WorldWideScience

Sample records for surfactant-templated nanometer-scale porosity

  1. Mixed Surfactant Template Method for Preparation of Nanometer Selenium

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Li

    2009-01-01

    Full Text Available Selenium nanoparticles have been synthesized in an aqueous solution by using sodium dodecyl sulfate and polyvinyl alcohol as a soft template. The factors on synthesis, such as reaction time, concentration of reactants and ultrasonic irradiation were studied. The uniform stable selenium nanospheres were obstained in the conditions of 1.0 (mass fraction sodium dodecyl sulfate, 1.0 (mass fraction polyvinyl alcohol, n(Vc:n(H2SeO3=7:1 and 7 minutes after the initiation of the reaction at room temperature. The average particle size of selenium is about 30 nm. The product was characterized by UV and TEM. Finally the applications of the red element nanometer selenium in anti-older cosmetics are presented.

  2. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating.

    Science.gov (United States)

    Petkovich, Nicholas D; Stein, Andreas

    2013-05-07

    Rigid, porous objects and surfactants serve as powerful templates for the formation of mesoporous and macroporous materials. When both types of template are combined in a single synthesis, materials with intricate architectures and hierarchical porosity can be obtained. In this tutorial review, we explain how to conduct syntheses with both soft and hard templates; moreover, we describe methods to control the final structure present in the templated material. Much of the foundation for multiple templating lies in the study of materials made with only one type of template. To establish a foundation in this area, a description of hard and soft templating is given, delving into the templates available and the steps required for effective templating. This leads into an extended discussion about materials templated with both hard and soft templates. Through the use of recent examples in the literature, we aim to show the diversity of structures possible through multiple templating and the advantages these structures can provide for a wide range of applications. An emphasis is placed on how various factors-such as the type of template, type of precursor, heat-treatment temperature, confinement within a small space, and template-template interactions-impact morphology.

  3. Tailoring the porosity of hierarchical zeolites by carbon-templating

    DEFF Research Database (Denmark)

    Zhu, Kake; Egeblad, Kresten; Christensen, Claus H.

    2008-01-01

    We report the synthesis and characterization of a series of hierarchical porous zeolite single crystal materials with a range of porosities made available by carbon-templating using differently-sized carbon particles as templates for the additional non-micropore porosity. The materials were...

  4. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates

    Science.gov (United States)

    Marquez, Maricel

    method for the formation of nanometer-scale polymer structures on solid surfaces via template assisted admicellar polymerization (TAAP) is described. Admicellar polymerization uses a surfactant layer adsorbed on a surface to localize monomer to the surface prior to polymerization of the monomer. TAAP refers to nanostructures that form by restricting adsorption to the uncovered sites of an already-templated surface. In this case, the interstitial sites between adsorbed latex spheres were used as the template. Unlike most other process that form polymer nanostructures, polymer dimensions can be significantly smaller than the interstitial size because of sphere-surfactant-monomer interactions. As a proof of concept, nanostructures formed via TAAP were compared to structures prepared by others via adsorption of three different proteins (Bovine serum albumin, fibrinogen, and anti-mouse IgG) in the interstitial sites of colloidal monolayers. The size and shape of the nanostructures formed (honeycomb vs. pillars) was dependent upon the size of the spheres utilized and the method of polymer deposition (i.e. admicellar polymerization vs. polymer adsorption). Thinner honeycomb walls, and larger separation distances between the template and the nanostructures were consistently found for TAAP. In chapter 4, an in-depth study of the factors affecting TAAP is presented for three different monomers: aniline, pyrrole and methyl methacrylate; and three different surfaces: highly ordered pyrolytic graphite (HOPG), gold, and SiO2. Among the parameters discussed are the effect of monomer and surfactant concentration, surfactant chain length, polymerization time and temperature, solution ionic strength, substrate choice and surface treatment. Control over these parameters allowed the synthesis of polymer nanopillars, nanorings, honeycombs, and "honeytubes." Experimental results showed that the nanostructures' morphology can be effectively modified by changing the length of the hydrophobic

  5. Surfactant-assisted sacrificial template-mediated synthesis

    Indian Academy of Sciences (India)

    ... spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopyand photoluminescence studies. Influence of surfactant and solvents on morphology and luminescence of the final product in sacrificial template-assisted method has been investigated in detail.

  6. Recycling of surfactant template in mesoporous MCM-41 synthesis

    Science.gov (United States)

    Lai, J. Y.; Twaiq, F.; Ngu, L. H.

    2017-06-01

    The recycling of surfactant template is investigated through the reuse of the surfactant template in the mesoporous MCM-41 synthesis process. In the synthesis of MCM-41, tetraethylorthosilicate (TEOS) solution in water was utilized as the silica source while hexadecyltrimethylammonium bromide (CTAB) solution in ethyl alcohol was used as a surfactant template. The synthesized gel is formed thoroughly by mixing the two solutions under acid conditions with a pH value of 0.5 for 1 hour and kept for crystallization for 48 hours. The as-synthesized MCM-41 powder is recovered by filtration while the filtrate (mother liquor) was then reused for the second synthesis cycle. The synthesis procedure was repeated till no further solid product was formed. The synthesized gel was not produced in the unifying solution in the fifth cycle of MCM-41 synthesis. The quality of the calcined MCM-41 powder produced in each synthesis cycle was evaluated by calculating the amount of MCM-41 produced and the surface area of the powder product. The result showed that 1.28, 0.37, 1.64, 1.90 and 0.037 g were obtained in the 1st, 2nd, 3rd, 4th and 5th synthesis cycle, respectively. The surface area of the powder produced was found to be 1170, 916, 728, and 508 m2/g for 1st, 2nd, 3rd and 4th respectively. The concentration of the surfactant template has reached value lower than the critical micelle concentration (CMC) and remained constant after the 4th cycle. There was no further formation of gel due to low availability in the interaction between silicate anions and surfactant cations when the amount of TEOS was fixed for every synthesis cycle.

  7. Synthesis of hydroxyapatite particles in catanionic mixed surfactants template

    International Nuclear Information System (INIS)

    Tari, Nesa Esmaeilian; Kashani Motlagh, Mohammad M.; Sohrabi, Beheshteh

    2011-01-01

    Highlights: ►The mixture of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with different ratio were used as the template for synthesizing HAP particles. ► The overall morphology of the obtained powders at anionic-rich region (SDS:CTAB, 99:1) solution is rod like with high regularity. ► In the presence of cationic rich region (SDS:CTAB, 1:99) the resulted particles was sheet like. ► The resulted HAP nano particles in the presence of SDS were rod like but their morphology was less oriented than anionic-rich region. - Abstract: Different morphologies of nano hydroxyapatite particles, Ca 10 (PO 4 ) 6 (OH) 2 (HAP) are prepared by precipitation method using CaCl 2 and H 3 PO 4 (water phase) and the mixture of cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and anionic one sodium dodecyl sulfate (SDS) as template. The mixture of these surfactants in two regions of cationic-rich and anionic-rich form the various aggregations as template. The results show that by changing the ratio of cationic to anionic surfactant in the mixture the morphology of the nano HAP can be controlled. The nano structure of products is studied by the means of X-ray diffraction (XRD), Fourier transmission infrared spectrometer (FT-IR) and scanning electron microscopy (SEM). With this system we could synthesize nano particles of hydroxyapatite with high crystallinity and least agglomeration.

  8. Synthesis of hydroxyapatite particles in catanionic mixed surfactants template

    Energy Technology Data Exchange (ETDEWEB)

    Tari, Nesa Esmaeilian [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of); Kashani Motlagh, Mohammad M., E-mail: M.Kashani@iust.ac.ir [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of); Sohrabi, Beheshteh [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The mixture of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with different ratio were used as the template for synthesizing HAP particles. Black-Right-Pointing-Pointer The overall morphology of the obtained powders at anionic-rich region (SDS:CTAB, 99:1) solution is rod like with high regularity. Black-Right-Pointing-Pointer In the presence of cationic rich region (SDS:CTAB, 1:99) the resulted particles was sheet like. Black-Right-Pointing-Pointer The resulted HAP nano particles in the presence of SDS were rod like but their morphology was less oriented than anionic-rich region. - Abstract: Different morphologies of nano hydroxyapatite particles, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} (HAP) are prepared by precipitation method using CaCl{sub 2} and H{sub 3}PO{sub 4} (water phase) and the mixture of cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and anionic one sodium dodecyl sulfate (SDS) as template. The mixture of these surfactants in two regions of cationic-rich and anionic-rich form the various aggregations as template. The results show that by changing the ratio of cationic to anionic surfactant in the mixture the morphology of the nano HAP can be controlled. The nano structure of products is studied by the means of X-ray diffraction (XRD), Fourier transmission infrared spectrometer (FT-IR) and scanning electron microscopy (SEM). With this system we could synthesize nano particles of hydroxyapatite with high crystallinity and least agglomeration.

  9. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, K., E-mail: nazarikh@ripi.ir [Research Institute of Petroleum Industry, NIOC, P.O. Box 14665-137, Tehran (Iran, Islamic Republic of); Chemistry Dept., Shahr Rey Islamic Azad University, P.O. Box 18735-334, Tehran (Iran, Islamic Republic of); Adhami, F.; Najjar-Safari, A.; Salmani, S. [Chemistry Dept., Shahr Rey Islamic Azad University, P.O. Box 18735-334, Tehran (Iran, Islamic Republic of); Mahmoudi, A. [Chemistry Dept., Karaj Islamic Azad University, Karaj (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. {yields} Main advantage of this simple method is producing soluble encapsulated nanowires. {yields} Nanowire can be easily precipitated and separated by dilution with distilled water. {yields} Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. {yields} Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  10. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    International Nuclear Information System (INIS)

    Nazari, K.; Adhami, F.; Najjar-Safari, A.; Salmani, S.; Mahmoudi, A.

    2011-01-01

    Highlights: → Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. → Main advantage of this simple method is producing soluble encapsulated nanowires. → Nanowire can be easily precipitated and separated by dilution with distilled water. → Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. → Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  11. Nanometer scale materials - characterization and fabrication

    International Nuclear Information System (INIS)

    Murday, J.S.; Colton, R.J.; Rath, B.B.

    1993-01-01

    Materials and solid state scientists have made excellent progress in understanding material behavior in length scales from microns to meters. Below a micron, the lack of analytical prowess has been a deterrent. At the atomic scale, chemistry and atomic/molecular physics have also contributed significant understanding of matter. The maturity of these three communities, materials, solid state physics, atomic/molecular physics/chemistry, coupled with the development of analytical capability for nanometer-sized structures, promises to broaden our grasp of materials behavior into the last realm of unexplored size scales-nanometer. The motivation for this effort is driven both by the expectation of novel properties as well as by the potential solution to long standing technological issues. Critical scale lengths for many material properties fall in the nanometer range, examples include superconductor coherence lengths, electron inelastic mean free paths, electron wavelengths in solids, critical lengths for dislocation generation. Structures of nanometer size will undoubtedly show behavior unexpected from experience at the larger and smaller scales. Many technological problems such as adhesion, friction, corrosion, elasticity and fracture are believed to depend critically on nanometer scale phenomena. The millennia-old efforts to improve materials behavior have undoubtedly been slowed by our inability to 'observe' in this size range. (orig.)

  12. Hierarchical porous TiO{sub 2} thin films by soft and dual templating

    Energy Technology Data Exchange (ETDEWEB)

    Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); University of Liege, Center for Applied Technology in Microscopy (CATmu), B6 Sart Tilman, Liege 4000 (Belgium); Dewalque, Jennifer [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); Cloots, Rudi [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); University of Liege, Center for Applied Technology in Microscopy (CATmu), B6 Sart Tilman, Liege 4000 (Belgium); Vertruyen, Bénédicte; Jonlet, Jonathan; Colson, Pierre [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium)

    2013-07-31

    Hierarchical porous structures, with different pore sizes, including pores larger than 10 nm, constitute an important field of research for many applications such as selective molecule detection, catalysis, dye-sensitized solar cells, nanobiotechnology and nanomedecine. However, increasing the pore size logically results in the decrease of specific surface. There is a need to quantify and predict the resulting porosity and specific surface. We have prepared hierarchical porous TiO{sub 2} thin films either by surfactant templating (soft) or dual surfactant/nanospheres templating (soft/hard). They all show narrow, bimodal distribution of pores. Soft templating route uses a modified sol–gel procedure by adding a swelling agent (polypropylene glycol) to a precursor solution containing Ti alkoxide and block-copolymer surfactant. This scheme leads to very thin films showing high specific surface and bimodal porosity with diameters of 10 nm and 54 nm. Dual templating route combines a precursor solution made of Ti alkoxide and block-copolymer surfactant with polystyrene (PS) nanospheres (diam. 250 nm) in a one-pot simple process. This gives thicker films with a bimodal distribution of pores (8 nm and 165-200 nm). The introduction of PS nanospheres in the surfactant–Ti system does not interfere with the soft templating process and results in a macroporosity with a pore diameter 20–30% smaller than the original beads diameter. The dye loading of hierarchical films is compared to pure surfactant-templated TiO{sub 2} films and shows a relative decrease of 29% for soft templating and 43% for dual templating. The microstructure of bimodal porous films is characterized by several techniques such as transmission and scanning electron microscopy, X-ray diffraction, profilometry and ellipsometry. Finally, a geometrical model is proposed and validated for each system, based on the agreement between calculated specific surfaces and experimental dye loading with N719 dye

  13. Hierarchically mesoporous silica materials prepared from the uniaxially stretched polypropylene membrane and surfactant templates

    International Nuclear Information System (INIS)

    Wang Xiaocong; Ma Jin; Liu Jin; Zhou Chen; Zhao, Yan; Yi Shouzhi; Yang Zhenzhong

    2006-01-01

    Hierarchically mesoporous silica materials with a bimodal distribution were template-prepared from uniaxially stretched polypropylene membrane in the presence of a surfactant via a sol-gel process. Their regularity and morphologies were characterized by transmission electron microscopy (TEM), x-ray diffraction and Brunauer-Emmett-Teller (BET) surface area analysis. The larger channel pores formed by removing the microfibrils of uniaxially stretched polypropylene membrane have a broad pore size distribution, and their size is around 13 nm. In contrast, the smaller mesopores formed by surfactant templates have a narrow distribution; their size is about 3.9 nm. The size of the smaller pores could be tuned from 2 to 6 nm by selecting different surfactants and by changing the concentration of reactants

  14. Comparative study of the porosity induced by CTAB and Tween as silica templates

    International Nuclear Information System (INIS)

    Cardinal, M.F.; Lovino, M.; Bernik, D.L.

    2007-01-01

    In this study doped-silicon polymers were synthesized using the non-ionic surfactant Tween 80 as template. The obtained material was compared with silicates doped with the cationic surfactant CTAB. Both materials were synthesized by sol-gel process with tetraethoxysilane (TEOS) as silicon source. In the synthesis procedure reported herein the main difference to previous reports is that the obtained solids were dried smoothly at 55 o C avoiding surfactant calcination. The aim of this work is to obtain new biomaterials appropriate to be used for encapsulation devices in which the surfactant kept within the silica network has two roles: (1) to improve the mechanical resistance in drying-swelling processes preventing crack formation (2) to hold and protect the encapsulated molecules keeping intact their bioactivity during TEOS polymerization. Structural features such as pore size and surface topology were studied by means of N 2 adsorption, X-ray diffraction and AFM microscopy. The influence of surfactant net charge and molecular shape on the materials obtained is discussed

  15. PEG-nanotube liquid crystals as templates for construction of surfactant-free gold nanorods.

    Science.gov (United States)

    Kameta, Naohiro; Shiroishi, Hidenobu

    2018-04-23

    Lyotropic liquid crystals, in which nanotubes coated with polyethylene glycol were aligned side-by-side in aqueous dispersions, acted as templates for the construction of surfactant-free gold nanorods with controllable diameters, functionalizable surfaces, and tunable optical properties.

  16. Nanometer-scale temperature measurements of phase change memory and carbon nanomaterials

    Science.gov (United States)

    Grosse, Kyle Lane

    This work investigates nanometer-scale thermometry and thermal transport in new electronic devices to mitigate future electronic energy consumption. Nanometer-scale thermal transport is integral to electronic energy consumption and limits current electronic performance. New electronic devices are required to improve future electronic performance and energy consumption, but heat generation is not well understood in these new technologies. Thermal transport deviates significantly at the nanometer-scale from macroscopic systems as low dimensional materials, grain structure, interfaces, and thermoelectric effects can dominate electronic performance. This work develops and implements an atomic force microscopy (AFM) based nanometer-scale thermometry technique, known as scanning Joule expansion microscopy (SJEM), to measure nanometer-scale heat generation in new graphene and phase change memory (PCM) devices, which have potential to improve performance and energy consumption of future electronics. Nanometer-scale thermometry of chemical vapor deposition (CVD) grown graphene measured the heat generation at graphene wrinkles and grain boundaries (GBs). Graphene is an atomically-thin, two dimensional (2D) carbon material with promising applications in new electronic devices. Comparing measurements and predictions of CVD graphene heating predicted the resistivity, voltage drop, and temperature rise across the one dimensional (1D) GB defects. This work measured the nanometer-scale temperature rise of thin film Ge2Sb2Te5 (GST) based PCM due to Joule, thermoelectric, interface, and grain structure effects. PCM has potential to reduce energy consumption and improve performance of future electronic memory. A new nanometer-scale thermometry technique is developed for independent and direct observation of Joule and thermoelectric effects at the nanometer-scale, and the technique is demonstrated by SJEM measurements of GST devices. Uniform heating and GST properties are observed for

  17. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe nanocrystals

    International Nuclear Information System (INIS)

    Hou Bo; Liu Yongjun; Li Yanjuan; Yuan Bo; Jia Mingfen; Jiang Fengzhi

    2012-01-01

    Highlights: ► Soft templates were found in the shape control synthesis of ZnSe nanocrystals. ► Micelle formation model in the soft templates system was proposed and proved. ► Different shapes of ZnSe nanocrystals were prepared and explained by proposed model. - Abstract: The evolution of soft templates in the synthesis of ZnSe nanocrystals realized through a surfactant/cosurfactant system was investigated and a micelle formation process model was proposed. Through freeze-fracture electron microscopy, it was proven that template micelles were formed in the zinc precursors. Furthermore, it was found that a long stirring period was essential for achieving the lowest energy state of the soft templates which were used for synthesizing monodisperse ZnSe quantum dots.

  19. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  20. Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Bo [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Liu Yongjun [Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China); Li Yanjuan [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Yuan Bo [Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China); Jia Mingfen [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Jiang Fengzhi, E-mail: fengzhij@ynu.edu.cn [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Soft templates were found in the shape control synthesis of ZnSe nanocrystals. Black-Right-Pointing-Pointer Micelle formation model in the soft templates system was proposed and proved. Black-Right-Pointing-Pointer Different shapes of ZnSe nanocrystals were prepared and explained by proposed model. - Abstract: The evolution of soft templates in the synthesis of ZnSe nanocrystals realized through a surfactant/cosurfactant system was investigated and a micelle formation process model was proposed. Through freeze-fracture electron microscopy, it was proven that template micelles were formed in the zinc precursors. Furthermore, it was found that a long stirring period was essential for achieving the lowest energy state of the soft templates which were used for synthesizing monodisperse ZnSe quantum dots.

  1. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    Science.gov (United States)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  2. Effect of template in MCM-41 on the adsorption of aniline from aqueous solution.

    Science.gov (United States)

    Yang, Xinxin; Guan, Qingxin; Li, Wei

    2011-11-01

    The effect of the surfactant template cetyltrimethylammonium bromide (CTAB) in MCM-41 on the adsorption of aniline was investigated. Various MCM-41 samples were prepared by controlling template removal using an extraction method. The samples were then used as adsorbents for the removal of aniline from aqueous solution. The results showed that the MCM-41 samples with the template partially removed (denoted as C-MCM-41) exhibited better adsorption performance than MCM-41 with the template completely removed (denoted as MCM-41). The reason for this difference may be that the C-MCM-41 samples had stronger hydrophobic properties and selectivity for aniline because of the presence of the template. The porosity and cationic sites generated by the template play an important role in the adsorption process. The optimal adsorbent with moderate template was achieved by changing the ratio of extractant; it has the potential for promising applications in the field of water pollution control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  4. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  5. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ronan J.; King, Paul J.; Lotya, Mustafa; Wirtz, Christian; Khan, Umar; De, Sukanta; O' Neill, Arlene; Coleman, Jonathan N. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); CRANN, Trinity College Dublin, Dublin 2 (Ireland); Duesberg, Georg S. [CRANN, Trinity College Dublin, Dublin 2 (Ireland); School of Chemistry, Trinity College Dublin, Dublin 2 (Ireland); Grunlan, Jaime C.; Moriarty, Gregory [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Chen, Jun [Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522 (Australia); Wang, Jiazhao [Institute for Superconducting and Electronic Materials, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW 2522 (Australia); Minett, Andrew I. [Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Nicolosi, Valeria [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-09-08

    A method to exfoliate MoS{sub 2} in large quantities in surfactant-water solutions is described. The layered material tends to be exfoliated as dispersions of thin, relatively defect-free flakes with lateral sizes of hundreds of nanometers. This method can be extended to a range of other layered compounds. The dispersed flakes can be mixed with nanotubes or graphene to greate functional hybrid materials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Templated Synthesis of Magnetic Nanoparticles through the Self-Assembly of Polymers and Surfactants

    Directory of Open Access Journals (Sweden)

    Vo Thu An Nguyen

    2014-08-01

    Full Text Available The synthesis of superparamagnetic nanoparticles (NPs for various technological applications continues to be an interesting research topic. The successful application of superparamagnetic NPs to each specific area typically depends on the achievement of high magnetization for the nanocrystals obtained, which is determined by their average size and size distribution. The size dispersity of magnetic NPs (MNPs is markedly improved when, during the synthesis, the nucleation and growth steps of the reaction are well-separated. Tuning the nucleation process with the assistance of a hosting medium that encapsulates the precursors (such as self-assembled micelles, dispersing them in discrete compartments, improves control over particle formation. These inorganic-organic hybrids inherit properties from both the organic and the inorganic materials, while the organic component can also bring a specific functionality to the particles or prevent their aggregation in water. The general concept of interest in this review is that the shape and size of the synthesized MNPs can be controlled to some extent by the geometry and the size of the organic templates used, which thus can be considered as molds at the nanometer scale, for both porous continuous matrices and suspensions.

  7. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of pharmaceutical surfactant templated mesoporous silica: Its application to controlled delivery of duloxetine

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Ganesh; Pushparaj, Hemalatha; Peng, Mei Mei; Muthiahpillai, Palanichamy [Department of Chemical Engineering, Hanseo University, Seosan-si 356 706 (Korea, Republic of); Udhumansha, Ubaidulla [Department of Chemical Engineering, Hanseo University, Seosan-si 356 706 (Korea, Republic of); Department of Pharmaceutics, C.L. Baid Metha College of Pharmacy, Chennai (India); Jang, Hyun Tae, E-mail: htjang@hanseo.ac.kr [Department of Chemical Engineering, Hanseo University, Seosan-si 356 706 (Korea, Republic of)

    2014-03-01

    Graphical abstract: - Highlights: • Usefulness of dual pharmaceutical surfactants in silica synthesis was evaluated. • Effects of concentration of secondary template (Tween-40) were studied. • Effects of fixed solvothermal condition on mesostructure formation were studied. • Duloxetine drug loading capability was studied. • Sustained release of duloxetine was evaluated. - Abstract: A new group of mesoporous silica nanoparticles (MSNs) were synthesized using combination pharmaceutical surfactants, Triton X-100 and Tween-40 as template and loaded with duloxetine hydrochloride (DX), for improving the sustained release of DX and patterns with high drug loading. Agglomerated spherical silica MSNs were synthesized by sol–gel and solvothermal methods. The calcined and drug loaded MSNs were characterized using X-ray diffraction (XRD), Braunner–Emmett–Teller (BET), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), diffuse reflectance ultraviolet–visible (DRS-UV–vis) spectroscopy. MSNs with high surface area and pore volume were selected and studied for their DX loading and release. The selected MSNs can accommodate a maximum of 34% DX within it. About 90% was released at 200 h and hence, the synthesized MSNs were capable of engulfing DX and sustain its release. Further form the Ritger and Peppas, Higuchi model for mechanism drug release from all the MSN matrices follows anomalous transport or Non-Fickian diffusion with the ‘r’ and ‘n’ value 0.9 and 0.45 < n < 1, respectively. So, from this study it could be concluded that the MSNs synthesized using pharmaceutical templates were better choice of reservoir for the controlled delivery of drug which requires sustained release.

  9. Template-less surfactant-free hydrothermal synthesis NiO nanoflowers and their photoelectrochemical hydrogen production

    KAUST Repository

    Qurashi, Ahsanulhaq

    2015-12-01

    A facile direct surfactant-free template-less hydrothermal method is employed for the growth of high surface-area NiO nanoflowers made up of complex and assembled nanosheets network.Field emission scanning electron microscopy revealed that each nanosheet is about 50-60nm thick. Detailed structural analysis reveals single-crystalline nature of NiO nanoflowers with cubic crystal structure. The optical absorption bands in the wavelength range of 350-800nm illustrated in terms of ligand field theory. The photoelectrochemical (PEC), water splitting performance on the NiO nanoflowers were also investigated. © 2015 Hydrogen Energy Publications, LLC.

  10. Template-less surfactant-free hydrothermal synthesis NiO nanoflowers and their photoelectrochemical hydrogen production

    KAUST Repository

    Qurashi, Ahsanulhaq; Zhang, Zhongai; Asif, M.; Yamazaki, Toshinari

    2015-01-01

    A facile direct surfactant-free template-less hydrothermal method is employed for the growth of high surface-area NiO nanoflowers made up of complex and assembled nanosheets network.Field emission scanning electron microscopy revealed that each nanosheet is about 50-60nm thick. Detailed structural analysis reveals single-crystalline nature of NiO nanoflowers with cubic crystal structure. The optical absorption bands in the wavelength range of 350-800nm illustrated in terms of ligand field theory. The photoelectrochemical (PEC), water splitting performance on the NiO nanoflowers were also investigated. © 2015 Hydrogen Energy Publications, LLC.

  11. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  12. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    Science.gov (United States)

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-12-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1-5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10-50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (˜1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields.

  13. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui

    2018-02-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  14. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui; Sun, Ying; Yuan, Zhong-Yong; Zhu, Yun-Pei; Ma, Tianyi

    2018-01-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  15. Self-assembled metallic nanoparticle template — a new approach of surface nanostructuring at nanometer scale

    Directory of Open Access Journals (Sweden)

    A. Taleb

    2017-09-01

    Full Text Available In the present work, the formation of silver and copper nanostructures on highly oriented pyrolytic graphite (HOPG modified with self-assembled gold nanoparticles (Au NPs is demonstrated. Surface patterning with nanometer resolution was achieved. Different methods such as field emission scanning electron microscopy (FEGSEM, energy dispersive spectrometry (EDS and X-ray photoelectron spectroscopy (XPS were used to illustrate a selective deposition of silver and copper on Au NPs. The mechanism of silver and copper ions reduction on Au NP with n-dodecanethiol coating is discussed.

  16. The optical properties of ZnO films grown on porous Si templates

    International Nuclear Information System (INIS)

    Liu, Y L; Liu, Y C; Yang, H; Wang, W B; Ma, J G; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    ZnO films were electrodeposited on porous silicon templates with different porosities. The photoluminescence (PL) spectra of the samples before and after deposition of ZnO were measured to study the effect of template porosity on the luminescence properties of ZnO/porous Si composites. As-prepared porous Si (PS) templates emit strong red light. The red PL peak of porous Si after deposition of ZnO shows an obvious blueshift, and the trend of blueshift increases with an increase in template porosity. A green emission at about 550 nm was also observed when the porosity of template increases, which is ascribed to the deep-level emission band of ZnO. A model-based band diagram of the ZnO/porous Si composite is suggested to interpret the properties of the composite

  17. Nanometer-scale patterning of high-Tc superconductors for Josephson junction-based digital circuits

    International Nuclear Information System (INIS)

    Wendt, J.R.; Plut, T.A.; Corless, R.F.; Martens, J.S.; Berkowitz, S.; Char, K.; Johansson, M.; Hou, S.Y.; Phillips, J.M.

    1994-01-01

    A straightforward method for nanometer-scale patterning of high-T c superconductor thin films is discussed. The technique combines direct-write electron beam lithography with well-controlled aqueous etches and is applied to the fabrication of Josephson junction nanobridges in high-quality, epitaxial thin-film YBa 2 Cu 3 O 7 . We present the results of our studies of the dimensions, yield, uniformity, and mechanism of the junctions along with the performance of a representative digital circuit based on these junctions. Direct current junction parameter statistics measured at 77 K show critical currents of 27.5 μA±13% for a sample set of 220 junctions. The Josephson behavior of the nanobridge is believed to arise from the aggregation of oxygen vacancies in the nanometer-scale bridge

  18. A Reliable Method for the Preparation of Multiporous Alumina Monoliths by Ice-Templating

    Directory of Open Access Journals (Sweden)

    Jérémy Dhainaut

    2016-03-01

    Full Text Available Alumina supports presenting a bimodal porosity are generally advantageous for the conversion of bulky molecules such as found in biomass, refining, and petrochemistry. However, shaping of such materials, while controlling pores size and orientation, proves to be hard. This problem can be tackled by using a simple method involving sol-gel chemistry, surfactant self-assembly, and ice-templating. Herein, a systematic study of the formulation and process parameters’ influence on the final material properties is presented. This protocol results in the repeatable preparation of centimeter-sized alumina monoliths presenting a uni-directional macroporosity and structured mesopores. These monoliths should be of particular interest in high flow rate catalytic applications.

  19. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  20. Effect of nanometer scale surface roughness of titanium for osteoblast function

    Directory of Open Access Journals (Sweden)

    Satoshi Migita

    2017-02-01

    Full Text Available Surface roughness is an important property for metallic materials used in medical implants or other devices. The present study investigated the effects of surface roughness on cellular function, namely cell attachment, proliferation, and differentiation potential. Titanium (Ti discs, with a hundred nanometer- or nanometer-scale surface roughness (rough and smooth Ti surface, respectively were prepared by polishing with silicon carbide paper. MC3T3-E1 mouse osteoblast-like cells were cultured on the discs, and their attachment, spreading area, proliferation, and calcification were analyzed. Cells cultured on rough Ti discs showed reduced attachment, proliferation, and calcification ability suggesting that the surface inhibited osteoblast function. The findings can provide a basis for improving the biocompatibility of medical devices.

  1. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating...

  2. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  3. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  4. Microporous silica prepared by organic templating: relationship between the molecular template and pore structure

    International Nuclear Information System (INIS)

    Brinker, C. Jeffrey; Cao, Guozhong; Kale, Rahul P.; Lopez, Gabriel P.; Lu, Yunfeng; Prabakar, S.

    1999-01-01

    Microporous silica materials with a controlled pore size and a narrow pore size distribution have been prepared by sol-gel processing using an organic-templating approach. Microporous networks were formed by pyrolytic removal of organic ligands (methacryloxypropyl groups) from organic/inorganic hybrid materials synthesized by copolymerization of 3-methacryloxypropylsilane (MPS) and tetraethoxysilane (TEOS). Molecular simulations and experimental measurements were conducted to examine the relationship between the microstructural characteristics of the porous silica (e.g., pore size, total pore volume, and pore connectivity) and the size and amount of organic template ligands added. Adsorption measurements suggest that the final porosity of the microporous silica is due to both primary pores (those present in the hybrid materials prior to pyrolysis) and secondary pores (those created by pyrolytic removal of organic templates). Primary pores were inaccessible to N(sub 2) at 77 K but accessible to CO(sub 2) at 195 K; secondary pores were accessible to both N(sub 2) (at 77 K) and CO(sub 2) (at 195 K) in adsorption measurements. Primary porosity decreases with the amount of organic ligands added because of the enhanced densification of MPS/TEOS hybrid materials as the mole fraction of trifunctional MPS moieties increases. pore volumes measured by nitrogen adsorption experiments at 77 K suggest that the secondary (template-derived) porosity exhibits a percolation behavior as the template concentration is increased. Gas permeation experiments indicate that the secondary pores are approximately 5(angstrom) in diameter, consistent with predictions based on molecular simulations

  5. Imaging and Patterning on Nanometer Scale Using Coherent EUV Light

    International Nuclear Information System (INIS)

    Wachulak, P.W.; Fiedorowicz, H.; Bartnik, A.; Marconi, M.C.; Menoni, C.S.; Rocca, J.J.

    2010-01-01

    Extreme ultraviolet (EUV) covers wavelength range from about 5 nm to 50 nm. That is why EUV is especially applicable for imaging and patterning on nanometer scale length. In the paper periodic nanopatterning realized by interference lithography and high resolution holographic nanoimaging performed in a Gabor in-line scheme are presented. In the experiments a compact table top EUV laser was used. Preliminary studies on using a laser plasma EUV source for nanoimaging are presented as well. (author)

  6. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  7. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  8. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  9. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    Science.gov (United States)

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  10. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Kyle L. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Pop, Eric [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  11. One-pot, template- and surfactant-free solvothermal synthesis of high-crystalline Fe{sub 3}O{sub 4} nanostructures with adjustable morphologies and high magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Yan; Xin, Hongna; Zhang, Jiarui [School of Physics, Northwest University, Xi’an 710000 (China); Li, Xinghua, E-mail: lixinghua04@gmail.com [School of Physics, Northwest University, Xi’an 710000 (China); Feng, Juan [School of Physics, Northwest University, Xi’an 710000 (China); Deng, Xia [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Sun, Yong [School of Physics, Northwest University, Xi’an 710000 (China); Zheng, Xinliang, E-mail: zhengxl@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710000 (China)

    2017-02-01

    In the present study, high-crystalline and well-defined Fe{sub 3}O{sub 4} nanostructures with tunable morphologies were fabricated through a facile one-pot solvothermal approach. The morphology, crystal structure and chemical compositions of the products were characterized at the nanoscale. X-ray diffraction and selected area electron diffraction patterns indicate that the products have a pure spinel phase without the presence of any other impurity. Based on the transmission electron microscope technology, shape evolution of the products were investigated. Several morphologies including irregular particles, clusters, hollow sphere and octahedrons can be obtained by only adjusting the amount of NaOH without using any surfactant. Magnetism investigations show that all the products perform ferromagnetic behavior with high saturation magnetization at room temperature, which mainly originates from their high crystalline nature and template-free fabrication process. - Highlights: • Fe{sub 3}O{sub 4} were prepared by a template- and surfactant-free solvothermal route. • The shapes of Fe{sub 3}O{sub 4} nanostructures can be controlled by changing the amount of NaOH. • All the Fe{sub 3}O{sub 4} nanostructures with different shapes have high magnetization values.

  12. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    Science.gov (United States)

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  13. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    Science.gov (United States)

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  14. Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires.

    Science.gov (United States)

    Zhang, Guoqiang; Rainville, Christophe; Salmon, Adrian; Takiguchi, Masato; Tateno, Kouta; Gotoh, Hideki

    2015-11-24

    This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.

  15. Using Cyclohexanol as a Co-Surfactant in the Synthesis of New Mesoporous Silica Particles

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Semsarzadeh

    2014-02-01

    Full Text Available In the synthesis of mesoporous silica particles, the geometry, pore size, and specific surface area and pore volume of the particles can be greatly influenced by selected media and method, selection of co-solvent and co-surfactant. In this study, new SPB particles (silicone mesoporous particles, prepared by sol-gel method using block copolymers as template were synthesized in a water/n-octane system from the mixture of two copolymers based on poly(ethylene oxide-b-poly (propylene oxide-b-poly(ethylene oxide (PEO-b-PPO-b-PEO and poly(propylene oxide-b-poly (ethylene oxide-b-poly(propylene oxide (PPO-b-PEO-b-PPO triblock copolymers. Tetraethyl orthosilicate (TEOS as precursor, cyclohexanol as co-surfactant, n-octane as co-solvent and citric acid catalyst were used. The specific surface area and pore volume, pore diameter, morphology, microstructure and porosity of the SPB particles were characterized by X-ray diffraction (XRD, nitrogen adsorption-desorption (BET method and scanning electron microscopy (SEM. The obtained results revealed that, using the mixture of two block copolymers in the synthesis of SPB1,2 particles, could produce mean pore diameters around 9 nm and control the pore size distribution of silica particles from non-normal to a normal distribution. Furthermore, the effect of chair conformation of cyclohexanol as a large co-surfactant on the mixed block copolymers due to increase in the uniformity and yield of the SPB1,2 mesoporous silica particles compared to the SPB1 particles, there is approximately a two fold increase in SPB1,2 particle yield. In this regard, the effect of cyclohexanol and the second block copolymer in making the new templates and micellization process were discussed.

