In conclusion, we proposed velocity-porosity relations for the four units in Grosmont formation, and believe that these models can help to characterize the reservoir quality. In addition, since the proximity of reservoir to the unconformity boundary highly affects the degree of fracturing, a careful analysis of spatial variation would be essential for the successful characterization of Grosmont formation. Acknowledgement: This work was supported by the Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government

  20. Testing Mercury Porosimetry with 3D Printed Porosity Models

    Science.gov (United States)

    Hasiuk, F.; Ewing, R. P.; Hu, Q.

    2014-12-01

    Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.

  1. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  2. Porosity estimation of aged mortar using a micromechanical model.

    Science.gov (United States)

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  3. Chalk porosity and sonic velocity versus burial depth

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne

    2008-01-01

    that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...... for fluid pressure because the cementing ions originate from stylolites, which are mechanically similar to fractures. We find that cementation occurs over a relatively short depth interval.......Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show...

  4. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  5. Prediction of porosity in cast equiaxed alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Y.K. [Univ. of Alabama, Tuscaloosa, AL (United States); Sahai, V.; Overfelt, R.A. [Auburn Univ., AL (United States); Berry, J.T. [Mississippi State Univ., MS (United States)

    1995-12-31

    The prediction of porosity distribution in shaped castings is a popular topic at the present time. A number of criteria functions (CFs) have been proposed to assist in such predictions, these functions generally being obtained from computer modeling of solidification. Although considerable attention has been given to the use of CFs with plain carbon steel and aluminum castings, only limited attention has been given to superalloy castings. Using experimental data on porosity distribution in such castings for validation, various criteria functions were compared for effectiveness in predicting the level of porosity in castings of different thicknesses vacuum investment cast in alloy 718. The criteria functions concerned were obtained by interrogating the output of a simulation using commercially available software. The castings were in the form of vertically cast plates attached to a common top gating system. The problems associated with obtaining thermally accurate simulation, as well as appropriate validation are also discussed.

  6. Porosity of Deep Fat Fried Breaded Chicken Meat

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2009-01-01

    Full Text Available Effects of the addition of rice starch and dietary fibres (pectin and Fibrex on the porosity of basic frying mixture formulations (corn flour, salt, spices and oil uptake of coated chicken meat have been evaluated. Porosity of the fried breaded chicken meat was calculated from particle and bulk density. Pore size and particle size distribution were determined using microscopy image analysis and particle density by mercury intrusion porosimeter (MIP. Since there is a wide range of particle diameters, significant differences in pore size distribution were found. Also, pore structure appeared to be affected by oil absorption. Mercury entrapment in pores decreased significantly during 8 min of frying. The obtained results show that porosity of the samples is different for different frying mixture formulations and indicate that there is a difference in the extent of oil uptake for different formulations due to film forming capabilities of dietary fibres (pectin and Fibrex.

  7. Tailoring the porosity of hierarchical zeolites by carbon-templating

    DEFF Research Database (Denmark)

    Zhu, Kake; Egeblad, Kresten; Christensen, Claus H.

    2008-01-01

    We report the synthesis and characterization of a series of hierarchical porous zeolite single crystal materials with a range of porosities made available by carbon-templating using differently-sized carbon particles as templates for the additional non-micropore porosity. The materials were...... prepared by adsorption of the required zeolite synthesis gel components onto various commercially available carbon black powders followed by crystallization of the zeolite crystals in the presence of the inert carbon matrix and subsequent removal of the carbon particles embedded in the zeolite crystals...... by combustion. It is shown that the additional porosity of the hierarchical zeolites can be tailored by encapsulation of the differently-sized carbon particles during crystallization....

  8. Inverse problem for porosity estimation during solidification of TNT

    Directory of Open Access Journals (Sweden)

    Aldélio Bueno Caldeira

    2016-08-01

    Full Text Available In the present study, the porosity formed during the solidification process is estimated by an inverse problem technique based on particle swarm optimization. The effective heat capacity method is adopted to model the heat transfer problem. The transient-diffusive heat transfer equation is solved numerically by the finite volume method with an explicit scheme, employing the central difference interpolation function. The solution of the direct problem is compared to reference solutions. The model is applied to trinitrotoluene (TNT solidification process. The results show that the proposed procedure was able to estimate the porosity for different Stefan numbers. The analysis of the heat flux in the mold is indicated to predict the porosity formation during the casting process.

  9. Usage of infinitesimals in the Menger's Sponge model of porosity

    CERN Document Server

    Vita, M C; Fallico, C; Veltri, M; 10.1016/j.amc.2011.06.013

    2011-01-01

    The present work concerns the calculation of the infinitesimal porosity by using the Menger's Sponge model. This computation is based on the grossone theory considering the pore volume estimation for the Menger's Sponge and afterwards the classical definition of the porosity, given by the ratio between the volume of voids and the total volume (voids plus solid phase). The aim is to investigate the different solutions given by the standard characterization of the porosity and the grossone theory without the direct estimation of the fractal dimension. Once the utility of this procedure had been clarified, the focus moves to possible practical applications in which infinitesimal parts can play a fundamental role. The discussion on this matter still remains open.

  10. Processing and characterization of high porosity aerogel films

    Energy Technology Data Exchange (ETDEWEB)

    Hrubesh, L.W.; Poco, J.F.

    1994-11-22

    Aerogels are highly porous solids having unique morphology among materials because both the pores and particles making up the material have sizes less than wavelengths of visible light. Such a unique morphology modifies the normal molecular transport mechanisms within the material, resulting in exceptional thermal, acoustical, mechanical, and electrical properties. For example, aerogels have the lowest measured thermal conductivity and dielectric constant for any solid material. Special methods are required to make aerogel films with high porosity. In this paper, we discuss the special conditions needed to fabricate aerogel films having porosities greater than 75% and we describe methods of processing inorganic aerogel films having controllable thicknesses in the range 0.5 to 200 micrometers. We report methods and results of characterizing the films including thickness, refractive index, density (porosity), and dielectric constant. We also discuss results of metallization and patterning on the aerogel films for applications involving microminiature electronics and thermal detectors.

  11. APPROXIMATE MEANS FOR EVALUATING TENSILE STRENGTH OF HIGH POROSITY MATERIALS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Based on the simplified structure model of high porosity materials, the formulas for approximately evaluating the tensile strength of these materials have been derived from the corresponding deductions taken by means of the relative theories about geometry and mechanics. The results show that, the tensile strength of these materials not only associates with the material sort and production method, but do further have a direct value relationship with the porosity, θ. This value relationship can be specifically expressed by the power of the item (1-θ), and it makes the tensile strength variation display a complicated nonlinear law with the porosity. In addition, the application of those formulas has been investigated with the corresponding experiment on a nickel foam.

  12. Porosity Variation in Cenozoic and Upper Chalk from the Ontong Java Pleateau

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine

    1997-01-01

    Porosity was obtained from matrix- and intraparticle porosity assessed from image analysis of backscattered electron micrographs of 3000x and 300x magnification. Comparing porosity assessed from image analysis with porosity measured by index properties, it was seen that image analysis data at 300...

  13. Porosity Variation in Cenozoic and Upper Chalk from the Ontong Java Pleateau

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine

    1997-01-01

    Porosity was obtained from matrix- and intraparticle porosity assessed from image analysis of backscattered electron micrographs of 3000x and 300x magnification. Comparing porosity assessed from image analysis with porosity measured by index properties, it was seen that image analysis data at 300...

  14. Femtosecond laser induced porosity in poly-methyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Baset, Farhana, E-mail: fbaset@gmail.com; Villafranca, Ana, E-mail: avillafr@uottawa.ca; Guay, Jean-Michel, E-mail: guay_jeanmichel@hotmail.com; Bhardwaj, Ravi, E-mail: ravi.bhardwaj@uottawa.ca

    2013-10-01

    We show that femtosecond laser ablation of poly-methyl methacrylate (PMMA) induces porosity within the ablation crater that increases with pulse energy/fluence and number of laser shots. For deeper craters the porosity evolves into 3D honeycomb like structure on the sidewalls. Using imaging technique, we show that the porous area fraction decreases with pulse energy while the pore size distribution peaks at a pore area of 0.037 μm{sup 2} at higher energies. In line ablation, the pore size increases with the speed at which the laser focus is moved.

  15. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  16. Calculation formula for apparent electrical resistivity of high porosity metal materials

    Institute of Scientific and Technical Information of China (English)

    刘培生; 付超; 李铁藩

    1999-01-01

    A geometrical model has been established based on the structure feature of high porosity metal materials,the mathematical relationship between electrical resistivity and porosity for high porosity materials with even structure has then been deduced conveniently, and the formula for calculating the electrical resistivity of high porosity materials through porosity, which is easy to know, has been acquired further. Besides, the theoretical formula was verified to coincide with the test results well by the application taking nickel foam as an example.

  17. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  18. Laboratory photometry of regolith analogues: Effect of porosity

    Science.gov (United States)

    Kar, A.; Sen, A. K.; Gupta, R.

    2016-10-01

    New Laboratory phase curves are presented, to examine the effect of porosity on reflectance as a function of phase angle for grain size having dimension about half, twice and those larger than the illuminating wavelength. The experimental setup used for generating reflectance data is a goniometric device developed at the Department of Physics, Assam University, Silchar, India. Some of the well-documented samples having different sizes were chosen; alumina, olivine, basalt, rutile, chromite and iron. The sample surfaces were prepared with different porosities, in order to simulate natural regolith surface as much as possible. The wavelength of observation is 632.8 nm. A model based on the Radiative Transfer Equation is presented here to analyze and model the laboratory data. In the present modelling work, the empirical relation of Hapke, Mie theory and Henyey-Greenstein phase function are used. For particles having dimension about half, twice to the wavelength, Mie theory is used to calculate single scattering albedo. Although the Mie theory is insufficient for describing the scattering properties of particles larger than the wavelength, for such large particle single scattering albedo (SSA) is estimated through method of best fit. It has been found that, the porosity has a distinguishable effect on reflectance. Also the contribution of multiple scattering function for different porosity is examined. Further the results presented in the current work, demonstrates the light scattering properties of a diverse collections of regolith like samples.

  19. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  20. Direct synthesis of metal nanoparticles with tunable porosity

    NARCIS (Netherlands)

    Detsi, Eric; Punzhin, Sergey; Onck, Patrick R.; De Hosson, Jeff Th. M.

    2012-01-01

    Herein, we report a facile one-step synthesis route of porous bimetallic Au-Ag nanoparticles involving two parallel processes: alloying during nanocrystal growth and dealloying via galvanic replacement reaction. Further, we show that porosity in these nanoparticles can be tuned via their alloy compo

  1. Direct synthesis of metal nanoparticles with tunable porosity

    NARCIS (Netherlands)

    Detsi, Eric; Punzhin, Sergey; Onck, Patrick R.; De Hosson, Jeff Th. M.

    2012-01-01

    Herein, we report a facile one-step synthesis route of porous bimetallic Au-Ag nanoparticles involving two parallel processes: alloying during nanocrystal growth and dealloying via galvanic replacement reaction. Further, we show that porosity in these nanoparticles can be tuned via their alloy

  2. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  3. Porosity and surface properites of SBA-15 with grafted PNIPAAM

    DEFF Research Database (Denmark)

    Reichhardt, N. V.; Nylander, T.; Klösgen, B.;

    2011-01-01

    Mesoporous silica SBA-15 was modified in a three-step process to obtain a material with poly-N-isopropylacrylamide (PNIPAAM) grafted onto the inner pore surface. Water sorption calorimetry was implemented to characterize the materials obtained after each step regarding the porosity and surface...

  4. Ultrasonic Characterization of Water Saturated Double Porosity Media

    Science.gov (United States)

    Bai, Ruonan; Tinel, Alain; Alem, Abdellah; Franklin, Hervé; Wang, Huaqing

    Wave propagation through a multilayered structure consisting of a water saturated double porosity medium in an aluminum rectangular box immersed in water is studied. By assuming a plane incident wave from water onto the structure, the reflection and transmission coefficients are derived by application of the boundary conditions at each interface. Numerical computations are done for two particular double porosity media, ROBU® and Tobermorite 11 Å, that are assumed to obey Berryman's extension of Biot's theory [Berryman 1995, 2000]. The influence of the thickness of double porosity medium is investigated. To compare experiments to computations, two comparison coefficients Cnum and Cexp are introduced. The theoretical one Cnum is defined as the ratio of the transmission coefficient of the structure to the transmission coefficient of the box filled exclusively with water. The experimental comparison coefficient Cexp is defined as the ratio of the Fourier transforms of the transmitted signals by the box filled with the double porous medium to that of the transmitted signals by the box filled with water. A method of minimization based on a gradient descent algorithm is used to optimize some of the parameters of the double porosity media such as the bulk moduli.

  5. [Aortobifemoral prostheses with "0" porosity. Results after 2 years' experience].

    Science.gov (United States)

    Escudero, J R; Llagostera, S; Riambau, V; Latorre, E; Upegui, L; Pastor, O; Viver, E

    1990-01-01

    During the last years diverse types of Dacron prosthesis without porosity (because to be impregnated by different materials) have appeared. In the presented study, outcomes from three different types of prosthesis (differentiated by the impregnated material) were evaluated and a comparison with classical prosthesis was made.

  6. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  7. Permeability porosity relationships (K, Phi cut-off)

    Energy Technology Data Exchange (ETDEWEB)

    Djettou, F.; Reda, H. [Sonatrach, Algiers (Algeria)

    1995-08-01

    Several reservoirs of Lower Devonian in Ghadames basin present porosities greater than 10 Pu, but during the test they are rather impermeable. It seems that this phenomena extends to BERKINE and Rhourd Messaoud areas. This seriously affect the estimation of recovery reserves. The best we can do is to study and try to understand reservoir problems. The method we choose is based on statistical analysis of test results and their comparison with core and log measurements. It concerns mainly cummulative curves of productive and non-productive tests (dry test). This involves about 20 wells where are can define: Siegenian with: Fine grained in BBK and ROM Coarse grained toward BRN - Emsian is rather homogeneous in the region. The sand cut-off porosity is greater than 11 Pu. However the reservoir can`t produce itself then we can not take account in reserve estimation. In conclusion, a sandy reservoir of Lower Devonian in Ghadames basin may be very porous (11-12%) and impermeable while in the other cases reservoirs can produce with porosity of 7 or 8 Po. However a HC definition based on cut-off porosity in Ghadames basin should be done before net pay an recovery reserves estimation.

  8. 3D porosity prediction from seismic inversion and neural networks

    Science.gov (United States)

    Leite, Emilson Pereira; Vidal, Alexandre Campane

    2011-08-01

    In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density and sonic well log data as constraints. In this methodology, a 3D acoustic impedance model is calculated from seismic reflection amplitudes by applying an L1-norm sparse-spike inversion algorithm in the time domain, followed by a recursive inversion performed in the frequency domain. A 3D low-frequency impedance model is estimated by kriging interpolation of impedance values calculated from well log data. This low-frequency model is added to the inversion result which otherwise provides only a relative numerical scale. To convert acoustic impedance into a single reservoir property, a feed-forward Neural Network (NN) is trained, validated and tested using gamma-ray and acoustic impedance values observed at the well log positions as input and effective porosity values as target. The trained NN is then applied for the whole reservoir volume in order to obtain a 3D effective porosity model. While the particular conclusions drawn from the results obtained in this work cannot be generalized, such results suggest that this workflow can be applied successfully as an aid in reservoir characterization, especially when there is a strong non-linear relationship between effective porosity and acoustic impedance.

  9. Variations in Pyroclast Porosity: The 2010 Gunung Merapi Eruption

    Science.gov (United States)

    Genareau, K. D.; Cronin, S. J.; Lube, G.

    2014-12-01

    The 2010 eruption of Gunung Merapi (Java, Indonesia) began with an explosion resulting from the rapid development of shallow conduit overpressure, which destabilized the pre-existing lava dome and generated large PDCs on 26 October. This was followed by rapid ascent and extrusion of a juvenile dome that also collapsed, generating the largest surges of the series on 5 November. Lava lapilli within the PDC deposits were analyzed using helium pycnometry to determine variations in pyroclast porosity during the transition from dome collapse to rapid dome regrowth and subsequent collapse. Lapilli were separated into pyroclasts derived from the earlier phase of dome growth from those derived from the later and more voluminous phase of dome growth. For all lapilli, regardless of eruptive phase, open porosity of the pyroclasts averages 0.19 (0.08). However, closed porosities of the lapilli are generally higher for the earlier phase, which were derived from deposits of the 26 October PDCs. Efficient degassing during both stages of dome growth produced similar open porosities in pyroclasts, but a higher closed porosity in the 26 October samples resulted from late-stage vesiculation of the residual melt during the initial explosion. This vesiculation event was triggered by the rapid development of shallow conduit overpressure, evidence of which is provided by secondary ion mass spectrometry (SIMS) depth profiling analyses of plagioclase phenocrysts from the ash-sized component of the PDC deposits. Phenocrysts from the earlier phase of dome growth show a build-up of Li in the groundmass glass (attached to crystal surfaces) due to a stage of protracted gas accumulation prior to the 26 October explosion. Conversely, phenocrysts from the later stage of dome growth reveal decreasing Li contents in the groundmass glass due to efficient volatile loss during magma ascent. Vesiculation of the residual melt during the initial explosion resulted in a higher closed porosity in pyroclasts

  10. Increased cortical porosity in women with hip fracture.

    Science.gov (United States)

    Sundh, D; Nilsson, A G; Nilsson, M; Johansson, L; Mellström, D; Lorentzon, M

    2017-05-01

    Hip fractures cause increased mortality and disability and consume enormous healthcare resources. Only 46% of hip fracture patients have osteoporosis at the total hip according to dual-energy X-ray absorptiometry (DXA) measurement. Cortical porosity increases with ageing and is believed to be important for bone strength. To investigate whether older women with hip fracture have higher cortical porosity than controls, and if so whether this difference is independent of clinical risk factors and areal bone mineral density (aBMD). From an ongoing population-based study, we identified 46 women with a prevalent X-ray-verified hip fracture and 361 control subjects without any fractures. aBMD was measured with DXA. High-resolution peripheral quantitative computed tomography was used to measure bone microstructure at the standard (ultradistal) site and at 14% (distal) of the tibial length. Women with a previous hip fracture had lower aBMD at the femoral neck (-11.8%) and total hip (-14.6%) as well as higher cortical porosity at the ultradistal (32.1%) and distal (29.3%) tibia compared with controls. In multivariable logistic regression analysis, with adjustment for covariates (age, height, weight, smoking, calcium intake, physical activity, walk time, oral glucocorticoids, parental hip fracture, rheumatoid arthritis, previous fall, current bisphosphonate treatment and femoral neck aBMD), cortical porosity at the ultradistal [odds ratio per standard deviation increase (95% confidence interval) 2.61 (1.77-3.85)] and distal [1.57 (1.12-2.20)] sites was associated with prevalent hip fracture. Cortical porosity was associated with prevalent hip fracture in older women independently of femoral neck aBMD and clinical risk factors. © 2017 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  11. [The porosity, microhardness, roughness and internal stresses of PMMA base materials in relation to their isolation. 1. Porosity and microhardness].

    Science.gov (United States)

    Lockowandt, P; Loges, H; Wagner, I V

    1989-01-01

    Selected material properties of hot and cold polymerized denture basic materials (polymethylmethacrylate) were investigated after different methods of isolation: alginate, tin foil and silicone. Both tin foil and silicone isolation the handling of which is much easier result in a decreased portion of porosities and an increased microhardness in the PMMA.

  12. Porosity and Inclusion Detection in CFRP by Infrared Thermography

    Directory of Open Access Journals (Sweden)

    C. Toscano

    2012-01-01

    Full Text Available The ever wide use of composite materials in the aeronautical industry has evidenced the need for development of ever more effective nondestructive evaluation methodologies in order to reduce rejected parts and to optimize production costs. Infrared thermography has been recently enclosed amongst the standardized non destructive testing techniques, but its usefulness needs still complete assessment since it can be employed in several different arrangements and for many purposes. In this work, the possibility to detect slag inclusions and porosity is analyzed with both lock-in themography and pulse thermography in the transmission mode. To this end, carbon-fiber-peinforced polymers different specimens are specifically fabricated of several different stacking sequences and with embedded slag inclusions and porosity percentages. As main results, both of the techniques are found definitely able to reveal the presence of the defects above mentioned. Moreover, these techniques could be considered complementary in order to better characterize the nature of the detected defects.

  13. Stylolites, porosity, depositional texture, and silicates in chalk facies sediments

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Borre, Mai K.

    2007-01-01

    Comparison of chalk on the Ontong Java Plateau and chalk in the Central North Sea indicates that, whereas pressure dissolution is controlled by effective burial stress, pore-filling cementation is controlled by temperature. Effective burial stress is caused by the weight of all overlying water...... and sediments as counteracted by the pressure in the pore fluid, so the regional overpressure in the Central North Sea is one reason why the two localities have different relationships between temperature and effective burial stress. In the chalk of the Ontong Java Plateau the onset of calcite-silicate pressure...... dissolution around 490 m below sea floor (bsf) corresponds to an interval of waning porosity-decline, and even the occurrence of proper stylolites from 830 m bsf is accompanied by only minor porosity reduction. Because opal is present, the pore-water is relatively rich in Si which through the formation of Ca...

  14. Constitutive Theory for Velocity Dispersion in Rock with Dual Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H F; Berryman, J G

    2002-03-28

    The high frequency behavior of the bulk modulus of fluid-saturated rock can be obtained from a double-porosity constitutive model, which is a direct conceptual extension of Biot's (1941) constitutive equations and which provides additional stiffening due to unrelaxed induced pore pressures in the soft porosity phase. Modeling the stiffening of the shear modulus at high frequency requires an effective medium average over the unequal induced pore pressures in cracks of different orientations. The implicit assumptions are that pore fluid equilibration does not occur between cracks of different orientations and between cracks and porous matrix. The correspondence between the constitutive equations of Berryman and Wang (1995) and Mavko and Jizba (1991) is explicitly noted.

  15. Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity

    CERN Document Server

    Berg, Carl Fredrik

    2015-01-01

    In this article we investigate the permeability of a porous medium as given in Darcy's law. The permeability is described by an effective hydraulic pore radius in the porous medium, the fluctuation in local hydraulic pore radii, the length of streamlines, and the fractional volume conducting flow. The effective hydraulic pore radius is related to a characteristic hydraulic length, the fluctuation in local hydraulic radii is related to a constriction factor, the length of streamlines is characterized by a tortuosity, and the fractional volume conducting flow from inlet to outlet is described by an effective porosity. The characteristic length, the constriction factor, the tortuosity and the effective porosity are thus intrinsic descriptors of the pore structure relative to direction. We show that the combined effect of our pore structure description fully describes the permeability of a porous medium. The theory is applied to idealized porous media, where it reproduces Darcy's law for fluid flow derived from t...

  16. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Kuva, J. (ed.); Myllys, M.; Timonen, J. [Jyvaeskylae Univ. (Finland); Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M. [Helsinki Univ. (Finland); Lindberg, A. [Geological Survey of Finland, Espoo (Finland); Aaltonen, I.

    2012-01-15

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  17. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Kuva, J. (ed.); Myllys, M.; Timonen, J. [Jyvaeskylae Univ. (Finland); Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M. [Helsinki Univ. (Finland); Lindberg, A. [GTK Geological Survey of Finland, Espoo (Finland); Aaltonen, I.

    2012-01-15

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  18. Origin of porosity in arylene-bridged polysilsesquioxanes

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, D.W.; Loy, D.A.; Ulibarri, T.A.; Black, E.; Buss, R.J. [Sandia National Labs., Albuquerque, NM (United States); Beaucage, G.B. [Univ. of Cincinnati, OH (United States). Materials Science and Engineering; Shea, K.J. [Univ. of California, Irvine, CA (United States). Dept. of Chemistry

    1996-12-31

    The authors investigate the porosity of a series of xerogels prepared from arylene-bridged silsesquioxane xerogels as a function of organic bridging group, condensation catalyst and post-synthesis plasma treatment to remove the organic functionalities. They conclude that porosity is controlled by polymer-solvent phase separation in the solution with no evidence of organic-inorganic phase separation. As the polymer grows and crosslinks, it becomes increasingly incompatible with the solvent and eventually microphase separates. The domain structure is controlled by a balance of network elasticity and non-bonding polymer-solvent interactions. The bridging organic groups serve to ameliorate polymer-solvent incompatibility. As a result, when the polymer does eventually phase separate, the rather tightly crosslinked network limits domain size to tens of angstroms, substantially smaller than that observed in xerogels obtained from purely inorganic precursors where incompatibility drives phase separation earlier in the gelation sequence.

  19. Investigating the Relationship between Knitted Fabric Porosity and Light Permeability

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Imrith

    2016-01-01

    Full Text Available The present paper attempts to investigate the relationship between fabric porosity and light permeability of the knitted structures, namely, rib 1 × 1, rib 2 × 1, single jersey, and plain structure. The rationale is that pores (in a fabric would allow light to pass through but at the same time provide a quantitative assessment of the UV light permeability of the knitted fabrics, an indication of the protective capacity of the fabrics against UV radiation. The porosity and corresponding light permeability of the knitted structures were measured after varying the following knitting parameters: stitch length, stitch density, and tension on the machine. Furthermore, this work has enabled the development of an apparatus that can measure the amount of light transmitted through the knitted fabrics. The results generated by the equipment were validated through the use of regression equations.

  20. Reversibly switching the surface porosity of a DNA tetrahedron.

    Science.gov (United States)

    Zhang, Chuan; Tian, Cheng; Li, Xiang; Qian, Hang; Hao, Chenhui; Jiang, Wen; Mao, Chengde

    2012-07-25

    The ability to reversibly switch the surface porosity of nanocages would allow controllable matter transport in and out of the nanocages. This would be a desirable property for many technological applications, such as drug delivery. To achieve such capability, however, is challenging. Herein we report a strategy for reversibly changing the surface porosity of a self-assembled DNA nanocage (a DNA tetrahedron) that is based on DNA hydridization and strand displacement. The involved DNA nanostructures were thoroughly characterized by multiple techniques, including polyacrylamide gel electrophoresis, dynamic light scattering, atomic force microscopy, and cryogenic electron microscopy. This work may lead to the design and construction of stimuli-responsive nanocages that might find applications as smart materials.

  1. Tunable thermal conductivity in mesoporous silicon by slight porosity change

    Science.gov (United States)

    Seol, Jae Hun; Barth, David S.; Zhu, Jia; Ćoso, Dušan; Hippalgaonkar, Kedar; Lim, Jongwoo; Han, Junkyu; Zhang, Xiang; Majumdar, Arun

    2017-08-01

    We report the thermal conductivity of photoelectrochemically synthesized mesoporous silicon (MPS), with ˜20-nm diameter pores and 52%-58% porosity. The thermal conductivity of MPS samples with a thickness of a few microns was measured using the three omega (3 ω ) differential technique. We experimentally demonstrated that the thermal conductivity of MPS varies between 3 and 7 W/m K at room temperature and is dependent on the photoelectrochemical etching times used during the MPS synthesis, which induces a slight change in the MPS porosity. Calculations were conducted using the Boltzmann transport equation in the relaxation time approximation, with the results suggesting that the large thermal conductivity reduction in the MPSs was not entirely explained by the pore boundary scattering. Our findings indicate that elastic softening in the mesoporous structure may be responsible for the reduction in the thermal conductivity.

  2. Seismic Anisotropy and Velocity-Porosity Relationships in the Seafloor.

    Science.gov (United States)

    Berge, Patricia A.

    In this dissertation, I investigate the structure and composition of marine sediments and the upper oceanic crust using seismic data and rock physics theories. Common marine sediments such as silty clays exhibit anisotropy because they are made up of thin sub-parallel lamellae of contrasting mineralogical composition and differing elastic properties. In 1986, Rondout Associates, Inc. and Woods Hole Oceanographic Institution recorded direct shear waves in shallow marine sediments in 21-m-deep water by using a newly developed ocean-bottom shear source and a multicomponent on-bottom receiver. A nearby drill hole showed that the sediments are interbedded silty clays, clays, and sands. I used an anisotropic reflectivity program written by Geo-Pacific Corporation to produce synthetic seismograms to estimate the five independent elastic stiffnesses necessary for describing transverse isotropy, the form of anisotropy found in these sediments. The synthetics fit the vertical and two horizontal components for two intersecting profiles, 150 and 200 m long. The data require low shear velocities (theories to modeling the oceanic crust. Seismic velocities are controlled by the porosity, typically 20-30% for the top of layer 2. Most rock physics theories that relate seismic velocities to porosities are invalid for such high porosities. I combined elements of the self-consistent and noninteraction approaches to extend some rock physics theories for porosities up to at least 30-35%. Since the oceanic crust contains pores and cracks of many shapes, an appropriate theory must model round pores as well as flat cracks. I present examples of how layer 2A of the oceanic crust might be represented using an extended version of the Kuster-Toksoz theory. Alteration processes modify the pore structure of the oceanic crust. Currently, alteration is measured primarily from ocean drilling results. By developing a realistic relationship between seismic velocities and the age-dependent pore

  3. Interaction of Porosity with a Planar Solid/Liquid Interface

    Science.gov (United States)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.

    2004-01-01

    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  4. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    Directory of Open Access Journals (Sweden)

    Linfeng Sun

    2016-02-01

    Full Text Available Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain.

  5. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    Science.gov (United States)

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.

  6. The Albedo of Pervious Cement Concrete Linearly Decreases with Porosity

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available Pervious pavements have been advocated as a potential countermeasure to the urban heat island effect. To understand if pervious pavements stay cooler than conventional pavements, the albedo of the pervious concrete must be understood. This study measured the albedo of pervious concrete with different porosity. Four Portland cement concrete mixes were casted, using designed amounts of sand to vary the porosity of the pervious concrete samples. The samples were sliced and the spectral reflectance and albedo of the sliced samples were measured and analyzed. It is found that the albedo of pervious concrete decreases linearly with the increase of the porosity. The albedo of a pervious Portland concrete varies from 0.25 to 0.35, which is 0.05~0.15 lower than the albedo of conventional cement concrete. Due to this lower albedo, it should be cautious to develop pervious concrete to battle with urban heat island unless the evaporation of pervious concrete is promoted to compensate the additional solar absorption caused by the low albedo.

  7. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques.

  8. Computer Based Porosity Design by Multi Phase Topology Optimization

    Science.gov (United States)

    Burblies, Andreas; Busse, Matthias

    2008-02-01

    A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.

  9. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  10. Reduction of Wake-Stator Interaction Noise Using Passive Porosity

    Science.gov (United States)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Thomas, Russell H.; Bauer, Steven X. S.

    2002-01-01

    The present study was conducted to assess the potential of Passive Porosity Technology as a mechanism to reduce interaction noise in turbomachinery by reducing the fluctuating forces acting on the vane surfaces. To do so, a typical fan stator airfoil was subjected to the effects of a transversely moving wake; time histories of the primitive aerodynamic variables, obtained from Computational Fluid Dynamics (CFD) solutions, were then input into an acoustic prediction code. This procedure was performed on the solid airfoil to obtain a baseline, and on a series of porous configurations in order to isolate those that yield maximum noise reductions without compromising the aerodynamic performance of the stator. It was found that communication between regions of high pressure differential - made possible by the use of passive porosity - is necessary to significantly alter the noise radiation pattern of the stator airfoil. In general, noise reductions were obtained for those configurations incorporating passive porosity in the region between x/c is approximately 0.15 on the suction side of the airfoil and x/c is approximately 0.20 on the pressure side. Reductions in overall radiated noise of approximately 1.0 dB were obtained. The noise benefit increased to about 2.5 dB when the effects of loading noise alone were considered.

  11. Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams

    Science.gov (United States)

    Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.

    2016-12-01

    Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.

  12. Crystal plasticity and grain crushing in high-porosity rocks

    Science.gov (United States)

    Rahmani, H.; Tjioe, M.; Borja, R. I.

    2012-12-01

    Previous studies show the significance of considering microstructure of individual crystals in modeling the inelastic behavior of high-porosity rocks. Plastic deformation of high-porosity crystalline rocks, exemplified by limestone, is mainly attributed to crystal plasticity and cataclastic flow. Crystal plasticity is defined as the plastic deformation along potential slip systems within the crystal lattice. In the context of continuum mechanics this micro-mechanism is modeled by a nonlinear relationship between stresses and strains. Two types of nonlinearity characterize the inelastic behavior of the crystal grains: material nonlinearity and geometric nonlinearity. Material nonlinearity defines the changes in stiffness matrix due to plastic slip along slip systems. Geometric nonlinearity contributes to the changes in stiffness matrix due to changes in the geometry of the crystal grains. Geometric nonlinearity is modeled using theory of finite deformation, which assumes the geometry of slip systems to be a function of crystal deformation. This type of nonlinearity is very important in modeling crystal deformation mainly because of plastic spin induced by anisotropy in the crystal structure. However, considering the geometry of slip systems as a function of crystal slip makes the equations highly nonlinear. As a result, many studies either ignore geometric nonlinearity or make other assumptions to simplify the equations. Cataclastic flow, on the other hand, is characterized by pervasive grain crushing in which larger grains are converted into smaller ones. We model cataclastic flow as strong discontinuity in the grain scale via an assumed enhanced strain method formulated within the context of nonlinear finite elements. The method allows the individual finite elements, identified to be in critical condition, to break into two pieces along a plane identified by theory of bifurcation. We show that modeling cataclastic flow combined with finite deformation crystal

  13. A study on the porosity of CO2 laser welding of titanium alloy

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Hu Lunji; Gong Shuili

    2006-01-01

    The CO2 laser welding of BT20 titanium alloy and Ti-23Al-17Nb titanium aluminide was conducted to investigate into the porosity in titanium alloy weld. The results show that there are two sorts of porosities observed in welds of titanium alloy laser welding based on the microscopic characteristics of the porosities. One is the metallurgical porosity with round and smooth inner wall, which results from the surface contamination. The other is the processing porosity with irregular and rough inner wall that displays the trace of the pool flowing, which results from the ruffle on the keyhole wall gathering together locally and closing down the gas in the keyhole into bubbles because of the keyhole fluctuating. The CO2 laser welding could break down easily the surface oxide film and produce little metallurgical porosity, but produces easily processing porosity when partial penetration or unstable-full penetration laser welding is conducted, which always occurs in the center of weld.

  14. Porosities and permeability of Paleozoic sandstones derived from Nuclear Magnetic Resonance measurements

    Science.gov (United States)

    Jorand, Rachel; Koch, Andreas; Mohnke, Oliver; Klitzsch, Norbert; Clauser, Christoph

    2010-05-01

    A major obstacle for an increased use of geothermal energy often lies in the high success risk for the development of geothermal reservoirs due to the unknown rock properties. In general, the ranges of porosity and permeability in existing compilations of rock properties are too large to be useful to constrain properties for specific sites. Usually, conservative assumptions are made about these properties, resulting in greater drilling depth and increased exploration cost. In this study, data from direct measurements on thirty-three sandstones from different borehole locations and depths enable to derive statistical values of the desired hydraulic properties for selected sandstones in the German subsurface. We used Nuclear Magnetic Resonance (NMR) measurements to estimate the porosity and the permeability of sandstones from North Rhine-Westphalia (Germany). Besides NMR standard poro-perm-measurements were performed on the samples to obtain independent data sets for comparison. Porosity was measured by Archimedes principle and pore-size distribution by mercury injection. Also permeability was determined by gas flow measurements taking into account the Klinkenberg effect. The porosities of the studied samples vary between 0 % and 16 %. NMR yields suitable porosity results whereas the porosities obtain by T1 relaxation measurements fit better to the Archimedes porosities than the porosities obtained by T2 relaxation measurements. For porosities up to 10 %, T2 relaxation measurements overestimate the porosity. Furthermore, we calculate the effective porosity using a cutoff time of 3 ms. This effective porosity agrees much better with Archimedes porosities, particularly for the low porosity samples. The gas permeability of studied sandstones varies between 10-21 m2 and 2.10-17 m2. A large number of empirical relationships between relaxation times and gas permeability have been published. We have applied several of these relationships to select the appropriate law for

  15. Application of nuclear logging to porosity studies in Itaborai basin

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Milena F.S.; Lima, Inaya; Lopes, Ricardo Tadeu, E-mail: milena@lin.ufrj.br, E-mail: inaya@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Ferrucio, Paula Lucia; Borghi, Leonardo, E-mail: ferrucio@acd.ufrj.br, E-mail: borghi@ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Abreu, Carlos Jorge, E-mail: jo_abreu@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Geociencias

    2011-07-01

    Nuclear logging provides information on bulk density and porosity variations by measuring the intensity of the scattered radiation induced on the formation by radioactive sources. In this study, nuclear logging was employed to analyze the pore-space system of the 2-ITAB-1-RJ well placed on the Itaborai limestone basin, in the state of Rio de Janeiro. This is one of the smallest sedimentary basin in Brazil and it is formed by clastic deposits and travertine limestone rocks which are fractured. Understanding the pore-space system of carbonate rocks has become important subject for the oil industry, specially in Brazil. A Density Gamma Probe (LSD) and a Neutron Probe (NEUT) were used for data acquisition, which nuclear logging was carried out in part of the well, with continuous detection for about 50 m of deep. The detection speed was 4 m/min for the LSD and 5 m/min for the NEUT. The results obtained by nuclear logging showed that the 2-ITAB-1-RJ well consists of three different intervals with rocks ranging from low to moderate porosity present in travertine, marls and gneisses. (author)

  16. Turbulent boundary layer measurements over high-porosity surfaces

    Science.gov (United States)

    Efstathiou, Christoph; Luhar, Mitul

    2016-11-01

    Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.

  17. A study of porosity of synthetic polymer nanoparticles using PALS

    Energy Technology Data Exchange (ETDEWEB)

    Pham, B; Smith, S V [Centre for Antimatter-Matter Studies, Australian Nuclear Science and Technology Organisation (ANSTO) NSW 2232 (Australia); Guagliardo, P; Williams, J; Samarin, S, E-mail: binh.pham@ansto.gov.au, E-mail: svs@ansto.gov.au [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia, WA 6009 (Australia)

    2011-01-01

    Positron annihilation lifetime spectroscopy (PALS) has been used to study the free volume in dry synthetic polymer nanoparticles of various sizes. A series of poly(styrene/divinyl benzene) particles with diameters in the range of 100 to 500 nm were synthesized and then carefully chemically treated using the sulfonation process, to increase their porosity. The particles were characterised by Scanning Electron Microscopy (SEM), light scattering and PALS. Light scattering gave larger size for the treated particles, reflecting the hydration effect and therefore the increase in porosity. PALS spectra of untreated and treated particles gave four and three life-time components, respectively. Analysis by PAScual version 1.3.0 program indicated there was a reduction in the intensity and the type of the micropores in the treated particles. The data suggest PALS is a sensitive tool for detecting changes in microporosity in particles. The conflicting results obtained for light scattering compared to PALS for chemically treated particles is difficult to resolve and suggests sample preparation of polymeric materials for PALS is the critical factor.

  18. Porosity and mechanically optimized PLGA based in situ hardening systems.

    Science.gov (United States)

    Schloegl, W; Marschall, V; Witting, M Y; Volkmer, E; Drosse, I; Leicht, U; Schieker, M; Wiggenhorn, M; Schaubhut, F; Zahler, S; Friess, W

    2012-11-01

    Goal of the present study was to develop and to characterize in situ-hardening, porous PLGA-based systems for their future application as bone grafting materials. Therefore, we investigated the precipitation behavior of formulations containing PLGA and a water-miscible solvent, DMSO, PEG 400, and NMP. To increase porosity, a pore forming agent (NaCMC) was added and to enhance mechanical properties of the system, an inorganic filler (α-TCP) was incorporated. The behavior upon contact with water and the influence of the prior addition of aqueous media on the morphology of the corresponding hardened implants were investigated. We proved cell-compatibility by live/dead assays for the hardened porous polymer/ceramic-composite scaffolds. The IsHS formulations can therefore be used to manufacture hardened scaffolds ex vivo by using molds with the desired shape and size. Cells were further successfully incorporated into the IsHS by precultivating the cells on the α-TCP-powder prior to their admixing to the formulation. However, cell viability could not be maintained due to toxicity of the tested solvents. But, the results demonstrate that in vivo cells should well penetrate, adhere, and proliferate in the hardened scaffolds. Consequently, we consider the in situ hardening system being an excellent candidate as a filling material for non-weight-bearing orthopedic indications, as the resulting properties of the hardened implant fulfill indication-specific needs like mechanical stability, elasticity, and porosity.

  19. Gradient-Hierarchic-Aligned Porosity SiOC Ceramics

    Science.gov (United States)

    Vakifahmetoglu, Cekdar; Zeydanli, Damla; Innocentini, Murilo Daniel de Mello; Ribeiro, Fernanda dos Santos; Lasso, Paulo Renato Orlandi; Soraru, Gian Domenico

    2017-01-01

    This work describes a simple technique to produce porous ceramics with aligned porosity having very high permeability and specific surface area. SiOC-based compositions were processed from blends of three types of preceramic polymer and a catalyst, followed by curing and pyrolysis. The heating applied from the bottom of molds promoted the nucleation, expansion and rising of gas bubbles, and the creation of a ceramic matrix with axially oriented channels interconnected by small round pores. The samples were analyzed by SEM, tomography, BET, water immersion porosimetry and permeation to gas flow. The resulting bodies presented levels of open porosity (69.9–83.4%), average channel diameter (0.59–1.25 mm) and permeability (0.56–3.83 × 10−9 m2) comparable to those of ceramic foams and honeycomb monoliths, but with specific surface area (4.8–121.9 m2/g) typical adsorbents, enabling these lotus-type ceramics to be advantageously used as catalytic supports and adsorption components in several environmental control applications. PMID:28106140

  20. Average density and porosity of high-strength lightweight concrete

    Directory of Open Access Journals (Sweden)

    A.S. Inozemtcev

    2014-11-01

    Full Text Available The analysis results of high-strength lightweight concrete (HSLWC structure are presented in this paper. The X-ray tomography, optical microscopy and other methods are used for researching of average density and porosity. It has been revealed that mixtures of HSLWC with density 1300…1500 kg/m3 have a homogeneous structure. The developed concrete has a uniform distribution of the hollow filler and a uniform layer of cement-mineral matrix. The highly saturated gas phase which is divided by denser large particles of quartz sand and products of cement hydration in the contact area allow forming a composite material with low average density, big porosity (up to 40% and high strength (compressive strength is more than 40 MPa. Special modifiers increase adhesion, compacts structure in the contact area, decrease water absorption of high-strength lightweight concrete (up to 1 % and ensure its high water resistance (water resistance coefficient is more than 0.95.

  1. An Efficient Modelling Approach for Prediction of Porosity Severity in Composite Structures

    Science.gov (United States)

    Bedayat, Houman; Forghani, Alireza; Hickmott, Curtis; Roy, Martin; Palmieri, Frank; Grimsley, Brian; Coxon, Brian; Fernlund, Goran

    2017-01-01

    Porosity, as a manufacturing process-induced defect, highly affects the mechanical properties of cured composites. Multiple phenomena affect the formation of porosity during the cure process. Porosity sources include entrapped air, volatiles and off-gassing as well as bag and tool leaks. Porosity sinks are the mechanisms that contribute to reducing porosity, including gas transport, void shrinkage and collapse as well as resin flow into void space. Despite the significant progress in porosity research, the fundamentals of porosity in composites are not yet fully understood. The highly coupled multi-physics and multi-scale nature of porosity make it a complicated problem to predict. Experimental evidence shows that resin pressure history throughout the cure cycle plays an important role in the porosity of the cured part. Maintaining high resin pressure results in void shrinkage and collapse keeps volatiles in solution thus preventing off-gassing and bubble formation. This study summarizes the latest development of an efficient FE modeling framework to simulate the gas and resin transport mechanisms that are among the major phenomena contributing to porosity.

  2. A comparison of estimated and calculated effective porosity

    Science.gov (United States)

    Stephens, Daniel B.; Hsu, Kuo-Chin; Prieksat, Mark A.; Ankeny, Mark D.; Blandford, Neil; Roth, Tracy L.; Kelsey, James A.; Whitworth, Julia R.

    Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil-water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil-water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50-90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Résumé La porosité effective dans les analyses de transport de soluté est habituellement estimée, plutôt que calculée à partir d'expériences de traçage sur le terrain ou au laboratoire. Les valeurs calculées de la porosité effective au laboratoire sur trois échantillons de textures différentes ont été comparées aux estimations provenant de distributions de taille de particules et de courbes caractéristiques sol-eau. La concordance était plutôt faible et il semble qu'il n'existe aucune relation claire entre la porosité effective calculée à partir des expériences de traçage au laboratoire et la porosité effective estimée à partir des distributions de taille de particules et de courbes caractéristiques sol-eau. Une expérience de traçage de terrain dans un aquifère de sables et de graviers a fourni une porosité effective calculée d'environ 0,17. En comparaison, les estimations de porosité effective de données de

  3. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Kohei Tanaka

    Full Text Available Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1 covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes, and 2 open nests, in which eggs are exposed in the nest and brooded (as in most birds. Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1 covered nests are likely the primitive condition for dinosaurs (and probably archosaurs, and 2 open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment

  4. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Science.gov (United States)

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  5. Fabrication and Mechanical Characterisation of Titanium Lattices with Graded Porosity

    Directory of Open Access Journals (Sweden)

    William van Grunsven

    2014-08-01

    Full Text Available Electron Beam Melting (EBM is an Additive Manufacturing technique which can be used to fabricate complex structures from alloys such as Ti6Al4V, for example for orthopaedic applications. Here we describe the use of EBM for the fabrication of a novel Ti6Al4V structure of a regular diamond lattice incorporating graded porosity, achieved via changes in the strut cross section thickness. Scanning Electron Microscopy and micro computed tomography analysis confirmed that generally EBM reproduced the CAD design of the lattice well, although at smaller strut sizes the fabricated lattice produced thicker struts than the model. Mechanical characterisation of the lattice in uniaxial compression showed that its behaviour under compression along the direction of gradation can be predicted to good accuracy with a simple rule of mixtures approach, knowing the properties and the behaviour of its constituent layers.

  6. Matrix-fracture interactions in dual porosity simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shook, G.M.

    1996-01-01

    A new method for simulating flow in fractured media is presented which uses a truncated version of the analytical solution to resolve pressure transients in the rock matrix. The point at which the series solution may be truncated is a known function of the problem, and may therefore be readily determined. Furthermore, the functional form of the method is essentially dimension-independent, and implementation of the method requires only minimal modification to an existing dual porosity simulator. Three test cases are presented comparing results from fine grid simulations, Warren and Root simulations, and the new formulation. In each of the three cases presented, excellent agreement with the fine grid simulations is obtained using the new method. The W&R formulation exhibits excessive error throughout the simulated time, first underpredicting outflow rates, and then overpredicting rates. The error using the W&R formulation is largest for 3-D fracture networks, but is large for all cases tested.

  7. Influence of porosity on thermophysical properties of a composite

    Energy Technology Data Exchange (ETDEWEB)

    Grishaeva, N. Yu., E-mail: anohina@mail2000.ru; Ljukshin, B. A., E-mail: lba2008@yandex.ru; Bochkareva, S. A., E-mail: svetlanab7@yandex.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk, 634050 (Russian Federation); Strukov, Yu. S., E-mail: regent@yandex.ru [Tomsk State University of Control Systems and Radioelectronics, Tomsk, 634050 (Russian Federation)

    2015-10-27

    In many modern information systems, the heat generated during the operation of electronic devices is usually dissipated by heat-conductive pads between the casing of the respective equipment and a massive base (platform). For newly developed pads, the promising materials are composites on the basis of various types of silicone rubber. At the same time, during the production of the pads without a vacuum setup, the material can contain air bubbles, which causes the porosity potentially negative for the thermal properties of the material. This work studies the thermal conductivity depending on the degree of silicone matrix filling by copper particles, introduced to improve thermal conductivity, and by air bubbles that are considered as reinforcing inclusions.

  8. Ultrasound Attenuation in Liquid ^3He/High Porosity Aerogel

    Science.gov (United States)

    Choi, H. C.; Mulders, N.

    2005-11-01

    High porosity silica aerogels have been extensively used to study the influence of disorder in p-wave superfluid ^3He. Experimental investigations performed during the last decade revealed three distinct superfluid phases in liquid ^3He /98% aerogel system. The three phases found in this system are called as A, B, and A1-like phases (using the same nomenclature as in the bulk), although only the spin component of the order parameter has been studied and found to resemble that of corresponding bulk phases. A complete understanding of the microscopic structure of the p-wave superfluid phases requires identification of both orbital and spin components of the order parameter. Until now, there is no experimental attempt to directly probe the orbital structure in ^3He/aerogel system. To resolve this issue, we performed acoustic measurements by direct transmission of ultrasound through the ^3He/98% aerogel sample. We will present and discuss our preliminary results.

  9. Spark plasma sintering and porosity studies of uranium nitride

    Science.gov (United States)

    Johnson, Kyle D.; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-01

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD - corresponding to an absolute density of 14.25 g/cm3 out of a theoretical density of 14.28 g/cm3 - have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density.

  10. On the Use of Surface Porosity to Reduce Unsteady Lift

    Science.gov (United States)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Bauer, Steven X. S.; Thomas, Russell H.

    2001-01-01

    An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of passive porosity technology as a mechanism for alleviating interaction effects by reducing the unsteady lift developed on a stator airfoil subject to wake impingement. The study involved a typical high bypass fan Stator airfoil (solid baseline and several porous configurations), immersed in a free field and exposed to the effects of a transversely moving wake. It was found that, for the airfoil under consideration, the magnitude of the unsteady lift could be reduced more than 18% without incurring significant performance losses.

  11. Fabrication of slag-glass composite with controlled porosity

    Directory of Open Access Journals (Sweden)

    Ranko Adziski

    2008-06-01

    Full Text Available The preparation and performance of porous ceramics made from waste materials were investigated. Slag from thermal electrical plant Kakanj (Bosnia and Herzegovina with defined granulations: (0.500÷0.250 mm; (0.250÷0.125 mm; (0.125÷0.063 mm; (0.063÷0.045 mm and 20/10 wt.% of the waste TV screen glass with a granulation <0.063 mm were used for obtaining slag-glass composites with controlled porosity. The one produced from the slag powder fraction (0.125÷0.063 mm and 20 wt.% TV screen glass, sintered at 950°C/2h, was considered as the optimal. This system possesses open porosity of 26.8±1.0%, and interconnected pores with the size of 250–400 μm. The values of E-modulus and bending strength of this composite were 10.6±0.6 GPa and 45.7±0.7 MPa, respectively. The coefficient of thermal expansion was 8.47·10-6/°C. The mass loss in 0.1M HCl solution after 30 days was 1.2 wt.%. The permeability and the form coefficient of the porous composite were K0=0.12 Da and C0=4.53·105 m-1, respectively. The porous composite shows great potential to be used as filters, diffusers for water aeration, dust collectors, acoustic absorbers, etc.

  12. Controlled ceramic porosity and membrane fabrication via alumoxane nanoparticles

    Science.gov (United States)

    Jones, Christopher Daniel

    Carboxylate-alumoxanes, [Al(O)x(OH)y(O2CR) z]n, are organic substituted alumina nano-particles synthesized from boehmite in aqueous solution which are an inexpensive and environmentally-benign precursor for the fabrication of aluminum based ceramic bodies. The carboxylate-ligand on the alumoxane determines the morphology and the porosity of the derived alumina. Investigations of A-, MA-, MEA-, and MEEA-alumoxanes, were undertaken to determine the effects of these organic peripheries on the properties of the alumina at different sintering temperatures including the morphology, surface area, pore volume, pore size, pore size distribution, and crystal phase. The effects of physically or chemically mixing different carboxylate-alumoxanes were also investigated. The alumina derived from the thermolysis of the carboxylate-alumoxanes exhibits small pore diameters and narrow pore size distributions that are desirable for use in ceramic ultrafiltration membranes. In addition, it is possible to form alumina membranes with a range of pore sizes and porosity by changing the organic periphery. This lead to investigating the ability to produce asymmetric alumina filters with characteristics that at the lower end of the ultrafiltration range. The flux, permeability, molecular weight cut-off, roughness, and wettability of the asymmetric alumina membranes derived from carboxylate-alumoxanes are determined. Comparisons of these filters are made with commercially available filters. The ability to dope carboxylate-alumoxanes via a transmetallation reaction followed by thermolysis has previously shown to result in catalytically active alumina based materials. This lead to investigations into forming catalytically active membranes. Dip-coating aqueous solutions of the doped carboxylate-alumoxanes onto porous alumina supports, followed by thermolysis, resulted in the formation of doped-alumina asymmetric filters. In addition, a novel method to form surface-modified carboxylate

  13. Unconfined versus confined speleogenetic settings: variations of solution porosity.

    Directory of Open Access Journals (Sweden)

    Klimchouk Alexander

    2006-01-01

    Full Text Available Speleogenesis in confined settings generates cave morphologies that differ much from those formed in unconfined settings. Cavesdeveloped in unconfined settings are characterised by broadly dendritic patterns of channels due to highly competing development.In contrast, caves originated under confined conditions tend to form two- or three-dimensional mazes with densely packed conduits.This paper illustrates variations of solution (channel porosity resulted from speleogenesis in unconfined and confined settings by theanalysis of morphometric parameters of typical cave patterns. Two samples of typical cave systems formed in the respective settingsare compared. The sample that represents unconfined speleogenesis consists of solely limestone caves, whereas gypsum cavesof this type tend to be less dendritic and more linear. The sample that represents confined speleogenesis consists of both limestoneand gypsum maze caves. The comparison shows considerable differences in average values of some parameters between thesettings. Passage network density (the ratio of the cave length to the area of the cave field, km/km2 is one order of magnitudegreater in confined settings than in unconfined (average 167.3 km/km2 versus 16.6 km/km2. Similarly, an order of magnitudedifference is observed in cave porosity (a fraction of the volume of a cave block, occupied by mapped cavities; 5.0 % versus 0.4 %.This illustrates that storage in maturely karstified confined aquifers is generally much greater than in unconfined. The average areal coverage (a fraction of the area of the cave field occupied by passages in a plan view is about 5 times greater in confined settingsthan in unconfined (29.7 % versus 6.4 %. This indicates that conduit permeability in confined aquifers is appreciably easier to targetwith drilling than the widely spaced conduits in unconfined aquifers.

  14. Estimation of porosity in thin-layered reservoirs by seismic inversion

    Energy Technology Data Exchange (ETDEWEB)

    He, Nanqun; Reynolds, A.C. [Univ. of Tulsa, OK (United States)

    1995-12-31

    An effective method is presented to determine porosity distributions from seismic data for cases where the reservoir layers are thin. Porosity is determined by solving the inverse problem using a constrained generalized linear inversion (GLI) procedure. The inversion procedure estimates porosities directly rather than inverting for acoustic impedance or velocities and then estimating porosities. It is shown that sensitivity coefficients for porosity, i.e., the derivative of amplitudes with respect to porosity, can be computed analytically. Artificial interfaces are used to reduce non-uniquiness caused by lack of knowledge of thin bed reflection times. The artificial interfaces are generated by integration of seismic with log data. By using the artificial interfaces, the number of parameters to be estimated can be reduced and known formation information can be added as constraints. Inversion is done on only the seismic record associated with the reservoir instead of the whole seismic record.

  15. Numerical Modeling of the Coagulation and Porosity Evolution of Dust Aggregates

    CERN Document Server

    Okuzumi, Satoshi; Sakagami, Masa-aki

    2009-01-01

    Porosity evolution of dust aggregates is crucial in understanding dust evolution in protoplanetary disks. In this study, we present useful tools to study the coagulation and porosity evolution of dust aggregates. First, we present a new numerical method for simulating dust coagulation and porosity evolution as an extension of the conventional Smoluchowski equation. This method follows the evolution of the mean porosity for each aggregate mass simultaneously with the evolution of the mass distribution function. This method reproduces the results of previous Monte Carlo simulations with much less computational expense. Second, we propose a new collision model for porous dust aggregates on the basis of our N-body experiments on aggregate collisions. We first obtain empirical data on porosity changes between the classical limits of ballistic cluster-cluster and particle-cluster aggregation. Using the data, we construct a recipe for the porosity change due to general hit-and-stick collisions as well as formulae fo...

  16. Relationship between micro-porosity and tensile properties of 6063 alloy

    OpenAIRE

    Li Xiehua; He Lizi; Zhu Pei

    2013-01-01

    The micro-porosity is usually present in the as-cast microstructure, which decreases the tensile strength and ductility and therefore limit the application of cast aluminum parts. Although much work has been done to investigate the effects of various casting parameters on the formation of porosity in various aluminum alloys, up to now, little information has been available for the relationship between micro-porosity and tensile properties of 6063 alloy. In this study, the influences of size a...

  17. Simulation of the impact of 3-D porosity distribution in metallic U-10Zr fuels

    Science.gov (United States)

    Yun, Di; Yacout, Abdellatif M.; Stan, Marius; Bauer, Theodore H.; Wright, Arthur E.

    2014-05-01

    Evolution of porosity generated in metallic U-Zr fuel irradiated in fast spectrum reactors leads to changes in fuel properties and impacts important phenomena such as heat transport and constituent redistribution. The porosity is generated as a result of the accumulation of fission gases and is affected by the possible bond sodium infiltration into the fuel. Typically, the impact of porosity development on properties, such as thermal conductivity, is accounted for through empirical correlations that are dependent on porosity and infiltrated sodium fractions. Currently available simulation tools make it possible to take into account fuel 3-D porosity distributions, potentially eliminating the need for such correlations. This development allows for a more realistic representation of the porosity evolution in metallic fuel and creates a framework for truly mechanistic fuel development models. In this work, COMSOL multi-physics simulation platform is used to model 3-D porosity distributions and simulate heat transport in metallic U-10Zr fuel. Available experimental data regarding microstructural evolution of fuel that was irradiated in EBR-II and associated phase stability information are used to guide the simulation. The impact of changes in porosity characteristics on material properties is estimated and the results are compared with calculated temperature distributions. The simulations demonstrate the developed capability and importance of accounting for detailed porosity distribution features for accurate fuel performance evaluation.

  18. Spatial Distribution of the Increased Porosity of Cement Paste due to Calcium Leaching

    Institute of Scientific and Technical Information of China (English)

    WAN Keshu; LI Lin; XU Qiong; SUN Wei

    2015-01-01

    Using the tomography image, a method to characterize the 3D spatial distributions of increased porosity was proposed, and the increased porosity distributions of cement pastes with different leaching degrees were given using the current method. The leaching processes of CH/C-S-H and the contribution of CH/C-S-H leaching to porosity evolution were discussed. The proposed method can be applied to all cement-based materials with any leaching degrees. From the quantitative increased porosity results, we ifnd that the CH leaching ifnished quickly on the sharp CH leaching front.

  19. Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength

    Directory of Open Access Journals (Sweden)

    Y. Luna-Galiano

    2016-09-01

    Full Text Available The main contribution of this paper relates to the development of a systematic study involving a set of parameters which could potentially have an impact on geopolymer properties: curing temperature, type of activating solution, alkali metal in solution, incorporation of slag (Ca source and type of slag used. The microstructures, degrees of reaction, porosities and compressive strengths of geopolymers have been evaluated. Geopolymers prepared with soluble silicate presented a more compacted and closed structure, a larger amount of gel, lower porosity and greater compressive strength than those prepared with hydroxides. On the other hand, Na-geopolymers were more porous but more resistant than K-geopolymers. Although there is an inverse relation between degree of reaction and porosity, between compressive strength and porosity it is not always inversely proportional and could, in some cases, be masked by changes produced in other influencing parameters.

  20. Solution deposition of nanometer scale silver films as an alternative to vapor deposition for plasmonic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek S.; Sathish, R. Sai; Kostov, Yordan [Center for Advanced Sensor Technology and Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Rao, Govind, E-mail: grao@umbc.ed [Center for Advanced Sensor Technology and Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2010-05-03

    We report the attainment of surface plasmon-coupled emission (SPCE) from highly uniform thin silver films, solution-deposited on glass substrates by a wet chemistry approach. The surface morphology of these films was characterized by atomic force microscopy. The SPCE emission enhancements, polarization and angularity obtained from solution-deposited silver on BK7 glass were comparable to that achieved from conventional SPCE slides prepared via vapor deposition. This facile, wet chemistry procedure for the deposition of SPCE films provides an inexpensive, low maintenance alternative to vapor deposition for SPCE substrate preparation. This would allow the fluorescence observation technique to become more readily available for high sensitivity, low cost applications.