  16. A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance

    KAUST Repository

    Bhandari, Nidhi

    2015-06-01

    A new approach, based on a combination of salt and hard templating for producing multi-modal porous carbons is demonstrated. The hard template, silica nanoparticles, generate mesopores (∼22 nm), and in some cases borderline-macropores (∼64 nm), resulting in high pore volume (∼3.9 cm3/g) while the salt template, zinc chloride, generates borderline-mesopores (∼2 nm), thus imparting high surface area (∼2100 m2/g). The versatility of the proposed synthesis technique is demonstrated using: (i) dual salt templates with hard template resulting in magnetic, nanostructured-clay embedded (∼27% clay content), high surface area (∼1527 m2/g) bimodal carbons (∼2 and 70 nm pores), (ii) multiple hard templates with salt template resulting in tri-modal carbons (∼2, 12 and 28 nm pores), (iii) low temperature (450 °C) synthesis of bimodal carbons afforded by the presence of hygroscopic salt template, (iv) easy coupling with physical activation approaches. A selected set of thus synthesized carbons were used to evaluate, for the first time, the simultaneous effects of carbon porosity and pressure applied during electrode fabrication on EDLC performance. Electrode pressing was found to be more favorable for carbons containing hard-templated mesopores (∼87% capacitance retention at current density of 40 A/g) as compared to those without (∼54% capacitance retention). © 2015 Elsevier Ltd. All rights reserved.

  17. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Hybrid approaches to nanometer-scale patterning: Exploiting tailored intermolecular interactions

    International Nuclear Information System (INIS)

    Mullen, Thomas J.; Srinivasan, Charan; Shuster, Mitchell J.; Horn, Mark W.; Andrews, Anne M.; Weiss, Paul S.

    2008-01-01

    In this perspective, we explore hybrid approaches to nanometer-scale patterning, where the precision of molecular self-assembly is combined with the sophistication and fidelity of lithography. Two areas - improving existing lithographic techniques through self-assembly and fabricating chemically patterned surfaces - will be discussed in terms of their advantages, limitations, applications, and future outlook. The creation of such chemical patterns enables new capabilities, including the assembly of biospecific surfaces to be recognized by, and to capture analytes from, complex mixtures. Finally, we speculate on the potential impact and upcoming challenges of these hybrid strategies.

  19. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique.

    Science.gov (United States)

    Ishak, K A; Annuar, M Suffian M; Ahmad, N

    2017-12-01

    Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.

  20. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Panfilov, Peter, E-mail: peter.panfilov@urfu.ru [Ural Federal University, Ekaterinburg (Russian Federation); Kabanova, Anna [Ural Federal University, Ekaterinburg (Russian Federation); Guo, Jinming; Zhang, Zaoli [Erich Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria)

    2017-02-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30{sup °}) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  1. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    International Nuclear Information System (INIS)

    Panfilov, Peter; Kabanova, Anna; Guo, Jinming; Zhang, Zaoli

    2017-01-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30 ° ) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  2. Influence of MWCNT/surfactant dispersions on the mechanical properties of Portland cement pastes

    Science.gov (United States)

    Rodríguez, B.; Quintero, J. H.; Arias, Y. P.; Mendoza-Reales, O. A.; Ochoa-Botero, J. C.; Toledo-Filho, R. D.

    2017-12-01

    This work studies the reinforcing effect of Multi Walled Carbon Nanotubes (MWCNT) on cement pastes. A 0.35% solid concentration of MWCNT in powder was dispersed in deionized water with sodium dodecyl sulfate (cationic surfactant), cetylpyridinium chloride (anionic surfactant) and triton X-100 (amphoteric surfactant) using an ultrasonic tip processor. Three concentrations of each surfactant (1mM, 10mM and 100mM) were tested, and all samples were sonicated until an adequate dispersion degree was obtained. Cement pastes with additions of carbon nanotubes of 0.15% by mass of cement were produced in two steps; first the dispersions of MWCNT were combined with the mixing water using an ultrasonic tip processor to guarantee homogeneity, and then cement was added and mixed until a homogeneous paste was obtained. Direct tensile strength, apparent density and open porosity of the pastes were measured after 7 days of curing. It was found that the MWCNT/surfactants dispersions decrease the mechanical properties of the cement based matrix due to an increased porosity caused by the presence of surfactants.

  3. Nanometer Characterization/Manipulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Characterizes the nanometer scale of biological, chemical, physical, electronic, and mechanical properties of surfaces and thin films using scanning probe...

  4. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.

    Science.gov (United States)

    Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György

    2015-03-14

    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.

  5. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  6. The energetics of mesopore formation in zeolites with surfactants.

    Science.gov (United States)

    Linares, Noemi; Jardim, Erika de Oliveira; Sachse, Alexander; Serrano, Elena; Garcia-Martinez, Javier

    2018-05-02

    Mesoporosity can be conveniently introduced in zeolites by treating them in basic surfactant solutions. The apparent activation energy involved in the formation of mesopores in USY via surfactant-templating was obtained through the combination of in situ synchrotron XRD and ex situ gas adsorption. Additionally, techniques such as pH measurements and TG/DTA were employed to determine the OH- evolution and the CTA+ uptake during the development of mesoporosity, providing information about the different steps involved. By combining both in situ and ex situ techniques, we have been able, for the first time, to determine the apparent activation energies of the different processes involved in the mesostructuring of USY zeolites, which are in the same order of magnitude (30 - 65 kJ mol-1) of those involved in the crystallization of zeolites. Hence, important mechanistic insights on the surfactant-templating method were obtained. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption.

    Science.gov (United States)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei; Zhou, Bingjie; Lv, Liping; Ren, Jingzheng; Dong, Lichun; Li, Jing; Liu, Zhenfa

    2017-07-05

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn 2 O 3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced via a template-free route. The attained dual-porosity Mn 2 O 3 materials have 24nm of large-pore mesopores and 700nm of macropores. Besides, the achieved materials own cubic morphologies with particle sizes as large as 6.0μm, making them separable in the solution by a facile natural sedimentation. Dye adsorption measurements reveal that the dual-porosity materials possess a very high maximum adsorption capacity of 125.6mg/g, much larger than many reported materials. Particularly, the adsorbents can be recycled and the dye removal efficiency can be well maintained at 98% after four cycles. Adsorption isotherm and kinetics show that the Langmuir model and the pseudo-second-order kinetics model can well describe the adsorption process of Congo Red on the dual-porosity Mn 2 O 3 cube materials. In brief, the reported dual-porosity Mn 2 O 3 demonstrates a good example for controlled preparation of dual-porosity materials with large-pore mesopores, and the macropore-mesopore dual-porosity distribution is good for mass transfer in dye adsorption application. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  9. Carbon Nanotube Templated Microfabrication of Porous Silicon-Carbon Materials

    Science.gov (United States)

    Song, Jun; Jensen, David; Dadson, Andrew; Vail, Michael; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2010-10-01

    Carbon nanotube templated microfabrication (CNT-M) of porous materials is demonstrated. Partial chemical infiltration of three dimensional carbon nanotube structures with silicon resulted in a mechanically robust material, precisely structured from the 10 nm scale to the 100 micron scale. Nanoscale dimensions are determined by the diameter and spacing of the resulting silicon/carbon nanotubes while the microscale dimensions are controlled by lithographic patterning of the CNT growth catalyst. We demonstrate the utility of this hierarchical structuring approach by using CNT-M to fabricate thin layer chromatography (TLC) separations media with precise microscale channels for fluid flow control and nanoscale porosity for high analyte capacity.

  10. Nonionic Fluorinated Surfactant Removal from Mesoporous Film Using sc-CO2.

    Science.gov (United States)

    Chavez Panduro, Elvia A; Assaker, Karine; Beuvier, Thomas; Blin, Jean-Luc; Stébé, Marie-José; Konovalov, Oleg; Gibaud, Alain

    2017-01-25

    Surfactant templated silica thin films were self-assembled on solid substrates by dip-coating using a partially fluorinated surfactant R 8 F (EO) 9 as the liquid crystal template. The aim was 2-fold: first we checked which composition in the phase diagram was corresponding to a 2D rectangular highly ordered crystalline phase and second we exposed the films to sc-CO 2 to foster the removal of the surfactant. The films were characterized by in situ X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS) under CO 2 pressure from 0 to 100 bar at 34 °C. GISAXS patterns reveal the formation of a 2-D rectangular structure at a molar ratio R 8 F (EO) 9 /Si equal to 0.1. R 8 F (EO) 9 micelles have a cylindrical shape, which have a core/shell structure ordered in a hexagonal system. The core contains the R 8 F part and the shell is a mixture of (EO) 9 embedded in the silica matrix. We further evidence that the extraction of the template using supercritical carbon dioxide can be successfully achieved. This can be attributed to both the low solubility parameter of the surfactants and the fluorine and ethylene oxide CO 2 -philic groups. The initial 2D rectangular structure was well preserved after depressurization of the cell and removal of the surfactant. We attribute the very high stability of the rinsed film to the large value of the wall thickness relatively to the small pore size.

  11. Nanometer scale thermometry in a living cell

    Science.gov (United States)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2014-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748

  12. Influence of surfactant concentration on nanohydroxyapatite growth

    Indian Academy of Sciences (India)

    Nanohydroxyapatite particles with different morphologies were synthesized through a microwave coupled hydrothermal method using CTAB as a template. A successful synthesis of nanosized HAP spheres, rods and fibres is achieved through this method by controlling the concentration of the surfactant. The concentration ...

  13. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.1; monometallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.C.; Sayers, D.A.

    1993-01-01

    The structural information found using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to nanometer scale metallic clusters. (author)

  14. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    International Nuclear Information System (INIS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-01-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  15. A flexible, bolaamphiphilic template for mesoporous silicas.

    Science.gov (United States)

    Yuen, Alexander K L; Heinroth, Falk; Ward, Antony J; Masters, Anthony F; Maschmeyer, Thomas

    2013-08-28

    A novel symmetrical bolaamphiphile, containing two N-methylimidazolium head-groups bridged by a 32-methylene linker, was synthesized and characterized. A variety of mesoporous silicas was prepared using the bolaamphiphile as a "soft template". The effects of absolute surfactant concentration and synthesis conditions upon the morphologies of these silicas were investigated. For a given surfactant concentration, particle morphology; pore size; and pore ordering were modified through control of the template to silica-precursor ratio and synthesis conditions. Observed morphologies included: lenticular core-shell nanoparticles and decorticated globules, truncated hexagonal plates, and sheets. In all cases the mesopores are aligned along the shortest axis of the nanomaterial. Decorticated materials displayed surface areas of up to 1200 m(2) g(-1) and pore diameters (D(BJH)) of 24-28 Å. Small-angle X-ray diffraction and transmission electron microscopy measurements revealed that the majority of the materials has elliptical pores arranged in rectangular lattices (c2mm). Adoption of this symmetry group is a result of the template aggregate deformation from a regular hexagonal phase of cylindrical rods to a ribbon phase under the synthetic conditions.

  16. Optical properties of (nanometer MCM-41)-(malachite green) composite materials

    International Nuclear Information System (INIS)

    Li Xiaodong; Zhai Qingzhou; Zou Mingqiang

    2010-01-01

    Nanosized materials loaded with organic dyes are of interest with respect to novel optical applications. The optical properties of malachite green (MG) in MCM-41 are considerably influenced by the limited nanoporous channels of nanometer MCM-41. Nanometer MCM-41 was synthesized by tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMAB) as the template. The liquid-phase grafting method has been employed for incorporation of the malachite green molecules into the channels of nanometer MCM-41. A comparative study has been carried out on the adsorption of the malachite green into modified MCM-41 and unmodified MCM-41. The modified MCM-41 was synthesized using a silylation reagent, trimethychlorosilane (TMSCl), which functionalized the surface of nanometer MCM-41 for proper host-guest interaction. The prepared (nanometer MCM-41)-MG samples have been studied by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, Raman spectra and luminescence studies. In the prepared (nanometer MCM-41)-MG composite materials, the frameworks of the host molecular sieve were kept intact and the MG located inside the pores of MCM-41. Compared with the MG, it is found that the prepared composite materials perform a considerable luminescence. The excitation and emission spectra of MG in both modified MCM-41 and unmodified MCM-41 were examined to explore the structural effects on the optical properties of MG. The results of luminescence spectra indicated that the MG molecules existed in monomer form within MCM-41. However, the luminescent intensity of MG incorporated in the modified MCM-41 are higher than that of MG encapsulated in unmodified MCM-41, which may be due to the anchored methyl groups on the channels of the nanometer MCM-41 and the strong host-guest interactions. The steric effect from the pore size of the host materials is significant. Raman

  17. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  18. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Pranati [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Misra, Dinesh K. [The Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Salvador, Jim [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, Warren, MI 48090 (United States); Makongo, Julien P.A. [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Chaubey, Girija S. [Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Takas, Nathan J. [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Wiley, John B. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Poudeu, Pierre F.P., E-mail: ppoudeup@umich.edu [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)

    2012-06-15

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of {approx}100 m{sup 2}/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 Degree-Sign C. The thermal conductivity ({kappa}) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased ({approx}60%) compared to that of NiO single crystal. This strong reduction in {kappa} with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery. - Graphical abstract: Highly efficient phonon scattering by surfactant-free NiO nanostructures obtained by solution combustion of a mixture of nickel (II) nitrate hexahydrate (oxidizer) and urea (fuel) at various temperatures. Highlights: Black-Right-Pointing-Pointer Fast synthesis of surfactant-free NiO nanoparticles with controllable size. Black-Right-Pointing-Pointer High specific surface area for NiO nanoparticles with size range from 3 to 7 nm. Black-Right-Pointing-Pointer Strong reduction of the thermal conductivity with decreasing particle size. Black-Right-Pointing-Pointer NiO as nanoinclusions in high performance materials for energy conversion.

  19. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    International Nuclear Information System (INIS)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P.A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F.P.

    2012-01-01

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m 2 /g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery. - Graphical abstract: Highly efficient phonon scattering by surfactant-free NiO nanostructures obtained by solution combustion of a mixture of nickel (II) nitrate hexahydrate (oxidizer) and urea (fuel) at various temperatures. Highlights: ► Fast synthesis of surfactant-free NiO nanoparticles with controllable size. ► High specific surface area for NiO nanoparticles with size range from 3 to 7 nm. ► Strong reduction of the thermal conductivity with decreasing particle size. ► NiO as nanoinclusions in high performance materials for energy conversion.

  20. Synthesis of platinum nanowheels using a bicellar template.

    Science.gov (United States)

    Song, Yujiang; Dorin, Rachel M; Garcia, Robert M; Jiang, Ying-Bing; Wang, Haorong; Li, Peng; Qiu, Yan; van Swol, Frank; Miller, James E; Shelnutt, John A

    2008-09-24

    Disk-like surfactant bicelles provide a unique meso-structured reaction environment for templating the wet-chemical reduction of platinum(II) salt by ascorbic acid to produce platinum nanowheels. The Pt wheels are 496 +/-55 nm in diameter and possess thickened centers and radial dendritic nanosheets (about 2-nm in thickness) culminating in flared dendritic rims. The structural features of the platinum wheels arise from confined growth of platinum within the bilayer that is also limited at edges of the bicelles. The size of CTAB/FC7 bicelles is observed to evolve with the addition of Pt(II) complex and ascorbic acid. Synthetic control is demonstrated by varying the reaction parameters including metal salt concentration, temperature, and total surfactant concentration. This study opens up opportunities for the use of other inhomogeneous soft templates for synthesizing metals, metal alloys, and possibly semiconductors with complex nanostructures.

  1. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  2. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2008-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze the valence states at the nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in a Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample is topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  3. Brushite foams--the effect of Tween® 80 and Pluronic® F-127 on foam porosity and mechanical properties.

    Science.gov (United States)

    Unosson, Johanna; Montufar, Edgar B; Engqvist, Håkan; Ginebra, Maria-Pau; Persson, Cecilia

    2016-01-01

    Resorbable calcium phosphate based bone void fillers should work as temporary templates for new bone formation. The incorporation of macropores with sizes of 100 -300 µm has been shown to increase the resorption rate of the implant and speed up bone ingrowth. In this work, macroporous brushite cements were fabricated through foaming of the cement paste, using two different synthetic surfactants, Tween® 80 and Pluronic® F-127. The macropores formed in the Pluronic samples were both smaller and less homogeneously distributed compared with the pores formed in the Tween samples. The porosity and compressive strength (CS) were comparable to previously developed hydroxyapatite foams. The cement foam containing Tween, 0.5M citric acid in the liquid, 1 mass% of disodium dihydrogen pyrophosphate mixed in the powder and a liquid to powder ratio of 0.43 mL/g, showed the highest porosity values (76% total and 56% macroporosity), while the CS was >1 MPa, that is, the hardened cement could be handled without rupture of the foamed structure. The investigated brushite foams show potential for future clinical use, both as bone void fillers and as scaffolds for in vitro bone regeneration. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  4. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    Science.gov (United States)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  5. Nanometer size field effect transistors for terahertz detectors

    International Nuclear Information System (INIS)

    Knap, W; Rumyantsev, S; Coquillat, D; Dyakonova, N; Teppe, F; Vitiello, M S; Tredicucci, A; Blin, S; Shur, M; Nagatsuma, T

    2013-01-01

    Nanometer size field effect transistors can operate as efficient resonant or broadband terahertz detectors, mixers, phase shifters and frequency multipliers at frequencies far beyond their fundamental cut-off frequency. This work is an overview of some recent results concerning the application of nanometer scale field effect transistors for the detection of terahertz radiation. (paper)

  6. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  7. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media

    Science.gov (United States)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia

    2017-07-01

    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets

  8. Physical Explanation of Archie's Porosity Exponent in Granular Materials: A Process-Based, Pore-Scale Numerical Study

    Science.gov (United States)

    Niu, Qifei; Zhang, Chi

    2018-02-01

    The empirical Archie's law has been widely used in geosciences and engineering to explain the measured electrical resistivity of many geological materials, but its physical basis has not been fully understood yet. In this study, we use a pore-scale numerical approach combining discrete element-finite difference methods to study Archie's porosity exponent m of granular materials over a wide porosity range. Numerical results reveal that at dilute states (e.g., porosity ϕ > 65%), m is exclusively related to the particle shape and orientation. As the porosity decreases, the electric flow in pore space concentrates progressively near particle contacts and m increases continuously in response to the intensified nonuniformity of the local electrical field. It is also found that the increase in m is universally correlated with the volume fraction of pore throats for all the samples regardless of their particle shapes, particle size range, and porosities.

  9. Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer.

    Science.gov (United States)

    McMullen, Angus J; Tang, Jay X; Stein, Derek

    2017-11-28

    We report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions. This cannot be explained by Manning-condensed counterions or a number of other proposed models. Instead, we argue that these anomalous findings are consequences of the breakdown of the validity of continuum hydrodynamics at the scale of a few molecular layers. Next to a polyelectrolyte, there exists an extra-viscous, sub-nanometer-thin boundary layer that has a giant influence on the transport characteristics. We show that a stagnant boundary layer captures the essential hydrodynamics and extends the validity of the electrokinetic theory beyond the continuum limit. A stagnant layer with a thickness of about half a nanometer consistently improves predictions of the ionic current change induced by virus translocations and of the translocation velocity for both fd and M13 over a wide range of nanopore dimensions and salt concentrations.

  10. Growth Mechanism of Gold Nanorods in Binary Surfactant System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Mi; Seo, Sun-Hwa; Joe, Ara; Shim, Kyu-Dong; Jang, Eue-Soon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    In order to reveal the growth mechanism of gold nanorods (GNRs) in a binary surfactant system, we synthesized various GNRs by changing the concentration of the surfactants, AgNO{sub 3}, and HBr in the growth solution. We found that the benzyldime thylhexadecylammoniumchloride surfactant had weak interaction with the gold ions, but it could reduce the membrane fluidity. In addition, we could dramatically decrease the cetyltrimethylammonium bromide concentration required for GNR growth by adding an HBr solution. Notably, Ag{sup +} ions were necessary to break the symmetry of the seed crystals for GNR growth, but increasing the concentration of Ag{sup +} and Br{sup -} ions caused a decrease in the template size.

  11. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption

    DEFF Research Database (Denmark)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei

    2017-01-01

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn2O3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced...

  12. Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning.

    Science.gov (United States)

    Moxey, Mark; Johnson, Alexander; El-Zubir, Osama; Cartron, Michael; Dinachali, Saman Safari; Hunter, C Neil; Saifullah, Mohammad S M; Chong, Karen S L; Leggett, Graham J

    2015-06-23

    The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.

  13. Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants

    OpenAIRE

    Libbrecht, Wannes; Verberckmoes, An; Thybaut, Joris; Van Der Voort, Pascal; De Clercq, Jeriffa

    2017-01-01

    Mesoporous carbons have been the subject of various studies, both fundamental and applied. Fundamental studies revealed numerous synthesis routes which can adjust material characteristics as specific surface area, pore volume, pore size or morphology and elemental composition. The indirect synthesis or hard template method was developed first. An extensive collection of template materials exist, which can be impregnated with carbon precursors to provide various hard templated mesoporous carbo...

  14. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport

    Science.gov (United States)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.

    2017-07-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more

  15. Laboratory and pilot field-scale testing of surfactants for environmental restoration of chlorinated solvent DNAPLs

    International Nuclear Information System (INIS)

    Jackson, R.E.; Fountain, J.C.

    1994-01-01

    This project is composed of two phases and has the objective of demonstrating surfactant-enhanced aquifer remediation (SEAR) as a practical remediation technology at DOE sites with ground water contaminated by dense, non-aqueous phase liquids (DNAPLs), in particular, chlorinated solvents. The first phase of this project, Laboratory and Pilot Field Scale Testing, which is the subject of the work so far, involves (1) laboratory experiments to examine the solubilization of multiple component DNAPLs, e.g., solvents such as perchloroethylene (PCE) and trichloroethylene (TCE), by dilute surfactant solutions, and (2) a field test to demonstrate SEAR technology on a small scale and in an existing well

  16. Studies on the formation of hierarchical zeolite T aggregates with well-defined morphology in different template systems

    Science.gov (United States)

    Yin, Xiaoyan; Chu, Naibo; Lu, Xuewei; Li, Zhongfang; Guo, Hong

    2016-01-01

    In this paper, the disk-like and pumpkin-like hierarchical zeolite T aggregates consisted of primary nano-grains have been hydrothermally synthesized with and without the aid of the second template. The first template is used with tetramethylammonium hydroxide (TMAOH) and the second template is used with triethanolamine (TEA) or polyving akohol (PVA). A combination of characterization techniques, including XRD, SEM, TEM and N2 adsorption-desorption to examine the crystal crystallinity, morphology and surface properties of hierarchical zeolite T aggregates. In the single-template preparation process, the two-step varying-temperature treatment has been used to improve the meso-porosity of zeolite T aggregates. In the double-template preparation process, the amounts of PVA or TEA on the crystallinity, morphology and meso-porosity of zeolite T aggregates have been studied. It has been proved that the interstitial voids between the primary grains of aggregates are the origin of additional mesopores of samples. The micro- and meso-porosities of samples prepared with and without the second template have been contrasted in detail at last. In particular, the sample synthesized with the addition of PVA presents a hierarchical pore structure with the highest Sext value of 122 m2/g and Vmeso value of 0.255 cm3/g.

  17. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  18. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  19. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    Science.gov (United States)

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Influence of the preparation method on the morphology of templated NiCo{sub 2}O{sub 4} spinel

    Energy Technology Data Exchange (ETDEWEB)

    Cabo, Moises; Pellicer, Eva, E-mail: eva.pellicer.icn@uab.cat; Rossinyol, Emma; Solsona, Pau [Universitat Autonoma de Barcelona, Departament de Fisica, Facultat de Ciencies (Spain); Castell, Onofre [Universitat Autonoma de Barcelona, Servei de Microscopia, Facultat de Ciencies (Spain); Surinach, Santiago; Baro, Maria Dolors [Universitat Autonoma de Barcelona, Departament de Fisica, Facultat de Ciencies (Spain)

    2011-09-15

    The synthesis of NiCo{sub 2}O{sub 4} spinel by several nanocasting strategies (i.e., multi-step nanocasting, one-step nanocasting and soft-templating), in which nickel and cobalt nitrates are used as precursors and Pluronic P123 as surfactant, is explored. First, in the multi-step nanocasting, the effect of the impregnation method (evaporation, solid-liquid and two-solvent) of the SBA-15 silica template on the morphology of NiCo{sub 2}O{sub 4} replica is investigated. The evaporation method seems to be the best choice to obtain mesoporous NiCo{sub 2}O{sub 4} powder which, after calcination at 375 Degree-Sign C and subsequent template removal, displays the highest surface area (93.1 m{sup 2}/g). We have also checked the feasibility of the one-step nanoscating approach for the synthesis of ordered NiCo{sub 2}O{sub 4} arrays, though this methodology entails severe difficulties, mainly related to the different decomposition temperature of the nitrate precursors and the P123 surfactant. Finally, randomly oriented, aggregated NiCo{sub 2}O{sub 4} nanoparticles are obtained by means of P123 surfactant-assisted soft-templating approach.

  1. Brushite foams—the effect of Tween® 80 and Pluronic® F‐127 on foam porosity and mechanical properties

    Science.gov (United States)

    Montufar, Edgar B.; Engqvist, Håkan; Ginebra, Maria‐Pau; Persson, Cecilia

    2016-01-01

    Abstract Resorbable calcium phosphate based bone void fillers should work as temporary templates for new bone formation. The incorporation of macropores with sizes of 100 −300 µm has been shown to increase the resorption rate of the implant and speed up bone ingrowth. In this work, macroporous brushite cements were fabricated through foaming of the cement paste, using two different synthetic surfactants, Tween® 80 and Pluronic® F‐127. The macropores formed in the Pluronic samples were both smaller and less homogeneously distributed compared with the pores formed in the Tween samples. The porosity and compressive strength (CS) were comparable to previously developed hydroxyapatite foams. The cement foam containing Tween, 0.5M citric acid in the liquid, 1 mass% of disodium dihydrogen pyrophosphate mixed in the powder and a liquid to powder ratio of 0.43 mL/g, showed the highest porosity values (76% total and 56% macroporosity), while the CS was >1 MPa, that is, the hardened cement could be handled without rupture of the foamed structure. The investigated brushite foams show potential for future clinical use, both as bone void fillers and as scaffolds for in vitro bone regeneration. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 67–77, 2016. PMID:25615405

  2. Ordered Nanomaterials Thin Films via Supported Anodized Alumina Templates

    Directory of Open Access Journals (Sweden)

    Mohammed eES-SOUNI

    2014-10-01

    Full Text Available Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large area ordered nanostructures with tunable dimensions and aspect ratios. In this paper we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin film heterostructure on a substrate for high quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discuss briefly their optical properties and their applications to molecular detection using surface enhanced Raman spectroscopy. Finally we briefly address the possibility to make nanocomposite films, exemplary shown on a plasmonic-thermochromic nanocomposite of VO2-capped Au-nanorods.

  3. Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Tang, Jing; Aldalbahi, Ali; Torad, Nagy L; Yamauchi, Yusuke

    2015-04-20

    A new dual soft-template system comprising the asymmetric triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS-b-P2VP-b-PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA(+) ions via negatively charged hydrolyzed silica species. Thus, dual soft-templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Applied Study on Magnetic Nanometer Beads in Preparation of Genechip Samples

    Institute of Scientific and Technical Information of China (English)

    陈慧; 高华方; 谢欣; 马雪梅; 杨渝珍

    2004-01-01

    Summary: A protocol for enrichment and adsorption of karyocyte from whole blood by using magnetic nanometer beads as solid-phase absorbents was presented. The PCR amplification could be accomplished by using the nanobeads with karyocyte as template directly and the PCR products were applied on an oligonucleotide array to do gene typing. The HLA-A PCR amplification system and a small HLA-A oligonucleotide microarray were applied as the platform and an experiment protocol of separating karyocyte from whole blood using the magnetic nanometer beads (Fe2O3) were set up.The experimental conditions were also discussed. It showed that pH level of PBS eluent, Taq enzyme quantity and fragment length of products could influent the amplification results, and the magnetic nano-beads could succeed in sample preparation in microarray to provide a promising way in automatic detection and lab-on-a-chip.

  5. Investigating textural controls on Archie's porosity exponent using process-based, pore-scale modelling

    Science.gov (United States)

    Niu, Q.; Zhang, C.

    2017-12-01

    Archie's law is an important empirical relationship linking the electrical resistivity of geological materials to their porosity. It has been found experimentally that the porosity exponent m in Archie's law in sedimentary rocks might be related to the degree of cementation, and therefore m is termed as "cementation factor" in most literatures. Despite it has been known for many years, there is lack of well-accepted physical interpretations of the porosity exponent. Some theoretical and experimental evidences have also shown that m may be controlled by the particle and/or pore shape. In this study, we conduct a pore-scale modeling of the porosity exponent that incorporates different geological processes. The evolution of m of eight synthetic samples with different particle sizes and shapes are calculated during two geological processes, i.e., compaction and cementation. The numerical results show that in dilute conditions, m is controlled by the particle shape. As the samples deviate from dilute conditions, m increases gradually due to the strong interaction between particles. When the samples are at static equilibrium, m is noticeably larger than its values at dilution condition. The numerical simulation results also show that both geological compaction and cementation induce a significant increase in m. In addition, the geometric characteristics of these samples (e.g., pore space/throat size, and their distributions) during compaction and cementation are also calculated. Preliminary analysis shows a unique correlation between the pore size broadness and porosity exponent for all eight samples. However, such a correlation is not found between m and other geometric characteristics.

  6. High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting.

    Science.gov (United States)

    Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K W

    2015-04-10

    We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries.

  7. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jingtian, E-mail: jingtian.fang@utdallas.edu; Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2016-01-21

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ∼66 mV/decade and a drain-induced barrier-lowering of ∼2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  8. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    Science.gov (United States)

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Challenges in analysing and visualizing large-scale molecular dynamics simulations: domain and defect formation in lung surfactant monolayers

    International Nuclear Information System (INIS)

    Mendez-Villuendas, E; Baoukina, S; Tieleman, D P

    2012-01-01

    Molecular dynamics simulations have rapidly grown in size and complexity, as computers have become more powerful and molecular dynamics software more efficient. Using coarse-grained models like MARTINI system sizes of the order of 50 nm × 50 nm × 50 nm can be simulated on commodity clusters on microsecond time scales. For simulations of biological membranes and monolayers mimicking lung surfactant this enables large-scale transformation and complex mixtures of lipids and proteins. Here we use a simulation of a monolayer with three phospholipid components, cholesterol, lung surfactant proteins, water, and ions on a ten microsecond time scale to illustrate some current challenges in analysis. In the simulation, phase separation occurs followed by formation of a bilayer fold in which lipids and lung surfactant protein form a highly curved structure in the aqueous phase. We use Voronoi analysis to obtain detailed physical properties of the different components and phases, and calculate local mean and Gaussian curvatures of the bilayer fold.

  10. Template assisted solid state electrochemical growth of silver micro- and nanowires

    International Nuclear Information System (INIS)

    Peppler, Klaus; Janek, Juergen

    2007-01-01

    We report on a template based solid state electrochemical method for fabricating silver nanowires with predefined diameter, depending only on the pore diameter of the template. As templates we used porous silicon with pore diameters in the μm range and porous alumina with pore diameters in the nm range. The template pores were filled with silver sulfide (a mixed silver cation and electronic conductor) by direct chemical reaction of silver and sulfur. The filled template was then placed between a silver foil as anode (bottom side) and a microelectrode (top side) as cathode. An array of small cylindrical transference cells with diameters in the range of either micro- or nanometers was thus obtained. By applying a cathodic voltage to the microelectrode silver in the form of either micro- or nanowires was deposited at about 150 deg. C. The growth rate is controllable by the electric current

  11. Preparation, characterization and optical properties of Lanthanum-(nanometer MCM-41) composite materials

    International Nuclear Information System (INIS)

    Zhai, Q. Z.; Wang, P.

    2008-01-01

    Nanometer MCM-41 molecular sieve was prepared under a base condition by using cetyltrimethylammonium bromide as template and tetraethyl orthosilicate as silica source by means of hydrothermal method. Lanthanum(III) was incorporated into the nanometer MCM-41 by a liquid phase grafting method. The prepared nano composite materials were characterized by means of powder X-ray diffraction, spectrophotometric analysis, Fourier transform infrared spectroscopy, low temperature nitrogen adsorption-desorption technique, solid diffuse reflectance absorption spectra and luminescence. The powder X-ray diffraction studies show that the nanometer MCM-41 molecular sieve is successfully prepared. The highly ordered meso porous two-dimensional hexagonal channel structure and framework of the support MCM-41 is retained intact in the prepared composite material La-(nanometer MCM-41). The spectrophotometric analysis indicates that lanthanum exists in the prepared nano composite materials. The Fourier transform infrared spectra indicate that the framework of the MCM-41 molecular sieve still remains in the prepared nano composite materials and some framework vibration peaks show blue shifts relative to those of the MCM-41 molecular sieve. The low temperature nitrogen adsorption-desorption indicates that the guest locales in the channel of the molecular sieve. Compared with bulk lanthanum oxide, the guest in the channel of the molecular sieve has smaller particle size and shows a significant blue shift of optical absorption band in solid diffuse reflectance absorption spectra. The observed blue shift in the solid state diffuse reflectance absorption spectra of the lanthanum-(nanometer MCM-41) sample show the obvious stereoscopic confinement effect of the channel of the host on the guest, which further indicates the successful encapsulation of the guest in the host. The La-(nanometer MCM-41) sample shows luminescence

  12. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    Science.gov (United States)

    An extremely simple single-step method is described for the bulk synthesis of nanofibers of the electronic polymer polyaniline in fully reduced state (leucoemarldine form) without using any reducing agents, surfactants, and/or large amounts of insoluble templates. Chemical oxida...

  13. Preparation of tailored carbons with meso- and micro- porosity via template synthesis route

    Directory of Open Access Journals (Sweden)

    Howard. M. Williams

    2009-02-01

    Full Text Available A low cost templating approach to making non-ordered carbons with a tailored meso/micropore structure is described. A series of mesoporous carbons was prepared from polyfurfuryl alcohol and phenolic resin precursors by a templating route, using a variety of commercially available silica gels as the template material. Carbons were produced with mesopore volumes up to 1 cm3 g-1, mesopore sizes in the range of 4 nm to 8 nm and surface areas in the range of 300 to 700 m2 g-1. These mesoporous carbons were subsequently activated in CO2 to add controlled amounts of microporosity to produce carbons with both a micro and mesoporous structure. Significantly, the activation process did not appreciably change the mesopore size distribution of the carbons. By altering the activation time, it was possible to tailor the micropore: mesopore volume ratios within wide limits.

  14. Nanometer CMOS ICs from basics to ASICs

    CERN Document Server

    J M Veendrick, Harry

    2017-01-01

    This textbook provides a comprehensive, fully-updated introduction to the essentials of nanometer CMOS integrated circuits. It includes aspects of scaling to even beyond 12nm CMOS technologies and designs. It clearly describes the fundamental CMOS operating principles and presents substantial insight into the various aspects of design implementation and application. Coverage includes all associated disciplines of nanometer CMOS ICs, including physics, lithography, technology, design, memories, VLSI, power consumption, variability, reliability and signal integrity, testing, yield, failure analysis, packaging, scaling trends and road blocks. The text is based upon in-house Philips, NXP Semiconductors, Applied Materials, ASML, IMEC, ST-Ericsson, TSMC, etc., courseware, which, to date, has been completed by more than 4500 engineers working in a large variety of related disciplines: architecture, design, test, fabrication process, packaging, failure analysis and software.

  15. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  16. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  17. CTAB as a soft template for modified clay as filler in active packaging

    Directory of Open Access Journals (Sweden)

    Kajonpop Rittirong

    2015-06-01

    Full Text Available The role of modified clay has been employed in many areas of engineering research. Structure of clay was mainly focused on alumino-silicate layer and its form was presented as pillar layer. It composed of many ion exchanges inside. In industry, in order to use clay with higher efficiency, modification on surface and porosity has been developed. CTAB, one of the most effective cationic surfactant, was employed to modify the surface and porosity of clay.