  1. A switchable DNA origami nanochannel for regulating molecular transport at the nanometer scale

    Science.gov (United States)

    Wang, Dianming; Zhang, Yiyang; Wang, Miao; Dong, Yuanchen; Zhou, Chao; Isbell, Mark Antonin; Yang, Zhongqiang; Liu, Huajie; Liu, Dongsheng

    2016-02-01

    A nanochannel with a shutter at one end was built by DNA nanotechnology. Using DNA hybridization the shutter could be opened or closed, influencing the transport of materials through the channel. This process was visualized by an enzyme cascade reaction occurring in the structure.A nanochannel with a shutter at one end was built by DNA nanotechnology. Using DNA hybridization the shutter could be opened or closed, influencing the transport of materials through the channel. This process was visualized by an enzyme cascade reaction occurring in the structure. Electronic supplementary information (ESI) available: Experimental details including methods, materials, ESI figures and DNA sequences. See DOI: 10.1039/c5nr08206d

  2. Atomistic study of a nanometer-scale pump based on the thermal ratchet concept

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, J. H.; Zambrano, Harvey

    In this study, a novel concept of nanoscale pump fabricated using Carbon Nanotubes (CNTs) is presented. The development of nanofluidic systems provides unprecedented possibilities for the control of biology and chemistry at the molecular level with potential applications in low energy cost devices...... of great interest in nanofluidics. Thermophoresisis the phenomenon observed when a mixture of two or more types of motile objects experience a force induced by a thermal gradient and the different types of objects respond to it differently, inducing a motion and segregation of the objects. Using molecular...... dynamics simulations, we explore the possibility to design thermophoretic pumping devices fabricated of CNTs for water transport in nanoconduits. The design of the nanopumps is based on the concept of the Feynman-Smoluchowski ratchet....

  3. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks

    Science.gov (United States)

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-01

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 1011 cm-2, embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

  4. The minimum-energy structure of nanometer-scale gold clusters

    Science.gov (United States)

    Patil, A. N.; Paithankar, D. Y.; Otsuka, N.; Andres, R. P.

    1993-03-01

    We report results of experiments in which gold clusters with controlled diameters ranging from 1nm to 20nm are grown in a gas aggregation reactor and are subsequently melted and slowly cooled in the gas phase. These clusters are soft landed on thin carbon films and their structure determined by means of HRTEM. All of the clusters down to the smallest whose lattice fringes could be resolved (N≈405) are single fcc crystals. MD calculations using an EAM potential for gold predict that the fcc motif seen in these experiments may indeed be the minimum-energy structure for gold clusters containing more than a few hundred atoms.

  5. Nanometer-scale hydrogen 'portals' for the control of magnesium hydride formation.

    Science.gov (United States)

    Chung, Chia-Jung; Nivargi, Chinmay; Clemens, Bruce

    2015-11-21

    Magnesium and Mg-based material systems are attractive candidates for hydrogen storage but limited by unsuitable thermodynamic and kinetic properties. In particular, the kinetics are too slow at room temperature and atmospheric pressure. To study the hydride formation kinetics in a controlled way, we have designed a unique 'nanoportal' structure of Pd nanoparticles deposited on epitaxial Mg thin films, through which the hydride will nucleate only under Pd nanoparticles. We propose a growth mechanism for the hydrogenation reaction in the nanoportal structure, which is supported by scanning electron microscopy (SEM) images of hydrogenated samples exhibiting consistent results. Interestingly, the grain boundaries of Mg films play an important role in hydride nucleation and growth processes. Kinetic modeling based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) formalism seems to agree with the two-dimensional nucleation and growth mechanism hypothesized and the overall reaction rate is limited by hydrogen flux through the interface between the Pd nanoparticle and the underlying Mg film. The fact that in our structure Mg can be transformed completely into MgH2 with only a small percentage of Pd nanoparticles offers possibilities for future on-board storage applications.

  6. Electron and proton transfer assemblies and new porous materials from nanometer-scale building blocks

    Science.gov (United States)

    Johnson, Stacy Ann

    Elegant examples of molecular engineering are found in nature that make our current small devices seem primitive. By using naturally occurring examples we can better imagine how to construct useful three dimensional nanoscaled devices. Electron and proton transfer composites were prepared using a multilayer film growth technique, in which single anionic sheets derived from inorganic solids are interleaved with cationic polyelectrolytes. This method allows for the growth of concentric monolayers of redox-active polymers on high-surface-area silica supports, and for vectorial electron transfer reactions through the layers of the "onion." Photoinduced charge separation has been observed in composites consisting of an inner polycationic layer of poly(styrene- co-N-vinylbenzyl-N'-methyl-4,4 '-bipyridine), and an outer polycationic layer of poly[Ru(bpy) 2(vbpy)]2+, vbpy = 4-vinyl-4'-methyl- 2,2'-bipyridine, bpy = 2,2' -bipyridine, which are separated by a thin inorganic sheet of Zr(HOPO 3)2·H2O. Following the logic of the proton transport mechanism found in biological membranes, a photosensitive proton pump was constructed using the same electrostatic adsorption technique. This composite was prepared with a polymeric form of a luminescent ruthenium complex, poly[Ru(bpy) 2(bpm)]2+, bpy = 2,2'-bipyridine bpm = 2,2'-bipyrimidine. The pH of a solution in which the composites were suspended changed reversibly when irradiated with visible light. A series of microporous polymer replicas were synthesized using inorganic templates. Zeolites were used as templates to prepare microporous polymer replicas with nanometer sized pore networks. Phenol-formaldehyde polymers were synthesized and cured within the channel networks of zeolites Y, beta, and L. Dissolution of the aluminosilicate framework in aqueous IHF yields an organic replica. The zeolite template exerts important topological effects on the structure and physical properties of the replica. A similar process is described for synthesizing mesoscale polymer fibers and mesostructured particles using the well-defined channels of mesoporous silica as a mold. Ordered mesoporous polymers were prepared by replication of colloidal crystals made from 35 nanometer diameter silica spheres. The voids were filled with divinylbenzene (DVB), ethyleneglycol dimethacrylate (EDMA), or a mixture of the two. Polymerization and subsequent dissolution of the silica template leaves a polycrystalline network of interconnected pores. The pore size of the replica polymer depends on the ratio of monomers used in the synthesis.

  7. A nanometer scale optical view on the compartmentalization of cell membranes.

    NARCIS (Netherlands)

    Zanten, T.S. van; Cambi, A.; Garcia-Parajo, M.F.

    2010-01-01

    For many years, it was believed that the laws of diffraction set a fundamental limit to the spatial resolution of conventional light microscopy. Major developments, especially in the past few years, have demonstrated that the diffraction barrier can be overcome both in the near- and far-field regime

  8. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale

    OpenAIRE

    S. Bonneville; M. M. Smits; A. Brown; J. Harrington; J. R. Leake; R. Brydson; Liane G. Benning

    2009-01-01

    Plant-driven fungal weathering is a major pathway of soil formation, yet the precise mechanism by which mycorrhiza alter minerals is poorly understood. Here we report the first direct in situ observations of the effects of a soil fungus on the surface of a mineral over which it grew in a controlled experiment. An ectomycorrhizal fungus was grown in symbiosis with a tree seedling so that individual hyphae expanded across the surface of a biotite flake over a period of three months. Ultramicros...

  9. Development of experimental verification techniques for non-linear deformation and fracture on the nanometer scale.

    Energy Technology Data Exchange (ETDEWEB)

    Moody, Neville Reid; Bahr, David F.

    2005-11-01

    This work covers three distinct aspects of deformation and fracture during indentations. In particular, we develop an approach to verification of nanoindentation induced film fracture in hard film/soft substrate systems; we examine the ability to perform these experiments in harsh environments; we investigate the methods by which the resulting deformation from indentation can be quantified and correlated to computational simulations, and we examine the onset of plasticity during indentation testing. First, nanoindentation was utilized to induce fracture of brittle thin oxide films on compliant substrates. During the indentation, a load is applied and the penetration depth is continuously measured. A sudden discontinuity, indicative of film fracture, was observed upon the loading portion of the load-depth curve. The mechanical properties of thermally grown oxide films on various substrates were calculated using two different numerical methods. The first method utilized a plate bending approach by modeling the thin film as an axisymmetric circular plate on a compliant foundation. The second method measured the applied energy for fracture. The crack extension force and applied stress intensity at fracture was then determined from the energy measurements. Secondly, slip steps form on the free surface around indentations in most crystalline materials when dislocations reach the free surface. Analysis of these slip steps provides information about the deformation taking place in the material. Techniques have now been developed to allow for accurate and consistent measurement of slip steps and the effects of crystal orientation and tip geometry are characterized. These techniques will be described and compared to results from dislocation dynamics simulations.

  10. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  11. Assessing dystrophies and other muscle diseases at the nanometer scale by atomic force microscopy.

    Science.gov (United States)

    van Zwieten, Ruthger W; Puttini, Stefania; Lekka, Małgorzata; Witz, Guillaume; Gicquel-Zouida, Evelyne; Richard, Isabelle; Lobrinus, Johannes A; Chevalley, François; Brune, Harald; Dietler, Giovanni; Kulik, Andrzej; Kuntzer, Thierry; Mermod, Nicolas

    2014-04-01

    Atomic force microscopy nanoindentation of myofibers was used to assess and quantitatively diagnose muscular dystrophies from human patients. Myofibers were probed from fresh or frozen muscle biopsies from human dystrophic patients and healthy volunteers, as well as mice models, and Young's modulus stiffness values were determined. Fibers displaying abnormally low mechanical stability were detected in biopsies from patients affected by 11 distinct muscle diseases, and Young's modulus values were commensurate to the severity of the disease. Abnormal myofiber resistance was also observed from consulting patients whose muscle condition could not be detected or unambiguously diagnosed otherwise. This study provides a proof-of-concept that atomic force microscopy yields a quantitative read-out of human muscle function from clinical biopsies, and that it may thereby complement current muscular dystrophy diagnosis.

  12. Inhibited phenol ionization in reverse micelles: confinement effect at the nanometer scale.

    Science.gov (United States)

    Silva, O Fernando; Fernández, Mariana A; Silber, Juana J; de Rossi, Rita H; Correa, N Mariano

    2012-01-16

    We found that the absorption spectra of 2-acetylphenol (2-HAP), 4-acetylphenol (4-HAP), and p-nitrophenol (p-NPh) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane reverse micelles (RMs) at various W(0) (W(0) = [H(2)O]/[surfactant]) values studied changed with time if (-)OH ions were present in the RM water pool. There is an evolution of ionized phenol (phenolate) bands to nonionized phenol absorption bands with time and this process is faster at low W(0) values and with phenols with higher bulk water pK(a) values. That is, in bulk water and at the hydroxide anion concentration used, only phenolate species are observed, whereas in AOT RMs at this fixed hydroxide anion concentration, ionized phenols convert into nonionized phenol species over time. Furthermore, we demonstrate that, independent of the (-)OH concentration used to prepare the AOT RMs, the nonionized phenols are the more stable species in the RM media. We explain our results by considering that strong hydrogen-bonding interactions between phenols and the AOT polar head groups result in the existence of only nonionized phenols at the AOT RM interface. The situation is quite different when the phenols are dissolved in cationic benzyl-n-hexadecyldimethylammonium chloride RMs. Therein, only phenolates species are present at the (-)OH concentrations used. The results clearly demonstrate that the classical definition of pH does not apply in a confined environment, such as in the interior of RMs and challenge the general idea that pH can be determined inside RMs.

  13. Micro/Nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm.

    Science.gov (United States)

    Chae, Su-Kyoung; Kang, Edward; Khademhosseini, Ali; Lee, Sang-Hoon

    2013-06-11

    A new method for the microfluidic spinning of ultrathin fibers with highly ordered structures is proposed by mimicking the spinning mechanism of silkworms. The self-aggregation is driven by dipole-dipole attractions between polar polymers upon contact with a low-polarity solvent to form fibers with nanostrands. The induction of Kelvin-Helmholtz instabilities at the dehydrating interface between two miscible fluids generates multi-scale fibers in a single microchannel.

  14. In situ probing the interior of single bacterial cells at nanometer scale

    Science.gov (United States)

    Liu, Boyin; Hemayet Uddin, Md; Ng, Tuck Wah; Paterson, David L.; Velkov, Tony; Li, Jian; Fu, Jing

    2014-10-01

    We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.

  15. Instantaneous monitoring of wear on a micro-nanometer scale through hard coatings by synchroton radiation

    DEFF Research Database (Denmark)

    Schou, Jørgen; Rasmussen, Inge Lise; Belin, M.

    rate varies strongly from one position to another in the wear track. The ridges, grooves as well as the transport of debris from the track were for the first time followed on a micrometer level, confirming the stochastic nature of this type of wear. Most of the features are generated within the first...

  16. Atomistic study of a nanometer-scale pump based on the thermal ratchet concept

    Science.gov (United States)

    Oyarzua, Elton; Walther, J. H.; Zambrano, Harvey

    2015-11-01

    In this study, a novel concept of nanoscale pump fabricated using Carbon Nanotubes (CNTs) is presented. The development of nanofluidic systems provides unprecedented possibilities for the control of biology and chemistry at the molecular level with potential applications in low energy cost devices, novel medical tools, and a new generation of sensors. CNTs offer a number of attractive features for the fabrication of fluidic nanodevices including fast flow, useful electronic and thermal properties, high mechanical strength and biocompatibility. Therefore, the transport of liquids in CNTs is now of great interest in nanofluidics. Thermophoresis is the phenomenon observed when a mixture of two or more types of motile objects experience a force induced by a thermal gradient and the different types of objects respond to it differently, inducing a motion and segregation of the objects. Using molecular dynamics simulations, we explore the possibility to design thermophoretic pumping devices fabricated of CNTs for water transport in nanoconduits. The design of the nanopumps is based on the concept of the Feynman-Smoluchowski ratchet. We aknowledge partial support from Fondecyt project 11130559 and Redoc udec.

  17. Surface and grain boundary interdiffusion in nanometer-scale LSMO/BFO bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Virendra [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Gaur, Anurag, E-mail: anuragdph@gmail.com [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Choudhary, R.J.; Gupta, Mukul [UGC-DAE Consortium for Scientific Research, Indore 452 001 (India)

    2016-05-01

    Epitaxial 150 nm thick LSMO/BFO bilayer is deposited on STO (100) substrate by pulsed laser deposition, to study magnetoelectric effect. Unexpected low value of room temperature magnetization in bilayer indicates towards the possibility of interdiffusion. Further, sharp fall in the value of T{sub C} (53 K) also added our anxiety towards possible interdiffusion in BFO/LSMO system. Low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena, and the temperature-dependent interdiffusivity is obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. It has been found that the diffusivity at different temperatures follows Arrhenius-type behavior. X-ray reflection (XRR) pattern obtained for the bilayer could not be fitted in the Parratt’s formalism, which confirms the interdiffusion in it. Depth profiles of {sup 209}Bi, {sup 56}Fe ions measured by secondary ion mass spectroscope (SIMS) further substantiate the diffusion of these ions from upper BFO layer into lower LSMO layer. - Highlights: • The LSMO/BFO bilayer is deposited by PLD method. • Structural, magnetic and interfacial properties of deposited films were studied. • In this article, we have raised the problem of interdiffusion in this bilayer, which can hinder its application in devices. Therefore, we feel that our article presents important finding in the area of ceramics research.

  18. Myoglobin immobilization on electrodeposited nanometer-scale nickel oxide particles and direct voltammetry.

    Science.gov (United States)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Ahadi, Sara; Saboury, Ali Akbar

    2008-04-01

    Prosperity of information on the reactions of redox-active sites in proteins can be attained by voltammetric studies in which the protein sample is located on a suitable surface. This work reports the presentation of myoglobin/nickel oxide nanoparticles/glassy carbon (Mb/NiO NPs/GC) electrode, ready by electrochemical deposition of the NiO NPs on glassy carbon electrode and myoglobin immobilization on their surfaces by the potential cycling method. Images of electrodeposited NiO NPs on the surface of glassy carbon electrode were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A pair of well-defined redox peaks for Mb(Fe(III)-Fe(II)) was obtained at the prepared electrode by direct electron transfer between the protein and nanoparticles. Electrochemical parameters of immobilized myoglobin such as formal potential (E(0')), charge transfer coefficient (alpha) and apparent heterogeneous electron transfer rate constant (k(s)) were estimated by cyclic voltammetry and nonlinear regression analysis. Biocatalytic activity was exemplified at the prepared electrode for reduction of hydrogen peroxide.

  19. Some applications of nanometer scale structures for current and future X-ray space research

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S; Frederiksen, P K;

    1994-01-01

    Institute in collaboration with the FOM Institute for Plasma Physics, Nieuwegein, the Max-Planck-Institut für Extraterrestrische Physik, Aussenstelle Berlin, the Space Research Institute, Russian Academy of Sciences, the Smithsonian Astrophysical Observatory, Ovonics Synthetic Materials Company and Lawrence...... Livermore National Laboratory. These examples include : 1. the application of multilayered Si crystals for simultaneous spectroscopy in two energy bands one centred around the SK-emission near 2.45 keV and the other below the CK absorption edge at 0.284 keV; 2. the use of in-depth graded period multilayer...

  20. Detection of magnetic circular dichroism on the two-nanometer scale

    Science.gov (United States)

    Schattschneider, Peter; Stöger-Pollach, Michael; Rubino, Stefano; Sperl, Matthias; Hurm, Christian; Zweck, Josef; Rusz, Ján

    2008-09-01

    Magnetic circular dichroism (MCD) is a standard technique for the study of magnetic properties of materials in synchrotron beamlines. We present here a scattering geometry in the transmission electron microscope through which MCD can be observed with unprecedented spatial resolution. A convergent electron beam is used to scan a cross sectional preparation of a Fe/Au multilayer sample. Differences in the energy-loss spectra induced by the magnetic moments of the Fe atoms can be resolved with a resolution of better than 2 nm. This is a breakthrough achievement when compared both to the previous energy-loss MCD resolution (200 nm) or the best x-ray MCD experiments (approximately 20 nm).

  1. Computer animation of electron motion in nano-meter scale devices

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel

    1996-01-01

    A discussion is given of a technique to simulate the quantum mechanical motion of electrons in nano-scale devices. The results of the simulation are used to produce digital video's, facilitating the interpretation of the quantum mechanical phenomena. The power and flexibility of the simulation metho

  2. Measurement of replication structures at the nanometer scale using super-resolution light microscopy.

    Science.gov (United States)

    Baddeley, D; Chagin, V O; Schermelleh, L; Martin, S; Pombo, A; Carlton, P M; Gahl, A; Domaing, P; Birk, U; Leonhardt, H; Cremer, C; Cardoso, M C

    2010-01-01

    DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses.

  3. High-Speed AFM Reveals the Dynamics of Single Biomolecules at the Nanometer Scale

    NARCIS (Netherlands)

    Katan, A.J.; Dekker, C.

    2011-01-01

    Atomic force microscopy allows visualization of biomolecules with nanometer resolution under physiological conditions. Recent advances have improved the time resolution of the technique from minutes to tens of milliseconds, meaning that it is now possible to watch single biomolecules in action in re

  4. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Bertassoni, Luiz E; Orgel, Joseph P.R.; Antipova, Olga; Swain, Michael V [IIT; (Sydney)

    2012-07-25

    The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate.

  5. The dentin organic matrix – limitations of restorative dentistry hidden on the nanometer scale

    Science.gov (United States)

    Bertassoni, Luiz E.; Orgel, Joseph P.R.; Antipova, Olga; Swain, Michael V.

    2012-01-01

    The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate. PMID:22414619

  6. Experimental studies of fundamental issues in electron transfer through nanometer scale devices

    Science.gov (United States)

    Yamamoto, Hiromichi

    Electron transfer reactions constitute many of the primary events in materials science, chemistry, physics, and biochemistry, e.g. the electron transport properties and photoexcited processes in solids and molecules, chemical reactions, corrosion, photosynthesis, respiration, and so forth. A self-assembled monolayer (SAM) film provides us with a unique environment not only to understand and manipulate the surface electronic properties of a solid, but also to control electron transfer processes at the interface. The first topic in this thesis describes the structure and electron tunneling characterization of alkanethiol SAMs on InP(100). Angle-resolved X-ray photoelectron spectroscopy was used to characterize the bonding of alkanethiols to n-InP surfaces and to measure the monolayer thickness. The results showed that the sulfur binds to In atoms on the surface, and provided film thicknesses of 6.4 A for C8H17SH, 11.1 A for C12H25SH, and 14.9 A for C16H 33SH, resulting in an average tilt angle of 55°. The analysis indicated that super-exchange coupling between the alkane chains plays an important role in defining electron tunneling barriers, especially for highly tilted chains. The second topic describes studies of cytochrome c bound to pure and mixed SAMs of o-terminated alkanethiol (terminated with pyridine, imidazole or nitrile groups) and alkanethiol on gold. Electrochemical methods are used to determine electron transfer rate constants of cytochrome c, and scanning tunneling microscopy to observe the cytochrome c on the SAM. Detailed analysis revealed direct association of the heme of cytochrome c with the terminal groups of the SAMs and a 'turning-over' of the electron transfer of cytochrome c from adiabatic to non-adiabatic regime. The third topic describes studies of oxidation and reduction of cytochrome c in solution through eleven different self-assembled monolayers (SAMs) on gold electrodes by cyclic voltammetry. Electron transfer rate constants of cytochrome c through the eleven SAMs ranged from ≤10-4 to ˜10-1 cm/sec. A strong correlation between the electron transfer rate constants and the hydrogen bonding ability of the SAM is identified. This correlation is discussed in terms of the dependence of the rate constant on the outer-sphere reorganization energy and the electronic coupling between the cytochrome and the differently terminated monolayer films.

  7. Characterization of freeze-fractured epithelial plasma membranes on nanometer scale with ToF-SIMS.

    Science.gov (United States)

    Draude, Felix; Körsgen, Martin; Pelster, Andreas; Schwerdtle, Tanja; Müthing, Johannes; Arlinghaus, Heinrich F

    2015-03-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to characterize the freeze-fracturing process of human epithelial PANC-1 and UROtsa cells. For this purpose, phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, and phosphatidylserine standard samples were investigated to find specific signals with both high specificity and signal intensity. The results were used to investigate single cells of subconfluent cell layers prepared with a special silicon wafer sandwich preparation technique. This freeze-fracturing technique strips cell membranes off the cells, isolating them on opposing silicon wafer substrates. Criteria were found for defining regions with stripped off cell membranes and, on the opposing wafer, complementary regions with the remaining cells. Measured ethanolamine/choline and serine/choline ratios in these regions clearly showed that in the freeze-fracturing process, the lipid bilayer of the plasma membrane is split along its central zone. Accordingly, only the outer lipid monolayer is stripped off the cell, while the inner lipid monolayer remains attached to the cell on the opposing wafer, thus allowing detailed analysis of a single lipid monolayer. Furthermore, it could be shown that using different washing procedures did not influence the transmembrane lipid distribution. Under optimized preparation conditions, it became feasible to detect lipids with a lateral resolution of approximately 100 nm. The data indicate that ToF-SIMS would be a very useful technique to study with very high lateral resolution changes in lipid composition caused, for example, by lipid storage diseases or pharmaceuticals that interfere with the lipid metabolism.

  8. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong covalen

  9. Analysis of nanometer-scale precipitation in a rapidly solidified stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wisutmethangoon, S.; Kelly, T.F.; Camus, P.P.; Flinn, J.E. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering; Larson, D.J.; Miller, M.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-03-21

    The authors have rapid-solidification-processed many stainless steels by gas atomization and achieved strength improvements of over 50% relative to conventionally-processed stainless steels with concomitant improvement in corrosion and oxidation behavior. These strength improvements are most pronounced after aging treatments when elevated concentrations of oxygen and vanadium are present in the stainless steel. An austenitic (FCC) stainless steel was prepared by gas atomization and consolidated by hot extrusion at 900 C. These specimens were heat treated for 1 hour at 1,000 C and aged at 600 C for 500 hours. The microstructure of each alloy composition was observed in TEM with bright field imaging. After aging, most alloys showed the same precipitate morphology as before aging. An obvious change, however, was found only in the alloy with highest oxygen content. A high number density of 15 to 20 nm diameter precipitates was measured in this alloy. Moreover, with weak-beam dark field imaging, a very high number density of coherent, 6 to 10 nm diameter precipitates is observed throughout the matrix by Moire fringe contrast. An atom probe field ion microscopy (APFIM) investigation showed that FIM provides high contrast imaging the precipitates. In order to get a more global view of the structure, energy-filtered composition imaging on a LEO EM 912 was used to map the oxygen and nitrogen in carbon extraction replicas of the aged specimens. These images confirm that the 18 nm precipitates are oxides, however, it appears that the 8 nm precipitates are not extracted.

  10. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Directory of Open Access Journals (Sweden)

    Hidehiro Kamiya and Motoyuki Iijima

    2010-01-01

    Full Text Available Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM. Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  11. High-Speed AFM Reveals the Dynamics of Single Biomolecules at the Nanometer Scale

    NARCIS (Netherlands)

    Katan, A.J.; Dekker, C.

    2011-01-01

    Atomic force microscopy allows visualization of biomolecules with nanometer resolution under physiological conditions. Recent advances have improved the time resolution of the technique from minutes to tens of milliseconds, meaning that it is now possible to watch single biomolecules in action in re

  12. Nanometer scale period sinusoidal atom gratings produced by a Stern-Gerlach beam splitter

    CERN Document Server

    Dubetsky, B

    2002-01-01

    An atom interferometer based on a Stern-Gerlach beam splitter is proposed. Atom scattering from a combination of magnetic quadrupole and homogeneous magnetic fields is considered. Using Raman transitions, atoms are coherently excited into and de-excited from sublevels having nonzero magnetic quantum numbers. The spatial regions in which the atoms are in such sublevels are small and have magnetic fields designed to have constant gradients. Therefore, the atoms experience position-independent accelerations, and the aberration of the coherently separated and recombined atomic beams remains small. We find that because of these properties it is possible to envision an apparatus producing atomic density gratings with nm-scale periods and large contrasts over 10-100 $\\mu $m. We use a new method of describing the atomic interaction with a pulsed spatially homogeneous field. In our detailed analysis, we calculate corrections caused by the non-linear part of the potential and the finite value of the de-Broglie wave len...

  13. Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation.

    Science.gov (United States)

    Vicidomini, Giuseppe; Hernández, Ivan Coto; d'Amora, Marta; Zanacchi, Francesca Cella; Bianchini, Paolo; Diaspro, Alberto

    2014-03-15

    Stimulation emission depletion (STED) microscopy breaks the spatial resolution limit of conventional light microscopy while retaining its major advantages, such as working under physiological conditions. These properties make STED microscopy a perfect tool for investigating dynamic sub-cellular processes in living organisms. However, up to now, the massive dissemination of STED microscopy has been hindered by the complexity and cost of its implementation. Gated CW-STED (gCW-STED) substantially helps solve this problem without sacrificing spatial resolution. Here, we describe a versatile gCW-STED microscope able to speedily image the specimen, at a resolution below 50 nm, with light intensities comparable to the more complicated all-pulsed STED system. We show this ability on calibration samples as well as on biological samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Nonimaging speckle interferometry for high-speed nanometer-scale position detection

    NARCIS (Netherlands)

    van Putten, E.G.; Lagendijk, Aart; Mosk, Allard

    2012-01-01

    We experimentally demonstrate a nonimaging approach to displacement measurement for complex scattering materials. By spatially controlling the wavefront of the light that incidents on the material, we concentrate the scattered light in a focus on a designated position. This wavefront acts as a

  15. Nonimaging speckle interferometry for high-speed nanometer-scale position detection.

    Science.gov (United States)

    van Putten, E G; Lagendijk, A; Mosk, A P

    2012-03-15

    We experimentally demonstrate a nonimaging approach to displacement measurement for complex scattering materials. By spatially controlling the wavefront of the light that incidents on the material, we concentrate the scattered light in a focus on a designated position. This wavefront acts as a unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two fingerprints we demonstrate position detection along one in-plane dimension with a displacement resolution of 2.1 nm. As our approach does not require an image of the scattered field, it is possible to employ fast nonimaging detectors to enable high-speed position detection of scattering materials.

  16. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    Science.gov (United States)

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  17. Ballistic-Electron-Emission Microscopy Techniques for Nanometer-scale Characterization of Interfaces

    Science.gov (United States)

    Bell, L. D.; Grunthaner, F. J.; Hecht, M. H.; Manion, S. J.; Milliken, A. M.; Kaiser, W. J.

    1993-01-01

    Semiconductor interface properties are among the most important phenomena in materials science and technology. The study of metal/semiconductor Schottky barrier interfaces has been the primary focus of a large research and development community for decades. Throughout the long history of interface investigation, the study of interface defect electronic properties have been seriously hindered by the fundamental experimental difficulty of probing subsurface structures. A new method, Ballistic-Electron-Emission Microscopy (BEEM), has been developed which not only enables spectroscopic probing of subsurface interface properties, but also, provides nanometer-resolution imaging capabilities. BEEM employs Scanning Tunneling Microscopy (STM) and a unique spatially localized ballistic electron spectroscopy method...

  18. Note: fast and reliable fracture strain extraction technique applied to silicon at nanometer scale.

    Science.gov (United States)

    Passi, Vikram; Bhaskar, Umesh; Pardoen, Thomas; Sodervall, Ulf; Nilsson, Bengt; Petersson, Goran; Hagberg, Mats; Raskin, Jean-Pierre

    2011-11-01

    Simple fabrication process and extraction procedure to determine the fracture strain of monocrystalline silicon are demonstrated. Nanowires/nanoribbons in silicon are fabricated and subjected to uniaxial tensile stress along the complete length of the beams. Large strains up to 5% are measured for nanowires presenting a cross section of 50 nm × 50 nm and a length of 2.5 μm. An increase in fracture strain for silicon nanowires (NWs) with the downscaling of their volume is observed, highlighting the reduction of the defects probability as volume is decreased.

  19. Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry.

    Science.gov (United States)

    Klingner, N; Heller, R; Hlawacek, G; von Borany, J; Notte, J; Huang, J; Facsko, S

    2016-03-01

    Time of flight backscattering spectrometry (ToF-BS) was successfully implemented in a helium ion microscope (HIM). Its integration introduces the ability to perform laterally resolved elemental analysis as well as elemental depth profiling on the nm scale. A lateral resolution of ≤54nm and a time resolution of Δt≤17ns(Δt/t≤5.4%) are achieved. By using the energy of the backscattered particles for contrast generation, we introduce a new imaging method to the HIM allowing direct elemental mapping as well as local spectrometry. In addition laterally resolved time of flight secondary ion mass spectrometry (ToF-SIMS) can be performed with the same setup. Time of flight is implemented by pulsing the primary ion beam. This is achieved in a cost effective and minimal invasive way that does not influence the high resolution capabilities of the microscope when operating in standard secondary electron (SE) imaging mode. This technique can thus be easily adapted to existing devices. The particular implementation of ToF-BS and ToF-SIMS techniques are described, results are presented and advantages, difficulties and limitations of this new techniques are discussed.

  20. Young's Equation for a Two-Liquid System on the Nanometer Scale.

    Science.gov (United States)

    Fernandez-Toledano, J-C; Blake, T D; De Coninck, J

    2017-03-21

    We use large-scale molecular dynamics simulations to study the Lennard-Jones forces acting at the various interfaces of a liquid bridge (liquid 1) between two realistic solid plates on the scale of few nanometers when the two free surfaces are in contact with a second immiscible liquid (liquid 2) with an interfacial tension of γ12. Each plate comprises a regular square planar lattice of atoms arranged in three atomic layers. To maintain rigidity while allowing momentum exchange with the liquid, solid atoms are allowed to vibrate thermally around their initial positions by a strong harmonic potential. By varying the solid-liquid coupling, we investigate a range of nonzero contact angles between the liquid-liquid interface and the solid. We first compute the forces when the plates are stationary (equilibrium case), from the perspectives of both the liquid and the solid. Our results confirm that the normal and tangential components of the computed interfacial forces at each contact line are consistent with Young's equation on this small scale. In particular, we show that the tangential force exerted by the liquid-liquid interface on the plates is given by the difference in the individual works of adhesion of the two liquids and equal to γ12 cos θ1,2(0), where θ1,2(0) is the equilibrium contact angle measured through liquid 1. This result, which differs from that expected for a single liquid, is relevant to the interactions and behavior of two liquid-solid systems in nanotechnology. We then study the forces when the plates are translated at equal speeds in opposite directions over a range of steady velocities (dynamic case) and repeat the measurements of the force exerted by the liquid-liquid interface on the solid. We find that the normal and tangential components of this force are still correctly predicted by the normal and tangential components of the interfacial tension, provided only that the equilibrium contact angle is replaced by its dynamic analogue θ1,2(D). Usually assumed without proof, this result is significant for our proper understanding of dynamic wetting at all scales.

  1. The dentin organic matrix – limitations of restorative dentistry hidden on the nanometer scale

    OpenAIRE

    2012-01-01

    The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for curren...

  2. Nanometer-scale optical imaging of collagen fibers using gold nanoparticles.

    Science.gov (United States)

    Chen, Bo; Estrada, Laura C; Hellriegel, Christian; Gratton, Enrico

    2011-02-07

    We describe 3D single particle tracking of gold nanoparticles (AuNPs) moving along collagen fibers in aqueous environment with two-photon excitation conditions. The photoacoustic effect at the collagen fiber caused by the irradiation with ultrashort, near-infrared laser pulses propels the particles adsorbed to the surface of the collagen fibers. We report the tracking of individual AuNPs in three dimensions with high spatial and temporal resolution, of few nanometers and milliseconds, respectively. Due to the emission signal caused by the interaction between the AuNPs and the weak chromophores in the collagen fiber, the trajectories of individual AuNPs reveal the fiber topography with nanometric resolution. The intensity along the trajectory shows that we are sensitive to the distribution of the weak chromophores on the fiber.

  3. Fracture of perfect and defective graphene at the nanometer scale: Is graphene the strongest material?

    Science.gov (United States)

    Hess, Peter

    2016-09-01

    The basic relationships between the linear elastic and nonlinear fracture properties given by a local bond-breaking model and Griffith's criterion are used to characterize the two-dimensional (2D) mechanical properties of an intrinsic and a defective graphene, respectively. The analytical 2D models describe the localized bond-breaking in perfect monolayers and the failure of defective graphene by the global energy balance concept. From the experimental data, density functional theory calculations, molecular dynamics simulations, and continuum 2D models, a consistent set of 2D mechanical properties consisting of Young's modulus, fracture strength, fracture toughness, line (edge) energy, and critical strain energy release rate can be obtained. The critical fracture stress shows a linear dependence on the square root of the effective defect length from the subnanometer to the micrometer scale. The lower limit of fracture toughness and strain energy release rate is essentially independent of the defect size for vacancies, slits, and pre-cracks in the nanometer range. In the subnanometer range, the direct bond breaking and Griffith models deliver a consistent description of mode I fracture by a uniaxial tension. The promising results suggest an extension of the continuum models to other fracture modes such as the failure by shear load.

  4. New Computing Devices and the Drive toward Nanometer-scale Manufacturing

    Science.gov (United States)

    Theis, Thomas

    2013-03-01

    In recent decades, we have become used to the idea of exponentially compounding improvements in manufacturing precision. These improvements are driven in large part by the economic imperative to continuously shrink the devices of information technology, particularly the Complementary Metal Oxide Semiconductor (CMOS) field-effect transistor. However, CMOS technology is clearly approaching some important physical limits. Since roughly 2003, the inability to reduce supply voltages according to constant-field scaling rules, combined with economic constraints on areal power density and total power, has forced designers to limit clock frequencies even as devices have continued to shrink. New channel materials, new device structures, and novel circuits cannot fundamentally alter this new status quo. The device physics must change in a more fundamental way if we are to realize fast digital logic with very low power dissipation. The continued vitality of the information technology revolution and the continued push of manufacturing precision toward nanometer dimensions, will depend on it. Fortunately, there is no shortage of new digital switch concepts based on physical principles which avoid the fundamental voltage-scaling limit of the field-effect transistor. The Nanoelectronics Research Initiative (NRI) is a consortium of leading semiconductor companies established in 2005 to guide and fund fundamental research at U.S. universities with the goal of finding the ``next switch'' to replace the CMOS transistor for storing and manipulating digital information. The National Institute of Standards and Technology (NIST) and the National Science Foundation (NSF) have partnered with NRI to fund this research. To date, NRI has funded the exploration of many novel device concepts, and has guided research comparing the capabilities of these devices. Although no single device has yet emerged as a clear winner with the potential to eclipse the field-effect transistor, results are sufficiently promising that member companies have recently renewed their commitment to NRI. Based on the learning to date, a vision for the next five years of research has emerged.

  5. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    OpenAIRE

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-01-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two...

  6. Liquid-liquid phase separation in aerosol particles: imaging at the nanometer scale.

    Science.gov (United States)

    O'Brien, Rachel E; Wang, Bingbing; Kelly, Stephen T; Lundt, Nils; You, Yuan; Bertram, Allan K; Leone, Stephen R; Laskin, Alexander; Gilles, Mary K

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission X-ray microscopy (STXM) to investigate the LLPS of micrometer-sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), α, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH's above the deliquescence point and that the majority of the organic component was located in the outer phase. The outer phase composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 70:30% organic to inorganic mix in the outer phase. These two chemical imaging techniques are well suited for in situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  7. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  8. Characterization of Class F Fly Ash Using STXM: Identifying Intraparticle Heterogeneity at Nanometer Scale

    OpenAIRE

    Ha, J.; S. Chae; Chou, K.W.; Tyliszczak, T.; P.J.M. Monteiro

    2016-01-01

    Chemical and physical characterization of fly ash particles were conducted using scanning transmission X-ray microscopy (STXM). Compositional and spatial investigation and correlation among the main elemental constituents of fly ash (Al, Si, and Fe) were conducted based on microscopic and NEXAFS spectral analysis. Homogeneous oxidation and coordination state of Al and Fe were observed whereas Si shows spatial variation in its chemical state. We also identified that Si and Al are spatially cor...

  9. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Hidehiro; Iijima, Motoyuki, E-mail: kamiya@cc.tuat.ac.j [Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2010-08-15

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids. (topical review)

  10. Fault rock texture and porosity type in Triassic dolostones

    Science.gov (United States)

    Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo

    2015-04-01

    Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique

  11. Plasma sintering of unalloyed iron: a study of surface porosity

    Directory of Open Access Journals (Sweden)

    Lourenço Jorge Magner

    2004-01-01

    Full Text Available Samples of unalloyed iron powder were compacted and sintered in an abnormal glow discharge, generated in a gas mixture of 80% Ar + 20% H2 by using a pulsed power source. The samples were placed on a holder, acting as the discharge cathode, and were heated by the bombardment of ions, strongly accelerated in the cathode sheath. Sintering was performed at temperatures of 1173, 1273 and 1373 K for 30 min, varying the voltage applied to the cathode from 400 to 700 V and pressure ranging from 470 to 2650 Pa. It is shown that the kinetic energy of ions striking the sample surface increased approximately three times, when the voltage changed from 400 to 700 V, with a corresponding reduction of surface porosity. The surface sealing is related to the ion bombardment, which produced a high mobility of surface atoms and consequent enhanced diffusion as well as sputtering and condensation on the concave surface, resulting in an activation of surface sintering.

  12. FORMULATION AND EVALUATION OF CONTROLLED POROSITY OSMOTIC TABLETS OF LORNOXICAM

    Directory of Open Access Journals (Sweden)

    A. Uma Maheswari*, K. Elango, Daisy Chellakumari, K. Saravanan and Anglina Jeniffer Samy

    2012-06-01

    Full Text Available The aim of the present study is to formulate and evaluate controlled release formulation of lornoxicam based on osmotic technology. Lornoxicam, a potent non-steroidal anti-inflammatory drug (NSAID with shorter half life, makes the development of sustained release (SR dosage forms extremely advantageous. However, due to its weak acidic nature, its release from SR delivery system is limited to the lower GIT which consequently leads to a delayed onset of its analgesic action. Basic pH modifier tromethamine and wicking agent SLS were incorporated into the core tablet to create basic environmental pH inside the tablets, which provide complete drug release that starts in the stomach to rapidly alleviate the painful symptoms and continue in the intestine to maintain protracted analgesic effect. The effect of different formulation variables namely level of osmogen (mannitol in the core tablet and level of pore former (sorbitol in the coating membrane on in-vitro release was studied. Lornoxicam release from controlled porosity osmotic pump was directly proportional to the pore former (sorbitol and level of osmogen (mannitol. Drug release from the developed formulations was independent of pH and agitational intensity and was dependent on osmotic pressure of the release media. Results of SEM studies showed the formation of pores in the membrane from where the drug release occurred. The optimized formulation was found to release the drug in zero order and found to be stable upon stability studies.

  13. Manufacturing Microporous Foam Zinc Materials with High Porosity By Electrodeposition

    Institute of Scientific and Technical Information of China (English)

    TIAN QinGhua; GUO Xueyi

    2011-01-01

    In order to get foam zinc materials of porous metal electrode,a novel method for preparing foam zinc was proposed,in which the polyurethane foam with diameter of 0.3 mm as substrate was processed by degreasing,roughening,activating,electroless plating and electrodeposition.The main factors affecting the process,such as ZnSO4 content,temperature,pH value,current density,and electrodes distance,were investigated comprehensively.The optimal process conditions are 250 g/L ZnSO4,20 g/L Al2(SO4)3,40 g/L KAl(SO4)2,30 g/L Na2SO4,pH=3.5,4.0 cm of electrodes distance and 0.04 A/cm2 current density at 30 ℃.The result shows that adding ultrasonic on the process can elevate the deepening plating ability and current efficiency.Foam zinc material with a high porosity of 92.2% and a three-dimensional network structure can be fabricated by electrodeposition.

  14. Analysis of Porosity Effects on Unsteady Stretching Permeable Sheet

    Directory of Open Access Journals (Sweden)

    Phool SINGH

    2014-07-01

    Full Text Available The aim of this paper is to analyze two-dimensional unsteady flow of a viscous incompressible fluid about a stagnation point on a permeable stretching sheet in presence of a time dependent free stream velocity. Fluid is considered in the porous media with radiation effect. The Rosseland approximation is used to model the radiative heat transfer. Using a time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. The numerical solutions of these equations are obtained by using the Runge-Kutta Fehlberg method with the help of shooting technique. In the present work, the effect of porosity parameter, radiation parameter and suction parameter on flow and heat transfer characteristics are discussed. The skin-friction coefficient and the Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.doi:10.14456/WJST.2014.13

  15. FORMULATION AND EVALUATION OF BACLOFEN CONTROLLED POROSITY OSMOTIC PUMP TABLETS

    Directory of Open Access Journals (Sweden)

    Indarapu Rajendra Prasad

    2013-06-01

    Full Text Available In the present study, attempts were made to develop and evaluate the controlled porosity osmotic pump (CPOP based drug delivery system of sparingly water soluble drug Baclofen. Formulation variables, such as, levels of solubility enhancer, ratio of drug to osmogents, coat thickness of semi permeable membrane (SPM and level of pore former were found to affect the drug release from the developed formulations. Cellulose acetate was used as the semi permeable membrane. Drug release was directly proportional to the level of the solubility enhancer, osmotic pressure generated by osmotic agent and level of pore former; however, was inversely proportional to the coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensities of release media. Burst strength of the exhausted shells decreased with increase in the level of pore former. This system was found to deliver Baclofen at a zero-order rate. The optimized formulations were subjected to stability studies as per ICH guidelines, and formulations were found to be stable after 45days study.

  16. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    Science.gov (United States)

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  17. Olive Crown Porosity Measurement Based on Radiation Transmittance: An Assessment of Pruning Effect

    Science.gov (United States)

    Castillo-Ruiz, Francisco J.; Castro-Garcia, Sergio; Blanco-Roldan, Gregorio L.; Sola-Guirado, Rafael R.; Gil-Ribes, Jesus A.

    2016-01-01

    Crown porosity influences radiation interception, air movement through the fruit orchard, spray penetration, and harvesting operation in fruit crops. The aim of the present study was to develop an accurate and reliable methodology based on transmitted radiation measurements to assess the porosity of traditional olive trees under different pruning treatments. Transmitted radiation was employed as an indirect method to measure crown porosity in two olive orchards of the Picual and Hojiblanca cultivars. Additionally, three different pruning treatments were considered to determine if the pruning system influences crown porosity. This study evaluated the accuracy and repeatability of four algorithms in measuring crown porosity under different solar zenith angles. From a 14° to 30° solar zenith angle, the selected algorithm produced an absolute error of less than 5% and a repeatability higher than 0.9. The described method and selected algorithm proved satisfactory in field results, making it possible to measure crown porosity at different solar zenith angles. However, pruning fresh weight did not show any relationship with crown porosity due to the great differences between removed branches. A robust and accurate algorithm was selected for crown porosity measurements in traditional olive trees, making it possible to discern between different pruning treatments. PMID:27213391

  18. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  19. Effective Stress-Porosity Relationship above and Within the Oil Window in the North Sea Basin

    Directory of Open Access Journals (Sweden)

    Kenneth S. Okiongbo

    2011-01-01

    Full Text Available This study investigates the effective stress - porosity relationship above and within the oil window in the Kimmeridge Clay Formation (KCF in the North Sea Basin (UK using effective stress and porosity determined from wireline logs and pore pressure data. Porosity was determined from an empirical porosity - sonic transit - time transform, calibrated using shale and mudstone core porosity measurements from Jurassic shales in the North Sea. Effective stress was determined from the total overburden stress and pore pressure. The total overburden stress was calculated by integration of the density log. The results show that porosity range between ~11-20% in the pre-generation zone but decreased to <5% within the oil window. Compaction coefficient ($ values above the oil window vary from ~0.08-0.09 M/Pa, but vary from ~0.05-0.06 M/Pa within the oil window implying that deeper burial and a high degree of chemical precipitation and cementation has created a stiff matrix giving rise to low $ values. The effective stress-porosity relationship above and within the oil window reflects a possible decrease in effective stress occasioned by increase in porosity in the pregeneration zone.

  20. To develop a quantitative method for predicting shrinkage porosity in squeeze casting

    Institute of Scientific and Technical Information of China (English)

    Shaomin Li; Kenichiro Mine; Shinji Sanakanishi; Koichi Anzai

    2009-01-01

    In order to secure high strength and high elongation of suspension parts, it is critical to predict shrinkage porosity quantitatively. A new simulation method for quantitative predic'don of shrinkage porosity when replenishing molten metal has been proposed for squeeze casting process. To examine the accuracy of the calculation model, the proposed method was applied to a plate model.

  1. Effect of Inter Yarn Fabric Porosity on Dye Uptake of Reactive Dyed cotton Woven Fabric

    Directory of Open Access Journals (Sweden)

    Salam Farooq

    2015-07-01

    Full Text Available Fabric Porosity is an important property in determining the functional properties of a fabric. It relates to the count of a yarn as well as to the type of weave. Twill and satin cotton woven fabrics in three different weft densities (warp density kept constant were used to investigate the effect of porosity on the dyeuptake within one weave. The effects of change in weave type, keeping yarn densities the same, on the porosity were also investigated. Objective determination of porosity was carried out using an image analysis technique while, colour yield was determined using K/S values. Higher the weft density in a satin fabric low will be the porosity of that fabric. Porosity values varied from 6.85-10.98% for S1 and S3 respectively. However, for the twill fabric no substantial change in porosity have been observed as the porosity values varied from 6.4-5.3% for T1 and T3 respectively. Colour strengths for S1 and T1 are lower than S3 and T3 respectively for all the primary colours at 0.25, 1.00 and 2.00% depth levels. It is observed that the change in colour strength is more prominent at 2% depth level as compared to 0.25% depth level

  2. Calculated Porosity of Volcanic Reservoir in Wangjiatun of the Northern Songliao Basin, NE China

    Institute of Scientific and Technical Information of China (English)

    Xuanlong Shan; Chuanbiao Wa; Rihui Cheng; Wanzhu Liu

    2003-01-01

    In Wangjiatun area of the Northern Songliao Basin, reservoir space can be divided into three types: primary pore, secondary pore and fissure according to their origins,which can be subdivided into eight subtypes: macro-vesicule,shrank primary vesicule, alteration pore, groundmass corrosive pore, normal structural crack, corrosive structural crack,filled structural crack and groundmass shrank crack according to texture and origin of the pore space. It has characteristic of double pore medium. Volcanic porosities of small diameter samples (with diameter of ca. 2.5 cm) and large diameter samples (with diameter of ca. 21.5 cm) were tested in accordance with the characteristic of volcanic reservoir space. Volcanic porosities for small diameter samples correspond with matrix porosities and those of large diameter samples correspond with total porosities including matrix and fractured porosities. Models of the calculated porosity by acoustic wave or density of volcanic reservoir are established in view of those measured data. Comparison of calculated and measuredporosities shows that precision of calculated porosities is lower for rhyolite and tuffites, and higher for basaltand andesite.Relative errors of calculated porosities by model of large diameter samples are lower than those of small diameter samples, i. e. precision of the former is higher than that of the later.

  3. Porosity testing methods for the quality assessment of selective laser melted parts

    NARCIS (Netherlands)

    Wits, W.W.; Carmignato, S.; Zanini, F.; Vaneker, T.H.J.

    2016-01-01

    This study focuses on the comparison of porosity testing methods for the quality assessment of selective laser melted parts. Porosity is regarded as important quality indicator in metal additive manufacturing. Various destructive and non-destructive testing methods are compared, ranging from global

  4. ROLE OF POROSITY LOSS IN LIMITING SO2 CAPTURE BY CALCIUM BASED SORBENTS

    Science.gov (United States)

    The extent of high temperature (900-1,300°C), short time (capture was found to be limited by temperature-dependent losses in the porosity of calcium based sorbents. At 970°C these porosity losses were caused by CO2-activated sintering. Sulfation of the sorbents either p...

  5. Olive Crown Porosity Measurement Based on Radiation Transmittance: An Assessment of Pruning Effect

    Directory of Open Access Journals (Sweden)

    Francisco J. Castillo-Ruiz

    2016-05-01

    Full Text Available Crown porosity influences radiation interception, air movement through the fruit orchard, spray penetration, and harvesting operation in fruit crops. The aim of the present study was to develop an accurate and reliable methodology based on transmitted radiation measurements to assess the porosity of traditional olive trees under different pruning treatments. Transmitted radiation was employed as an indirect method to measure crown porosity in two olive orchards of the Picual and Hojiblanca cultivars. Additionally, three different pruning treatments were considered to determine if the pruning system influences crown porosity. This study evaluated the accuracy and repeatability of four algorithms in measuring crown porosity under different solar zenith angles. From a 14° to 30° solar zenith angle, the selected algorithm produced an absolute error of less than 5% and a repeatability higher than 0.9. The described method and selected algorithm proved satisfactory in field results, making it possible to measure crown porosity at different solar zenith angles. However, pruning fresh weight did not show any relationship with crown porosity due to the great differences between removed branches. A robust and accurate algorithm was selected for crown porosity measurements in traditional olive trees, making it possible to discern between different pruning treatments.

  6. Why would cement porosity reduction be clinically irrelevant, while experimental data show the contrary.

    NARCIS (Netherlands)

    Janssen, D.; Stolk, J.; Verdonschot, N.J.J.

    2005-01-01

    Laboratory bench tests have shown that porosity reduction increases the fatigue life of bone cement specimens. Clinically, however, the effect porosity reduction is subject to debate. We hypothesized that the discrepancy between clinical and experimental findings is related to differences in the str

  7. Synthesis of cubic Ia-3d mesoporous silica in anionic surfactant templating system with the aid of acetate.

    Science.gov (United States)

    Deng, Shao-Xin; Xu, Xue-Yan; He, Wen-Chao; Wang, Jin-Gui; Chen, Tie-Hong

    2014-08-01

    Mesoporous silica with three-dimensional (3D) bicontinuous cubic Ia-3d structure and fascinating caterpillar-like morphology was synthesized by using anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as the template and 3-amionpropyltrimethoxysilane (APS) as the co-structure-directing agent (CSDA) with the aid of acetate. A phase transformation from high interfacial curvature 2D hexagonal to low interfacial curvature 3D cubic Ia-3d occurred in the presence of a proper amount of acetate. Other species of salts (excluding acetate) had the ability to induce the caterpillar-like morphology, but failed to induce the cubic Ia-3d mesostructure. Furthermore, [3-(2-aminoethyl)-aminopropyl]trimethoxysilane (DAPS) was also used as the CSDA to synthesize Ia-3d mesostructured silica under the aid of sodium acetate. After extraction of the anionic surfactants, amino and di-amine functionalized 3D bicontinuous cubic Ia-3d mesoporous silicas were obtained and used as supports to immobilize Pd nanoparticles for supported catalysts. The catalytic activity of the catalysts was tested by catalytic hydrogenation of allyl alcohol.

  8. A study of freezing-melting hysteresis of water in different porous materials. Part II: surfactant-templated silicas.

    Science.gov (United States)

    Petrov, Oleg; Furó, István

    2011-09-28

    The freezing-melting hysteresis of water in mesoporous silicas MCM-48, MCM-41 and SBA-16 has been studied by NMR cryoporometry. The hysteresis in MCM-48 was found to exhibit nearly parallel branches, matching type H1 hysteresis that had been observed earlier in controlled pore glass. The same type of hysteresis is observed in two of three different-sized MCM-41 under study (a pore diameter of 3.6 and 3 nm), superimposed with a secondary, extremely broad, type H3 hysteresis. No hysteresis was found in the smallest MCM-41 with a pore diameter hysteresis with the freezing branch being essentially steeper than the melting one, which is attributed to a pore blockage upon freezing, similar to what we observed earlier in Vycor porous glass. The data were analyzed using the model of curvature-dependent metastability of a solid phase upon melting; the validity of this model has been discussed.

  9. Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route.

    Science.gov (United States)

    Wang, Yude; Ma, Chunlai; Sun, Xiaodan; Li, Hengde

    2005-06-15

    Ordered hexagonal and cubic mesoporous tin oxides were synthesized for the first time in the presence of mixed cationic and neutral surfactants (a mixture of cetyltrimethylammonium bromide cationic surfactant and dodecylamine neutral surfactant) with different alkali and simple inorganic precursors at room temperature. In the synthesis systems, the dodecylamine neutral surfactant may function as a polar organic cosolvent and cosurfactant. The formation of the tin oxide mesostructured material was proposed to be due to the presence of hydrogen-bonding interactions between the supramolecular template and inorganic precursors Sn4+ and OH-, which were assumed to self-assemble around the cationic surfactant molecules. The materials are characterized by X-ray powder diffraction, transmission electron microscopy, thermogravimetric analysis, and N2 adsorption/desorption isotherm. The surface areas of materials evaluated from the N2 sorption isotherms are about 248 m(2)/g for hexagonal mesoporous tin oxide (SnH) and 281 m(2)/g for cubic mesoporous tin oxide (Sn-C) for calcination at 350 degrees C.

  10. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  11. An atomistic modelling of the porosity impact on UO{sub 2} matrix macroscopic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jelea, A., E-mail: andrei.jelea@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), DPAM, SEMCA, LEC, Cadarache (France); Centre Interdisciplinaire des Nanosciences de Marseille, CNRS, Campus de Luminy, Marseille 13288 (France); Institute of Physical Chemistry Ilie Murgulescu, Romanian Academy, 202 Spl Independentei St., 060021 Bucharest-12 (Romania); Colbert, M. [Institut de Radioprotection et de Surete Nucleaire (IRSN), DPAM, SEMCA, LEC, Cadarache (France); Centre Interdisciplinaire des Nanosciences de Marseille, CNRS, Campus de Luminy, Marseille 13288 (France); Ribeiro, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), DPAM, SEMCA, LEC, Cadarache (France); Treglia, G. [Centre Interdisciplinaire des Nanosciences de Marseille, CNRS, Campus de Luminy, Marseille 13288 (France); Pellenq, R.J.-M. [Centre Interdisciplinaire des Nanosciences de Marseille, CNRS, Campus de Luminy, Marseille 13288 (France); Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-08-15

    Highlights: > The porosity impact on the UO{sub 2} matrix thermomechanical properties was investigated. > Atomistic simulation techniques were used in this study. > The UO{sub 2} thermal expansion coefficient is modified due to the pore surface effects. > The elastic moduli at 0 K and at finite temperature decrease linearly with porosity. - Abstract: The porosity impact on the UO{sub 2} matrix thermomechanical properties was investigated using atomistic simulation techniques. The porosity modifies the thermal expansion coefficient and this is attributed to pore surface effects. The elastic moduli at 0 K and at finite temperature decrease with porosity, this variation being well approximated using affine functions. These results agree with other mesoscale model predictions and experimental data, showing the ability of the semiempirical potential atomistic simulations to give an overall good description of the porous UO{sub 2}. However, the surface effects are incompletely described.

  12. Riser simulation and radial porosity distribution characterization for gas-fluidized bed of cork particles

    Science.gov (United States)

    Wu, Guorong; Ouyang, Jie; Li, Qiang

    2014-08-01

    Numerical simulations are carried out for gas-solid fluidized bed of cork particles, using discrete element method. Results exhibit the existence of a so-called anti core-annular porosity profile with lower porosity in the core and higher porosity near the wall for non-slugging fluidization. The tendency to form this unfamiliar anti core-annular porosity profile is stronger when the solid flux is higher. There exist multiple inflection points in the simulated axial solid volume fraction profile for non-slugging fluidization. Results also show that the familiar core-annular porosity profile still appears for slugging fluidization. In addition, the classical choking phenomenon can be captured at the superficial gas velocity slightly lower than the correlated transport velocity.

  13. Production of a Porosity Map by Kriging in Sandstone Reservoirs, Case Study from the Sava Depression

    Directory of Open Access Journals (Sweden)

    Tomislav Malvić

    2008-05-01

    Full Text Available Variogram analyses and usages of geostatistical interpolations have been standard analytical tools in Croatian geology in the last five years. Such analyses have especially been applied in the mapping of petroleum geological data. In this paper, spatial modelling of porosity data and, consequently, kriging mapping are described for a relatively large dataset obtained at an oil field located in the Croatian part of Pannonian basin (Sava depression. Analyzed datasets included porosity values measured in a sandstone reservoir of Pannonian age. The original dataset can be considered as a rare extensive porosity set available for Croatian hydrocarbon reservoirs. It made possible very reliable semivariogram modelling and kriging interpolation of porosity. The obtained results point out kriging as the most appropriate interpolation approach for porosity, but also for other geological data in sandstone reservoirs of Miocene age.

  14. How burial diagenesis of chalk sediments controls sonic velocity and porosity

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2003-01-01

    to the progress of burial diagenesis of chalk, which is revised as follows: Newly deposited carbonate ooze and mixed sediments range in porosity from 60 to 80%, depending on the prevalence of hollow microfossils. Despite the high porosity, these sediments are not in suspension, as reflected in IFs of 0.......1 or higher. Upon burial, the sediments lose porosity by mechanical compaction, and concurrently, the calcite particles recrystallize into progressively more equant shapes. High compaction rates may keep the particles in relative motion, whereas low compaction rates allow the formation of contact cement......, whereby IF increases and chalk forms. Rock mechanical tests show that when compaction requires more than in-situ stress, porosity reduction is arrested. During subsequent burial, crystals and pores grow in size as a consequence of the continuing recrystallization. ne lack of porosity loss during...

  15. Biot's coefficient as an indicator of strength and porosity reduction: Calcareous sediments from Kerguelen Plateau

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Borre, Mai Kirstine; Fabricius, Ida Lykke;

    2010-01-01

    Biot's coefficient, β. In calcareous ooze, β is one. Mechanical compaction reduces porosity, but only leads to a minor decrease in β. Recrystallization renders particles smoother, but does not lead to reduction in β unless it gives rise to pore stiffening cementation. Pore stiffening cementation causes......Chalk develops as a result of diagenesis of pelagic calcareous ooze. In a newly deposited ooze sediment, porosity ranges from 60% to 80% but porosity reduces with burial. We studied how different porosity reduction mechanisms change the strength of these deep sea carbonate-rich sediments and effect...... β to fall, even when porosity remains constant. Biot's coefficient correlates with strength-indicating properties: compressional and shear modulus, oedometer modulus, yield strength, strain from direct loading and creep strain. Our data indicate that β may be used for predicting the diagenetic...

  16. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    Energy Technology Data Exchange (ETDEWEB)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L.

    2009-02-15

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.

  17. Relationship between micro-porosity and tensile properties of 6063 alloy

    Directory of Open Access Journals (Sweden)

    Li Xiehua

    2013-01-01

    Full Text Available The micro-porosity is usually present in the as-cast microstructure, which decreases the tensile strength and ductility and therefore limit the application of cast aluminum parts. Although much work has been done to investigate the effects of various casting parameters on the formation of porosity in various aluminum alloys, up to now, little information has been available for the relationship between micro-porosity and tensile properties of 6063 alloy. In this study, the influences of size and area fraction of micro-porosity on the tensile properties and fracture behavior of 6063 aluminum alloy were investigated by means of tensile testing, optical microscopy (OM, and scanning electron microscopy (SEM. The tensile tests were conducted in air at 100 ℃, 200 ℃ and 300 ℃, respectively. Results show that the large micro-porosity with sizes between 100 μm and 800 μm located at the center and top of the ingot, while the small micro-porosity with size between 2 μm and 60 μm distributed at the edge and bottom of the ingot. The area fraction of micro-porosity at the center of the ingot is much bigger than that at the edge of the ingot. When tested at 100 ℃, with the decrease in the area fraction of micro-porosity from the top of the ingot to the bottom of the ingot, the ultimate tensile strength, yield strength and the elongation are increased from 82 to 99 MPa, 32 to 66 MPa and 7% to 11%, respectively. When the temperature is no more than 200 ℃, the strain hardening exponent decreases with an increase in the area fraction of micro-porosity; while the deviation disappears when the temperature reaches 300 ℃. The fracture mode of the alloy is greatly influenced by the size and area fraction of the micro-porosity.