  18. Facile synthesis of microporous carbon through a soft-template pathway and its performance in desulfurization and denitrogenation

    Institute of Scientific and Technical Information of China (English)

    Bo Sun; Gang Li; Xiaoxing Wang

    2010-01-01

    Wormlike/lamellar microporous carbons were prepared by using long alkyl chain primary amine hydrochloride as the template and resorcinol/formaldehyde as the carbon source under highly acidic conditions. The template can be eliminated by high temperature treatment under an inert atmosphere. The obtained carbon materials were characterized by N2 adsorption-desorption, transmission electron microscopy, thermogravimetry and scanning electron microscopy. The results show that dodecylamine hydrochloride surfactant can be used as the template of wormlike micropores structure while octadecylamine hydrochloride results in both lamellar and wormlike micropores. The obtained carbon materials have the similar pore size in the range of 0.5~0.59 nm, but with various morphologies such as monolith, spheres, and coralline. The microporous carbon obtained from dodecytamine hydrochloride surfactant shows good "adsorption performance to remove the refractory sulfur compounds and nitrogen-containing compounds in fuel.

  19. Possible origin and roles of nano-porosity in ZrO2 scales for hydrogen pick-up in Zr alloys

    Science.gov (United States)

    Lindgren, Mikaela; Geers, Christine; Panas, Itai

    2017-08-01

    A mechanistic understanding of Wagnerian build-up and subsequent non-Wagnerian break-down of barrier oxide upon oxidation of zirconium alloys by water is reiterated. Hydrogen assisted build-up of nano-porosity is addressed. Growth of sub-nanometer wide stalactitic pores owing to increasing aggregation of neutral oxygen vacancies offering a means to permeate hydrogen into the alloy is explored by density functional theory. The Wagnerian channel utilizes charge separation allowing charged oxygen vacancies and electrons to move separately from nominal anode to nominal cathode. This process becomes increasingly controlled by the charging of the barrier oxide resulting in sub-parabolic rate law for oxide growth. The break-down of the barrier oxide is understood to be preceded by avalanching hydrogen pick-up in the alloy. Pore mediated diffusion allows water to effectively short circuit the barrier oxide.

  20. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    Science.gov (United States)

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fabrication of the tricontinuous mesoporous IBN-9 structure with surfactant CTAB

    KAUST Repository

    Zhao, Yunfeng

    2011-12-13

    IBN-9 is the first tricontinuous mesoporous material, consisting of three identical interpenetrating channels that are separated by a single continuous silica wall. It was originally synthesized using a specially designed surfactant as template. The need of special surfactant in the synthesis inhibits extensive investigation of this novel structure and its applications. We demonstrate in this study that such a complicated tricontinuous mesostructure can also be fabricated from the most common and commercially available surfactant cetyltrimethylammonium bromide (CTAB) with the help of polar organic additives, e.g., n-butanol. The role of n-butanol is to finely tune the surface curvature of the organic/inorganic interface during the cooperative self-assembly process. Electron microscopic techniques are employed to identify different mesostructures from the mixture. This study reveals the possibility of discovering unprecedented mesostructures from conventional surfactant-water- silicates systems. © 2011 American Chemical Society.

  2. CO2/N2开关型脒基表面活性剂软模板制备介孔二氧化硅%Synthesis of mesoporous silica using CO2/N2switchable surfactant as soft templates

    Institute of Scientific and Technical Information of China (English)

    代利; 郑饶君; 马宇萱; 蒋建中; 崔正刚

    2015-01-01

    模板法是制备介孔 SiO2的常用方法之一,而模板法通常需要脱除模板后才能得到介孔结构.以传统表面活性剂为模板合成介孔二氧化硅,除模板方法还有高温焙烧、溶剂萃取等,但这些方法均存在一定的缺点,如导致结构坍塌、消耗大量溶剂等.本文采用开关型表面活性剂N'-十二烷基-N,N-二甲基乙基脒碳酸氢盐为模板剂,以正硅酸四乙酯(TEOS)为硅源在碱性条件下合成SiO2.与常规除模板法不同,本实验在反应结束后加热并通入N2使表面活性剂分解失去表面活性,用水和丙酮洗涤后得到了形貌规整、孔道有序、具有较高比表面积和孔容的介孔 SiO2.同时还研究了有机盐乙二胺四乙酸二钠(Na2EDTA)对介孔有序度、所得介孔材料比表面积、孔容孔径和模板残留量的影响.%Template method is used widely to synthesize mesoporous silica. However,the mesoporous structure can be obtained only after the templates are removed. Calcination,solvent extraction etc. are frequently used to remove conventional surfactant templates. However,these template removal methods could bring problems such as resulting structure collapse or massive consumption of solvent. In this paper,we synthesized silica using switchable surfactant of N'-dodecyl-N,N-dimethylacetamidinium bicarbonate as templates and tetraethoxysilane (TEOS) as silicon source in alkaline solution. Compared to conventional template removal method,the switchable surfactants decomposed and lost its surface activity by heating the mixture together with N2 injection when the reaction was completed. Mesoporous silica with uniform morphology,ordered mesopore,large specific surface area and pore volume was then obtained after washed with water and acetone. The effect of Na2EDTA on the order of mesopore,specific surface area,pore volume,size of pore and templates residue was discussed.

  3. Hydrazine-based synergistic Ti(III)/N doping of surfactant-templated TiO{sub 2} thin films for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Syed Z.; Rankin, Stephen E., E-mail: srankin@engr.uky.edu

    2016-10-01

    lattice of surfactant-templated TiO{sub 2} films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. - Highlights: • Photocatalysis by surfactant-templated ordered mesoporous TiO{sub 2} films measured. • Hydrazine treatment was performed for co-doping of Ti{sup 3+} and N. • Visible light absorption increases with Ti{sup 3+} and N co-doping. • Visible-light driven water splitting enhanced up to 4× over undoped titania. • Optimal time of hydrazine exposure found due to pore texture coarsening.

  4. Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...

  5. Periodically Arranged Arrays of Dendritic Pt Nanospheres Using Cage-Type Mesoporous Silica as a Hard Template.

    Science.gov (United States)

    Kani, Kenya; Malgras, Victor; Jiang, Bo; Hossain, Md Shahriar A; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Huang, Zhenguo; Yamauchi, Yusuke

    2018-01-04

    Dendritic Pt nanospheres of 20 nm diameter are synthesized by using a highly concentrated surfactant assembly within the large-sized cage-type mesopores of mesoporous silica (LP-FDU-12). After diluting the surfactant solution with ethanol, the lower viscosity leads to an improved penetration inside the mesopores. After Pt deposition followed by template removal, the arrangement of the Pt nanospheres is a replication from that of the mesopores in the original LP-FDU-12 template. Although it is well known that ordered LLCs can form on flat substrates, the confined space inside the mesopores hinders surfactant self-organization. Therefore, the Pt nanospheres possess a dendritic porous structure over the entire area. The distortion observed in some nanospheres is attributed to the close proximity existing between neighboring cage-type mesopores. This new type of nanoporous metal with a hierarchical architecture holds potential to enhance substance diffusivity/accessibility for further improvement of catalytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cationic gemini surfactant-assisted synthesis of hollow Au nanostructures by stepwise reductions.

    Science.gov (United States)

    Wang, Wentao; Han, Yuchun; Tian, Maozhang; Fan, Yaxun; Tang, Yongqiang; Gao, Mingyuan; Wang, Yilin

    2013-06-26

    A novel synthetic approach was developed for creating versatile hollow Au nanostructures by stepwise reductions of Au(III) upon the use of cationic gemini surfactant hexamethylene-1,6-bis(dodecyl dimethylammonium bromide) (C12C6C12Br2) as a template agent. It was observed that the Au(I) ions obtained from the reduction of Au(III) by ascorbic acid can assist the gemini surfactant to form vesicles, capsule-like, and tube-like aggregates that subsequently act as soft templates for hollow Au nanostructures upon further reduction of Au(I) to Au(0) by NaBH4. It was demonstrated that the combination of C12C6C12Br2 and Au(I) plays a key role in regulating the structure of the hollow precursors not only because C12C6C12Br2 has a stronger aggregation ability in comparison with its single chain counterpart but also because the electrostatic repulsion between head groups of C12C6C12Br2 is greatly weakened after Au(III) is converted to Au(I), which is in favor of the construction of vesicles, capsule-like, and tube-like aggregates. Compared with solid Au nanospheres, the resultant hollow nanostructures exhibit enhanced electrocatalytic activities in methanol oxidation, following the order of elongated nanocapsule > nanocapsule > nanosphere. Benefiting from balanced interactions between the gemini surfactant and Au(I), this soft-template method may present a facile and versatile approach for the controlled synthesis of Au nanostructures potentially useful for fuel cells and other Au nanodevices.

  7. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  8. Probing dynamics and pinning of single vortices in superconductors at nanometer scales

    Science.gov (United States)

    Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.

    2015-01-01

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  9. Template-mediated, Hierarchical Engineering of Ordered Mesoporous Films and Powders

    Science.gov (United States)

    Tian, Zheng

    Hierarchical control over pore size, pore topology, and meso/mictrostructure as well as material morphology (e.g., powders, monoliths, thin films) is crucial for meeting diverse materials needs among applications spanning next generation catalysts, sensors, batteries, sorbents, etc. The overarching goal of this thesis is to establish fundamental mechanistic insight enabling new strategies for realizing such hierarchical textural control for carbon materials that is not currently achievable with sacrificial pore formation by 'one-pot' surfactant-based 'soft'-templating or multi-step inorganic 'hard-templating. While 'hard'-templating is often tacitly discounted based upon its perceived complexity, it offers potential for overcoming key 'soft'-templating challenges, including bolstering pore stability, accommodating a more versatile palette of replica precursors, realizing ordered/spanning porosity in the case of porous thin films, simplifying formation of bi-continuous pore topologies, and inducing microstructure control within porous replica materials. In this thesis, we establish strategies for hard-templating of hierarchically porous and structured carbon powders and tunable thin films by both multi-step hard-templating and a new 'one-pot' template-replica precursor co-assembly process. We first develop a nominal hard-templating technique to successfully prepare three-dimensionally ordered mesoporous (3DOm) and 3DOm-supported microporous carbon thin films by exploiting our ability to synthesize and assemble size-tunable silica nanoparticles into scalable, colloidal crystalline thin film templates of tunable mono- to multi-layer thickness. This robust thin film template accommodates liquid and/or vapor-phase infiltration, polymerization, and pyrolysis of various carbon sources without pore contraction and/or collapse upon template sacrifice. The result is robust, flexible 3DOm or 3DOm-supported ultra-thin microporous films that can be transferred by stamp

  10. OBSERVATION AND ANALYSIS OF A PRONOUNCED PERMEABILITY AND POROSITY SCALE-EFFECT IN UNSATURATED FRACTURED TUFF

    Energy Technology Data Exchange (ETDEWEB)

    V. VESSELINOV; ET AL

    2001-01-01

    Over 270 single-hole (Guzman et al., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-hole tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nominal support scale of about 1 m. The corresponding log permeability data exhibit spatial behavior characteristic of a random fractal and yield a kriged estimate of how these 1-m scale log permeabilities vary in three-dimensional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a three-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure records from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach amounts to three-dimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume

  11. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    Science.gov (United States)

    Mount, G. J.; Comas, X.

    2015-12-01

    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  12. Dimensional crossover in fluids under nanometer-scale confinement.

    Science.gov (United States)

    Das, Amit; Chakrabarti, J

    2012-05-01

    Several earlier studies have shown signatures of crossover in various static and dynamics properties of a confined fluid when the confining dimension decreases to about a nanometer. The density fluctuations govern the majority of such properties of a fluid. Here, we illustrate the crossover in density fluctuation in a confined fluid, to provide a generic understanding of confinement-induced crossover of fluid properties, using computer simulations. The crossover can be understood as a manifestation of changes in the long-wavelength behavior of fluctuation in density due to geometrical constraints. We further show that the confining potential significantly affects the crossover behavior.

  13. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  14. BULK AND TEMPLATE-FREE SYNTHESIS OF SILVER NANOWIRES USING CAFFEINE AT ROOM TEMPERATURE

    Science.gov (United States)

    A simple eco-friendly one-pot method is described to synthesize bulk quantities of nanowires of silver (Ag) using caffeine without the need of reducing agent, surfactants, and/or large amounts of insoluble templates. Chemical reduction of silver salts with caffeine dramatically c...

  15. Nanometals - Status and perspective

    International Nuclear Information System (INIS)

    Faester, S.; Hansen, N.; Huang, X.; Juul Jensen, D.; Ralph, B.

    2012-01-01

    Nanometals and nanotechnology have over the years been covered in papers, books and conferences - also in many Risoe International Symposia, where the 30th in 2009 dealt solely with nanostructured metals. Since then, rapid progress has been made in synthesis, characterization and modeling, and it is timely to discuss status and perspective also with a view on applications in an international forum such as the Risoe Symposium. Both keynote and contributed papers address important current problems illustrating global research and development in this field. Examples are the development of new synthesis techniques followed by characterization and modeling of microstructures both in 2D and 3D now starting to bridge the micrometer scales. The vital area of mechanical behavior is addressed by the development of new testing techniques and a broad effort to characterize and model mechanical properties of metals strengthened by dislocations and twins. This research has now led to new understanding of both strengthening mechanisms and strengh structure relationships based on experiments in combination with analytical and numerical modeling. The holistic approach to research on nanometals demonstrated by these proceedings can guide both scientists and technologists in their future work also with the aim of introducing into society this new group of advanced materials. Such an effort is important, as science and technology today is significantly affected by politics of governments and international institutions, and therefore a new initiative in the pressent is to include a discussion of research and development in the area of nanometals i USA, China and Japan. (Author)

  16. Nanometals - Status and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Faester, S.; Hansen, N.; Huang, X.; Juul Jensen, D.; Ralph, B. (eds.)

    2012-11-01

    Nanometals and nanotechnology have over the years been covered in papers, books and conferences - also in many Risoe International Symposia, where the 30th in 2009 dealt solely with nanostructured metals. Since then, rapid progress has been made in synthesis, characterization and modeling, and it is timely to discuss status and perspective also with a view on applications in an international forum such as the Risoe Symposium. Both keynote and contributed papers address important current problems illustrating global research and development in this field. Examples are the development of new synthesis techniques followed by characterization and modeling of microstructures both in 2D and 3D now starting to bridge the micrometer scales. The vital area of mechanical behavior is addressed by the development of new testing techniques and a broad effort to characterize and model mechanical properties of metals strengthened by dislocations and twins. This research has now led to new understanding of both strengthening mechanisms and strengh structure relationships based on experiments in combination with analytical and numerical modeling. The holistic approach to research on nanometals demonstrated by these proceedings can guide both scientists and technologists in their future work also with the aim of introducing into society this new group of advanced materials. Such an effort is important, as science and technology today is significantly affected by politics of governments and international institutions, and therefore a new initiative in the pressent is to include a discussion of research and development in the area of nanometals i USA, China and Japan. (Author)

  17. Functional nanometer-scale structures

    Science.gov (United States)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  18. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems

    Science.gov (United States)

    Auchter, Eric; Marquez, Justin; Stevens, Garrison; Silva, Rebecca; Mcculloch, Quinn; Guengerich, Quintessa; Blair, Andrew; Litchfield, Sebastian; Li, Nan; Sheehan, Chris; Chamberlin, Rebecca; Yarbro, Stephen L.; Dervishi, Enkeleda

    2018-05-01

    We present a methodology for developing ultra-thin and strong formvar-based membranes with controlled morphologies. Formvar is a thin hydrophilic and oleophilic polymer inert to most chemicals and resistant to radiation. The formvar-based membranes are viable materials as support structures in micro- and macro-scale systems depending on thinness and porosity control. Tunable sub-micron thick porous membranes with 20%–65% porosity were synthesized by controlling the ratios of formvar, glycerol, and chloroform. This synthesis process does not require complex separation or handling methods and allows for the production of strong, thin, and porous formvar-based membranes. An expansive array of these membrane characterizations including chemical compatibility, mechanical responses, wettability, as well as the mathematical simulations as a function of porosity has been presented. The wide range of chemical compatibility allows for membrane applications in various environments, where other polymers would not be suitable. Our formvar-based membranes were found to have an elastic modulus of 7.8 GPa, a surface free energy of 50 mN m‑1 and an average thickness of 125 nm. Stochastic model simulations indicate that formvar with the porosity of ∼50% is the optimal membrane formulation, allowing the most material transfer across the membrane while also withstanding the highest simulated pressure loadings before tearing. Development of novel, resilient and versatile membranes with controlled porosity offers a wide range of exciting applications in the fields of nanoscience, microfluidics, and MEMS.

  19. Nm-scale diamond-like-carbon (DLC) templates for use in soft lithography

    International Nuclear Information System (INIS)

    Watson, G.S.; Myhra, S.; Brown, C.L.; Watson, J.A.

    2005-01-01

    An emerging set of methods known collectively as soft lithography is now being utilised for a large variety of applications including micromolding, microfluidic networks and microcontact printing. In particular stamps and elastomeric elements can be formed by exposure of a polymer to a template. Established lithographic techniques used in the microelectronic industry, such as photolithography, are generally used to fabricate such master templates at the micron scale. In this study we demonstrate the use of diamond-like-carbon (DLC) as a template for producing polymer micro/nano stamps and 3D polymer structures. Intricate surface relief patterns can be formed on the DLC surface from lithographic techniques by atomic force microscopy (AFM) operated in the electrical conductivity mode. A number of polymers can be used to transfer patterns. One of the most widely used polymers for pattern transfer has been polydimethylsiloxane (PDMS). The elastomer is chemically resistant, has a low surface energy and readily conforms to different surface topographies. Obtaining a master is the limiting factor in the production of PDMS replicas. (author). 2 refs., 4 figs

  20. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants

    Directory of Open Access Journals (Sweden)

    Tae-Jung Ha

    2011-01-01

    Full Text Available Materials with nanosized and well-arranged pores have been researched actively in order to be applied to new technology fields. Especially, mesoporous material containing various pore structures is expected to have different pore structure. To form a mixed pore structure, ordered mesoporous silica films were prepared with a mixture of surfactant; Brij-76 and P-123 block copolymer. In mixed surfactant system, mixed pore structure was observed in the region of P-123/(Brij-76 + P-123 with about 50.0 wt.% while a single pore structure was observed in regions which have large difference in ratio between Brij-76 and P-123 through the X-ray diffraction analysis. Regardless of surfactant ratio, porosity was retained almost the same. It is expected that ordered mesoporous silica film with mixed pore structure can be one of the new materials which has distinctive properties.

  1. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    Science.gov (United States)

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

  2. Hierarchically porous composites fabricated by hydrogel templating and viscous trapping techniques

    NARCIS (Netherlands)

    Thompson, Benjamin R.; Horozov, Tommy S.; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2018-01-01

    Two methods for the preparation of hierarchically porous composites have been developed and explored. The first involved templating mixed slurries of hydrogel beads with two different average bead size distributions with gypsum slurry which allows for precise control over the porosity, pore size

  3. Synthesis and characterizations of Pt nanorods on electrospun polyamide-6 nanofibers templates

    International Nuclear Information System (INIS)

    Nirmala, R.; Navamathavan, R.; Won, Jeong Jin; Jeon, Kyung Soo; Yousef, Ayman; Kim, Hak Yong

    2012-01-01

    Highlights: ► Electrospun polyamide-6 nanofibers were used as the templates for synthesis Pt nanorods. ► Polyamide-6 nanofibers surfaces were plasma treated to coat Pt. ► High quality Pt nanorods were obtained by calcinations process. ► Pt nanorods with a diameter of few hundred nanometers were obtained. ► Polyamide-6 nanofibers template based Pt nanorods synthesis are a feasible method. - Abstract: We report on the synthesis of platinum (Pt) nanorods by using ultrafine polyamide-6 nanofibers templates produced via electrospinning technique. These ultrafine polyamide-6 nanofibers can be utilized as the templates for growing Pt nanorods after modifying them optimally by plasma passivations. The morphological, structural, optical and electrical properties of the template assisted Pt nanorods were studied by field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), photoluminescence (PL) and current–voltage (I–V) characteristics. The ability to fabricate the ultrafine size controlled Pt nanorods on polyamide-6 templates with optimized growth parameters in real time can be utilized for the variety of technological applications. Therefore, it is possible to obtain high quality with size control Pt nanorods. Once obtaining the high quality metal nanorods on polymer templates, the same can be adapted for the electronic device fabrication.

  4. Study of Catalyst, Aging Time and Surfactant Effects on Silica Inorganic Polymer Characteristics

    Directory of Open Access Journals (Sweden)

    M. Pakizeh

    2007-06-01

    Full Text Available In the present study the sol-gel method is used for synthesis of amorphous nanostructure silica polymer using tetraethoxysilane (TEOS as silicon source. This polymer can be used in manufacturing of nanoporous asymmetricmembranes. The effect of catalyst on silica particle size has been studied under acidic and basic conditions.زAcid-catalyzed reaction leads to the formation of fine particles while the base-catalyzed reaction produceslarger particles. The presence of cationic template surfactant namely cetyl pyridinium bromide (CPBزdirects the structural formation of the polymer by preventing the highly branched polymeric clusters. This will increase the effective area of the produced silica membrane. Nitrogen physisorption tests by Brunaver- Emmett-Teller (BET and Barrett-Joyner-Halenda (BJH methods revealed that the surface area of the membrane increases significantly around 5-folds when acid-catalyzed reaction is used. 29Si-NMR test is also used to study the aging time effect on the level of silica polymer branching. The results show that in acidic condition, aging time up to three weeks can still affect branching. The calcinations process in which the organic materials and CPB (surfactant are burned and released from the silica particles, is studied on template free silica materials as well as templated silica materials using TGA and DTA techniques.

  5. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    International Nuclear Information System (INIS)

    Liu Chao; Wang Bin; Ji Xiujie; Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia

    2012-01-01

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (Lα-ZrO 2 ) without post-treatments and surfactants. ZrOCl 2 and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that Lα-ZrO 2 is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in Lα-ZrO 2 . TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO 2 and pore alternatively. In contrast, the template-free ZrO 2 (TF-ZrO 2 ) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  6. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  7. Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules.

    Science.gov (United States)

    Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Konrad, Manfred; Skirtach, Andre G

    2014-05-01

    Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Some applications of nanometer scale structures for current and future X-ray space research

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S; Frederiksen, P K

    1994-01-01

    Nanometer scale structures such as multilayers, gratings and natural crystals are playing an increasing role in spectroscopic applications for X-ray astrophysics. A few examples are briefly described as an introduction to current and planned applications pursued at the Danish Space Research...... Institute in collaboration with the FOM Institute for Plasma Physics, Nieuwegein, the Max-Planck-Institut für Extraterrestrische Physik, Aussenstelle Berlin, the Space Research Institute, Russian Academy of Sciences, the Smithsonian Astrophysical Observatory, Ovonics Synthetic Materials Company and Lawrence...... Livermore National Laboratory. These examples include : 1. the application of multilayered Si crystals for simultaneous spectroscopy in two energy bands one centred around the SK-emission near 2.45 keV and the other below the CK absorption edge at 0.284 keV; 2. the use of in-depth graded period multilayer...

  9. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei; Liu, Zhaohui; Zhu, Yihan; Dong, Xinglong; Saih, Youssef; Basset, Jean-Marie; Sun, Miao; Xu, Wei; Zhu, Liangkui; Zhang, Daliang; Huang, Jianfeng; Meng, Xiangju; Xiao, Feng-Shou; Han, Yu

    2016-01-01

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant

  10. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high-frequency ground penetrating radar (GPR) measurements at the laboratory scale

    Science.gov (United States)

    Mount, Gregory J.; Comas, Xavier

    2014-10-01

    Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.

  11. A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells

    Directory of Open Access Journals (Sweden)

    Marlière Christian

    2016-01-01

    Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.

  12. Soft-template mediated synthesis of GaOOH nanorod-shelled microspheres and thermal conversion to beta-Ga2O3.

    Science.gov (United States)

    Wang, Jian; Li, Qi; Qiu, Xiaohui; He, Yujian; Liu, Wei

    2010-07-01

    Micrometer-scale hollow spheres self-assembled by GaOOH nanorods were synthesized under hydrothermal conditions using gallium nitrate and sodium hydroxide as starting materials. The structures and morphologies of the products were studied by X-ray diffraction and scanning electron microscopy. Time-dependent experiments revealed three stages involved in the process of reaction including the initial stage of formation of surfactant vesicles which can be considered as soft templates, followed by the nucleation of GaOOH nanoclusters, and the assembling and growth of nanorods under the modulation of the spherical vesicles. The growth kinetics of the GaOOH nanorods was systematically investigated. Based on the experimental observation, a template-mediated assembling mechanism was proposed. We further demonstrated that the GaOOH nanorods could be converted to gallium oxide (beta-Ga2O3) nanorods by calcination without changing the spherical morphology of the assemblies.

  13. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  14. Surfactant-ligand co-assisted solvothermal technique for the synthesis of different-shaped CdS nanorod-based materials

    International Nuclear Information System (INIS)

    Bao Chunyan; Jin Ming; Lu Ran; Xue Pengchong; Zhang Qinglin; Wang Dejun; Zhao Yingying

    2003-01-01

    1-D nanorods, twinrods, golfclubs, and tripods of CdS were prepared via a surfactant-ligand co-assisted solvothermal method at 160 deg. C. The surfactant of S-dodecylisothiounium bromide (C 12 ) used in the process was favorable for synthesis of different-shaped CdS nanorod with high aspect ratio. X-ray diffraction (XRD) and TEM images showed that the 1-D nanorods had wurtzite phase and others had a zinc blende core and wurtzite arms. The morphologies of CdS prepared under different conditions suggested the 'template-assistance' of the surfactant and that the nonaqueous organic media are important for the self-assembling of inorganic components at atomic level

  15. Surfactant-Polymer Interaction for Improved Oil Recovery; FINAL

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-01

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering

  16. Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates

    Science.gov (United States)

    Li, Hongbing; Zhang, Jiajia

    2018-04-01

    The pore structure in heterogeneous carbonate rock is usually very complex. This complex pore system makes the relationship between the velocity and porosity of the rock highly scattered, so that for the classical two-dimensional rock physics template (2D RPT) it is not enough to accurately describe the quantitative relationship between the rock elastic parameters of this kind of reservoir and its porosity and water saturation. Therefore it is possible to attribute the effect of pore type to that of the porosity or water saturation, and leads to great deviations when applying such a 2D RPT to predict the porosity and water saturation in seismic reservoir prediction and hydrocarbon detection. This paper first presents a method to establish a new three-dimensional rock physics template (3D RPT) by integrating the Gassmann equations and the porous rock physics model, and use it to characterize the quantitative relation between rock elastic properties and the reservoir parameters including the pore aspect ratio, porosity and water saturation, and to predict these parameters from the known elastic properties. The test results on the real logging and seismic inversion data show that the 3D RPT can accurately describe the variations of elastic properties with the porosity, water saturation and pore-structure parameters, and effectively improve the accuracy of reservoir parameters prediction.

  17. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner

    International Nuclear Information System (INIS)

    Cheng, Alice; Boyan, Barbara D; Humayun, Aiza; Cohen, David J; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2579–3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. (paper)

  18. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner.

    Science.gov (United States)

    Cheng, Alice; Humayun, Aiza; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2014-10-07

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15-70% with compressive moduli of 2579-3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.

  19. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms

    International Nuclear Information System (INIS)

    Belegratis, M R; Schmidt, V; Nees, D; Stadlober, B; Hartmann, P

    2014-01-01

    The diatoms are ubiquitous, exist in large numbers and show a great diversity of features on their porous silica structures. Therefore, they inspire the fabrication of nanostructured templates for nanoimprint processes (NIL), where large structured areas with nanometer precision are required. In this study, two approaches regarding the respective challenges and potential exploitations are followed and discussed: the first one takes advantage of a template that is directly made of natural occurring diatoms. Here, two replication steps via soft lithography are needed to obtain a template which is subsequently used for NIL. The second approach exploits the technical capabilities of the precise 3D laser lithography (3DLL) based on two-photon polymerization of organic materials. This method enables the fabrication of arbitrary artificial diatom-inspired micro- and nanostructures and the design of an inverse structure. Therefore, only one replication step is needed to obtain a template for NIL. In both approaches, a replication technique for true 3D structures is shown. (paper)

  20. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping

    2012-12-15

    Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chao, E-mail: liuchao_tj@yahoo.com; Wang Bin [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China); Ji Xiujie, E-mail: jxjchem@yahoo.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University (China); Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China)

    2012-03-15

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (L{alpha}-ZrO{sub 2}) without post-treatments and surfactants. ZrOCl{sub 2} and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that L{alpha}-ZrO{sub 2} is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in L{alpha}-ZrO{sub 2}. TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO{sub 2} and pore alternatively. In contrast, the template-free ZrO{sub 2} (TF-ZrO{sub 2}) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  2. Fluorescent visualization of a spreading surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2010-07-15

    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  3. GREEN APPROACH TO BULK AND TEMPLATE-FREE SYNTHESIS OF THERMALLY STABLE REDUCED POLYANILINE NANOFIBERS FOR CAPACITOR APPLICATIONS

    Science.gov (United States)

    An extremely simple green approach is described that generates bulk quantities of nanofibers of the electronic polymer polyaniline in fully reduced state (leucoemeraldine form) in one step without using any reducing agent, surfactants, and/or large amounts of insoluble templates....

  4. Catalytic silica particles via template-directed molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clark, D.S.; Gaber, B.P.

    2000-02-22

    The surfaces of silica particle were molecularly imprinted with an {alpha}-chymotrypsin transition-state analogue (TSA) by utilizing the technique of template-directed synthesis of mineralized materials. The resulting catalytic particles hydrolyzed amides in an enantioselective manner. A mixture of a nonionic surfactant and the acylated chymotrysin TSA, with the TSA acting as the headgroup at the surfactant-water interface, was used to form a microemulsion for silica particle formation. Incorporation of amine-, dihydroimidazole-, and carboxylate-terminated trialkoxysilanes into the particles during imprinting resulted in enhancement of the rates of amide hydrolysis. Acylated imprint molecules formed more effective imprints in the presence of the functionalized silanes than nonacylated imprint molecules. Particles surface-imprinted with the chymotrypsin TSA were selective for the trypsin substrate, and particles surface-imprinted with the L-isomer of the enzyme TSA were enantioselective for the D-isomer of the substrate.

  5. Ultrasonic/surfactant assisted of CdS nano hollow sphere synthesis and characterization

    International Nuclear Information System (INIS)

    Rafati, Amir Abbas; Borujeni, Ahmad Reza Afraz; Najafi, Mojgan; Bagheri, Ahmad

    2011-01-01

    CdS hollow nanospheres with diameters ranging from 40 to 150 nm have been synthesized by a surfactant-assisted sonochemical route. The successful vesicle templating indicates that the outer leaflet of the bilayer is the receptive surface in the controlled growth of CdS nanoparticles which provide the unique reactor for the nucleation and mineralization growth of CdS nanoparticles. The CdS nanostructures obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Structural characterization of hollow CdS nanospheres indicates that these products packed with square subunits having sizes between 5 and 7 nm in diameter. The formation of the hollow nanostructure was explained by a vesicle template mechanism, in which sonication and surfactant play important roles. The band-edge emission and surface luminescence of the CdS nanoparticles were observed. -Research Highlights: → CdS hollow nanospheres with diameters of 40-150 nm were synthesized. → Nanoparticles were characterized by UV/Vis and photoluminescence. → Nanospheres are composed of smaller nanocrystals with the average size of 6.8 nm. → The band gap energy of the CdS nanoparticles is higher than its bulk value.

  6. Mesoporous templated silicas: stability, pore size engineering and catalytic activation

    International Nuclear Information System (INIS)

    Vansant, Etienne

    2003-01-01

    The Laboratory of Adsorption and Catalysis has focused its research activities on the synthesis and activation of new porous materials. In the past few years, we have succeeded in developing easy and reproducible pathways to synthesize a huge variety of mesoporous crystalline materials. Points of interest in the synthesis of Mesoporous Templated Silicas are (i) stabilization of the structure, to withstand hydrothermal, thermal and mechanical pressure, (ii) pore size engineering to systematically control the pore size, pore volume and the ratio micro/mesopores and (iii) ease and reproducibility of the synthesis procedure, applying green principles, such as template recuperation. By carefully adapting the synthesis conditions and composition of the synthesis gel, using surfactants (long chain quaternary ammonium ions) and co-templates (long chain amines, alcohols or alkanes), the pore size of the obtained materials can be controlled from 1.5 to 7.0 nm, retaining the very narrow pore size distribution. Alternatively, materials with combined micro- and mesoporosity can be synthesized, using neutral surfactants (triblock copolymers). Hereby, the optimization of the SBA-15 and SBA-16 synthesis is being done in order to create mesoporous materials with microporous walls. The second research line is the controlled activation of MTS materials, by grafting or incorporation of catalytic active centers. We have developed for this purpose the Molecular Designed Dispersion method, which uses metal diketonate complexes as precursors. It is shown that in all cases the dispersion of the metal oxides on the surface is much better compared to the conventional grafting techniques. We have studied and published activation with V, Ti, Mo, Fe, Al and Cr species on different MTS materials. The structure and location of the active metal ion is the subject of an extensive spectroscopic investigation, using FT-IR, FT-Raman, UV-Vis DR coupled with selective chemisorption experiments and

  7. Large-scale freestanding nanometer-thick graphite pellicles for mass production of nanodevices beyond 10 nm.

    Science.gov (United States)

    Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom

    2015-09-21

    Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm.

  8. Thickness-Dependent Surfactant Behavior in Trilayer Polymer Films

    Science.gov (United States)

    Sun, Yan; Shull, Kenneth; Wang, Jin

    2010-03-01

    The ability for thin liquid films to wet and remain thermodynamically stable on top of one another is a fundamental challenge in developing high quality paints, coatings, adhesives, and other industrial products. Since intermolecular interactions and interfacial energies dominate in the film thickness regime from tens to hundreds of nanometers, it is desirable to tune these long-range and short-range forces in a simple, controllable manner. Starting from an unstable model homopolymer bilayer (poly(styrene)/poly(4-vinylpyridine)), we demonstrate that sandwiching an additional homopolymer layer (poly(4-bromostyrene)) between the two layers can provide needed surfactancy. As the thickness of this center layer is increased, the full trilayer transitions from unstable (thin) to stable (moderate) to unstable (thick). We experimentally show using x-ray standing waves generated via total external reflection (TER-XSW), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) that this behavior can be directly attributed to the autophobic dewetting phenomenon, in which the surfactant layer is thin enough to remain stable but thick enough to shield the neighboring layers, highlighting a general approach to stabilizing multilayer systems.

  9. A model based approach to reference-free straightness measurement at the Nanometer Comparator

    Science.gov (United States)

    Weichert, C.; Stavridis, M.; Walzel, M.; Elster, C.; Wiegmann, A.; Schulz, M.; Köning, R.; Flügge, J.; Tutsch, R.

    2009-06-01

    The Nanometer Comparator is the PTB reference length measuring machine for high precision calibrations of line scales and encoder systems. Up to now the Nanometer Comparator allows to measure the position of line structures in one dimension only. For high precision characterisations of masks, scales and incremental encoders, the measurement of the straightness of graduations is a requirement from emerging lithography techniques. Therefore the Nanometer Comparator will be equipped with an additional short range measurement system in the Y-direction, realized as a single path plane mirror interferometer and supposed to achieve sub-nm uncertainties. To compensate the topography of the Y-mirror, the Traceable Multi Sensor (TMS) method will be implemented to achieve a reference-free straightness measurement. Virtual experiments are used to estimate the lower accuracy limit and to determine the sensitive parameters. The virtual experiments contain the influence of the positioning devices, interferometer errors as well as non-perfect adjustment and fabrication of the machine geometry. The whole dynamic measurement process of the Nanometer Comparator including its influence on the TMS analysis, e.g. non-equally spaced measurement points, is simulated. We will present the results of these virtual experiments as well as the most relevant error sources for straightness measurement, incorporating the low uncertainties of the existing and planned measurement systems.

  10. Control of stain geometry by drop evaporation of surfactant containing dispersions.

    Science.gov (United States)

    Erbil, H Yildirim

    2015-08-01

    Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  12. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  13. Rational design of mesoporous metals and related nanomaterials by a soft-template approach.

    Science.gov (United States)

    Yamauchi, Yusuke; Kuroda, Kazuyuki

    2008-04-07

    We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.