  18. Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures

    Science.gov (United States)

    Saito, Satoshi; Ishikawa, Masahiro; Arima, Makoto; Tatsumi, Yoshiyuki

    2016-05-01

    In order to evaluate the influence of porosity on the elastic properties of crustal rocks at deep crustal pressures, we performed laboratory measurements of compressional-wave (Vp) and shear-wave (Vs) velocities in a porosity-developed gabbro sample up to 1.0 GPa at room temperature. Based on the measured Vp and Vs data, we evaluated the changes in velocities, Vp/Vs, Poisson's ratio (σ), and total porosity of the rock as a function of pressure. Compared with the 'porosity-free' intrinsic elastic values of the gabbro sample, our results suggest that the development of porosity in crustal rocks lowers their Vp, Vs, Vp/Vs, and Poisson's ratio. Deviations (ΔVp, ΔVs, ΔVp/Vs, and Δσ) of the measured values from the intrinsic values are enhanced with increasing porosity. We evaluated the ΔVp from previous experimental study on the rocks of Tanzawa plutonic complex providing constraints on interpretation of the seismic velocity profiles of the Izu-Bonin-Mariana (IBM) arc and found a large negative ΔVp (up to - 22.7%) at lower pressures. The intrinsic velocity combined with the measured velocity data at in situ pressure conditions suggest that the ranges of Vp (6.0-6.5 km/s) in the middle crust of the IBM arc reflect the presence of considerable porosity and its closure in intermediate rocks and/or the change of composition from felsic to intermediate in mid-crustal rocks.

  19. Soil porosity correlation and its influence in percolation dynamics

    Science.gov (United States)

    Rodriguez, Alfredo; Capa-Morocho, Mirian; Ruis-Ramos, Margarita; Tarquis, Ana M.

    2016-04-01

    The prediction of percolation in natural soils is relevant for modeling root growth and optimizing infiltration of water and nutrients. Also, it would improve our understanding on how pollutants as pesticides, and virus and bacteria (Darnault et al., 2003) reach significant depths without being filtered out by the soil matrix (Beven and Germann, 2013). Random walk algorithms have been used successfully to date to characterize the dynamical characteristics of disordered media. This approach has been used here to describe how soil at different bulk densities and with different threshold values applied to the 3D gray images influences the structure of the pore network and their implications on particle flow and distribution (Ruiz-Ramos et al., 2009). In order to do so first we applied several threshold values to each image analyzed and characterized them through Hurst exponents, then we computed random walks algorithms to calculate distances reached by the particles and speed of those particles. At the same time, 3D structures with a Hurst exponent of ca 0.5 and with different porosities were constructed and the same random walks simulations were replicated over these generated structures. We have found a relationship between Hurst exponents and the speed distribution of the particles reaching percolation of the total soil depth. REFERENCES Darnault, C.J. G., P. Garnier, Y.J. Kim, K.L. Oveson, T.S. Steenhuis, J.Y. Parlange, M. Jenkins, W.C. Ghiorse, and P. Baveye (2003), Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments, Water Environ. Res., 75, 113-120. Beven, Keith and Germann, Peter. 2013. Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. DOI: 10.1002/wrcr.20156. Ruiz-Ramos, M., D. del Valle, D. Grinev, and A.M. Tarquis. 2009. Soil hydraulic behaviour at different bulk densities. Geophysical Research Abstracts, 11, EGU2009-6234.

  20. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    N' Diaye, Mambaye [LUNAM Université, GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d' Angers, 49933 ANGERS Cedex (France); Degeratu, Cristinel [LUNAM Université, GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d' Angers, 49933 ANGERS Cedex (France); University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Bioresources and Polymer Science, Calea Victoriei 149, 010072, Sector 1, Bucharest (Romania); Bouler, Jean-Michel [Inserm UMR 791, LIOAD, University of Nantes, 44000 Nantes (France); Chappard, Daniel, E-mail: daniel.chappard@univ-angers.fr [LUNAM Université, GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d' Angers, 49933 ANGERS Cedex (France)

    2013-05-01

    Porous structures are becoming more and more important in biology and material science because they help in reducing the density of the grafted material. For biomaterials, porosity also increases the accessibility of cells and vessels inside the grafted area. However, descriptors of porosity are scanty. We have used a series of biomaterials with different types of porosity (created by various porogens: fibers, beads …). Blocks were studied by microcomputed tomography for the measurement of 3D porosity. 2D sections were re-sliced to analyze the microarchitecture of the pores and were transferred to image analysis programs: star volumes, interconnectivity index, Minkowski–Bouligand and Kolmogorov fractal dimensions were determined. Lacunarity and succolarity, two recently described fractal dimensions, were also computed. These parameters provided a precise description of porosity and pores' characteristics. Non-linear relationships were found between several descriptors e.g. succolarity and star volume of the material. A linear correlation was found between lacunarity and succolarity. These techniques appear suitable in the study of biomaterials usable as bone substitutes. Highlights: ► Interconnected porosity is important in the development of bone substitutes. ► Porosity was evaluated by 2D and 3D morphometry on microCT images. ► Euclidean and fractal descriptors measure interconnectivity on 2D microCT images. ► Lacunarity and succolarity were evaluated on a series of porous biomaterials.

  1. Impact of double porosity flow on hydrologically driven failure of a hillside slope

    Science.gov (United States)

    Choo, J.; White, J. A.; Borja, R. I.

    2015-12-01

    Soil deposits in hillside slopes often exhibit two dominant porosity scales, often referred to as the macropore and micropore scales. Fluid flow through this type of soils involves preferential flow through the macropore region and fluid storage in the micropore region. An explicit treatment of the two porosity scales, known as double porosity formulation, is necessary for a more realistic description of the hydromechanical behavior of this type of soils. In this work, we investigate how double porosity modeling of fluid flow and deformation could impact the ensuing hydromechanical responses of a hillslope under rainfall infiltration. For this purpose we use a hydromechanical continuum modeling approach developed in previous work by the authors and extend it to accommodate double porosity modeling by employing a recently developed hydromechanical framework along with a stabilized finite elements technique that allows the use of lower-order mixed finite elements for improved computationally efficiency. The numerical results demonstrate that preferential flow can be captured by the double porosity formulation, leading to a different slope failure mechanism than what is predicted by an equivalent single porosity formulation.

  2. Examining the influence of heterogeneous porosity fields on conservative solute transport

    Science.gov (United States)

    Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong

    2009-01-01

    It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.

  3. Neutron radiography and tomography investigations on the porosity of the as-cast titanium femoral stem

    Science.gov (United States)

    Sutiyoko; Suyitno; Mahardika, M.; Akbar, F.; Juliani; Setiawan; Baroto

    2017-02-01

    Gating system design in the centrifugal casting is one of the factors that influence the porosity of the femoral stem. The objective of this research is to analysis the porosity in the as-cast titanium femoral stem by neutron radiography and tomography. Three gating system designs which in three-ingates, four-ingates, and four-ingates by inversed position of the femoral stem were casted by a vertical centrifugal casting in investment mold. The porosity distribution in the titanium femoral stem was investigated by the neutron radiography film and followed by neutron tomography. The results indicate that there are large internal porosity in the subsurface region on both of the four-ingates designs but only small internal porosity on the three-ingates design. The large porosity also takes place in largest part of the femoral stem at all of the gating system designs. The product may be rejected due to the sub-surface porosity. The three-ingates design has the smallest risk on the reject product.

  4. Nanosecond pulsed laser induced generation of open macro porosity on sintered ZnO pellet surface

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India); Samanta, Soumen [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Sinha, Sucharita [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India)

    2015-01-15

    Highlights: • Zinc oxide (ZnO) targets have been surface treated using a frequency doubled nanosecond pulsed Nd:YAG laser at laser fluence levels ranging between 2 and 9 J/cm{sup 2}. • Our observations establish that laser irradiation provides an effective technique for generation of surface macro porosity in case of ZnO pellets. • Extent of surface porosity and the mean pore size could be controlled by appropriately varying the incident laser fluence. • Such laser treated ZnO surfaces with enhanced surface porosity and large size pores (mean pore area ∼2–5 μm{sup 2}) can serve as potential candidate for humidity sensors with high sensitivity and fast response time, particularly in high humidity range. - Abstract: Surface porosity and pore size distribution of sensing material greatly influence performance parameters such as sensitivity, reproducibility and response time of sensors. Various approaches have been employed to generate surface porosity having varying pore size distribution. This paper presents our results on pulsed laser irradiation based surface microstructuring of sintered zinc oxide (ZnO) pellets leading to generation of enhanced surface porosity. ZnO targets have been surface treated using a frequency doubled nanosecond pulsed Nd:YAG laser at laser fluence levels ranging between 2 and 9 J/cm{sup 2}. Our observations establish that laser irradiation provides an effective technique for generation of surface macro porosity in case of ZnO pellets. Also, extent of surface porosity and the mean pore size could be controlled by appropriately varying the incident laser fluence. Such laser treated ZnO surfaces with enhanced surface porosity and large size pores can serve as potential candidate for humidity sensors with high sensitivity and fast response time, particularly in high humidity range.

  5. Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use.

    Science.gov (United States)

    De Souza, Erika Thuanne Gonçalves; Nunes Tameirão, Michele Dias; Roter, Juliana Marins; De Assis, Joaquim Teixeira; De Almeida Neves, Aline; De-Deus, Gustavo André

    2013-10-01

    The aim of the this study was to quantitatively evaluate in three-dimensional (3D), the porosity degree of three improved silicate-based endodontic repair cements (iRoot BP Plus®, Biodentine®, and Ceramicrete) compared to a gold-standard calcium silicate bioactive cement (Pro Root® MTA). From each tested cement, four samples were prepared by a single operator following the manufacturer's instructions in terms of proportion, time, and mixing method, using cylindrical plastic split-ring moulds. The moulds were lubricated and the mixed cements were inserted with the aid of a cement spatula. The samples were scanned using a compact micro-CT device (Skyscan 1174, Bruker micro-CT, Kontich, Belgium) and the projection images were reconstructed into cross-sectional slices (NRecon v.1.6.9, Bruker micro-CT). From the stack of images, 3D models were rendered and the porosity parameters of each tested material were obtained after threshold definition by comparison with standard porosity values of Biodentine®. No statistically significant differences in the porosity parameters among the different materials were seen. Regarding total porosity, iRoot BP Plus® showed a higher percentage of total porosity (9.58%), followed by Biodentine® (7.09%), Pro Root® MTA (6.63%), and Ceramicrete (5.91%). Regarding closed porosity, Biodentine® presented a slight increase in these numbers compared to the other sealers. No significant difference in porosity between iRoot BP Plus®, Biodentine®, and Ceramicrete were seen. In addition, no significant difference in porosity between the new calcium silicate-containing repair cements and the gold-standard MTA were found.

  6. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  7. Double porosity models for the description of water infiltration in wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars

    2004-01-01

    In this paper some of the possibilities of applying double porosity and permeability models to the problem of water infiltration in wood are explored. It is shown that the double porosity model can capture a number of commonly reported anomalies including two-stage infiltration....../sorption and apparent sample length dependent transfer parameters. Starting with the double porosity model, several extensions are discussed and the type of principal behaviour possible with the models is elaborated on. Finally, a set of highly anomalous experimental results is fitted to within a reasonable accuracy bv...

  8. Double Porosity Models For the Description of Water Infiltration In Wood

    DEFF Research Database (Denmark)

    Kristian, Krabbenhøft; Damkilde, Lars

    2004-01-01

    In this paper some of the possibilities of applying double porosity and permeability models to the problem of water infiltration in wood are explored. It is shown that the double porosity model can capture a number of commonly reported anomalies including two-stage infiltration....../sorption and apparent sample length dependent transfer parameters. Starting with the double porosity model, several extensions are discussed and the type of principal behaviour possible with the models is elaborated on. Finally, a set of highly anomalous experimental results is fitted to within a reasonable accuracy...... by a double permeability model....

  9. A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam: A Preliminary Study

    DEFF Research Database (Denmark)

    Li, Shizhao; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    studies on modeling the infiltration process are mainly based on a porous media/permeability approach. This approach focuses on the global porosity of ASF rather than local unintended porosity, since it does not include the infiltration pattern around the individual spherical particles. This paper reports...... calculates the pressure, velocity and free surface of the aluminum. The results of the numerical model illustrate that this method has great potential of predicting unintended porosities in ASF and thereby optimizing the parameters involved in the infiltration process....

  10. Porosity estimates of the upper crust in the Endeavour segment of the Juan de Fuca Ridge

    Science.gov (United States)

    Kim, E.; Toomey, D. R.; Hooft, E. E. E.; Wilcock, W. S. D.; Weekly, R. T.; Lee, S. M.; Kim, Y.

    2015-12-01

    We estimate upper crustal porosity variations using the differential effective medium (DEM) theory to interpret the observed seismic velocity variations for the Endeavour segment of the Juan de Fuca Ridge, an intermediate spreading center [Weekly et al., 2014]. We use six P-wave vertical velocity profiles averaged within 5 km × 10 km areas to estimate the porosity at depths from 0.4 km to 2 km. The profile regions cover on-axis, east and west flanks of the central Endeavour segment and three regions of the segment ends including the Endeavour-West Valley (E-WV) and the Cobb overlapping spreading centers (OSCs) and the relict Middle Valley. At the segment center, our calculated porosities on-axis and on the east and west flanks agree well with the apparent bulk porosities measured in Hole 504B at intermediate-spreading Costa Rica Rift [Becker, 1990] and decrease from 5-15% to 2-7% from 0.5 km to 1 km depth and seal by 2 km depth. At all depths, our calculated porosities on the east and west flanks are lower than those on-axis by ~1.3-3%. This indicates the infilling of cracks by mineral precipitation associated with near-axis hydrothermal circulation [Newman et al., 2011]. At the segment ends, upper crustal velocities are lower than those in the segment center at depths < 2 km. These lower velocities are attributed to higher porosities (10-20% at 0.4 km decreasing to 3-6% at 2 km depth). This may indicate that fracturing in the OSCs strongly affects porosity at shallow depths. Between 0.7 km and 1 km, porosities estimated in all regions using pore aspect ratios of 0.05, 0.1 and 0.2 are higher than those from Hole 504B indicating that the aspect ratio of cracks may be smaller than 0.05. There also appears to be a spreading rate dependence to upper crustal porosity structure. On-axis at the Endeavour segment, the calculated porosities from 0.4 km to 2 km are higher than those at the Lucky Strike segment, a slow spreading center [Seher et al., 2010]. Specifically at 2

  11. Permeability, porosity and compressive strength of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Valcuende, M.O.

    2005-12-01

    Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.

    En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones

  12. Brittle and semibrittle creep in a low porosity carbonate rock

    Science.gov (United States)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  13. The relation among porosity, permeability, and specific surface of chalk from the Gorm field, Danish North Sea

    DEFF Research Database (Denmark)

    Jeanette, Mortensen; Engstrøm, Finn; Lind, Ida

    1998-01-01

    The origin to the difference in the relationship between permeability and porosity for Danian and Maastrichtian chalk from the Gorm field offshore Denmark has been investigated. The investigation was based on 300 sets of core data (He-expansion porosity and air permeability) from the well Gorm N-...... analytically from a simple porosity model and Poiseuilles law....

  14. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    Science.gov (United States)

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou

    2015-10-01

    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately.

  15. The effects of porosity in friction performance of brake pad using waste tire dust

    Directory of Open Access Journals (Sweden)

    İbrahim Mutlu

    2015-10-01

    Full Text Available Abstract This research is focused on the effect of porosity on the friction-wear properties of automotive brake pads. Waste Tire Dust (WTD was used as a new friction material in brake pads. Newly formulated brake pad materials with five different components have been produced by conventional techniques. In the experimental studies, the change of the friction coefficient, the temperature of the friction surface, the specific wear rate, and the hardness, density and porosity were measured. In addition, the micro-structural characterizations of brake pads are determined using Scanning Electron Microscopy (SEM. The mean coefficient of friction, porosity and specific wear are increased due to a WTD rate increases, on the other hand, hardness and density are decreased. As a result, WTD can be considered as an alternative to revalorize this kind of waste products in the brake pads and the amount of porosity of the brake pad affected the friction coefficient and wear behavior of the pad.

  16. Low Porosity Fireclay Bricks for Glass Melting Furnace JC/T 638-1996

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan

    2008-01-01

    @@ 1Scope This standard specifies the classification, technical requirements, test methods, inspection rules, marking, packing, transportation, storage and quality certificate of low porosity fireclay bricks for glass melting furnace.

  17. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shahir Mohd Yusuf

    2017-02-01

    Full Text Available This study investigates the porosity and microhardness of 316L stainless steel samples fabricated by selective laser melting (SLM. The porosity content was measured using the Archimedes method and the advanced X-ray computed tomography (XCT scan. High densification level (≥99% with a low average porosity content (~0.82% were obtained from the Archimedes method. The highest porosity content in the XCT-scanned sample was ~0.61. However, the pores in the SLM samples for both cases (optical microscopy and XCT were not uniformly distributed. The higher average microhardness values in the SLM samples compared to the wrought manufactured counterpart are attributed to the fine microstructures from the localised melting and rapid solidification rate of the SLM process.

  18. Total and methyl mercury, moisture, and porosity in Lake Michigan surficial sediment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Total and methyl mercury, moisture content (%), and porosity were measured in Lake Michigan sediment by the U.S. Environmental Protection Agency/Office of Research...

  19. Visualization and prediction of porosity in roller compacted ribbonswith near infrared chemical imaging (NIR-CI)

    DEFF Research Database (Denmark)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sonnergaard, Jørn

    2015-01-01

    The porosity of roller compacted ribbon is recognized as an important critical quality attribute which has a huge impact on the final product quality. The purpose of this study was to investigate the use of near-infrared chemical imaging (NIR-CI) for porosity estimation of ribbons produced...... at different roll pressures. Two off-line methods were utilized as reference methods. The relatively fast method (oil absorption) was comparable with the more time-consuming mercury intrusion method (R2 = 0.98). Therefore, the oil method was selected as the reference off line method. It was confirmed by both...... reference methods that ribbons compressed at a higher pressure resulted in a lower mean porosity. Using NIR-CI in combination with multivariate data analysis it was possible to visualize and predict the porosity distribution of the ribbons. This approach is considered important for process monitoring...

  20. Assessment of Inter-Yarn Zone Porosity of Plain Weave Fabrics

    Directory of Open Access Journals (Sweden)

    Uzma Syed

    2012-04-01

    Full Text Available In this research software was designed for assessing the inter-yarn zone fabric porosity of Tencel plain weave fabrics in terms of flow of dye liquor by using Matlab. Fabric images were captured at constant light intensity and magnification using an optical microscope and image analysis software. The captured images were first converted into monochrome image and then into binary image at specific threshold value (150. The percentage of white pixels in the binary image were calculated which assessed the fabric porosity in percentage. The loosely woven fabric gives higher percentage of fabric porosity as compared to the tightly woven fabric. This software has potential to calculate the fabric porosity of plain weave fabric manufactured from any type of raw material.

  1. Modeling flow in porous media with double porosity/permeability: Mathematical model, properties, and analytical solutions

    CERN Document Server

    Nakshatrala, K B; Ballarini, R

    2016-01-01

    Geo-materials such as vuggy carbonates are known to exhibit multiple spatial scales. A common manifestation of spatial scales is the presence of (at least) two different scales of pores, which is commonly referred to as double porosity. To complicate things, the pore-network at each scale exhibits different permeability, and these networks are connected through fissure and conduits. Although some models are available in the literature, they lack a strong theoretical basis. This paper aims to fill this lacuna by providing the much needed theoretical foundations of the flow in porous media which exhibit double porosity/permeability. We first obtain a mathematical model for double porosity/permeability using the maximization of rate of dissipation hypothesis, and thereby providing a firm thermodynamic underpinning. We then present, along with mathematical proofs, several important mathematical properties that the solutions to the double porosity/permeability model satisfy. These properties are important in their...

  2. Image Analysis and Estimation of Porosity and Permeability of Arnager Greensand, Upper Cretaceous, Denmark

    DEFF Research Database (Denmark)

    Solymar, Mikael; Fabricius, Ida

    1999-01-01

    phases, pores and particles, and the specific surface of the solid phase was calculated. We used the Kozeny Equation to calculate the permeability. The petrophysical properties, porosity and permeability obtained from image analysis were compared to results using laboratory methods. The 150x...... magnification of the image can not resolve the microporosity within the clay fraction, so we suggest that the imaged porosity at 150x magnification is close to the effective porosity for permeability assessment. The Heporosity, however, represents the total porosity of the Arnager Greensand. For permeability......Arnager Greensand consists of unconsolidated, poorly sorted fine-grained, glauconitic quartz sand, often silty or clayey, with a few horizons of cemented coarse-grained sand. Samples from the upper part of the Arnager Greensand were used for this study to estimate permeability from microscopic...

  3. Estimating permeability of carbonate rocks from porosity and v(p)/v(s)

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Baechle, G.; Eberli, G.P.

    2007-01-01

    We present a method for predicting permeability from sonic and density data. The method removes the porosity effect on the ratio upsilon(p)/upsilon(s), of dry rock, and it addresses the specific surface as an indirect measure of permeability. We look at ultrasonic data, porosity......, and the permeability of 114 carbonate core plugs. In doing so, we establish an empirical relationship between the specific surface of the solid phase (as calculated by Kozeny's equation) and upsilon(p)/upsilon(s) (linearly transformed to remove the porosity effect). One must view the specific surface derived by using...... settings. We find a reasonable match between predicted and measured permeability. The match is better for samples with carbonate mud-filled depositional textures than for carbonate mud-poor depositional textures. Diagenetic factors such as vuggy porosity decrease the predictability of permeability....

  4. Characterization of porosity via secondary reactions. Final technical report, 1 September 1991--30 November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Zhang, L.; Hall, P.J.; Antxustegi, M. [Brown Univ., Providence, RI (United States). Div. of Engineering

    1997-09-01

    A new approach to the study of porosity and porosity development in coal chars during gasification was investigated. This approach involves the establishment of the relationships between the amount and type of surface complexes evolved during post-activation temperature programmed desorption (TPD), and the porosity, as measured by gas adsorption and small angle neutron scattering (SANS) techniques. With this new method, the total surface area and micropore volume can be determined by the interpretation of post-activation TPD spectra. The primary conclusion of this work is that it is possible to predict total surface area and micropore volume from TPD spectra. From the extended random pore model, additional information about the micropore surface area, the nonmicroporous surface area, and the mean micropore size development as a function of reaction time (or burn-off) can also be predicted. Therefore, combining the TPD technique and the extended random pore model provides a new method for the characterization of char porosity.

  5. Synthesis of Metal-Organic Zeolites with Homochirality and High Porosity for Enantioselective Separation.

    Science.gov (United States)

    Xu, Zhong-Xuan; Liu, Liyang; Zhang, Jian

    2016-07-01

    Using lactic acid derivatives as chiral ligands, a pair of unprecedented homochiral metal-organic zeolites have been synthesized that feature zeotype CAN topology and have high porosity for enantioselective separation of racemates.

  6. Monte Carlo Study on Gas Pressure Response of He-3 Tube in Neutron Porosity Logging

    Directory of Open Access Journals (Sweden)

    TIAN Li-li;ZHANG Feng;WANG Xin-guang;LIU Jun-tao

    2016-10-01

    Full Text Available Thermal neutrons are detected by (n,p reaction of Helium-3 tube in the compensated neutron logging. The helium gas pressure in the counting area influences neutron detection efficiency greatly, and then it is an important parameter for neutron porosity measurement accuracy. The variation law of counting rates of a near detector and a far one with helium gas pressure under different formation condition was simulated by Monte Carlo method. The results showed that with the increasing of helium pressure the counting rate of these detectors increased firstly and then leveled off. In addition, the neutron counting rate ratio and porosity sensitivity increased slightly, the porosity measurement error decreased exponentially, which improved the measurement accuracy. These research results can provide technical support for selecting the type of Helium-3 detector in developing neutron porosity logging.

  7. Porosity Detection in Ceramic Armor Tiles via Ultrasonic Time-Of

    Science.gov (United States)

    Margetan, Frank J.; Richter, Nathaniel; Jensen, Terrence

    2011-06-01

    Some multilayer armor panels contain ceramic tiles as one constituent, and porosity in the tiles can affect armor performance. It is well known that porosity in ceramic materials leads to a decrease in ultrasonic velocity. We report on a feasibility study exploring the use of ultrasonic time-of-flight (TOF) to locate and characterize porous regions in armor tiles. The tiles in question typically have well-controlled thickness, thus simplifying the translation of TOF data into velocity data. By combining UT velocity measurements and X-ray absorption measurements on selected specimens, one can construct a calibration curve relating velocity to porosity. That relationship can then be used to translate typical ultrasonic C-scans of TOF-versus-position into C-scans of porosity-versus-position. This procedure is demonstrated for pulse/echo, focused-transducer inspections of silicon carbide (SiC) ceramic tiles.

  8. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J. [Purdue University

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in

  9. Interaction of Porosity with an Advancing Solid/Liquid Interface: a Real-Time Investigation

    Science.gov (United States)

    Sen, S.; Kaukler, W.; Catalina, A.; Stefanescu, D.; Curreri, P.

    1999-01-01

    Problems associated with formation of porosity during solidification continue to have a daily impact on the metal forming industry. Several past investigations have dealt with the nucleation and growth aspects of porosity. However, investigations related to the interaction of porosity with that of a solidification front has been limited mostly to organic analogues. In this paper we report on real time experimental observations of such interactions in metal alloys. Using a state of the art X-Ray Transmission Microscope (XTM) we have been able to observe and record the dynamics of the interaction. This includes distortion of the solid/liquid interface near a poro.sity, solute segr,egation patterns surrounding a porosity and the change in shape of the porosity during interaction with an advancing solid/liquid interface. Results will be presented for different Al alloys and growth conditions. The experimental data will be compared to theory using a recently developed 2D numerical model. The model employs a finite difference approach where the solid/liquid interface is defined through the points at which the interface intersects the grid lines. The transport variables are calculated at these points and the motion of the solidification front is determined by the magnitude of the transport variables. The model accounts for the interplay of the thermal and solutal field and the influence of capilarity to predict the shape of the solid/liquid interface with time in the vicinity of porosity. One can further calculate the perturbation of the solutal field by the presence of porosity in the melt.

  10. Existence and stability results for thermoelastic dipolar bodies with double porosity

    Science.gov (United States)

    Marin, M.; Nicaise, S.

    2016-11-01

    This paper is concerned with the theory of thermoelastic dipolar bodies which have a double porosity structure. In contrast with previous papers dedicated to classical elastic bodies, in our context the double porosity structure of the body is influenced by the displacement field, which is consistent with real models. In this setting, we show instability of solution as the initial energy is negative while under an appropriated (and realistic) condition, we prove existence and uniqueness of solution using semi-group theory.

  11. Interaction of Porosity with an Advancing Solid/Liquid Interface: a Real-Time Investigation

    Science.gov (United States)

    Sen, S.; Kaukler, W.; Catalina, A.; Stefanescu, D.; Curreri, P.

    1999-01-01

    Problems associated with formation of porosity during solidification continue to have a daily impact on the metal forming industry. Several past investigations have dealt with the nucleation and growth aspects of porosity. However, investigations related to the interaction of porosity with that of a solidification front has been limited mostly to organic analogues. In this paper we report on real time experimental observations of such interactions in metal alloys. Using a state of the art X-Ray Transmission Microscope (XTM) we have been able to observe and record the dynamics of the interaction. This includes distortion of the solid/liquid interface near a poro.sity, solute segr,egation patterns surrounding a porosity and the change in shape of the porosity during interaction with an advancing solid/liquid interface. Results will be presented for different Al alloys and growth conditions. The experimental data will be compared to theory using a recently developed 2D numerical model. The model employs a finite difference approach where the solid/liquid interface is defined through the points at which the interface intersects the grid lines. The transport variables are calculated at these points and the motion of the solidification front is determined by the magnitude of the transport variables. The model accounts for the interplay of the thermal and solutal field and the influence of capilarity to predict the shape of the solid/liquid interface with time in the vicinity of porosity. One can further calculate the perturbation of the solutal field by the presence of porosity in the melt.

  12. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.; Wang, H.F.

    1998-10-12

    To account for large-volume low-permeability storage porosity and low-volume high-permeability fracture/crack porosity in oil and gas reservoirs, phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent inertial coefficients from three to six, the number of independent drag coefficients from three to six, and the number of independent stress-strain coefficients from three to six for an isotropic applied stress and assumed isotropy of the medium. The analysis leading to physical interpretations of the inertial and drag coefficients is relatively straightforward, whereas that for the stress-strain coefficients is more tedious. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures are expected to behave in an undrained fashion, although our analysis makes no assumptions in this regard. For the very long times more relevant for reservoir drawdown, the double porosity medium behaves as an equivalent single porosity medium. At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is

  13. Two-Dimensional Porosity of Crusted Silty Soils: Indicators of Soil Quality in Semiarid Rangelands?

    OpenAIRE

    2011-01-01

    Little is known about the morphological characteristics of pores in soil crusts. The objective was to characterize the 2D-porosity (amount, shape, size and area of pores) of soil crusts to ascertain their potential as indicators of soil quality for natural crusted soils. 2D-porosity was described in thin sections and measured by image analysis of polished resin-impregnated soil blocks. Physical soil crust and incipient biological soil crusts appear to be the lowest-quality soil...

  14. The Effect of Using Modified Flask on the Porosity of Processed Heat- Cure Acrylic Resin

    OpenAIRE

    Mohammed T. Al-Khafagy; Rajaa M. Al-Musawi; Abbas Taher Alaboudy

    2013-01-01

    Porosity is an important property of acrylic resin material because it affect other properties like strength, esthetic and cause bacterial or fungal growth lead to unhealthy dentures. This paper Study the possibility of reducing the porosity of heat- cure acrylic resin by making a modification in the flask of processing .The processing flask was modified by constructing a tongue like projection fixed to the upper half of the flask in order to spread the high temperature occurred in the cente...

  15. Effect of recasting of nickel-chromium alloy on its porosity

    OpenAIRE

    Jayant Palaskar; Nadgir, D.V.; Ila Shah

    2010-01-01

    Statement of Problem: As per the review of literature very few studies have been carried on recasting of dental casting alloy and in particlular its effect on occurrence of porosities. Purpose of Study: This study was designed to find out occurrence of porosities in new alloy and recasted alloy using a scanning electron microscope. Materials and Methods: Different percentage combinations of new and once casted alloy were used to produce twenty five samples. Castings obtained from new alloy we...

  16. Analysis of the Porosity Changing after Moisture Absorption in Functional Knitted Fabrics

    Institute of Scientific and Technical Information of China (English)

    DU Yan-feng; SHEN Wei; FENG Xun-wei

    2007-01-01

    The paper analyses the effect of stitch geometricalmodality changing after moisture absorption on the porosityof knitted fabrics, and educes the formulas between porosityand stitch parameters. Regarding as the cell stitch, theincreasing of yam diameter brings the porosity decreasingand the fabric shrinking in the wale direction. While thediameter keeps invariability, the yarn elongating brings thefabric humping up as well as the increasing porosity. Theair-permeability experiments have been conducted to validatethe theoretical analysis, and there is reasonable agreementbetween the theories and experiments.

  17. A CFD-Model for prediction of unintended porosities in metal matrix composites

    DEFF Research Database (Denmark)

    Li, Shizhao; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    This paper presents a numerical method that simulates the flow through the porous corridors of the preform, which in theory enables the prediction of unintended porosities at the end of the process.......This paper presents a numerical method that simulates the flow through the porous corridors of the preform, which in theory enables the prediction of unintended porosities at the end of the process....

  18. Effect of cooling rate on the microstructure and porosity of alumina produced by freeze casting

    OpenAIRE

    Nieto Isabel María; Rodríguez-Parra Jesús M.; Moreno Rodrigo

    2012-01-01

    Freeze casting is a well-known shaping technique to produce materials with directional porosity. One of the major problems is the difficulty to control the cooling rate thus leading to gradients in pore size and homogeneity. This work deals with the manufacture of alumina ceramics with directional porosity by freeze casting of aqueous suspensions. An experimental set-up was prepared in order to apply different cooling rates. Freeze casting tests were done with an aqueous alumina suspens...

  19. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  20. Evaluation of heat and water flow in porosity permeable horizons

    Science.gov (United States)

    Pasquale, Vincenzo; Verdoya, Massimo; Chiozzi, Paolo

    2010-05-01

    temperatures contain a discernible climatic signal, explainable with an increase of ground surface temperature over the past few decades. This could have caused a positive shift in the temperature-depth data. Thus, temperature data used in this study were preliminarily treated for such a climatic noise. Our approach assumes that water volumetric heat capacity and bulk thermal conductivity of the porosity permeable horizons are constant along the section of the borehole where groundwater movement occurs. Under natural conditions, this is not always the case, and curvatures in temperature profiles can be also explained by variation of such parameters. However, for the investigated boreholes, thermal conductivity measurements show a variation not larger than ten per cent about the average, thus excluding that distortion in temperature-depth curves is due to lithological change. This implies an uncertainty on the hydrothermal parameters of the same order of magnitude. Moreover, the temperature and pressure dependence of thermal parameters can be neglected, as the investigated depth range is relatively shallow.

  1. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiao-Hua, E-mail: xiaohua-tan@163.com; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou

    2015-10-16

    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately.

  2. Porosity measurement of solid pharmaceutical dosage forms by gamma-ray transmission

    Energy Technology Data Exchange (ETDEWEB)

    Martins de Oliveira, Jose, E-mail: jose.oliveira@prof.uniso.b [Universidade de Sorocaba, UNISO, Campus Seminario, Caixa Postal 578, Avenue, Dr. Eugenio Salermo, 100, Centro, 18035-430 Sorocaba, SP (Brazil); Andreo Filho, Newton; Vinicius Chaud, Marco; Angiolucci, Tatiana; Aranha, Norberto [Universidade de Sorocaba, UNISO, Campus Seminario, Caixa Postal 578, Avenue, Dr. Eugenio Salermo, 100, Centro, 18035-430 Sorocaba, SP (Brazil); Germano Martins, Antonio Cesar [Universidade Estadual Paulista Julio de Mesquita Filho, UNESP, GAGI, Avenue, 3 de Marco, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP (Brazil)

    2010-12-15

    The aim of the present work is the determination of porosity in tablets by using the gamma-ray transmission technique. Tablet dissolution depends on some inherent characteristics of the manufacturing process, such as compression force, tablet volume, density and porosity, nature of excipients, preparation methods and its physical-chemical properties. Porosity is a measure of empty spaces in a material and can be determined by various techniques. In this paper, we propose the use of a gamma-ray transmission technique to obtain the porosity of experimental formulation of tablets. The results of porosity were compared with those obtained by using conventional methodology (density and mercury intrusion). The experimental setup for gamma-ray transmission consists of a gamma-ray source of {sup 241}Am (photons of 59.6 keV and an activity of 3.7x10{sup 9} Bq), an NaI(Tl) scintillation detector, collimators and a standard gamma-ray spectrometry electronics. Our results suggest that the gamma-ray transmission technique is a powerful tool for non-destructive porosity quantification of solid pharmaceutical forms and presents smaller errors than those obtained with conventional methodologies.

  3. Porosity measurement of solid pharmaceutical dosage forms by gamma-ray transmission.

    Science.gov (United States)

    de Oliveira, José Martins; Andréo Filho, Newton; Chaud, Marco Vinícius; Angiolucci, Tatiana; Aranha, Norberto; Martins, Antonio César Germano

    2010-12-01

    The aim of the present work is the determination of porosity in tablets by using the gamma-ray transmission technique. Tablet dissolution depends on some inherent characteristics of the manufacturing process, such as compression force, tablet volume, density and porosity, nature of excipients, preparation methods and its physical-chemical properties. Porosity is a measure of empty spaces in a material and can be determined by various techniques. In this paper, we propose the use of a gamma-ray transmission technique to obtain the porosity of experimental formulation of tablets. The results of porosity were compared with those obtained by using conventional methodology (density and mercury intrusion). The experimental setup for gamma-ray transmission consists of a gamma-ray source of (241)Am (photons of 59.6 keV and an activity of 3.7 × 10(9)Bq), an NaI(Tl) scintillation detector, collimators and a standard gamma-ray spectrometry electronics. Our results suggest that the gamma-ray transmission technique is a powerful tool for non-destructive porosity quantification of solid pharmaceutical forms and presents smaller errors than those obtained with conventional methodologies.

  4. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents

    Science.gov (United States)

    Shapiro, Allen M.; Evans, Chrsitopher E.; Hayes, Erin C.

    2017-01-01

    Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small (~ 0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix.

  5. Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity

    Science.gov (United States)

    Özgen, Ilhan; Zhao, Jiaheng; Liang, Dongfang; Hinkelmann, Reinhard

    2016-10-01

    The shallow water model with anisotropic porosity conceptually takes into account the unresolved subgrid-scale features, e.g. microtopography or buildings. This enables computationally efficient simulations that can be run on coarser grids, whereas reasonable accuracy is maintained via the introduction of porosity. This article presents a novel numerical model for the depth-averaged equations with anisotropic porosity. The porosity is calculated using the probability mass function of the subgrid-scale features in each cell and updated in each time step. The model is tested in a one-dimensional theoretical benchmark before being evaluated against measurements and high-resolution predictions in three case studies: a dam-break over a triangular bottom sill, a dam-break through an idealized city and a rainfall-runoff event in an idealized urban catchment. The physical processes could be approximated relatively well with the anisotropic porosity shallow water model. The computational resolution influences the porosities calculated at the cell edges and therefore has a large influence on the quality of the solution. The computational time decreased significantly, on average three orders of magnitude, in comparison to the classical high-resolution shallow water model simulation.

  6. Deformation in thrust-ramp anticlines and duplexes: implications for geometry and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Groshong, R.H. Jr.; Usdansky, S.I.

    1986-05-01

    A computerized kinematic model of thrust-ramp anticline geometry allows workers to predict the zones of greatest deformation in ramp anticlines and fault duplexes. The model assumes a constant cross-section area, symmetrical fold hinges, and slip in the hanging wall parallel to the ramp and forelimb. Assuming that the collapse of original porosity or the generation of secondary fracture porosity is proportional to deformation, the model can be used to predict porosity changes. Deformation in a single ramp anticline is greatest in the forelimb and backlimb, and may be absent in the crest. A duplex structure results from comparatively closely spaced thrusts that have a common upper detachment horizon. Relatively wide spacing between the duplex faults yields a bumpy roofed duplex as in the central Appalachians. Forelimbs may be deformed twice and should show greater porosity modification. Relatively close spacing between ramp-and-flat thrusts can produce a listric-fault, snakehead anticline geometry because younger faults deform the preexisting thrust slices. The resulting geometry is here called a snakehead duplex and appears to be fairly common, as in the Jumpingpound field in the Canadian Rockies. Each thrust slice within the duplex is deformed six times or more, providing the maximum opportunity for deformation-related porosity changes. Maximum fracture porosity should occur in thrusts having listric-fan or snakehead duplex geometry. Structures involving duplexes generally should be better than isolated ramp anticlines.

  7. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents.

    Science.gov (United States)

    Shapiro, Allen M; Evans, Christopher E; Hayes, Erin C

    2017-08-01

    Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small (~0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix. Published by Elsevier B.V.

  8. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates

    Science.gov (United States)

    Qing Wang, Yan; Zu, Jean W.

    2017-10-01

    This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge–Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.

  9. The effect of porosity on energetic porous silicon solid propellant micro-propulsion

    Science.gov (United States)

    Churaman, Wayne A.; Morris, Christopher J.; Ramachandran, Raghav; Bergbreiter, Sarah

    2015-11-01

    Energetic porous silicon is investigated as an actuator for micro-propulsion based on thrust and impulse measurements for a variety of porous silicon porosity conditions. Porosity of 2 mm diameter, porous silicon microthruster devices was varied by changing the concentration of hydrofluoric acid and ethanol in an etch solution, by changing porous silicon etch depth, and by changing the resistivity of silicon wafers used for the etch process. The porosity varied from 30% to 75% for these experiments. The highest mean thrust and impulse values measured with a calibrated Kistler 9215 force sensor were 674 mN and 271 μN s, respectively, with a 73% porosity, 2 mm diameter porous silicon device etched in a 3 : 1 etch solution on a 3.6 Ω cm wafer to a target etch depth of 30 μm. As a result of changing porosity, a 23×  increase in thrust performance and a 36×  increase in impulse performance was demonstrated. Impulse values were also validated using a pendulum experiment in which the porous silicon microthruster was unconstrained, but several non-linearities in the pendulum experimental setup resulted in less consistent data than when measured by the force sensor for microthrusters at this size scale. These thrust and impulse results complement previous work in determining the effect of porosity on other porous silicon reaction metrics such as flame speed.

  10. The effect of porosity of dust particles on polarization and color with special reference to comets

    Science.gov (United States)

    Sen, A. K.; Botet, R.; Vilaplana, R.; Choudhury, Naznin R.; Gupta, Ranjan

    2017-09-01

    Cosmic dust particles are mostly responsible for polarization of the light that we observe from astrophysical objects. They also lead to color-extinction, thermal re-emission and other scattering related phenomena. Micrometric dust particles are often made of smaller constituent (nanometric grains). They are characterized by their size (average radius), chemical composition and morphology (including porosity). In the present work, we address the question of the role of the dust particle porosity on light polarization and color, using Discrete Dipole Approximation (DDA) light scattering code. To this purpose, we develop an algorithm to generate dust particles of arbitrary values of porosity. In brief, starting from a compact spherical ensemble of dipoles,randomly the dipoles are removed one by one, such that the remaining dipoles remain connected within their neighbours. We stop the removal process when the desired porosity is obtained. Then we compute and study the optical properties of the porous dust particle.The main objective of this paper is to develop a tool to generate dust particles with an arbitrary value of porosity and to study the effect of porosity on their light scattering properties. As a possible application, we simulate cometary polarization and color values which grossly match with the observed ones for the comet 1P/Halley, leaving scope for future work.

  11. The varying porosity of braided self-expanding stents and flow diverters: an experimental study.

    Science.gov (United States)

    Makoyeva, A; Bing, F; Darsaut, T E; Salazkin, I; Raymond, J

    2013-03-01

    Braided self-expandable stents and flow diverters of uniform construction may develop zones of heterogeneous porosity in vivo. Unwanted stenoses may also occur at the extremities of the device. We studied these phenomena in dedicated benchtop experiments. Five braided devices of decreasing porosity were studied. To simulate discrepancies in diameters between the landing zones of the parent vessel and the aneurysm neck area, device extremities were inserted into silicone tubes of various diameters (2-3 mm), leaving the midportion free to react to experimental manipulations, which included axial approximation of the tubes (0-7 mm), and curvature (0-135°), with or without axial compression (0-2 mm). The length of the landing zone was sequentially decreased to study terminal device stenosis. All devices adopted a conformation characterized by 3 different zones: bilateral landing zones, a middle compaction zone, and 2 transition zones. It is possible, during deployment, to compact stents and FDs to decrease porosity, but a limiting factor was the transition zone, which remained relatively unchanged and of higher porosity than the expansion zone. Length of the transition zone increased when devices were constrained in smaller tubes. Heterogeneities in porosity with compaction and curvatures were predictable and followed simple geometric rules. Extremity stenoses occurred increasingly with decreasing length of the landing zone. Braided self-expandable devices show predictable changes in porosity according to device size, vessel diameter, and curvature. Adequate landing zones are required to prevent terminal device stenosis.

  12. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  13. Bimodal mesoporous titanium dioxide anatase films templated by a block polymer and an ionic liquid: influence of the porosity on the permeability.

    Science.gov (United States)

    Sallard, Sébastien; Schröder, Michael; Boissière, Cédric; Dunkel, Christian; Etienne, Mathieu; Walcarius, Alain; Oekermann, Torsten; Wark, Michael; Smarsly, Bernd M

    2013-12-21

    In the present paper, we report the synthesis of bimodal mesoporous anatase TiO2 films by the EISA (Evaporation-Induced Self-Assembly) method using sol-gel chemistry combining two porogen agents, a low molecular weight ionic template and a neutral block copolymer. The surfactant template (C16mimCl) generates non-oriented worm-like pores (8 to 10 nm) which connect the regularly packed ellipsoidal mesopores (15 to 20 nm diameter) formed by an amphiphilic block copolymer of the type poly(isobutylene)-b-poly(ethylene oxide) (PIB-PEO). The surfactant template can also significantly influence the size and packing of the ellipsoidal mesopores. The mesostructural organization and mesoporosity of the films are studied by Environmental Ellipsometry-Porosimetry (EEP), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) and electron microscopy techniques. Electrochemical characterization is performed to study the permeability of the films to liquid solutions, using two types of probe moieties (K3Fe(III)(CN)6 and Ru(bpy)3(2+)) by the wall-jet technique. An optimum ratio of C16mimCl/PIB-PEO provides anatase films with a continuous bimodal mesopore structure, possessing a permeability up to two times higher than that of the mesoporous films templated by PIB-PEO only (with partially isolated mesopores). When C16mimCl is used in large quantities, up to 20% weight vs. PIB-PEO, large overall porous volume and surface area are obtained, but the mesostructure is increasingly disrupted, leading to a severe loss of permeability of the bimodal films. A dye-sensitized solar cell set-up is used with anatase films as the photoelectrode. The photosensitizer loading and the total energy conversion efficiency of the solar cells using the mesoporous films templated by an optimal ratio of the two porogen agents C16mimCl and PIB-PEO can be substantially increased in comparison with the solar cells using mesoporous films templated by PIB-PEO only.

  14. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images.

    Science.gov (United States)

    N'Diaye, Mambaye; Degeratu, Cristinel; Bouler, Jean-Michel; Chappard, Daniel

    2013-05-01

    Porous structures are becoming more and more important in biology and material science because they help in reducing the density of the grafted material. For biomaterials, porosity also increases the accessibility of cells and vessels inside the grafted area. However, descriptors of porosity are scanty. We have used a series of biomaterials with different types of porosity (created by various porogens: fibers, beads …). Blocks were studied by microcomputed tomography for the measurement of 3D porosity. 2D sections were re-sliced to analyze the microarchitecture of the pores and were transferred to image analysis programs: star volumes, interconnectivity index, Minkowski-Bouligand and Kolmogorov fractal dimensions were determined. Lacunarity and succolarity, two recently described fractal dimensions, were also computed. These parameters provided a precise description of porosity and pores' characteristics. Non-linear relationships were found between several descriptors e.g. succolarity and star volume of the material. A linear correlation was found between lacunarity and succolarity. These techniques appear suitable in the study of biomaterials usable as bone substitutes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Influence of deformation bands on sandstone porosity: A case study using three-dimensional microtomography

    Science.gov (United States)

    Rodrigues, Mérolyn Camila Naves de Lima; Trzaskos, Barbara; Lopes, Angela Pacheco

    2015-03-01

    This study presents a qualitative and quantitative analysis of porosity in deformation bands by applying X-ray micro-computed tomography in conjunction with microstructural analysis. Samples of compactional cataclastic bands and shear compactional bands identified in Early Cretaceous aeolian sandstones of the Paraná Basin were analyzed. The application of X-ray micro-computed tomography expanded the view of features in the porous framework of each type of deformation band studied and provided information that are not clear or was not observable with optical microscopy. The compactional cataclastic bands and shear compactional bands differ in geometry, thickness, microstructures and, mainly, in the distribution, shape and orientation of the remaining pores. Porosity analysis was also performed by comparing values of porosity (total, open and closed pores) of the parental rock and the deformation band in each sample. Results of these analyses show a reduction of total porosity and open pores and therefore an increase in the amount of closed pores in all types of deformation bands in relation to parental rock. In addition, it is observed that changes in porosity characteristics are related to the effect of different deformation mechanisms that operated in each type of deformation band.

  16. Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs

    Directory of Open Access Journals (Sweden)

    Carosena Meola

    2014-02-01

    Full Text Available It is a fact that the presence of porosity in composites has detrimental effects on their mechanical properties. Then, due to the high probability of void formation during manufacturing processes, it is necessary to have the availability of non-destructive evaluation techniques, which may be able to discover the presence and the distribution of porosity in the final parts. In recent years, flash thermography has emerged as the most valuable method, but it is still not adequately enclosed in the industrial enterprise. The main reason of this is the lack of sufficient quantitative data for a full validation of such a technique. The intention of the present work is to supply an overview on the current state-of-the-art regarding the use of flash thermography to evaluate the porosity percentage in fiber reinforced composite materials and to present the latest results, which are gathered by the authors, on porous carbon fiber reinforced polymer laminates. To this end, several coupons of two different stacking sequences and including a different amount of porosity are fabricated and inspected with both non-destructive and destructive testing techniques. Data coming from non-destructive testing with either flash thermography or ultrasonics are plotted against the porosity percentage, which was previously estimated with the volumetric method. The new obtained results are a witness to the efficacy of flash thermography. Some key points that need further consideration are also highlighted.

  17. The grain grading model and prediction of deleterious porosity of cement-based materials

    Institute of Scientific and Technical Information of China (English)

    FENG Qi; LIU Jun-zhe

    2008-01-01

    The calculating model for the packing degree of spherical particles system was modified. The grain grading model of cement-based materials was established and could be applied in the global grading system as well as in the nano-fiber reinforced system. According to the grain grading model, two kinds of mortar were de-signed by using the global grain materials and nano-fiber materials such as fly ash, silica fume and NR powder.In this paper, the densities of two above systems cured for 90d were tested and the relationship of deleterious porosity and the total porosity of hardened mortar was discussed. Research results show that nano-fiber materialsuch as NR powder can increase the density of cement-based materials. The relationship of deleterious porosity and the total porosity of hardened mortar accords with logarithmic curve. The deleterious porosity and the ration-ality of the grading can be roughly predicted through calculating the packing degree by the grain grading model of cement-based materials.

  18. Effects of spatially heterogeneous porosity on matrix diffusion as investigated by X-ray absorption imaging

    Science.gov (United States)

    Tidwell, Vincent C.; Meigs, Lucy C.; Christian-Frear, Tracy; Boney, Craig M.

    2000-03-01

    High-resolution X-ray absorption imaging was used to investigate the effects of spatially heterogeneous porosity on matrix diffusion. Experiments were performed on four, centimeter-scale slabs of Culebra dolomite taken from the Waste Isolation Pilot Plant (WIPP) site. These tests involved the diffusion of potassium iodide into a single edge of each brine-saturated rock slab, while X-ray absorption imaging was used to measure the two-dimensional relative concentration distribution at different times during the experiment. X-ray imaging was also used to measure the heterogeneous, two-dimensional porosity distribution of each rock slab. The resulting high-resolution data provide unique insight into the spatially varying diffusion characteristics of each heterogeneous rock sample, which traditional methods such as through-diffusion experiments cannot. In these tests, significant variations in the diffusion coefficient were calculated over the relatively small length (centimeter) and time scales (months) investigated. Results also indicated that these variations were related to the heterogeneous porosity characteristics of each rock sample. Not only were the diffusion coefficients found to depend on the magnitude of the porosity but also on its spatial distribution. Specifically, the geometry, position, and orientation of the heterogeneous porosity features populating each rock slab appeared to influence the diffusion characteristics.

  19. Wave propagation in double-porosity dual-permeability materials: Velocity and attenuation

    Science.gov (United States)

    Sharma, M. D.

    2017-08-01

    This study considers the propagation of harmonic plane waves in a double-porosity solid saturated by a viscous fluid. Two different porosities are supported with different permeabilities to facilitate the wave-induced fluid-flow in this composite material. The variation of the fluid content in the pores due to the wave-induced flow is expressed in terms of the dilatation of constituent particles in the porous aggregate. This fluid-flow can be considered through the constitutive relations with modified anelastic coefficients. The modified coefficients, being frequency dependent and complex, illustrate the dispersive and anelastic behaviour of double-porosity dual-permeability materials. Relevant equations of motion are solved to explain the propagation of three longitudinal waves and one transverse wave in double-porosity dual-permeability medium. A numerical example is considered to illustrate dispersion in velocity and attenuation of the four waves. Effect of wave-induced fluid-flow is analysed with changes in wave-inhomogeneity, pore-fluid viscosity and double-porosity structure.

  20. Effect of porosity of the electrodes on ionic electroactive polymer actuators

    Science.gov (United States)

    Nakshatharan, S. Sunjai; Johanson, Urmas; Punning, Andres; Aabloo, Alvo

    2017-04-01

    Ionic electroactive polymer (IEAP) actuators with carbon based porous electrodes and ionic liquid electrolyte are attractive alternatives compared to the actuators composed of noble metal electrodes. Besides of numerous other parameters, the porosity of the electrode matrix has high influence on the electrochemical behavior and mechanical response of these actuators. Porosity has direct influence on the tortuosity, electronic conductivity, ionic conductivity, ion diffusivity, mobility, as well as the specific area and specific capacitance of electrode. It can also influence directly the mechanical properties of the IEAP laminate: durability, stiffness, etc. In this study, a detailed physical model that incorporates porosity of electrodes and its relation to the electrochemical, transport and mechanical behavior of the IEAP actuator is developed. The behavior of the actuator under different porosity values is investigated through finite elements simulation. The outputs of the simulation are cation concentration, current consumed and deformation of the actuator etc. Altering porosity and determining its optimum value help to comprehend the occurring physical and electrochemical processes, as well as to design actuators capable of delivering optimum electrical and mechanical response.

  1. The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites.

    Science.gov (United States)

    Schnieders, Julia; Gbureck, Uwe; Vorndran, Elke; Schossig, Michael; Kissel, Thomas

    2011-11-01

    The influence of porosity on release profiles of antibiotics from calcium phosphate composites was investigated to optimize the duration of treatment. We hypothesized, that by the encapsulation of vancomycin-HCl into biodegradable microspheres prior admixing to calcium phosphate bone cement, the influence of porosity of the cement matrix on vancomycin release could be reduced. Encapsulation of vancomycin into a biodegradable poly(lactic co-glycolic acid) copolymer (PLGA) was performed by spray drying; drug-loaded microparticles were added to calcium phosphate cement (CPC) at different powder to liquid ratios (P/L), resulting in different porosities of the cement composites. The effect of differences in P/L ratio on drug release kinetics was compared for both the direct addition of vancomycin-HCl to the cement liquid and for cement composites modified with vancomycin-HCl-loaded microspheres. Scanning electron microscopy (SEM) was used to visualize surface and cross section morphology of the different composites. Brunauer, Emmett, and Teller-plots (BET) was used to determine the specific surface area and pore size distribution of these matrices. It could be clearly shown, that variations in P/L ratio influenced both the porosity of cement and vancomycin release profiles. Antibiotic activity during release study was successfully measured using an agar diffusion assay. However, vancomycin-HCl encapsulation into PLGA polymer microspheres decreased porosity influence of cement on drug release while maintaining antibiotic activity of the embedded substance.

  2. Report on Evaluation, Verification, and Assessment of Porosity Migration Model in Fast Reactor MOX Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Novascone, Stephen Rhead [Idaho National Laboratory; Peterson, John William [Idaho National Laboratory

    2016-09-01

    Abstract This report documents the progress of simulating pore migration in ceramic (UO2 and mixed oxide or MOX) fuel using BISON. The porosity field is treated as a function of space and time whose evolution is governed by a custom convection-di?usion-reaction equation (described here) which is coupled to the heat transfer equation via the temperature field. The porosity is initialized to a constant value at every point in the domain, and as the temperature (and its gradient) are increased by application of a heat source, the pores move up the thermal gradient and accumulate at the center of the fuel in a time-frame that is consistent with observations from experiments. There is an inverse dependence of the fuel’s thermal conductivity on porosity (increasing porosity decreases thermal conductivity, and vice-versa) which is also accounted for, allowing the porosity equation to couple back into the heat transfer equation. Results from an example simulation are shown to demonstrate the new capability.

  3. Effect of Process Parameters on Porosity in Aluminum Lost Foam Process

    Institute of Scientific and Technical Information of China (English)

    Kiyoung KIM; Kyongwhoan LEE

    2005-01-01

    Porosity is a main defect in aluminum alloy castings, which is also thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fundamental experiments were carried out to evaluate the effect of process parameters such as the melt treatment, the cooling rate and the density of expanded polystyrene (EPS) foam on porosity in A356.2 bar casting. The effect of melt treatment including degassing and refining was investigated. The effect of cooling rate was also evaluated by changing the mold packing material such as the silica sand, the zircon sand and the steel shots. Gas entrapment due to the turbulent metal flow during mold filling in conventional molding process results in porosity. Mold filling sequence in lost foam process is different from that in conventional molding process. The effect of molten metal flow was estimated by comparing the density of the casting by conventional sodium silicate molding with that by lost foam process. Density measurement was conducted to analyze the extent of porosity in the casting. Source of the porosity in lost foam process can be divided into two factors, i.e. turbulence in molten metal flow and entraining residue or gas from the pattern during pouring.

  4. Effect of porosity on wear resistance of SiCp/Cu composites prepared by pressureless infiltration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; QU Xuan-hui; DUAN Bo-hua; HE Xin-bo; QIN Ming-li

    2008-01-01

    The influence of porosity on the wear behavior of high volume fraction (61%) SiCp/Cu composite produced by pressureless infiltration was studied using a sliding, reciprocating and vibrating(SRV) machine. SiCp/Cu composites slid against hardened GCr15 bearing steel ball in the load range of 40-200 N. The results show that the wear rate increases with increasing porosity. The composite containing low porosity shows excellent wear resistance, which is attributed to the presence of mechanically mixed layer on the worn surface. In this case, the dominant wear mechanism is oxidative wear. Comparatively, the composite containing high porosity exhibits inferior wear resistance. Fracture and spalling of the particles are considered as the main causes of severe wear. Third body abrasion is the controlling wear mechanism. In addition, porosity has more important influence on wear rate at high load than at low load. This is associated with the fact that the fracture and spalling of particles is a process of crack initiation and propagation. At lower load, the pores beneath the worn surface can not propagate significantly, while the pores become unstable and easily propagate under high load, which results in a higher wear rate.

  5. Analysis of porosity distribution of large-scale porous media and their reconstruction by Langevin equation.

    Science.gov (United States)

    Jafari, G Reza; Sahimi, Muhammad; Rasaei, M Reza; Tabar, M Reza Rahimi

    2011-02-01

    Several methods have been developed in the past for analyzing the porosity and other types of well logs for large-scale porous media, such as oil reservoirs, as well as their permeability distributions. We developed a method for analyzing the porosity logs ϕ(h) (where h is the depth) and similar data that are often nonstationary stochastic series. In this method one first generates a new stationary series based on the original data, and then analyzes the resulting series. It is shown that the series based on the successive increments of the log y(h)=ϕ(h+δh)-ϕ(h) is a stationary and Markov process, characterized by a Markov length scale h(M). The coefficients of the Kramers-Moyal expansion for the conditional probability density function (PDF) P(y,h|y(0),h(0)) are then computed. The resulting PDFs satisfy a Fokker-Planck (FP) equation, which is equivalent to a Langevin equation for y(h) that provides probabilistic predictions for the porosity logs. We also show that the Hurst exponent H of the self-affine distributions, which have been used in the past to describe the porosity logs, is directly linked to the drift and diffusion coefficients that we compute for the FP equation. Also computed are the level-crossing probabilities that provide insight into identifying the high or low values of the porosity beyond the depth interval in which the data have been measured.

  6. Preparing diopside nanoparticle scaffolds via space holder method: Simulation of the compressive strength and porosity.

    Science.gov (United States)

    Abdellahi, Majid; Najafinezhad, Aliakbar; Ghayour, Hamid; Saber-Samandari, Saeed; Khandan, Amirsalar

    2017-08-01

    In the present study, diopside nanopowders were prepared via mechanical milling with eggshell as the calcium source. The space holder method (compaction of ceramic powder and spacer) as one of the most important methods to produce ceramic/metal scaffolds was used to produce diopside scaffolds. For the first time, the effect of the spacer size on mechanical properties and porosity of the obtained scaffolds was experimentally discussed. According to the results obtained, the NaCl particles (as the spacer) with the size of 400-600µm maintained their original spherical shape during the compaction and sintering processes. As a new work, the most important parameters including the spacer type, spacer concentration, spacer size, and applied pressure were considered, and their effects on mechanical properties and porosity of diopside scaffolds were simulated. Gene Expression Programming (GEP), as one of the most branches of the artificial intelligence, was used for simulation process. By using the GEP, two equations were introduced to predict the compressive strength and porosity of the obtained scaffolds with the lowest error values. The 3D diagrams extracted from the model were used to evaluate the combined effect of the process parameters on the compressive strength and porosity of the scaffolds. The GEP model presented in this work has a very low level of error and a high level of the squared regression for predicting the compressive strength and porosity of diopside scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Single beam determination of porosity and etch rate in situ during etching of porous silicon

    Science.gov (United States)

    Foss, S. E.; Kan, P. Y. Y.; Finstad, T. G.

    2005-06-01

    A laser reflection method has been developed and tested for analyzing the etching of porous silicon (PS) films. It allows in situ measurement and analysis of the time dependency of the etch rate, the thickness, the average porosity, the porosity profile, and the interface roughness. The interaction of an infrared laser beam with a layered system consisting of a PS layer and a substrate during etching results in interferences in the reflected beam which is analyzed by the short-time Fourier transform. This method is used for analysis of samples prepared with etching solutions containing different concentrations of HF and glycerol and at different current densities and temperatures. Variations in the etch rate and porosity during etching are observed, which are important effects to account for when optical elements in PS are made. The method enables feedback control of the etching so that PS films with a well-controlled porosity are obtainable. By using different beam diameters it is possible to probe interface roughness at different length scales. Obtained porosity, thickness, and roughness values are in agreement with values measured with standard methods.