  14. On the anodic aluminium oxide refractive index of nanoporous templates

    International Nuclear Information System (INIS)

    Hierro-Rodriguez, A; Rocha-Rodrigues, P; Araujo, J P; Valdés-Bango, F; Alameda, J M; Teixeira, J M; Jorge, P A S; Santos, J L; Guerreiro, A

    2015-01-01

    In the present study, we have determined the intrinsic refractive index of anodic aluminium oxide, which is originated by the formation of nanoporous alumina templates. Different templates have been fabricated by the conventional two-step anodization procedure in oxalic acid. Their porosities were modified by chemical wet etching allowing the tuning of their effective refractive indexes (air-filled nanopores  +  anodic aluminium oxide). By standard spectroscopic light transmission measurements, the effective refractive index for each different template was extracted in the VIS–NIR region. The determination of the intrinsic anodic aluminium oxide refractive index was performed by using the Maxwell–Garnett homogenization theory. The results are coincident for all the fabricated samples. The obtained refractive index (∼1.55) is quite lower (∼22%) than the commonly used Al 2 O 3 handbook value (∼1.75), showing that the amorphous nature of the anodic oxide structure strongly conditions its optical properties. This difference is critical for the correct design and modeling of optical plasmonic metamaterials based on anodic aluminium oxide nanoporous templates. (paper)

  15. The evolution of hierarchical porosity in self-templated nitrogen-doped carbons and its effect on oxygen reduction electrocatalysis

    NARCIS (Netherlands)

    Eisenberg, D.; Prinsen, P.; Geels, N.J.; Stroek, W.; Yan, N.; Hua, B.; Luo, J.-L.; Rothenberg, G.

    2016-01-01

    Pyrolitic self-templating synthesis is an effective method for creating hierarchically porous N-doped carbons. We study the evolution of microstructure in self-templated carbons derived from magnesium nitrilotriacetate, in the 600–1000 °C temperature range. The materials are characterised using N2

  16. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis; Kelarakis, Antonios; Gong, Qianming; Da’ as, Eman H.; Giannelis, Emmanuel P.

    2011-01-01

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  17. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis

    2011-04-27

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  18. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  19. On the Mechanical Properties of HIPE Templated Macroporous Poly(dicyclopentadiene) Prepared with Low Surfactant Amounts

    Czech Academy of Sciences Publication Activity Database

    Kovačič, S.; Matsko, N.B.; Jeřábek, Karel; Krajnc, P.; Slugovc, Ch.

    2013-01-01

    Roč. 1, č. 3 (2013), s. 487-490 ISSN 2050-7488 Institutional support: RVO:67985858 Keywords : cellular structure * surfactant * polyHIPE chemistry Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  20. α-TCP cements prepared by syringe-foaming: Influence of Na2HPO4 and surfactant concentration.

    Science.gov (United States)

    Vásquez, A F; Domínguez, S; Loureiro Dos Santos, L A

    2017-12-01

    The lack of intrinsic open porosity in calcium phosphate cements slows down the resorption rate and bone ingrowth when implanted In Vivo. In this study, macroporous structures were obtained by mixing α-TCP cement with a foamed liquid phase containing different concentrations of sodium hydrogen phosphate and a nonionic surfactant. The cement paste was prepared by hand mixing in a novel system of two syringes connected by a tube. Two different liquid to powder (L/P) ratios were used to prepare the cement paste. The cement samples showed open macropores with diameters>100μm. The specimens prepared with lower L/P ratio showed smaller porosity, macroporosity and pore size distribution. The cohesion of the cement paste in liquid solutions was assessed by adding 2wt% sodium alginate to the liquid phase. This study suggests that the final macrostructure of the foamed cements can be controlled by varying the phosphate and surfactant concentrations in the liquid phase and the L/P ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A "Tandem" Strategy to Fabricate Flexible Graphene/Polypyrrole Nanofiber Film Using the Surfactant-Exfoliated Graphene for Supercapacitors.

    Science.gov (United States)

    Shu, Kewei; Chao, Yunfeng; Chou, Shulei; Wang, Caiyun; Zheng, Tian; Gambhir, Sanjeev; Wallace, Gordon G

    2018-06-19

    The surfactant-assisted liquid-phase exfoliation of expanded graphite can produce graphene sheets in large quantities with minimal defects. However, it is difficult to completely remove the surfactant from the final product, thus affecting the electrochemical properties of the produced graphene. In this article, a novel approach to fabricate flexible graphene/polypyrrole film was developed: using surfactant cetyltrimethylammonium bromide as a template for growth of polypyrrole nanofibers (PPyNFs) instead of removal after the exfoliation process; followed by a simple filtration method. The introduction of PPyNF not only increases the electrochemical performance, but also ensures flexibility. This composite film electrode offers a capacitance up to 161 F g -1 along with a capacitance retention rate of over 80% after 5000 cycles.

  2. Ordered mesoporous crystalline gamma-Al2O3 with variable architecture and porosity from a single hard template.

    Science.gov (United States)

    Wu, Zhangxiong; Li, Qiang; Feng, Dan; Webley, Paul A; Zhao, Dongyuan

    2010-09-01

    In this paper, an efficient route is developed for controllable synthesis of ordered mesoporous alumina (OMA) materials with variable pore architectures and high mesoporosity, as well as crystalline framework. The route is based on the nanocasting pathway with bimodal mesoporous carbon as the hard template. In contrast to conventional reports, we first realize the possibility of creating two ordered mesopore architectures by using a single carbon hard template obtained from organic-organic self-assembly, which is also the first time such carbon materials are adopted to replicate ordered mesoporous materials. The mesopore architecture and surface property of the carbon template are rationally designed in order to obtain ordered alumina mesostructures. We found that the key factors rely on the unique bimodal mesopore architecture and surface functionalization of the carbon hard template. Namely, the bimodal mesopores (2.3 and 5.9 nm) and the surface functionalities make it possible to selectively load alumina into the small mesopores dominantly and/or with a layer of alumina coated on the inner surface of the large primary mesopores with different thicknesses until full loading is achieved. Thus, OMA materials with variable pore architectures (similar and reverse mesostructures relative to the carbon template) and controllable mesoporosity in a wide range are achieved. Meanwhile, in situ ammonia hydrolysis for conversion of the metal precursor to its hydroxide is helpful for easy crystallization (as low as approximately 500 degrees C). Well-crystallized alumina frameworks composed of gamma-Al(2)O(3) nanocrystals with sizes of 6-7 nm are obtained after burning out the carbon template at 600 degrees C, which is advantageous over soft-templated aluminas. The effects of synthesis factors are demonstrated and discussed relative to control experiments. Furthermore, our method is versatile enough to be used for general synthesis of other important but difficult

  3. Optimizing the surfactant for the aqueous processing of LiFePO{sub 4} composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Porcher, W.; Jouanneau, S. [Commissariat a l' Energie Atomique, 38054 Grenoble Cedex 9 (France); Lestriez, B.; Guyomard, D. [Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, CNRS, 44322 Nantes Cedex 3 (France)

    2010-05-01

    Aqueous processing would reduce the costs associated with the making of the composite electrode. To achieve the incorporation and the dispersion of the carbon black (CB) conductive agent in aqueous slurries, a surfactant is needed. In this paper, three surfactants are compared, an anionic one, the sodium dodecyle sulphate (SDS), a non-ionic one, the isooctylphenylether of polyoxyethylene called commercially Triton X-100 and a cationic one, the hexadecyltrimethylammonium bromide (CTAB), by using rheology and laser granulometry measurements on electrode slurries on one hand, and SEM observations, porosity and adhesion measurements and electrochemical testing on composite electrodes on the other hand. Ionic surfactants were found to be not suitable because a corrosion of the aluminium current collector occurred. The utilization of Triton X-100 favoured a more homogeneous CB distribution, resulted in a better electronic wiring of the active material particles and higher rate behavior of the electrode. Optimal electrochemical performances are obtained for an optimal surfactant concentration which depends on the BET surface area of the CB powder. (author)

  4. Molecular dynamics simulations of phase separation in the presence of surfactants

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren

    1994-01-01

    The dynamics of phase separation in two-dimensional binary mixtures diluted by surfactants is studied by means of molecular dynamics simulations. In contrast to pure binary systems, characterized by an algebraic time dependence of the average domain size, we find that systems containing surfactants...... not fully phase separate, we observe a dynamical scaling which is independent of the surfactant concentration. The results of these simulations are in general in agreement with previous Langevin simulations [Laradji, Guo, Grant, and Zuckermann, J. Phys. A 44, L629 (1991)] and a theory of Ostwald ripening...... exhibit nonalgebraic, slow dynamics. The average domain size eventually saturates at a value inversely proportional to the surfactant concentration. We also find that phase separation in systems with different surfactant concentrations follow a crossover scaling form. Finally, although these systems do...

  5. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  6. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.

    Science.gov (United States)

    Villarrubia, J S; Tondare, V N; Vladár, A E

    2016-01-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  7. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  8. A level-set method for two-phase flows with soluble surfactant

    Science.gov (United States)

    Xu, Jian-Jun; Shi, Weidong; Lai, Ming-Chih

    2018-01-01

    A level-set method is presented for solving two-phase flows with soluble surfactant. The Navier-Stokes equations are solved along with the bulk surfactant and the interfacial surfactant equations. In particular, the convection-diffusion equation for the bulk surfactant on the irregular moving domain is solved by using a level-set based diffusive-domain method. A conservation law for the total surfactant mass is derived, and a re-scaling procedure for the surfactant concentrations is proposed to compensate for the surfactant mass loss due to numerical diffusion. The whole numerical algorithm is easy for implementation. Several numerical simulations in 2D and 3D show the effects of surfactant solubility on drop dynamics under shear flow.

  9. Conformal Symmetry as a Template:Commensurate Scale Relations and Physical Renormalization Schemes

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    1999-01-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. We show how conformal symmetry provides a template for such QCD predictions, providing relations between observables which are present even in theories which are not scale invariant. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. In the case of the α V scheme defined from heavy quark interactions, virtual corrections due to fermion pairs are analytically incorporated into the Gell-Mann Low function, thus avoiding the problem of explicitly computing and resuming quark mass corrections related to the running of the coupling. Applications to the decay width of the Z boson, the BFKL pomeron, and virtual photon scattering are discussed

  10. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization.

    Science.gov (United States)

    Du, Shuting; Li, Fen; Sun, Qiming; Wang, Ning; Jia, Mingjun; Yu, Jihong

    2016-02-25

    Hierarchical TS-1 zeolites with uniform intracrystalline mesopores have been successfully synthesized through the hydrothermal method by using the green and cheap surfactant Triton X-100 as the mesoporous template. The resultant materials exhibit remarkably enhanced catalytic activity in oxidative desulfurization reactions compared to the conventional TS-1 zeolite.

  11. Porosity, permeability, and their relationship in granite, basalt, and tuff

    International Nuclear Information System (INIS)

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report

  12. Electromagnetic characterization of fine-scale particulate composite materials

    International Nuclear Information System (INIS)

    Talbot, P.; Konn, A.M.; Brosseau, C.

    2002-01-01

    We report the results of the composition and frequency-dependent complex permittivity and permeability of ZnO and γ-Fe 2 O 3 composites prepared by powder pressing. The electromagnetic properties of these materials exhibit a strong dependence on the powder size of the starting materials. In the microwave frequency range, the permittivity and permeability show nonlinear variations with volume fraction of Fe 2 O 3 . As the particle size decreases from a few micrometers to a few tens of nanometers, the data indicate that local mesostructural factors such as shape anisotropy, porosity and possible effect of the binder are likely to be intertwined in the understanding of electromagnetic properties of fine-scale particulate composite materials

  13. Estimation and measurement of porosity change in cement paste

    International Nuclear Information System (INIS)

    Lee, Eunyong; Jung, Haeryong; Kwon, Ki-jung; Kim, Do-Gyeum

    2011-01-01

    Laboratory-scale experiments were performed to understand the porosity change of cement pastes. The cement pastes were prepared using commercially available Type-I ordinary Portland cement (OPC). As the cement pastes were exposed in water, the porosity of the cement pastes sharply increased; however, the slow decrease of porosity was observed as the dissolution period was extended more than 50 days. As expected, the dissolution reaction was significantly influenced by w/c ratio and the ionic strength of solution. A thermodynamic model was applied to simulate the porosity change of the cement pastes. It was highly influenced by the depth of the cement pastes. There was porosity increase on the surface of the cement pastes due to dissolution of hydration products, such as portlandite, ettringite, and CSH. However, the decrease of porosity was estimated inside the cement pastes due to the precipitation of cement minerals. (author)

  14. Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles

    International Nuclear Information System (INIS)

    Li, N.; Mara, N.A.; Wang, Y.Q.; Nastasi, M.; Misra, A.

    2011-01-01

    Research highlights: → Firstly micro-pillar compression technique has been used to measure the implanted metal films. → The magnitude of radiation hardening decreased with decreasing layer thickness. → When thickness decreases to 2.5 nm, no hardening and no loss in deformability after implantation. -- Focused-ion-beam machined compression specimens were used to investigate the effect of nanometer-scale helium bubbles on the strength and deformability of sputter-deposited Cu and Cu/Nb multilayers with different layer thickness. The flow strength of Cu films increased by more than a factor of 2 due to helium bubbles but in multilayers, the magnitude of radiation hardening decreased with decreasing layer thickness. When the layer thickness decreases to 2.5 nm, insignificant hardening and no measurable loss in deformability is observed after implantation.

  15. Surfactant assisted synthesis of lamellar nanostructured LiFePO4 at 388 K

    International Nuclear Information System (INIS)

    Liu Chao; Ma Dongxia; Ji Xiujie; Zhao Shanshan; Li Song

    2011-01-01

    Lamellar nanostructured lithium iron phosphate (Lα-LFP) was synthesized using anion surfactant sodium dodecyl sulphonate (SDS) as supermolecular template in water-ethanol media at 388 K under self-generated pressure. FeSO 4 , (NH 4 ) 2 HPO 4 and LiOH were used as Fe, P and Li sources, respectively. The inorganic phase was analyzed by X-ray diffraction (XRD). The morphology and the lamellar nanostructure were observed by field emitting scanning electron microscopy (FESEM). The results showed that the synthesized Lα-LFP presents not only the ordered lamellar microstructure accumulated by 20-40-nm thick LFP layers, but also the consequent self-assembled blocky particles of 0.5-1 μm. In contrast, template free LFP (TF-LFP) show a flake-shaped and mess-orientated microstructure. As a soft template, SDS played the roles of inducing the lamellar nanostructure, purifying the inorganic phase and decreasing the synthesis temperature.

  16. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale

    International Nuclear Information System (INIS)

    Bolzon, B.

    2007-11-01

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  17. Neutron scattering in soft matter physics and chemistry

    International Nuclear Information System (INIS)

    White, J.W.

    1999-01-01

    Recent experiments area of soft matter science show that self assembly on the micron scale as well as the nanometer scale can be directed chemically. This lecture illustrates how such processes can be studied using the contrast variation available in neutron scattering through isotopic replacement and the techniques of neutron small angle scattering and neutron reflectivity. Related dynamical information at nanometer resolution and on time scales between a nanosecond and a few tenths of a picosecond will become accessible with brighter neutron sources. The examples presented concern the template induced crystallisation of zeolites, the liquid crystal template induced synthesis of mesoporous materials and the structure of thin films at the air water interface. (J.P.N.)

  18. A scanning tunneling microscope with a scanning range from hundreds of micrometers down to nanometer resolution.

    Science.gov (United States)

    Kalkan, Fatih; Zaum, Christopher; Morgenstern, Karina

    2012-10-01

    A beetle type stage and a flexure scanning stage are combined to form a two stages scanning tunneling microscope (STM). It operates at room temperature in ultrahigh vacuum and is capable of scanning areas up to 300 μm × 450 μm down to resolution on the nanometer scale. This multi-scale STM has been designed and constructed in order to investigate prestructured metallic or semiconducting micro- and nano-structures in real space from atomic-sized structures up to the large-scale environment. The principle of the instrument is demonstrated on two different systems. Gallium nitride based micropillars demonstrate scan areas up to hundreds of micrometers; a Au(111) surface demonstrates nanometer resolution.

  19. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Bjoern

    2013-11-15

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [German] Bis heute werden heterogene Katalysatoren ueberwiegend per ''trial and error'' entwickelt. Dies liegt daran, dass es mit Hilfe der traditionellen Herstellungsmethoden sehr schwierig ist, auf der Nanometerskala Strukturen gezielt herzustellen. Im Zuge der rasanten Entwicklungen in den Materialwissenschaften ist es jedoch moeglich geworden, verschiedenste Materialen mit massgeschneiderten Eigenschaften vom makroskopischen bis hinein in den Nanometerbereich herzustellen. Ziel dieser Arbeit war es, dieses Potential fuer die Katalyse zu nutzen. Dabei bestand die Aufgabe darin

  20. Fabrication of Defined Polydopamine Nanostructures by DNA Origami-Templated Polymerization.

    Science.gov (United States)

    Tokura, Yu; Harvey, Sean; Chen, Chaojian; Wu, Yuzhou; Ng, David Y W; Weil, Tanja

    2018-02-05

    A versatile, bottom-up approach allows the controlled fabrication of polydopamine (PD) nanostructures on DNA origami. PD is a biosynthetic polymer that has been investigated as an adhesive and promising surface coating material. However, the control of dopamine polymerization is challenged by the multistage-mediated reaction mechanism and diverse chemical structures in PD. DNA origami decorated with multiple horseradish peroxidase-mimicking DNAzyme motifs was used to control the shape and size of PD formation with nanometer resolution. These fabricated PD nanostructures can serve as "supramolecular glue" for controlling DNA origami conformations. Facile liberation of the PD nanostructures from the DNA origami templates has been achieved in acidic medium. This presented DNA origami-controlled polymerization of a highly crosslinked polymer provides a unique access towards anisotropic PD architectures with distinct shapes that were retained even in the absence of the DNA origami template. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO_2 substrates

    International Nuclear Information System (INIS)

    Frascaroli, Jacopo; Seguini, Gabriele; Spiga, Sabina; Perego, Michele; Boarino, Luca

    2015-01-01

    Block copolymer-based templates can be exploited for the fabrication of ordered arrays of metal nanoparticles (NPs) with a diameter down to a few nanometers. In order to develop this technique on metal oxide substrates, we studied the self-assembly of polymeric templates directly on the HfO_2 surface. Using a random copolymer neutralization layer, we obtained an effective HfO_2 surface neutralization, while the effects of surface cleaning and annealing temperature were carefully examined. Varying the block copolymer molecular weight, we produced regular nanoporous templates with feature size variable between 10 and 30 nm and a density up to 1.5 × 10"1"1 cm"−"2. With the adoption of a pattern transfer process, we produced ordered arrays of Pt and Pt/Ti NPs with diameters of 12, 21 and 29 nm and a constant size dispersion (σ) of 2.5 nm. For the smallest template adopted, the NP diameter is significantly lower than the original template dimension. In this specific configuration, the granularity of the deposited film probably influences the pattern transfer process and very small NPs of 12 nm were achieved without a significant broadening of the size distribution. (paper)

  2. Biosynthesis of cathodoluminescent zinc oxide replicas using butterfly (Papilio paris) wing scales as templates

    International Nuclear Information System (INIS)

    Zhang Wang; Zhang Di; Fan Tongxiang; Ding Jian; Gu Jiajun; Guo Qixin; Ogawa, Hiroshi

    2009-01-01

    Papilio paris butterflies have an iridescent blue color patch on their hind wings which is visible over a wide viewing angle. Optical and scanning electron microscopy observations of scales from the wings show that the blue color scales have very different microstructure to the matt black ones which also populate the wings. Scanning electron micrographs of the blue scales show that their surfaces comprise a regular two-dimensional array of concavities. By contrast the matt black scales have fine, sponge-like structure, between the ridges and the cross ribs in the scales. Using both types of scale as bio-templates, we obtain zinc oxide (ZnO) replicas of the microstructures of the original scales. Room temperature (T = 300 K) cathodoluminescence spectra of these ZnO replicas have also been studied. Both spectra show a similar sharp near-band-edge emission, but have different green emission, which we associate with the different microstructures of the ZnO replicas

  3. Biosynthesis of cathodoluminescent zinc oxide replicas using butterfly (Papilio paris) wing scales as templates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wang [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China); Zhang Di [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China)], E-mail: zhangdi@sjtu.edu.cn; Fan Tongxiang; Ding Jian; Gu Jiajun [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China); Guo Qixin; Ogawa, Hiroshi [Department of Electrical and Electronic Engineering, Saga University, Saga 840-8502 (Japan)

    2009-01-01

    Papilio paris butterflies have an iridescent blue color patch on their hind wings which is visible over a wide viewing angle. Optical and scanning electron microscopy observations of scales from the wings show that the blue color scales have very different microstructure to the matt black ones which also populate the wings. Scanning electron micrographs of the blue scales show that their surfaces comprise a regular two-dimensional array of concavities. By contrast the matt black scales have fine, sponge-like structure, between the ridges and the cross ribs in the scales. Using both types of scale as bio-templates, we obtain zinc oxide (ZnO) replicas of the microstructures of the original scales. Room temperature (T = 300 K) cathodoluminescence spectra of these ZnO replicas have also been studied. Both spectra show a similar sharp near-band-edge emission, but have different green emission, which we associate with the different microstructures of the ZnO replicas.

  4. KINOFORM LENSES - TOWARD NANOMETER RESOLUTION.

    Energy Technology Data Exchange (ETDEWEB)

    STEIN, A.; EVANS-LUTTERODT, K.; TAYLOR, A.

    2004-10-23

    While hard x-rays have wavelengths in the nanometer and sub-nanometer range, the ability to focus them is limited by the quality of sources and optics, and not by the wavelength. A few options, including reflective (mirrors), diffractive (zone plates) and refractive (CRL's) are available, each with their own limitations. Here we present our work with kinoform lenses which are refractive lenses with all material causing redundant 2{pi} phase shifts removed to reduce the absorption problems inherently limiting the resolution of refractive lenses. By stacking kinoform lenses together, the effective numerical aperture, and thus the focusing resolution, can be increased. The present status of kinoform lens fabrication and testing at Brookhaven is presented as well as future plans toward achieving nanometer resolution.

  5. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    Science.gov (United States)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  6. Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction

    Science.gov (United States)

    Wang, Wei-Hua; Bai, Hai Yang; Zhang, Ming; Zhao, J. H.; Zhang, X. Y.; Wang, W. K.

    1999-04-01

    An in situ low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena in various metal-metal and metal-amorphous Si nanometer-scale compositionally modulated multilayers (ML's). The temperature-dependent interdiffusivities are obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. Activation enthalpies and preexponential factors for the interdiffusion in the Fe-Ti, Ag-Bi, Fe-Mo, Mo-Si, Ni-Si, Nb-Si, and Ag-Si ML's are determined. Activation enthalpies and preexponential factors for the interdiffusion in the ML's are very small compared with that in amorphous alloys and crystalline solids. The relation between the atomic-size difference and interdiffusion in the ML's are investigated. The observed interdiffusion characteristics are compared with that in amorphous alloys and crystalline α-Zr, α-Ti, and Si. The experimental results suggest that a collective atomic-jumping mechanism govern the interdiffusion in the ML's, the collective proposal involving 8-15 atoms moving between extended nonequilibrium defects by thermal activation. The role of the interdiffusion in the solid-state reaction in the ML's is also discussed.

  7. Three-dimensional nanometer scale analyses of precipitate structures and local compositions in titanium aluminide engineering alloys

    Science.gov (United States)

    Gerstl, Stephan S. A.

    Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.

  8. Optoelectronic circuits in nanometer CMOS technology

    CERN Document Server

    Atef, Mohamed

    2016-01-01

    This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical...

  9. Wetting at the nanometer scale: effects of long-range forces and substrate heterogeneities

    International Nuclear Information System (INIS)

    Checco, Antonio

    2003-01-01

    Wetting phenomena on the nano-scale remain poorly understood in spite of their growing theoretical and practical interest. In this context, the present work aimed at studying partial wetting of nanometer-sized alkane droplets on 'model' surfaces build by self-assembly of organic monolayers. For this purpose a novel technique, based on 'noncontact' Atomic Force Microscopy (AFM), has been developed to image, with minimal artefacts, drops of adjustable size directly condensed on so- lid surfaces. We have thus shown that contact angle of alkanes, wetting a weakly heterogeneous, silanized substrate, noticeably decreases from its macroscopic value for droplets sizes in the submicron range. The line tension, arising in this case from purely dispersive long-range interactions between the liquid and the substrate, is theoretically too weak to be responsible for the observed effect. Therefore we have supposed that contact angle is affected by mesoscopic chemical heterogeneities of the substrate whenever the droplets size becomes sufficiently small. This scenario has been supported by numerical simulations based on a simplified model of the spatial distribution of surface defects. Similar experiments, performed on different substrates (monolayers made of alkane-thiols self-assembled on gold and of alkyl chains covalently bound onto a silicon surface), have also shown that wetting on small scales is strongly affected by minimal physical and chemical surface heterogeneities. Finally, to provide further examples of the potential of the above mentioned AFM technique, we have studied the wettability of nano-structured surfaces and the local wetting properties of hair. (author) [fr

  10. Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

    Directory of Open Access Journals (Sweden)

    Hyojeong Kim

    2017-11-01

    Full Text Available We present a method to increase the stability of DNA nanostructure templates through conformal coating with a nanometer-thin protective inorganic oxide layer created using atomic layer deposition (ALD. DNA nanotubes and origami triangles were coated with ca. 2 nm to ca. 20 nm of Al2O3. Nanoscale features of the DNA nanostructures were preserved after the ALD coating and the patterns are resistive to UV/O3 oxidation. The ALD-coated DNA templates were used for a direct pattern transfer to poly(L-lactic acid films.

  11. Use of surfactants for the remediation of contaminated soils: a review.

    Science.gov (United States)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Microwave synthesis of delaminated acid saponites using quaternary ammonium salt or polymer as template. Study of pH influence

    NARCIS (Netherlands)

    Gebretsadik, Fiseha B.; Mance, Deni; Baldus, Marc; Salagre, Pilar; Cesteros, Yolanda

    2015-01-01

    Mesoporous saponites were prepared at pH8 and 13 without and with template (surfactant or polymer) at 453K and autogenic pressure using microwaves or conventional oven during the hydrothermal ageing treatment. Acidity was obtained by calcination of the NH4-form. The effect of dilution

  13. Synthesis and characterization of silica mesoporous material produced by hydrothermal continues pH adjusting path way

    Directory of Open Access Journals (Sweden)

    A. Salemi Golezani

    2016-08-01

    Full Text Available Mesoporous silica molecular sieves MCM-41 were synthesized under hydrothermal conditions. For this purpose, a solution with a molar coefficient of water, cetyltri-methyl ammonium bromide surfactants as template and sodium silicate as the source of SiO2 are used. Phase formation, morphology and gas absorption properties were investigated by XRD and BET analysis, respectively. The results showed that silica mesoporous material has been successfully synthesized. A favorable special surface and porosity volume together with regular arrangement of nano metric-hexagonal porosities were obtained from this synthesis. Thickness of the wall and average diameter of the pores are 0.8 nm and 4 nm, respectively.

  14. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  15. Influence of surfactants in forced dynamic dewetting.

    Science.gov (United States)

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C 4 E 1 , C 8 E 3 and C 12 E 5 ) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s -1 the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  16. Mathematical aspects of multi-porosity continua

    CERN Document Server

    Straughan, Brian

    2017-01-01

    This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wa...

  17. Size-controlled gold nanoparticles obtained from electrodeposited amidoferrocenylpoly(propyleneimine) dendrimer-templates for the electrochemical sensing of dopamine

    Science.gov (United States)

    Villena, Carlos; Bravo, Marta; Alonso, Beatriz; Casado, Carmen M.; Losada, José; García Armada, M. Pilar

    2017-10-01

    Nanometer-scale gold particles exhibit size-dependent electronic properties with important sensing and biosensing applications. In the same way, a lot of analytes show some type of surface-sensitive reaction and the electrode material has a strong influence on the catalytic activity. In this work we study the kinetics and electrochemistry of electrodes with size controlled gold nanoparticles, obtained by electrodeposited amidoferrocenylpoly(propyleneimine) dendrimers of two generations as templates, and the kinetics and the analytical response to the oxidation of dopamine. We demonstrate that the four-types of modified electrodes show good catalytic responses toward the oxidation of dopamine via different processes in relation with the absence or presence of gold nanoparticles and their size. The best response was obtained with the largest nanoparticles, obtained with the first generation dendrimer-template at 0.3 V vs. SCE, with three linear ranges (0-70, 70-600 and 600-1000 μM), with sensitivities 585.7; 466.0 and 314.3 μA/mM cm2, and limit of detection of 0.01 μM. The effect of interfering substances has been studied by differential pulse voltammetry and the developed sensor has been successfully used for the determination of dopamine in a commercial dopamine hydrochloride injection and in spiked Human urine.

  18. Synthesis and synchrotron characterisation of novel dual-template of hydroxyapatite scaffolds with controlled size porous distribution

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua; Sarmento, Victor H. V.; Rey, José F. Q.; Valerio, Mário E. G.

    2017-03-01

    Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions during the template preparation stage.

  19. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic

    Science.gov (United States)

    Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D

    2011-01-01

    Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473

  20. Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale

    Science.gov (United States)

    Das, Kalipada; Dasgupta, P.; Poddar, A.; Das, I.

    2016-01-01

    The Physics of materials with large magnetoresistance (MR), defined as the percentage change of electrical resistance with the application of external magnetic field, has been an active field of research for quite some times. In addition to the fundamental interest, large MR has widespread application that includes the field of magnetic field sensor technology. New materials with large MR is interesting. However it is more appealing to vast scientific community if a method describe to achieve many fold enhancement of MR of already known materials. Our study on several manganite samples [La1−xCaxMnO3 (x = 0.52, 0.54, 0.55)] illustrates the method of significant enhancement of MR with the reduction of the particle size in nanometer scale. Our experimentally observed results are explained by considering model consisted of a charge ordered antiferromagnetic core and a shell having short range ferromagnetic correlation between the uncompensated surface spins in nanoscale regime. The ferromagnetic fractions obtained theoretically in the nanoparticles has been shown to be in the good agreement with the experimental results. The method of several orders of magnitude improvement of the magnetoresistive property will have enormous potential for magnetic field sensor technology. PMID:26837285

  1. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1993-01-01

    The general applicability of laboratory data for engineering purposes is a prime concern for the design and licensing of a potential repository of high level nuclear waste at Yucca Mountain. In order for the results of experiments to be applicable to the repository scale, the data must be scaled to in situ size and conditions. Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sampled test. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  2. Use of surfactants for the remediation of contaminated soils: A review

    International Nuclear Information System (INIS)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-01-01

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation

  3. Use of surfactants for the remediation of contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xuhui, E-mail: clab@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Jiang, Rui; Xiao, Wei [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2015-03-21

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  4. Facile surfactant- and template-free synthesis and electrochemical properties of SnO{sub 2}/graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing, E-mail: xy13787103391@126.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Xia, E-mail: zyx02090229@163.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Guo, Jianqiang; Peng, Rufang [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Xie, Ruishi [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); Huang, Yeju; Qi, Yongcheng [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-07-25

    In this work, we demonstrate a facile and green hydrothermal process without using any surfactant or template to synthesize SnO{sub 2} nanoflowers (NFs)/graphene nanosheets (GNSs) composites as a high-performance electrode material for electric double layer capacitors (EDLCs). The crystal structure and morphology of the products were characterized by X-ray diffraction, scanning electron microscopy, and transition electron microscopy. The electrochemical properties were investigated by galvanostatic charge/discharge cycling and cycling voltammetry in a voltage range of −0.2–0.8 V. The results exhibit that the addition of GNSs did not change the tetragonal crystal structure of SnO{sub 2}, and the GNSs were successfully coated on the flower-like surface of SnO{sub 2}. The grain morphology of SnO{sub 2}@GNSs composites has a flower-like appearance suggesting excellent electrochemical properties which were confirmed by electrochemical techniques. Compared with the GNSs, the SnO{sub 2}@GNSs composites exhibit a high specific discharge capacitance of 126 F g{sup −1} at 0.2 A g{sup −1} and remains 98.2% after 2000 charge–discharge cycles. The combination of GNSs and SnO{sub 2} could significantly improve the electrical conductivity, enhance the interactions between GNSs and SnO{sub 2} NFs and provide more reaction sites, thereby resulting in improved electrochemical properties for the SnO{sub 2}@GNSs composites in contrast with the pristine GNSs sample. The high specific capacity and long stability make the SnO{sub 2}@GNSs nanocomposite as a electrode material for high-performance supercapacitors. - Highlights: • SnO{sub 2} nanoflowers (NFs)/Graphene nanosheets(GNSs) composites were prepared by a simple and rapid hydrothermal process. • The results show that the GNSs were homogeneously and tightly attached on the surface of SnO{sub 2} NFs. • The SnO{sub 2} NFs/GNSs composites electrode exhibited the enhanced capacitive performances than those of pure GNSs.

  5. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    Energy Technology Data Exchange (ETDEWEB)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L.

    2009-02-15

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.

  6. Electrokinetic flows in cylindrical and slit capillaries in clays: from pore scale to sample scale

    International Nuclear Information System (INIS)

    Obliger, Amael; Jardat, Marie; Rotenberg, Benjamin; Duvail, Magali; Bekri, Samir; Coelho, Daniel

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Transport on the nanometer scale of clay interlayers and on the macroscopic sample scale can be well characterized experimentally, using either X-ray or neutron diffraction and diffusion on the one hand, and solute diffusion experiments on the other hand. Current imaging techniques do not allow to provide a direct picture of the pore network on the scale of several nanometers to several micrometers. The lack of knowledge of the pore network structure on intermediate scales requires to use numerical models of analog porous media. We attempt to describe the ionic transport in meso (diam. ∼ 10-50 nm) and macro-porosity (diam. > 50 nm) (due to the organization of clays particles) with a multi-scale approach provided by the Pore Network Model (PNM) that takes into consideration the topology of the media. Such an approach requires to know the transport coefficients of solvent and solutes in a throat connecting two pores, modelled as a capillary. The challenge in the case of clays, compared to the usual PNM methods, is to capture the effect of the surface charge of clay minerals on the transport of ions and water, under the effect of macroscopic pressure, salt concentration and electric potential gradients. Solvent and ionic transports are governed by the Stokes, the Nernst-Planck and the Poisson- Boltzmann equations. This set of equations can be solved analytically using the linearized form of the latter in order to get an approximation of the electro-osmotic speed and the ionic density profile. At variant with most previous works, we consider the case of a fixed surface charge instead of fixed surface potential. In addition to the Nernst-Einstein and chemical flows of solute, we calculated analytically the Poiseuille flow of solutes and the electro-osmotic flow of solvent and solutes. When the linearization is not possible, one must use numerical results for transport coefficients

  7. Porosity measurement of amorphous materials by gamma ray transmission

    International Nuclear Information System (INIS)

    Poettker, Walmir Eno

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  8. Optomechanical Design of a Hard X-ray Nanoprobe Instrument with Nanometer-Scale Active Vibration Control

    International Nuclear Information System (INIS)

    Shu, D.; Preissner, C.; Smolyanitskiy, A.; Maser, J.; Winarski, R.; Holt, M.; Lai, B.; Vogt, S.; Stephenson, G. B.

    2007-01-01

    We are developing a new hard x-ray nanoprobe instrument that is one of the centerpieces of the characterization facilities of the Center for Nanoscale Materials being constructed at Argonne National Laboratory. This new probe will cover an energy range of 3-30 keV with 30-nm spacial resolution. The system is designed to accommodate x-ray optics with a resolution limit of 10 nm, therefore, it requires staging of x-ray optics and specimens with a mechanical repeatability of better than 5 nm. Fast feedback for differential vibration control between the zone-plate x-ray optics and the sample holder has been implemented in the design using a digital-signal-processor-based real-time closed-loop feedback technique. A specially designed, custom-built laser Doppler displacement meter system provides two-dimensional differential displacement measurements with subnanometer resolution between the zone-plate x-ray optics and the sample holder. The optomechanical design of the instrument positioning stage system with nanometer-scale active vibration control is presented in this paper

  9. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  10. Impacts of Residual Surfactant on Tetrachloroethene (PCE) Degradation Following Pilot-Scale SEAR Treatment at a Chloroethene-Impacted Site

    Science.gov (United States)

    Ramsburg, C. A.; Abriola, L. M.; Pennell, K. D.; Löffler, F. E.; Gamache, M.; Petrovskis, E. A.