  8. Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers

    Science.gov (United States)

    Ghiasi-Freez, Javad; Soleimanpour, Iman; Kadkhodaie-Ilkhchi, Ali; Ziaii, Mansur; Sedighi, Mahdi; Hatampour, Amir

    2012-08-01

    Identification of different types of porosity within a reservoir rock is a functional parameter for reservoir characterization since various pore types play different roles in fluid transport and also, the pore spaces determine the fluid storage capacity of the reservoir. The present paper introduces a model for semi-automatic identification of porosity types within thin section images. To get this goal, a pattern recognition algorithm is followed. Firstly, six geometrical shape parameters of sixteen largest pores of each image are extracted using image analysis techniques. The extracted parameters and their corresponding pore types of 294 pores are used for training two intelligent discriminant classifiers, namely linear and quadratic discriminant analysis. The trained classifiers take the geometrical features of the pores to identify the type and percentage of five types of porosity, including interparticle, intraparticle, oomoldic, biomoldic, and vuggy in each image. The accuracy of classifiers is determined from two standpoints. Firstly, the predicted and measured percentages of each type of porosity are compared with each other. The results indicate reliable performance for predicting percentage of each type of porosity. In the second step, the precisions of classifiers for categorizing the pore spaces are analyzed. The classifiers also took a high acceptance score when used for individual recognition of pore spaces. The proposed methodology is a further promising application for petroleum geologists allowing statistical study of pore types in a rapid and accurate way.

  9. The influence of dust grain porosity on the analysis of debris disc observations

    Science.gov (United States)

    Brunngräber, Robert; Wolf, Sebastian; Kirchschlager, Florian; Ertel, Steve

    2017-02-01

    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution - the so-called `blowout size' - is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend.

  10. 低孔隙度低渗透率岩石孔隙度与渗透率关系研究%Study on the relationship between porosity and permeability of low porosity and low permeability rocks

    Institute of Scientific and Technical Information of China (English)

    王凤翔

    2015-01-01

    Some research in order to better master rock permeability and porosity of rules. In this paper,low porosity and low permeability rock porosity and permeability relationship.%为了能够更好的掌握岩石渗透率同孔隙度间的规律,本文就低孔隙度低渗透率岩石孔隙度与渗透率关系进行一定的研究。

  11. Estimating the change of porosity in the saturated zone during air sparging

    Institute of Scientific and Technical Information of China (English)

    Yih-jin Tsai; Yu-chia Kuo; Tsu-chi Chen; Feng-chih Chou

    2006-01-01

    Air sparging is a remedial method for groundwater. The remedial region is similar to the air flow region in the saturated zone. If soil particles are transported during air sparging, the porosity distributions in the saturated zone change, which may alter the flow path of the air. To understand better the particle movement, this study performed a sandbox test to estimate the soil porosity change during air sparging. A clear fracture was formed and the phenomenon of particle movement was observed when the air injection was started. The moved sand filled the porous around the fracture and the reparked sand filled the fracture, reducing the porosity around the fracture. The results obtained from the photographs of the sandbox, the current measurements and the direct sand sample measurements were close to each other and are credible. Therefore, air injection during air sparging causes sand particle movement of sand, altering the characteristic of the sand matrix and the air distribution.

  12. Rheomolding -- A one-step process for producing semi-solid metal castings with lowest porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Peng, H.; Wang, K.K. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical and Aerospace Engineering

    1996-10-01

    Rheomolding is a new idea of combining rheocasting in an injection-molding-like apparatus to achieve net-shape manufacturing of semi-solid metal parts with lowest porosity. Through a prototype rheomolding machine, extensive experiments have been carried out with Sn-15%Pb alloy. In this paper, some details on temperature control and resulting process quality are discussed. Metallographic examinations show that the semi-solid metal generated with a cycle time ranging from one to several minutes has resulted in well-separated solid crystals of spherical shape with little agglomeration, even at a solid fraction of over 40%. The flow lengths in a spiral mold at different process conditions were measured to study the process behavior. Porosity measurements in the molded spirals indicate that the semi-solid Sn-15%Pb by rheomolding values below 1%. By adjusting the ram speed, parts with essentially zero porosity are achieved with Sn-15%Pb alloy in semi-solid state.

  13. Comparison of results from different NDE techniques from ceramic matrix composites with varying porosity levels

    Science.gov (United States)

    Smyth, Imelda; Ojard, Greg; Santhosh, Unni; Ahmad, Jalees; Gowayed, Yasser

    2015-03-01

    Ceramic matrix composites (CMC's) are attractive materials for use in advanced turbine engines. Due to the nature of available processing techniques, however, the amount and distribution of porosity in CMC's can vary greatly. This can be particularly true in parts with complex geometries. It is therefore important to characterize the porosity with non-destructive techniques and understand its effect on properties. A series of CMC samples were fabricated with varying levels of porosity and analyzed with different NDE techniques. The results were categorized and analyzed with respect to ease of interpretation and degree to which they could be quantified and used in models to determine the effects of defects. The results were also correlated with microstructural examination and mechanical properties.

  14. The effect of porosity of dust particles on polarization and color with special reference to comets

    CERN Document Server

    Sen, A K; Vilaplana, R; Choudhury, Naznin R; Gupta, Ranjan

    2016-01-01

    Cosmic dusts are mostly responsible for polarization of the light that we ob- serve from astrophysical objects. They also lead to color-extinction, thermal re- emission and other scattering related phenomena. Dusts are made of small particles which are characterised by their size (radius), composition (matter), and structure (morphology, including porosity). In the present work, we address the question of the role of the dust particle porosity on light polarization and color, using Discrete Dipole Approximation (DDA) light scattering code. To answer this question, we developed an algorithm to generate solid particles of arbitrary values of porosity. In brief, the model considers a given homogeneous structure made of touching dipoles. The dipoles are randomly removed one by one, such that the remaining structure remains connected. We stop the removal process when the desired poros- ity is obtained. Then we study the optical properties of the porous particle. That way, we show how the proper value of the porosi...

  15. Strength, porosity, and chloride resistance of mortar using the combination of two kinds of pozzolanic materials

    Science.gov (United States)

    Rukzon, Sumrerng; Chindaprasirt, Prinya

    2013-08-01

    This article presents a study on the resistance to chloride penetration, corrosion, porosity, and strength of mortar containing fine fly ash (FA), ground rice husk-bark ash (RB), and ground bagasse ash (BA). Ordinary Portland cement (CT) was blended with a single pozzolan and two pozzolans. Strength, porosity, rapid chloride penetration, immersion, and corrosion tests were performed to characterize the mortar. Test results showed that the use of ternary blends of CT, FA, and RB or BA decreased the porosity of the mortar, as compared with binary blended mortar containing CT and RB or BA. The resistance to chloride penetration of the mortar improved substantially with partial replacement of CT with FA, RB, and BA. The use of ternary blends of CT, FA and RB or BA produced the mortar with good strength and resistance to chloride penetration. The resistance to chloride penetration was higher with an increase in the replacement level due to the reduced calcium hydroxide.

  16. Finite element simulation of a ceramic drying process considering pore shape and porosity

    Science.gov (United States)

    Keum, Y. T.; Oh, J. W.

    2005-03-01

    When a green ceramic is dried, the particles flocculate into a fishnet structure in the gel phase. The range of pore size is between the micro-scale and the nano-scale. In general, the elastic properties of porous materials are affected by both pore shape and porosity. Using the homogenization method, the elastic tensor of nanoscopic gel unit cell, varying with the porosity, is first computed. Using the finite element method, the drying process of a green ceramic insulator is simulated, based on the elastic properties of a microscopic particle aggregate unit cell with circular and cross pores, found from the nanoscopic elastic tensor using the homogenization method. Consideration of the pore shape and porosities in a simulation can provide a more accurate residual stress distribution.

  17. Experimental studies on the influence of porosity on membrane absorption process

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; REN Zhongqi; ZHANG Zeting; ZHANG Weidong

    2007-01-01

    Eight kinds of flat membranes with different micro-structures were chosen to carry out the membrane absorption experiments with CO2 and de-ionized water or According to experimental results,the membrane pores shape (stretched pore and cylinder pore) and membrane thickness do not affect the membrane absorption process,and the membrane porosity has only little influence on membrane absorption process for slow mass transfer system.However,the influence of porosity on the membrane absorption process became visible for fast mass transfer system.Moreover,the mass transfer behavior near the membrane surface on liquid side was studied.The results show that the influence of membrane porosity on mass transfer relates to flow condition,absorption system and distance between micro-pores,etc.

  18. Porosity evolution in additively manufactured aluminium alloy during high temperature exposure

    Science.gov (United States)

    Bai, J.; Ding, H. L.; Gu, J. L.; Wang, X. S.; Qiu, H.

    2017-01-01

    A 2319 aluminum alloy is deposited by the Wire+Arc Additive Manufacturing technology with Cold Metal Transfer process. Porosity that are both existing in the as-deposited and as-heat treated state metal are revealed by optical microscopy and quantitatively analyzed. It explains the reason why the newly initiated pores are easily tend to gather between each layer around the fusion line zone for the WAAM metal after heat treatment. The inner morphology of the pores are demonstrated by Scanning Electron Microscopy. Porosity evolution and distribution during high temperature exposure are demonstrated. Thus two porosity growth and number increase mechanisms are proposed eventually, providing theoretical basis for related material design and process optimization.

  19. Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-09-01

    In this article, the size-dependent and porosity-dependent vibrational behavior of magneto-electro-elastic functionally graded (MEE-FG) nanoscale beams on two-parameter elastic substrate is presented via a third-order shear deformation beam model. Porosity-dependent material coefficients of the nanobeam are compositionally graded throughout the thickness according to a modified power-law model. Incorporation of small size effect is carried out based on Eringen's nonlocal elasticity theory. Through Hamilton's principle, derivation of nonlocal governing equations is performed. After analytically solving these equations, the influences of porosity, elastic foundation, magnetic potential, applied voltage, scale coefficient, material gradation and slenderness ratio on the frequencies of the porous MEE-FG nanobeams are examined.

  20. Empirical model predicting the layer thickness and porosity of p-type mesoporous silicon

    Science.gov (United States)

    Wolter, Sascha J.; Geisler, Dennis; Hensen, Jan; Köntges, Marc; Kajari-Schröder, Sarah; Bahnemann, Detlef W.; Brendel, Rolf

    2017-04-01

    Porous silicon is a promising material for a wide range of applications because of its versatile layer properties and the convenient preparation by electrochemical etching. Nevertheless, the quantitative dependency of the layer thickness and porosity on the etching process parameters is yet unknown. We have developed an empirical model to predict the porosity and layer thickness of p-type mesoporous silicon prepared by electrochemical etching. The impact of the process parameters such as current density, etching time and concentration of hydrogen fluoride is evaluated by ellipsometry. The main influences on the porosity of the porous silicon are the current density, the etching time and their product while the etch rate is dominated by the current density, the concentration of hydrogen fluoride and their product. The developed model predicts the resulting layer properties of a certain porosification process and can, for example be used to enhance the utilization of the employed chemicals.

  1. Permeability estimation from log-derived porosity II. Via co-kriging

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jen Ho; Pu, Zhi Wei (Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geology)

    1993-03-01

    In paper (I) (given at this meeting), the authors applied fuzzy regression to the problem of permeability estimation from porosity-log data. In this paper, they introduce another novel approach, co-kriging. Co-kriging is a multivariate geostatistical technique designed for characterizing joint spatial correlations between pairs of variables (log-derived porosity vs. core-derived permeability in the context of this paper). In other words, co-kriging yields estimates that use not only the information from direct measurements of the variables being estimated, but also the information from measurements of a second variable. Thus, co-kriging can be used to predict permeability at uncored wells. This is a powerful technique because they usually have more log data than core data. By making use of co-kriging they can make good use of the log-derived porosity data. Results of the study using the data from Chunchula field illustrate the power of this technique.

  2. Analyze of the Possible Causes of Porosity Type Deffects in Aluminium High Pressure Diecast Parts

    Directory of Open Access Journals (Sweden)

    Ferencz Peti

    2011-06-01

    Full Text Available Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.Die castings are characterized by a very good surface finish (by casting standards and dimensional consistency.The most common deffect that appear in castings is the porosity type of deffect, which can be gas porosity, shrinkage porosity or leaker.

  3. Permeability, compressibility and porosity of Jurassic shale from the Norwegian-Danish Basin

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    2014-01-01

    . Porosity measurements obtained using helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance (NMR) techniques on the shale samples show that MICP porosity is 6-10% lower than HPMI or NMR porosity. Compressibility, from uniaxial loading......, and elastic wave velocities were measured simultaneously on saturated samples under drained conditions at room temperature. Uniaxial loading tests indicate that shale is significantly stiffer in situ than is normally assumed in geotechnical modelling. Permeability can be predicted from elastic moduli......, and from combined MICP and NMR data. The permeability predicted from Brunauer-Emmett-Teller (BET)-specific surface-area measurements using Kozeny's formulation for these shales, being rich in silt and kaolinite, falls in the same order of magnitude as permeability measured from constant rate of strain (CRS...

  4. Porous structure of membranes of an acrylonitrile copolymer. Porosity, ^1H-NMR permeability

    Science.gov (United States)

    Viallat, A.; Margulies, M. M.

    2000-06-01

    Nanoporous polymer membranes (porosity φ≈ 0.7) used for dialysis are studied from NMR relaxation times of water confined in the pore space. Fast interpore water diffusion is observed. Two structural parameters are evidenced: i) a reduced NMR relaxation time, tau, which reflects the width of the pore-size distribution; ii) the average polymer-grain size of the solid matrix deduced from NMR experiments performed on membranes partially filled by water. A relation is found between the ratio k/tau^2, where k is the permeability to water and the porosity. This relation is in qualitative agreement with numerical simulations reported in the literature on low-porosity systems and with experimental results obtained for sedimentary rocks and for fused glass model systems. It supports the idea that tau is the relevant structural parameter to describe convective transport in a wide class of porous systems.

  5. The influence of dust grain porosity on the analysis of debris disc observations

    CERN Document Server

    Brunngräber, Robert; Kirchschlager, Florian; Ertel, Steve

    2016-01-01

    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution -- the so-called 'blowout size' -- is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of two. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The ana...

  6. Experimental study of the thermal conductivity of sintered tungsten: Evidence of a critical behaviour with porosity

    Science.gov (United States)

    Gheribi, Aïmen E.; Gardarein, Jean-Laurent; Autissier, Emmanuel; Rigollet, Fabrice; Richou, Marianne; Chartrand, Patrice

    2015-08-01

    Rear face flash experiments were performed in order to determine the thermal conductivity of sintered tungsten at room temperature. Ten different samples were synthesized with the spark plasma sintering technique. The microstructure obtained from the sintering is porous and consists of angular grains with medium sphericity. The average grain size (d) and the porosity (P) of the samples lie within the ranges of 2 μ m ≤ d ≤ 7 μ m and 0 ≤ P ≤ 0.35 . We show that the dependence of the thermal conductivity of the sintered tungsten samples on the porosity shows a critical behaviour. A theoretical explanation of this behaviour and a predictive model for this porosity dependence are proposed.

  7. Effect of cooling rate on the microstructure and porosity of alumina produced by freeze casting

    Directory of Open Access Journals (Sweden)

    Nieto Isabel María

    2012-01-01

    Full Text Available Freeze casting is a well-known shaping technique to produce materials with directional porosity. One of the major problems is the difficulty to control the cooling rate thus leading to gradients in pore size and homogeneity. This work deals with the manufacture of alumina ceramics with directional porosity by freeze casting of aqueous suspensions. An experimental set-up was prepared in order to apply different cooling rates. Freeze casting tests were done with an aqueous alumina suspension after optimization of its rheological behavior. The porosity and microstructural features of sintered bodies produced under different experimental conditions were studied and analyzed. It is concluded that the cooling rate influences the microstructure while final temperature has a much lower influence. Also, the microstructural analysis shows that there is a gradient in the directionality of pores, being lower at the bottom and the top and higher in the central region of the specimens.

  8. Microcrack porosity and in situ stress in Illinois Borehole UPH 3

    Science.gov (United States)

    Carlson, S. R.; Wang, H. F.

    1986-09-01

    Differential strain analysis was used to study microcracks in granite core taken from 0.7 to 1.6 km depth from Illinois Deep Hole UPH 3. The majority of the microcracks are believed to have been generated by stress relief upon removal of the core from depth. Volumetric microcrack porosity was found to vary by an order of magnitude. Low values of microcrack porosity were found in highly fractured intervals, where large, open fractures have relaxed a portion of the in situ stress. Plotting microcrack porosity against mean in situ stress reveals a strong positive correlation over a range of 25 MPa. Large, subvertical fractures may locally influence the orientation of stress relief microcracks. The direction of maximum horizontal crack strain was found to be subparallel to the strike of the nearest large fracture in 7 of 8 fine-grained samples.

  9. THE FLOW PROBLEM OF FLUIDS FLOW IN A FRACTAL RESERVOIR WITH DOUBLE POROSITY

    Institute of Scientific and Technical Information of China (English)

    同登科; 张鸿庆

    2001-01-01

    The effective radius of oil well is introduced in the inner boundary in the problem of fluids flow through fractal reservoir with double porosity, and thus a new model is established. Taking the wellbore storage and steady-state skin effect into consideration, the exact solutions of the pressure distribution of fluids flow in fractal reservoirs with double porosity are given for the cases of an infinite outer boundary, a finite closed outer boundary and a bounded domain with the constant pressure outer boundary conditions. The pressure behavior of fractal reservoir with double porosity is analyzed by using a numerical inversion of the Laplace transform solution. The pressure responses of changing various parameters are discussed.

  10. Hydrogen Content and Porosity Behavior of Hypereutectic Aluminum-silicon Alloy with Phosphorus

    Institute of Scientific and Technical Information of China (English)

    HU Li-na; BIAN Xiu-fang; DUAN You-feng

    2004-01-01

    By making castings that pick up gas from moisture in red sand molds,the porosity generated at different cooling rates was discussed during solidification of hypereutectic Al-25%Si alloy without and with phosphorus additions. The effect of phosphorus addition on hydrogen content in the melt was also studied. It was observed that the phosphorus addition made hydrogen content in alloy melts present a "see-saw" tendency.In addition to primary silicon refinement,the phosphorus promoted gas porosity formed not only in slowly cooled sections, but also in rapidly cooled sections. There was a small difference in density of full dense sample between P-refined and unrefined castings, with a larger density associated with phosphorous addition. The change of the surface tension seemed more reasonable to explain the mechanism of porosity behavior.

  11. Effect of keyhole characteristics on porosity formation during pulsed laser-GTA hybrid welding of AZ31B magnesium alloy

    Science.gov (United States)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa; Ma, Shengnan; Zhang, Yue

    2017-06-01

    This paper experimentally investigates the relationship between laser keyhole characteristics on the porosity formation during pulsed laser-GTA welding of magnesium alloy. Based on direct observations during welding process, the influences of laser keyhole state on the porosity formation were studied. Results show that the porosities in the joint are always at the bottom of fusion zone of the joint, which is closely related to the keyhole behavior. A large depth to wide ratio always leads to the increase of porosity generation chance. Keeping the keyhole outlet open for a longer time benefits the porosity restriction. Overlap of adjacent laser keyhole can effectively decrease the porosity generation, due to the cutting effect between adjacent laser keyholes. There are threshold overlap rate values for laser keyholes in different state.

  12. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  13. Effects of porosity on the fatigue performance of polymethyl methacrylate bone cement: an analytical investigation.

    Science.gov (United States)

    Evans, S L

    2006-01-01

    Porosity has been shown to affect the fatigue life of bone cements, but, although vacuum mixing is widely used to reduce porosity in the clinical setting, results have been mixed and the effects of porosity are not well understood. The aim of this study was to investigate the effects of porosity using stress analysis and fracture mechanics techniques. The stress concentrations arising at voids in test specimens were found using analytical solutions and boundary element methods. The fatigue life of specimens containing voids of various sizes was predicted using fracture mechanics techniques. For spherical voids that do not occupy a significant proportion of the cross-section, the resulting stress concentration is independent of void size and too small to account for the observed crack initiation. Cracks must therefore initiate at additional stress raisers such as radiopacifier particles or additional voids. For large voids, the stress increases as the remaining cross-section of the specimen decreases, and this may account for much of the observed reduction in fatigue strength in hand-mixed cement. Although crack initiation may be largely independent of void size, there is an effect on crack growth rate. Cracks are predicted to grow faster around larger voids, since they remain in the stress concentration around the void for longer. This effect may account for the relationship between porosity and fatigue life that has been observed in samples without large voids. Since porosity appears to affect crack growth more than initiation, it may be less damaging in high-cycle clinical fatigue, which may be predominantly initiation controlled, than in short laboratory tests.

  14. Upscaling conductivity and porosity in three-dimensional heterogeneous porous media

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong

    2004-01-01

    An empirical formula is presented to upscale the conductivity of 3-dimensional heterogeneous porous media, in which the distribution of local-scale conductivity is non-Gaussian with a high variance. The upscaled conductivity is determined as a function of the volumetric proportion, the spatial connectivity and the statistical geometric length of high-permeable inclusions, and the arithmetic mean of conductivities of all hydrofacies. A systematic comparison to other traditional upscaling methods indicates that this empirical formula provides a better estimation of the equivalent conductivity. In the second part of this study, numerical experiments of solute migration reveal that porosity also needs to be upscaled to capture the transport of contaminants in a heterogeneous medium using an effective or upscaled homogeneous medium. This is due to the tendency of contaminants to be preferrentially transported by 3-dimensional pathways composed of high-permeable materials in heterogeneous aquifer systems. The apparent difference between the actual transport velocity of contaminants and the upscaled velocity, based on the equivalent conductivity, forces upscaling of porosity. Further systematic analyses demonstrate that the upscaled porosity follows a non-linear trend as the content of high-permeable sediments decreases. Resultant upscaled porosity, with values varying between 0.004 and 1.5, is beyond the definition of the traditional porosity on the representative elementary volume (REV) scale. When the content of high-permeable materials is less than 30%, the upscaling of porosity is critical in the simulation of the contaminant transport in a heterogeneous medium using an upscaled, homogeneous counterpart.

  15. Porosity of UHPFRC exposed to high temperatures determined by different techniques

    Science.gov (United States)

    Korecký, Tomáš; Pokorný, Jaroslav; Fořt, Jan; Čítek, David; Pavlík, Zbyšek

    2016-07-01

    The pore system characterization of an Ultra High Performance Fibre Reinforced Concrete (UHPFRC) exposed to the elevated temperatures is presented in the paper. The porosity and pore size distribution of building materials are of the particular importance because of their clear effect on durability and service life of structural elements and buildings. Material characteristics as mechanical, thermal and hygric properties are strongly dependent on pore system. For porosity measurement, several techniques having specific advantages or disadvantages with respect to the pore size are available. In building materials research, usage of Mercury Intrusion Porosimetry (MIP) with range of the detected pores up to 100 µm is the most common. Nevertheless, in practical measurements, the differences between the porosity values determined by helium pycnometry and MIP are usually observed. It can be attributed to the presence of pores bigger than 100 µm. Based on the literature analysis it is evident that the porosity increases with the amount of fibres used since fibres application reduces workability of fresh mixture and thus cause heterogeneities and microcavities in material microstructure and interfacial transition zone between fibres, aggregates and cement paste. Therefore, the Optical Porosimetry (OP) based on an image analysis is presented in the paper as a suitable supplemental method for classification number, size and shape of bigger pores. At first, porosity is investigated on samples without temperature loading. Then, on samples which are exposed to the temperatures of 400, 800, and 1000 °C respectively. Pores size distribution is studied using mercury intrusion porosimeters Pascal 140 and 440. Images are captured by an optical microscope with an attached digital camera. The obtained results show necessity to apply the combined technique for the assessment of the porosity value.

  16. Trade-off between root porosity and mechanical strength in species with different types of aerenchyma.

    Science.gov (United States)

    Striker, G G; Insausti, P; Grimoldi, A A; Vega, A S

    2007-05-01

    The objective of this work was to study the existence of a trade-off between aerenchyma formation and root mechanical strength. To this end, relationships among root anatomical traits and mechanical properties were analysed in plant species with contrasting root structural types: Paspalidium geminatum (graminaceous type), Cyperus eragrostis (cyperaceous type), Rumex crispus (Rumex type) and Plantago lanceolata (Apium type). Variations in anatomical traits and mechanical strength were assessed as a function of root diameter by exposing plants to 0, 7, 15 and 30 d of control and flooded conditions. For each species, the proportion of root cortex was positively associated with the increment of root diameter, contributing to the increase in root porosity under both control and flooded conditions. Moreover, cell lysis produced an additional increase in root porosity in most species under flooded conditions (except R. crispus). Both structural types that presented a uniseriate layer (epidermis) to cope with compression (Rumex and Apium types) were progressively weakened as root porosity increased. This effect was significant even when the increment of root porosity was solely because of increased root diameter (R. crispus), as when both processes (root diameter and cell lysis) added porosity to the roots (P. lanceolata). Conversely, structural types that presented a multiseriate ring of cells in the outer cortex (graminaceous and cyperaceous types) maintained mechanical strength over the whole range of porosity, in spite of lysogenic processes registered in the inner cortex. In conclusion, our study demonstrates a strong trade-off between aerenchyma formation and mechanical strength in root structural types that lacked a multiseriate ring of tissue for mechanical protection in the outer cortex. The results suggest that this ring of tissue plays a significant role in maintaining the mechanical strength of roots when flooding induces the generation of additional aerenchyma

  17. Porosity Parameters Of Cement Stone Containing Chemical Admixtures Of Different Purpose

    Directory of Open Access Journals (Sweden)

    Lukas Venčkauskas

    2013-12-01

    Full Text Available The conducted research has established a complex influenceand the impact of separate chemical admixtures of differentpurpose on the parameters of the porosity of hardened cementpaste such as open and closed porosity, the average size of poresand the rates of pore inequality. According to the parametersof the porosity of hardened cement paste, on the basis of A. E.Sheikin’s methodology, the number of freezing-thawing cycleswas predicted. This research used plasticizing, viscosity modifyingand antifoaming admixtures. It has been found that, when theamount of plasticizing admixture in cement paste (W/C–0.45 isconstant and makes 1.1% of the cement mass, and the amountof viscosity modifying and antifoaming the admixture increasesfrom 0.1 to 0.6% and from 0.05 to 0.3% respectively, the openporosity of hardened cement paste varies between 30.21% and31.06%, while closed porosity varies between 5.39% and 6.22%.When the amount of the plasticizing admixture in cement paste(W/C–0.45 exceeds 1.1% of the cement mass, the open porosityof hardened cement paste increases by 1.4 times and closedporosity decreases by 2.5 times. While adding 0.1% of the viscositymodifying admixture to cement paste, the open porosityof hardened cement paste is increased by 1.5 times and closedporosity decreases by 2.4 times. The amount of 0.05% of thecement mass of the antifoaming admixture results in the increasedopen porosity of hardened cement paste by 1.5 times and reducedclosed porosity by 3.5 times.

  18. On replacing Am-Be neutron sources in compensated porosity logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Peeples, Cody R. [North Carolina State University (United States)], E-mail: crpeeple@ncsu.edu; Mickael, Medhat; Gardner, Robin P. [North Carolina State University (United States)

    2010-04-15

    Authors explored the direct replacement of Am-Be neutron sources in neutron porosity logging tools through Monte Carlo simulations using MCNP5. {sup 252}Cf and electronic accelerator neutron sources based on the Deuterium-Tritium fusion reaction were considered. Between the sources, a tradeoff was noted between sensitivity to the presence of hydrogen and uncertainty due to counting statistics. It was concluded that both replacement sources as well as accelerator sources based on the Deuterium-Deuterium fusion reaction warrant further consideration as porosity log sources.

  19. On replacing Am-Be neutron sources in compensated porosity logging tools.

    Science.gov (United States)

    Peeples, Cody R; Mickael, Medhat; Gardner, Robin P

    2010-01-01

    Authors explored the direct replacement of Am-Be neutron sources in neutron porosity logging tools through Monte Carlo simulations using MCNP5. (252)Cf and electronic accelerator neutron sources based on the Deuterium-Tritium fusion reaction were considered. Between the sources, a tradeoff was noted between sensitivity to the presence of hydrogen and uncertainty due to counting statistics. It was concluded that both replacement sources as well as accelerator sources based on the Deuterium-Deuterium fusion reaction warrant further consideration as porosity log sources.

  20. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    Science.gov (United States)

    Wada, S.; Mase, Y.; Shimizu, S.; Maeda, K.; Fujii, I.; Nakashima, K.; Pulpan, P.; Miyajima, N.

    2011-10-01

    Porous potassium niobate (KNbO3, KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  1. Fracture distribution and porosity in a fault-bound hydrothermal system (Grimsel Pass, Swiss Alps)

    Science.gov (United States)

    Egli, Daniel; Küng, Sulamith; Baumann, Rahel; Berger, Alfons; Baron, Ludovic; Herwegh, Marco

    2017-04-01

    The spatial distribution, orientation and continuity of brittle and ductile structures strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space (fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear zones, clay-rich fault gouges). In long-lived hydrothermal systems, permeability and the related fluid flow paths are therefore dynamic in space and time. Understanding the evolution and behaviour of naturally porous and permeable rock masses is critical for the successful exploration and sustainable exploitation of hydrothermal systems and can advance methods for planning and implementation of enhanced geothermal systems. This study focuses on an active fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field Grimsel Pass, Swiss Alps) that has been exhumed from few kilometres depth and which documents at least 3 Ma of hydrothermal activity. The explored rock unit of the Aar massif is part of the External Crystalline Massifs that hosts a multitude of thermal springs on its southern border in the Swiss Rhône valley and furthermore represents the exhumed equivalent of potentially exploitable geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland basin. This study combines structural data collected from a 125 m long drillhole across the hydrothermal zone, the corresponding drill core and surface mapping. Different methods are applied to estimate the porosity and the structural evolution with regard to porosity, permeability and fracture distribution. Analyses are carried out from the micrometre to decametre scale with main focus on the flow path evolution with time. This includes a large variety of porosity-types including fracture-porosity with up to cm-sized aperture down to grain-scale porosity. Main rock types are granitoid host rocks, mylonites, paleo-breccia and recent breccias. The porosity of the host rock as well as the

  2. Correlation between macroscopic porosity location and liquid metal pressure in centrifugal casting technique.

    Science.gov (United States)

    Vaidyanathan, T K; Schulman, A; Nielsen, J P; Shalita, S

    1981-01-01

    Radiographic analysis of uniform cylindrical castings fabricated by the centrifugal casting technique has revealed that the macroscopic porosity is dependent on the location of the sprue attachment to the casting. This is attributed to the significant pressure gradient associated with the centrifugal casting technique. The pressure gradient results in different heat transfer rates at portions of the castings near and away from the free surface of the button. Consequently, the macroscopic porosity is invariably at portions of the casting close to the free surface of the button. In addition, some optimized sprue-reservoir combinations could be predicted and proved, based on this pressure gradient concept.

  3. Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123

    Energy Technology Data Exchange (ETDEWEB)

    Diabira, I.; Castanier, L.M.; Kovscek, A.R.

    2001-04-19

    An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

  4. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  5. Study of the influence of agricultural waste on the porosity of clay brick

    Directory of Open Access Journals (Sweden)

    Chelouah Nasser

    2015-02-01

    Full Text Available This paper deals with the influence of two organic residues on the porosity of clay bricks. The insulation capacity of the brick increases with increasing the porosity. Combustible organic additions are often used to form pores. The formation of the more homogenous porous structure is favourably impacted by using the crushed rough olive stones containing oil. Plasticity, bulk density and mechanical properties were studied. The additions of organic residues have proved successful to form pores while maintaining the mechanical properties in the limits of the Algerian norms.

  6. Laser Carbonization of PAN-Nanofiber Mats with Enhanced Surface Area and Porosity.

    Science.gov (United States)

    Go, Dennis; Lott, Philipp; Stollenwerk, Jochen; Thomas, Helga; Möller, Martin; Kuehne, Alexander J C

    2016-10-17

    Here we present a novel laser process to generate carbon nanofiber nonwovens from polyacrylonitrile. We produce carbon nanofabrics via electrospinning followed by infrared laser-induced carbonization, facilitating high surface area and well-controlled hierarchical porosity. The process allows precise control of the carbonization conditions and provides high nanoscale porosity. In comparison with classical thermal carbonization, the laser process produces much higher surface areas and smaller pores. Furthermore, we investigate the carbonization performance and the morphology of polyacrylonitrile nanofibers compounded with graphene nanoplatelet fillers.

  7. Ultrasonic velocities of North Sea chalk samples: influence of porosity, fluid content and texture

    DEFF Research Database (Denmark)

    Rogen, B.; Fabricius, Ida Lykke; Japsen, P.

    2005-01-01

    We have studied 56 unfractured chalk samples of the Upper Cretaceous Tor Formation of the Dan, South Arne and Gorm Fields, Danish North Sea. The samples have porosities of between 14% and 45% and calcite content of over 95%. The ultrasonic compressional- and shear-wave velocities (V-P and V...... the South Arne Field than from the Dan Field for identical porosities. This difference may be due to textural differences between the chalk at the two locations because we observe that large grains (i.e. filled microfossils and fossil fragments) that occur more frequently in samples from the Dan Field have...

  8. Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar

    2007-01-01

    Full Text Available The most common fabrication technique of porous silicon (PS is electrochemical etching of a crystalline silicon wafer in a hydrofluoric (HF acid-based solution. The electrochemical process allows for precise control of the properties of PS such as thickness of the porous layer, porosity, and average pore diameter. The control of these properties of PS was shown to depend on the HF concentration in the used electrolyte, the applied current density, and the thickness of PS. The change in pore diameter, porosity, and specific surface area of PS was investigated by measuring nitrogen sorption isotherms.

  9. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Jie Wu

    2017-01-01

    Full Text Available We established a stress-history-dependent porosity model of potential target rocks for CO2 geosequestration based on rock sample porosity measurements under various effective stresses (5 - 120 MPa. The measured samples were collected from shallow boreholes (< 300 m depth drilled at the frontal fold in northern Taiwan. The lithology, density, and the stress-history-dependent porosity derived from shallow boreholes enabled us to predict the porosity-depth relationship of given rock formations at (burial depths of approximately 3170 - 3470 m potential sites for CO2 geosequestration located near the Taoyuan Tableland coastline. Our results indicate that the porosity of samples derived from laboratory tests under atmospheric pressure is significantly greater than the porosity measured under stress caused by sediment burial. It is therefore strongly recommended that CO2 storage capacity assessment not be estimated from the porosity measured under atmospheric pressure. Neglecting the stress history effect on the porosity of compacted and uplifted rocks may induce a percentage error of 7.7% at a depth of approximately 1000 m, where the thickness of the eroded, formerly overlying formation is 2.5 km in a synthetic case. The CO2 injection pressure effect on the porosity was also evaluated using the stress-history-dependent porosity model. As expected, the pore pressure buildup during CO2 injection will induce an increase in the rock porosity. For example, a large injection pressure of 13 MPa at a depth of approximately 1000 m will increase the rock porosity by a percentage error of 6.7%. Our results have implications for CO2 storage capacity injection pressure estimates.

  10. Influence of frost damage and sample preconditioning on the porosity characterization of cement based materials using low temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Fridh, Katja; Johannesson, Björn

    2015-01-01

    Low temperature calorimetry (LTC) can be used to study the meso-porosity of cement based materials. The influence of frost damage on the meso-porosity determination by LTC was explored on a model material MCM-41 and two cement pastes by conducting repeated cycles of freezing and melting measureme......Low temperature calorimetry (LTC) can be used to study the meso-porosity of cement based materials. The influence of frost damage on the meso-porosity determination by LTC was explored on a model material MCM-41 and two cement pastes by conducting repeated cycles of freezing and melting...

  11. Feeding and Distribution of Porosity in Cast Al-Si Alloys as Function of Alloy Composition and Modification

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2012-01-01

    Unmodified, Na-modified, and Sr-modified castings of Al-7 pct Si and Al-12.5 pct Si alloys were cast in molds in which it was possible to create different cooling conditions. It is shown how solidification influences the distribution of porosity at the surface and the center of the castings...... of the casting, while Sr-modified castings solidify in a mushy manner that creates a more homogeneous distribution of porosity in the casting. The amount of porosity was highest in the Sr-modified alloys, lower in the Na-modified alloys, and lowest in the unmodified alloys. The size of the porosity-free layer...

  12. Investigation on Formation Mechanism of Irregular Shape Porosity in Hypoeutectic Aluminum Alloy by X-Ray Real Time Observation

    Science.gov (United States)

    Liao, Hengcheng; Zhao, Lei; Wu, Yuna; Fan, Ran; Wang, Qigui; Pan, Ye

    2012-08-01

    The formation mechanism of irregular shape porosity in hypoeutectic aluminum silicon alloy (A356) was investigated by X-ray real time observation on porosity evolution during solidification and re-melting. Porosity in the hypoeutectic aluminum A356 alloy with high hydrogen content (>0.3 mL/100 g Al) first forms in the liquid as small spherical gas bubbles, then expands along with the pressure drop in the mushy zone due to shrinkage and lack of feeding, and finally deforms into irregular morphology by the impingement of aluminum dendrite network. Degassing is a key to eliminate porosity in aluminum alloy castings.

  13. Computer program grade for design and analysis of graded-porosity heat-pipe wicks

    Science.gov (United States)

    Eninger, J. E.

    1974-01-01

    A computer program for numerical solution of differential equations that describe heat pipes with graded-porosity fibrous wicks is discussed. A mathematical problem is provided with a summary of the input and output steps used to solve it. The program is also applied to the analysis of a typical heat pipe.

  14. The Use of Infrared Thermography for Porosity Assessment of Intact Rock

    Science.gov (United States)

    Mineo, S.; Pappalardo, G.

    2016-08-01

    Preliminary results on a new test for the indirect assessment of porosity through infrared thermography are presented. The study of the cooling behavior of rock samples in laboratory, through the analysis of thermograms, proved an innovative tool for the estimation of such an important property, which is one of the main features affecting the mechanical behavior of rocks. A detailed experimentation was performed on artificially heated volcanic rock samples characterized by different porosity values. The cooling trend was described both graphically and numerically, with the help of cooling curves and Cooling Rate Index. The latter, which proved strictly linked to porosity, was employed to find reliable equations for its indirect estimation. Simple and multiple regression analyses returned satisfactory outcomes, highlighting the great match between predicted and measured porosity values, thus confirming the goodness of the proposed model. This study brings a novelty in rock mechanics, laying the foundation for future researches aimed at refining achieved results for the validation of the model in a larger scale.

  15. Simple and Inexpensive Method of Wood Pellets Macro-porosity Measurement

    Energy Technology Data Exchange (ETDEWEB)

    C. Igathinathane; Jaya Shankar Tumuluru; S. Sokhansanj; X. Bi; C. J. Lim; S. Melin; E. Mohammad

    2010-08-01

    A novel simplified stereometric measurement method for determining the macro-porosity of wood pellets through geometrical approach was successfully developed and tested. The irregular ends of pellets of circular cross-section were sanded flat so that their geometry becomes cylinder and their volumes evaluated using mensuration formula. Such formed cylindrical pellets were loose or tap filled to selected volumes to evaluate the macro-porosity and the constant specific weight. The method was extended to evaluate actual wood pellets properties. Overall macro-porosity of actual wood pellets was determined as 41.0±2.5% and 35.5±2.7%, mean bulk density as and , and classified as “Class-3:Medium” and “Class-3&4:Medium to Low” for loose and tapped fills, respectively. Hausner ratio and Carr’s compressibility index classify wood pellets as “freely flowing.” The developed stereometric method can be used as a handy inexpensive laboratory procedure to estimate the macro-porosity of different types and makes of wood pellets and other similar packaged materials.

  16. Simple and inexpensive method of wood pellets macro-porosity measurement.

    Science.gov (United States)

    Igathinathane, C; Tumuluru, Jaya Shankar; Sokhansanj, S; Bi, X; Lim, C J; Melin, S; Mohammad, E

    2010-08-01

    A novel simplified stereometric measurement method for determining the macro-porosity of wood pellets through geometrical approach was successfully developed and tested. The irregular ends of pellets of circular cross-section were sanded flat so that their geometry becomes cylinder and their volumes evaluated using mensuration formula. Such formed cylindrical pellets were loose or tap filled to selected volumes to evaluate the macro-porosity and the constant specific weight. The method was extended to evaluate actual wood pellets properties. Overall macro-porosity of actual wood pellets was determined as 41.0+/-2.5% and 35.5+/-2.7%, mean bulk density as 670+/-29 kg m(-3) and 731+/-31 kg m(-3), and classified as "Class-3:Medium" and "Class-3&4:Medium to Low" for loose and tapped fills, respectively. Hausner ratio and Carr's compressibility index classify wood pellets as "freely flowing." The developed stereometric method can be used as a handy inexpensive laboratory procedure to estimate the macro-porosity of different types and makes of wood pellets and other similar packaged materials.

  17. Easily recoverable titanosilicate zeolite beads with hierarchical porosity: Preparation and application as oxidation catalysts

    NARCIS (Netherlands)

    Cheng, Wenjing; Jiang, Yanqiu; Xu, Xianzhu; Wang, Yan; Lin, Kaifeng; Pescarmona, Paolo P.

    2016-01-01

    Titanosilicate zeolite beads with hierarchical porosity and 0.2-0.5 mm diameter (HPB-TS-1) have been synthesized from a titanosilicate solution, employing a porous anion-exchange resin as shape- and structure-directing template. The characterization results showed the existence of crystalline TS-1 n

  18. The effects of numerical-model complexity and observation type on estimated porosity values

    Science.gov (United States)

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios C.; Green, Christopher T.

    2015-09-01

    The relative merits of model complexity and types of observations employed in model calibration are compared. An existing groundwater flow model coupled with an advective transport simulation of the Salt Lake Valley, Utah (USA), is adapted for advective transport, and effective porosity is adjusted until simulated tritium concentrations match concentrations in samples from wells. Two calibration approaches are used: a "complex" highly parameterized porosity field and a "simple" parsimonious model of porosity distribution. The use of an atmospheric tracer (tritium in this case) and apparent ages (from tritium/helium) in model calibration also are discussed. Of the models tested, the complex model (with tritium concentrations and tritium/helium apparent ages) performs best. Although tritium breakthrough curves simulated by complex and simple models are very generally similar, and there is value in the simple model, the complex model is supported by a more realistic porosity distribution and a greater number of estimable parameters. Culling the best quality data did not lead to better calibration, possibly because of processes and aquifer characteristics that are not simulated. Despite many factors that contribute to shortcomings of both the models and the data, useful information is obtained from all the models evaluated. Although any particular prediction of tritium breakthrough may have large errors, overall, the models mimic observed trends.

  19. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy

    Science.gov (United States)

    Pang, Shengyong; Chen, Weidong; Wang, Wen

    2014-06-01

    Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.

  20. Relationship between fracturing nominal stress and porosity for metal foams under biaxial tension

    Institute of Scientific and Technical Information of China (English)

    LIU; Peisheng; (刘培生)

    2003-01-01

    The relationship between two fracturing nominal stresses and porosity has been put forward for metal foams under biaxial tensile loading, and its mathematical formula is proved to be quite practical with the relative experimental data of the metal foam, which is obtained by electrodeposition method.

  1. Nano-porosity in silica reinforced methyltrimethoxysilane coatings studied by positron beam analysis

    NARCIS (Netherlands)

    Escobar Galindo, R.; Veen, A. van; Schut, H.; Falub, C.V.; Balkenende, A.R.; With, G. de; Hosson, J.Th.M. De

    2003-01-01

    The porosity in particle reinforced sol-gel coatings has been studied. Silica particles (Ludox-TM40) are introduced into methyl silicate coatings to increase the hardness, the elastic modulus and the fracture toughness. The methyl silicate has a relatively low density (about 1.2 g/cm(2)), while the

  2. Porosity of dental phosphate-bonded investments after setting and heating processes.

    Science.gov (United States)

    Asaoka, Kenzo; Bae, Ji-Young; Lee, Hae-Hyoung

    2012-01-01

    Porosities of set and burnout compacts of phosphate-bonded investments were determined. A gas pycnometer was used to measure the volumes, and hence the densities, of fine powders and porous compacts. Porosities of set and burnout compacts were then obtained from these data for as-received powders and dry set compacts by a numerical simulation method, subsequently leading on to the estimated compositions of conventional and rapid-heating investments used in this study. Excess water content in the hardening investment compact was evaluated as a function of setting time elapsed from the start of mixing. Porosities were about 24-32% for set compacts and 43% for burnout compacts, which well agreed with the numerically computed results. It was concluded that the functional composition of investment powder needed to achieve the optimal porosity as well as process parameters such as water-powder (W/P) ratio and keeping time of mixed investment casting slurry before heat treatment could be determined using the numerical simulation method developed in this study.

  3. Modeling the effectiveness of U(VI) biomineralization in dual-porosity porous media

    Science.gov (United States)

    Rotter, B. E.; Barry, D. A.; Gerhard, J. I.; Small, J. S.

    2011-05-01

    SummaryUranium contamination is a serious environmental concern worldwide. Recent attention has focused on the in situ immobilization of uranium by stimulation of dissimilatory metal-reducing bacteria (DMRB). The objective of this work was to investigate the effectiveness of this approach in heterogeneous and structured porous media, since such media may significantly affect the geochemical and microbial processes taking place in contaminated sites, impacting remediation efficiency during biostimulation. A biogeochemical reactive transport model was developed for uranium remediation by immobile-region-resident DMRB in two-region porous media. Simulations were used to investigate the parameter sensitivities of the system over wide-ranging geochemical, microbial and groundwater transport conditions. The results suggest that optimal biomineralization is generally likely to occur when the regional mass transfer timescale is less than one-thirtieth the value of the volumetric flux timescale, and/or the organic carbon fermentation timescale is less than one-thirtieth the value of the advective timescale, and/or the mobile region porosity ranges between equal to and four times the immobile region porosity. Simulations including U(VI) surface complexation to Fe oxides additionally suggest that, while systems exhibiting U(VI) surface complexation may be successfully remediated, they are likely to display different degrees of remediation efficiency over varying microbial efficiency, mobile-immobile mass transfer, and porosity ratios. Such information may aid experimental and field designs, allowing for optimized remediation in dual-porosity (two-region) biostimulated DMRB U(VI) remediation schemes.

  4. Relationship between soil aggregate strength, shape and porosity for soils under different long-term management

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard J; Deen, Bill;

    2016-01-01

    Soil aggregate properties, such as strength, shape and porosity, influence a range of essential soil functions and there is a need for more detailed understanding of the effect of soil management on these aggregate properties. There is also a need for improved knowledge on the link between aggreg...

  5. Correlation between Shear Wave Velocity and Porosity in Porous Solids and Rocks

    Directory of Open Access Journals (Sweden)

    J. Kováčik

    2013-01-01

    Full Text Available The shear wave velocity dependence on porosity was modelled using percolation theory model for the shear modulus porosity dependence. The obtained model is not a power law dependence (no simple scaling with porosity, but a more complex equation. Control parameters of this equation are shear wave velocity of bulk solid, percolation threshold of the material and the characteristic power law exponent for shear modulus porosity dependence. This model is suitable for all porous materials, mortars and porous rocks filled with liquid or gas. In the case of pores filled with gas the model can be further simplified: The term for the ratio of the gas density to the density of solid material can be omitted in the denominator (the ratio is usually in the range of (10−4, 10−3 for all solids. This simplified equation was then tested on the experimental data set for porous ZnO filled with air. Due to lack of reasonable data the scientists are encouraged to test the validity of proposed model using their experimental data.

  6. Air-Filled porosity and permeability relationships during solid-waste fermentation

    NARCIS (Netherlands)

    Richard, T.L.; Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2004-01-01

    An experimental apparatus was constructed to measure the structural parameters of organic porous media, i.,e. mechanical strength, air-filled porosity, air permeability, and the Ergun particle size. These parameters are critical to the engineering of aerobic bioconversion systems and were measured

  7. Effect of recasting of nickel-chromium alloy on its porosity

    Directory of Open Access Journals (Sweden)

    Jayant Palaskar

    2010-01-01

    Full Text Available Statement of Problem: As per the review of literature very few studies have been carried on recasting of dental casting alloy and in particlular its effect on occurrence of porosities. Purpose of Study: This study was designed to find out occurrence of porosities in new alloy and recasted alloy using a scanning electron microscope. Materials and Methods: Different percentage combinations of new and once casted alloy were used to produce twenty five samples. Castings obtained from new alloy were used as control group. All the samples were scanned under scanning electron mocroscope and photographs were taken from three specific sites for comparison. Results: There is no significant difference in occurrence of porosities in casting obtained by using new alloy and recasted alloy. Conclusion: With in the limitations of the study it is conducted that the prorosities will not be affected by recasting of neckel-chromium alloy. Clinical Implication: Porosities in dental casting alloy can alter physical and mechanical properties of the mental which inturn may lead to failure of crown and bridge, and also cast partial denture prosthesis.

  8. Effect of recasting of nickel-chromium alloy on its porosity.

    Science.gov (United States)

    Palaskar, Jayant; Nadgir, D V; Shah, Ila

    2010-10-01

    As per the review of literature very few studies have been carried on recasting of dental casting alloy and in particlular its effect on occurrence of porosities. This study was designed to find out occurrence of porosities in new alloy and recasted alloy using a scanning electron microscope. Different percentage combinations of new and once casted alloy were used to produce twenty five samples. Castings obtained from new alloy were used as control group. All the samples were scanned under scanning electron mocroscope and photographs were taken from three specific sites for comparison. There is no significant difference in occurrence of porosities in casting obtained by using new alloy and recasted alloy. With in the limitations of the study it is conducted that the prorosities will not be affected by recasting of neckel-chromium alloy. Porosities in dental casting alloy can alter physical and mechanical properties of the mental which inturn may lead to failure of crown and bridge, and also cast partial denture prosthesis.

  9. A new multi-zone model for porosity distribution in Al–Si alloy castings

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2013-01-01

    and distribution of porosity in Al–Si alloys cast as plates in moulds made with silica, ilmenite or zirconia sand cores or steel chills facing the major plate faces. The alloys cast were Al–7wt.% Si and Al–12.5wt.% Si in unmodified and modified forms, the latter with either Na or Sr addition. It is found that...

  10. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks

    DEFF Research Database (Denmark)

    Canali, Chiara; Mohanty, Soumyaranjan; Heiskanen, Arto

    2015-01-01

    We present the application of electrochemical impedance spectroscopy (EIS) as a method for discriminating between different polydimethylsiloxane (PDMS) scaffolds for three-dimensional (3D) cell cultures. The validity of EIS characterisation for scaffolds having different degree of porosity...... serve as means of single-frequency measurements for fast scaffold characterization combined with in vitro monitoring of 3D cell cultures....

  11. A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification

    Science.gov (United States)

    Khalajzadeh, Vahid; Carlson, Kent D.; Backman, Daniel G.; Beckermann, Christoph

    2017-04-01

    A unified model has been developed for combined gas- and shrinkage-induced pore formation during solidification of metal alloys. The model is based on a pore-centric approach, in which the temporal evolution of the pore radius is calculated as a function of cooling rate, thermal gradient, gas diffusion, and shrinkage. It accounts for the effect of porosity formation on the liquid velocity within the mushy zone. Simulations for an aluminum alloy show that the porosity transitions smoothly from shrinkage-induced to gas-induced as the Niyama value is increased. A Blake (cavitation) instability is observed to occur when the porosity is both gas- and shrinkage-driven. A revised dimensionless Niyama curve for pure shrinkage is presented. The experimentally observed gas porosity trend that the pore volume decreases with increasing cooling rate is well predicted. The pore-centric formulation allows the present model to be solved locally, at any point in a casting, during a regular casting simulation.

  12. Non-destructive image analysis of soil surface porosity and bulk density dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F., E-mail: lfpires@uepg.b [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Cassaro, F.A.M. [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Bacchi, O.O.S.; Reichardt, K. [Laboratory of Soil Physics, Center for Nuclear Energy in Agriculture, USP/CENA, C.P. 96, C.E.P. 13.400-970, Piracicaba, SP (Brazil)

    2011-04-15

    A gamma-ray computed tomography (CT) scanner was used to evaluate changes in the structure of clayey soil samples with surface compaction submitted to wetting and drying (W-D) cycles. The obtained results indicate that W-D cycles promoted an increasing of about 10% in soil porosity with a decreasing of about 6% in soil bulk density of this compacted region. With the use of the CT it was also possible to define the thickness of the compacted region that in our case was of about 8.19 mm. This last information is very important, for instance, to estimate hydraulic parameters in infiltration models. Finally, CT analysis showed that the compacted region remained at the surface samples, even after the application of the W-D cycles. -- Research highlights: {yields} Gamma-ray tomography allowed non-destructive analysis of soil bulk density and porosity changes. {yields} Soil porosity increased about 10% with the wetting and drying cycles. {yields} Soil bulk density in the compacted region decreased about 6% with the wetting and drying cycles. {yields} Detailed bulk density and porosity analysis changes were obtained for layers of 1.17 mm.

  13. Porosity prediction of I-field in the Niger delta area using well-log ...

    African Journals Online (AJOL)

    Porosity prediction of I-field in the Niger delta area using well-log data and ... There are many important characteristics of formations within the subsurface that can ... and 4.8186oN, longitudes 6.9595oE and 6.9800oE. Variogram analysis and ...

  14. Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations

    CERN Document Server

    Bossa, J -B; Paardekooper, D M; Bonnin, M; van der Linden, E P; Triemstra, T; Cazaux, S; Tielens, A G G M; Linnartz, H

    2013-01-01

    Aims. This article aims to provide an alternative method of measuring the porosity of multi-phase composite ices from their refractive indices and of characterising how the abundance of a premixed contaminant (e.g., CO2) affects the porosity of water-rich ice mixtures during omni-directional deposition. Methods. We combine optical laser interference and extended effective medium approximations (EMAs) to measure the porosity of three astrophysically relevant ice mixtures: H2O:CO2=10:1, 4:1, and 2:1. Infrared spectroscopy is used as a benchmarking test of this new laboratory-based method. Results. By independently monitoring the O-H dangling modes of the different water-rich ice mixtures, we confirm the porosities predicted by the extended EMAs. We also demonstrate that CO2 premixed with water in the gas phase does not significantly affect the ice morphology during omni-directional deposition, as long as the physical conditions favourable to segregation are not reached. We propose a mechanism in which CO2 molec...

  15. The porosity assessment of thermal barrier coatings obtained by APS method

    Directory of Open Access Journals (Sweden)

    G. Moskal

    2007-01-01

    Full Text Available Purpose: The article presents the outline of methods and range of microstructural assessment of ceramiccoatings, using the example of thermal barrier coatings. The major structural parameters describing the qualityof the barrier layers have been characterised as well as the problems related to the correct metallographicspecimen preparation and the methodology of their assessment.Design/methodology/approach: A procedure of porosity assessment, employing quantative metallographicprinciples and automatic image analysis has been propounded, together with types of quantitative parametersand methods of their application.Findings: It was found that the application of the quantitative metallographic methods combined with automaticimage analysis can form an effective tool of both quantitative and qualitative assessment such parameters ofstructural ceramic layers as porosity.Research limitations/implications: This type of assessment enables obtaining more than just the absolute valueof the porosity of the given area: it provides the means for determining a number of other quantitative parameters,e.g. the surface area of the pores, their elongation and shape together with the whole statistical analysis.Practical implications: The application of scanning microscopy, especially observation techniques such as BSE,BSETOPO or BSE3D enables a precise differentiation of the areas constituting pores from other artefacts.Originality/value: Description of procedure of porosity assessments in APS TBC system by use of thequantitative metallographic methods combined with automatic image analysis, and possibility of applicationsspecial techniques of scanning microscopy.

  16. 3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy

    Science.gov (United States)

    Klement, Uta; Ekberg, Johanna; Kelly, Stephen T.

    2017-02-01

    Suspension plasma spraying (SPS) is a new, innovative plasma spray technique using a feedstock consisting of fine powder particles suspended in a liquid. Using SPS, ceramic coatings with columnar microstructures have been produced which are used as topcoats in thermal barrier coatings. The microstructure contains a wide pore size range consisting of inter-columnar spacings, micro-pores and nano-pores. Hence, determination of total porosity and pore size distribution is a challenge. Here, x-ray microscopy (XRM) has been applied for describing the complex pore space of the coatings because of its capability to image the (local) porosity within the coating in 3D at a resolution down to 50 nm. The possibility to quantitatively segment the analyzed volume allows analysis of both open and closed porosity. For an yttria-stabilized zirconia coating with feathery microstructure, both open and closed porosity were determined and it could be revealed that 11% of the pore volumes (1.4% of the total volume) are closed pores. The analyzed volume was reconstructed to illustrate the distribution of open and closed pores in 3D. Moreover, pore widths and pore volumes were determined. The results on the complex pore space obtained by XRM are discussed in connection with other porosimetry techniques.

  17. ULTRASONIC INFLUENCE OF POROSITY LEVEL ON CFRP COMPOSITE LAMINATES USING RAYLEIGH PROBE WAVES

    Institute of Scientific and Technical Information of China (English)

    Je-Woong Park; Do-Jung Kim; Kwang-Hee Im; Sang-Kyu Park; David K.Hsu; Adam H.Kite; Sun-Kyu Kim; Kil-Sung Lee; In-Young Yang

    2008-01-01

    It was found that a pitch-catch signal was more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composites (damages,fiber orientation,low level porosity,ply waviness,and cracks).Both the strength and stiffness depend on the fiber orientation and porosity volume in the composites.The porosity content of a composite structure is critical to the strength and performance of the structure in general.The depth of the sampling volume where the pitch-catch signal came from was relatively shallow with the head to-head miniature Rayleigh probes,but the depth can be increased by increasing the separation distance of the transmitting and receiving probes.Also,a method was utilized to determine the porosity content of a composite lay-up by processing micrograph images of the laminate.A free software package was utilized to process micrograph images of the test sample.The results from the image processing method were compared with existing data.Beam profile was characterized in unidirectional CFRP(carbon fiber reinforced plastics) using pitch-catch Rayleigh probes and the one-sided pitch-catch technique was utilized to produce C-scan images with the aid of the automatic scanner.

  18. The expression of the jigging bed porosity and its realizing of the computer detection system

    Institute of Scientific and Technical Information of China (English)

    DU Chang-long; LIN Ming-xing; YUAN Hui

    2001-01-01

    This peper proposes the expression of the jigging bed porosity based on the jumping height of the jigging bed and water wave. This kind of expression can help to realize the jigging process automation and intelligence. The computer detection system is also developed.

  19. A Higher-Order Thermomechanical Vibration Analysis of Temperature-Dependent FGM Beams with Porosities

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimi

    2016-01-01

    Full Text Available In the present paper, thermomechanical vibration characteristics of functionally graded (FG Reddy beams made of porous material subjected to various thermal loadings are investigated by utilizing a Navier solution method for the first time. Four types of thermal loadings, namely, uniform, linear, nonlinear, and sinusoidal temperature rises, through the thickness direction are considered. Thermomechanical material properties of FG beam are assumed to be temperature-dependent and supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. The governing differential equations of motion are derived based on higher order shear deformation beam theory. Hamilton’s principle is applied to obtain the governing differential equations of motion which are solved by employing an analytical technique called the Navier type solution method. Influences of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, thermal effects, and slenderness ratios on natural frequencies of the temperature-dependent FG beams with porosities are investigated and discussed in detail. It is concluded that these effects play significant role in the thermodynamic behavior of porous FG beams.

  20. Evaluation of macroscopic porosity-permeability relationships in heterogeneous mineral dissolution and precipitation scenarios

    Science.gov (United States)

    Beckingham, L. E.

    2016-12-01

    Mineral dissolution and precipitation reactions, such as those resulting from CO2 injection in saline aquifers, can impact flow and transport in porous media and alter porosity and permeability. While porosity, in general, increases with mineral dissolution and decreases with precipitation, permeability alterations are complex and predicative capabilities remain limited. The locations of geochemical reactions in individual pores and throats and in the greater pore network control permeability evolution. Experimental studies have observed geochemical reactions to occur uniformly or non-uniformly, controlled, for example, by pore size, PeDa, or mineral distribution. For a given change in porosity, this may result in a wide range of permeability alterations. Macroscopic relationships that predict permeability evolutions resulting from these pore-scale reactions are needed for reactive transport simulations at the core-to-field scale. Currently, empirical relationships such as the Kozney-Carman equation are widely used to predict permeability evolution. These relationships, however, are unable to predict permeability alterations resulting from non-uniform pore network structure modifications. This work will use pore network models to investigate variations in sandstone permeability resulting from a range of uniform and heterogeneous dissolution and precipitation patterns and extents and evaluate the validity of existing porosity-permeability relationships under these scenarios. This will include mineral dissolution and precipitation occurring uniformly in pores and throats in addition to pore and pore-throat size, mineral surface, and preferential flow path dependent reactions.