    2003-04-01

    A pilot-scale surfactant-enhanced aquifer remediation (SEAR) demonstration was completed during the summer of 2000 at the Bachman Road site (Oscoda, MI USA). For this test, an aqueous solution of 60 g/L Tween 80 (polyoxyethylene (20) sorbitan monooleate) was used to recover tetrachloroethene (PCE) from a suspected source zone, located underneath a former dry-cleaning facility. Tween 80 was selected for use based upon its demonstrated capacity to solubilize PCE, “food-grade” status, and biodegradative potential. Hydraulic control was maintained throughout the test, with 95% of the injected surfactant mass recovered by a single extraction well. Source-zone monitoring conducted 15 months after SEAR treatment revealed the presence of previously undetected volatile fatty acids (acetate and formate) and PCE degradation products (trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichlorethene, and vinyl chloride), in conjunction with PCE concentration reductions of approximately two orders-of-magnitude. The detection of volatile fatty acids is relevant, as they are likely fermentation products of residual Tween 80. Microbial reductive dechlorination is limited by available electron donors, and microcosm studies demonstrated that both acetate and formate support reductively dechlorinating populations present at the oligotrophic Bachman Road site aquifer. Surfactant transport simulations, using a regional flow model developed for the site, were employed to determine appropriate down-gradient monitoring locations. Drive point samples taken 15 months post-treatment in the vicinity of the simulated residual surfactant plume, contained elevated concentrations of acetate and PCE daughter products. Ongoing efforts include continued site-monitoring, and microcosm studies to corroborate a causal relationship between Tween 80 fermentation and PCE dechlorination.

  11. Simulation of Electrical Discharge Initiated by a Nanometer-Sized Probe in Atmospheric Conditions

    International Nuclear Information System (INIS)

    Chen Ran; Chen Chilai; Liu Youjiang; Wang Huanqin; Kong Deyi; Ma Yuan; Cada Michael; Brugger Jürgen

    2013-01-01

    In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength distributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis (FEA) method, and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of effective discharge range (EDR) on the plate were also investigated and discussed. The simulation results show that the probe with a wide tip will cause a larger effective discharge range on the plate; the field strength in the gap is notably higher than that induced by the sharp tip probe; the effective discharge range will increase linearly with the rise of excitation voltage, and decrease nonlinearly with the rise of gap length. In addition, probe dimension, especially the width/height ratio, affects the effective discharge range in different manners. With the width/height ratio rising from 1:1 to 1:10, the effective discharge range will maintain stable when the excitation voltage is around 50 V. This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower. Furthermore, when the gap length is 5 nm and the excitation voltage is below 20 V, the diameter of EDR in our simulation is about 150 nm, which is consistent with the experiment results reported by other research groups. Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship

  12. Development of cost-effective surfactant flooding technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

  13. Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Epting, William K.; Gelb, Jeff; Litster, Shawn

    2012-02-08

    The electrodes of a polymer electrolyte fuel cell (PEFC) are composite porous layers consisting of carbon and platinum nanoparticles and a polymer electrolyte binder. The proper composition and arrangement of these materials for fast reactant transport and high electrochemical activity is crucial to achieving high performance, long lifetimes, and low costs. Here, the microstructure of a PEFC electrode using nanometer-scale X-ray computed tomography (nano-CT) with a resolution of 50 nm is investigated. The nano-CT instrument obtains this resolution for the low-atomic-number catalyst support and binder using a combination of a Fresnel zone plate objective and Zernike phase contrast imaging. High-resolution, non-destructive imaging of the three-dimensional (3D) microstructures provides important new information on the size and form of the catalyst particle agglomerates and pore spaces. Transmission electron microscopy (TEM) and mercury intrusion porosimetry (MIP) is applied to evaluate the limits of the resolution and to verify the 3D reconstructions. The computational reconstructions and size distributions obtained with nano-CT can be used for evaluating electrode preparation, performing pore-scale simulations, and extracting effective morphological parameters for large-scale computational models. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A study of correlations between the release of drugs from petrolatum-based gels containing nonionic surfactants and some physical and physico-chemical characteristics of the gel systems.

    Science.gov (United States)

    Colo, G D; Nannipieri, E; Serafini, M F; Vitale, D

    1986-06-01

    Synopsis The in vitro release of benzocaine and 2-ethyIhexyl p-di-methylaminobenzoate (EH-PABA) from petrolatum-based gels either containing two nonionic surfactants, or not, was compared with some physical and/or physico-chemical characteristics of the drugs, the gels and the drug-gel systems. The surfactants had no effect on the release of EH-PABA, the less polar drug, whereas they decreased the release of benzocaine. Moreover, the release data show a complex dependence of diffusive properties of ben-zocaine on drug and surfactant concentration. Benzocaine appears to form mixed micelles with each of the two surfactants and/or undergoes self-aggregation phenomena within surfactant micelles. The results indicate that drug diffusion is influenced by gel porosity, drug molecular size and polarity and molecular interactions. Etude des corrélations entre la disponibilité des medicaments dans les gels a base de vaseline contenant des surfactifs non ioniques et quelques propriétés physiques et physicochimiques des gels.

  15. Rate in template-directed polymer synthesis.

    Science.gov (United States)

    Saito, Takuya

    2014-06-01

    We discuss the temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TDS) rate, which contains an expression analogous to that for the Shannon entropy. Increasing the synthesis speed accelerates the TDS rate, but the TDS rate is lowered if the produced sequences are diversified. We apply the TDS rate to some production system models and investigate how the balance between the speed and the accuracy is affected by changes in the system conditions.

  16. Colloid-templated multisectional porous polymeric fibers.

    Science.gov (United States)

    Song, Jung Hun; Kretzschmar, Ilona

    2008-10-07

    A fabrication method for porous polymeric fibers (PPFs) is reported. We show that a multisectional colloidal crystal can be assembled within a microcapillary by alternating dipping into colloidal solutions of varying size. Subsequent infiltration with curable polymer and washing with suitable solvents results in porous fibers with a cylindrical cross section. Along the length of the fiber, alternating sections of controlled length, pore size, and pore size distribution exist. These fibers present interesting materials for neural scaffolding, catalysis, and possibly photonics if produced with a high degree of crystallinity. The surface pores and bulk porosity of the fibers are characterized by variable-pressure scanning electron microscopy (vp-SEM). Careful analysis shows that the surface pores vary with the colloidal template diameter and polymer infiltration time.

  17. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro.

    Science.gov (United States)

    Cheng, Alice; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.

  18. Sub-nanometer-resolution imaging of peptide nanotubes in water using frequency modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Tomoki; Hayashi, Itsuho; Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Kimura, Kenjiro, E-mail: kimura@gold.kobe-u.ac.jp [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Tamura, Atsuo [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► Peptide nanotubes were aligned on highly oriented pyrolytic graphite surface. ► We visualized sub-nanometer-scale structure on peptide nanotube surface in water. ► We observed hydration structure at a peptide nanotube/water interface. - Abstract: Peptide nanotubes are self-assembled fibrous materials composed of cyclic polypeptides. Recently, various aspects of peptide nanotubes have been studied, in particular the utility of different methods for making peptide nanotubes with diverse designed functions. In order to investigate the relationship between formation, function and stability, it is essential to analyze the precise structure of peptide nanotubes. Atomic-scale surface imaging in liquids was recently achieved using frequency modulation atomic force microscopy with improved force sensing. Here we provide a precise surface structural analysis of peptide nanotubes in water without crystallizing them obtained by imaging the nanotubes at the sub-nanometer scale in water. In addition, the local hydration structure around the peptide nanotubes was observed at the nanotube/water interface.

  19. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  20. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis; Dua, Rubal; Bhandari, Nidhi; Ramanujapuram, Anirudh; Wang, Peng; Giannelis, Emmanuel P.

    2013-01-01

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh

  1. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    International Nuclear Information System (INIS)

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-01-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs

  2. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  3. Radioactive slurry waste treatment (2) - surfactants dose effects on filtration

    International Nuclear Information System (INIS)

    Jung, K. H.; Park, S. K.; Jung, W. S.; Baek, S. T.; Jung, K. J.

    1999-01-01

    The influence of anionic flocculants on the dewatering of radioactive slurries has been investigated in a laboratory-scale vacuum filtration unit. Simultaneously the influence of certain surfactants has also been investigated. Test results show that the flocculated filter cake generally contains higher residual water than the unflocculated cake. The non-ionic surfactant was effective in reducing the moisture content of the cake

  4. Template-Based Electrochemically Controlled Growth of Segmented Multimetal Nanorods

    Directory of Open Access Journals (Sweden)

    Mee Rahn Kim

    2010-01-01

    Full Text Available Multisegmented one-dimensional nanostructures composed of gold, copper, and nickel have been fabricated by depositing metals electrochemically in the pores of anodic aluminum oxide (AAO templates. The electrodeposition process has been carried out using a direct current in a two-electrode electrochemical cell, where a silver-evaporated AAO membrane and a platinum plate have served as a working electrode and a counter electrode, respectively. The striped multimetal rods with an average diameter of about 300 nm have tunable lengths ranging from a few hundred nanometers to a few micrometers. The lengths and the sequence of metal segments in a striped rod can be tailored readily by controlling the durations of electrodeposition and the order of electroplating solutions, respectively.

  5. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  6. Glass ceramic ZERODUR enabling nanometer precision

    Science.gov (United States)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  7. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    Science.gov (United States)

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The neutron porosity tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1988-01-01

    The report contains a review of available information on neutron porosity tools with the emphasis on dual thermal-neutron-detector porosity tools and epithermal-neutron-detector porosity tools. The general principle of such tools is discussed and theoretical models are very briefly reviewed. Available data on tool designs are summarized with special regard to the source-detector distance. Tool operational data, porosity determination and correction of measurements are briefly discussed. (author) 15 refs

  9. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  10. Mapping porosity of the deep critical zone in 3D using near-surface geophysics, rock physics modeling, and drilling

    Science.gov (United States)

    Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.

    2017-12-01

    Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.

  11. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  12. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    Energy Technology Data Exchange (ETDEWEB)

    Czapski, M., E-mail: michal.czapski@cern.ch [CERN, Genève 23 CH-1211 (Switzerland); Stora, T. [CERN, Genève 23 CH-1211 (Switzerland); Tardivat, C.; Deville, S. [Lab. de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain, Av. Jauffret 84306 Cavaillon (France); Santos Augusto, R. [CERN, Genève 23 CH-1211 (Switzerland); Leloup, J.; Bouville, F. [Lab. de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain, Av. Jauffret 84306 Cavaillon (France); Fernandes Luis, R. [Univ. Técnica de Lisboa Estrada Nacional 10, 2686-953 Sacavem, Loures (Portugal)

    2013-12-15

    Highlights: • SiC and Al{sub 2}O{sub 3} of uniaxial porosity were produced with ice-templating method. • The method allows controlled pore formation within the material. • Calculation of mechanical integrity under irradiation with protons was performed. • Generated thermal stresses should not exceed material’s strength. -- Abstract: New silicon carbide (SiC) and aluminum oxide (Al{sub 2}O{sub 3}) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes.

  13. Optomechanical design of a hard x-ray nanoprobe instrument with active vibration control in nanometer scale

    International Nuclear Information System (INIS)

    Shu, D.; Maser, J.; Holt, M.; Winarski, R.; Preissner, C.; Smolyanitskiy, A.; Lai, B.; Vogt, S.; Stephenson, G.

    2007-01-01

    We are developing a new hard x-ray nanoprobe instrument that is one of the centerpieces of the characterization facilities of the Center for Nanoscale Materials being constructed at Argonne National Laboratory. This new probe will cover an energy range of 3-30 keV with 30-nm spatial resolution. The system is designed to accommodate x-ray optics with a resolution limit of 10 nm, therefore, it requires staging of x-ray optics and specimens with a mechanical repeatability of better than 5 nm. Fast feedback for differential vibration control between the zone-plate x-ray optics and the sample holder has been implemented in the design using a digital-signal-processor-based real-time closed-loop feedback technique. A specially designed, custom-built laser Doppler displacement meter system provides two-dimensional differential displacement measurements with subnanometer resolution between the zone-plate x-ray optics and the sample holder. The optomechanical design of the instrument positioning stage system with nanometer-scale active vibration control is presented in this paper.

  14. Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP Force

    Directory of Open Access Journals (Sweden)

    Wen J. Li

    2011-12-01

    Full Text Available We report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional (3D polymer structures using visible light sources instead of ultra-violet (UV light sources or lasers. This method also does not require the conventional micro-photolithographic technique (i.e., photolithographic masks for patterning and fabricating polymer structures such as hydrogels. The major materials and methods required for this novel fabrication technology are: (1 any cross-linked network of photoactive polymers (examples of fabricated poly(ethylene glycol (PEG-diacrylate hydrogel structures are shown in this paper; (2 an Optically-induced Dielectrophoresis (ODEP System which includes an “ODEP chip” (i.e., any chip that changes its surface conductivity when exposed to visible light, an optical microscope, a projector, and a computer; and (3 an animator software hosted on a computer that can generate virtual or dynamic patterns which can be projected onto the “ODEP chip” through the use of a projector and a condenser lens. Essentially, by placing a photosensitive polymer solution inside the microfluidic platform formed by the “ODEP chip” bonded to another substrate, and applying an alternating current (a.c. electrical potential across the polymer solution (typically ~20 Vp-p at 10 kHz, solid polymer micro/nano structures can then be formed on the “ODEP chip” surface when visible-light is projected onto the chip. The 2D lateral geometry (x and y dimensions and the thickness (height of the micro/nano structures are dictated by the image geometry of the visible light projected onto the “ODEP chip” and also the time duration of projection. Typically, after an image projection with intensity ranging from ~0.2 to 0.4 mW/cm2 for 10 s, ~200 nm high structures can be formed. In our current system, the thickness of these polymer structures can be controlled to form from ~200 nanometers to ~3

  15. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  16. Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-09-01

    In this article, the size-dependent and porosity-dependent vibrational behavior of magneto-electro-elastic functionally graded (MEE-FG) nanoscale beams on two-parameter elastic substrate is presented via a third-order shear deformation beam model. Porosity-dependent material coefficients of the nanobeam are compositionally graded throughout the thickness according to a modified power-law model. Incorporation of small size effect is carried out based on Eringen's nonlocal elasticity theory. Through Hamilton's principle, derivation of nonlocal governing equations is performed. After analytically solving these equations, the influences of porosity, elastic foundation, magnetic potential, applied voltage, scale coefficient, material gradation and slenderness ratio on the frequencies of the porous MEE-FG nanobeams are examined.

  17. Hyporheic less-mobile porosity and solute transport in porous media

    Science.gov (United States)

    MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.

    2017-12-01

    Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.

  18. Surfactant-enhanced recovery of dissolved hydrocarbons at petroleum production facilities

    International Nuclear Information System (INIS)

    Freeman, J.T.; Mayes, M.; Wassmuth, F.; Taylor, K.; Rae, W.; Kuipers, F.

    1997-01-01

    The feasibility and cost effectiveness of surfactant-enhanced pumping to reduce source concentrations of petroleum hydrocarbons from contaminated soils was discussed. Light non-aqueous phase liquids (LNAPL) hydrocarbons are present beneath many petroleum production processing facilities in western Canada. Complete removal of LNAPLs from geologic materials is difficult and expensive. Treatment technologies include costly ex-situ methods such as excavation and in-situ methods such as physical extraction by soil venting and pumping, bioremediation, and combination methods such as bioventing, bioslurping or air sparging. Surfactant-aided pumping can reduce source hydrocarbon concentrations when used in conjunction with traditional pump and treat, or deep well injection. This study involved the selection of an appropriate surfactant from a wide variety of commercially available products. A site contaminated by hydrocarbons in Turner Valley, Alberta, was used for field scale testing. One of the major problems was quantifying the increase in the dissolved hydrocarbon concentrations in the recovered water once a surfactant was added. From the 30 surfactants screened in a series of washing and oil solubilization tests, two surfactants, Brij 97 and Tween 80, were selected for further evaluation. Increased hydrocarbon recovery was observed within 10 days of the introduction of the first surfactant. 2 refs., 7 figs

  19. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    Science.gov (United States)

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  20. Separation of oil and grease from oil sludge using surfactant

    International Nuclear Information System (INIS)

    Ainon Abdul Aziz; Syed Hakimi Sakuma Syed Ahmad; Zalina Laili

    2005-01-01

    The objective of the experiments was to observe the efficiency of the surfactant to remove oil and grease from oil sludges using various surfactant concentration ranging from 10 %, 15 %, 20 % and 30 %. The surfactant solution consists of two mixtures of Aqua 2000 and D Bond. The oil sludge were subjected to heating and surfactant treatment process. Remaining oil and grease concentration were observed on the oil sludges after treatment. Small scale experiments were conducted by heating process, without heating process and heating process with addition of sodium chloride. Surfactant solution was added in each process. Results shows that there is separation of oil and grease from the oil sludges. There were formation of mini emulsions (oil in water). The higher the concentration of surfactant used, the higher the concentrations of mini emulsion formed as observed. Solid remains after the treatment process were found to contain lesser oil concentration with presence of bitumen, sediment, organic and inorganic materials. After a washing process using distilled water, the solid was still black but less oily than before the treatment. There is no separation of oil occurred in aqueous solution for the control experiment. (Author)

  1. Identifying the Imprint of Surfactant Stabilisation in Whitecap Foam Evolution

    Science.gov (United States)

    Callaghan, A. H.; Deane, G. B.; Stokes, D.

    2016-02-01

    Surfactants are ubiquitous in the world's oceans and can affect climatically-relevant processes such as air-sea gas exchange, sea spray aerosol (SSA) flux, and air-sea momentum transfer. Surfactants are amphiphilic and help form the physically and chemically distinct ocean surface microlayer (SML), however, the spatial distribution, concentration and composition of the SML is not well understood, especially under conditions of vigorous wave breaking. Like the SML, breaking waves also influence physical exchange processes at the air-sea interface, and oceanic whitecap foam coverage is commonly used to quantify bubble-mediated exchange processes. However, surfactants can increase the lifetime of foam over clean water conditions, potentially complicating the use of whitecap coverage to parameterise air-sea gas exchange and SSA production flux. A better understanding of how surfactants affect the evolution of whitecap foam is needed to improve whitecap parameterisations of bubble-mediated processes, and may also provide a remote sensing approach to map the spatial distribution of surfactants at the water surface. Here we present results from a laboratory study that looked at whitecap foam evolution in "clean" and "surfactant-added" seawater regimes. We find that the whitecap foam area growth timescale is largely insensitive to the presence of surfactants, but that surfactant stabilization of whitecap foam becomes important during the whitecap foam area decay phase. The timescale at which this occurs appears to be consistent for breaking waves of different scale and intensity. A simple method is then used to isolate the surfactant signal and derive an equivalent "clean" seawater foam decay time for the whitecaps in the "surfactant-added" regime. The method is applied to oceanic whitecaps and results compared to the laboratory whitecaps from the "clean" and "surfactant-added" regimes.

  2. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    Science.gov (United States)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  3. Application of a novel cellular automaton porosity prediction model to aluminium castings

    International Nuclear Information System (INIS)

    Atwood, R.C.; Chirazi, A.; Lee, P.D.

    2002-01-01

    A multiscale model was developed to predict the formation of porosity within a solidifying aluminium-silicon alloy. The diffusion of silicon and dissolved gas was simulated on a microscopic scale combined with cellular automaton models of gas porosity formation within the growing three-dimensional solidification microstructure. However, due to high computational cost, the modelled volume is limited to the millimetre range. This renders the application of direct modelling of complex shape castings unfeasible. Combining the microstructural modelling with a statistical response-surface prediction method allows application of the microstructural model results to industrial scale casts by incorporating them in commercial solidification software. (author)

  4. Open die forging of large shafts with porosity defects – physical and numerical modelling

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2013-01-01

    The aim and scope of this paper is centered to analyze the influence of the geometry of V-shaped dies on the closure of internal centerline porosity defects in ingots during multistep open-die forging. The investigation is performed with small scale physical models made from lead using V-shaped d......The aim and scope of this paper is centered to analyze the influence of the geometry of V-shaped dies on the closure of internal centerline porosity defects in ingots during multistep open-die forging. The investigation is performed with small scale physical models made from lead using V......-shaped dies with 90o and 120o and a reference pair of flat parallel platens. Holes drilled through the center of these preforms are produced to mimic centerline porosity in full scale cast ingots and intermediate rotation of the preforms replicate a multi-stage forging sequence under laboratory testing...

  5. Mathematical Modelling of Surfactant Self-assembly at Interfaces

    KAUST Repository

    Morgan, C. E.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary differential equations that couple the rearrangement of surfactant within the multilayer to the surface adsorption kinetics is first derived. This model is then extended to the macroscopic scale by taking the continuum limit that exploits the typically large number of surfactant layers, which results in a novel third-order partial differential equation. The model is generalized to allow for the presence of two adsorbing boundaries, which results in an implicit free-boundary problem. The system predicts physically observed features in multilayer systems such as the initial formation of smaller lamellar structures and the typical number of layers that form in equilibrium.

  6. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J. [Purdue University

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in

  7. RNA Study Using DNA Nanotechnology.

    Science.gov (United States)

    Tadakuma, Hisashi; Masubuchi, Takeya; Ueda, Takuya

    2016-01-01

    Transcription is one of the fundamental steps of gene expression, where RNA polymerases (RNAPs) bind to their template genes and make RNAs. In addition to RNAP and the template gene, many molecules such as transcription factors are involved. The interaction and the effect of these factors depend on the geometry. Molecular layout of these factors, RNAP and gene is thus important. DNA nanotechnology is a promising technology that allows controlling of the molecular layout in the range of nanometer to micrometer scale with nanometer resolution; thus, it is expected to expand the RNA study beyond the current limit. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Synthesis and Characterization of Nanoporous Carbon Materials; The Effect of Surfactant Concentrations and Salts

    Directory of Open Access Journals (Sweden)

    Shokoofeh Geranmayeh

    2011-01-01

    Full Text Available Nanoporous carbon framework was synthesized using phenol and formaldehyde as carbon precursors and triblock copolymer (pluronic F127 as soft template via evaporation induced self-assembly. Hexagonal mesoporous carbon with specific surface area of 350 m2/g through optimizing the situation was obtained. The effects of different surfactant/phenol molar ratio and presence of salts on specific surface area, pore size and pore volume for all the prepared samples were studied by means of the Brunauer-Emmett-Teller (BET formalism, powder X-ray diffraction technique and FT-IR spectroscopy.

  9. Large-Scale Surfactant-Free Synthesis of p-Type SnTe Nanoparticles for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Guang Han

    2017-02-01

    Full Text Available A facile one-pot aqueous solution method has been developed for the fast and straightforward synthesis of SnTe nanoparticles in more than ten gram quantities per batch. The synthesis involves boiling an alkaline Na2SnO2 solution and a NaHTe solution for short time scales, in which the NaOH concentration and reaction duration play vital roles in controlling the phase purity and particle size, respectively. Spark plasma sintering of the SnTe nanoparticles produces nanostructured compacts that have a comparable thermoelectric performance to bulk counterparts synthesised by more time- and energy-intensive methods. This approach, combining an energy-efficient, surfactant-free solution synthesis with spark plasma sintering, provides a simple, rapid, and inexpensive route to p-type SnTe nanostructured materials.

  10. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  11. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  12. Preparation of Nano Activated γ-Alumina ( with Surfactant and Surface Characterization

    Directory of Open Access Journals (Sweden)

    Enas Sameer AL-Khawaja

    2016-09-01

    Full Text Available This paper deals with the preparation of Alumina by sol-gel technique through the hydrolysis of aluminum ion mixed with the glucose as a surfactant and converting it to gel by ammonium hydroxide in aqueous media. The resulting sol composed of particle is draying to become a transparent gel. The freshly prepared gel is heated at 700°C for 2hrs to obtain alumina ( particles. The obtained particles are found to be γ-alumina particles with high porosity, Their characteristics are determined by LPSA, XRD, SEM, TEM and BET techniques. The results show that the particles are pure alumina, nano-sized=20nm, spherical shape, high surface area=210 /gm.

  13. Development of Total Knee Replacement Digital Templating Software

    Science.gov (United States)

    Yusof, Siti Fairuz; Sulaiman, Riza; Thian Seng, Lee; Mohd. Kassim, Abdul Yazid; Abdullah, Suhail; Yusof, Shahril; Omar, Masbah; Abdul Hamid, Hamzaini

    In this study, by taking full advantage of digital X-ray and computer technology, we have developed a semi-automated procedure to template knee implants, by making use of digital templating method. Using this approach, a software system called OrthoKneeTMhas been designed and developed. The system is to be utilities as a study in the Department of Orthopaedic and Traumatology in medical faculty, UKM (FPUKM). OrthoKneeTMtemplating process employs uses a technique similar to those used by many surgeons, using acetate templates over X-ray films. Using template technique makes it easy to template various implant from every Implant manufacturers who have with a comprehensive database of templates. The templating functionality includes, template (knee) and manufactures templates (Smith & Nephew; and Zimmer). From an image of patient x-ray OrthoKneeTMtemplates help in quickly and easily reads to the approximate template size needed. The visual templating features then allow us quickly review multiple template sizes against the X-ray and thus obtain the nearly precise view of the implant size required. The system can assist by templating on one patient image and will generate reports that can accompany patient notes. The software system was implemented in Visual basic 6.0 Pro using the object-oriented techniques to manage the graphics and objects. The approaches for image scaling will be discussed. Several of measurement in orthopedic diagnosis process have been studied and added in this software as measurement tools features using mathematic theorem and equations. The study compared the results of the semi-automated (using digital templating) method to the conventional method to demonstrate the accuracy of the system.

  14. Characterizing the turbulent porosity of stellar wind structure generated by the line-deshadowing instability

    Science.gov (United States)

    Owocki, Stanley P.; Sundqvist, Jon O.

    2018-03-01

    We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.

  15. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    This paper reported on dispersion effect and dispersing techniques of nanometer WS2 particles in the green lubricant concocted by us. And it also researched on auto-reconditioning performance of nanometer WS2 particles to the abrasive surfaces of steel ball from four-ball tribology test and piston ring from engine ...

  16. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  17. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  18. 77 FR 39682 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2012-07-05

    ... invite comments on the question of whether instruments of equivalent scientific value, for the purposes... components with increased reliability, performance, reduction of cost, and improved safety, using technology... reliability investigations on the nanometer scale, to identify porosity, fracture surface features, fiber...

  19. Modulation of Magnetic Properties at the Nanometer Scale in Continuously Graded Ferromagnets

    Directory of Open Access Journals (Sweden)

    Lorenzo Fallarino

    2018-02-01

    Full Text Available Ferromagnetic alloy materials with designed composition depth profiles provide an efficient route for the control of magnetism at the nanometer length scale. In this regard, cobalt-chromium and cobalt-ruthenium alloys constitute powerful model systems. They exhibit easy-to-tune magnetic properties such as saturation magnetization MS and Curie temperature TC while preserving their crystalline structure over a wide composition range. In order to demonstrate this materials design potential, we have grown a series of graded Co1−xCrx and Co1−wRuw (10 1 ¯ 0 epitaxial thin films, with x and w following predefined concentration profiles. Structural analysis measurements verify the epitaxial nature and crystallographic quality of our entire sample sets, which were designed to exhibit in-plane c-axis orientation and thus a magnetic in-plane easy axis to achieve suppression of magnetostatic domain generation. Temperature and field-dependent magnetic depth profiles have been measured by means of polarized neutron reflectometry. In both investigated structures, TC and MS are found to vary as a function of depth in accordance with the predefined compositional depth profiles. Our Co1−wRuw sample structures, which exhibit very steep material gradients, allow us to determine the localization limit for compositionally graded materials, which we find to be of the order of 1 nm. The Co1−xCrx systems show the expected U-shaped TC and MS depth profiles, for which these specific samples were designed. The corresponding temperature dependent magnetization profile is then utilized to control the coupling along the film depth, which even allows for a sharp onset of decoupling of top and bottom sample parts at elevated temperatures.

  20. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    Science.gov (United States)

    Haas, Beth L.; Matson, Jyl S.; DiRita, Victor J.; Biteen, Julie S.

    2015-01-01

    Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane. PMID:25123183

  1. Porosity characterization for heterogeneous shales using integrated multiscale microscopy

    Science.gov (United States)

    Rassouli, F.; Andrew, M.; Zoback, M. D.

    2016-12-01

    Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements

  2. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Park, Sunyoung; Jung, Ji Chul; Kim, Pil; Chung, Jin Suk; Song, In Kyu

    Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al 2O 3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al 2O 3 support on the catalytic performance of Ni/γ-Al 2O 3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal-support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al 2O 3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal-support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.

  3. A highly accurate boundary integral equation method for surfactant-laden drops in 3D

    Science.gov (United States)

    Sorgentone, Chiara; Tornberg, Anna-Karin

    2018-05-01

    The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

  4. A simplified treatment of surfactant effects on cloud drop activation

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2011-02-01

    Full Text Available Dissolved surface active species, or surfactants, have a tendency to partition to solution surface and thereby decrease solution surface tension. Activating cloud droplets have large surface-to-volume ratios, and the amount of surfactant molecules in them is limited. Therefore, unlike with macroscopic solutions, partitioning to the surface can effectively deplete the droplet interior of surfactant molecules.

    Surfactant partitioning equilibrium for activating cloud droplets has so far been solved numerically from a group of non-linear equations containing the Gibbs adsorption equation coupled with a surface tension model and an optional activity coefficient model. This can be a problem when surfactant effects are examined by using large-scale cloud models. Namely, computing time increases significantly due to the partitioning calculations done in the lowest levels of nested iterations.

    Our purpose is to reduce the group of non-linear equations to simple polynomial equations with well known analytical solutions. In order to do that, we describe surface tension lowering using the Szyskowski equation, and ignore all droplet solution non-idealities. It is assumed that there is only one surfactant exhibiting bulk-surface partitioning, but the number of non-surfactant solutes is unlimited. It is shown that the simplifications cause only minor errors to predicted bulk solution concentrations and cloud droplet activation. In addition, computing time is decreased at least by an order of magnitude when using the analytical solutions.

  5. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy

    International Nuclear Information System (INIS)

    Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P.

    2011-01-01

    Films made of nanofibrils were modified by adsorption of a cationic surfactant directly on the film surfaces. The nanofibrils were prepared by 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation and mechanical fibrillation, and were relatively homogeneous in size. The average nanofibril diameter and surface porosity was quantified based on computer-assisted field-emission scanning electron microscopy (FE-SEM). The cationic surfactant used in the adsorption was n-hexadecyl trimethylammonium bromide (cetyltrimethylammonium bromide, CTAB). The adsorption of CTAB was confirmed by Fourier transform infrared (FTIR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses. It was shown that the adsorbed layer of CTAB increased the hydrophobicity, without affecting the tensile index significantly. This capability, combined with the antiseptic properties of CTAB, may be a major advantage for several applications.

  6. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of

  7. 'Clicking' on the nanoscale: 1,3-dipolar cycloaddition of terminal acetylenes on azide functionalized, nanometric surface templates with nanometer resolution

    International Nuclear Information System (INIS)

    Haensch, Claudia; Hoeppener, Stephanie; Schubert, Ulrich S

    2009-01-01

    Electro-oxidative lithography is used as a tool to create chemical nanostructures on an n-octadecyltrichlorosilane (OTS) monolayer self-assembled on silicon. The use of a bromine precursor molecule, which is exclusively assembled on these chemical templates, can be used to further functionalize the nanostructures by the site-selective generation of azide functions and performing the highly effective 1,3-dipolar cycloaddition reaction with acetylene functionalized molecules. The versatility of this reaction scheme provides the potential to integrate a large variety of functional molecules, to tailor the surface properties of the nanostructures or to anchor molecular building blocks or particles in confined, pre-defined surface areas. The results demonstrated in the present study introduce a conceivable route towards the functionalization of chemically active surface templates with high fidelity and reliability. It is demonstrated that surface features with a lateral resolution of 50 nm functionalized with propargyl alcohol can be fabricated.

  8. Thermal conductivity of high-porosity heavily doped biomorphic silicon carbide prepared from sapele wood biocarbon

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Mucha, J.; Jezowski, A.; Cabezas-Rodriguez, R.; Ramirez-Rico, J.

    2012-08-01

    The electrical resistivity and thermal conductivity of high-porosity (˜52 vol %, channel-type pores) bio-SiC samples prepared from sapele wood biocarbon templates have been measured in the temperature range 5-300 K. An analysis has been made of the obtained results in comparison with the data for bio-SiC samples based on beech and eucalyptus, as well as for polycrystalline β-SiC. The conclusion has been drawn that the electrical resistivity and thermal conductivity of bio-SiC samples based on natural wood are typical of heavily doped polycrystalline β-SiC.

  9. In situ deposition of poly(1,8-diaminonaphthalene): from thin films to nanometer-sized structures

    International Nuclear Information System (INIS)

    Tagowska, Magdalena; PaIys, Barbara; Mazur, Maciej; Skompska, Magdalena; Jackowska, Krystyna

    2005-01-01

    Chemical in situ deposition of poly(1,8-diaminonaphthalene) (p(1,8-DAN)) on conductive supports in aqueous and acetonitrile solutions was investigated using electrochemical quartz crystal microbalance (EQCM) and UV-vis spectroscopy. The resulting deposits were examined by the means of cyclic voltammetry (CV), FT-IR and Raman spectroscopy. P(1,8-DAN) was also deposited via chemical polymerization onto a porous polycarbonate membrane (PC) which served as a template for synthesis of nanometer-sized structures. The deposits of p(1,8-DAN) on PC substrate were imaged by atomic force microscopy (AFM) and the nanostructures obtained by dissolution of the template were visualized by scanning electron microscopy (SEM). The EQCM and UV-vis studies indicated that the polymer is formed both on the surface of the substrate and in the bulk of the polymerization solution. However, polymerization of 1,8-DAN in solution is delayed in comparison with deposition on the substrate. Electrochemical and spectroscopic properties of p(1,8-DAN) formed chemically closely resemble the properties of the electrosynthesized polymer. Furthermore, SEM images of p(1,8-DAN) nanostructures revealed that the polymer nanowires are formed in aqueous solutions, whereas two types of structures: nanowires and round shaped structures, not fitting to the pore size, can be obtained by chemical polymerization in the acetonitrile medium

  10. Measurement of the porosity of amorphous materials by gamma ray transmission methodology

    International Nuclear Information System (INIS)

    Pottker, Walmir Eno; Appoloni, Carlos Roberto

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV ), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  11. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  13. Template Adaptability is Key in the Oriented Crystallization of CaCO3

    International Nuclear Information System (INIS)

    Popescu, D.; Smulders, M.; Pichon, B.; Chebotareva, N.; Kwak, S.; van Asselen, O.; Sijbesma, R.; DiMasi, E.; Sommerdijk, N.

    2007-01-01

    In CaCO3, biomineralization nucleation and growth of the crystals are related to the presence of carboxylate-rich proteins within a macromolecular matrix, often with organized β-sheet domains. To understand the interplay between the organic template and the mineral crystal it is important to explicitly address the issue of structural adaptation of the template during mineralization. To this end we have developed a series of self-organizing surfactants (1-4) consisting of a dodecyl chain connected via a bisureido-heptylene unit to an amino acid head group. In Langmuir monolayers the spacing of these molecules in one direction is predetermined by the hydrogen-bonding distances between the bis-urea units. In the other direction, the intermolecular distance is determined by steric interactions introduced by the side groups (-R) of the amino acid moiety. Thus, by the choice of the amino acid we can systematically alter the density of the surfactant molecules in a monolayer and their ability to respond to the presence of calcium ions. The monolayer films are characterized by surface pressure-surface area (p-A) isotherms, Brewster angle microscopy, in-situ synchrotron X-ray scattering at fixed surface area, and also infrared reflection absorption spectroscopy (IRRAS) of films transferred to solid substrates. The developing crystals are studied with scanning and transmission electron microscopy (SEM, TEM), selected area electron diffraction (SAED), and crystal modeling. The results demonstrate that although all compounds are active in the nucleation of calcium carbonate, habit modification is only observed when the size of the side group allows the molecules to rearrange and adapt their organization in response to the mineral phase.

  14. Characterizing stroke lesions using digital templates and lesion quantification tools in a web-based imaging informatics system for a large-scale stroke rehabilitation clinical trial

    Science.gov (United States)

    Wang, Ximing; Edwardson, Matthew; Dromerick, Alexander; Winstein, Carolee; Wang, Jing; Liu, Brent

    2015-03-01

    Previously, we presented an Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) imaging informatics system that supports a large-scale phase III stroke rehabilitation trial. The ePR system is capable of displaying anonymized patient imaging studies and reports, and the system is accessible to multiple clinical trial sites and users across the United States via the web. However, the prior multicenter stroke rehabilitation trials lack any significant neuroimaging analysis infrastructure. In stroke related clinical trials, identification of the stroke lesion characteristics can be meaningful as recent research shows that lesion characteristics are related to stroke scale and functional recovery after stroke. To facilitate the stroke clinical trials, we hope to gain insight into specific lesion characteristics, such as vascular territory, for patients enrolled into large stroke rehabilitation trials. To enhance the system's capability for data analysis and data reporting, we have integrated new features with the system: a digital brain template display, a lesion quantification tool and a digital case report form. The digital brain templates are compiled from published vascular territory templates at each of 5 angles of incidence. These templates were updated to include territories in the brainstem using a vascular territory atlas and the Medical Image Processing, Analysis and Visualization (MIPAV) tool. The digital templates are displayed for side-by-side comparisons and transparent template overlay onto patients' images in the image viewer. The lesion quantification tool quantifies planimetric lesion area from user-defined contour. The digital case report form stores user input into a database, then displays contents in the interface to allow for reviewing, editing, and new inputs. In sum, the newly integrated system features provide the user with readily-accessible web-based tools to identify the vascular territory involved, estimate lesion area

  15. Perl Template Toolkit

    CERN Document Server

    Chamberlain, Darren; Cross, David; Torkington, Nathan; Diaz, tatiana Apandi

    2004-01-01

    Among the many different approaches to "templating" with Perl--such as Embperl, Mason, HTML::Template, and hundreds of other lesser known systems--the Template Toolkit is widely recognized as one of the most versatile. Like other templating systems, the Template Toolkit allows programmers to embed Perl code and custom macros into HTML documents in order to create customized documents on the fly. But unlike the others, the Template Toolkit is as facile at producing HTML as it is at producing XML, PDF, or any other output format. And because it has its own simple templating language, templates

  16. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    Science.gov (United States)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  17. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Colliex, Christian, E-mail: christian.colliex@u-psud.fr; Kociak, Mathieu; Stéphan, Odile

    2016-03-15

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  18. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    International Nuclear Information System (INIS)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-01-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  19. Effect of static porosity fluctuations on reactive transport in a porous medium

    Science.gov (United States)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  20. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    Directory of Open Access Journals (Sweden)

    Maciej Kozak

    2013-04-01

    Full Text Available Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3-decyloxymethyl pentane chloride (gemini surfactant on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR and circular dichroism (CD spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase.

  1. Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants

    International Nuclear Information System (INIS)

    de Campo, Liliana; Warr, G.G.

    2005-01-01

    Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)

  2. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  3. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    International Nuclear Information System (INIS)

    Groger, H.

    1997-01-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis

  4. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  5. Local mechanical spectroscopy with nanometer-scale lateral resolution

    Science.gov (United States)

    Oulevey, F.; Gremaud, G.; Sémoroz, A.; Kulik, A. J.; Burnham, N. A.; Dupas, E.; Gourdon, D.

    1998-05-01

    A new technique has been developed to probe the viscoelastic and anelastic properties of submicron phases of inhomogeneous materials. The measurement gives information related to the internal friction and to the variations of the dynamic modulus of nanometer-sized volumes. It is then the nanoscale equivalent to mechanical spectroscopy, a well-known macroscopic technique for materials studies, also sometimes called dynamic mechanical (thermal) analysis. The technique is based on a scanning force microscope, using the principle of scanning local-acceleration microscopy (SLAM), and allows the sample temperature to be changed. It is called variable-temperature SLAM, abbreviated T-SLAM. According to a recent proposition to systematize names of scanning probe microscope based methods, this technique should be included in the family of "mechanothermal analysis with scanning microscopy." It is suited for studying defect dynamics in nanomaterials and composites by locating the dissipative mechanisms in submicron phases. The primary and secondary relaxations, as well as the viscoplasticity, were observed in bulk PVC. The wide range of phenomena demonstrate the versatility of the technique. A still unexplained increase of the stiffness with increasing temperature was observed just below the glass transition. All of these observations, although their interpretation in terms of physical events is still tentative, are in agreement with global studies. This technique also permits one to image the variations of the local elasticity or of the local damping at a fixed temperature. This enables the study of, for instance, the homogeneity of phase transitions in multiphased materials, or of the interface morphologies and properties. As an illustration, the homogeneity of the glass transition temperature of PVC in a 50/50 wt % PVC/PB polymer blend has been demonstrated. Due to the small size of the probed volume, T-SLAM gives information on the mechanical properties of the near

  6. Soft-template hydrothermal systhesis of nanostructured Copper(II) Tungstate cubes for Electrochemical Charge Storage Application

    International Nuclear Information System (INIS)

    Wei, Chao; Huang, Ying; Zhang, Xin; Chen, Xuefang; Yan, Jing

    2016-01-01

    Highlights: • Soft-template hydrothermal method is firstly respoted for CuWO4 samples. • Nano-size distribution of CuWO4 is mainly ascribed to the soft-template of P123. • Excellent performance is due to Low surface energy, blunt edges and active sites. - Abstract: In this work, the soft-template hydrothermal method is firstly applied to synthesize nanocrystal CuWO 4 cubes for the electrode materials in in electrochemical charge storage application. The structures and morphologies of as-obtained materials are characterized via X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The effects of the soft-template (P123) and surfactant (Hexamethylenetetramine) also are verified by the electrochemistry test including CV, GCD, EIS. As a result, the CuWO 4 -PH (synthesis with the assistance of P123 and Hexamethylenetetramine) shows a excellent specific capacitance (C sp ) of 302.40 mAh g −1 at the current density of 1 A g −1 and a good rate capability (60.7% retension rate of original Csp even at 10 A g −1 ), as well as cycle life (82.1% retention rate of original C sp after 2000 cycles). These results reveal that our obtained CuWO 4 -PH could be a promissing electrode material.

  7. The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation

    International Nuclear Information System (INIS)

    Seo, Youngwoo; Lee, Woo-Hyung; Sorial, George; Bishop, Paul L.

    2009-01-01

    Lab scale mulch biofilm barriers were constructed and tested to evaluate their performance for preventing the migration of aqueous and surfactant solubilized PAHs. The spatial distribution of viable PAH degrader populations and resultant biofilm formation were also monitored to evaluate the performance of the biobarrier and the prolonged surfactant effect on the PAH degrading microorganism consortia in the biobarrier. Sorption and biodegradation of PAHs resulted in stable operation of the system for dissolved phenanthrene and pyrene during 150 days of experimentation. The nonionic surfactant could increase the solubility of phenanthrene and pyrene significantly. However, the biobarrier itself couldn't totally prevent the migration of micellar solubilized phenanthrene and pyrene. The presence of surfactant and the resultant highly increased phenanthrene or pyrene concentration didn't appear to cause toxic effects on the attached biofilm in the biobarrier. However, the presence of surfactant did change the structural composition of the biofilm. - Mulch biofilm barrier showed potential for surfactant enhanced bioremediation, and the presence of surfactant changed the structural composition of the biofilm

  8. I - Template Metaprogramming for Massively Parallel Scientific Computing - Expression Templates

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  9. Surfactant-Mediated Growth Revisited

    International Nuclear Information System (INIS)

    Meyerheim, H. L.; Sander, D.; Popescu, R.; Pan, W.; Kirschner, J.; Popa, I.

    2007-01-01

    The x-ray structure analysis of the oxygen-surfactant-mediated growth of Ni on Cu(001) identifies up to 0.15 monolayers of oxygen in subsurface octahedral sites. This questions the validity of the general view that surfactant oxygen floats on top of the growing Ni film. Rather, the surfactant action is ascribed to an oxygen-enriched zone extending over the two topmost layers. Surface stress measurements support this finding. Our results have important implications for the microscopic understanding of surfactant-mediated growth and the change of the magnetic anisotropy of the Ni films

  10. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  11. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01

    salinity reservoirs. Alkylpropoxy sulfate surfactants are not yet available as large volume commercial products. The results presented herein can provide the needed industrial impetus for extending application (alkyl polyglycoside) or scaling up (alkylpropoxy sulfates) of these two promising surfactants for enhanced oil recovery. Furthermore, the advanced simulations tools presented here can be used to continue to uncover new types of surfactants with promising properties such as inherent low IFT and biodegradability.

  12. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, Olivier [Universite de Lille Nord de France; Thankamony, Aany S. Lilly [Universite de Lille Nord de France; Kokayashi, Takeshi [Ames Laboratory; Carnevale, Diego [Ecole Polytechnique Federale de Lausanne; Vitzthum, Veronika [Ecole Polytechnique Federale de Lausanne; Slowing, Igor I. [Ames Laboratory; Kandel, Kapil [Ames Laboratory; Vezin, Herve [Universite de Lille Nord de France; Amoureux, Jean-Paul [Universite de Lille Nord de France; Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne; Pruski, Marek [Ames Laboratory

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  13. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  14. MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis

    Directory of Open Access Journals (Sweden)

    Cheng-Gong Han

    2017-10-01

    Full Text Available We herein report a facile one-pot synthesis of MnO/N-doped carbon (N–C composites via a sustainable cotton-template glycine–nitrate combustion synthesis to yield superior anode materials for Li ion batteries. MnO nanoparticles with several nanometers were well-embedded in a porous N-doped carbon matrix. It displays the unique characteristics, including the shortened Li+-ion transport path, increased contact areas with the electrolyte solution, inhibited volume changes and agglomeration of nanoparticles, as well as good conductivity and structural stability during the cycling process, thereby benefiting the superior cycling performance and rate capability. This favorable electrochemical performance of obtained MnO/N–C composites via a one-pot biomass-templated glycine/nitrate combustion synthesis renders the suitability as anode materials for Li-ion batteries. Keywords: Biomass, Cotton, Manganese oxide, Lithium ion battery, Porous carbon

  15. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  16. Synthesis of thin films and materials utilizing a gaseous catalyst

    Science.gov (United States)

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  17. Surfactant replacement therapy--economic impact.

    Science.gov (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  18. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  19. Surfactant -- Where Are We in 2003?

    Directory of Open Access Journals (Sweden)

    JF Lewis

    2004-01-01

    Full Text Available Surfactant research has progressed over the past several years to the extent that exogenous surfactant administration in patients with the acute respiratory distress syndrome (ARDS is now being evaluated. Unfortunately, clinical responses have been variable, and we now need to take a look at how surfactant is altered in this disease so that more effective treatment strategies can be developed. This review briefly discusses the biophysical and host defense properties of surfactant, the impact of mechanical ventilation (MV on the endogenous surfactant system and the most recent clinical data involving exogenous surfactant administration in patients with ARDS. Discussions regarding future directions of surfactant research both in ARDS and diseases other than acute lung injury are included.

  20. Study of the enhanced oil recovery with surfactant based systems; Estudo de recuperacao avancada de petroleo por sistemas a base de tensoativos

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Neto, Valdir Cotrim; Paulino, Luisa Cimatti; Acyoly, Alessandra; Santos, Enio Rafael M.; Dantas Neto, Afonso Avelino [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, it must be used enhanced recovery methods. One of these technologies is the injection of surfactant solutions, where exists a chemical interaction between the injected fluid and the reservoir's fluid. With this in mind, this work was developed with two main objectives: to study of parameters that influence the surfactant behavior in solution, namely the critical micelle concentration (CMC), the surface and interface tensions between fluids and the evaluation of oil recovery with these solutions. After the Botucatu sandstone (Brazil) porosity study, the plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The solutions were studied in enhanced recovery step, when the plug samples could already be compared to a mature field. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater. (author)

  1. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    International Nuclear Information System (INIS)

    Batigoec, Cigdem; Akbas, Halide; Boz, Mesut

    2011-01-01

    Highlights: → Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. → Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. → Dimeric surfactants have attracted increasing attention due to their superior surface activity. → The positive values of ΔG cp 0 indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C 16 alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy (ΔG cp 0 ), the enthalpy (ΔH cp 0 ) and the entropy (ΔS cp 0 ) of the clouding phenomenon were found positive in all cases. The standard free energy (ΔG cp 0 ) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.

  2. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    Science.gov (United States)

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  3. Bio surfactants production in bioreactor assisted with membrane process; Producao de biossurfactantes em biorreator assistido por processos com membranas

    Energy Technology Data Exchange (ETDEWEB)

    Kronemberger, Frederico de Araujo; Borges, Cristiano Piacsek [Universidade Federal do Rio de Janeiro (UFRJ). COPPE. Programa de Engenharia Quimica, RJ (Brazil)], e-mails: frederico@peq.coppe.ufrj.br, cristiano@peq.coppe.ufrj.br, s.noblat@csn.com.br; Freire, Denise Maria Guimaraes [Universidade Federal do Rio de Janeiro (UFRJ). Instituto de Quimica. Departamento de Bioquimica, RJ (Brazil)], e-mail: freire@iq.ufrj.br

    2010-04-15

    Chemically synthesized surfactants are widely used in the pharmaceutical, food and oil industries. However, they may eventually be replaced by bio surfactants, which are biodegradable and produced from renewable substrates, the surface active molecules produced by micro-organisms. Currently bio surfactants use is limited to some specific applications as they are not economically competitive. The fermentation technology needs to be improved to expand the production scale and lower costs. The most studied bio surfactants are produced by aerobic microorganisms. The main difficulty of this fermentation process is the excess foam caused by injecting air into the vessel. To overcome this problem, a membrane contactor can be used for the non-dispersive transfer of oxygen from the gas to liquid phase. The main objective of this study was to produce rhamno lipidic type bio surfactants from a strain of Pseudomonas aeruginosa (PA1), isolated from oil wells. This production used a hollow-fiber membrane contactor to oxygenate the culture medium. The study results indicate this bio surfactant is economically viable in large scale production. (author)

  4. Mechanical design of ultraprecision weak-link stages for nanometer-scale x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D [APS Engineering Support Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Maser, J, E-mail: shu@aps.anl.go [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-09-01

    A nanopositioning diagnostic setup has been built to support the Argonne Center for Nanoscale Materials (CNM) nanoprobe instrument commissioning process at the APS. Its laser Doppler interferometer system provides subnanometer positioning diagnostic resolution with large dynamic range. A set of original APS designed ultraprecision PZT-driven weak-link stages with high-stiffness motor-driven stages has been tested with this diagnostic setup. In this paper we present a preliminary test result of the ultraprecision weak-link stage system developed for the CNM hard x-ray nanoprobe instrument at APS sector 26. A test result for a novel laminar weak-link mechanism with sub-centimeter travel range and sub-nanometer positioning resolution is also introduced in this paper as a future work.

  5. Polymeric Bicontinuous Microemulsions as Templates for Nanostructured Materials

    Science.gov (United States)

    Jones, Brad Howard

    Ternary blends of two homopolymers and a diblock copolymer can self-assemble into interpenetrating, three dimensionally-continuous networks with a characteristic length scale of ˜ 100 nm. In this thesis, it is shown that these liquid phases, known as polymeric bicontinuous microemulsions (BμE), can be designed as versatile precursors to nanoporous materials having pores with uniform sizes of ˜ 100 nm. The model blends from which the porous materials are derived are composed of polyethylene (PE) and a sacrificial polyolefin. The liquid BμE structure is captured by crystallization of the PE, and a three-dimensionally continuous pore network with a narrow pore size distribution is generated by selective extraction of the sacrificial component. The original BμE structure is retained in the resultant nanoporous PE. This monolithic material is then used as a template in the synthesis of other nanoporous materials for which structural control at the nm scale has traditionally been difficult to achieve. These materials, which include a high-temperature ceramic, polymeric thermosets, and a conducting polymer, are produced by a simple nanocasting process, providing an inverse replica of the PE template. On account of the BμE structure of the template, the product materials also possess three-dimensionally continuous pore networks with narrow size distributions centered at ˜ 100 nm. The PE template is further used as a template for the production of hierarchically structured inorganic and polymeric materials by infiltration of mesostructured compounds into its pore network. In the former case, a hierarchically porous SiO2 material is demonstrated, simultaneously possessing two discrete, bicontinuous pore networks with sizes differing by over an order of magnitude. Finally, the templating procedures are extended to thin films supported on substrates and novel conductive polymer films are synthesized. The work described herein represents an unprecedented suite of

  6. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  8. Ordered silica particles made by nonionic surfactant for VOCs sorption

    Energy Technology Data Exchange (ETDEWEB)

    Difallah, Oumaima; Hamaizi, Hadj, E-mail: hamaizimizou@yahoo.fr [University of Oran, OranMenaouer (Algeria); Amate, Maria Dolores Urena; Socias-Viciana, Maria Del Mar [University of Almeria (Spain)

    2017-07-15

    Adsorption of light organic compounds such acetone, 1-propanol and carbon dioxide was tested by using mesoporous silica materials made from non ionic surfactant with long chain and silica sources as tetraethyl orthosilicate TEOS and modified Na-X and Li-A Zeolites. X-ray powder diffraction (XRD), nitrogen adsorption-desorption analysis and scanning electron microscopy (SEM) were applied to characterize the silica particles of a variety prepared samples. Acetone, 1-propanol and CO{sub 2} adsorption at 298K was evaluated by a volumetric method and indicate a high sorption capacity of organic compounds depending essentially on the porous texture of adsorbents. An adsorption kinetic model was proposed to describe the adsorption of VOCs over template-free mesoporous silica materials. A good agreement with experimental data was found. (author)

  9. A Hybrid Approach to Protect Palmprint Templates

    Directory of Open Access Journals (Sweden)

    Hailun Liu

    2014-01-01

    Full Text Available Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.

  10. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo.

  11. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  12. 软模板法合成纳米材料的研究进展%The Progress of Nanomaterials Prepared in the Presence of Soft Template

    Institute of Scientific and Technical Information of China (English)

    阮秀; 董磊; 于晶; 于良民; 防玉臻

    2012-01-01

    The progress of research on synthesis of nanomaterials with polymer templating method, biomacro-molecule templating method, surfactant templating method and small molecule organic additives templating method are summarized, with emphasis on the scheme about synthesis of nanomaterials with different morphologies and structures that template induce. Because of simple synthetic method and flexible structure design of polymer templating, non-polluting and precisely regulating the nanostructures of biomacromolecule templating, so they are reviewed detailedly.%介绍了近年来合成高分子模板法、生物高分子模板法、表面活性剂模板法、有机小分子添加剂模板法制备纳米材料的研究进展,重点介绍了模板剂诱导不同形貌和结构的纳米材料形成的作用机理.因合成高分子模板制备简单,结构设计灵活,生物高分子模板绿色环保,能更精确调控纳米材料结构,故详细综述了这2种方法.

  13. Nanometer-Scale Dissection of Chromosomes by Atomic Force Microscopy Combined with Heat-Denaturing Treatment

    Science.gov (United States)

    Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru

    2006-03-01

    We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.

  14. Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Pantzas, K; Voss, P L; Ougazzaden, A; Patriarche, G; Largeau, L; Mauguin, O; Troadec, D; Gautier, S; Moudakir, T; Suresh, S

    2012-01-01

    Using elastic scattering theory we show that a small set of energy dispersive x-ray spectroscopy (EDX) measurements is sufficient to experimentally evaluate the scattering function of electrons in high-angle annular dark field scanning transmission microscopy (HAADF-STEM). We then demonstrate how to use this function to transform qualitative HAADF-STEM images of InGaN layers into precise, quantitative chemical maps of the indium composition. The maps obtained in this way combine the resolution of HAADF-STEM and the chemical precision of EDX. We illustrate the potential of such chemical maps by using them to investigate nanometer-scale fluctuations in the indium composition and their impact on the growth of epitaxial InGaN layers. (paper)

  15. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant

  16. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform

  17. Atomistic Insight on the Charging Energetics in Sub-nanometer Pore Supercacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Feng, Guang [Clemson University

    2010-01-01

    Electrodes featuring sub-nanometer pores can significantly enhance the capacitance and energy density of supercapacitors. However, ions must pay an energy penalty to enter sub-nanometer pores as they have to shed part of their solvation shell. The magnitude of such energy penalty plays a key role in determining the accessibility and charging/discharging of these sub-nanometer pores. Here we report on the atomistic simulation of Na+ and Cl ions entering a polarizable slit pore with a width of 0.82 nm. We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na+ and Cl ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ion and pore walls, the image charge effects, the moderate (19-26%) de-hydration of the ions inside the pore, and the strengthened interactions between ions and their hydration water molecules in the sub-nanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring sub- nanometer pores.

  18. A new template matching method based on contour information

    Science.gov (United States)

    Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong

    2014-11-01

    Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process

  19. Permeability-Porosity Relationships of Subduction Zone Sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  20. Surfactants from petroleum paraffin wax

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, T.M.; Hussein, M.H.; El Sayed, A.S.

    Paraffin wax from Egyptian petroleum was purified and then oxidized to fatty acids which were esterified to form their methyl esters, fractionated and then hydrolysed. The obtained fatty acids were converted into the corresponding primary amines which were converted with ethylene oxide to form nonionic surfactants. The prepared primary amines were also converted into tertiary amines and then converted into cationic surfactants through condensation with benzyl chloride or 1-chloromethylnaphthalene. Also, amine oxide surfactants were prepared by oxidation of the tertiary amines with hydrogen peroxide. The surface active properties of all the prepared surfactants were determined, and the effect of their chemical structure on the surfactant properties are discussed in this paper.

  1. Optical Properties of Sol-Gel Nb2O5 Films with Tunable Porosity for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Rosen Georgiev

    2015-01-01

    Full Text Available Thin Nb2O5 films with tunable porosity are deposited by the sol-gel and evaporation induced self-assembly methods using organic template Pluronic PE6100 with different molar fractions with respect to NbCl5 used as a precursor for synthesis of Nb sol. Surface morphology and structure of the films are studied by Transmission Electron Microscopy and Selected Area Electron Diffraction. The optical characterization of the films is carried out through reflectance spectra measurements of the films deposited on silicon substrates and theoretical modeling in order to obtain refractive index, extinction coefficient, and thickness of the films. The overall porosity of the films and the amount of adsorbed acetone vapors in the pores are quantified by means of Bruggeman effective medium approximation using already determined optical constants. The sensing properties of the samples are studied by measuring both the reflectance spectra and room-temperature photoluminescence spectra prior to and after exposure to acetone vapors and liquid, respectively. The potential of using the studied mesoporous Nb2O5 films for chemooptical sensing is demonstrated and discussed.

  2. Acute Pathophysiological Effects of Intratracheal Instillation of Budesonide and Exogenous Surfactant in a Neonatal Surfactant-depleted Piglet Model

    Directory of Open Access Journals (Sweden)

    Chia-Feng Yang

    2010-08-01

    Conclusions: Intratracheal instillation of surfactant or surfactant plus budesonide can improve oxygenation and pulmonary histologic outcome in neonatal surfactant-depleted lungs. The additional use of budesonide does not disturb the function of the exogenous surfactant. Intratracheal administration of a corticosteroid combined with surfactant may be an effective method for alleviating local pulmonary inflammation in severe RDS.

  3. Surfactant flooding of diesel-contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.A.

    1991-01-01

    At one installation, approximately 60,000 gallons of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of this research program after initial surfactant screening of 21 surfactants. Three of the surfactants were used for the surfactant flooding studies; the results from that phase of the research program are described

  4. Brazilian urban porosity : Treat or threat?

    NARCIS (Netherlands)

    Moreno Pessoa, I.; Tasan-Kok, M.T.; Korthals Altes, W.K.

    2016-01-01

    Urban areas have spatial discontinuities, such as disconnected neighbourhoods, brownfield areas and leftover places. They can be captured by the metaphor of urban porosity. This paper aims to highlight the potential social consequences of urban porosity by creating a ‘porosity index’. The authors

  5. Surfactant assisted electrodeposition of MnO2 thin films: Improved supercapacitive properties

    International Nuclear Information System (INIS)

    Dubal, D.P.; Kim, W.B.; Lokhande, C.D.

    2011-01-01

    Highlights: → Effect of Triton X-100 on physico-chemical properties of MnO 2 films. → High supercapacitance of 345 F g -1 . → Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO 2 thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO 2 films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO 2 in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO 2 film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO 2 thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO 2 films deposited in presence of Triton X-100 is 345 F g -1 .

  6. Fabrication and photocatalysis of mesoporous ZnWO4 with PAMAM as a template

    International Nuclear Information System (INIS)

    Lin Shen; Chen Jiebo; Weng Xiulan; Yang Liuyi; Chen Xinqin

    2009-01-01

    Mesoporous ZnWO 4 was prepared with the template of PAMAM. The as-formed samples were characterized by X-ray diffraction (XRD), nitrogen absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). It is found that the size of pore is in the range of 5-22 nm and that the porosity of ZnWO 4 is composed of aggregated ZnWO 4 nanoparticles. The photocatalytic activities towards degradation of rhodamine B (RhB) and malachite green (MG) under UV light has been investigated. The formation mechanism of mesoporous structures is proposed

  7. Zeolites with Continuously Tuneable Porosity**

    Science.gov (United States)

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  8. Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Fan, Mingde; Yuan, Aihua; Zhu, Jianxi; He, Hongping

    2010-12-21

    The inherent or enhanced solid acidity of raw or activated diatomite is found to have significant effects on the synthesis of hierarchically porous diatomite-templated carbon with high surface area and special porous structure. The solid acidity makes raw/activated diatomite a catalyst for the generation of porous carbon, and the porous parameters of the carbon products are strongly dependent on the solid acidity of diatomite templates. The morphology of diatomite also dramatically affects the textural structure of porous carbon. Two types of macroporous structures in the carbon product, the partially solid pillars and the ordered hollow tubes, derive from the replication of the central and the edge pores of diatom shell, respectively. The hierarchically porous carbon shows good capability for the adsorption of solvent naphtha and H(2), enabling potential applications in adsorption and gas storage.

  9. Preparation and crystallization of hollow α-Fe2O3 microspheres following the gas-bubble template method

    International Nuclear Information System (INIS)

    Valladares, L. de los Santos; León Félix, L.; Espinoza Suarez, S.M.; Bustamante Dominguez, A.G.; Mitrelias, T.; Holmes, S.; Moreno, N.O.; Albino Aguiar, J.; Barnes, C.H.W.

    2016-01-01

    In this work we report the formation of hollow α-Fe 2 O 3 (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO 3 ) 3 .9H 2 O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  10. A 2D double-porosity model for melting and melt migration beneath mid-oceanic ridges

    Science.gov (United States)

    Liu, B.; Liang, Y.; Parmentier, E.

    2017-12-01

    Several lines of evidence suggest that the melting and melt extraction region of the MORB mantle is heterogeneous consisting of an interconnected network of high permeability dunite channels in a low porosity harzburgite or lherzolite matrix. In principle, one can include channel formation into the tectonic-scale geodynamic models by solving conservation equations for a chemically reactive and viscously deformable porous medium. Such an approach eventually runs into computational limitations such as resolving fractal-like channels that have a spectrum of width. To better understand first order features of melting and melt-rock interaction beneath MOR, we have formulated a 2D double porosity model in which we treat the triangular melting region as two overlapping continua occupied by the low-porosity matrix and interconnected high-porosity channels. We use melt productivity derived from a thermodynamic model and melt suction rate to close our problem. We use a high-order accurate numerical method to solve the conservation equations in 2D for porosity, solid and melt velocities and concentrations of chemical tracers in the melting region. We carry out numerical simulations to systematically study effects of matrix-to-channel melt suction and spatially distributed channels on the distributions of porosity and trace element and isotopic ratios in the melting region. For near fractional melting with 10 vol% channel in the melting region, the flow field of the matrix melt follows closely to that of the solid because the small porosity (exchange between the melt and the solid. The smearing effect can be approximated by dispersion coefficient. For slowly diffusing trace elements (e.g., LREE and HFSE), the melt migration induced dispersion can be as effective as thermal diffusion. Therefore, sub-kilometer scale heterogeneities of Nd and Hf isotopes are significantly damped or homogenized in the melting region.

  11. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    Science.gov (United States)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  12. The Affordance Template ROS Package for Robot Task Programming

    Science.gov (United States)

    Hart, Stephen; Dinh, Paul; Hambuchen, Kimberly

    2015-01-01

    This paper introduces the Affordance Template ROS package for quickly programming, adjusting, and executing robot applications in the ROS RViz environment. This package extends the capabilities of RViz interactive markers by allowing an operator to specify multiple end-effector waypoint locations and grasp poses in object-centric coordinate frames and to adjust these waypoints in order to meet the run-time demands of the task (specifically, object scale and location). The Affordance Template package stores task specifications in a robot-agnostic XML description format such that it is trivial to apply a template to a new robot. As such, the Affordance Template package provides a robot-generic ROS tool appropriate for building semi-autonomous, manipulation-based applications. Affordance Templates were developed by the NASA-JSC DARPA Robotics Challenge (DRC) team and have since successfully been deployed on multiple platforms including the NASA Valkyrie and Robonaut 2 humanoids, the University of Texas Dreamer robot and the Willow Garage PR2. In this paper, the specification and implementation of the affordance template package is introduced and demonstrated through examples for wheel (valve) turning, pick-and-place, and drill grasping, evincing its utility and flexibility for a wide variety of robot applications.

  13. Code Generation with Templates

    CERN Document Server

    Arnoldus, Jeroen; Serebrenik, A

    2012-01-01

    Templates are used to generate all kinds of text, including computer code. The last decade, the use of templates gained a lot of popularity due to the increase of dynamic web applications. Templates are a tool for programmers, and implementations of template engines are most times based on practical experience rather than based on a theoretical background. This book reveals the mathematical background of templates and shows interesting findings for improving the practical use of templates. First, a framework to determine the necessary computational power for the template metalanguage is presen

  14. An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-08-01

    Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

  15. II - Template Metaprogramming for Massively Parallel Scientific Computing - Vectorization with Expression Templates

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  16. Integration of crosswell seismic data for simulating porosity in a heterogeneous carbonate aquifer

    Science.gov (United States)

    Emery, Xavier; Parra, Jorge

    2013-11-01

    A challenge for the geostatistical simulation of subsurface properties in mining, petroleum and groundwater applications is the integration of well logs and seismic measurements, which can provide information on geological heterogeneities at a wide range of scales. This paper presents a case study conducted at the Port Mayaca aquifer, located in western Martin County, Florida, in which it is of interest to simulate porosity, based on porosity logs at two wells and high-resolution crosswell seismic measurements of P-wave impedance. To this end, porosity and impedance are transformed into cross-correlated Gaussian random fields, using local transformations. The model parameters (transformation functions, mean values and correlation structure of the transformed fields) are inferred and checked against the data. Multiple realizations of porosity can then be constructed conditionally to the impedance information in the interwell region, which allow identifying one low-porosity structure and two to three flow units that connect the two wells, mapping heterogeneities within these units and visually assessing fluid paths in the aquifer. In particular, the results suggest that the paths in the lower flow units, formed by a network of heterogeneous conduits, are not as smooth as in the upper flow unit.

  17. The effect of porosity on energetic porous silicon solid propellant micro-propulsion

    International Nuclear Information System (INIS)

    Churaman, Wayne A; Morris, Christopher J; Ramachandran, Raghav; Bergbreiter, Sarah

    2015-01-01

    Energetic porous silicon is investigated as an actuator for micro-propulsion based on thrust and impulse measurements for a variety of porous silicon porosity conditions. Porosity of 2 mm diameter, porous silicon microthruster devices was varied by changing the concentration of hydrofluoric acid and ethanol in an etch solution, by changing porous silicon etch depth, and by changing the resistivity of silicon wafers used for the etch process. The porosity varied from 30% to 75% for these experiments. The highest mean thrust and impulse values measured with a calibrated Kistler 9215 force sensor were 674 mN and 271 μN s, respectively, with a 73% porosity, 2 mm diameter porous silicon device etched in a 3 : 1 etch solution on a 3.6 Ω cm wafer to a target etch depth of 30 μm. As a result of changing porosity, a 23×  increase in thrust performance and a 36×  increase in impulse performance was demonstrated. Impulse values were also validated using a pendulum experiment in which the porous silicon microthruster was unconstrained, but several non-linearities in the pendulum experimental setup resulted in less consistent data than when measured by the force sensor for microthrusters at this size scale. These thrust and impulse results complement previous work in determining the effect of porosity on other porous silicon reaction metrics such as flame speed. (paper)

  18. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.

    Science.gov (United States)

    Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N

    2018-05-01

    We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer

  19. The Utility of Template Analysis in Qualitative Psychology Research.

    Science.gov (United States)

    Brooks, Joanna; McCluskey, Serena; Turley, Emma; King, Nigel

    2015-04-03

    Thematic analysis is widely used in qualitative psychology research, and in this article, we present a particular style of thematic analysis known as Template Analysis. We outline the technique and consider its epistemological position, then describe three case studies of research projects which employed Template Analysis to illustrate the diverse ways it can be used. Our first case study illustrates how the technique was employed in data analysis undertaken by a team of researchers in a large-scale qualitative research project. Our second example demonstrates how a qualitative study that set out to build on mainstream theory made use of the a priori themes (themes determined in advance of coding) permitted in Template Analysis. Our final case study shows how Template Analysis can be used from an interpretative phenomenological stance. We highlight the distinctive features of this style of thematic analysis, discuss the kind of research where it may be particularly appropriate, and consider possible limitations of the technique. We conclude that Template Analysis is a flexible form of thematic analysis with real utility in qualitative psychology research.

  20. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.

    Science.gov (United States)

    Ren, Fang-Fang; Ang, Kah-Wee; Ye, Jiandong; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2011-03-09

    Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

  1. Effect of chemical and biological surfactants on activated sludge of MBR system: microscopic analysis and foam test.

    Science.gov (United States)

    Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele

    2015-02-01

    A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei

    2016-02-05

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.-A.

    1992-01-01

    At one installation in California, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, resulting in contamination at depths from 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. This paper summarizes a surfactant screening/surfactant flooding research program in which 22 surfactants were screened for their effectiveness in mobilizing the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on contaminated soil samples obtained from the site

  4. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV

  5. Mineral-Templated 3D Graphene Architectures for Energy-Efficient Electrodes.

    Science.gov (United States)

    Zhang, Mingchao; Chen, Ke; Wang, Chunya; Jian, Muqiang; Yin, Zhe; Liu, Zhenglian; Hong, Guo; Liu, Zhongfan; Zhang, Yingying

    2018-05-02

    3D graphene networks have shown extraordinary promise for high-performance electrochemical devices. Herein, the chemical vapor deposition synthesis of a highly porous 3D graphene foam (3D-GF) using naturally abundant calcined Iceland crystal as the template is reported. Intriguingly, the Iceland crystal transforms to CaO monolith with evenly distributed micro/meso/macropores through the releasing of CO 2 at high temperature. Meanwhile, the hierarchical structure of the calcined template could be easily tuned under different calcination conditions. By precisely inheriting fine structure from the templates, the as-prepared 3D-GF possesses a tunable hierarchical porosity and low density. Thus, the hierarchical pores offer space for guest hybridization and provide an efficient pathway for ion/charge transport in typical energy conversion/storage systems. The 3D-GF skeleton electrode hybridized with Ni(OH) 2 /Co(OH) 2 through an optimal electrodeposition condition exhibits a high specific capacitance of 2922.2 F g -1 at a scan rate of 10 mV s -1 , and 2138.4 F g -1 at a discharge current density of 3.1 A g -1 . The hybrid 3D-GF symmetry supercapacitor shows a high energy density of 83.0 Wh kg -1 at a power density of 1011.3 W kg -1 and 31.4 Wh kg -1 at a high power density of 18 845.2 W kg -1 . The facile fabrication process enables the mass production of hierarchical porous 3D-GF for high-performance supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    Science.gov (United States)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  7. Size and Crystallinity in Protein-Templated Inorganic Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Craig C.; Uchida, Masaki; Reichhardt, Courtney; Harrington, Richard; Kang, Sebyung; Klem, Michael T.; Parise, John B.; Douglas, Trevor (SBU); (Montana)

    2010-12-01

    Protein cages such as ferritins and virus capsids have been used as containers to synthesize a wide variety of protein-templated inorganic nanoparticles. While identification of the inorganic crystal phase has been successful in some cases, very little is known about the detailed nanoscale structure of the inorganic component. We have used pair distribution function analysis of total X-ray scattering to measure the crystalline domain size in nanoparticles of ferrihydrite, {gamma}-Fe{sub 2}O{sub 3}, Mn{sub 3}O{sub 4}, CoPt, and FePt grown inside 24-meric ferritin cages from H. sapiens and P. furiosus. The material properties of these protein-templated nanoparticles are influenced by processes at a variety of length scales: the chemistry of the material determines the precise arrangement of atoms at very short distances, while the interior volume of the protein cage constrains the maximum nanoparticle size attainable. At intermediate length scales, the size of coherent crystalline domains appears to be constrained by the arrangement of crystal nucleation sites on the interior of the cage. On the basis of these observations, some potential synthetic strategies for the control of crystalline domain size in protein-templated nanoparticles are suggested.

  8. [Electronic and structural properties of individual nanometer-size supported metallic clusters

    International Nuclear Information System (INIS)

    Reifenberger, R.

    1993-01-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained

  9. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), East-Central Florida, U.S.A.

    KAUST Repository

    Maliva,, Robert G.

    2011-03-01

    The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean δ 18O = +3.91% V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the

  10. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), East-Central Florida, U.S.A.

    KAUST Repository

    Maliva,, Robert G.; Budd, David A.; Clayton, Edward A.; Missimer, Thomas M.; Dickson, John Anthony D

    2011-01-01

    The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean δ 18O = +3.91% V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the

  11. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  12. Surfactant assisted electrodeposition of MnO{sub 2} thin films: Improved supercapacitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Dubal, D.P. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S.) (India); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, W.B. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S.) (India)

    2011-10-13

    Highlights: > Effect of Triton X-100 on physico-chemical properties of MnO{sub 2} films. > High supercapacitance of 345 F g{sup -1}. > Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO{sub 2} thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO{sub 2} films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO{sub 2} in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO{sub 2} film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO{sub 2} thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO{sub 2} films deposited in presence of Triton X-100 is 345 F g{sup -1}.

  13. The Effect of Volumetric Porosity on Roughness Element Drag

    Science.gov (United States)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    the cubes and 0.525 for the mesh forms. Results from the study indicate that as volumetric porosity increases, the force of drag on an element increases although the 2-dimensional porosity remains unchanged for the case of the cube forms. The mesh forms show a similar result that with increasing number of internal forms present, drag increases, but the drag curves are different, suggesting the kind of porosity has an effect on drag. An important scaling parameter that controls drag on the cubes is the permeability (K) of the element, which is a function of the diameter of the tubes and the porosity. K seems to be of lesser importance for controlling drag on the mesh forms. We hypothesize that the drag force data do not universally collapse as a function of permeability due to Reynolds number dependency on flow conditions within the elements that can be laminar, transitional, or turbulent even though flow exterior to the forms is fully turbulent. For the mesh forms, the greatest effect on drag occurs with the addition of the first internal form with subsequent additions showing very little additional effect.

  14. Controlling Active Liquid Crystal Droplets with Temperature and Surfactant Concentration

    Science.gov (United States)

    Shechter, Jake; Milas, Peker; Ross, Jennifer

    Active matter is the study of driven many-body systems that span length scales from flocking birds to molecular motors. A previously described self-propelled particle system was made from liquid crystal (LC) droplets in water with high surfactant concentration to move particles via asymmetric surface instabilities. Using a similar system, we investigate the driving activity as a function of SDS surfactant concentration and temperature. We then use an optical tweezer to trap and locally heat the droplets to cause hydrodynamic flow and coupling between multiple droplets. This system will be the basis for a triggerable assembly system to build and couple LC droplets. DOD AROMURI 67455-CH-MUR.

  15. Production of a biological surfactant

    Directory of Open Access Journals (Sweden)

    N. Gladys Rosero

    2002-01-01

    Full Text Available This paper summarizes the scale up work performed at the Colombian Petroleum Institute on a process to produce at pilot plant level a biosurfactant of the rhamnolipid type. By examination of both the activation conditions of the microorganism and design aspects of the broth, a stable condition was achieved which consistently triggers the production mechanisms and thus it was obtained a significant increment in biosurfactant productivity. The biological surfactant exhibited high efficiency in applications such as hydrocarbon biodegradation in saline environments, corrosion inhibition, and crude oil recovery from storage tank bottom sludges.

  16. NMR study of the dynamics of cationic gemini surfactant 14-2-14 in mixed solutions with conventional surfactants.

    Science.gov (United States)

    Jiang, Yan; Lu, Xing-Yu; Chen, Hong; Mao, Shi-Zhen; Liu, Mai-Li; Luo, Ping-Ya; Du, You-Ru

    2009-06-18

    Three kinds of conventional surfactants, namely, two nonionic surfactants [polyethylene glycol (23) lauryl ether (Brij-35) and Triton X-100 (TX-100)], one cationic surfactant [n-tetradecyltrimethyl ammonium bromide (TTAB)], and an anionic surfactant [sodium n-dodecyl sulfate (SDS)}, were mixed into the quaternary ammonium gemini surfactant [C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(2).2Br(-) (14-2-14) in aqueous solution. The exchange rate constants between 14-2-14 molecules in the mixed micelles and those in the bulk solution were detected using two nuclear magnetic resonance (NMR) methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). The results obtained from these two methods were consistent. Both showed that mixing a nonionic conventional surfactant, either Brij-35 or TX-100, enhanced the exchange process between the 14-2-14 molecules in the mixed micelles and those in the bulk solution. In contrast, the anionic surfactant SDS and the cationic surfactant TTAB slowed the process slightly.

  17. 2D of hexagonal plasmonic necklaces for enhanced second harmonic generation

    DEFF Research Database (Denmark)

    Gómez-Tornero, Alejandro; Tserkezis, Christos; Mateos, Luis

    2017-01-01

    Hexagonal plasmonic necklaces of silver nanoparticles organized in 2D superlattices on functional ferroelectric templates are fabricated in large-scale spatial regions by using a surfactant-free photo-deposition process. The plasmonic necklaces support broad radiative plasmonic resonances allowing...

  18. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    Science.gov (United States)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  19. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity

    Science.gov (United States)

    Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun

    2018-06-01

    In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.

  20. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification

  1. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    P. Sanchez

    2001-01-01

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M and O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M and O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M and O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M and O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses

  2. A review of porosity-generating mechanisms in crustal shear zones

    Science.gov (United States)

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.

    2009-04-01

    weathering (e.g., Holdren & Berner, 1979, Berner & Holdren, 1979). b) Fluids contribute to replacement porosity by acting as agents providing chemical components for replacement reactions (e.g. cation exchange in feldspars). Porosity results from changes in molar volume between reactants and products and dissolution (Walker et al., 1995, Putnis, 2002, Putnis et al., 2007). Porosity generated this way is restricted to individual mineral grains, however, these may make up significant proportions of a rock. Where a fluid is involved in metamorphic reactions volume changes arise (Hacker et al., 1997). During devolatilisation reactions these are negative; porosity is generated directly as the reaction progresses (Rumble et al., 1982, Oliver et al., 1990, Rumble 1994). During rehydration or recarbonation the volume changes are positive, which creates stresses on the grain scale which potentially cause fracturing of individual grains (Jamtveit et al., 2007). A mechanical process generating porosity is creep cavitation, which is associated with viscous grain boundary sliding. Cavities form at stress concentrations in crystals and along their boundaries as well as at triple junctions in grain aggregates essentially by diffusion, which is supported by the presence of a fluid (Dyson et al., 1976, Kassner & Hayes, 2003, Rybacki et al., 2008, Fusseis et al., in review). c) Where rocks are subjected to temperature changes (e.g., during burial, contact metamorphism or exhumation) individual minerals expand or contract heterogeneously (e.g., Fei, 1995). Anisotropic thermal expansion creates stresses on the grain scale resulting in cracks, which form porosity without the evolvement of a fluid (e.g., Sprunt & Brace, 1974, Kranz, 1983). Despite these mechanisms have been described in the literature, they were rarely discussed in the context of their potential to affect permeability (with the exception of hydraulic fracturing). However, all of them commonly occur in crustal shear zones. It

  3. Pulmonary clearance of {sup 99m}Tc-DTPA in experimental surfactant dysfunction treated with surfactant installation

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, K.; John, J.; Lachmann, B.; Robertson, B.; Wollmer, P.

    1997-02-01

    Background: Breakdown of the alveolo-capillary barrier is a characteristic feature of respiratory distress syndrome. Restoration of alveolo-capillary barrier function may be an important aspect of surfactant replacement therapy. We examined the effect of surfactant installation on alveolo-capillary barrier function in an experimental model of surfactant dysfunction by measuring pulmonary clearance of {sup 99m}Tc-DTPA. Methods: Nineteen rabbits were tracheotomized and mechanically ventilated. Surfactant dysfunction was induced by administration of a synthetic detergent in aerosol form. Detergent was given to 13 rabbits; seven rabbits were then treated with installation of natural surfactant, whereas six rabbits received saline. Six rabbits were used as untreated controls. An aerosol of {sup 99m}Tc-DTPA was administered to all animals and the pulmonary clearance was measured with a gamma camera. Results: {sup 99m}Tc-DTPA cleared from the lungs with a half-life of 71{+-}22 min in the control animals, 21.4{+-}7.4 min in the surfactant-treated animals and 5.8{+-}1.5 min in the saline-treated animals. The difference in half-life between groups was highly significant (P<0.001). There was no change in arterial oxygenation or compliance in controls or in animals treated with saline. In animals treated with surfactant, a small transient reduction in arterial oxygen tension and a more long-standing reduction in compliance were observed. Conclusion: Surfactant treatment thus significantly attenuated the effect of detergent treatment but did not restore alveolo-capillary transfer of {sup 99m}Tc-DTPA to normal. (AU) 26 refs.

  4. Surfactant protein A and surfactant protein D variation in pulmonary disease

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Husby, Steffen; Holmskov, Uffe

    2007-01-01

    Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding...... lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential...... in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic...

  5. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  6. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis

    2013-05-03

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh specific pore volumes [similar]11.4 cm3 g−1. The materials function well as amine impregnated supports for CO2 capture and as supercapacitor electrodes.

  7. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  8. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    Chitra, S.; Chandran, S.; Sasidhar, P.; Lal, K.B.; Amalraj, R.V.

    1991-01-01

    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  9. Liquid foam templating - A route to tailor-made polymer foams.

    Science.gov (United States)

    Andrieux, Sébastien; Quell, Aggeliki; Stubenrauch, Cosima; Drenckhan, Wiebke

    2018-06-01

    Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It

  10. Ta penetration into template-type porous low-k material during atomic layer deposition of TaN

    International Nuclear Information System (INIS)

    Furuya, Akira; Ohtsuka, Nobuyuki; Misawa, Kaori; Shimada, Miyoko; Ogawa, Shinichi

    2005-01-01

    Ta penetration into a planar template-type porous low-k film during atomic layer deposition of TaN has been investigated by evaluating relations between Ta penetration and number of deposition cycles, exposure time of Ta precursor per deposition cycle, substrate temperature, and porosity of the porous low-k. The precursors were pentakisdimethylaminotantalum [PDMAT:Ta(N(CH 3 ) 2 ) 5 ] and NH 3 . The porous low-k was a methylsiloxane (MSX) whose pore size in the maximum distribution and porosity of the porous low-k were 0-1.9 nm and 0%-47%. Depth profile of the Ta penetration was measured by transmission electron microscopy and energy dispersive x-ray spectroscopy. The amount of penetrated and the penetration depth depended on the porosity. It was found that the precursors penetrate into the MSX film dominantly by gas phase diffusion through pores connecting from the surface to the inside. Increased surface area of the MSX film due to the pores results in a depletion of precursor at the wafer edge, and that this depletion causes the penetration characteristics at the edge of wafer differ from those at the center of the wafer. Moreover, the thickness required for the pore sealing by additive liner deposition is discussed

  11. Estimation hydrophilic-lipophilic balance number of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta (Indonesia); Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com; Kusworo, Tutuk D.; Pramudono, Bambang, E-mail: Pramudono2004@yahoo.com [Chemical Engineering Department Diponegoro University (Indonesia); Dyartanti, Endah R. [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Enginering Departement Sebelas Maret University (Indonesia)

    2016-02-08

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  12. Synthesis of boron nitride nanotubes with SiC nanowire as template

    International Nuclear Information System (INIS)

    Zhong, B.; Song, L.; Huang, X.X.; Wen, G.W.; Xia, L.

    2011-01-01

    Highlights: → Boron nitride nanotubes (BNNTs) have been fabricated using SiC nanowires as template. → SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. → A template self-sacrificing mechanism is responsible for the formation of BNNTs. -- Abstract: A novel template method for the preparation of boron nitride nanotubes (BNNTs) using SiC nanowire as template and ammonia borane as precursor is reported. We find out that the SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. The as-prepared products are well characterized by means of complementary analytical techniques. A possible formation mechanism is disclosed. The method developed here paves the way for large scale production of BNNTs.

  13. Degradation of surfactants by sono-irradiation

    International Nuclear Information System (INIS)

    Ashokkumar, M.; Grieser, F.; Vinodgopal, K.

    2000-01-01

    Full text: The ultrasound induced decomposition of a commercially available polydisperse nonylphenol ethoxylate surfactant (Teric GN9) has been investigated. Nearly 90% mineralization and/or degradation into volatile products of the surfactant is achieved after sonication for 24 hours. Ultrasound has been found to be a useful tool to achieve a number of chemical processes. Linear and branched alkyl benzene sulfonates and alkyl nonylphenol ethoxylates are widely used surfactants which accumulated in the environment and contribute to a well-recognised pollution problem. We have investigated the use of ultrasound in the degradation of both types of surfactants with the aim of understanding the mechanism of degradation in order to optimise the decomposition process. In this presentation, we report on the sonochemical degradation of Teric GN9- polydisperse, a nonylphenol ethoxylate with an average of 9 ethylene oxide units. The ultrasound unit used for the degradation studies of the surfactant solutions was an Allied Signal (ELAC Nautik) RF generator and transducer with a plate diameter of 54.5 mm operated at 363 kHz in continuous wave mode at an intensity of 2 W/cm 2 . Ultrasound induced cavitation events generate primary radicals inside gas/vapour filled bubbles. Due to the extreme conditions (T ∼ 5000 K; P ∼ 100 atm) generated within the collapsing bubble, H and OH radicals are produced by the homolysis of water molecules, if water is the medium of sonication. These primary radicals attack the surfactant molecules adsorbed at the bubble/water interface. The initial rate of reaction of the surfactant was found to be dependent on the monomer concentration in solution below and above the critical micelle concentration of the surfactants. This result strongly suggests that the initial radical attack on the surfactants occurs at the cavitation bubble/solution interface, followed by oxidative decomposition and pyrolysis of volatile fragments of the surfactant within

  14. SALTSTONE VARIABILITY STUDY - MEASUREMENT OF POROSITY

    International Nuclear Information System (INIS)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T; Russell Eibling, R; Ray Schumacher, R

    2007-01-01

    One of the goals of the Saltstone Variability Study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. One of the key performance properties is porosity which is a measure of the volume percent of a cured grout that is occupied by salt solution (for the saturated case). This report presents (1) the results of efforts to develop a method for the measurement of porosity of grout samples and (2) initial results of porosity values for samples that have been previously produced as part of the Saltstone Variability Study. A cost effective measurement method for porosity was developed that provides reproducible results, is relatively fast (30 to 60 minutes per sample) and uses a Mettler Toledo HR83 Moisture Analyzer that is already operational and routinely calibrated at Aiken County Technology Laboratory. The method involves the heating of the sample at 105 C until no further mass loss is observed. This mass loss value, which is due to water evaporation, is then used to calculate the volume percent porosity of the mix. The results of mass loss for mixes at 105 C were equivalent to the results obtained using thermal gravimetric analysis. The method was validated by comparing measurements of mass loss at 105 C for cured portland cement in water mixes to values presented in the literature for this system. A stereopycnometer from Quantachrome Instruments was selected to measure the cured grout bulk densities. Density is a property that is required to calculate the porosities. A stereopycnometer was already operational at Aiken County Technology Laboratory, has been calibrated using a solid stainless steel sphere of known volume, is cost effective and fast (∼15 minutes per sample). Cured grout densities are important in their own right because they can be used to project the volume of waste form produced from a given amount of salt feed of known composition. For mixes

  15. Report Template

    DEFF Research Database (Denmark)

    Bjørn, Anders; Laurent, Alexis; Owsianiak, Mikołaj

    2018-01-01

    To ensure consistent reporting of life cycle assessment (LCA), we provide a report template. The report includes elements of an LCA study as recommended but the ILCD Handbook. Illustrative case study reported according to this template is presented in Chap. 39 ....

  16. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  17. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  18. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.; Montemagno, C.D.; Lewis, B.

    1991-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which 21 surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site

  19. The chiral structure of porous chitin within the wing-scales of Callophrys rubi.

    Science.gov (United States)

    Schröder-Turk, G E; Wickham, S; Averdunk, H; Brink, F; Fitz Gerald, J D; Poladian, L; Large, M C J; Hyde, S T

    2011-05-01

    The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction of a section of this material reveals that the predominantly chitin material is assembled in the wing scale to form a structure whose geometry bears a remarkable correspondence to the srs net, well-known in solid state chemistry and soft materials science. The porous solid is bounded to an excellent approximation by a parallel surface to the Gyroid, a three-periodic minimal surface with cubic crystallographic symmetry I4₁32, as foreshadowed by Stavenga and Michielson. The scale of the structure is commensurate with the wavelength of visible light, with an edge of the conventional cubic unit cell of the parallel-Gyroid of approximately 310 nm. The genesis of this structure is discussed, and we suggest it affords a remarkable example of templating of a chiral material via soft matter, analogous to the formation of mesoporous silica via surfactant assemblies in solution. In the butterfly, the templating is achieved by the lipid-protein membranes within the smooth endoplasmic reticulum (while it remains in the chrysalis), that likely form cubic membranes, folded according to the form of the Gyroid. The subsequent formation of the chiral hard chitin framework is suggested to be driven by the gradual polymerisation of the chitin precursors, whose inherent chiral assembly in solution (during growth) promotes the formation of a single enantiomer. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Preparation of porous diatomite-templated carbons with large adsorption capacity and mesoporous zeolite K-H as a byproduct.

    Science.gov (United States)

    Liu, Dong; Yuan, Weiwei; Deng, Liangliang; Yu, Wenbin; Sun, Hongjuan; Yuan, Peng

    2014-06-15

    In this study, KOH activation was performed to enhance the porosity of the diatomite-templated carbon and to increase its adsorption capacity of methylene blue (MB). In addition to serving as the activation agent, KOH was also used as the etchant to remove the diatomite templates. Zeolite K-H was synthesized as a byproduct via utilization of the resultant silicon- and potassium-containing solutions created from the KOH etching of the diatomite templates. The obtained diatomite-based carbons were composed of macroporous carbon pillars and tubes, which were derived from the replication of the diatomite templates and were well preserved after KOH activation. The abundant micropores in the walls of the carbon pillars and tubes were derived from the break and reconfiguration of carbon films during both the removal of the diatomite templates and KOH activation. Compared with the original diatomite-templated carbons and CO2-activated carbons, the KOH-activated carbons had much higher specific surface areas (988 m(2)/g) and pore volumes (0.675 cm(3)/g). Moreover, the KOH-activated carbons possessed larger MB adsorption capacity (the maximum Langmuir adsorption capacity: 645.2 mg/g) than those of the original carbons and CO2-activated carbons. These results showed that KOH activation was a high effective activation method. The zeolite K-H byproduct was obtained by utilizing the silicon- and potassium-containing solution as the silicon and potassium sources. The zeolite exhibited a stick-like morphology and possessed nanosized particles with a mesopore-predominant porous structure which was observed by TEM for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Replication of polypyrrole with photonic structures from butterfly wings as biosensor

    International Nuclear Information System (INIS)

    Tang Jie; Zhu Shenmin; Chen Zhixin; Feng Chuanliang; Shen Yanjun; Yao Fan; Zhang Di; Moon, Won-Jin; Song, Deok-Min

    2012-01-01

    Highlights: ► Polypyrrole (PPy) with photonic structures from butterfly wings was synthesized based on a two-step templating and in situ polymerization process. ► The hierarchical structures down to nanometer level were kept in the resultant PPy replicas. ► The PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. ► The PPy replicas showed a much higher biological activity compared with common PPy powders as a biosensor. - Abstract: Polypyrrole (PPy) with photonic crystal structures were synthesized from Morpho butterfly wings using a two-step templating process. In the first step photonic crystal SiO 2 butterfly wings were synthesized from Morpho butterfly wings and in the second step the SiO 2 butterfly wings were used as templates for the replication of PPy butterfly wings using an in situ polymerization method. The SiO 2 templates were then removed from the PPy butterfly wings using a HF solution. The hierarchical structures down to the nanometer level, especially the photonic crystal structures, were retained in the final PPy replicas, as evidenced directly by field-emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM). The optical properties of the resultant PPy replicas were investigated using reflectance spectroscopy and the PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. The preliminary biosensing application was investigated and it was found that the PPy replicas showed a much higher biological activity compared with PPy powders through their response to dopamine (DA), probably due to the hierarchical structures as well as controlled porosity inherited from Morpho butterfly wings. It is expected that our strategy will open up new avenues for the synthesis of functional polymers with photonic crystal structures, which may form applications as biosensors.

  2. Replication of polypyrrole with photonic structures from butterfly wings as biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Tang Jie [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhu Shenmin, E-mail: smzhu@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Zhixin [Faculty of Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Feng Chuanliang; Shen Yanjun; Yao Fan [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Moon, Won-Jin; Song, Deok-Min [Gwangju Center, Korea Basic Science Institute, Yongbong-dong, Buk-Gu, Gwang ju 500-757 (Korea, Republic of)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Polypyrrole (PPy) with photonic structures from butterfly wings was synthesized based on a two-step templating and in situ polymerization process. Black-Right-Pointing-Pointer The hierarchical structures down to nanometer level were kept in the resultant PPy replicas. Black-Right-Pointing-Pointer The PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. Black-Right-Pointing-Pointer The PPy replicas showed a much higher biological activity compared with common PPy powders as a biosensor. - Abstract: Polypyrrole (PPy) with photonic crystal structures were synthesized from Morpho butterfly wings using a two-step templating process. In the first step photonic crystal SiO{sub 2} butterfly wings were synthesized from Morpho butterfly wings and in the second step the SiO{sub 2} butterfly wings were used as templates for the replication of PPy butterfly wings using an in situ polymerization method. The SiO{sub 2} templates were then removed from the PPy butterfly wings using a HF solution. The hierarchical structures down to the nanometer level, especially the photonic crystal structures, were retained in the final PPy replicas, as evidenced directly by field-emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM). The optical properties of the resultant PPy replicas were investigated using reflectance spectroscopy and the PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. The preliminary biosensing application was investigated and it was found that the PPy replicas showed a much higher biological activity compared with PPy powders through their response to dopamine (DA), probably due to the hierarchical structures as well as controlled porosity inherited from Morpho butterfly wings. It is expected that our strategy will open up new avenues for the synthesis of functional polymers with photonic

  3. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  4. Enhanced removal of radioactive particles by fluorocarbon surfactant solutions

    International Nuclear Information System (INIS)

    Kaiser, R.; Harling, O.K.

    1993-08-01

    The proposed research addressed the application of ESI's particle removal process to the non-destructive decontamination of nuclear equipment. The cleaning medium used in this process is a solution of a high molecular weight fluorocarbon surfactant in an inert perfluorinated liquid which results in enhanced particle removal. The perfluorinated liquids of interest, which are recycled in the process, are nontoxic, nonflammable, and environmentally compatible, and do not present a hazard to the ozone layer. The information obtained in the Phase 1 program indicated that the proposed ESI process is technically effective and economically attractive. The fluorocarbon surfactant solutions used as working media in the ESI process survived exposure of up to 10 Mrad doses of gamma rays, and are considered sufficiently radiation resistant for the proposed process. Ultrasonic cleaning in perfluorinated surfactant solutions was found to be an effective method of removing radioactive iron (Fe 59) oxide particles from contaminated test pieces. Radioactive particles suspended in the process liquids could be quantitatively removed by filtration through a 0.1 um membrane filter. Projected economics indicate a pre-tax pay back time of 1 month for a commercial scale system

  5. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wei, Yang; Zhan, Xinyu; Mao, Like; Gao, Yanxiang

    2018-08-30

    In this study, zein, propylene glycol alginate (PGA) and surfactant ternary complexes were fabricated by antisolvent co-precipitation method. Two types of surfactants (rhamnolipid and lecithin) were applied to generate zein-PGA-rhamnolipid (Z-P-R) and zein-PGA-lecithin (Z-P-L) ternary complexes, respectively. Results showed that the surfactant types significantly affected the properties of ternary complexes. The formation of ternary complexes was mainly due to the non-covalent interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among zein, PGA and surfactants. Moreover, the thermal stability of ternary complexes was enhanced with increasing the levels of both surfactants. Notably, ternary complex dispersions exhibited better stability against pH from 2 to 8. Furthermore, a compact network structure was observed in Z-P-R ternary complex, while Z-P-L ternary complex remained the spherical structure. These findings would provide new insights into the development of novel delivery system and expand the options, when zein-based complexes were utilized under different environment conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. III - Template Metaprogramming for massively parallel scientific computing - Templates for Iteration; Thread-level Parallelism

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  7. Biomimicry of surfactant protein C.

    Science.gov (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  8. Is Less Invasive Surfactant Administration Necessary or "Only" Helpful or Just a Fashion?

    Science.gov (United States)

    Lista, Gianluca; Bresesti, Ilia; Fabbri, Laura

    2018-05-01

    In the 1990s, the most relevant pillars in the treatment of neonatal respiratory distress syndrome (RDS) have been improvements in ventilation strategies, the introduction of exogenous surfactant replacement therapy, and the use of antenatal steroids. Lately, in addition to the standard INSURE (INtubation-SURfactant administration-Extubation) method to administer surfactant, a new technique has been gaining increasing popularity. It is the so-called less invasive surfactant administration (LISA) method, which has shown promising results in preventing bronchopulmonary dysplasia development and in reducing mortality in preterm neonates. The rationale behind this technique is to avoid positive pressure ventilation and the endotracheal tube, being surfactant delivered through a thin catheter while the neonate is maintained on continuous positive airway pressure. Given the paucity of large-scale randomized trials on LISA method to prove its effects on short- and long-term outcomes, some questions still remain unanswered. Then, uncertainty regarding the feasibility of this maneuver needs to be better clarified before gaining wide acceptance in routine clinical practice. In our report, we aim at hypothesizing the main mechanisms behind the efficacy of LISA, considering it as a single maneuver in a comprehensive approach for RDS management in the delivery room. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  10. Porosity and Health: Perspective of Traditional Persian Medicine

    Science.gov (United States)

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-01-01

    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27840513

  11. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  12. Welding template

    International Nuclear Information System (INIS)

    Ben Venue, R.J. of.

    1976-01-01

    A welding template is described which is used to weld strip material into a cellular grid structure for the accommodation of fuel elements in a nuclear reactor. On a base plate the template carries a multitude of cylindrical pins whose upper half is narrower than the bottom half and only one of which is attached to the base plate. The others are arrested in a hexagonal array by oblong webs clamped together by chuck jaws which can be secured by means of screws. The parts are ground very accurately. The template according to the invention is very easy to make. (UWI) [de

  13. Small angle neutron scattering study of doxorubicin–surfactant ...

    Indian Academy of Sciences (India)

    The binding affinity of doxorubicin within the micelle carrier is enhanced through complex formation of drug and anionic surfactant, aerosol OT (AOT). Electrostatic binding of doxorubicin with negatively charged surfactants leads to the formation of hydrophobic drug–surfactant complexes. Surfactant-induced partitioning of ...

  14. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  15. Sol-Gel processing of silica nanoparticles and their applications.

    Science.gov (United States)

    Singh, Lok P; Bhattacharyya, Sriman K; Kumar, Rahul; Mishra, Geetika; Sharma, Usha; Singh, Garima; Ahalawat, Saurabh

    2014-11-06

    Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Displacement laser interferometry with sub-nanometer uncertainty

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.

    2004-01-01

    Development in industry is asking for improved resolution and higher accuracy in mechanical measurement. Together with miniaturization the demand for sub nanometer uncertainty on dimensional metrology is increasing rapidly. Displacement laser interferometers are used widely as precision displacement

  17. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  18. Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters

    Science.gov (United States)

    González, Susana; Petrovic, Mira; Barceló, Damiá

    2008-07-01

    SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.

  19. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  20. A polyacrylonitrile copolymer-silica template for three-dimensional hierarchical porous carbon as a Pt catalyst support for the oxygen reduction reaction.

    Science.gov (United States)

    Liu, Minmin; Li, Jian; Cai, Chao; Zhou, Ziwei; Ling, Yun; Liu, Rui

    2017-08-01

    Herein, we report a novel route to construct a hierarchical three-dimensional porous carbon (3DC) through a copolymer-silica assembly. In the synthesis, silica acts as a hard template and leads to the formation of an interconnected 3D macropore, whereas styrene-co-acrylonitrile polymer has been used as both a carbon source and a soft template for micro- and meso-pores. The obtained 3DC materials possess a large surface area (∼550.5 m 2 g -1 ), which facilitates high dispersion of Pt nanoparticles on the carbon support. The 3DC-supported Pt electrocatalyst shows excellent performance in the oxygen reduction reaction (ORR). The easy processing ability along with the characteristics of hierarchical porosity offers a new strategy for the preparation of carbon nanomaterials for energy application.

  1. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  2. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  3. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    International Nuclear Information System (INIS)

    Walz, Dieter R

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor

  4. Programmable imprint lithography template

    Science.gov (United States)

    Cardinale, Gregory F [Oakland, CA; Talin, Albert A [Livermore, CA

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  5. Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging studies of butterfly scale replicas

    International Nuclear Information System (INIS)

    Silver, J; Withnall, R; Ireland, T G; Fern, G R; Zhang, S

    2008-01-01

    Nanocasts comprising of red-light-emitting cubic Y 2 O 3 :Eu phosphors were made from butterfly wing scale bio-templates. We report herein the first cathodoluminescent images made from such nanocasts and show that valuable insights into the nature of the internal structure of the casts can be gained by the use of this technique. The casts faithfully reproduced the fine sub-micrometre size detail of the scales, as was made evident by both FESEM and cathodoluminescent images that were collected from the same sample areas using a hyphenated FESEM-CL instrument. There was excellent agreement between the FESEM and cathodoluminescent images, the image quality of the latter indicating that the Eu 3+ activator ions were evenly dispersed in the Y 2 O 3 :Eu phosphor on a sub-micrometre scale. The casts were made by infilling the natural moulds with a Y 2 O 3 :Eu precursor solution that was subsequently dried and fired to convert it into the phosphor material. This method provides a simple, low cost route for fabricating nanostructures having feature dimensions as small as 20 nm in size, and it has the potential to be applied to other metal oxide systems for producing nano-and micro-components for electronic, magnetic or photonic integrated systems

  6. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the

  7. Mechanistic Effects of Porosity on Structural Composite Materials

    Science.gov (United States)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  8. DNA-Templated Fabrication of Arbitrary-Structured Porous Carbon Materials

    Science.gov (United States)

    2016-07-11

    of his research contributions, the PI was awarded a Young Investigator Award by the European Materials Research Society 2013 Spring Meeting...and 1 in revision) acknowledging the support of the AFOSR YIP grant. In recognition of his research contributions, the PI was awarded a Young ...nanostructure can modulate the rate of chemical vapor deposition (CVD) of SiO2 and TiO2 with nanometer scale spatial resolution. 1) SiO2 coating 2

  9. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  10. Characterization of geo-polymer porosity: temporal evolution and study of the confined water

    International Nuclear Information System (INIS)

    Benavent, Virginie

    2016-01-01

    In this study, we have investigated the porous network of geo-polymers. The first step consisted in characterizing the structure of the porous network by the means of both intrusive experimental techniques (water porosimetry, gas sorption and mercury intrusion) and non-intrusive techniques (small-angle X-ray and neutron scattering). By the same time, the evolutions of the porous structure as well as the mechanical properties were followed over time. The second step was to determine the structure, the thermodynamics and the dynamics of water confined in the porosity by differential scanning calorimetry, quasi-elastic neutron scattering and migration tests. Geo-polymer pore structure is a complex multi-scale porosity, a meso- and macroporous network, essentially open and connected. It consists in a vermicular meso-porous network which connects the macro-pores. The meso-pore characteristic size depends on the formulation of the geo-polymer paste and is ranged between about 4 and 10 nm. Geo-polymer have a total pore volume comprised between 40 and 50 %, the meso-porous volume represents between 7 and 15 % of the material global volume. The majority of the pore volume is then attributed to macro-pores. a slight closure of porosity was observed with time and was attributed to a dissolution-precipitation mechanism occurring at pore wall interfaces. The mechanical properties reach a maximum within 10 days, and then are stable over time when the samples were kept from drying and carbonation and at the temperature of 20 C. Besides, three kinds of water were highlighted inside the porosity: (i) an interfacial water linked at the pore surfaces, (ii) free water inside the meso-pores and (iii) free water inside macro-pores. at local time scale, the mobility of water was found close to the one of free water, and at the macroscopic scale, a decrease in diffusion coefficient of one order of magnitude was observed, together with an effect of meso-pore size. (author) [fr

  11. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    Science.gov (United States)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  12. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    Science.gov (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  13. Surfactants tailored by the class Actinobacteria

    Science.gov (United States)

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  14. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  15. Alveolar Thin Layer Flows and Surfactant Dynamics

    Science.gov (United States)

    Roumie, Ahmad; Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    Pulmonary surfactants play a vital role in everyday respiration. They regulate surface tension in the lungs by diffusing through the hypophase, a liquid layer that lines the interior surface of the alveoli, and adsorbing to the existing air-fluid interface. This decreases the equilibrium surface tension value by as much as a factor of 3, minimizing breathing effort and preventing lung collapse at the end of exhalation. Given that the hypophase thickness h lies within the range 0.1 μm < h <0.5 μm , and that the average alveolar radius R is 100 μm , for some purposes the hypophase may usefully be modeled as a fluid layer on a flat sheet representing the alveolar wall. Moreover, because of the large aspect ratio, the lubrication approximation can be applied. The aim of the present work is to study the interaction between the straining of the alveolar wall and the fluid flow in the hypophase. The analysis is governed by the relative magnitudes of the time scales of surfactant diffusion, adsorption, desorption, viscous dissipation and sheet straining. Cases of particular interest include non-uniform surfactant concentration at the interface, leading to Marangoni flows and a non-uniform hypophase thickness profile. The analytical formulation and numerical simulations are presented. This work is motivated by a need to understand alveolar deformation during breathing, and to do so in a way that derives from improved understanding of the fluid mechanics of the problem.

  16. Preparation and crystallization of hollow α-Fe{sub 2}O{sub 3} microspheres following the gas-bubble template method

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); León Félix, L. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasilia (Brazil); Espinoza Suarez, S.M.; Bustamante Dominguez, A.G. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Mitrelias, T.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Sao Cristóvao, Sergipe (Brazil); Albino Aguiar, J. [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom)

    2016-02-01

    In this work we report the formation of hollow α-Fe{sub 2}O{sub 3} (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO{sub 3}){sub 3}.9H{sub 2}O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  17. In vitro surfactant structure-toxicity relationships: implications for surfactant use in sexually transmitted infection prophylaxis and contraception.

    Directory of Open Access Journals (Sweden)

    Ângela S Inácio

    Full Text Available BACKGROUND: The need for woman-controlled, cheap, safe, effective, easy-to-use and easy-to-store topical applications for prophylaxis against sexually transmitted infections (STIs makes surfactant-containing formulations an interesting option that requires a more fundamental knowledge concerning surfactant toxicology and structure-activity relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report in vitro effects of surfactant concentration, exposure time and structure on the viability of mammalian cell types typically encountered in the vagina, namely, fully polarized and confluent epithelial cells, confluent but non-polarized epithelial-like cells, dendritic cells, and human sperm. Representatives of the different families of commercially available surfactants--nonionic (Triton X-100 and monolaurin, zwitterionic (DDPS, anionic (SDS, and cationic (C(nTAB (n = 10 to 16, C(12PB, and C(12BZK--were examined. Triton X-100, monolaurin, DDPS and SDS were toxic to all cell types at concentrations around their critical micelle concentration (CMC suggesting a non-selective mode of action involving cell membrane destabilization and/or destruction. All cationic surfactants were toxic at concentrations far below their CMC and showed significant differences in their toxicity toward polarized as compared with non-polarized cells. Their toxicity was also dependent on the chemical nature of the polar head group. Our results suggest an intracellular locus of action for cationic surfactants and show that their structure-activity relationships could be profitably exploited for STI prophylaxis in vaginal gel formulations. The therapeutic indices comparing polarized epithelial cell toxicity to sperm toxicity for all surfactants examined, except C(12PB and C(12BZK, does not justify their use as contraceptive agents. C(12PB and C(12BZK are shown to have a narrow therapeutic index recommending caution in their use in contraceptive formulations. CONCLUSIONS

  18. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  19. Diamond network: template-free fabrication and properties.

    Science.gov (United States)

    Zhuang, Hao; Yang, Nianjun; Fu, Haiyuan; Zhang, Lei; Wang, Chun; Huang, Nan; Jiang, Xin

    2015-03-11

    A porous diamond network with three-dimensionally interconnected pores is of technical importance but difficult to be produced. In this contribution, we demonstrate a simple, controllable, and "template-free" approach to fabricate diamond networks. It combines the deposition of diamond/β-SiC nanocomposite film with a wet-chemical selective etching of the β-SiC phase. The porosity of these networks was tuned from 15 to 68%, determined by the ratio of the β-SiC phase in the composite films. The electrochemical working potential and the reactivity of redox probes on the diamond networks are similar to those of a flat nanocrystalline diamond film, while their surface areas are hundreds of times larger than that of a flat diamond film (e.g., 490-fold enhancement for a 3 μm thick diamond network). The marriage of the unprecedented physical/chemical features of diamond with inherent advantages of the porous structure makes the diamond network a potential candidate for various applications such as water treatment, energy conversion (batteries or fuel cells), and storage (capacitors), as well as electrochemical and biochemical sensing.

  20. The Molecular Era of Surfactant Biology

    OpenAIRE

    Whitsett, Jeffrey A.

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  1. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  2. Nanoparticle-enabled delivery of surfactants in porous media.

    Science.gov (United States)

    Nourafkan, Ehsan; Hu, Zhongliang; Wen, Dongsheng

    2018-06-01

    The adsorption of surfactants on the reservoir rocks surface is a serious issue in many energy and environment related areas. Learning from the concept of drug delivery in the nano-medicine field, this work proposes and validates the concept of using nanoparticles to deliver a mixture of surfactants into a porous medium. TiO 2 nanoparticles (NPs) are used as carriers for a blend of surfactants mixtures including anionic alkyl aryl sulfonic acid (AAS) and nonionic alcohol ethoxylated (EA) at the optimum salinity and composition conditions. The transport of NPs through a core sample of crushed sandstone grains and the adsorption of surfactants are evaluated. By using TiO 2 NPs, the adsorption of surfactant molecules can be significantly reduced, i.e. half of the initial adsorption value. The level of surfactant adsorption reduction is related to the NPs transport capability through the porous medium. An application study shows that comparing to surfactant flooding alone, the total oil recovery can be increased by 7.81% of original oil in place (OOIP) by using nanoparticle bonded surfactants. Such work shows the promise of NP as an effective surfactant carrier for sandstone reservoirs, which could have many potential applications in enhanced oil recovery (EOR) and environmental remediation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Comparison of rSP-C surfactant with natural and synthetic surfactants after late treatment in a rat model of the acute respiratory distress syndrome

    Science.gov (United States)

    Häfner, Dietrich; Germann, Paul-Georg; Hauschke, Dieter

    1998-01-01

    In a previous paper we showed that an SP-C containing surfactant preparation has similar activity as bovine-derived surfactants in a rat lung lavage model of the adult respiratory distress syndrome. In this study surfactant was given ten minutes after the last lavage (early treatment). In the present investigation we were interested how different surfactant preparations behave when they are administered 1 h after the last lavage (late treatment). Four protein containing surfactants (rSP-C surfactant, bLES, Infasurf and Survanta) were compared with three protein-free surfactants (ALEC, Exosurf and the phospholipid (PL) mixture of the rSP-C surfactant termed PL surfactant) with respect to their ability to improve gas exchange in this more stringent model when surfactant is given one hour after the last lavage. For better comparison of the surfactants the doses were related to phospholipids. The surfactants were given at doses of 25, 50 and 100 mg kg−1 body weight. The surfactants were compared to an untreated control group that was only ventilated for the whole experimental period. Tracheotomized rats (8–12 per dose and surfactant) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min−1, inspiration expiration ratio of 1 : 2, peak inspiratory pressure of 28 cmH2O at positive endexpiratory pressure (PEEP) of 8 cmH2O. Animals were ventilated for one hour after the last lavage and thereafter the surfactants were intratracheally instilled. During the whole experimental period the ventilation was not changed. Partial arterial oxygen pressures (PaO2, mmHg) at 30 min and 120 min after treatment were used for statistical comparison. All protein containing surfactants caused a dose-dependent increase of the reduced PaO2 values at 30 min after treatment. The protein-free surfactants showed only weak dose-dependent increase in PaO2 values at this time. This difference between the

  4. Surfactant modified clays’ consistency limits and contact angles

    Directory of Open Access Journals (Sweden)

    S Akbulut

    2012-07-01

    Full Text Available This study was aimed at preparing a surfactant modified clay (SMC and researching the effect of surfactants on clays' contact angles and consistency limits; clay was thus modified by surfactants formodifying their engineering properties. Seven surfactants (trimethylglycine, hydroxyethylcellulose  octyl phenol ethoxylate, linear alkylbenzene sulfonic acid, sodium lauryl ether sulfate, cetyl trimethylammonium chloride and quaternised ethoxylated fatty amine were used as surfactants in this study. The experimental results indicated that SMC consistency limits (liquid and plastic limits changedsignificantly compared to those of natural clay. Plasticity index and liquid limit (PI-LL values representing soil class approached the A-line when zwitterion, nonionic, and anionic surfactant percentageincreased. However, cationic SMC became transformed from CH (high plasticity clay to MH (high plasticity silt class soils, according to the unified soil classification system (USCS. Clay modifiedwith cationic and anionic surfactants gave higher and lower contact angles than natural clay, respectively.

  5. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    Science.gov (United States)

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  6. Ultralight metallic microlattices.

    Science.gov (United States)

    Schaedler, T A; Jacobsen, A J; Torrents, A; Sorensen, A E; Lian, J; Greer, J R; Valdevit, L; Carter, W B

    2011-11-18

    Ultralight (nickel plating, and subsequently etching away the template. The resulting metallic microlattices exhibit densities ρ ≥ 0.9 milligram per cubic centimeter, complete recovery after compression exceeding 50% strain, and energy absorption similar to elastomers. Young's modulus E scales with density as E ~ ρ(2), in contrast to the E ~ ρ(3) scaling observed for ultralight aerogels and carbon nanotube foams with stochastic architecture. We attribute these properties to structural hierarchy at the nanometer, micrometer, and millimeter scales.

  7. Effects of Surfactant on Geotechnical Characteristics of Silty Soil

    International Nuclear Information System (INIS)

    Rahman, Z.A.; Sahibin, A.R.; Lihan, T.; Idris, W.M.R.; Sakina, M.

    2013-01-01

    Surfactants are often used as a cleaning agent for restoration of oil-contaminated soil. However the effect of surfactant on the geotechnical properties of soil is not clearly understood. In this study, the effects of surfactant on silty soil were investigated for consistency index, compaction, permeability and shear strength. Sodium dodecyl sulfate (SDS) was used in this study to prepare the surfactant-treated soil. Our results showed that the soil with added surfactant exhibited a decrease in liquid and plastic limit values. Maximum dry densities increased and optimum moisture contents decreased as contents of added surfactant were increased. The presence of surfactant assists the soil to achieve maximum density at lower water content. The addition of surfactant decreased the permeability of soil from 6.29 x 10 -4 to 1.15 x 10 -4 ms -1 . The shear strength of soil with added surfactant was examined using the undrained unconsolidated triaxial tests. The results showed that the undrained shear strength, Cu was significantly affected, decreased from 319 kPa to 50 kPa for soil with 20 % of added surfactant. The results of this study showed that the presence of surfactant in soil can modify the mechanical behaviour of the soil. (author)

  8. Surfactant-enhanced control of track-etch pore morphology

    International Nuclear Information System (INIS)

    Apel', P.Yu.; Blonskaya, I.V.; Didyk, A.Yu.; Dmitriev, S.N.; Orelovich, O.L.; Samojlova, L.I.; Vutsadakis, V.A.; Root, D.

    2000-01-01

    The influence of surfactants on the process of chemical development of ion tracks in polymers is studied. Based on the experimental data, a mechanism of the surfactant effect on the track-etch pore morphology is proposed. In the beginning of etching the surfactant is adsorbed on the surface and creates a layer that is quasi-solid and partially protects the surface from the etching agent. However, some etchant molecules diffuse through the barrier and react with the polymer surface. This results in the formation of a small hole at the entrance to the ion track. After the hole has attained a few annometers in diameter, the surfactant molecules penetrate into the track and cover its walls. Further diffusion of the surfactant into the growing pore is hindered. The adsorbed surfactant layer is not permeable for large molecules. In contrast, small alkali molecules and water molecules diffuse into the track and provide the etching process enlarging the pore. At this stage the transport of the surfactant into the pore channel can proceed only due to the lateral diffusion in the adsorbed layer. The volume inside the pore is free of surfactant molecules and grows at a higher rate than pore entrance. After a more prolonged etching the bottle-like (or 'cigar-like') pore channels are formed. The bottle-like shape of the pore channels depends on the etching conditions such as alkali and surfactant concentration, temperature, and type of the surfactant. The use of surfactants enables one to produce track-etch membranes with improved flow rate characteristics compared with those having cylindrical pores with the same nominal pore diameters

  9. Open lung ventilation preserves the response to delayed surfactant treatment in surfactant-deficient newborn piglets

    NARCIS (Netherlands)

    van Veenendaal, Mariëtte B.; van Kaam, Anton H.; Haitsma, Jack J.; Lutter, René; Lachmann, Burkhard

    2006-01-01

    OBJECTIVE: Delayed surfactant treatment (>2 hrs after birth) is less effective than early treatment in conventionally ventilated preterm infants with respiratory distress syndrome. The objective of this study was to evaluate if this time-dependent efficacy of surfactant treatment is also present

  10. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  11. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  12. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    Science.gov (United States)

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  13. On the field determination of effective porosity

    International Nuclear Information System (INIS)

    Javandel, I.

    1989-03-01

    Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs

  14. The Biophysical Function of Pulmonary Surfactant

    OpenAIRE

    Rugonyi, Sandra; Biswas, Samares C.; Hall, Stephen B.

    2008-01-01

    Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a three-dimensional bulk phase....

  15. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    Science.gov (United States)

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  16. Micrometer and nanometer scale photopatterning of proteins on glass surfaces by photo-degradation of films formed from oligo(ethylene glycol) terminated silanes.

    Science.gov (United States)

    Tizazu, Getachew; el Zubir, Osama; Patole, Samson; McLaren, Anna; Vasilev, Cvetelin; Mothersole, David J; Adawi, Ali; Hunter, C Neil; Lidzey, David G; Lopez, Gabriel P; Leggett, Graham J

    2012-12-01

    Exposure of films formed by the adsorption of oligo(ethylene glycol) (OEG) functionalized trichlorosilanes on glass to UV light from a frequency-doubled argon ion laser (244 nm) causes photodegradation of the OEG chain. Although the rate of degradation is substantially slower than for monolayers of OEG terminated thiolates on gold, it is nevertheless possible to form micrometer-scale patterns by elective adsorption of streptavidin to exposed regions. A low density of aldehyde functional groups is produced, and this enables derivatization with nitrilotriacetic acid via an amine linker. Complexation with nickel enables the site-specific immobilization of histidine-tagged yellow and green fluorescent proteins. Nanometer-scale patterns may be fabricated using a Lloyd's mirror interferometer, with a sample and mirror set at right angles to each other. At low exposures, partial degradation of the OEG chains does not remove the protein-resistance of the surface, even though friction force microscopy reveals the formation of patterns. At an exposure of ca. 18 J cm(-2), the modified regions became adhesive to proteins in a narrow region ca. 30 nm (λ/8) wide. As the exposure is increased further the lines quickly broaden to ca. 90 nm. Adjustment of the angle between the sample and mirror enables the fabrication of lines of His-tagged green fluorescent protein at a period of 340 nm that could be resolved using a confocal microscope.

  17. Enhanced dispersion of boron nitride nanosheets in aqueous media by using bile acid-based surfactants

    Science.gov (United States)

    Chae, Ari; Park, Soo-Jin; Min, Byunggak; In, Insik

    2018-01-01

    Facile noncovalent surface functionalization of hydroxylated boron nitride nanosheet (BNNS-OH) was attempted through the sonication-assisted exfoliation of h-BN in aqueous media in the presence of bile acid-based surfactants such as sodium cholic acid (SC) or sodium deoxycholic acid (SDC), resulting in SC- or SDC-BNNS-OH dispersion with high up to 2 mg ml-1 and enhanced dispersion stability due to the increased negative zeta potential. While prepared SC-BNNS-OH revealed multi-layered BNNS structures, the large lateral sizes of hundreds nanometers and clear h-BN lattice structures are very promising for the preparation and application of water-processable BNNS-based nanomaterials. It is regarded that noncovalent functionalization of BNNS-OH based on σ-π interaction between with σ-rich bile acid-based amphiphiles and π-rich BNNS is very effective to formulate multi-functional BNNS-based nanomaterials or hybrids that can be utilized in various applications where both the pristine properties of BNNS and the extra functions are simultaneously required.

  18. Cloning nanocrystal morphology with soft templates

    Science.gov (United States)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  19. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  20. Role of Marangoni stress during breakup of surfactant-covered liquid threads: Reduced rates of thinning and microthread cascades

    Science.gov (United States)

    Kamat, Pritish M.; Wagoner, Brayden W.; Thete, Sumeet S.; Basaran, Osman A.

    2018-04-01

    Adsorption onto and lowering of surface tension σ of fluid interfaces by surfactants is exploited in drop formation (e.g., inkjet printing) where a thinning liquid thread (radius h ) connects an about-to-form drop to the liquid that remains hanging from the nozzle when the former falls from it. Surfactants can affect thread pinch-off in two ways: first, by lowering σ , they lower capillary pressure (σ /h ), and second, as surfactant concentration along the interface can be nonuniform, they cause the interface to be subjected to a surface tension gradient or Marangoni stress. Recent studies show that the location where the thread breaks is devoid of surfactant, and others assert that the influence of Marangoni stress on pinch-off is negligible. We demonstrate by simulations and experiments that surfactants play a major role in drop formation and that Marangoni stresses acting near but not at the pinch point give rise to reduced rates of thread thinning and formation of multiple microthreads that distinguish pinch-off of surfactant-covered threads from surfactant-free ones. Thinning at finite Reynolds and Peclet numbers, Re and Pe, is shown to exhibit intermediate scaling regimes that have heretofore only been observed during pinch-off of threads undergoing creeping flow (Re=0 ) while convection of surfactant is weak compared to its diffusion (Pe<1 ).

  1. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han

    2014-07-22

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  2. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han; Yang, Yongliang; Wonka, Peter

    2014-01-01

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  3. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  4. Zeolites with continuously tuneable porosity

    OpenAIRE

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Cejka, Jiří; Morris, Russell E

    2014-01-01

    Czech Science Foundation. Grant Number: P106/12/G015 Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneabl...

  5. Polyoxyethylene alkyl ether carboxylic acids: An overview of a neglected class of surfactants with multiresponsive properties.

    Science.gov (United States)

    Chiappisi, Leonardo

    2017-12-01

    In this work, an overview on aqueous solutions of polyoxyethylene alkyl ether carboxylic acids is given. Unique properties arise from the combination of the nonionic, temperature-responsive polyoxyethylene block with the weakly ionic, pH-responsive carboxylic acid termination in a single surfactant headgroup. Accordingly, this class of surfactant finds broad application across very different sectors. Despite their large use on an industrial and a technical scale, the literature lacks a systematic and detailed characterization of their physico-chemical properties which is provided herein. In addition, a comprehensive overview is given of their self-assembly and interfacial behavior, of their use as colloidal building blocks and for large-scale applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  7. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    TOUGHREACT coupled to ROCMECH (geomechanics simulator), and tested 1D and 2D small-scale problems. The numerical results show clear differences between the single and dual/multiple porosity systems. For example, the pressure in the fracture for the five-porosity model becomes higher than those for the single porosity system because the fracture bulk modulus is lower than the upscaled bulk modulus used in the single porosity. For elastoplasticity (the Mohr-Coulomb model), the pressure in the fracture can be supported by compaction when the fracture is in the plastic region. In a 2D case of the five-porosity system, we compare results of thermoporoelasticity with those of a conventional flow simulation using rock compressibility, and find significant differences between them. In conclusion, introducing multiple continuum concepts into geomechanical descriptions of fractured rock can provide more accurate models for coupled flow and geomechanics in fractured porous media.

  8. Synthesis of Functional Ceramic Supports by Ice Templating and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Michaela Klotz

    2018-05-01

    Full Text Available In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ and atomic layer deposition (ALD of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.

  9. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  10. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  11. Porosity study on free mineral addition cement paste

    International Nuclear Information System (INIS)

    Salgueiro, W.; Somoza, A.; Cabrera, O.; Consolati, G.

    2004-01-01

    A study of the hydration process and the porosity evolution in a cement paste is presented. The analysis of porosity was made in samples with water to cement ratios (w/c) of 0.24, 0.40 and 0.60 at age of 3, 7, 28 and 365 days, respectively. Information on the evolution of total porosity and on the strength of the paste were obtained using positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical tests (compression and flexion) and water absorption techniques. Specifically, positron lifetime technique allowed us to analyze the evolution of gel and capillary porosity during the hydration process. Using a simple function proposed, reasonable fits to the experimental data of the porosity evolution as a function of the compression strength were obtained

  12. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  13. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  14. A Deformable Template Model, with Special Reference to Elliptical Templates

    DEFF Research Database (Denmark)

    Hobolth, Asger; Pedersen, Jan; Jensen, Eva Bjørn Vedel

    2002-01-01

    This paper suggests a high-level continuous image model for planar star-shaped objects. Under this model, a planar object is a stochastic deformation of a star-shaped template. The residual process, describing the difference between the radius-vector function of the template and the object...

  15. Investigation of porosity and pore structure adjacent to fractures by PMMA method. Samples taken from drill cores at Olkiluoto

    International Nuclear Information System (INIS)

    Siitari-Kauppi, M.; Ikonen, J.; Kauppi, L.; Lindberg, A.

    2010-10-01

    The porosity, pore structure and micro fracturing of 18 rock cores from drill holes OLKR4, OL-KR11, OL-KR13, OL-KR14, OL-KR15, OL-KR20 and OL-KR25. The porosity was investigated by the C-14-PMMA autoradiographic method. The main focus was to analyse the changes in porosity and mineralogy adjacent to the typical fractures in the bedrock of Olkiluoto as a mean of porosity profiles. The method makes it possible to study the spatial distribution of the pore space in rock, and the heterogeneity of rock matrices is revealed at the sub micrometre to the centimetre scale. Subsequent autoradiography and digital image analysis make it possible to analyse features limited in size by the range of C-14 beta radiation. The description of the method was given in Posiva working report 2009-03. The samples for this work were chosen in April 2008. The C-14-PMMA method involves the impregnation of centimetre-scale rock cores with C-14 labelled methylmethacrylate (C-14-MMA) in a vacuum, irradiation polymerisation, autoradiography and optical densitometry using digital image-processing techniques. Impregnation with C-14-MMA, a labelled low-molecular-weight and lowviscosity monomer which wets the silicate surfaces well and which can be fixed by polymerisation provides information about the accessible pore space in crystalline rock that cannot be obtained using other methods. The microscopy analyses for mineral identification were done for every PMMA impregnated sample in Geological Survey of Finland. The total porosities of the studied rock cores varied between 0.1 % and 8 %. However, spatially the porosities of 30 - 40 % were determined for the minerals that were strongly altered. The porosity changes were observed adjacent to the fracture surfaces forming from a few to several millimetres porous zones. The heterogeneity of the porosity patterns adjacent to the fracture surfaces was abundant due to mineral alteration. (orig.)

  16. Influence of metacide - surfactant complexes on agricultural crops

    Directory of Open Access Journals (Sweden)

    Orynkul Esimova

    2014-12-01

    Full Text Available The complexes based on surfactants and polyhexamethyleneguanidine hydrochloride (metacide are important for agriculture. This paper considers compositions of known bactericidal metacide with different surfactants: anionic surfactant sodium dodecylsulphate (DDSNa and nonionic surfactant Tween 80 (monooleate of oxyethylenated anhydrosorbitols. The effect of individual components and associates of metacide and surfactants on productivity and infection of cereals was studied. According to the study, the highest productivity and infection rate were shown by the associate of metacide and Tween-80. At concentration of Tween-80 in aqueous solution equal to 0.001% in combination with metacide, efficiency was 98% at 0% infection. The surface tension and the wetting of metacide, DDSNa, Tween-80, and associates of metacide with surfactants were studied. In comparison with individual components, metacide-DDSNa and metacide-Tween-80 associates have higher surface activity.

  17. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  18. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  19. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  1. Ionic conductivity of sodium silicate glasses grown within confined volume of mesoporous silica template

    Science.gov (United States)

    Chatterjee, Soumi; Saha, Shyamal Kumar; Chakravorty, Dipankar

    2018-04-01

    Nanodimensional sodium silicate glasses of composition 30Na2O.70SiO2 has been prepared within the pores of 5.5 nm of mesoporous silica as a template using the surfactant P123. The nanocomposite was characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. Electrical conductivity of the sample was studied by ac impedance spectroscopy. The activation energy for ionic conduction was found to be 0.13 eV with dc conductivity at room temperature of 10-6 S-cm-1. This is attributed to the creation of oxygen ion vacancies at the interface of mesoporous silica and nanoglass arising out of the presence of Si2+ species in the system. These nanocomposites are expected to be useful for applications in sodiumion battery for storage of renewable energy.

  2. Particle track membranes with higher porosity

    International Nuclear Information System (INIS)

    Heinrich, B.; Gemende, B.; Lueck, H.B.

    1992-01-01

    Possibilities of improvement of flux and dirt loading capacity of particle track membranes have been examined. Three different ways were investigated: using a divergent ion beam for the irradiation; enlarging the surface porosity through a conical pore shape; creating an asymmetrical membrane structure with two different porosities. Mathematical models and experimental results have been discussed. 9 figs, 3 tabs

  3. Modulating structural hierarchies of manganese oxide in morphology and porosity by marine biopolymer for improved supercapacitors

    International Nuclear Information System (INIS)

    Zong, Lu; Wu, Xiaochen; You, Jun; Li, Mingjie; Li, Chaoxu

    2016-01-01

    Nanostructured MnO 2 is one of the most promising electrode materials for supercapacitors (SCs) on account of its exceptional properties including high theoretical capacitance, natural abundance, environmental safety and low cost. However its merits cannot be fully embodied by its current synthesis approaches, since most of them were normally tedious, costly, low yield or environment unfriendly, and poor in controlling multiple parameters of MnO 2 . Inspired by biopolymer-assisted synthesis of hierarchical inorganic materials in living systems, a marine biopolymer was used for structure-controllable synthesis of MnO 2 in this study. Functioning as the reductant, surfactant and directing agent, alginate could tune the hierarchical architecture of MnO 2 in multiple parameters including the dimension, nanometric size, crystallographic form and porosity, where δ-MnO 2 nanocrystals with the size of 5 ∼ 10 nm first assembled into nanosheets, and then flower-like structure with particle size tunable within 40 ∼ 200 nm as well as micro- and mesopores. Due to these unique hierarchies in both the morphology and porosity, as-prepared MnO 2 exhibited excellent performance as SC electrode, e.g. high power density (32.5 kW kg −1 ), high energy density (75.1 Wh kg −1 ) and great cycling stability. Given the green, low-temperature and scalable one-step process, this synthesis may pave a highly promising way to massive production of MnO 2 electrode materials for SCs.

  4. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    Science.gov (United States)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  5. Large-scale synthesis of Tellurium nanostructures via galvanic displacement of metals

    Science.gov (United States)

    Kok, Kuan-Ying; Choo, Thye-Foo; Ubaidah Saidin, Nur; Rahman, Che Zuraini Che Ab

    2018-01-01

    Tellurium (Te) is an attractive semiconductor material for a wide range of applications in various functional devices including, radiation dosimeters, optical storage materials, thermoelectric or piezoelectric generators. In this work, large scale synthesis of tellurium (Te) nanostructures have been successfully carried out in different concentrations of aqueous solutions containing TeO2 and NaOH, by galvanic displacements of Zn and Al which served as the sacrificial materials. Galvanic displacement process is cost-effective and it requires no template or surfactant for the synthesis of nanostructures. By varying the concentrations of TeO2 and NaOH, etching temperatures and etching times, Te nanostructures of various forms of nanostructures were successfully obtained, ranging from one-dimensional needles and rod-like structures to more complex hierarchical structures. Microscopy examinations on the nanostructures obtained have shown that both the diameters and lengths of the Te nanostructures increased with increasing etching temperature and etching time.

  6. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  7. Bioremediation of diesel fuel contaminated soil: effect of non ionic surfactants and selected bacteria addition.

    Science.gov (United States)

    Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina

    2007-09-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.

  8. Bioremediation of Diesel Fuel Contaminated Soil: Effect of Non Ionic Surfactants and Selected Bacteria Addition

    International Nuclear Information System (INIS)

    Collina, E.; Lasagni, M.; Pitea, D.; Franzetti, A.; Di Gennaro, P.; Bestetti, G.

    2007-01-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC 50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition

  9. Simultaneous measurement of top quark mass and jet energy scale using template fits at the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Naumann-Emme, Sebastian

    2011-07-15

    In this thesis, pairs of top quarks produced in proton-proton collisions at a center-of-mass energy of 7 TeV and decaying in the muon+jets channel t anti t {yields} (b{mu}{nu})(bqq{sup '}) are analyzed using data that were recorded by the CMS detector in the year 2010 and correspond to an integrated luminosity of 35.9 pb{sup -1}. A sample of 78 events is selected by requiring exactly one isolated muon and at least four jets, two of them being identified as jets from the decay of b quarks. Given these selection criteria, the expected fraction of t anti t events is 94%. The trijet mass, M3, and the dijet mass, M2, are reconstructed, taking into account the b-tagging information. M3 and M2 are estimators of the masses of hadronically decaying top quarks and the corresponding W bosons, respectively. Templates for M2 and for the event-wise mass difference {delta}M{sub 32}=M3-M2 are parametrized as linear functions of the top quark mass, m{sub t}, and the jet energy scale (JES). Based on the precise knowledge of the W boson mass, M2 provides a strong handle on the energy scale of jets from light quarks. The reconstructed M2 and {delta}M{sub 32} in data are compared to the template functions from simulation in a combined likelihood fit. The overall JES in the selected sample is found to be 1.048{+-}0.040(stat){+-}0.015(syst) relative to the simulated JES and the measured m{sub t} is 167.8{+-}7.1(stat+JES){+-}3.1(syst) GeV. This is one of the first measurements of m{sub t} at the Large Hadron Collider. Furthermore, the JES measurement is an important input for the commissioning of the CMS experiment for the upcoming measurements with more data in the near future. (orig.)

  10. Simultaneous measurement of top quark mass and jet energy scale using template fits at the CMS experiment

    International Nuclear Information System (INIS)

    Naumann-Emme, Sebastian

    2011-07-01

    In this thesis, pairs of top quarks produced in proton-proton collisions at a center-of-mass energy of 7 TeV and decaying in the muon+jets channel t anti t → (bμν)(bqq ' ) are analyzed using data that were recorded by the CMS detector in the year 2010 and correspond to an integrated luminosity of 35.9 pb -1 . A sample of 78 events is selected by requiring exactly one isolated muon and at least four jets, two of them being identified as jets from the decay of b quarks. Given these selection criteria, the expected fraction of t anti t events is 94%. The trijet mass, M3, and the dijet mass, M2, are reconstructed, taking into account the b-tagging information. M3 and M2 are estimators of the masses of hadronically decaying top quarks and the corresponding W bosons, respectively. Templates for M2 and for the event-wise mass difference ΔM 32 =M3-M2 are parametrized as linear functions of the top quark mass, m t , and the jet energy scale (JES). Based on the precise knowledge of the W boson mass, M2 provides a strong handle on the energy scale of jets from light quarks. The reconstructed M2 and ΔM 32 in data are compared to the template functions from simulation in a combined likelihood fit. The overall JES in the selected sample is found to be 1.048±0.040(stat)±0.015(syst) relative to the simulated JES and the measured m t is 167.8±7.1(stat+JES)±3.1(syst) GeV. This is one of the first measurements of m t at the Large Hadron Collider. Furthermore, the JES measurement is an important input for the commissioning of the CMS experiment for the upcoming measurements with more data in the near future. (orig.)

  11. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  12. Surfactant properties of human meibomian lipids.

    Science.gov (United States)

    Mudgil, Poonam; Millar, Thomas J

    2011-03-25

    Human meibomian lipids are the major part of the lipid layer of the tear film. Their surfactant properties enable their spread across the aqueous layer and help maintain a stable tear film. The purpose of this study was to investigate surfactant properties of human meibomian lipids in vitro and to determine effects of different physical conditions such as temperature and increased osmolarity, such as occur in dry eye, on these properties. Human meibomian lipids were spread on an artificial tear solution in a Langmuir trough. The lipid films were compressed and expanded to record the surface pressure-area (Π-A) isocycles. The isocycles were recorded under different physical conditions such as high pressure, increasing concentration and size of divalent cations, increasing osmolarity, and varying temperature. Π-A isocycles of meibomian lipids showed that they form liquid films that are compressible and multilayered. The isocycles were unaffected by increasing concentration or size of divalent cations and increasing osmolarity in the subphase. Temperature had a marked effect on the lipids. Increase in temperature caused lipid films to become fluid, an expected feature, but decrease in temperature unexpectedly caused expansion of lipids and an increase in pressure suggesting enhanced surfactant properties. Human meibomian lipids form highly compressible, non-collapsible, multilayered liquid films. These lipids have surfactants that allow them to spread across an aqueous subphase. Their surfactant properties are unaffected by increasing divalent cations or hyperosmolarity but are sensitive to temperature. Cooling of meibomian lipids enhances their surfactant properties.

  13. Surfactant selection for a liquid foam-bed photobioreactor.

    Science.gov (United States)

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  14. History of surfactant up to 1980.

    Science.gov (United States)

    Obladen, Michael

    2005-01-01

    Remarkable insight into disturbed lung mechanics of preterm infants was gained in the 18th and 19th century by the founders of obstetrics and neonatology who not only observed respiratory failure but also designed devices to treat it. Surfactant research followed a splendid and largely logical growth curve. Pathological changes in the immature lung were characterized in Germany by Virchow in 1854 and by Hochheim in 1903. The Swiss physiologist von Neergard fully understood surfactant function in 1929, but his paper was ignored for 25 years. The physical properties of surfactant were recognized in the early 1950s from research on warfare chemicals by Pattle in Britain and by Radford and Clements in the United States. The causal relationship of respiratory distress syndrome (RDS) and surfactant deficiency was established in the USA by Avery and Mead in 1959. The Australian obstetrician Liggins induced lung maturity with glucocorticoids in 1972, but his discovery was not fully believed for another 20 years. A century of basic research was rewarded when Fujiwara introduced surfactant substitution in Japan in 1980 for treatment and prevention of RDS. Copyright 2005 S. Karger AG, Basel

  15. Adsorption of anionic surfactants in limestone medium during oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Canbolat, Serhat; Bagci, Suat [Middle East Technical Univ., Dept. of Petroleum and Natural Gas Engineering, Ankara (Turkey)

    2004-07-15

    Foam-forming surfactant performance was evaluated by several experimental methods (interfacial tension, foam stability, corefloods) using commercial surfactants. There is considerable interest in the use of foam-forming surfactants for mobility control in water flood. To provide effective mobility control, the injected surfactant must propagate from the injection well toward the production well. One of the important parameters affecting propagation of foam-forming surfactant through the reservoir is the retention of surfactant due to its adsorption on reservoir rock. The determination of the adsorption of foam-forming surfactants in limestone reservoirs is important for the residual oil recovery efficiency. Adsorption measurements, recovery efficiencies, and surfactant and alkaline flooding experiments carried out with the representative of the selected surfactants alkaline solutions, linear alkyl benzene sulphonic acid (LABSA), sodium lauryl ether sulfate (SLES), and NaOH in a limestone medium. These surfactants were selected with respect to their foaming ability. Calibration curves formed by pH measurements were used to determine the correct adsorption amount of the used surfactants and recovery efficiency of these surfactants compared with base waterflooding. The results showed that LABSA adsorbed more than SLES in limestone reservoirs. The recovery efficiency of SLES was higher than the recovery efficiency of LABSA, and they decreased the recovery efficiency with respect to only the water injection case. (Author)

  16. Nanometer Linear Focusing of Hard X Rays by a Multilayer Laue Lens

    International Nuclear Information System (INIS)

    Kang, H.C.; Stephenson, G.B.; Maser, J.; Liu, C.; Conley, R.; Macrander, A.T.; Vogt, S.

    2006-01-01

    We report on a type of linear zone plate for nanometer-scale focusing of hard x rays, a multilayer Laue lens (MLL), produced by sectioning a multilayer and illuminating it in Laue diffraction geometry. Because of its large optical depth, a MLL spans the diffraction regimes applicable to a thin Fresnel zone plate and a crystal. Coupled wave theory calculations indicate that focusing to 5 nm or smaller with high efficiency should be possible. Partial MLL structures with outermost zone widths as small as 10 nm have been fabricated and tested with 19.5 keV synchrotron radiation. Focal sizes as small as 30 nm with efficiencies up to 44% are measured

  17. Zeolite-templated carbon replica: a Grand Canonical Monte-Carlo simulation study

    International Nuclear Information System (INIS)

    Thomas Roussel; Roland J M Pellenq; Christophe Bichara; Roger Gadiou; Antoine Didion; Cathie Vix Guterl; Fabrice Gaslain; Julien Parmentier; Valentin Valtchev; Joel Patarin

    2005-01-01

    Microporous carbon materials are interesting for several applications such as hydrogen storage, catalysis or electrical double layer capacitors. The development of the negative templating method to obtain carbon replicas from ordered templates, has lead to the synthesis of several new materials which have interesting textural properties, attractive for energy storage. Among the possible templates, zeolites can be used to obtain highly microporous carbon materials. Nevertheless, the phenomena involved in the replica synthesis are not fully understood, and the relationships between the structure of the template, the carbon precursor and the resulting carbon material need to be investigated. Experimental results for carbon zeolite-templated nano-structures can be found in a series of papers; see for instance ref. [1] in which Wang et al describe a route to ultra-small Single Wall Carbon Nano-tubes (SWNTs) using the porosity of zeolite AlPO 4 -5. After matrix removal, the resulting structure is a free-standing bundle of 4 Angstroms large nano-tubes. However, it is highly desirable to obtain an ordered porous carbon structure that forms a real 3D network to be used for instance in gas storage applications. Carbon replica of faujasite and EMT zeolites can have these properties since these zeolites have a 3D porous network made of 10 Angstroms cages connected to each other through 7 Angstroms large windows. The first step of this study was to generate a theoretical carbon replica structure of various zeolites (faujasite, EMT, AlPO 4 -5, silicalite). For this purpose, we used the Grand Canonical Monte-Carlo (GCMC) technique in which the carbon-carbon interactions were described within the frame of a newly developed Tight Binding approach and the carbon-zeolite interactions assumed to be characteristic of physi-sorption. The intrinsic stability of the subsequent carbon nano-structures was then investigated after mimicking the removal of the inorganic phase by switching

  18. Porosity model for simultaneous radionuclide transfer in compact clay

    International Nuclear Information System (INIS)

    Grambow, B.; Ribet, S.; Landesman, C.; Altman, S.

    2010-01-01

    Document available in extended abstract form only. Both, a mono and a dual porosity model have been developed to describe diffusion in bentonite as function of compaction, which give similar results for the diffusion coefficients. There are little advantages but more computation time for the dual porosity model compared to the mono-porosity model. A significant change in paradigm has been proposed to describe diffusion accessible porosity in bentonite: Only a single micro-porosity value is considered for anions, cations and neutral species. Hydration water in the interlayers is considered as part of the solid phase and is not considered as a constitutive part of overall porosity. Since hydration water takes part of the solid phase, it is now possible to explicitly account for retention of HTO by formulating exchange between HTO and water in the interlayers. In the adaptation of the model to experimental data, a single fit constant, the geometric factor G = 7 was used, common to all ions and neutral species and for densities between 0.2 and 1.8 kg.dm -3 . The only input parameters to describe the effect of dry density on diffusion coefficients are the micro porosity (total porosity minus interlayer porosity) and the hydration numbers of exchanging cations in the interlayers, both of which can be measured by independent means (DRX, water sorption isotherms). The modelling of simultaneous mass transfer of HTO, Cs, Br and Ni has been undertaken. From the results apparent diffusion coefficients were obtained. Effective diffusion coefficients can of course only be compared to literature data if the the same porosity hypothesis is used for Da-De conversion as used in literature (total porosity for anions and HTO, micro-porosity for anions). Then, the calculated apparent diffusion coefficients for HTO match closely the measured values in the mentioned density range. Considering large experimental data uncertainty the agreement between anion diffusion data and calculations

  19. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    Science.gov (United States)

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  20. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber