WorldWideScience

Sample records for surfactant-affected hydraulic conductivity

  1. Hydraulic conductivity of rock fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  2. Calculation of saturated hydraulic conductivity of bentonite

    International Nuclear Information System (INIS)

    He Jun

    2006-01-01

    Hydraulic conductivity test has some defects such as weak repeatability, time-consuming. Taking bentonite as dual porous media, the calculation formula of the distance, d 2 , between montmorillonite in intraparticle pores is deduced. Improved calculated method of hydraulic conductivity is obtained using d 2 and Poiseuille law. The method is valid through the comparison with results of test and other methods. The method is very convenient to calculate hydraulic conductivity of bentonite of certain montmorillonite content and void ratio. (authors)

  3. effective hydraulic conductivity for a soil of variable pore size

    African Journals Online (AJOL)

    eobe

    Keywords: hydraulic conductivity, soil, infiltration, permeability, water. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. Accurate determination of hydraulic conductivity is very crucial for infiltration and runoff estimation. Factors which affect water infiltration in the soil include hydraulic conductivity, wetting front and soil.

  4. Database for Hydraulically Conductive Fractures. Update 2010

    International Nuclear Information System (INIS)

    Tammisto, E.; Palmen, J.

    2011-02-01

    Posiva flow logging (PFL) with 0.5 m test interval and made in 10 cm steps can be used for exact depth determination of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging PFL provides possibilities to detect single conductive fractures. In this report, the results of PFL are combined to the fracture data in drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OLKR53B and pilot holes ONK-PH11 - ONK-PH13. The results are used mainly in development of hydroDFN- models. The conductive fractures were first recognised from the PFL data and digital drillhole images and then the fractures from the core logging corresponding to the ones picked from the digital drillhole images were identified. The conductive fractures were recognised from the images primarily based on openness of fractures or a visible flow in the image. In most of the cases of measured flow, no tails of flow were seen in the image. In these cases, the conductive fractures were recognised from the image based on openness of fractures and a matching depth. According to the results the hydraulically conductive fractures/zones can be distinguished from the drillhole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures detected in flow logging (T > 10 -10 -10 -9 m 2 /s) in depth range 0-150 m varies from 0.07 to 0.84 fractures/meter of sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in groups of few fractures. In drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OL-KR53B about 8.5 % of all fractures and 4.4 % of the conductive fractures are within HZ-structures. (orig.)

  5. Database for hydraulically conductive fractures. Update 2009

    International Nuclear Information System (INIS)

    Palmen, J.; Tammisto, E.; Ahokas, H.

    2010-03-01

    Posiva flow logging (PFL) with a 0.5 m test interval and made in 10 cm steps can be used for the determination of the depth of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging, PFL provides possibilities to detect individual conductive fractures. In this report, the results of PFL are combined with fracture data on drillholes OL-KR41 - OL-KR48, OL-KR41B - OLKR45B and pilot holes ONK-PH8 - ONK-PH10. In addition, HTU-data measured by 2 m section length and 2 m steps in holes OL-KR39 and OL-KR40 at depths 300-700 m were analyzed and combined with fracture data in a similar way. The conductive fractures were first recognised from PFL data and digital drillhole images and then the fractures from the core logging that correspond to the ones picked from the digital drillhole images were identified. The conductive fractures were primarily recognised in the images based on the openness of fractures or a visible flow in the image. In most of the cases, no tails of flow were seen in the image. In these cases the conductive fractures were recognised in the image based on the openness of fractures and a matching depth. On the basis of the results hydraulically conductive fractures/zones could in most cases be distinguished in the drillhole wall images. An important phase in the work is the calibration of the depth of the image, flow logging and the HTU logging with the sample length. In addition to results of PFL-correlation, Hydraulic Testing Unit (HTU) data measured by 2 m section length and 2 m steps was studied at selected depths for holes OL-KR39, OL-KR40, OL-KR42 and OL-KR45. Due to low HTU section depth accuracy the conducting fractures were successfully correlated with Fracture Data Base (FDB) fractures only in drillholes OL-KR39 and OL-KR40. HTU-data depth matching in these two drillholes was performed using geophysical Single Point Resistance (SPR) data both from geophysical and PFL measurements as a depth

  6. Hydraulic conductivity of compacted clay frozen and thawed in situ

    International Nuclear Information System (INIS)

    Benson, C.H.; Othman, M.A.

    1993-01-01

    A large specimen of compacted clay (diameter = 298 mm; thickness = 914 mm) was subjected to freeze-thaw in the field for 60 days. Afterward, the hydraulic conductivity was measured. The hydraulic conductivity of the entire specimen remained essentially unchanged, but increases in hydraulic conductivity of 1.5-2 orders of magnitude were observed above the freezing plane. The increase in hydraulic conductivity was highest at the top of the specimen and decreased with depth. Changes in hydraulic conductivity also occurred at depths 150 mm below the freezing plane, where desiccation occurred because of water redistribution. Numerous horizontal and vertical cracks formed in the soil mass. Dissection of the sample after permeation revealed that the cracks were laden with water. Cracking was greatest at the surface and became less frequent with depth. For depths greater than 150 mm below the freezing plane, cracking was absent. The frequency of cracks is consistent with principles of mechanistic models of soil freezing. The results of laboratory tests were used to predict the hydraulic conductivity of the large specimen. Tests were conducted on specimens subjected to various freeze-thaw cycles, temperature gradients, and states of stress. It was found that the predicted hydraulic conductivities were lower than those measured on the large specimen, but they closely resembled the trend in hydraulic conductivity with depth

  7. A tensor approach to the estimation of hydraulic conductivities in ...

    African Journals Online (AJOL)

    Based on the field measurements of the physical properties of fractured rocks, the anisotropic properties of hydraulic conductivity (HC) of the fractured rock aquifer can be assessed and presented using a tensor approach called hydraulic conductivity tensor. Three types of HC values, namely point value, axial value and flow ...

  8. Saturated hydraulic conductivity values of some forest soils of ...

    African Journals Online (AJOL)

    A simple falling-head method is presented for the laboratory determination of saturated hydraulic conductivity of some forest soils of Ghana. Using the procedure, it was found that saturated hydraulic conductivity was positively and negatively correlated with sand content and clay content, respectively, both at P = 0.05 level.

  9. Influence factors of sand-bentonite mixtures on hydraulic conductivity

    International Nuclear Information System (INIS)

    Chen Yonggui; Ye Weimin; Chen Bao; Wan Min; Wang Qiong

    2008-01-01

    Buffer material is a very important part of the engineering barrier for geological disposal of high-level radioactive nuclear waste. Compacted bentonite is attracting greater attention as buffer and backfill material because it offer impermeability and swelling properties, but the pure compacted bentonite strength decreases with increasing hydration and these will reduce the buffer capability. To solve this problem, sand is often used to form compacted sand-bentonite mixtures (SBMs) providing high thermal conductivity, excellent compaction capacity, long-time stability, and low engineering cost. As to SBMs, hydraulic conductivity is a important index for evaluation barrier capability. Based on the review of research results, the factors affecting the hydraulic conductivity of SBMs were put forward including bentonite content, grain size distribution, moisture content, dry density, compacting method and energy, and bentonite type. The studies show that the hydraulic conductivity of SBMs is controlled by the hydraulic conductivity of the bentonite, it also decreases as dry density and bentonite content increase, but when the bentonite content reach a critical point, the influence of increasing bentonite to decrease the hydraulic conductivity is limited. A fine and well-graded SBMs is likely to have a lower hydraulic conductivity than a coarse and poorly graded material. The internal erosion or erodibility based on the grain size distribution of the SBMs has a negative effect on the final hydraulic conductivity. The lowest hydraulic conductivity is gained when the mixtures are compacted close to optimum moisture content. Also, the mixtures compacted at moisture contents slightly above optimum values give lower hydraulic conductivity than when compacted at slightly under the optimum moisture content. Finally, discussion was brought to importance of compaction method, compacting energy, and bentonite type to the hydraulic conductivity of SBMs. (authors)

  10. The hydraulic conductivity of sediments: A pore size perspective

    KAUST Repository

    Ren, X.W.

    2017-12-06

    This article presents an analysis of previously published hydraulic conductivity data for a wide range of sediments. All soils exhibit a prevalent power trend between the hydraulic conductivity and void ratio. Data trends span 12 orders of magnitude in hydraulic conductivity and collapse onto a single narrow trend when the hydraulic conductivity data are plotted versus the mean pore size, estimated using void ratio and specific surface area measurements. The sensitivity of hydraulic conductivity to changes in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based on macroscale index parameters in this and similar previous studies has reached an asymptote in the range of kmeas/5≤kpredict≤5kmeas. The remaining uncertainty underscores the important role of underlying sediment characteristics such as pore size distribution, shape, and connectivity that are not measured with index properties. Furthermore, the anisotropy in hydraulic conductivity cannot be recovered from scalar parameters such as index properties. Overall, results highlight the robustness of the physics inspired data scrutiny based Hagen–Poiseuille and Kozeny-Carman analyses.

  11. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs

  12. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  13. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren

    2006-01-01

    of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences....... Optimising a matching factor (k0) improved the fit considerably whereas optimising the l-parameter in the vGM model improved the fit only slightly. The vGM was improved with an empirical scaling function to account for the rapid increase in conductivity near saturation. Using the improved models...

  14. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  15. Effect of gravel on hydraulic conductivity of compacted soil liners

    International Nuclear Information System (INIS)

    Shelley, T.L.; Daniel, D.E.

    1993-01-01

    How much gravel should be allowed in low-hydraulic-conductivity, compacted soil liners? To address this question, two clayey soils are uniformly mixed with varying percentages of gravel that, by itself, has a hydraulic conductivity of 170 cm/s. Soil/gravel mixtures are compacted and then permeated. Hydraulic conductivity of the compacted gravel/soil mixtures is less than 1 x 10 -7 cm/s for gravel contents as high as 50-60%. For gravel contents ≤ 60%, gravel content is not important: all test specimens have a low hydraulic conductivity. For gravel contents > 50-60%, the clayey soils does not fill voids between gravel particles, and high hydraulic conductivity results. The water content of the nongravel fraction is found to be a useful indicator of proper moisture conditions during compaction. From these experiments in which molding water content and compactive energy are carefully controlled, and gravel is uniformly mixed with the soil, it is concluded that the maximum allowable gravel content is approximately 50%

  16. Structural Stability and Hydraulic Conductivity Of Nkpologu Sandy ...

    African Journals Online (AJOL)

    Studies were conducted in the runoff plots at the University of Nigeria Nsukka Teaching and Resesarch Farm in 2010 and 2011 to monitor the changes in structural stability and saturated hydraulic conductivity (Ksat) of Nkpologu sandy loam soil under different cover management practices. The management practices were ...

  17. Determination of unsaturated hydraulic conductivity of alfisol soil in ...

    African Journals Online (AJOL)

    The hydrolic conductivity of soil measures the ease at which water moves through the soil by determining the flux density of water passing through the soil. The estimation of hydraulic conductivity indicates how fluids flow throuhg a substance and thus determine the water balance in the soil profile. The trend lines of ...

  18. Slope instability caused by small variations in hydraulic conductivity

    Science.gov (United States)

    Reid, M.E.

    1997-01-01

    Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.

  19. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  20. Hydraulic conductivity of some bentonites in artificial seawater

    International Nuclear Information System (INIS)

    Komine, Hideo; Murakami, Satoshi; Yasuhara, Kazuya

    2011-01-01

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on hydraulic conductivity of three common sodium-types of bentonite and one calcium-type bentonite by the laboratory experiments. >From the results of laboratory experiment, this study discussed the influence of seawater on hydraulic conductivity of bentonites from the viewpoints of kinds of bentonite such as exchangeable-cation type and montmorillonite content and dry density of bentonite-based buffer. (author)

  1. The relationship between reference canopy conductance and simplified hydraulic architecture

    Science.gov (United States)

    Novick, Kimberly; Oren, Ram; Stoy, Paul; Juang, Jehn-Yih; Siqueira, Mario; Katul, Gabriel

    2009-06-01

    Terrestrial ecosystems are dominated by vascular plants that form a mosaic of hydraulic conduits to water movement from the soil to the atmosphere. Together with canopy leaf area, canopy stomatal conductance regulates plant water use and thereby photosynthesis and growth. Although stomatal conductance is coordinated with plant hydraulic conductance, governing relationships across species has not yet been formulated at a practical level that can be employed in large-scale models. Here, combinations of published conductance measurements obtained with several methodologies across boreal to tropical climates were used to explore relationships between canopy conductance rates and hydraulic constraints. A parsimonious hydraulic model requiring sapwood-to-leaf area ratio and canopy height generated acceptable agreement with measurements across a range of biomes (r2=0.75). The results suggest that, at long time scales, the functional convergence among ecosystems in the relationship between water-use and hydraulic architecture eclipses inter-specific variation in physiology and anatomy of the transport system. Prognostic applicability of this model requires independent knowledge of sapwood-to-leaf area. In this study, we did not find a strong relationship between sapwood-to-leaf area and physical or climatic variables that are readily determinable at coarse scales, though the results suggest that climate may have a mediating influence on the relationship between sapwood-to-leaf area and height. Within temperate forests, canopy height alone explained a large amount of the variance in reference canopy conductance (r2=0.68) and this relationship may be more immediately applicable in the terrestrial ecosystem models.

  2. The hydraulic conductivity of sediments: A pore size perspective

    KAUST Repository

    Ren, X.W.; Santamarina, Carlos

    2017-01-01

    in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based

  3. Influence of soil particle shape on saturated hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    Zięba Zofia

    2017-03-01

    Full Text Available The aim of this paper is to define the correlation between the geometry of grains and saturated hydraulic conductivity of soils. The particle shape characteristics were described by the ζ0C index (Parylak, 2000, which expresses the variability of several shape properties, such as sphericity, angularity and roughness.

  4. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Science.gov (United States)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  5. Analysis of slug tests in formations of high hydraulic conductivity.

    Science.gov (United States)

    Butler, James J; Garnett, Elizabeth J; Healey, John M

    2003-01-01

    A new procedure is presented for the analysis of slug tests performed in partially penetrating wells in formations of high hydraulic conductivity. This approach is a simple, spreadsheet-based implementation of existing models that can be used for analysis of tests from confined or unconfined aquifers. Field examples of tests exhibiting oscillatory and nonoscillatory behavior are used to illustrate the procedure and to compare results with estimates obtained using alternative approaches. The procedure is considerably simpler than recently proposed methods for this hydrogeologic setting. Although the simplifications required by the approach can introduce error into hydraulic-conductivity estimates, this additional error becomes negligible when appropriate measures are taken in the field. These measures are summarized in a set of practical field guidelines for slug tests in highly permeable aquifers.

  6. Water Infiltration and Hydraulic Conductivity in Sandy Cambisols

    DEFF Research Database (Denmark)

    Bens, Oliver; Wahl, Niels Arne; Fischer, Holger

    2006-01-01

    from pure Scots pine stands towards pure European beech stands. The water infiltration capacity and hydraulic conductivity (K) of the investigated sandy-textured soils are low and very few macropores exist. Additionally these pores are marked by poor connectivity and therefore do not have any...... of the experimental soils. The results indicate clearly that soils play a crucial role for water retention and therefore, in overland flow prevention. There is a need to have more awareness on the intimate link between the land use and soil properties and their possible effects on flooding.......Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective...

  7. Estimating the hydraulic conductivity of two-dimensional fracture networks

    Science.gov (United States)

    Leung, C. T.; Zimmerman, R. W.

    2010-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our

  8. Hydraulic conductivity and soil-sewage sludge interactions

    Directory of Open Access Journals (Sweden)

    Silvio Romero de Melo Ferreira

    2011-10-01

    Full Text Available One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

  9. Changes in entrapped gas content and hydraulic conductivity with pressure.

    Science.gov (United States)

    Marinas, Maricris; Roy, James W; Smith, James E

    2013-01-01

    Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi-saturated) hydraulic conductivity, K(quasi), thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand-packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi-saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding K(quasi) ranging between 2 and 6 times lower compared to the K(s) value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in K(quasi) by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in K(quasi) with compression-expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models. © Ground Water 2012 and © Her Majesty the Queen in Right of Canada 2012. Ground Water © 2012, National Ground Water Association.

  10. Estimating unsaturated hydraulic conductivity from soil moisture-tim function

    International Nuclear Information System (INIS)

    El Gendy, R.W.

    2002-01-01

    The unsaturated hydraulic conductivity for soil can be estimated from o(t) function, and the dimensionless soil water content parameter (Se)Se (β - βr)/ (φ - θ)), where θ, is the soil water content at any time (from soil moisture depletion curve l; θ is the residual water content and θ, is the total soil porosity (equals saturation point). Se can be represented as a time function (Se = a t b ), where t, is the measurement time and (a and b) are the regression constants. The recommended equation in this method is given by

  11. Development of hydraulic conductivity evaluation of rocks using EK (Electro Kinetic) phenomenon (Part 2). Experimental study on hydraulic conductivity evaluation by propagation velocity of EK potential

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi

    2012-01-01

    Hydraulic conductivity is one of the most important engineering properties to investigate geological structure for high level radioactive waste (HLW) disposal and/or carbon dioxide (CO 2 ) geological storage. We are developing an estimation method of hydraulic conductivity by geophysical methods cost-effectively. When an elastic wave is propagated into rocks, a weak potential is generated. This is called EK (Electro Kinetic) potential, which may have a correlation with hydraulic conductivity. Hydraulic conductivity can be estimated by measuring the propagation velocity of the EK potential. We conducted laboratory measurements of propagation velocity of EK potential by using soil and rock samples. The results demonstrated that the velocity of EK potential increased as frequency increased, and the velocity increased as hydraulic conductivity of each sample increased at the same frequency condition. These tendencies corresponded to a theory of EK potential. We calculated hydraulic conductivity by comparing measured and theoretical velocity of the EK potential based on its frequency characteristics. The differences between calculated and sample hydraulic conductivity were under one order when hydraulic conductivity of the sample was from 10 -6 m/s to 10 -4 m/s. This suggests that hydraulic conductivity from 10 -6 m/s to 10 -4 m/s can be estimated by velocity of the EK potential. (author)

  12. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    Science.gov (United States)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  13. Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods

    Science.gov (United States)

    Araya, S. N.; Ghezzehei, T. A.

    2017-12-01

    Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.

  14. The effect of freeze-thaw cycles on the hydraulic conductivity of compacted clay

    International Nuclear Information System (INIS)

    Waite, D.; Anderson, L.; Caliendo, J.; McFarland, M.

    1994-01-01

    A study was conducted to investigate the detrimental effects of freeze-thaw on the hydraulic conductivity of compacted clay. The purpose of this study was to determine the effect that molding water content has on the hydraulic conductivity of a compacted clay soil that is subjected to freeze-thaw cycles, and to determine the relationship between the number of freeze-thaw cycles and the hydraulic conductivity of the compacted clay soil. Clay soils compacted and frozen wet of optimum experienced an increase in hydraulic conductivity of approximately 140 fold. The hydraulic conductivity of clay compacted dry of optimum increased ten fold. These results are consistent with recent research which suggests that clay compacted wet of optimum experiences large increases in hydraulic conductivity while the hydraulic conductivity of clay compacted dry of optimum increases to a lesser extent. 12 refs., 9 figs

  15. Simple Predictive Models for Saturated Hydraulic Conductivity of Technosands

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Møldrup, Per

    2012-01-01

    Accurate estimation of saturated hydraulic conductivity (Ks) of technosands (gravel-free, coarse sands with negligible organic matter content) is important for irrigation and drainage management of athletic fields and golf courses. In this study, we developed two simple models for predicting Ks......-Rammler particle size distribution (PSD) function. The Ks and PSD data of 14 golf course sands from literature as well as newly measured data for a size fraction of Lunar Regolith Simulant, packed at three different dry bulk densities, were used for model evaluation. The pore network tortuosity......-connectivity parameter (m) obtained for pure coarse sand after fitting to measured Ks data was 1.68 for both models and in good agreement with m values obtained from recent solute and gas diffusion studies. Both the modified K-C and R-C models are easy to use and require limited parameter input, and both models gave...

  16. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    Science.gov (United States)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    Among the soil hydraulic properties, saturated soil hydraulic conductivity, Ks, is particularly important since it controls many hydrological processes. Knowledge of this soil property allows estimation of dynamic indicators of the soil's ability to transmit water down to the root zone. Such dynamic indicators are valuable tools to quantify land degradation and developing 'best management' land use practice (Castellini et al., 2016; Iovino et al., 2016). In hillslopes, lateral saturated soil hydraulic conductivity, Ks,l, is a key factor since it controls subsurface flow. However, Ks,l data collected by point-scale measurements, including infiltrations tests, could be unusable for interpreting field hydrological processes and particularly subsurface flow in hillslopes. Therefore, they are generally not representative of subsurface processes at hillslope-scale due mainly to soil heterogeneities and the unknown total extent and connectivity of macropore network in the porous medium. On the other hand, large scale Ks,l measurements, which allow to average soil heterogeneities, are difficult and costly, thus remain rare. Reliable Ks,l values should be measured on a soil volume similar to the representative elementary volume (REV) in order to incorporate the natural heterogeneity of the soil. However, the REV may be considered site-specific since it is expected to increase for soils with macropores (Brooks et al., 2004). In this study, laboratory and in-situ Ks,l values are compared in order to detect the dependency Ks,l from the spatial scale of investigation. The research was carried out at a hillslope located in the Baratz Lake watershed, in northwest Sardinia, Italy, characterized by degraded vegetation (grassland established after fire or clearing of the maquis). The experimental area is about 60 m long, with an extent of approximately 2000 m2, and a mean slope of 30%. The soil depth is about 35 to 45 cm. The parent material is a very dense grayish, altered

  17. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    Science.gov (United States)

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Predicting saturated hydraulic conductivity using soil morphological properties

    Directory of Open Access Journals (Sweden)

    Gülay Karahan

    2016-01-01

    Full Text Available Many studies have been conducted to predict soil saturated hydraulic conductivity (Ks by parametric soil properties such as bulk density and particle-size distribution. Although soil morphological properties have a strong effect on Ks, studies predicting Ks by soil morphological properties such as type, size, and strength of soil structure; type, orientation and quantity of soil pores and roots and consistency are rare. This study aimed at evaluating soil morphological properties to predict Ks. Undisturbed soil samples (15 cm length and 8.0 cm id. were collected from topsoil (0-15 cm and subsoil (15-30 cm (120 samples with a tractor operated soil sampler at sixty randomly selected sampling sites on a paddy field and an adjecent grassland in Central Anatolia (Cankırı, Turkey. Synchronized disturbed soil samples were taken from the same sampling sites and sampling depths for basic soil analyses. Saturated hydraulic conductivity was measured on the soil columns using a constant-head permeameter. Following the Ks measurements, the upper part of soil columns were covered to prevent evaporation and colums were left to drain in the laboratory. When the water flow through the column was stopped, a subsample were taken for bulk density and then soil columns were disturbed for describing the soil morphological properties. In addition, soil texture, bulk density, pH, field capacity, wilting point, cation exchange capacity, specific surface area, aggregate stability, organic matter, and calcium carbonate were measured on the synchronized disturbed soil samples. The data were divided into training (80 data values and validation (40 data values sets. Measured values of Ks ranged from 0.0036 to 2.14 cmh-1 with a mean of 0.86 cmh-1. The Ks was predicted from the soil morphological and parametric properties by stepwise multiple linear regression analysis. Soil structure class, stickiness, pore-size, root-size, and pore-quantity contributed to the Ks prediction

  19. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    Science.gov (United States)

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. New empirical relationship between grain size distribution and hydraulic conductivity for ephemeral streambed sediments

    KAUST Repository

    Rosas, Jorge

    2014-07-19

    Grain size distribution, porosity, and hydraulic conductivity were determined for 39 sediment samples collected from ephemeral streams (wadis) in western Saudi Arabia. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations commonly used to estimate hydraulic conductivity from grain size analyses. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly with the measured hydraulic conductivity values. Modifications of the empirical equations, including changes to special coefficients and statistical offsets, were made to produce modified equations that considerably improved the hydraulic conductivity estimates from grain size data for wadi sediments. The Chapuis, Hazen, Kozeny, Slichter, Terzaghi, and Barr equations produced the best correlations, but still had relatively high predictive errors. The Chapius equation was modified for wadi sediments by incorporating mud percentage and the standard deviation (in phi units) into a new equation that reduced the predicted hydraulic conductivity error to ±14.1 m/day. The equation is best applied to ephemeral stream samples that have hydraulic conductive values greater than 2 m/day.

  2. New empirical relationship between grain size distribution and hydraulic conductivity for ephemeral streambed sediments

    KAUST Repository

    Rosas, Jorge; Jadoon, Khan; Missimer, Thomas M.

    2014-01-01

    Grain size distribution, porosity, and hydraulic conductivity were determined for 39 sediment samples collected from ephemeral streams (wadis) in western Saudi Arabia. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations commonly used to estimate hydraulic conductivity from grain size analyses. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly with the measured hydraulic conductivity values. Modifications of the empirical equations, including changes to special coefficients and statistical offsets, were made to produce modified equations that considerably improved the hydraulic conductivity estimates from grain size data for wadi sediments. The Chapuis, Hazen, Kozeny, Slichter, Terzaghi, and Barr equations produced the best correlations, but still had relatively high predictive errors. The Chapius equation was modified for wadi sediments by incorporating mud percentage and the standard deviation (in phi units) into a new equation that reduced the predicted hydraulic conductivity error to ±14.1 m/day. The equation is best applied to ephemeral stream samples that have hydraulic conductive values greater than 2 m/day.

  3. Determination of hydraulic conductivity from grain-size distribution for different depositional environments

    KAUST Repository

    Rosas, Jorge

    2013-06-06

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1m/day for the beach subgroups, 3.4 to 7.1m/day for dune subgroups, and 2.2 to 11m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23m/day. © 2013, National Ground Water Association.

  4. Determination of hydraulic conductivity from grain-size distribution for different depositional environments

    KAUST Repository

    Rosas, Jorge; Lopez Valencia, Oliver Miguel; Missimer, Thomas M.; Coulibaly, Kapo M.; Dehwah, Abdullah; Sesler, Kathryn; Rodri­ guez, Luis R. Lujan; Mantilla, David

    2013-01-01

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1m/day for the beach subgroups, 3.4 to 7.1m/day for dune subgroups, and 2.2 to 11m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23m/day. © 2013, National Ground Water Association.

  5. A simplified transfer function for estimating saturated hydraulic conductivity of porous drainage filters

    DEFF Research Database (Denmark)

    Canga, Eriona; Iversen, Bo Vangsø; Kjærgaard, Charlotte

    2013-01-01

    Knowledge of the saturated hydraulic conductivity (Ksat) of porous filters used in water treatment technologies is important for optimizing the retention of nutrients and pollutants. This parameter determines the hydraulic capacity, which together with the Chemical properties of the filter media...

  6. Prediction of the saturated hydraulic conductivity from Brooks and Corey’s water retention parameters

    NARCIS (Netherlands)

    Nasta, P.; Vrugt, J.A.; Romano, N.

    2013-01-01

    Prediction of flow through variably saturated porous media requires accurate knowledge of the soil hydraulic properties, namely the water retention function (WRF) and the hydraulic conductivity function (HCF). Unfortunately, direct measurement of the HCF is time consuming and expensive. In this

  7. Prediction of spatially variable unsaturated hydraulic conductivity using scaled particle-size distribution functions

    NARCIS (Netherlands)

    Nasta, P.; Romano, N.; Assouline, S; Vrugt, J.A.; Hopmans, J.W.

    2013-01-01

    Simultaneous scaling of soil water retention and hydraulic conductivity functions provides an effective means to characterize the heterogeneity and spatial variability of soil hydraulic properties in a given study area. The statistical significance of this approach largely depends on the number of

  8. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  9. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  10. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone

    Science.gov (United States)

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  11. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Science.gov (United States)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  12. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  13. Analysis of Grain Size Distribution and Hydraulic Conductivity for a Variety of Sediment Types with Application to Wadi Sediments

    KAUST Repository

    Rosas Aguilar, Jorge

    2013-01-01

    Grain size distribution, porosity, and hydraulic conductivity from over 400 unlithified sediment samples were analized. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations

  14. Hydraulic conductivity determination of a dark red latosol by gamma attenuation and tensiometry

    International Nuclear Information System (INIS)

    Oliveira, Julio Cesar Martins de; Reichardt, Klaus; Costa, Antonio Carlos Saraiva da

    1995-01-01

    Results for the hydraulic conductivity of a dark red latosol (Oxisol) under laboratory and field conditions are presented. The laboratory experiments simulated field conditions through the measurement of the soil water content profiles as a function of time in soil columns. The data were obtained by the 241 Am gamma-ray transmission method, using standard gamma ray spectrometry equipment. Tensiometers at the depths of 10 and 25 cm were used to obtain the soil water content profiles as a function of time in the field experiments. The hydraulic conductivity functions were determined through internal soil drainage. The results showed higher values of the hydraulic conductivity measured in the field, compared with the laboratory values. The hydraulic conductivity determination methods presented distinct values for the field experiments as well as for the laboratory ones. (author)

  15. Identifying Variations in Hydraulic Conductivity on the East River at Crested Butte, CO

    Science.gov (United States)

    Ulmer, K. N.; Malenda, H. F.; Singha, K.

    2016-12-01

    Slug tests are a widely used method to measure saturated hydraulic conductivity, or how easily water flows through an aquifer, by perturbing the piezometric surface and measuring the time the local groundwater table takes to re-equilibrate. Saturated hydraulic conductivity is crucial to calculating the speed and direction of groundwater movement. Therefore, it is important to document data variance from in situ slug tests. This study addresses two potential sources of data variability: different users and different types of slug used. To test for user variability, two individuals slugged the same six wells with water multiple times at a stream meander on the East River near Crested Butte, CO. To test for variations in type of slug test, multiple water and metal slug tests were performed at a single well in the same meander. The distributions of hydraulic conductivities of each test were then tested for variance using both the Kruskal-Wallis test and the Brown-Forsythe test. When comparing the hydraulic conductivity distributions gathered by the two individuals, we found that they were statistically similar. However, we found that the two types of slug tests produced hydraulic conductivity distributions for the same well that are statistically dissimilar. In conclusion, multiple people should be able to conduct slug tests without creating any considerable variations in the resulting hydraulic conductivity values, but only a single type of slug should be used for those tests.

  16. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling.

    Science.gov (United States)

    Bumgarner, Johnathan R; McCray, John E

    2007-06-01

    During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.

  17. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    International Nuclear Information System (INIS)

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Highlights: ► Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. ► Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). ► Determined how compaction affects the hydraulic conductivity of clay soils. ► Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10 −10 , 2.08 × 10 −9 and 6.8 × 10 −10 m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m 3 ). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m 3 ) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  18. Saturated hydraulic conductivity in relation to physical properties of soils in the Nsukka Plains, SE Nigeria

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1994-05-01

    The objective of the study is to develop and validate statistical models for estimating the saturated hydraulic conductivity of soils with high water intake rates from more easily-determined properties and to test the hypothesis that it is equal to Philip transmissivity term and the steady infiltration rate. The results of the study show that the dominant physical property influencing saturated hydraulic conductivity of the investigated soils is the macroporosity. 37 refs, 6 figs, 5 tabs

  19. Effects of fines content on hydraulic conductivity and morphology of laterite soil as hydraulic barrier

    Science.gov (United States)

    Bello Yamusa, Yamusa; Yunus, Nor Zurairahetty Mohd; Ahmad, Kamarudin; Rahman, Norhan Abd; Sa'ari, Radzuan

    2018-03-01

    Laterite soil was investigated to find out the effects of fines content and to identify the micro-structural and molecular characteristics to evaluate its potentiality as a compacted soil landfill liner material. Tests were carried out on natural soil and reconstituted soil by dry weight of soil samples to determine the physical and engineering properties of the soil. All tests were carried out on the samples by adopting the British Standard 1377:1990. The possible mechanisms that contributed to the clay mineralogy were analyzed using spectroscopic and microscopic techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) and X-ray diffractometry (XRD). The laterite soil was found to contain kaolinite as the major clay minerals. A minimum of 50% fines content of laterite soil met the required result for hydraulic barriers in waste containment facilities.

  20. Optimizing a gap conductance model applicable to VVER-1000 thermal–hydraulic model

    International Nuclear Information System (INIS)

    Rahgoshay, M.; Hashemi-Tilehnoee, M.

    2012-01-01

    Highlights: ► Two known conductance models for application in VVER-1000 thermal–hydraulic code are examined. ► An optimized gap conductance model is developed which can predict the gap conductance in good agreement with FSAR data. ► The licensed thermal–hydraulic code is coupled with the gap conductance model predictor externally. -- Abstract: The modeling of gap conductance for application in VVER-1000 thermal–hydraulic codes is addressed. Two known models, namely CALZA-BINI and RELAP5 gap conductance models, are examined. By externally linking of gap conductance models and COBRA-EN thermal hydraulic code, the acceptable range of each model is specified. The result of each gap conductance model versus linear heat rate has been compared with FSAR data. A linear heat rate of about 9 kW/m is the boundary for optimization process. Since each gap conductance model has its advantages and limitation, the optimized gap conductance model can predict the gap conductance better than each of the two other models individually.

  1. Measurement of in-situ hydraulic conductivity in the Cretaceous Pierre Shale

    International Nuclear Information System (INIS)

    Neuzil, C.E.; Bredehoeft, J.D.

    1981-01-01

    A recent study of the hydrology of the Cretaceous Pierre Shale utilized three techniques for measuring the hydraulic conductivity of tight materials. Regional hydraulic conductivity was obtained from a hydrodynamic model analysis of the aquifer-aquitard system which includes the Pierre Shale. Laboratory values were obtained from consolidation tests on core samples. In-situ values of hydraulic conductivity were obtained by using a borehole slug test designed specifically for tight formations. The test is conducted by isolating a portion of the borehole with one or two packers, abruptly pressurizing the shut-in portion, and recording the pressure decay with time. The test utilizes the analytical solution for pressure decay as water flows into the surrounding formation. Consistent results were obtained using the test on three successively smaller portions of a borehole in the Pierre Shale. The in-situ tests and laboratory tests yielded comparable values; the regional hydraulic conductivity was two to three orders of magnitude larger. This suggests that the lower values represent intergranular hydraulic conductivity of the intact shale and the regional values represent secondary permeability due to fractures. Calculations based on fracture flow theory demonstrate that small fractures could account for the observed differences

  2. Analysis of Grain Size Distribution and Hydraulic Conductivity for a Variety of Sediment Types with Application to Wadi Sediments

    KAUST Repository

    Rosas Aguilar, Jorge

    2013-05-01

    Grain size distribution, porosity, and hydraulic conductivity from over 400 unlithified sediment samples were analized. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations commonly used to estimate hydraulic conductivity from grain size analyses. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values. Modifications of the empirical equations, including changes to special coefficients and statistical off sets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, off shore marine, and wadi sediments. Expected hydraulic conductivity estimation errors were reduced. Correction factors were proposed for wadi sediments, taking mud percentage and the standard deviation (in phi units) into account.

  3. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  4. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    Science.gov (United States)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  5. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    International Nuclear Information System (INIS)

    Iriya, K.; Fujii, K.; Kubo, H.

    2002-02-01

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  6. Critical analysis of soil hydraulic conductivity determination using monoenergetic gamma radiation attenuation

    International Nuclear Information System (INIS)

    Portezan Filho, Otavio

    1997-01-01

    Three soil samples of different textures: LVA (red yellow latosol), LVE (dark red latosol) and LRd (dystrophic dark red latosol) were utilized for unsaturated hydraulic conductivity K(θ) measurements. Soil bulk densities and water contents during internal water drainage were measured by monoenergetic gamma radiation attenuation, using homogeneous soil columns assembled in the laboratory. The measurements were made with a collimated gamma beam of 0.003 m in diameter using a Nal(Tl) (3'' x 3 '') detector and a 137 Cs gamma source of 74 X 10 8 Bq and 661.6 KeV. Soil columns were scanned with the gamma beam from 0.01 to 0.20 m depth, in 0.01m steps, for several soil water redistribution times. The results show a great variability of the unsaturated hydraulic conductivity relation K(θ), even though homogeneous soils were used. The variability among methods is significantly smaller in relation to variability in space. The assumption of unit hydraulic gradient during redistribution of soil water utilized in the methods of Hillel, Libardi and Sisson leads to hydraulic conductivity values that increase in depth. The exponential character of the K(θ) relationship, is responsible for the difficulty of estimating soil hydraulic conductivity, which is a consequence of small variations in the porous arrangement, even in samples supposed to be homogeneous. (author)

  7. Spatial variability of hydraulic conductivity of an unconfined sandy aquifer determined by a mini slug test

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Hinsby, Klaus; Christensen, Thomas Højlund

    1992-01-01

    The spatial variability of the hydraulic conductivity in a sandy aquifer has been determined by a mini slug test method. The hydraulic conductivity (K) of the aquifer has a geometric mean of 5.05 × 10−4 m s−1, and an overall variance of 1n K equal to 0.37 which corresponds quite well to the results...... obtained by two large scale tracer experiments performed in the aquifer. A geological model of the aquifer based on 31 sediment cores, proposed three hydrogeological layers in the aquifer concurrent with the vertical variations observed with respect to hydraulic conductivity. The horizontal correlation......, to be in the range of 0.3–0.5 m compared with a value of 0.42 m obtained in one of the tracer tests performed....

  8. An improved method for interpreting API filter press hydraulic conductivity test results

    International Nuclear Information System (INIS)

    Heslin, G.M.; Baxter, D.Y.; Filz, G.M.; Davidson, R.R.

    1997-01-01

    The American Petroleum Institute (API) filter press is frequently used to measure the hydraulic conductivity of soil-bentonite backfill during the mix design process and as part of construction quality controls. However, interpretation of the test results is complicated by the fact that the seepage-induced consolidation pressure varies from zero at the top of the specimen to a maximum value at the bottom of the specimen. An analytical solution is available which relates the stress, compressibility, and hydraulic conductivity in soil consolidated by seepage forces. This paper presents the results of a laboratory investigation undertaken to support application of this theory to API hydraulic conductivity tests. When the API test results are interpreted using seepage consolidation theory, they are in good agreement with the results of consolidometer permeameter tests. Limitations of the API test are also discussed

  9. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  10. Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging

    Science.gov (United States)

    Jardani, A.; Revil, A.; Dupont, J. P.

    2013-02-01

    The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity

  11. Characterization of hydraulic conductivity of the alluvium and basin fill, Pinal Creek Basin near Globe, Arizona

    Science.gov (United States)

    Angeroth, Cory E.

    2002-01-01

    Acidic waters containing elevated concentrations of dissolved metals have contaminated the regional aquifer in the Pinal Creek Basin, which is in Gila County, Arizona, about 100 kilometers east of Phoenix. The aquifer is made up of two geologic units: unconsolidated stream alluvium and consolidated basin fill. To better understand how contaminants are transported through these units, a better understanding of the distribution of hydraulic conductivity and processes that affect it within the aquifer is needed. Slug tests were done in September 1997 and October 1998 on 9 wells finished in the basin fill and 14 wells finished in the stream alluvium. Data from the tests were analyzed by using either the Bouwer and Rice (1976) method, or by using an extension to the method developed by Springer and Gellhar (1991). Both methods are applicable for unconfined aquifers and partially penetrating wells. The results of the analyses show wide variability within and between the two geologic units. Hydraulic conductivity estimates ranged from 0.5 to 250 meters per day for the basin fill and from 3 to 200 meters per day for the stream alluvium. Results of the slug tests also show a correlation coefficient of 0.83 between the hydraulic conductivity and the pH of the ground water. The areas of highest hydraulic conductivity coincide with the areas of lowest pH, and the areas of lowest hydraulic conductivity coincide with the areas of highest pH, suggesting that the acidic water is increasing the hydraulic conductivity of the aquifer by dissolution of carbonate minerals.

  12. The measurement of the vertical component of hydraulic conductivity in single cased and uncased boreholes

    International Nuclear Information System (INIS)

    Black, J.H.; Noy, D.J.; Brightman, M.A.

    1986-11-01

    The project summarised in the paper aimed to assess the different existing methods of measuring vertical hydraulic conductivity in single boreholes by carrying out some actual field testing. The measurements are relevant to the disposal of radioactive waste into argillaceous rocks, where the primary geological barrier to potential leachate migration is the mudrock. Also the prime parameter of interest in the assessment of mudrocks is the vertical component of hydraulic conductivity. A description of the methods of test analysis and interpretation is given. The experimental programme for open borehole testing and cased borehole testing is described, along with the practical and theoretical considerations. (U.K.)

  13. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; Deepagoda Thuduwe Kankanamge Kelum, Chamindu; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle......, potential relationships between Ksat and Dp/Do were investigated. A total of 84 undisturbed soil cores were extracted from the topsoil of a field site, and Dp/Do and Ksat were measured in the laboratory. Water-induced and solids-induced tortuosity factors were obtained by applying a two-parameter Dp...

  14. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    Science.gov (United States)

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  15. Averaging hydraulic head, pressure head, and gravitational head in subsurface hydrology, and implications for averaged fluxes, and hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2009-07-01

    Full Text Available Current theories for water flow in porous media are valid for scales much smaller than those at which problem of public interest manifest themselves. This provides a drive for upscaled flow equations with their associated upscaled parameters. Upscaling is often achieved through volume averaging, but the solution to the resulting closure problem imposes severe restrictions to the flow conditions that limit the practical applicability. Here, the derivation of a closed expression of the effective hydraulic conductivity is forfeited to circumvent the closure problem. Thus, more limited but practical results can be derived. At the Representative Elementary Volume scale and larger scales, the gravitational potential and fluid pressure are treated as additive potentials. The necessary requirement that the superposition be maintained across scales is combined with conservation of energy during volume integration to establish consistent upscaling equations for the various heads. The power of these upscaling equations is demonstrated by the derivation of upscaled water content-matric head relationships and the resolution of an apparent paradox reported in the literature that is shown to have arisen from a violation of the superposition principle. Applying the upscaling procedure to Darcy's Law leads to the general definition of an upscaled hydraulic conductivity. By examining this definition in detail for porous media with different degrees of heterogeneity, a series of criteria is derived that must be satisfied for Darcy's Law to remain valid at a larger scale.

  16. A study on the effective hydraulic conductivity of an anisotropic porous medium

    International Nuclear Information System (INIS)

    Seong, Kwan Jae

    2002-01-01

    Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropic is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities

  17. The measurement of unsaturated hydraulic conductivity from one-step outflow method

    International Nuclear Information System (INIS)

    Lee, S. H.; Hwang, J. H.; Lee, J. M.; Kim, C. R.

    2003-01-01

    One of the most important parts in constructing radioactive waste repository may be its safety aspect. The fundamental function of the repository is to isolate completely and forever the radioactive wastes disposed of in it. However, since either normally or abnormally nuclides are to be released from the repository with a certain causes. The hydraulic conductivity is related to transportation of nuclide in soil. However, hydraulic characteristics research in unsaturated soil is not enough at present time. A fast and easy procedure for estimating unsaturated flow parameters is presented. The estimation is based on direct measurement of the retention characteristics combined with inverse estimation of the hydraulic conductivity characteristics from one-step outflow experiment

  18. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)

    Science.gov (United States)

    Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem

    2015-10-01

    Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

  19. ESTIMATION OF HYDRAULIC CONDUCTIVITY AND CONTENT OF FINES FROM EXPERIMENTAL LAWS THAT CORELATE HYDRAULIC AND ELECTRIC PARAMETERS

    Directory of Open Access Journals (Sweden)

    Héctor José Peinado-Guevara

    2010-09-01

    Full Text Available Hydraulic conductivity is a basic element in the advancement of knowledge of a geological environment in both the flow and transport processes of pollutants for conservation projects, managementand environmental management and also for the development of public policies for protection of ecosystems, among others. The aim of this paper is to obtain the hydraulic conductivity (K and the finescontent (C of saturated granular half using two empirical laws. One correlates the electrical conductivity of saturated granular media σo and water saturated σw which depends on the formation factor(F, cation exchange capacity (CEC and the fines content in the saturated soil. Using data obtained from materials of 18 samples from 6 wells the relationships between F-C and CEC-C were obtained,so the equation reduces to a σo function in terms of σw and C, with a correlation coefficient of R = 0.97. A second experimental law is the one that results from the experimental relationship between K and C,being 1.4054 K 0.1804.C with a correlation coefficient of R = 0.96. From both experimental expressions relationships between K and C, a and C,and C are created so from every pair knowing one of them you get to know the other one. Under the scheme outlined electrical conductivity sections for the saturated medium and fines content are obtained,finding that the groundwater in the study area consists of a thin top layer and beneath it there is a predominantly sandy environment.

  20. Changes in hydraulic conductivity of sand-bentonite mixtures accompanied with alkaline alteration

    International Nuclear Information System (INIS)

    Yamaguchi, Tetsuji; Sawaguchi, Takuma; Tsukada, Manabu; Tanaka, Tadao

    2012-01-01

    Document available in extended abstract form only. Montmorillonite is the main constituent of bentonite clay buffer materials in radioactive waste repositories. Highly alkaline environments induced by cement based materials are likely to alter montmorillonite, and to deteriorate the physical and/or chemical properties of the buffer materials. The deterioration may cause variation in hydraulic conductivity of the buffer and induce major uncertainties in the radionuclide migration analysis. Empirical data on the variation of hydraulic conductivity are, however, scarce mainly because the alteration of compacted buffer materials, sand-bentonite mixture specimen, is extremely slow (1). In this study, laboratory experiments were performed to observe changes in hydraulic conductivity of sand-bentonite mixtures accompanied with their alkaline alteration using NaOH based solutions at 80 - 90 deg. C. Our preliminary attempt to degrade sand-bentonite mixture by permeating alkaline solutions was unsuccessful, in which the flow rate of water became unstable. This was interpreted as an artifact due to generation and stagnation of air in the mixture specimen. The water conduction experimental apparatus was modified by removing membrane filter and leaving only sintered stainless steel filter, and by equipping the pressurizing tank with a preheater. Three types of experiments were performed afterwards. Series-1: Multi step alteration / water-conduction experiments. Two sand-bentonite mixture specimens with 50 mm in diameter, 10 mm in thickness and 1,600 kg m -3 in dry density were applied to hydraulic conductivity measurement and alkaline alteration process alternately. The mixture ratio was 1:1 in dry weight. The hydraulic conductivity was determined by permeating the specimens with 1.0 mol L -1 NaCl solution at 40 deg. C. While the specimens were immersed in Si, Al and Ca-adjusted 1.0 mol L -1 NaOH solution at 90 deg. C to allow alteration. In the final water-conduction step, the

  1. Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay

    Directory of Open Access Journals (Sweden)

    W.Z. Chen

    2017-06-01

    Full Text Available Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydro-mechanical (THM coupling behaviour of Boom Clay, a series of permeability tests using temperature-controlled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory (URL HADES. Due to its sedimentary nature, Boom Clay presents across-anisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical (Kv and horizontal (Kh hydraulic conductivities show that the hydraulic conductivity at 80 °C is about 2.4 times larger than that at room temperature (23 °C, and the hydraulic conductivity variation with temperature is basically reversible during heating–cooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope (SEM tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance (NMR tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted (considering water viscosity and density changes with temperature can be attributed to the microstructural weakening effect on the thermal volume change

  2. Hydrogeological study of single water conducting fracture using a crosshole hydraulic test apparatus

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Shimo, Michito; Yamamoto, Takuya

    1998-03-01

    The Crosshole Injection Test Apparatus has been constructed to evaluate the hydraulic properties and conditions, such as hydraulic conductivity and its anisotropy, storage coefficient, pore pressure etc. within a rock near a drift. The construction started in FY93 and completed on August FY96 as a set of equipments for the use of crosshole hydraulic test, which is composed of one injection borehole instrument, one observation borehole instrument and a set of on-ground instrument. In FY96, in-situ feasibility test was conducted at a 550 m level drift in Kamaishi In Situ Test Site which has been operated by PNC, and the performance of the equipment and its applicability to various types of injection method were confirmed. In this year, a hydrogeological investigation on the single water conducting fracture was conducted at a 250 m level drift in Kamaishi In Situ Test Site, using two boreholes, KCH-3 and KCH-4, both of which are 30 m depth and inclined by 45 degrees from the surface. Pressure responses at the KCH-3 borehole during the drilling of KCH-4 borehole, the results of Borehole TV logging and core observation indicated that a major conductive single-fracture was successfully isolated by the packers. As a result of a series of the single-hole and the crosshole tests (sinusoidal and constant flowrate test), the hydraulic parameters of the single-fracture (such as hydraulic conductivity and storage coefficient) were determined. This report shows all the test result, analysed data, and also describes the hydro-geological structure near the drift. (author)

  3. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema.

    Science.gov (United States)

    Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A

    2010-03-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.

  4. The influence of clay particles on the hydraulic conductivity of sandy soils

    NARCIS (Netherlands)

    Fahmy, M.I.

    1961-01-01

    The relation between hydraulic conductivity and size of the sand particles and clay content was investigated in artificial mixtures of sand and clay and in natural soils, in four different ways in the laboratory and field.

    In the artificial mixtures coarse aggregates of illitic clay hardly

  5. Lateral saturated hydraulic conductivity of soil horizons evaluated in large-volume soil monoliths

    NARCIS (Netherlands)

    Pirastru, Mario; Marrosu, Roberto; Prima, Di Simone; Keesstra, Saskia; Giadrossich, Filippo; Niedda, Marcello

    2017-01-01

    Evaluating the lateral saturated hydraulic conductivity, Ks,l, of soil horizons is crucial for understanding and modelling the subsurface flow dynamics in many shallow hill soils. A Ks,l measurement method should be able to catch the effects of soil heterogeneities governing hydrological processes

  6. The impact of the age of vines on soil hydraulic conductivity in vineyards in eastern Spain

    NARCIS (Netherlands)

    Alagna, Vincenzo; Prima, Di Simone; Rodrigo-Comino, Jesús; Iovino, Massimo; Pirastru, Mario; Keesstra, Saskia D.; Novara, Agata; Cerdà, Artemio

    2017-01-01

    Soil infiltration processes manage runoff generation, which in turn affects soil erosion. There is limited information on infiltration rates. In this study, the impact of vine age on soil bulk density (BD) and hydraulic conductivity (Ks) was assessed on a loam soil tilled by chisel plough. Soil

  7. Hydraulic conductivity in sugar cane cultivated in soils previous vin aza application

    International Nuclear Information System (INIS)

    Musso, M.; Pereira, S.; Fajardo, L.

    2012-01-01

    This work analyzes the hydraulic conductivity in soil clay loams developed in Libertad formation in Bella Union where grows sugar cane with vinaza. In the agricultural activities are used different chemical additives such as organic and inorganic fertilizers, herbicides and pesticides, which interact with the biotic (roots, soil microbiology) and abiotic (clay, soil solution, etc.) elements

  8. Evaluating soil moisture and hydraulic conductivity in semi-arid rangeland soils

    International Nuclear Information System (INIS)

    Whitaker, M.P.L.

    1993-01-01

    The US DOE's Office of Civilian Radioactive Waste Management (DOE-OCRWM) Fellowship Program supports various disciplines of academic research related to the isolation of radionuclides from the biosphere. The purpose of this paper is to provide an example of a university research application in the specific discipline of hydrology and water resources (a multi-disciplinary field encompassing engineering and the earth sciences), and to discuss how this research pertains to the objectives of the DOE-OCRWM Fellowship Program. The university research application is twofold: One portion focuses on the spatial variability of soil moisture (θ) and the other section compares point measurements with small watershed estimates of hydraulic conductivity (K) in a semi-arid rangeland soil in Arizona. For soil moisture measurements collected over a range of horizontal sampling intervals, no spatial correlation was evident. This outcome is reassuring to computer modelers who have assumed no spatial correlation for soil moisture over smaller scales. In regard to hydraulic conductivity, point measurements differed significantly from small watershed estimates of hydraulic conductivity which were derived from a calibrated and verified rainfall-runoff computer model. The estimates of saturated hydraulic conductivity (Ks) were obtained from previous computer simulations in which measured data was collected in the same research location as the present study

  9. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

    Science.gov (United States)

    L.S. Santiago; G. Goldstein; F.C. Meinzer; J.B. Fisher; K. Maehado; D. Woodruff; T. Jones

    2004-01-01

    We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2, assimilation per unit leaf area (Aarea...

  10. Hydraulic conductivity of Red-Yellow Podzolic Soil from Zona da Mata in Pernambuco State, Brazil

    International Nuclear Information System (INIS)

    M. Netto, Andre; Antonino, Antonio C.D.; Dall'Olio, Attilio; Carneiro, Clemente J.G.; Audry, Pierre

    1997-01-01

    The determination of the hydraulic conductivity of a Red-Yellow Podzolic Soil was carried out during an experiment in a plot measuring 3,5 m x 3,5 m at the Experimental Station of Itapirema, Goiania, in the State of Pernambuco. The internal drainage method was used to obtain the hydraulic conductivity as a function of soil water content, K (THETA), in there characteristic horizons of the soil. In relation to the methodological aspects, processing of data from internal drainage experiments, including the initial phase of fast drainage, the adjustment of the required parameters, it is necessary to use functions that reproduce the distinct transition between the fast and slow phases of drainage. From all five tested functions, those of power sum of two exponentials and sum of three exponentials, especially this last one, adjusted well to this distinct transition. Three characteristic horizons of the Red-yellow Podzolic Soil were investigated for hydraulic conductivity. The sandy a horizon with large pores, has a high conductivity while the B1t horizon, with massive structure and few visible pores, has a low infiltration rate. The hydraulic dynamics of the B2 horizon is more complex due to its heterogeneity. The precise characterization of the A and B1t, horizons, which are the most important to agriculture and soil conservation makes it possible to elaborate numeric simulation models of the water transference process in the superficial horizons of this type of soil. (author). 11 refs., 3 figs., 1 tab

  11. In Vitro Evaluation of Dentin Hydraulic Conductance After 980 nm Diode Laser Irradiation.

    Science.gov (United States)

    Rizzante, Fabio A P; Maenosono, Rafael M; Duarte, Marco A H; Furuse, Adilson Y; Palma-Dibb, Regina G; Ishikiriama, Sérgio K

    2016-03-01

    Dentin hypersensitivity treatments are based on the physical obliteration of the dentinal tubules to reduce hydraulic conductance. The aim of the present study is to evaluate the hydraulic conductance of bovine root dentin after irradiation with a 980-nm diode laser, with or without associated fluoride varnish. Sixty bovine root dentin specimens were divided into six groups (n = 10 in each group): G1, G3, and G5 (0.5 W, 0.7 W, and 1 W diode laser, respectively); G2, G4, and G6 (fluoride varnish application + 0.5 W, 0.7 W, and 1 W diode laser, respectively). The dentin hydraulic conductance was evaluated at four time periods with a fluxmeter: 1) with smear layer, 2) after 37% phosphoric acid etching, 3) after the treatments, and 4) after 6% citric acid challenge. After the dentinal fluid flow measurements, specimens were also evaluated for mineral composition using energy dispersive X-ray spectroscopy (EDS). Analysis demonstrated a better result with increased irradiation power (P diode laser irradiation was associated with the application of fluoride varnish (P laser irradiation, the 1 W group was superior when compared with the 0.5 W and 0.7 W irradiated groups immediately after treatment (P laser treatments. Laser irradiation of exposed dentin promoted significant reduction in the dentin hydraulic conductance, mainly with higher energy densities and association with fluoride varnish.

  12. Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity

    Science.gov (United States)

    Saturated hydraulic conductivity Ksat is a fundamental characteristic in modeling flow and contaminant transport in soils and sediments. Therefore, many models have been developed to estimate Ksat from easily measureable parameters, such as textural properties, bulk density, etc. However, Ksat is no...

  13. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  14. A low cost apparatus for measuring the xylem hydraulic conductance in plants

    Directory of Open Access Journals (Sweden)

    Luciano Pereira

    2012-01-01

    Full Text Available Plant yield and resistance to drought are directly related to the efficiency of the xylem hydraulic conductance and the ability of this system to avoid interrupting the flow of water. In this paper we described in detail the assembling of an apparatus proposed by TYREE et al. (2002, and its calibration, as well as low cost adaptations that make the equipment accessible for everyone working in this research area. The apparatus allows measuring the conductance in parts of roots or shoots (root ramifications or branches, or in the whole system, in the case of small plants or seedlings. The apparatus can also be used to measure the reduction of conductance by embolism of the xylem vessels. Data on the hydraulic conductance of eucalyptus seedlings obtained here and other reports in the literature confirm the applicability of the apparatus in physiological studies on the relationship between productivity and water stress.

  15. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment.

    Science.gov (United States)

    Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A

    2012-01-01

    In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.

  16. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  17. Hydraulic and thermal conduction phenomena in soils at the particle-scale: Towards realistic FEM simulations

    International Nuclear Information System (INIS)

    Narsilio, G A; Yun, T S; Kress, J; Evans, T M

    2010-01-01

    This paper summarizes a method to characterize conduction properties in soils at the particle-scale. The method set the bases for an alternative way to estimate conduction parameters such as thermal conductivity and hydraulic conductivity, with the potential application to hard-to-obtain samples, where traditional experimental testing on large enough specimens becomes much more expensive. The technique is exemplified using 3D synthetic grain packings generated with discrete element methods, from which 3D granular images are constructed. Images are then imported into the finite element analyses to solve the corresponding governing partial differential equations of hydraulic and thermal conduction. High performance computing is implemented to meet the demanding 3D numerical calculations of the complex geometrical domains. The effects of void ratio and inter-particle contacts in hydraulic and thermal conduction are explored. Laboratory measurements support the numerically obtained results and validate the viability of the new methods used herein. The integration of imaging with rigorous numerical simulations at the pore-scale also enables fundamental observation of particle-scale mechanisms of macro-scale manifestation.

  18. Estimation of hydraulic conductivities of Yucca Mountain tuffs from sorptivity and water retention measurements

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-06-01

    The hydraulic conductivity functions of the matrix rocks at Yucca Mountain, Nevada, are among the most important data needed as input for the site-scale hydrological model of the unsaturated zone. The difficult and time-consuming nature of hydraulic conductivity measurements renders it infeasible to directly measure this property on large numbers of cores. Water retention and sorptivity measurements, however, can be made relatively rapidly. The sorptivity is, in principle, a unique functional of the conductivity and water retention functions. It therefore should be possible to invert sorptivity and water retention measurements in order to estimate the conductivity; the porosity is the only other parameter that is required for this inversion. In this report two methods of carrying out this inversion are presented, and are tested against a limited data set that has been collected by Flint et al. at the USGS on a set of Yucca Mountain tuffs. The absolute permeability is usually predicted by both methods to within an average error of about 0.5 - 1.0 orders of magnitude. The discrepancy appears to be due to the fact that the water retention curves have only been measured during drainage, whereas the imbibition water retention curve is the one that is relevant to sorptivity measurements. Although the inversion methods also yield predictions of the relative permeability function, there are yet no unsaturated hydraulic conductivity data against which to test these predictions

  19. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  20. The Impact of the Age of Vines on Soil Hydraulic Conductivity in Vineyards in Eastern Spain

    Directory of Open Access Journals (Sweden)

    Vincenzo Alagna

    2017-12-01

    Full Text Available Soil infiltration processes manage runoff generation, which in turn affects soil erosion. There is limited information on infiltration rates. In this study, the impact of vine age on soil bulk density (BD and hydraulic conductivity (Ks was assessed on a loam soil tilled by chisel plough. Soil sampling was conducted in the inter row area of six vineyards, which differed by the age from planting: 0 (Age 0; just planted, 1, 3, 6, 13, and 25 years (Age 1, Age 3, Age 6, Age 13, and Age 25, respectively. The One Ponding Depth (OPD approach was applied to ring infiltration data to estimate soil Ks with an α* parameter equal to 0.012 mm−1. Soil bulk density for Age 0 was about 1.5 times greater than for Age 25, i.e., the long-term managed vineyards. Saturated hydraulic conductivity at Age 0 was 86% less than at Age 25. The planting works were considered a major factor for soil compaction and the reduction of hydraulic conductivity. Compared to the long-term managed vineyards, soil compaction was a very short-term effect given that BD was restored in one year due to ploughing. Reestablishment of Ks to the long-term value required more time.

  1. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation

    Science.gov (United States)

    J.-C. Domec; A. Noormets; Ge Sun; J. King; Steven McNulty; Michael Gavazzi; Johnny Boggs; Emrys Treasure

    2009-01-01

    The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal...

  2. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don

    2003-01-01

    and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii......) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...

  3. Sand box experiments with bioclogging of porous media: Hydraulic conductivity reductions

    DEFF Research Database (Denmark)

    Seifert, Dorte; Engesgaard, Peter

    2012-01-01

    Tracer experiments during clogging and de-clogging experiments in a 2D sand box were via an image analysis used to establish a data set on the relation between changes in hydraulic conductivity (K) and relative porosity (β). Clogging appears to create a finger-like tracer transport, which could...... and closer to the substrate source during the experiments suggesting that the zone of clogging moved upstream. Three clogging models, K(β), from the literature were tested for their ability to describe the temporal changes in clogging at the scale of the sand box; the model of Clement et al. (1996......) that makes no assumption on biomass distribution, the plug formation model of Thullner et al. (2002a), and the biofilm-plug formation model of Vandevivere (1995). The plug formation and biofilm-plug formation models both match the observed changes between the hydraulic conductivity of the sand box...

  4. EVALUATION OF THE BENTONITE CONTENT IN SPENT FOUNDRY SANDS AS A FUNCTION OF HYDRAULIC CONDUCTIVITY COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Schirlene Chegatti

    2013-06-01

    Full Text Available This study evaluates the relationship of the bentonite content and hydraulic conductivity coefficient (k of waste foundry sands in tests of hydraulic conductivity in a flexible wall permeameter. The test samples had concentrations of activated sodium bentonite and natural sodium bentonite between 4% and 15%. It was also analyzed chemically the liquid leachate (aluminum, barium, chromium, cadmium, lead, phenols, iron, fluoride, and manganese, following de standard tests of Standard Methods 3111 B e D for the determination of this components in liquid samples. The experiments were supplemented with cation exchange capacity analysis. The results indicate that the values of are is related to the content of bentonite in waste foundry sand and the percolation from this waste disposal.

  5. ROOT HYDRAULIC CONDUCTIVITY AND PHOTOSYNTHETIC CAPACITY OF EUCALYPT CLONAL CUTTINGS WITH ROOT MALFORMATION INDUCTIONS

    Directory of Open Access Journals (Sweden)

    Fábio Afonso Mazzei Moura de Assis Figueiredo

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814566The gain reduction of wood biomass in trees has been assigned to root deformations even in the nursery phase. The objective of this work was the evaluation of the root system hydraulic conductivity, gas exchanges and photochemical efficiency of eucalypt clonal cuttings with and without root deformation inductions. The treatments were: 1 operational cuttings without root malformation inductions (grown according to the used methodology of Fibria Cellulose S.A.; 2 root deformation inductions. These inductions did not promote decrease in the root volume. However, the deformations brought reduction of the root system hydraulic conductivity. Lower photosynthetic rates were also observed along the day in the cuttings in the root deformed cuttings. This decreasing rate is connected to stomatal and non stomatal factors.

  6. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    Science.gov (United States)

    Maurya, P. K.; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, A. V.; Bjerg, P. L.; Auken, E.; Fiandaca, G.

    2018-05-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: (1) spectral inversion of the induced polarization data through a reparametrization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; (2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data set from the Grindsted stream (Denmark), where contaminated groundwater from a factory site discharges to the stream. Two overlapping areas were covered with seven parallel 2-D profiles each, one large area of 410 m × 90 m (5 m electrode spacing) and one detailed area of 126 m × 42 m (2 m electrode spacing). The geophysical results were complemented and validated by an extensive set of hydrologic and geologic information, including 94 estimates of hydraulic permeability obtained from slug tests and grain size analyses, 89 measurements of water electrical conductivity in groundwater, and four geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging. An average formation factor was estimated from the correlation between the imaged bulk conductivity values and the water conductivity values measured in groundwater, in order to

  7. Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity

    OpenAIRE

    Barotto, Antonio J.; Monteoliva, Silvia; Gyenge, Javier; Martínez-Meier, Alejandro; Moreno, Karen; Tesón, Natalia; Fernández, María Elena

    2017-01-01

    Aim of the study: To characterize wood anatomical traits of three Eucalyptus species that differ in wood density and ecological requirements, and to examine the relationships between some anatomical features, wood density, and theoretical xylem hydraulic conductivity (Ks).Area of study: We analyzed 86 trees from three sites of Argentina (Entre Ríos and Buenos Aires Provinces).Methods: The sampled trees were Eucalyptus globulus, E. grandis and E. viminalis ranging from 11 to 15 years old. One ...

  8. Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity

    OpenAIRE

    Antonio J. Barotto; Silvia Monteoliva; Javier Gyenge; Alejandro Martínez-Meier; Karen Moreno; Natalia Tesón; María Elena Fernández

    2017-01-01

    Aim of the study: To characterize wood anatomical traits of three Eucalyptus species that differ in wood density and ecological requirements, and to examine the relationships between some anatomical features, wood density, and theoretical xylem hydraulic conductivity (Ks). Area of study: We analyzed 86 trees from three sites of Argentina (Entre Ríos and Buenos Aires Provinces). Methods: The sampled trees were Eucalyptus globulus, E. grandis and E. viminalis ranging from 11 to 15 years...

  9. Pengaruh Kadar Air Dan Enerji Pemadatan Terhadap Hydraulic Conductivity Lempung Yang Dipadatkan

    OpenAIRE

    Arifin, Yulian Firmana

    2001-01-01

    This research will observe the effect of water content and compaction effort to the hydraulic conductivity of Karang Pilang Surabaya Clay used for clay liner of municipal waste disposal area.In this research, clay was taken from Karang Pilang, Surabaya. Clay was compacted with Standard Proctor and Modified Proctor Tests. From each of them,five sample were prepared at different water content (wc apt),2 (two) at wc

  10. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    Science.gov (United States)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  11. The measurement of the vertical component of hydraulic conductivity in single-cased and uncased boreholes

    International Nuclear Information System (INIS)

    Black, J.H.; Noy, D.J.; Brightman, M.A.

    1987-01-01

    The project aimed to assess the different existing methods of measuring vertical hydraulic conductivity in single boreholes by carrying out some actual field testing. A review of existing techniques for both field practice and analysis of the results is reported. After consideration of the various techniques a combination method of testing is proposed. A set of equipment to carry out this combination of tests was designed and built. The uncased testing revealed that it was possible to derive a value for vertical hydraulic conductivity. The doublet method, however, was not particularly successful and numerical simulation was cumbersome. The type-curve approach of appraising whether or not analysis concepts were appropriate proved the most robust method. It is clear that reconnaissance measurements of environmental pressure are very useful in defining where detailed testing should take place. The second phase of testing through perforations proved very difficult. There were many problems associated with location both of the wireline testing system within the borehole and especially of the previous measurements. However, analysis of the results in terms of skin indicated that the perforations produced a negative skin. The measurement of vertical hydraulic conductivity cannot at the moment be regarded as routine

  12. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    Science.gov (United States)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces

  13. Vertical Hydraulic Conductivity of Unsaturated Zone by Infiltrometer Analysis of Shallow Groundwater Regime (KUISG

    Directory of Open Access Journals (Sweden)

    Arkan Radhi Ali

    2018-02-01

    Full Text Available A hydrogeologic model was developed and carried out in Taleaa district of 67km2 . The study adopted a determination of KUISG depends upon the double rings infiltrometer model. The tests were carried out in a part of Mesopotamian  Zone which is covered with quaternary deposits  . In general the groundwater levels are about one meter below ground surface.  Theoretically, the inclination angle of the saturated water phase plays an important role in the determination of KUISG. The experimental results prove that the angle of inclination of the saturated phase is identical to the angle of internal friction of the soil. This conclusion is supported by the comparison of the results that obtained from falling head test and infiltrometer measurements for estimating the hydraulic conductivitiy values for ten locations within the study area. The determination of vertical hydraulic conductivity by current infiltrometer model is constrained to only the shallow groundwater regime.7

  14. Low polymer hydraulic fracturing applications in Reconcavo basin wells can reduce cost and improve conductivity

    International Nuclear Information System (INIS)

    Suzart, Joao Walter Pereira; Araujo, Paulo Fernando de

    2000-01-01

    Gels used for hydraulic-fracturing treatments generally contain high concentrations of polymer. The polymer helps the fracturing fluid achieve the level of viscosity necessary for transporting proppant through the rock matrix. However, high-polymer gels leave greater amounts of residue in the formation and can therefore cause formation damage. This paper describes how low polymer (L P) gels can be used for hydraulic-fracturing operations to reduce job costs and increase conductivity by reducing formation damage while maintaining the characteristics of a high-polymer gel. The L P fluid system has a low p H and contains an appropriate breaker concentration. Operators have achieved positive results with this system, which allows them to measure robust gel breaks and reduces the necessity for well cleaning. Consequently, formation damage can be significantly reduced. (author)

  15. The effects of waste leachates on the hydraulic conductivity of natural clays

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F

    1989-01-01

    Sanitary land filling remains a viable alternative for disposal of the ever increasing volumes of municipal solid waste. Current landfill design practice requires the presence of a clay barrier (liner) that may consist of either a natural stratum or compacted clay borrow. The liner acts as a hydraulic barrier to control the flux of contaminants from the waste into the adjacent groundwater. In order to do this clay liners are required to have low hydraulic conductivity, k (typically 10{sup {minus}8} cm/s) that shall not increase during exposure to waste leachate. This thesis reports the assessment of compatibility between natural clays from Sarnia, Ontario, and various leachates ranging from municipal solid waste leachate to concentrated organic solvents. The studies were performed using specially designed fixed-ring permeameters that allowed controlling confining effective stresses, volume changes in the soil specimen and chemistry of the influent and effluent permeants. The Sarnia clays appeared to be compatible with domestic waste leachate, showing slight reductions in k. Extensive retardation of potassium from the leachate required long testing periods (up to twelve pore volumes) before the soils were deemed to be in chemical equilibrium. Concentrated, water-soluble organics (ethanol and dioxane) increased the hydraulic conductivity of compacted clays by 100 to 1,000-fold, thus destroying their effectiveness as liners. Water-compacted clays appeared remarkably resistant to penetration by concentrated hydrophobic solvents such as cyclohexane. Large hydraulic gradients (up to {approximately}900) were required to produce breakthrough along compaction induced fractures. However, alcohols and surfactants can facilitate the entry of hydrophobic liquids into the double layers causing large increased in k.

  16. The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer

    Science.gov (United States)

    Morin, Roger H.; LeBlanc, Denis R.; Troutman, Brent M.

    2010-01-01

    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K.

  17. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data.

    Science.gov (United States)

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-03-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie's law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling.

  18. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th|info:eu-repo/dai/nl/31481518X; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  19. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion.

    Science.gov (United States)

    Bitterlich, Michael; Franken, Philipp; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.

  20. Impact of electroviscosity on the hydraulic conductance of the bordered pit membrane: a theoretical investigation.

    Science.gov (United States)

    Santiago, Michael; Pagay, Vinay; Stroock, Abraham D

    2013-10-01

    In perfusion experiments, the hydraulic conductance of stem segments ( ) responds to changes in the properties of the perfusate, such as the ionic strength ( ), pH, and cationic identity. We review the experimental and theoretical work on this phenomenon. We then proceed to explore the hypothesis that electrokinetic effects in the bordered pit membrane (BPM) contribute to this response. In particular, we develop a model based on electroviscosity in which hydraulic conductance of an electrically charged porous membrane varies with the properties of the electrolyte. We use standard electrokinetic theory, coupled with measurements of electrokinetic properties of plant materials from the literature, to determine how the conductance of BPMs, and therefore , may change due to electroviscosity. We predict a nonmonotonic variation of with with a maximum reduction of 18%. We explore how this reduction depends on the characteristics of the sap and features of the BPM, such as pore size, density of chargeable sites, and their dissociation constant. Our predictions are consistent with changes in observed for physiological values of sap and pH. We conclude that electroviscosity is likely responsible, at least partially, for the electrolyte dependence of conductance through pits and that electroviscosity may be strong enough to play an important role in other transport processes in xylem. We conclude by proposing experiments to differentiate the impact of electroviscosity on from that of other proposed mechanisms.

  1. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    Science.gov (United States)

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  2. Comparison of vertical hydraulic conductivity in a streambed-point bar system of a gaining stream

    Science.gov (United States)

    Dong, Weihong; Chen, Xunhong; Wang, Zhaowei; Ou, Gengxin; Liu, Can

    2012-07-01

    SummaryVertical hydraulic conductivities (Kv) of both streambed and point bars can influence water and solute exchange between streams and surrounding groundwater systems. The sediments in point bars are relatively young compared to the older sediments in the adjacent aquifers but slightly older compared to submerged streambeds. Thus, the permeability in point bar sediments can be different not only from regional aquifer but also from modern streambed. However, there is a lack of detailed studies that document spatial variability of vertical hydraulic conductivity in point bars of meandering streams. In this study, the authors proposed an in situ permeameter test method to measure vertical hydraulic conductivity of the two point bars in Clear Creek, Nebraska, USA. We compared the Kv values in streambed and adjacent point bars through 45 test locations in the two point bars and 51 test locations in the streambed. The Kv values in the point bars were lower than those in the streambed. Kruskal-Wallis test confirmed that the Kv values from the point bars and from the channel came from two statistically different populations. Within a point bar, the Kv values were higher along the point bar edges than those from inner point bars. Grain size analysis indicated that slightly more silt and clay particles existed in sediments from inner point bars, compared to that from streambed and from locations near the point bar edges. While point bars are the deposits of the adjacent channel, the comparison of two groups of Kv values suggests that post-depositional processes had an effect on the evolution of Kv from channel to point bars in fluvial deposits. We believed that the transport of fine particles and the gas ebullition in this gaining stream had significant effects on the distribution of Kv values in a streambed-point bar system. With the ageing of deposition in a floodplain, the permeability of point bar sediments can likely decrease due to reduced effects of the upward

  3. Role of vegetation type on hydraulic conductivity in urban rain gardens

    Science.gov (United States)

    Schott, K.; Balster, N. J.; Johnston, M. R.

    2009-12-01

    Although case studies report improved control of urban stormwater within residential rain gardens, the extent to which vegetation type (shrub, turf, prairie) affects the saturated hydraulic conductivity (Ksat) of these depressions has yet to be investigated in a controlled experiment. We hypothesized that there would be significant differences in hydraulic conductivity by vegetation type due to differences in soil physical characteristics and rooting dynamics such that Ksat of shrub gardens would exceed that of prairie, followed by turf. To test this hypothesis, we measured changes in Ksat relative to the above vegetation types as well as non-vegetative controls, each of which were replicated three times for a total of 12 rain gardens. Ksat was calculated using a published method for curve-fitting to single-ring infiltration with a two-head approach where the shape factor is independent of ponding depth. Constant-head infiltration rates were measured at two alternating ponding depths within each garden twice over the growing season. Root core samples were also taken to qualify belowground characteristics including soil bulk density and rooting dynamics relative to differences in Ksat. We found the control and shrub gardens had the lowest mean Ksat of 3.56 (SE = 0.96) and 3.73 (1.22) cm3 hr-1, respectively. Prairie gardens had the next highest mean Ksat of 12.18 (2.26) cm3 hr-1, and turf had the highest mean value of 23.63 (1.81) cm3 hr-1. These data suggest that a denser rooting network near the soil surface may influence saturated hydraulic conductivity. We applied our observed flow rates to a Glover solution model for 3-dimensional flow, which revealed considerably larger discrepancies in turf gardens than beneath prairie or shrub. This indicated that lateral flow conditions in the turf plots could be the explanation for our observed infiltration rates.

  4. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.

    Science.gov (United States)

    Lens, Frederic; Sperry, John S; Christman, Mairgareth A; Choat, Brendan; Rabaey, David; Jansen, Steven

    2011-05-01

    • Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic 'noise' and maximize detection of functionally relevant variation. • This integrative study combined in-depth anatomical observations using light, scanning and transmission electron microscopy of seven Acer taxa, and compared these observations with empirical measures of xylem hydraulics. • Our results reveal a 2 MPa range in species' mean cavitation pressure (MCP). MCP was strongly correlated with intervessel pit structure (membrane thickness and porosity, chamber depth), weakly correlated with pit number per vessel, and not related to pit area per vessel. At the tissue level, there was a strong correlation between MCP and mechanical strength parameters, and some of the first evidence is provided for the functional significance of vessel grouping and thickenings on inner vessel walls. In addition, a strong trade-off was observed between xylem-specific conductivity and MCP. Vessel length and intervessel wall characteristics were implicated in this safety-efficiency trade-off. • Cavitation resistance and hydraulic conductivity in Acer appear to be controlled by a very complex interaction between tissue, vessel network and pit characteristics. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  5. Two and Three-Phases Fractal Models Application in Soil Saturated Hydraulic Conductivity Estimation

    Directory of Open Access Journals (Sweden)

    ELNAZ Rezaei abajelu

    2017-03-01

    Full Text Available Introduction: Soil Hydraulic conductivity is considered as one of the most important hydraulic properties in water and solutionmovement in porous media. In recent years, variousmodels as pedo-transfer functions, fractal models and scaling technique are used to estimate the soil saturated hydraulic conductivity (Ks. Fractal models with two subset of two (solid and pore and three phases (solid, pore and soil fractal (PSF are used to estimate the fractal dimension of soil particles. The PSF represents a generalization of the solid and pore mass fractal models. The PSF characterizes both the solid and pore phases of the porous material. It also exhibits self-similarity to some degree, in the sense that where local structure seems to be similar to the whole structure.PSF models can estimate interface fractal dimension using soil pore size distribution data (PSD and soil moisture retention curve (SWRC. The main objective of this study was to evaluate different fractal models to estimate the Ksparameter. Materials and Methods: The Schaapetal data was used in this study. The complex consists of sixty soil samples. Soil texture, soil bulk density, soil saturated hydraulic conductivity and soil particle size distribution curve were measured by hydrometer method, undistributed soil sample, constant head method and wet sieve method, respectively for all soil samples.Soil water retention curve were determined by using pressure plates apparatus.The Ks parameter could be estimated by Ralws model as a function of fractal dimension by seven fractal models. Fractal models included Fuentes at al. (1996, Hunt and Gee (2002, Bird et al. (2000, Huang and Zhang (2005, Tyler and Wheatcraft (1990, Kutlu et al. (2008, Sepaskhah and Tafteh (2013.Therefore The Ks parameter can be estimated as a function of the DS (fractal dimension by seven fractal models (Table 2.Sensitivity analysis of Rawls model was assessed by making changes±10%, ±20% and±30%(in input parameters

  6. Evidence for xylem embolism as a primary factor in dehydration-induced declines in leaf hydraulic conductance

    Science.gov (United States)

    Daniel M. Johnson; Katherine A. McCulloh; David R. Woodruff; Frederick C. Meinzer

    2012-01-01

    Hydraulic conductance of leaves (Kleaf) typically decreases with increasing water stress and recent studies have proposed different mechanisms responsible for decreasing Kleaf. We measured Kleaf concurrently with ultrasonic acoustic emissions (UAEs) in dehydrating leaves of several species to...

  7. Unsaturated hydraulic conductivity of sandy soil columns packed to different bulk densities and water uptake by plantroots

    NARCIS (Netherlands)

    Rossi-Pisa, P.

    1978-01-01

    This paper describes a laboratory metbod used to determine both the soil moisture retention curve and the unsaturated hydraulic conductivity in soil columns under transient flow conditions during evaporation.

  8. Unsaturated hydraulic conductivity of a red-yellow podzolic soil in the Northern Zona da Mata of Pernambuco State - Brazil

    International Nuclear Information System (INIS)

    Maciel Netto, A.

    1994-08-01

    The determination of the hydraulic conductivity of a Red-Yellow Podzolic Soil was carried out during an experiment in a plot measuring 3.5 m x 3.5 m, at the Experimental Station of Itapirema, Goiania, in Pernambuco State, Brazil. The internal drainage method proposed by Hillel (1972) was used to obtain the hydraulic conductivity as a function of soil water content, K(θ), in the three characteristic horizons of the soil. Three neutron probes were used for measuring the humidity, that was determined by a calibration curve. Three characteristic horizons of the Red-Yellow Podzolic Soil were investigated for hydraulic conductivity. The sandy A horizon, with large pores, has a high conductivity while the B1t horizon, with a massive structure and few visible pores, has a low infiltration rate. The hydraulic dynamics of the B2 horizon is more complex due to its heterogeneity. (author). 79 refs, 17 figs, 11 tabs

  9. Measurement of saturated hydraulic conductivity in fine-grained glacial tills in Iowa: Comparison of in situ and laboratory methods

    Science.gov (United States)

    Bruner, D. Roger; Lutenegger, Alan J.

    1994-01-01

    Nested-standpipe and vibrating-wire piezometers were installed in Pre-Illinoian Wolf Creek and Albernett formations at the Eastern Iowa Till Hydrology Site located in Linn County, Iowa. These surficial deposits are composed of fine-grained glacial diamicton (till) with occasional discontinuous lenses of sand and silt. They overlie the Silurian (dolomite) aquifer which provides private, public, and municipal drinking water supplies in the region. The saturated hydraulic conductivity of the Wolf Creek Formation was investigated in a sub-area of the Eastern Iowa Till Hydrology Site. Calculations of saturated hydraulic conductivity were based on laboratoryflexible-wall permeameter tests, bailer tests, and pumping test data. Results show that bulk hydraulic conductivity increases by several orders of magnitude as the tested volume of till increases. Increasing values of saturated hydraulic conductivity at larger spatial scales conceptually support a double-porosity flow model for this till.

  10. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    Science.gov (United States)

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  11. Measurements of hydraulic conductivity in deep bedrock at Palmottu, Outokumpu, Pori and Ylivieska

    International Nuclear Information System (INIS)

    Ahonen, L.

    1992-01-01

    Hydraulic conductivity of the bedrock was studied using a double packer equipment fitting the small-diameter drillholes (46 mm). Test method was a slug test, in which the pressure of the test section is reduced by removing water from a tube connected to the test section and, subsequently, monitoring the recovery of the original pressure. In the work, methods of interpretation suitable for the test method are examined, and compared by means of graphical simulations. Their relevance in the case of measurements in fractured crystalline bedrock are discussed. In the method of Hvorslev, the recovery rate is assumed to be directly proportional to residual drawdown and to the hydraulic conductivity of the test section and, consequently, the effect of specific storage is neglected. In other methods of interpretations (e.g. 'Cooper'- method), assuming radial flow from porous aquifer, specific storage is taken into consideration. Different methods of interpretation lead to dissimilar theoretical responses on recovery vs. time graphics. Skin-effect and outer boundary effects also have an influence on the shape of recovery curve. There is no major differences in K-values obtained by different methods of interpretation. The study sites represent different lithological environments, comprising migmatitic gneisses with granitic interlayers (Palmottu); a complex association of serpentine, black schist, quartzite, dolomite and scram (Outokumpu); arkosic sandstone (Pori); and mafic/ultramafic intrusion (Ylivieska)

  12. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss

    Science.gov (United States)

    Golubev, V.; Whittington, P.

    2018-04-01

    Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.

  13. Determination of near-saturated hydraulic conductivity by automated minidisk infiltrometer

    Science.gov (United States)

    Klipa, Vladimir; Snehota, Michal; Dohnal, Michal; Zumr, David

    2013-04-01

    Numerical models in surface and subsurface hydrology require knowledge of infiltration properties of soils for their routine use in the field of water management, environmental protection or agriculture. A new automated tension infiltration module has been designed at the Faculty of Civil Engineering, Czech Technical University in Prague to facilitate the measurements of near-saturated hydraulic conductivity. In the proposed infiltration module the amount of infiltrated water is registered via changes of buoyant force of stationary float attached to the load cell. Presented setup consists of six mini-disk infiltrometer modules held in the light aluminum frame and two Mariotte's bottles. Three infiltrometer modules connected to each Mariotte's bottle allow performing six simultaneous measurements at two different pressure heads. Infiltration modules are connected to the automatic data logging system and consist of: plastic cover with the integrated load cell and the float, reservoir tube (external diameter of 50 mm), and sintered stainless steel plate (diameter of 44.5 mm). The newly developed device was used for determination of near-saturated hydraulic conductivity of soils in experimental catchments Uhlirska (Jizera Mountains, Northern Bohemia) and Kopaninsky creek (Bohemian-Moravian Highlands). The acquired data show a good agreement with the data obtained from previous measurements.

  14. Estimation of hydraulic conductivity on clay content in soil determined from resistivity data

    Energy Technology Data Exchange (ETDEWEB)

    Shevnin, Vladimir; Delgado-Rodriguez, Omar; Mousatov, Aleksandr [Mexican Petroleum Institute, Mexico, D.F. (Mexico); Ryjov, Albert [Moscow State Geological Prospecting Academy, Geophysical Faculty, Moscow (Russian Federation)

    2006-07-15

    The influence of clay content in sandy and clayey soils on hydraulic conductivity (filtration coefficient) is considered. A review of published experimental data on the relationship of hydraulic conductivity with soil lithology and grain size, as dependent on clay content is presented. Theoretical calculations include clay content. Experimental and calculated data agree, and several approximation formulas for filtration coefficient vs clay content are presented. Clay content in soil is estimated from electric resistivity data obtained from 2D VES interpretation. A two-step method is proposed, the first step including clay content calculating from soil resistivity and groundwater salinity, and the second step including filtration coefficient estimating from clay content. Two applications are presented. [Spanish] El contenido de arcilla en suelos areno-arcillosos influye sobre la permeabilidad hidraulica (coeficiente de filtracion). Se presenta una revision de datos experimentales publicados que relacionan el coeficiente de filtracion con el tipo litologico del suelo y el tamano de las particulas. A partir de calculos teoricos, se modifican las conocidas formulas que relacionan el coeficiente de filtracion con el contenido de arcilla. Se estima el contenido de arcilla a partir de los datos interpretados por el metodo SEV, y se propone un procedimiento para la estimacion del coeficiente de filtracion: (a) calculo del contenido de arcilla a partir de la resistividad del suelo y de la salinidad del agua subterranea, (b) estimacion del coeficiente de filtracion a partir del contenido de arcilla. Se presentan algunos ejemplos de la aplicacion de esta metodologia.

  15. Using Pneumatics to Perform Laboratory Hydraulic Conductivity Tests on Gravel with Underdamped Responses

    Science.gov (United States)

    Judge, A. I.

    2011-12-01

    A permeameter has been designed and built to perform laboratory hydraulic conductivity tests on various kinds of gravel samples with hydraulic conductivity values ranging from 0.1 to 1 m/s. The tests are commenced by applying 200 Pa of pneumatic pressure to the free surface of the water column in a riser connected above a cylinder that holds large gravel specimens. This setup forms a permeameter specially designed for these tests which is placed in a barrel filled with water, which acts as a reservoir. The applied pressure depresses the free surface in the riser 2 cm until it is instantly released by opening a ball valve. The water then flows through the base of the cylinder and the specimen like a falling head test, but the water level oscillates about the static value. The water pressure and the applied air pressure in the riser are measured with vented pressure transducers at 100 Hz. The change in diameter lowers the damping frequency of the fluctuations of the water level in the riser, which allows for underdamped responses to be observed for all tests. The results of tests without this diameter change would otherwise be a series of critically damped responses with only one or two oscillations that dampen within seconds and cannot be evaluated with equations for the falling head test. The underdamped responses oscillate about the static value at about 1 Hz and are very sensitive to the hydraulic conductivity of all the soils tested. These fluctuations are also very sensitive to the inertia and friction in the permeameter that are calculated considering the geometry of the permeameter and verified experimentally. Several gravel specimens of various shapes and sizes are tested that show distinct differences in water level fluctuations. The friction of the system is determined by calibrating the model with the results of tests performed where the cylinder had no soil in it. The calculation of the inertia in the response of the water column for the typical testing

  16. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    Science.gov (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  17. Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?

    Directory of Open Access Journals (Sweden)

    W. Kurtz

    2013-10-01

    Full Text Available River–aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river–aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river–aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland, where river–aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated–saturated subsurface hydrological flow problem including river–aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L are perfectly known. Hydraulic head data (100 in the default scenario are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF. For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream–aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high

  18. Potential use of calcareous mudstones in low hydraulic conductivity earthen barriers for environmental applications.

    Science.gov (United States)

    Musso, T B; Francisca, F M; Musso, T B; Musso, T B

    2013-01-01

    Earthen layers play a significant role in isolating contaminants in the subsurface, controlling the migration of contaminant plumes, and as landfill liners and covers. The physical, chemical and mineralogical properties of three calcareous mudstones from the Jagüel and Roca formations in North Patagonia, Argentina, are evaluated to determine their potential for the construction of liners. These mudstones were deposited in a marine environment in the Upper Cretaceous-Paleocene. The tested specimens mainly comprise silt and clay-sized particles, and their mineralogy is dominated by a smectite/illite mixed layer (70-90% Sm) and calcite in smaller proportion. Powdered mudstone samples have little viscosity and swelling potential when suspended in water. The hydraulic conductivity of compacted mudstones and sand-mudstone mixtures is very low (around 1-3 x 10(-10) m/s) and in good agreement with the expected hydraulic behaviour of compacted earthen layers. This behaviour can be attributed to the large amount of fine particles, high specific surface and the close packing of particles as confirmed by scanning electron microscope analysis. The tested materials also show a high cation exchange capacity (50-70 cmol/kg), indicating a high contaminant retardation capability. The calcareous mudstones show satisfactory mineralogical and chemical properties as well as an adequate hydraulic behaviour, demonstrating the potential use of these materials for the construction of compacted liners for the containment of leachate or as covers in landfills. These findings confirm the potential usage of marine calcareous mudstones as a low-cost geomaterial in environmental engineering projects.

  19. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    International Nuclear Information System (INIS)

    Maruyama, Soh; Fujimoto, Nozomu; Sudo, Yukio; Kiso, Yoshihiro; Murakami, Tomoyuki.

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T 1-M ) with simulated fuel rods and fuel blocks. (author)

  20. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    Science.gov (United States)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  1. Analysis of the Coupled Influence of Hydraulic Conductivity and Porosity Heterogeneity on Probabilistic Risk Analysis

    Science.gov (United States)

    Libera, A.; Henri, C.; de Barros, F.

    2017-12-01

    Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity (K) and, to a lesser degree, the porosity (Φ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on flow and solute transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs computational tools to investigate the joint effect of the spatial variabilities of K and Φ on the transport behavior of a solute plume. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological system, and compare the computational results from the joint K and Φ heterogeneous system with the results originating from the generally adopted constant porosity case. In our work, we assume that the heterogeneous porosity is positively correlated to hydraulic conductivity. We perform numerical Monte Carlo simulations of conservative and reactive contaminant transport in a 3D aquifer. Contaminant mass and plume arrival times at multiple control planes and/or pumping wells operating under different extraction rates are analyzed. We employ different probabilistic metrics to quantify the risk at the monitoring locations, e.g., increased lifetime cancer risk and exceedance of Maximum Contaminant Levels (MCLs), under multiple transport scenarios (i.e., different levels of heterogeneity, conservative or reactive solutes and different contaminant species). Results show that early and late arrival times of the solute mass at the selected sensitive locations (i.e. control planes/pumping wells) as well as risk metrics are strongly influenced by the spatial variability of the Φ field.

  2. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.

    Science.gov (United States)

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-05-01

    Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions

  3. Convergence analysis for Latin-hypercube lattice-sample selection strategies for 3D correlated random hydraulic-conductivity fields

    OpenAIRE

    Simuta-Champo, R.; Herrera-Zamarrón, G. S.

    2010-01-01

    The Monte Carlo technique provides a natural method for evaluating uncertainties. The uncertainty is represented by a probability distribution or by related quantities such as statistical moments. When the groundwater flow and transport governing equations are solved and the hydraulic conductivity field is treated as a random spatial function, the hydraulic head, velocities and concentrations also become random spatial functions. When that is the case, for the stochastic simulation of groundw...

  4. Determination of hydraulic conductivity coefficient in NSD site, Serpong, based on in-situ permeability test method

    International Nuclear Information System (INIS)

    Heri Syaeful; Sucipta

    2013-01-01

    In line with the increase of amount of radioactive waste, PTLR-BATAN plans to build the Near Surface Disposal (NSD) facility, especially in the preliminary stages is the Demo Plant of NSD facility. NSD is a low to medium level radioactive waste storage concept. Most important aspect in the site study for planning NSD is hydrogeological aspect especially related to the migration of radionuclides to the environment. In the study of radionuclide migration, a preliminary parameter which is required to know is the hydraulic conductivity in order to deliver the soil and rock hydraulic conductivity values in the site then conducted the in-situ permeability test. Based on the test, obtained soil and rock hydraulic conductivity values ranging from 10 -6 to 10 -2 cm/sec. The greatest hydraulic conductivity value located in the gravelly silt soil units which is in the site, constitute as aquifer, with depth ranging from 8 - 24 m, with hydraulic conductivity value reached 10 -2 cm/sec. (author)

  5. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel

    Directory of Open Access Journals (Sweden)

    Schacht Karsten

    2015-03-01

    Full Text Available The use of treated wastewater (TWW for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC and soil aggregate stability (SAS. To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm were collected for analyzing SAS and determination of selected soil chemical and physical characteristics.

  6. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  7. The hydraulic diffusivity and conductivity determination of structured purple soil and purple latosol by vertical infiltration

    International Nuclear Information System (INIS)

    Appoloni, C.R.; Souza, A.D.B. de; Fante Junior, L.; Oliveira Junior, J.M. de; Oliveira, J.C.M. de.

    1990-01-01

    The hydraulic diffusivity and conductivity functions of LR (purple latosol) and TE (structured purple soil) (levels A and B) soil samples from the Londrina-PR region were calculated by means of the moisture profile and data from the time evolution of the wet front, taken through measurements of the water infiltration in a soil column and a variational of the vertical flow. The wet front data were taken in a acrylic column coupled in bits base with a porous plate that permitted the water flow against the gravitational field with a suitable velocity of 0.12 cm/min. The moisture profile data were obtained by the gamma ray attenuation method, with a 60 Co source and a Na I (TL) scintillation detector. With a vertical and horizontal measurement table the moisture profile data θ (z,t) were taken in many points of the soil column. (author)

  8. Determination of the hydraulic conductivity in column of undeformed soil by gamma rays transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson C.; Cavalcante, Fabio H.M.; Portezan Filho, Otavio; Coimbra, Melayne M.; Appoloni, Carlos Roberto

    2000-01-01

    The water infiltration process in undeformed soil column and the measurement of redistribution process by gamma rays transmission in different depth allow the determination of Hydraulic Conductivity K(Θ) function, using the Sisson et al. (1980) method. A LRd (dystrophic dark red soil) soil column with 60 cm of height, 10 cm of width and 5 cm of thickness, was analyzed in laboratory, reproducing the field conditions concerning to the water infiltration and redistribution in the soil. The soil moisture content data was obtained with a radioactivity source 241 Am (100 mCi; 59,6 keV), NaI (Tl) 2x2 detector, coupled to an gamma rays spectrometric electronic chain and a measurement table that allowed the vertical displacement of the soil column. The results indicate a growing behavior for K(Θ) in relation to the depth. The collimators had 2 mm and 5 mm diameter for radioactivity source and detector respectively. (author)

  9. A new method for high-resolution characterization of hydraulic conductivity

    Science.gov (United States)

    Liu, Gaisheng; Butler, J.J.; Bohling, Geoffrey C.; Reboulet, Ed; Knobbe, Steve; Hyndman, D.W.

    2009-01-01

    A new probe has been developed for high-resolution characterization of hydraulic conductivity (K) in shallow unconsolidated formations. The probe was recently applied at the Macrodispersion Experiment (MADE) site in Mississippi where K was rapidly characterized at a resolution as fine as 0.015 m, which has not previously been possible. Eleven profiles were obtained with K varying up to 7 orders of magnitude in individual profiles. Currently, high-resolution (0.015-m) profiling has an upper K limit of 10 m/d; lower-resolution (???0.4-m) mode is used in more permeable zones pending modifications. The probe presents a new means to help address unresolved issues of solute transport in heterogeneous systems. Copyright 2009 by the American Geophysical Union.

  10. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel; Jadoon, Khan; Missimer, Thomas

    2015-01-01

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size

  11. Hydraulic conductivity of indeformed soil columns determination by gamma ray transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson Camargo; Moraes Cavalcante, Fabio Henrique de; Rocha, Marcos Correa da; Filho, Otavio Portezan; Quinones, Fernando Rodolfo Espinosa; Appoloni, Carlos Roberto

    2000-01-01

    The spatial variation of the soil structure influences the water movement through its porous geometry, which could cause problems in the development of agricultural cultures and also accelerate processes of soil erosion. The gamma ray transmission method has established efficiency for the non-destructive measurement of moisture temporal and space evolution, and consequently in the determination of the hydraulic conductivity of the soil, K(θ). Columns of undisturbed soil (approximately 0.11 x 0.06 x 0.60 m) were removed from a trench in the Campus of Londrina State University. The used soil was classified like distrophic dark red soil (LRd). The indeformed soil columns were wrapped up with paraffin and gauze and were fixed on the table of measurement. The water vertical infiltration in the soil was accomplished by maintaining a water layer of approximately 0.01 m over an area of soil of 75 x 10 -4 m 2 . Layers of filter papers and foam controlled the flow of water in the soil surface. After the conclusion of the infiltration, began the process of redistribution of the water in the soil column, with the objective to determine the function K(θ) in relation to the depth in the column. The moisture profiles θ(z,t) are obtained using a radioactive source of 241 Am (3.7 x 10 9 Bq; 0.0596 MeV), spectrometric electronic chain, a 2x2'' NaI(Tl) detector and a measurements table , which allows the sample to move vertically. The hydraulic conductivity function was determined, applying the Sisson model , at 10 levels in the soil column and the results exhibit an increase of K(θ) with depth. (author)

  12. Gamma ray transmission for hydraulic conductivity measurement of undisturbed soil columns

    Directory of Open Access Journals (Sweden)

    Anderson Camargo Moreira

    2007-03-01

    Full Text Available This work had the objective to determine the Hydraulic Conductivity K(theta function for different depth levels z, of columns of undisturbed soil, using the gamma ray transmission technique applied to the Sisson method. The results indicated a growing behavior for K(theta and a homogeneous soil density, both in relation to the increase of the depth. The methodology of gamma ray transmission showed satisfactory results on the determination of the hydraulic conductivity in columns of undisturbed soil, besides being very reliable and a nondestructive method.O estudo da condutividade hidráulica para solos não saturados é essencial quando aplicado às situações relacionadas à irrigação, drenagem e transporte de nutrientes no solo, é uma importante propriedade para desenvolvimentos de culturas agrícolas. Este trabalho tem o objetivo de determinar a função Condutividade Hidráulica K(teta, em diferentes níveis z de profundidade, em colunas de solo indeformado, utilizando a transmissão de raios gama aplicada ao método de Sisson. Os resultados indicam um comportamento crescente para K(teta e uma densidade de solo homogênea, ambos em relação ao aumento da profundidade. A metodologia de transmissão de raios gama mostrou resultados bastante satisfatórios na determinação da condutividade hidráulica em colunas de solo indeformado, além de ser muito confiável e não destrutivo.

  13. Evaluation of stationary and non-stationary geostatistical models for inferring hydraulic conductivity values at Aespoe

    International Nuclear Information System (INIS)

    La Pointe, P.R.

    1994-11-01

    This report describes the comparison of stationary and non-stationary geostatistical models for the purpose of inferring block-scale hydraulic conductivity values from packer tests at Aespoe. The comparison between models is made through the evaluation of cross-validation statistics for three experimental designs. The first experiment consisted of a 'Delete-1' test previously used at Finnsjoen. The second test consisted of 'Delete-10%' and the third test was a 'Delete-50%' test. Preliminary data analysis showed that the 3 m and 30 m packer test data can be treated as a sample from a single population for the purposes of geostatistical analyses. Analysis of the 3 m data does not indicate that there are any systematic statistical changes with depth, rock type, fracture zone vs non-fracture zone or other mappable factor. Directional variograms are ambiguous to interpret due to the clustered nature of the data, but do not show any obvious anisotropy that should be accounted for in geostatistical analysis. Stationary analysis suggested that there exists a sizeable spatially uncorrelated component ('Nugget Effect') in the 3 m data, on the order of 60% of the observed variance for the various models fitted. Four different nested models were automatically fit to the data. Results for all models in terms of cross-validation statistics were very similar for the first set of validation tests. Non-stationary analysis established that both the order of drift and the order of the intrinsic random functions is low. This study also suggests that conventional cross-validation studies and automatic variogram fitting are not necessarily evaluating how well a model will infer block scale hydraulic conductivity values. 20 refs, 20 figs, 14 tabs

  14. Modeling hydraulic conductivity and swelling pressure of several kinds of bentonites affected by concentration of saline water

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hasegawa, Takuma; Nakamura, Kunihiko

    2007-01-01

    In case of construction of repository for radioactive waste near the coastal area, the effect of brine on hydraulic conductivity of bentonite as an engineering barrier should be considered because it is known that the hydraulic conductivity of bentonite increases with increasing in salt concentration of water. Thus, the effect of salinity of water on hydraulic conductivity of bentonite has been conducted experimentally. However, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinity of salt water. In this study, a model for evaluating permeability of compacted bentonite is proposed considering a) increase in number of sheets of montomorillonite crystal because of cohesion, b) decrease in viscosity of water in interlayer between sheets of montmorillonite crystal. Quantitative evaluation method for permeability of several kinds of bentonite under brine is proposed based on the model mentioned above. (author)

  15. Fractal analysis of the hydraulic conductivity on a sandy porous media reproduced in a laboratory facility.

    Science.gov (United States)

    de Bartolo, S.; Fallico, C.; Straface, S.; Troisi, S.; Veltri, M.

    2009-04-01

    The complexity characterization of the porous media structure, in terms of the "pore" phase and the "solid" phase, can be carried out by means of the fractal geometry which is able to put in relationship the soil structural properties and the water content. It is particularly complicated to describe analytically the hydraulic conductivity for the irregularity of the porous media structure. However these can be described by many fractal models considering the soil structure as the distribution of particles dimensions, the distribution of the solid aggregates, the surface of the pore-solid interface and the fractal mass of the "pore" and "solid" phases. In this paper the fractal model of Yu and Cheng (2002) and Yu and Liu (2004), for a saturated bidispersed porous media, was considered. This model, using the Sierpinsky-type gasket scheme, doesn't contain empiric constants and furnishes a well accord with the experimental data. For this study an unconfined aquifer was reproduced by means of a tank with a volume of 10 Ã- 7 Ã- 3 m3, filled with a homogeneous sand (95% of SiO2), with a high percentage (86.4%) of grains between 0.063mm and 0.125mm and a medium-high permeability. From the hydraulic point of view, 17 boreholes, a pumping well and a drainage ring around its edge were placed. The permeability was measured utilizing three different methods, consisting respectively in pumping test, slug test and laboratory analysis of an undisturbed soil cores, each of that involving in the measurement a different support volume. The temporal series of the drawdown obtained by the pumping test were analyzed by the Neuman-type Curve method (1972), because the saturated part above the bottom of the facility represents an unconfined aquifer. The data analysis of the slug test were performed by the Bouwer & Rice (1976) method and the laboratory analysis were performed on undisturbed saturated soil samples utilizing a falling head permeameter. The obtained values either of the

  16. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Science.gov (United States)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  17. Effect of depletion of interstitial hyaluronan on hydraulic conductance in rabbit knee synovium

    Science.gov (United States)

    Coleman, P J; Scott, D; Abiona, A; Ashhurst, D E; Mason, R M; Levick, J R

    1998-01-01

    The hydraulic resistance of the synovial lining to fluid outflow from a joint cavity () is important for the retention of intra-articular lubricant. The resistance has been attributed in part to extracellular glycosaminoglycans, including hyaluronan and chondroitin sulphates. Increased permeability in joints infused with testicular hyaluronidase, which digests both chondroitin sulphates and hyaluronan, supports this view. In this study the importance of interstitial hyaluronan per se was assessed using leech and Streptomyces hyaluronidases, which degrade only hyaluronan. Ringer solution was infused into the knee joint cavity of anaesthetized rabbits for 30 min, with or without hyaluronidase, after which intra-articular pressure (Pj) was raised and the relation between pressure and outflow determined. Treatment with Streptomyces, leech or testicular hyaluronidases increased the fluid escape rates by similar factors, namely 4- to 6-fold. After Streptomyces hyaluronidase treatment the slope d/dPj, which at low pressures represents synovial hydraulic conductance, increased from a control of 0.90 ± 0.20 μl min−1 cmH2O−1 (mean ± s.e.m., n = 6) to 4.52 ± 0.70 μl min−1 cmH2O−1. The slope d/dPj increased to a similar level after testicular hyaluronidase, namely to 4.14 ± 1.06 μl min−1 cmH2O−1 (control, 0.54 ± 0.24 μl min−1 cmH2O−1). Streptomyces and leech hyaluronidases were as effective as testicular hyaluronidase (no statistically significant differences) despite differences in substrate specificity. It was shown using histochemical and immunohistochemical techniques that hyaluronan was removed from the synovium by leech, Streptomyces and testicular hyaluronidases. The binding of antibodies 2-B-6 and 3-B-3 showed that the core proteins of the chondroitin sulphate proteoglycans remained intact after treatment with hyaluronidases, and the binding of 5-D-4 showed that keratan sulphate was unaffected. An azocasein digestion assay confirmed that the

  18. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    Science.gov (United States)

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  19. Porosity and hydraulic conductivity estimation of the basaltic aquifer in Southern Syria by using nuclear and electrical well logging techniques

    Science.gov (United States)

    Asfahani, Jamal

    2017-08-01

    An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity ( K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.

  20. Estimates of vertical hydraulic conductivity in the middle Dakota Sandstone, Monticello, Utah

    International Nuclear Information System (INIS)

    Kautsky, M.; Kearl, P.M.; Dexter, J.J.; Zinkl, R.J.

    1986-01-01

    There are about 2 million tons of uranium mill tailings which lie directly on top of an alluvial aquifer at the Monticello millsite, Utah. The aquifer is contaminated as a consequence of leachate percolating through the tailings. The Burro Canyon Formation which is the local culinary aquifer, underlies the site at depth, but is isolated from the alluvial aquifer by an aquitard composed primarily of middle Dakota Sandstone, and some Mancos Shale. Water quality monitoring of the Burro Canyon aquifer has indicated that it contains very low to no contamination by radionuclides. Tritium data have shown that the recharge to the aquifer predates 1953. Pump tests conducted on the system using the ratio method, have shown the vertical hydraulic conductivity of the aquitard is some 5.2 x 10/sup -7/ to 8.0 x 10/sup -9/ m/d (1.7 x 10/sup -6/ to 2.6 x 10/sup -8/ ft/d). Based upon the aquifer monitoring and test data, the middle Dakota Sandstone appears to be an effective aquitard impeding the downward migration of contaminants from the alluvial aquifer to the Burro Canyon aquifer

  1. Statistical inference and comparison of stochastic models for the hydraulic conductivity at the Finnsjoen-site

    International Nuclear Information System (INIS)

    Norman, S.

    1992-04-01

    The origin of this study was to find a good, or even the best, stochastic model for the hydraulic conductivity field at the Finnsjoe site. The conductivity field in question are regularized, that is upscaled. The reason for performing regularization of measurement data is primarily the need for long correlation scales. This is needed in order to model reasonably large domains that can be used when describing regional groundwater flow accurately. A theory of regularization is discussed in this report. In order to find the best model, jacknifing is employed to compare different stochastic models. The theory for this method is described. In the act of doing so we also take a look at linear predictor theory, so called kriging, and include a general discussion of stochastic functions and intrinsic random functions. The statistical inference methods for finding the models are also described, in particular regression, iterative generalized regression (IGLSE) and non-parametric variogram estimators. A large amount of results is presented for a regularization scale of 36 metre. (30 refs.) (au)

  2. Some considerations on the effect of xylem embolism in conductivity Hydraulic plant

    International Nuclear Information System (INIS)

    Socorro, Alfredo

    2008-01-01

    From the physical characteristics of the elements that make up the xylem tissue in the stems of plants, a hypotheses is proposed to obtain a mathematical expression that defines Water flows through these conductors systems, depending on the potential difference water between the top and bottom of the stem. It raises an expression for the number of air bubbles formed from the imperfections (pores) in the walls of the tracheids forming xylem vessels and high stresses to which it is subjected in this transpiration high activity situations. This leads to an equation for conductivity hydraulic function of water potential in the presence of xylem embolism. using data from the literature and estimated values ​​simulated values ​​is performed stream and the percentage loss of conductivity. These results are compared with evidence and practice is discussed on the basis of physiological mechanisms relating to vulnerability of plants to xylem cavitation. It analyzes how this situation can be be corrected, also valued as this phenomenon affects situations of water stress

  3. Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff

    Science.gov (United States)

    Herkes, D. M. G.; Gori, A.; Juan, A.

    2017-12-01

    Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared

  4. Variations of streambed vertical hydraulic conductivity before and after a flood season

    Science.gov (United States)

    Wu, Guangdong; Shu, Longcang; Lu, Chengpeng; Chen, Xunhong; Zhang, Xiao; Appiah-Adjei, Emmanuel K.; Zhu, Jingsi

    2015-11-01

    The change of vertical hydraulic conductivity ( K v) before and after a flood season is crucial in understanding the long-term temporal variation of streambed permeability. Therefore, in this study, a detailed K v field investigation was conducted at an in-channel site within the Dawen River, China, before and after a flood season. In-situ falling-head permeameter tests were performed for the determination of K v. The tests were conducted using a 10 × 10 grid, at five different depths. In total, 871 valid K v values from layers 1-5 were obtained. The Kruskal-Wallis test on these K v values before and after the flood season shows they belonged to different populations. The sediments before the flood season primarily consisted of sand and gravel, whereas after the flood season, patchy distribution of silt/clay occurred in the sandy streambed and silt/clay content increased with the increasing depth; under the losing condition during flooding, downward movement of water brought fine particles into the coarse sediments, partially silting the pores. Accordingly, the K v values after the flood season had a smaller mean and median, and a higher level of heterogeneity, compared to those before the flood season. Additionally, the distribution pattern in K v across the stream differed before and after flood season; after the flood season, there was an increasing trend in K v from the south bank to the north bank. Overall, the contrasts of K v before and after the flood season were predominantly subject to the infiltration of fine particles.

  5. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    Directory of Open Access Journals (Sweden)

    Sandra V Lopez-Quintero

    Full Text Available Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC. After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  6. The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity.

    Science.gov (United States)

    Li, Guowei; Boudsocq, Marie; Hem, Sonia; Vialaret, Jérôme; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique

    2015-07-01

    The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins. © 2014 John Wiley & Sons Ltd.

  7. Use of capacitive sensors with the instantaneous profile method to determine hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    Eurileny Lucas de Almeida

    Full Text Available ABSTRACT Due to the need to monitor soil water tension continuously, the instantaneous profile method is considered laborious, requiring a lot of time, and especially manpower, to set up and maintain. The aim of this work was to evaluate the possibility of using capacitive sensors in place of tensiometers with the instantaneous profile method in an area of the Lower Acaraú Irrigated Perimeter. The experiment was carried out in a Eutrophic Red-Yellow Argisol. The sensors were installed 15, 30, 45 and 60 cm from the surface, and powered by photovoltaic panels, using a power manager to charge the battery and to supply power at night. Records from the capacitive sensors were collected every five minutes and stored on a data acquisition board. With the simultaneous measurement of soil moisture obtained by the sensors, and the total soil water potential from the soil water retention curve, it was possible to determine the hydraulic conductivity as a function of the volumetric water content for each period using the Richards equation. At the end of the experiment, the advantage of using capacitive sensors with the instantaneous profile method was confirmed as an alternative to using a tensiometer. The main advantages of using capacitive sensors were to make the method less laborious and to allow moisture readings at higher tensions in soils of a sandy texture.

  8. Using automatic calibration method for optimizing the performance of Pedotransfer functions of saturated hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abdelbaki

    2016-06-01

    Full Text Available Pedotransfer functions (PTFs are an easy way to predict saturated hydraulic conductivity (Ksat without measurements. This study aims to auto calibrate 22 PTFs. The PTFs were divided into three groups according to its input requirements and the shuffled complex evolution algorithm was used in calibration. The results showed great modification in the performance of the functions compared to the original published functions. For group 1 PTFs, the geometric mean error ratio (GMER and the geometric standard deviation of error ratio (GSDER values were modified from range (1.27–6.09, (5.2–7.01 to (0.91–1.15, (4.88–5.85 respectively. For group 2 PTFs, the GMER and the GSDER values were modified from (0.3–1.55, (5.9–12.38 to (1.00–1.03, (5.5–5.9 respectively. For group 3 PTFs, the GMER and the GSDER values were modified from (0.11–2.06, (5.55–16.42 to (0.82–1.01, (5.1–6.17 respectively. The result showed that the automatic calibration is an efficient and accurate method to enhance the performance of the PTFs.

  9. Effect of pH on saturated hydraulic conductivity and soil dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, D.L.; Roades, J.D.; Lavado, R.; Grieve, C.M.

    The adverse effects of exchangeable sodium on soil hydraulic conductivity (K) are well known, but at present only sodicity and total electrolyte concentration are used in evaluating irrigation water suitability. In arid areas, high sodicity is often associatd with high dissolved carbonate and thus high pH, but in humid areas high sodicity may be associated with low pH. To evaluate the effect of pH (as an independent variable) on K, solutions with the same SAR and electrolyte level were prepared at pH 6, 7, 8, and 9. Saturated K values were determined at constant flux in columns packed at a bulk density of 1.5 Mg m/sup -3/. At pH 9, saturated K values were lower than at pH 6 for a montmorillonitic and kaolinitic soil. For a vermiculitic soil with lower organic carbon and higher silt content, pH changes did not cause large K differences. Decreases in K were not reversible on application of waters with higher electrolyte levels. The results from the K experiments were generally consistent with optical transmission measurements of dispersion. Although anion adsorption was at or below detection limits and cation exchange capacity (CEC) was only slightly dependent on pH, differences in pH effects on K among soils are likely due to differences in quantities of variable-charge minerals and organic matter.

  10. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    Science.gov (United States)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  11. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought.

    Science.gov (United States)

    Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo

    2016-02-01

    Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.

  12. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    Science.gov (United States)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  13. A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills.

    Science.gov (United States)

    Parastar, Fatemeh; Hejazi, Sayyed Mahdi; Sheikhzadeh, Mohammad; Alirezazadeh, Azam

    2017-11-01

    Nowadays, the raise of excessive generation of solid wastes is considered as a major environmental concern due to the fast global population growth. The contamination of groundwater from landfill leachate compromises every living creature. Geotextile clay liner (GCL) that has a sandwich structure with two fibrous sheets and a clay core can be considered as an engineered solution to prevent hazardous pollutants from entering into groundwater. The main objective of the present study is therefore to enhance the performance of GCL structures. By changing some structural factors such as clay type (sodium vs. calcium bentonite), areal density of clay, density of geotextile, geotextile thickness, texture type (woven vs. nonwoven), and needle punching density a series of GCL samples were fabricated. Water pressure, type of cover soil and overburden pressure were the environmental variables, while the response variables were hydraulic conductivity and self-healing rate of GCL. Rigid wall constant head permeability test was conducted on all the samples. The outlet water flow was measured and evaluated at a defined time period and the hydraulic conductivity was determined for each sample. In the final stage, self-healing properties of samples were investigated and an analytical model was used to explain the results. It was found that higher Montmorillonite content of clay, overburden pressure, needle punching density and areal density of clay poses better self-healing properties and less hydraulic conductivity, meanwhile, an increase in water pressure increases the hydraulic conductivity. Moreover, the observations were aligned with the analytical model and indicated that higher fiber inclusion as a result of higher needle-punching density produces closer contact between bentonite and fibers, reduces hydraulic conductivity and increases self-healing properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter

    Science.gov (United States)

    Xu, Teng; Gómez-Hernández, J. Jaime

    2018-02-01

    Detecting where and when a contaminant entered an aquifer from observations downgradient of the source is a difficult task; this identification becomes more challenging when the uncertainty about the spatial distribution of hydraulic conductivity is accounted for. In this paper, we have implemented an application of the restart normal-score ensemble Kalman filter (NS-EnKF) for the simultaneous identification of a contaminant source and the spatially variable hydraulic conductivity in an aquifer. The method is capable of providing estimates of the spatial location, initial release time, the duration of the release and the mass load of a point-contamination event, plus the spatial distribution of hydraulic conductivity together with an assessment of the estimation uncertainty of all the parameters. The method has been applied in synthetic aquifers exhibiting both Gaussian and non-Gaussian patterns. The identification is made possible by assimilating in time both piezometric head and concentration observations from an array of observation wells. The method is demonstrated in three different synthetic scenarios that combine hydraulic conductivities with unimodal and bimodal histograms, and releases in high and low conductivity zones. The results prove that the specific implementation of the EnKF is capable of recovering the source parameters with some uncertainty and of recovering the main patterns of heterogeneity of the hydraulic conductivity fields by assimilating a sufficient number of state variable observations. The proposed approach is an important step towards contaminant source identification in real aquifers, which may have logconductivity spatial distributions with either Gaussian or non-Gaussian features, yet, it is still far from practical applications since the transport parameters, the external sinks and sources and the initial and boundary conditions are assumed known.

  15. Effect of wet-dry cycles on polymer treated bentonite in seawater : swelling ability, hydraulic conductivity and crack analysis

    NARCIS (Netherlands)

    De Camillis, Michela; Di Emidio, Gemmina; Bezuijen, Adam; Verastegui Flores, Daniel; Van Stappen, Jeroen; Cnudde, Veerle

    2017-01-01

    Waste disposal facilities are often isolated by clay liners in order to prevent pollutant migration into the ground. Bentonite is used as barrier material thanks to the low conductivity to water. However, the hydraulic performance may be impaired by contact with aggressive liquids due to cation

  16. A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Hinsby, Klaus; Bjerg, Poul Løgstrup; Andersen, Lars J.

    1992-01-01

    distributed measurements of a local hydraulic conductivity at a tracer test site at Vejen, Denmark. The mini slug test results calculated by a modified Dax slug test analysing method, applying the elastic storativity in the Dax equations instead of the specific yield, are in good accordance with the results...

  17. Calculation of hydraulic conductivities and capillary rise in peat soils from bulk density and solid matter volume

    NARCIS (Netherlands)

    Bloemen, G.W.

    1981-01-01

    Recently it was demonstrated how unsaturated hydraulic conductivities of soils can be calculated from granular composition and organic matter content (BLOEMEN, 1980a). This type of calculations has to be restricted to mineral soils because the capillary properties of organic soils will not be

  18. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?

    NARCIS (Netherlands)

    Jansen, S.; Gortan, E.; Lens, F.; Assunta Lo Gullo, M.; Salleo, S.; Scholtz, A.; Stein, A.; Trifilò, P.; Nardini, A.

    2011-01-01

    • The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the ‘ionic effect’ was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six

  19. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    Science.gov (United States)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a

  20. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  1. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Science.gov (United States)

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  2. Hydraulic conductivity measurements with HTU at Eurajoki, Olkiluoto, drillholes OL-KR28 and OL-KR39 in 2006

    International Nuclear Information System (INIS)

    Haemaelaeinen, H.

    2007-05-01

    As a part of the site investigations for the disposal of spent nuclear fuel, hydraulic conductivity measurements were carried out in drillholes OL-KR28 and OL-KR39 at Eurajoki, Olkiluoto. The objective was to investigate the distribution of the hydraulic conductivity in the surrounding bedrock volume. Measurements were carried out during summer 2006. The total length of the borehole OL-KR28 is 656,33 m, 352 m of which was covered by 176 standard tests with 2 m packer separation as specified in the measurement plan. Respectively, OL-KR39 is 502,97 m deep and 101 similar tests were made in it covering 202 m of the hole. The measured sections are around the depths of the planned repository. Double-packer constant-head method was used throughout with nominal 200 kPa overpressure. Injection stage lasted normally 20 minutes and fall-off stage 10 minutes. The tests were often shortened if there were clear indications that the hydraulic conductivity is below the measuring range of the system. The pressure in the test section was let to stabilise at least 5 min before injection. In some test sections the test stage times were extended. Two transient (Horner and 1/Q) interpretations and one stationary-state (Moye) interpretation were made in-situ immediately after the test. The Hydraulic Testing Unit (HTU-system) is owned by Posiva Oy and it was operated by Geopros Oy. (orig.)

  3. Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity

    International Nuclear Information System (INIS)

    Barotto, A.J.; Monteoliva, S.; Gyenge, J.; Martínez-Meier, A.; Moreno, K.; Tesón, N.; Fernández, M.E.

    2017-01-01

    Aim of the study: To characterize wood anatomical traits of three Eucalyptus species that differ in wood density and ecological requirements, and to examine the relationships between some anatomical features, wood density, and theoretical xylem hydraulic conductivity (Ks). Area of study: We analyzed 86 trees from three sites of Argentina (Entre Ríos and Buenos Aires Provinces). Methods: The sampled trees were Eucalyptus globulus, E. grandis and E. viminalis ranging from 11 to 15 years old. One stem disc was cut from each tree to determine wood density and identify quantitative anatomical features of vessels and fibers. Vessel composition (S, size - to-number ratio, a measure of vessel size distribution) and lumen fraction (F, the total sapwood area available for water transport) were estimated. Results: E. grandis, the species with the highest growth rates, presented the highest theoretical Ks. This was associated with anatomical features such as a high density of wide vessels resulting in high F. On the other hand, E. viminalis, the species with the lowest growth rates and highest resistance to environmental stress, showed lower Ks as a result of a low density of wide vessels. These two species differed not only greatly in wood density but also in fiber characteristics. In the case of E. globulus, vessels were relatively narrow, which resulted in the lowest theoretical Ks, fibers were small, and wood density intermediate. Research highlights: F had greater influence on Ks than S. The anatomical characteristics and wood density could only partly explain the differential growth or resistance to stress of the studied species.

  4. Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    Antonio J. Barotto

    2017-05-01

    Full Text Available Aim of the study: To characterize wood anatomical traits of three Eucalyptus species that differ in wood density and ecological requirements, and to examine the relationships between some anatomical features, wood density, and theoretical xylem hydraulic conductivity (Ks. Area of study: We analyzed 86 trees from three sites of Argentina (Entre Ríos and Buenos Aires Provinces. Methods: The sampled trees were Eucalyptus globulus, E. grandis and E. viminalis ranging from 11 to 15 years old. One stem disc was cut from each tree to determine wood density and identify quantitative anatomical features of vessels and fibers. Vessel composition (S, size - to-number ratio, a measure of vessel size distribution and lumen fraction (F, the total sapwood area available for water transport were estimated. Results: E. grandis, the species with the highest growth rates, presented the highest theoretical Ks. This was associated with anatomical features such as a high density of wide vessels resulting in high F. On the other hand, E. viminalis, the species with the lowest growth rates and highest resistance to environmental stress, showed lower Ks as a result of a low density of wide vessels. These two species differed not only greatly in wood density but also in fiber characteristics. In the case of E. globulus, vessels were relatively narrow, which resulted in the lowest theoretical Ks, fibers were small, and wood density intermediate. Research highlights: F had greater influence on Ks than S. The anatomical characteristics and wood density could only partly explain the differential growth or resistance to stress of the studied species.

  5. Hydrostratigraphy and recharge distributions from direct measurements of hydraulic conductivity using the UFA trademark method

    International Nuclear Information System (INIS)

    Wright, J.; Conca, J.L.; Chen, X.

    1994-03-01

    The simulation of contaminant migration and movement through subsurface materials surrounding hazardous and mixed waste sties requires knowledge of the transport characteristics of the soils, sediments, and rocks of the site under unsaturated and saturated conditions. The hydraulic conductivity, diffusion coefficient, and retardation factor must be known in order to use existing and developing models of contaminant release from subsurface systems. The new Unsaturated Flow Apparatus (UFA) method makes it possible to measure transport parameters in a very short time while replicating the wide range of conditions that exist in the field. The chemical, physical, and mineralogical properties of each soil sample are compared to transport parameters measured by the UFA method to determine the primary physical parameter/hydrologic characteristic relationships for predicting volatile organic compound (VOC) and water migration in arid soils and sediments. The Plutonium Finishing Plant in the 200-West Area at the Hanford Site is the site of a mixed-waste contaminant plume. The plume contains carbon tetrachloride (CCl 4 ) as the primary VOC, Pu and Am as the primary radionuclides, water, aqueous sodium nitrate solutions, and other organics (lard oil, tributylphoshate, chloroform). An estimated 3.5 million gal of liquid waste was discharged to three unlined cribs (similar to septic tanks drain fields) between 1955 and 1973. This project investigated unsaturated transport phenomena using the new UFA method to optimize long-term experimental and demonstration strategies for site remediation. Three unexpected benefits resulted from the UFA method in FY 1993: hydrostratigraphic mapping, subsurface flux and recharge mapping, and pore water extraction from vadose zone samples for chemical analysis. 54 refs

  6. Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Barotto, A.J.; Monteoliva, S.; Gyenge, J.; Martínez-Meier, A.; Moreno, K.; Tesón, N.; Fernández, M.E.

    2017-11-01

    Aim of the study: To characterize wood anatomical traits of three Eucalyptus species that differ in wood density and ecological requirements, and to examine the relationships between some anatomical features, wood density, and theoretical xylem hydraulic conductivity (Ks). Area of study: We analyzed 86 trees from three sites of Argentina (Entre Ríos and Buenos Aires Provinces). Methods: The sampled trees were Eucalyptus globulus, E. grandis and E. viminalis ranging from 11 to 15 years old. One stem disc was cut from each tree to determine wood density and identify quantitative anatomical features of vessels and fibers. Vessel composition (S, size - to-number ratio, a measure of vessel size distribution) and lumen fraction (F, the total sapwood area available for water transport) were estimated. Results: E. grandis, the species with the highest growth rates, presented the highest theoretical Ks. This was associated with anatomical features such as a high density of wide vessels resulting in high F. On the other hand, E. viminalis, the species with the lowest growth rates and highest resistance to environmental stress, showed lower Ks as a result of a low density of wide vessels. These two species differed not only greatly in wood density but also in fiber characteristics. In the case of E. globulus, vessels were relatively narrow, which resulted in the lowest theoretical Ks, fibers were small, and wood density intermediate. Research highlights: F had greater influence on Ks than S. The anatomical characteristics and wood density could only partly explain the differential growth or resistance to stress of the studied species.

  7. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    Science.gov (United States)

    J.-C. Domec; K. Schafer; R. Oren; H. Kim; H. McCarthy

    2010-01-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth.

  8. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Oliver M. Lopez

    2015-11-01

    Full Text Available Planning for use of a dune field aquifer for managed aquifer recharge (MAR requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness. The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  9. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2015-11-12

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness). The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  10. Impacts of wildfire severity on hydraulic conductivity in forest, woodland, and grassland soils (Chapter 7)

    Science.gov (United States)

    Daniel G. Neary

    2011-01-01

    Forest, woodland, and grassland watersheds throughout the world are major sources of high quality water for human use because of the nature of these soils to infiltrate, store, and transmit most precipitation instead of quickly routing it to surface runoff. This characteristic of these wildland soils is due to normally high infiltration rates, porosities, and hydraulic...

  11. Stochastic fusion of dynamic hydrological and geophysical data for estimating hydraulic conductivities: insights and observations (Invited)

    Science.gov (United States)

    Irving, J. D.; Singha, K.

    2010-12-01

    Traditionally, hydrological measurements have been used to estimate subsurface properties controlling groundwater flow and contaminant transport. However, such measurements are limited by their support volume and expense. A considerable benefit of geophysical measurements is that they provide a degree of spatial coverage and resolution that are unattainable with other methods, and the data can be acquired in a cost-effective manner. In particular, dynamic geophysical data allow us to indirectly observe changes in hydrological state variables as flow and transport processes occur, and can thus provide a link to hydrological properties when coupled with a process-based model. Stochastic fusion of these two data types offers the potential to provide not only estimates of subsurface hydrological properties, but also a quantification of their uncertainty. This information is critical when considering the end use of the data, which may be for groundwater remediation and management decision making. Here, we examine a number of key issues in the stochastic fusion of dynamic hydrogeophysical data. We focus our attention on the specific problem of integrating time-lapse crosshole electrical resistivity measurements and saline tracer-test concentration data in order to estimate the spatial distribution of hydraulic conductivity (K). To assimilate the geophysical and hydrological measurements in a stochastic manner, we use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology. This provides multiple realizations of the subsurface K field that are consistent with the measured data and assumptions regarding model structure and data errors. To account for incomplete petrophysical knowledge, the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration following the general form of Archie’s law. To make the spatially distributed, fully stochastic inverse problem computationally tractable, we take

  12. Effects of land use and management on aggregate stability and hydraulic conductivity of soils within River Njoro Watershed in Kenya

    Directory of Open Access Journals (Sweden)

    Zachary G. Mainuri

    2013-09-01

    Full Text Available There has been tremendous changes in land use and management in the River Njoro Watershed during the last three decades. Formerly large scale farms have been converted into smallholder farms and plantation forests have gradually been lost. These changes in land use and management have brought in different approaches that have triggered soil erosion and other forms of land degradation. The objective of this study was to trace the changes in land use and determine their effects on aggregate stability and hydraulic conductivity. A semi detailed soil survey of the watershed was undertaken following a three-tier approach comprising image interpretation, field surveys and laboratory analysis. The measured variables in the soil were analysed using ANOVA and correlation analysis. The major land uses were found to be forestland, agricultural land, grassland, and wetland. A strong soil type _ landscape relationship was observed within the watershed. Soils of slopes were moderately to severely eroded, shallow and less developed whereas those on summits, pen plains, uplands, plateaus and valleys were deep and well developed. Aggregate stability was the highest in forestland and decreased in the order of grassland, agricultural land and wetland respectively. The mean weight diameter under the various land use conditions was 0.68, 0.64, 0.58, and 0 41 respectively. Hydraulic conductivity was the highest in forest-land and decreased in the order of agricultural land, grassland and wetland respectively. There was significant negative correlation between hydraulic conductivity and the bulk density and clay content of the soils. Reduced aggregate stability and lowered hydraulic conductivity is likely to be responsible for some of the severe soil erosion and other forms of land degradation observed in the River Njoro Watershed.

  13. Effectiveness of Sealed Double-Ring Infiltrometers trademark and effects of changes in atmospheric pressure on hydraulic conductivity

    International Nuclear Information System (INIS)

    McMullin, S.R.

    1994-01-01

    The Savannah River Site is currently evaluating some 40 hazardous and radioactive-waste sites for remediation. Among the remedial alternatives considered is closure using a kaolin clay cap. The hydraulic conductivity suggested by the US Environmental Protection Agency is 1.0 x 10 -7 cm/sec. One instrument to measure this value is the Sealed Double-Ring Infiltrometer trademark (SDRI). Six SDRI were recently installed on a kaolin test cap. Test results demonstrated uniform performance of these instruments. However, the test data showed as much as an order of magnitude of variation over time. This variation is attributed to both internal structural heterogeneity and variable external boundary conditions. The internal heterogeneity is caused by construction variability within a specified range of moisture and density. The external influences considered are temperature and barometric pressure. Temperature was discharged as a source of heterogeneity because of a lack of correlation with test data and a negligible impact from the range of variability. However, a direct correlation was found between changes in barometric pressure and hydraulic conductivity. This correlation is most pronounced when pressure changes occur over a short period of time. Additionally, this correlation is related to a single soil layer. When the wetting front passes into a more porous foundation layer, the correlation with pressure changes disappears. Conclusions are that the SDRI performs adequately, with good repeatability of results. The duration of test is critical to assure a statistically valid data set. Data spikes resulting from pressure changes should be identified, and professional judgment used to determine the representative hydraulic conductivity. Further evaluation is recommended to determine the impact of pressure change on the actual hydraulic conductivity

  14. Subsurface Flow and Moisture Dynamics in Response to Swash Motions: Effects of Beach Hydraulic Conductivity and Capillarity

    Science.gov (United States)

    Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.

    2017-12-01

    A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.

  15. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability.

    Science.gov (United States)

    Hochberg, Uri; Bonel, Andrea Giulia; David-Schwartz, Rakefet; Degu, Asfaw; Fait, Aaron; Cochard, Hervé; Peterlunger, Enrico; Herrera, Jose Carlos

    2017-06-01

    Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts ). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s ) and leaf conductance (k leaf ) under low stem water potential (Ψ s ), despite their high xylem vulnerability and in agreement with their lower turgor loss point (Ψ TLP ). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.

  16. Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features.

    Science.gov (United States)

    Nardini, Andrea; Dimasi, Federica; Klepsch, Matthias; Jansen, Steven

    2012-12-01

    The 'ionic effect', i.e., changes in xylem hydraulic conductivity (k(xyl)) due to variation of the ionic sap composition in vessels, was studied in four Acer species growing in contrasting environments differing in water availability. Hydraulic measurements of the ionic effect were performed together with measurements on the sap electrical conductivity, leaf water potential and vessel anatomy. The low ionic effect recorded in Acer pseudoplatanus L. and Acer campestre L. (15.8 and 14.7%, respectively), which represented two species from shady and humid habitats, was associated with a low vessel grouping index, high sap electrical conductivity and least negative leaf water potential. Opposite traits were found for Acer monspessulanum L. and Acer platanoides L., which showed an ionic effect of 23.6 and 23.1%, respectively, and represent species adapted to higher irradiance and/or lower water availability. These findings from closely related species provide additional support that the ionic effect could function as a compensation mechanism for embolism-induced loss of k(xyl), either as a result of high evaporative demand or increased risk of hydraulic failure.

  17. Fracture hydraulic conductivity in the Mexico City clayey aquitard: Field piezometer rising-head tests

    Science.gov (United States)

    Vargas, Carlos; Ortega-Guerrero, Adrián

    A regional lacustrine aquitard covers the main aquifer of the metropolitan area of Mexico City. The aquitard's hydraulic conductivity (K') is fundamental for evaluating the natural protection of the aquifer against a variety of contaminants present on the surface and its hydraulic response. This study analyzes the distribution and variation of K' in the plains of Chalco, Texcoco and Mexico City (three of the six former lakes that existed in the Basin of Mexico), on the basis of 225 field-permeability tests, in nests of existing piezometers located at depths of 2-85 m. Tests were interpreted using the Hvorslev method and some by the Bouwer-Rice method. Results indicate that the distribution of K' fits log-Gaussian regression models. Dominant frequencies for K' in the Chalco and Texcoco plains range between 1E-09 and 1E-08 m/s, with similar population means of 1.19E-09 and 1.7E-09 m/s, respectively, which are one to two orders of magnitude higher than the matrix conductivity. In the Mexico City Plain the population mean is near by one order of magnitude lower; K'=2.6E-10 m/s. The contrast between the measured K' and that of the matrix is attributed to the presence of fractures in the upper 25-40 m, which is consistent with the findings of previous studies on solute migration in the aquitard. Un imperméable régional d'origine lacustre recouvre le principal aquifère de la zone urbaine de la ville de Mexico. La conductivité hydraulique K' de cet imperméable est fondamentale pour évaluer la protection naturelle de l'aquifère, contre les différents contaminants présents en surface, et sa réponse hydraulique. Cette étude analyse et les variations de K' dans les plaines de Chalco, Texcoco et Mexico (trois des six anciens lacs qui existaient dans le Bassin de Mexico), sur la base de 225 essais de perméabilité sur le terrain, réalisés en grappes dans des piézomètres existants entre 2 et 85 m de profondeur. Les essais ont été interprétés avec la m

  18. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    In the last years researchers reported an increasing need to have more awareness on the intimate link between land use and soil hydrological properties (soil organic matter storage, water infiltration, hydraulic conductivity) and their possible effects on water retention (e.g., Bens et al., 2006; del Campo et al., 2014; González-Sanchis et al., 2015; Molina and del Campo, 2012). In the Mediterranean ecosystems, special attention needs to be paid to the forest-water relationships due to the natural scarcity of water. Adaptive forest management (AFM) aims to adapt the forest to water availability by means of an artificial regulation of the forest structure and density in order to promote tree and stand resilience through enhancing soil water availability (del Campo et al., 2014). The opening of the canopy, due to the removal of a certain number of trees, is an important practice for the management of forests. It results in important modifications to the microclimatic conditions that influence the ecophysiological functioning of trees (Aussenac and Granier, 1988). However, the effect of thinning may vary depending on the specific conditions of the forest (Andréassian, 2004; Brooks et al., 2003; Cosandey et al., 2005; Lewis et al., 2000; Molina and del Campo, 2012). Different authors reported that a reduction in forest cover increases water yield due to the subsequent reduction in evapotranspiration (Brooks et al., 2003; González-Sanchis et al., 2015; Hibbert, 1983; Zhang et al., 2001). On the other hand, the water increase may be easily evaporated from the soil surface (Andréassian, 2004). In this context, determining soil hydraulic properties in forests is essential for understanding and simulating the hydrological processes (Alagna et al., 2015; Assouline and Mualem, 2002), in order to adapt a water-saving management to a specific case, or to study the effects of a particular management practice. However, it must be borne in mind that changes brought about by

  19. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Erik [Dept. of Forest Ecology, Univ. of Helsinki (Finland)

    2007-02-15

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  20. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    International Nuclear Information System (INIS)

    Kellner, Erik

    2007-02-01

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  1. Effects of the hydraulic conductivity of the matrix/macropore interface on cumulative infiltrations into dual-permeability media

    Science.gov (United States)

    Lassabatere, L.; Peyrard, X.; Angulo-Jaramillo, R.; Simunek, J.

    2009-12-01

    Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model (referred to as the 2K model) assumes that flow is governed by Richards equation in both porous regions (matrix and macropores). Water can be exchanged between the two regions following a first-order rate law. Although several studies have dealt with such modeling, no study has evaluated the influence of the hydraulic conductivity of the matrix/macropore interface on water cumulative infiltration. And this is the focus of this study. An analytical scaling method reveals the role of the following main parameters for given boundary and initial conditions: the saturated hydraulic conductivity ratio (R_Ks), the water pressure scale parameter ratio (R_hg), the saturated volumetric water content ratio (R_θs), and the shape parameters of the water retention and hydraulic conductivity functions. The last essential parameter is related to the interfacial hydraulic conductivity (Ka) between the macropore and matrix regions. The scaled 2K flow equations were solved using HYDRUS-1D 4.09 for the specific case of water infiltrating into an initially uniform soil profile and a zero pressure head at the soil surface. A sensitivity of water infiltration was studied for different sets of scale parameters (R_Ks, R_hg, R_θs, and shape parameters) and the scaled interfacial conductivity (Ka). Numerical results illustrate two extreme behaviors. When the interfacial conductivity is zero (i.e., no water exchange), water infiltrates separately into matrix and macropore regions, producing a much deeper moisture front in the macropore domain. In the opposite case

  2. The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates.

    Science.gov (United States)

    Gortan, Emmanuelle; Nardini, Andrea; Gascó, Antonio; Salleo, Sebastiano

    2009-04-01

    Leaf hydraulic conductance (Kleaf) is known to be an important determinant of plant gas exchange and photosynthesis. Little is known about the long-term impact of different environmental factors on the hydraulic construction of leaves and its eventual consequences on leaf gas exchange. In this study, we investigate the impact of soil water availability on Kleaf of Fraxinus ornus L. as well as the influence of Kleaf on gas exchange rates and plant water status. With this aim, Kleaf, leaf conductance to water vapour (gL), leaf water potential (Psileaf) and leaf mass per area (LMA) were measured in F. ornus trees, growing in 21 different sites with contrasting water availability. Plants growing in arid sites had lower Kleaf, gL and Psileaf than those growing in sites with higher water availability. On the contrary, LMA was similar in the two groups. The Kleaf values recorded in sites with two different levels of soil water availability were constantly different from each other regardless of the amount of precipitation recorded over 20 days before measurements. Moreover, Kleaf was correlated with gL values. Our data suggest that down-regulation of Kleaf is a component of adaptation of plants to drought-prone habitats. Low Kleaf implies reduced gas exchange which may, in turn, influence the climatic conditions on a local/regional scale. It is concluded that leaf hydraulics and its changes in response to resource availability should receive greater attention in studies aimed at modelling biosphere-atmosphere interactions.

  3. A multiscale approach to determine hydraulic conductivity in thick claystone aquitards using field, laboratory, and numerical modeling methods

    Science.gov (United States)

    Smith, L. A.; Barbour, S. L.; Hendry, M. J.; Novakowski, K.; van der Kamp, G.

    2016-07-01

    Characterizing the hydraulic conductivity (K) of aquitards is difficult due to technical and logistical difficulties associated with field-based methods as well as the cost and challenge of collecting representative and competent core samples for laboratory analysis. The objective of this study was to produce a multiscale comparison of vertical and horizontal hydraulic conductivity (Kv and Kh, respectively) of a regionally extensive Cretaceous clay-rich aquitard in southern Saskatchewan. Ten vibrating wire pressure transducers were lowered into place at depths between 25 and 325 m, then the annular was space was filled with a cement-bentonite grout. The in situ Kh was estimated at the location of each transducer by simulating the early-time pore pressure measurements following setting of the grout using a 2-D axisymmetric, finite element, numerical model. Core samples were collected during drilling for conventional laboratory testing for Kv to compare with the transducer-determined in situ Kh. Results highlight the importance of scale and consideration of the presence of possible secondary features (e.g., fractures) in the aquitard. The proximity of the transducers to an active potash mine (˜1 km) where depressurization of an underlying aquifer resulted in drawdown through the aquitard provided a unique opportunity to model the current hydraulic head profile using both the Kh and Kv estimates. Results indicate that the transducer-determined Kh estimates would allow for the development of the current hydraulic head distribution, and that simulating the pore pressure recovery can be used to estimate moderately low in situ Kh (<10-11 m s-1).

  4. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    Science.gov (United States)

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  5. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    DEFF Research Database (Denmark)

    Maurya, P. K.; Balbarini, Nicola; Møller, I.

    2018-01-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time...... geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging...

  6. Variability of streambed hydraulic conductivity in an intermittent stream reach regulated by Vented Dams: A case study

    Science.gov (United States)

    Naganna, Sujay Raghavendra; Deka, Paresh Chandra

    2018-07-01

    The hydro-geological properties of streambed together with the hydraulic gradients determine the fluxes of water, energy and solutes between the stream and underlying aquifer system. Dam induced sedimentation affects hyporheic processes and alters substrate pore space geometries in the course of progressive stabilization of the sediment layers. Uncertainty in stream-aquifer interactions arises from the inherent complex-nested flow paths and spatio-temporal variability of streambed hydraulic properties. A detailed field investigation of streambed hydraulic conductivity (Ks) using Guelph Permeameter was carried out in an intermittent stream reach of the Pavanje river basin located in the mountainous, forested tract of western ghats of India. The present study reports the spatial and temporal variability of streambed hydraulic conductivity along the stream reach obstructed by two Vented Dams in sequence. Statistical tests such as Levene's and Welch's t-tests were employed to check for various variability measures. The strength of spatial dependence and the presence of spatial autocorrelation among the streambed Ks samples were tested by using Moran's I statistic. The measures of central tendency and dispersion pointed out reasonable spatial variability in Ks distribution throughout the study reach during two consecutive years 2016 and 2017. The streambed was heterogeneous with regard to hydraulic conductivity distribution with high-Ks zones near the backwater areas of the vented dam and low-Ks zones particularly at the tail water section of vented dams. Dam operational strategies were responsible for seasonal fluctuations in sedimentation and modifications to streambed substrate characteristics (such as porosity, grain size, packing etc.), resulting in heterogeneous streambed Ks profiles. The channel downstream of vented dams contained significantly more cohesive deposits of fine sediment due to the overflow of surplus suspended sediment-laden water at low velocity

  7. The perceptual trap: Experimental and modelling examples of soil moisture, hydraulic conductivity and response units in complex subsurface settings.

    Science.gov (United States)

    Jackisch, Conrad; Demand, Dominic; Allroggen, Niklas; Loritz, Ralf; Zehe, Erwin

    2017-04-01

    In order to discuss hypothesis testing in hydrology, the question of the solid foundation of such tests has to be answered. But how certain are we about our measurements of the components of the water balance and the states and dynamics of the complex systems? What implicit assumptions or bias are already embedded in our perception of the processes? How can we find light in the darkness of heterogeneity? We will contribute examples from experimental findings, modelling approaches and landscape analysis to the discussion. Example soil moisture and the soil continuum: The definition of soil moisture as fraction of water in the porous medium assumes locally well-mixed conditions. Moreover, a unique relation of soil water retention presumes instant local thermodynamic equilibrium in the pore water arrangement. We will show findings from soil moisture responses to precipitation events, from irrigation experiments, and from a model study of initial infiltration velocities. The results highlight, that the implicit assumption relating soil moisture state dynamics with actual soil water flow is biased towards the slow end of the actual velocity distribution and rather blind for preferential flow acting in a very small proportion of the pore space. Moreover, we highlight the assumption of a well-defined continuum during the extrapolation of point-scale measurements and why spatially and temporally continuous observation techniques of soil water states are essential for advancing our understanding and development of subsurface process theories. Example hydraulic conductivity: Hydraulic conductivity lies at the heart of hydrological research and modelling. Its values can range across several orders of magnitude at a single site alone. Yet, we often consider it a crisp, effective parameter. We have conducted measurements of soil hydraulic conductivity in the lab and in the field. Moreover, we assessed infiltration capacity and conducted plot-scale irrigation experiments to

  8. Root hydraulic vulnerability regulation of whole-plant conductance along hillslope gradients within subalpine and montane forests

    Science.gov (United States)

    Beverly, D.; Speckman, H. N.; Ewers, B. E.

    2017-12-01

    Ecosystem-scale models often rely on root vulnerability or whole-plant conductance for simulating seasonal evapotranspiration declines via constraints of water uptake and vegetation mortality. Further, many of these ecosystem models rely on single, unvarying, hydraulic parameter estimates for modeling large areas. Ring-porous species have shown seasonal variability in root vulnerability (percent loss of conductivity; PLC) and whole-plant conductance (Kw) but simulations of coniferous forest typically rely on point measurements. This assumption for coniferous forest is not likely true because of seasonal variability caused by phenology and environmental stresses and the potential for cavitation fatigue is not considered. Moreover, many of these dynamics have only been considered for stems even though roots are often the most vulnerable segments of the pathway for conifers. We hypothesized that seasonally dynamic whole-plant conductance along hillslope gradients in coniferous forests are regulated by cavitation fatigue within the roots resulting in seasonal increases in vulnerability. To test the hypothesis, a subalpine mixed forest (3000 m.a.s.l) and montane forest (2550 m.a.s.l.) were monitored between 2015-2017 to quantify PLC and Kw along the hillslope gradients of 300 m and 50 m, respectively. Forest plots were instrumented with 35 Granier-type sapflow sensors. Seasonal sampling campaigns occurred to quantify PLC through centrifuge techniques and Kw through Darcy's law approximations with pre-dawn and diurnal leaf water potentials. Downslope roots exhibit a 33% decrease in maximal conductivity corresponding to the approximately 50% decrease in whole-plant conductance suggesting seasonal soil dry-down limitations within the downslope stands. Upslope stands had no to little change in root vulnerability or decrease in whole-plant conductance as soil water limitations occur immediately following snowmelt, thus limiting hydraulic conductance throughout the growing

  9. Status of the art: hydraulic conductivity of acid- fractures; Condutividade hidraulica de fratura acida: estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Valdo Ferreira [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LENEP/UENF), Macae, RJ (Brazil). Centro de Ciencia e Tecnologia. Lab. de Engenharia e Exploracao de Petroleo; Campos, Wellington [PETROBRAS, RJ (Brazil). E and P Engenharia de Producao. Gerencia de Completacao e Avaliacao], e-mail: wcampos@petrobras.com.br

    2010-06-15

    This paper presents a review of the hydraulic conductivity models developed for acid fractures in almost four decades of studies in petroleum engineering. These studies have often benefited from theories and experiments carried out in areas of knowledge such as physics, geology, hydrology, fluid mechanics, rock mechanics and tribology. The review showed that the pioneer study of Nierode and Kruk (1973) is still used in commercial software and influences the current studies. There was significant evolution on the quantitative surface topography characterization of the fractures and their impact on the hydraulic conductivity. The same occurred for the effects of acid dissolution on the rock resistance. Improvements on correlations similar to the Nierode and Kruk can be applied at once on the acid fracturing project and evaluation practice for the cases of rough dissolution pattern. A method to consider the overall conductivity from heterogeneous channels and roughness pattern was recently proposed. The complexity of the theoretical fundaments, specially the range of validity of the equations in face of the simplifications assumed, the difficulty of performing representative laboratory and field experiments, the difficulty of characterizing quantitatively the fractures surface topography and its effects on the conductivity, and the large variety of rocks and acid systems keep this subject open for research. (author)

  10. Influence of leaf vein density and thickness on hydraulic conductance and photosynthesis in rice (Oryza sativa L.) during water stress.

    Science.gov (United States)

    Tabassum, Muhammad Adnan; Zhu, Guanglong; Hafeez, Abdul; Wahid, Muhammad Atif; Shaban, Muhammad; Li, Yong

    2016-11-16

    The leaf venation architecture is an ideal, highly structured and efficient irrigation system in plant leaves. Leaf vein density (LVD) and vein thickness are the two major properties of this system. Leaf laminae carry out photosynthesis to harvest the maximum biological yield. It is still unknown whether the LVD and/or leaf vein thickness determines the plant hydraulic conductance (K plant ) and leaf photosynthetic rate (A). To investigate this topic, the current study was conducted with two varieties under three PEG-induced water deficit stress (PEG-IWDS) levels. The results showed that PEG-IWDS significantly decreased A, stomatal conductance (g s ), and K plant in both cultivars, though the IR-64 strain showed more severe decreases than the Hanyou-3 strain. PEG-IWDS significantly decreased the major vein thickness, while it had no significant effect on LVD. A, g s and K plant were positively correlated with each other, and they were negatively correlated with LVD. A, g s and K plant were positively correlated with the inter-vein distance and major vein thickness. Therefore, the decreased photosynthesis and hydraulic conductance in rice plants under water deficit conditions are related to the decrease in the major vein thickness.

  11. Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting

    Science.gov (United States)

    Fogg, Graham E.; Noyes, Charles D.; Carle, Steven F.

    Information on sediment texture and spatial continuity are inherent to sedimentary depositional facies descriptions, which are therefore potentially good predictors of spatially varying hydraulic conductivity (K). Analysis of complex alluvial heterogeneity in Livermore Valley, California, USA, using relatively abundant core descriptions and field pumping-test data, demonstrates a depositional-facies approach to characterization of subsurface heterogeneity. Conventional textural classifications of the core show a poor correlation with K; however, further refinement of the textural classifications into channel, levee, debris-flow, and flood-plain depositional facies reveals a systematic framework for spatial modeling of K. This geologic framework shows that most of the system is composed of very low-K flood-plain materials, and that the K measurements predominantly represent the other, higher-K facies. Joint interpretation of both the K and geologic data shows that spatial distribution of K in this system could not be adequately modeled without geologic data and analysis. Furthermore, it appears that K should not be assumed to be log-normally distributed, except perhaps within each facies. Markov chain modeling of transition probability, representing spatial correlation within and among the facies, captures the relevant geologic features while highlighting a new approach for statistical characterization of hydrofacies spatial variability. The presence of fining-upward facies sequences, cross correlation between facies, as well as other geologic attributes captured by the Markov chains provoke questions about the suitability of conventional geostatistical approaches based on variograms or covariances for modeling geologic heterogeneity. Résumé Les informations sur la texture des sédiments et leur continuité spatiale font partie des descriptions de faciès sédimentaires de dépôt. Par conséquent, ces descriptions sont d'excellents prédicteurs potentiels des

  12. Correcting underestimation of optimal fracture length by modeling proppant conductivity variations in hydraulically fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Akram, A.H.; Samad, A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Houston, TX (United States)

    2006-07-01

    A study was conducted in which a newly developed numerical simulator was used to forecast the productivity of a hydraulically fractured well in a retrograde gas-condensate sandstone reservoir. The effect of condensate dropout was modeled in both the reservoir and the proppant pack. The type of proppant and the stress applied to it are among the factors that determine proppant conductivity in a single-phase flow. Other factors include the high velocity of gas and the presence of liquid in the proppant pack. It was concluded that apparent proppant permeability in a gas condensate reservoir varies along the length of the hydraulic fracture and depends on the distance from the wellbore. It will increase towards the tip of the fracture where liquid ratio and velocity are lower. Apparent proppant permeability also changes with time. Forecasting is most accurate when these conditions are considered in the simulation. There are 2 problems associated with the use of a constant proppant permeability in a gas condensate reservoir. The first relates to the fact that it is impossible to obtain a correct single number that will mimic the drawdown of the real fracture at a particular rate without going through the process of determining the proppant permeability profile in a numerical simulator. The second problem relates to the fact that constant proppant permeability yields an optimal fracture length that is too short. Analytical modeling does not account for these complexities. It was determined that the only way to accurately simulate the behaviour of a hydraulic fracture in a high rate well, is by advanced numerical modeling that considers varying apparent proppant permeability in terms of time and distance along the fracture length. 10 refs., 2 tabs., 16 figs., 1 appendix.

  13. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  14. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Science.gov (United States)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  15. Parameterized equation for the estimation of the hydraulic conductivity function not saturated in ferralsols south of Havana

    International Nuclear Information System (INIS)

    González Robaina, Felicita; López Seijas, Teresa

    2008-01-01

    The modeling of the processes involved in the movement of water in soil solutions generally requires the general equation of water flow for the condition of saturation, or Darcy - Buckinghan approach. In this approach the hydraulic - soil moisture (K(0)) conductivity function is a fundamental property of the soil to determine for each field condition. Several methods reported in the literature for determining the hydraulic conductivity are based on simplifications of assuming unit gradient method or a fixed ratio K(0). In recent years related to the search for simple, rapid and inexpensive methods to measure this relationship in the field using a lot of work aftershocks reported. One of these methods is the parameterized equation proposed by Reichardt, using the parameters of the equations describing the process of internal drainage and explain the exponential nature of the relationship K(0). The objective of this work is to estimate the K(0), with the method of the parameterized equation. To do the test results of internal drainage on a Ferralsol area south of Havana will be used. The results show that the parameterized equation provides an estimation of K(0) for those similar to the methods that assume unit gradient conditions

  16. Influence of temperature and hydraulic conductivity of soil on electrokinetic decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Kim, Seung-Soo; Jeong, Jung-Whan; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The electrokinetic process holds great promise for the decontamination of contaminated soil because it has a high removal efficiency and is time-effective for low permeability. Electrokinetic decontamination can be used to treat soil contaminated with inorganic species and radionuclides. The main mechanisms of a contaminant's movement in an electrical field involved in electrokinetic technology are the electro-migration of the ionic species and electro-osmosis. Electro-migration probably contributes significantly to the removal of contaminants, especially at high concentrations of ionic contaminants and/or a high hydraulic permeability of soil. The cathode reaction should be depolarized to avoid the generation of hydroxides and their transport in soil. The selected liquid, also known as a purging reagent, should induce favorable pH conditions in soil, and/or interact with the incorporated heavy metals so that these heavy metals are removed from the soil. The removal efficiencies of uranium from contaminated soil in manufactured laboratory electrokinetic decontamination equipment were proportional to the elapsed time. The removal efficiencies of uranium for 2 days were 77-87%. In addition, the removal efficiencies according to the elapsed time after 2 days were reduced. When 75, 80, and 85℃ electrolyte temperatures in the cathode chamber were applied, the time required for the removal efficiency of uranium to reach 92% was 6, 5 and 4 days.

  17. Influence of temperature and hydraulic conductivity of soil on electrokinetic decontamination

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Jeong, Jung-Whan; Choi, Jong-Won

    2016-01-01

    The electrokinetic process holds great promise for the decontamination of contaminated soil because it has a high removal efficiency and is time-effective for low permeability. Electrokinetic decontamination can be used to treat soil contaminated with inorganic species and radionuclides. The main mechanisms of a contaminant's movement in an electrical field involved in electrokinetic technology are the electro-migration of the ionic species and electro-osmosis. Electro-migration probably contributes significantly to the removal of contaminants, especially at high concentrations of ionic contaminants and/or a high hydraulic permeability of soil. The cathode reaction should be depolarized to avoid the generation of hydroxides and their transport in soil. The selected liquid, also known as a purging reagent, should induce favorable pH conditions in soil, and/or interact with the incorporated heavy metals so that these heavy metals are removed from the soil. The removal efficiencies of uranium from contaminated soil in manufactured laboratory electrokinetic decontamination equipment were proportional to the elapsed time. The removal efficiencies of uranium for 2 days were 77-87%. In addition, the removal efficiencies according to the elapsed time after 2 days were reduced. When 75, 80, and 85℃ electrolyte temperatures in the cathode chamber were applied, the time required for the removal efficiency of uranium to reach 92% was 6, 5 and 4 days

  18. In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas

    International Nuclear Information System (INIS)

    1994-02-01

    This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided

  19. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: Effects on soil hydraulic conductivity and overland flow production

    Science.gov (United States)

    Ghimire, Chandra Prasad; Bonell, Mike; Bruijnzeel, L. Adrian; Coles, Neil A.; Lubczynski, Maciek W.

    2013-12-01

    degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance hydrological conditions but heavy usage of reforested land in the region has been shown to hamper full recovery of soil hydraulic properties. This paper investigates the effect of reforestation and forest usage on field-saturated soil hydraulic conductivities (Kfs) near Dhulikhel, Central Nepal, by comparing degraded pasture, a footpath within the pasture, a 25 year old pine reforestation, and little disturbed natural forest. The hillslope hydrological implications of changes in Kfs with land-cover change were assessed via comparisons with measured rainfall intensities over different durations. High surface and near-surface Kfs in natural forest (82-232 mm h-1) rule out overland flow occurrence and favor vertical percolation. Conversely, corresponding Kfs for degraded pasture (18-39 mm h-1) and footpath (12-26 mm h-1) were conducive to overland flow generation during medium- to high-intensity storms and thus to local flash flooding. Pertinently, surface and near-surface Kfs in the heavily used pine forest remained similar to those for degraded pasture. Estimated monsoonal overland flow totals for degraded pasture, pine forest, and natural forest were 21.3%, 15.5%, and 2.5% of incident rainfall, respectively, reflecting the relative ranking of surface Kfs. Along with high water use by the pines, this lack of recovery of soil hydraulic properties under pine reforestation is shown to be a critical factor in the regionally observed decline in base flows following large-scale planting of pines and has important implications for regional forest management.

  20. Re-analysis of hydraulic tests conducted for well 4A

    International Nuclear Information System (INIS)

    Swanson, L.C.

    1994-01-01

    During 1992, a series of hydrologic characterization tests were conducted at the well 4A -- 4T test facility complex. Details concerning these tests are described in Swanson (1992). Two of the tests, a constant-rate discharge test conducted on March 30, 1992 and a slug interference test performed on April 15, 1992, are the focus of this report

  1. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    Science.gov (United States)

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  2. Estimating the saturated soil hydraulic conductivity by the near steady-state phase of a beerkan infiltration run

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2017-04-01

    Simple infiltration experiments carried out in the field allow an easy and inexpensive way of characterizing soil hydraulic behavior, maintaining the functional connection of the sampled soil volume with the surrounding soil. The beerkan method consists of a three-dimensional (3D) infiltration experiment at zero pressure head (Haverkamp et al., 1996). It uses a simple annular ring inserted to a depth of about 0.01 m to avoid lateral loss of the ponded water. Soil disturbance is minimized by the limited ring insertion depth. Infiltration time of small volumes of water repeatedly poured on the confined soil are measured to determine the cumulative infiltration. Different algorithms based on this methodology (the so-called BEST family of algorithms) were developed for the determination of soil hydraulic characteristic parameters (Bagarello et al., 2014a; Lassabatere et al., 2006; Yilmaz et al., 2010). Recently, Bagarello et al. (2014b) developed a Simplified method based on a Beerkan Infiltration run (SBI method) to determine saturated soil hydraulic conductivity, Ks, by only the transient phase of a beerkan infiltration run and an estimate of the α* parameter, expressing the relative importance of gravity and capillary forces during an infiltration process (Reynolds and Elrick, 1990). However, several problems yet arise with the existing BEST-algorithms and the SBI method, including (i) the need of supplementary field and laboratory measurements (Bagarello et al., 2013); (ii) the difficulty to detect a linear relationship between I / √t and √t in the early stage of the infiltration process (Bagarello et al., 2014b); (iii) estimation of negative Ks values for hydrophobic soils (Di Prima et al., 2016). In this investigation, a new Simplified method based on the analysis of the Steady-state Beerkan Infiltration run (SSBI method) was proposed and tested. In particular, analytical data were generated to simulate beerkan infiltration experiments for six contrasting

  3. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. 2

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Fujii, Kensuke; Kubo, Hiroshi

    2003-02-01

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Several experimental studies have been carried out in this study in order to assess quantitatively water conductivity of bentonite which is altered by hyper alkaline and nitrate. Modeling for previous results is carried out and several requirements to be defined are proposed. The conclusion of this study is summarized as below. Secondary minerals of bentonite alteration due to hyper alkaline with nitrate: 1) CSH and CAH were observed corresponding to solving montmorillonite in AWN solution. 2) Na 2 O Al 2 O 3 1.68SiO 2 generated from 90 days in batch experiment and it was observed in 360 days. Assessment of swelling and water conductivity changing by hyper alkaline with nitrate: 1) Little changing of water conductivity of bentonite was observed by saturated Ca(OH) 2 solution and hyper alkaline solution. The conductivity significantly increased by penetrating sodium nitrate solution. 2) Water conductivity of ion exchanged bentonite by hyper alkaline solution significantly increased. It increased more by penetrating AWN solution. Modeling of tuff alteration by hyper alkaline solution: 1) Flow through test is proposed since soluble velocity to hyper alkaline solution should be defined. (author)

  4. Comparison of laboratory, in situ, and rock mass measurements of the hydraulic conductivity of metamorphic rock at the Savannah River Plant near Aiken, South Carolina

    International Nuclear Information System (INIS)

    Marine, I.W.

    1980-01-01

    In situ testing of exploratory wells in metamorphic rock indicates that two types of fracturing occur in the rock mass. Rock containing small openings that permit only extremely slow movement of water is termed virtually impermeable rock. Rock containing openings of sufficient size to permit transmission of water at a significantly faster rate is termed hydraulically transmissive rock. Laboratory methods are unsuitable for measuring hydraulic conductivity in hydraulically transmissive rock; however, for the virtually impermeable rock, values comparable to the in situ tests are obtained. The hydraulic conductivity of the rock mass over a large region is calculated by using the hydraulic gradient, porosity, and regional velocity. This velocity is determined by dividing the inferred travel distance by the age of water which is determined by the helium content of the water. This rock mass hydraulic conductivity value is between the values measured for the two types of fractures, but is closer to the measured value for the virtually impermeable rock. This relationship is attributed to the control of the regional flow rate by the virtually impermeable rock where the discrete fractures do not form a continuous open connection through the entire rock mass. Thus, laboratory methods of measuring permeability in metamorphic rock are of value if they are properly applied

  5. Feedback from uncertainties propagation research projects conducted in different hydraulic fields: outcomes for engineering projects and nuclear safety assessment.

    Science.gov (United States)

    Bacchi, Vito; Duluc, Claire-Marie; Bertrand, Nathalie; Bardet, Lise

    2017-04-01

    In recent years, in the context of hydraulic risk assessment, much effort has been put into the development of sophisticated numerical model systems able reproducing surface flow field. These numerical models are based on a deterministic approach and the results are presented in terms of measurable quantities (water depths, flow velocities, etc…). However, the modelling of surface flows involves numerous uncertainties associated both to the numerical structure of the model, to the knowledge of the physical parameters which force the system and to the randomness inherent to natural phenomena. As a consequence, dealing with uncertainties can be a difficult task for both modelers and decision-makers [Ioss, 2011]. In the context of nuclear safety, IRSN assesses studies conducted by operators for different reference flood situations (local rain, small or large watershed flooding, sea levels, etc…), that are defined in the guide ASN N°13 [ASN, 2013]. The guide provides some recommendations to deal with uncertainties, by proposing a specific conservative approach to cover hydraulic modelling uncertainties. Depending of the situation, the influencing parameter might be the Strickler coefficient, levee behavior, simplified topographic assumptions, etc. Obviously, identifying the most influencing parameter and giving it a penalizing value is challenging and usually questionable. In this context, IRSN conducted cooperative (Compagnie Nationale du Rhone, I-CiTy laboratory of Polytech'Nice, Atomic Energy Commission, Bureau de Recherches Géologiques et Minières) research activities since 2011 in order to investigate feasibility and benefits of Uncertainties Analysis (UA) and Global Sensitivity Analysis (GSA) when applied to hydraulic modelling. A specific methodology was tested by using the computational environment Promethee, developed by IRSN, which allows carrying out uncertainties propagation study. This methodology was applied with various numerical models and in

  6. Comparison of Hydraulic Conductivity Determinations in Co-located Conventional and Direct-Push Monitoring Wells

    Science.gov (United States)

    2011-03-08

    and Development Center (ERDC) provided the funding for this project. We wish to thank our project monitors Tony Bednar (ERDC Environmental Laboratory...method for field determination of hy- draulic conductivity at contaminated sites (Butler 1997; Henebry and Robbins 2000; Bartlett et al. 2004). For a...ASTM International. www.astm.org Bartlett, Stephen A., Gary A. Robbins , J. Douglas Mandrick, Michael Barcelona, Wes McCall, and Mark Kram. 2004

  7. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM).

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine

    2012-12-31

    Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration(1,2). Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψ(leaf)). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance(3). Leaf hydraulic conductance (K(leaf) = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. K(leaf) is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, K(leaf) responds strongly to the internal and external leaf environment(3). K(leaf) can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes(4), and K(leaf) declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation(5

  8. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.).

    Science.gov (United States)

    de Silva, Nayana Dilini Gardiyehewa; Cholewa, Ewa; Ryser, Peter

    2012-10-01

    The effects of heavy metal stress, drought stress, and their combination on xylem structure in red maple (Acer rubrum) seedlings were investigated in an outdoor pot experiment. As metal-contaminated substrate, a mixture of 1.5% slag with sand was used, with Ni, Cu, Co, and Cr as the main contaminants. Plants grown on contaminated substrate had increased leaf metal concentrations. The two stresses reduced plant growth in an additive manner. The effects of metal and drought stresses on xylem characteristics were similar to each other, with a reduced proportion of xylem tissue, reduced conduit density in stems, and reduced conduit size in the roots. This resulted, in both stems and roots, in reductions in hydraulic conductance, xylem-specific conductivity, and leaf-specific conductivity. The similarity of the responses to the two stresses suggests that the plants' response to metals was actually a drought response, probably due to the reduced water uptake capacity of the metal-exposed roots. The only plant responses specific to metal stress were decreasing trends of stomatal density and chlorophyll content. In conclusion, the exposure to metals aggravates water stress in an additive manner, making the plants more vulnerable to drought.

  9. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco

    2017-06-01

    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  10. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Science.gov (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda

    2017-06-01

    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  11. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

    Science.gov (United States)

    Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R

    2013-09-01

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.

  12. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China.

    Science.gov (United States)

    Fu, Tonggang; Chen, Hongsong; Zhang, Wei; Nie, Yunpeng; Wang, Kelin

    2015-03-01

    Saturated hydraulic conductivity (Ks) is one of the most important soil hydraulic parameters influencing hydrological processes. This paper aims to investigate the vertical distribution of Ks and to analyze its influencing factors in a small karst catchment in Southwest China. Ks was measured in 23 soil profiles for six soil horizons using a constant head method. These profiles were chosen in different topographical locations (upslope, downslope, and depression) and different land-use types (forestland, shrubland, shrub-grassland, and farmland). The influencing factors of Ks, including rock fragment content (RC), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic carbon (SOC), were analyzed by partial correlation analysis. The mean Ks value was higher in the entire profile in the upslope and downslope, but lower value, acting as a water-resisting layer, was found in the 10-20 cm soil depth in the depression. Higher mean Ks values were found in the soil profiles in the forestland, shrubland, and shrub-grassland, but lower in the farmland. These results indicated that saturation-excess runoff could occur primarily in the hillslopes but infiltration-excess runoff in the depression. Compared with other land-use types, surface runoff is more likely to occur in the farmlands. RC had higher correlation coefficients with Ks in all categories concerned except in the forestland and farmland with little or no rock fragments, indicating that RC was the dominant influencing factor of Ks. These results suggested that the vertical distributions of Ks and RC should be considered for hydrological modeling in karst areas.

  13. Effect of dry density and temperature on the hydraulic conductivity of domestic compacted bentonite as a buffer material in the high level waste repository

    International Nuclear Information System (INIS)

    Cho, Won Jin; Chun, Kwan Sik; Lee, Jae Owan

    1999-02-01

    This study is intended to investigate the effect of dry density and temperature on the hydraulic conductivity of domestic calcium bentonite. The dry densities of bentonite are 1.4 Mg/m 3 , 1.6 Mg/m 3 and 1.6 Mg/m, and the temperatures are in the range of 20 dg C to 150 dg C. The hydraulic conductivities of compacted bentonite with dry densities higher than 1.4 Mg/m 3 are lower than 10 -1 1 m/s, and are low enough to inhibit the radionuclide release by advection through the buffer. The hydraulic conductivities at the temperature of 150 dg C increase up to about 1 order higher than those at 20 dg C. (author). 28 refs., 5 tabs., 20 figs

  14. Comparison of Several Thermal Conductivity Constants for Thermal Hydraulic Calculation of Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Setiadipura, Topan; Pramutadi, Asril

    2017-07-01

    There are two type of High Temperature Gas Reactor (HTGR), prismatic and pebble bed. Pebble Bed type has unique configuration because the fuels are randomly distributed inside the reactor core. In term of safety features, Pebble Bed Reactor (PBR) is one of the most promising reactor type in avoiding severe nuclear accidents. In order to analyze heat transfer and safety of this reactor type, a computer code is now under development. As a first step, calculation method proposed by Stroh [1] is adopted. An approach has been made to treat randomly distributed pebble balls contains fissile material inside the reactor core as a porous medium. Helium gas act as coolant on the reactor system are carrying heat flowing in the area between the pebble balls. Several parameters and constants are taken into account in the new developed code. Progress of the development of the code especially comparison of several thermal conductivity constants for a certain PBR-case are reported in the present study.

  15. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity.

    Science.gov (United States)

    Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit

    2014-03-24

    Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P water deficit (ΨLwater availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.

  16. Impact of reclaimed water irrigation on soil salinity, hydraulic conductivity, cation exchange capacity and macro-nutrients

    Directory of Open Access Journals (Sweden)

    Saif A. Al-Khamisi

    2016-01-01

    Full Text Available Field studies were conducted at Agriculture Research Center, Oman during the year 2010/2011 to monitor the impact of reclaimed water irrigation on soil physical and chemical properties after wheat, cowpea and maize cultivation (in rotation. Three different water sources (Groundwater (GW, desalinized water (DW, and Reclaimed Water (RW were used as the treatments in Randomized Completely Block Design (RCBD with 3 blocks (replicates. Samples were taken from four depths (30, 45, 60 and 90 cm after harvesting time of the three crops. Soil salinity (ECe in all soil depths decreased with time. Organic carbon did not show significant difference between harvest timings of wheat and cowpea. Organic carbon increased with time in soil irrigated with reclaimed water. The saturated hydraulic conductivity of the soil, Ksat didn’t show significant difference among the water types and their interaction with soil depths. Total nitrogen was the highest after cowpea harvest in reclaimed water irrigation. The soil phosphorus and potassium were not affected by any of the three water irrigation types. The highest concentrations of phosphorus and potassium were found to be in the upper soil layers. Overall, no adverse impacts of reclaimed water irrigation were observed after growing three crops of rotation.

  17. Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity-photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.).

    Science.gov (United States)

    Reddy, Kanubothula Sitarami; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra

    2017-07-01

    Hydraulic conductivity quantifies the efficiency of a plant to transport water from root to shoot and is a major constriction on leaf gas exchange physiology. Mulberry (Morus spp.) is the most economically important crop for sericulture industry. In this study, we demonstrate a finely coordinated control of hydraulic dynamics on leaf gas exchange characteristics in 1-year-old field-grown mulberry genotypes (Selection-13 (S13); Kollegal Local (KL) and Kanva-2 (K2)) subjected to water stress by withholding water for 20 days and subsequent recovery for 7 days. Significant variations among three mulberry genotypes have been recorded in net photosynthetic rates (Pn), stomatal conductance and sap flow rate, as well as hydraulic conductivity in stem (KS) and leaf (KL). Among three genotypes, S13 showed significantly high rates of Pn, KS and KL both in control as well as during drought stress (DS) and recovery, providing evidence for superior drought-adaptive strategies. The plant water hydraulics-photosynthesis interplay was finely coordinated with the expression of certain key aquaporins (AQPs) in roots and leaves. Our data clearly demonstrate that expression of certain AQPs play a crucial role in hydraulic dynamics and photosynthetic carbon assimilation during DS and recovery, which could be effectively targeted towards mulberry improvement programs for drought adaptation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

    Science.gov (United States)

    Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B

    2007-04-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.

  19. Hydraulic fracture conductivity: effects of rod-shaped proppant from lattice-Boltzmann simulations and lab tests

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-06-01

    The goal of this study is to evaluate the conductivity of random close packings of non-spherical, rod-shaped proppant particles under the closure stress using numerical simulation and lab tests, with application to the conductivity of hydraulic fractures created in subterranean formation to stimulate production from oil and gas reservoirs. Numerical simulations of a steady viscous flow through proppant packs are carried out using the lattice Boltzmann method for the Darcy flow regime. The particle packings were generated numerically using the sequential deposition method. The simulations are conducted for packings of spheres, ellipsoids, cylinders, and mixtures of spheres with cylinders at various volumetric concentrations. It is demonstrated that cylinders provide the highest permeability among the proppants studied. The dependence of the nondimensional permeability (scaled by the equivalent particle radius squared) on porosity obtained numerically is well approximated by the power-law function: K /Rv2 = 0.204ϕ4.58 in a wide range of porosity: 0.3 ≤ ϕ ≤ 0.7. Lattice-Boltzmann simulations are cross-verified against finite-volume simulations using Navier-Stokes equations for inertial flow regime. Correlations for the normalized beta-factor as a function of porosity and normalized permeability are presented as well. These formulae are in a good agreement with the experimental measurements (including packings of rod-shaped particles) and existing laboratory data, available in the porosity range 0.3 ≤ ϕ ≤ 0.5. Comparison with correlations by other authors is also given.

  20. Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas

    Science.gov (United States)

    Feyen, Luc; Gorelick, Steven M.

    2005-03-01

    We propose a framework that combines simulation optimization with Bayesian decision analysis to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. A stochastic simulation optimization management model is employed to plan regionally distributed groundwater pumping while preserving the hydroecological balance in wetland areas. Because predictions made by an aquifer model are uncertain, groundwater supply systems operate below maximum yield. Collecting data from the groundwater system can potentially reduce predictive uncertainty and increase safe water production. The price paid for improvement in water management is the cost of collecting the additional data. Efficient data collection using Bayesian decision analysis proceeds in three stages: (1) The prior analysis determines the optimal pumping scheme and profit from water sales on the basis of known information. (2) The preposterior analysis estimates the optimal measurement locations and evaluates whether each sequential measurement will be cost-effective before it is taken. (3) The posterior analysis then revises the prior optimal pumping scheme and consequent profit, given the new information. Stochastic simulation optimization employing a multiple-realization approach is used to determine the optimal pumping scheme in each of the three stages. The cost of new data must not exceed the expected increase in benefit obtained in optimal groundwater exploitation. An example based on groundwater management practices in Florida aimed at wetland protection showed that the cost of data collection more than paid for itself by enabling a safe and reliable increase in production.

  1. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panamá

    Science.gov (United States)

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Engelbrecht, B.M.J.; Ball, M.C.

    2004-01-01

    1. Dwarf stands of the mangrove Rhizophora mangle L. are extensive in the Caribbean. We fertilized dwarf trees in Almirante Bay, Bocas del Toro Province, north-eastern Panama with nitrogen (N) and phosphorus (P) to determine (1) if growth limitations are due to nutrient deficiency; and (2) what morphological and/or physiological factors underlie nutrient limitations to growth. 2. Shoot growth was 10-fold when fertilized with P and twofold with N fertilization, indicating that stunted growth of these mangroves is partially due to nutrient deficiency. 3. Growth enhancements caused by N or P enrichment could not be attributed to increases in photosynthesis on a leaf area basis, although photosynthetic nutrient-use efficiency was improved. The most dramatic effect was on stem hydraulic conductance, which was increased sixfold by P and 2-5-fold with N enrichment. Fertilization with P enhanced leaf and stem P concentrations and reduced C:N ratio, but did not alter leaf damage by herbivores. 4. Our findings indicate that addition of N and P significantly alter tree growth and internal nutrient dynamics of mangroves at Bocas del Toro, but also that the magnitude, pattern and mechanisms of change will be differentially affected by each nutrient.

  2. Experimental Design for Estimating Unknown Hydraulic Conductivity in a Confined Aquifer using a Genetic Algorithm and a Reduced Order Model

    Science.gov (United States)

    Ushijima, T.; Yeh, W.

    2013-12-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provides the maximum information about unknown hydraulic conductivity in a confined, anisotropic aquifer. The design employs a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. Because that the formulated problem is non-convex and contains integer variables (necessitating a combinatorial search), for a realistically-scaled model, the problem may be difficult, if not impossible, to solve through traditional mathematical programming techniques. Genetic Algorithms (GAs) are designed to search out the global optimum; however because a GA requires a large number of calls to a groundwater model, the formulated optimization problem may still be infeasible to solve. To overcome this, Proper Orthogonal Decomposition (POD) is applied to the groundwater model to reduce its dimension. The information matrix in the full model space can then be searched without solving the full model.

  3. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    Science.gov (United States)

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  5. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  6. Wood anatomy reveals high theoretical hydraulic conductivity and low resistance to vessel implosion in a Cretaceous fossil forest from northern Mexico.

    Science.gov (United States)

    Martínez-Cabrera, Hugo I; Estrada-Ruiz, Emilio

    2014-01-01

    The Olmos Formation (upper Campanian), with over 60 angiosperm leaf morphotypes, is Mexico's richest Cretaceous flora. Paleoclimate leaf physiognomy estimates indicate that the Olmos paleoforest grew under wet and warm conditions, similar to those present in modern tropical rainforests. Leaf surface area, tree size and climate reconstructions suggest that this was a highly productive system. Efficient carbon fixation requires hydraulic efficiency to meet the evaporative demands of the photosynthetic surface, but it comes at the expense of increased risk of drought-induced cavitation. Here we tested the hypothesis that the Olmos paleoforest had high hydraulic efficiency, but was prone to cavitation. We characterized the hydraulic properties of the Olmos paleoforest using theoretical conductivity (Ks), vessel composition (S) and vessel fraction (F), and measured drought resistance using vessel implosion resistance (t/b)h(2) and the water potential at which there is 50% loss of hydraulic conductivity (P50). We found that the Olmos paleoforest had high hydraulic efficiency, similar to that present in several extant tropical-wet or semi-deciduous forest communities. Remarkably, the fossil flora had the lowest (t/b)h(2), which, together with low median P50 (-1.9 MPa), indicate that the Olmos paleoforest species were extremely vulnerable to drought-induced cavitation. Our findings support paleoclimate inferences from leaf physiognomy and paleoclimatic models suggesting it represented a highly productive wet tropical rainforest. Our results also indicate that the Olmos Formation plants had a large range of water conduction strategies, but more restricted variation in cavitation resistance. These straightforward methods for measuring hydraulic properties, used herein for the first time, can provide useful information on the ecological strategies of paleofloras and on temporal shifts in ecological function of fossil forests chronosequences.

  7. Brackish water for irrigation: IV. effects on yield of maize (zea mays l.) and saturated hydraulic conductivity of soil

    International Nuclear Information System (INIS)

    Abid, M.; Anwar-ur-Hassan; Ghafoor, A.

    2003-01-01

    The experiment was conducted to investigate the effect of brackish water irrigation on fresh biomass yield of maize variety Agati-72 and saturated hydraulic conductivity (HC) of silty clay loam soil. Total 20 treatment combinations having different EC/sub iw/ (0.65, 2.0, 4.0, 6.0 and 7.35 dS m/sup -1/), SAR/sub iw/ (3.95, 9.65, 18.0, 26.35 and 32.04 (mmol L/sup -1)/sup 1/2/) and RSC (0.65, 2.0, 4.0, 6.0 and 7.35 mmol/sub c/ L/sup -1/) were applied to 30 cm x 68 cm undisturbed and disturbed soil columns. Results indicated that biomass yield of maize decreased with an increase in EC/sub iw/ from 0.65 to 7.35 dS m/sup -1/ at coded 0 levels of SAR/sub iw/ and RSC in undisturbed soil. The maize tolerated EC/sub iw/ up to 2.0 dS m/sup-1/ at coded 0 levels of SAR/sub iw/ and RSC in disturbed soil. The SAR/sub iw/ up to 18.0 did not affect the yield of crop at coded 0 levels of EC/sub iw/ for the undisturbed and disturbed soils, respectively. The increase in HC was 48% in undisturbed and 54% in disturbed soils with EC/sub iw/ 7.35 dS m/sup -1/ over EC/sub iw/ 0.65 dS m/sup -1/ coded 0 levels of EC/sub iw/ and RSC. The HC decreased with SAR/sub iw/ and RSC at coded 0 levels of EC/sub iw/ and RSC; EC/sub iw/ and SAR/sub iw/ in both the soil columns. (author)

  8. Hydraulic Conductivity Measurements with HTU at Eurajoki, Olkiluoto, Borehole OL-KR15 and OL-KR15B, Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Haemaelaeinen, H.

    2005-07-01

    As a part of the site investigations for the disposal of spent nuclear fuel, hydraulic conductivity measurements were carried out in borehole OL-KR15 at Eurajoki, Olkiluoto. The objective was to investigate the distribution of the hydraulic conductivity in the surrounding bedrock volume. Measurements were carried out during 2003-2004 in two phases. The total length of the borehole OL-KR15 is 518,85 m and 158 45,14 m. Of the 471 ,5 m + 44,5 m total measurable length 414 m was covered with 237 standard tests with 2 m packer separation as specified in the research plan, partly with 1 m overlaps. 259 tests were initiated, but some of them ended to hardware or software errors or unsuitable parameter values. Double-packer constant-head method was used throughout with nominal 200 kPa overpressure. Injection stage lasted normally 20 minutes and fall-off stage 10 minutes. The tests were often shortened if there were clear indications that the hydraulic conductivity is below the measuring range of the system. The pressure in the test section was let to stabilise at least 5 min before injection. In some test sections the stabilisation or injection stage lasted several hours. Two transient (Horner and 1/Q) interpretations and one stationary-state (Moye) interpretation were made in-situ immediately after the test. The Hydraulic Testing Unit (HTU-system) is owned by Posiva Oy and it was operated by Geopros Oy. (orig.)

  9. Hydraulic Conductivity Measurements with HTU at Eurajoki, Olkiluoto, Borehole OL-KR15 and OL-KR15B, Year 2004

    International Nuclear Information System (INIS)

    Haemaelaeinen, H.

    2005-01-01

    As a part of the site investigations for the disposal of spent nuclear fuel, hydraulic conductivity measurements were carried out in borehole OL-KR15 at Eurajoki, Olkiluoto. The objective was to investigate the distribution of the hydraulic conductivity in the surrounding bedrock volume. Measurements were carried out during 2003-2004 in two phases. The total length of the borehole OL-KR15 is 518,85 m and 158 45,14 m. Of the 471 ,5 m + 44,5 m total measurable length 414 m was covered with 237 standard tests with 2 m packer separation as specified in the research plan, partly with 1 m overlaps. 259 tests were initiated, but some of them ended to hardware or software errors or unsuitable parameter values. Double-packer constant-head method was used throughout with nominal 200 kPa overpressure. Injection stage lasted normally 20 minutes and fall-off stage 10 minutes. The tests were often shortened if there were clear indications that the hydraulic conductivity is below the measuring range of the system. The pressure in the test section was let to stabilise at least 5 min before injection. In some test sections the stabilisation or injection stage lasted several hours. Two transient (Horner and 1/Q) interpretations and one stationary-state (Moye) interpretation were made in-situ immediately after the test. The Hydraulic Testing Unit (HTU-system) is owned by Posiva Oy and it was operated by Geopros Oy. (orig.)

  10. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone

    Science.gov (United States)

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.

    2013-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  11. Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a lowland river (Aa River, Belgium)

    Science.gov (United States)

    Ghysels, Gert; Benoit, Sien; Awol, Henock; Jensen, Evan Patrick; Debele Tolche, Abebe; Anibas, Christian; Huysmans, Marijke

    2018-04-01

    An improved general understanding of riverbed heterogeneity is of importance for all groundwater modeling studies that include river-aquifer interaction processes. Riverbed hydraulic conductivity (K) is one of the main factors controlling river-aquifer exchange fluxes. However, the meter-scale spatial variability of riverbed K has not been adequately mapped as of yet. This study aims to fill this void by combining an extensive field measurement campaign focusing on both horizontal and vertical riverbed K with a detailed geostatistical analysis of the meter-scale spatial variability of riverbed K . In total, 220 slug tests and 45 standpipe tests were performed at two test sites along the Belgian Aa River. Omnidirectional and directional variograms (along and across the river) were calculated. Both horizontal and vertical riverbed K vary over several orders of magnitude and show significant meter-scale spatial variation. Horizontal K shows a bimodal distribution. Elongated zones of high horizontal K along the river course are observed at both sections, indicating a link between riverbed structures, depositional environment and flow regime. Vertical K is lognormally distributed and its spatial variability is mainly governed by the presence and thickness of a low permeable organic layer at the top of the riverbed. The absence of this layer in the center of the river leads to high vertical K and is related to scouring of the riverbed by high discharge events. Variograms of both horizontal and vertical K show a clear directional anisotropy with ranges along the river being twice as large as those across the river.

  12. Hydraulic conductivity changes in river valley sediments caused by river bank filtration - an analysis of specific well capacity

    Science.gov (United States)

    Kaczmarek, Piotr M. J.

    2017-06-01

    Parameters from archive data of the Kalisz-Lis waterworks, located in the Prosna River valley south of Kalisz, have been analysed. Well barrier discharges groundwater from Quaternary sediments which is mixed with riverbank filtration water. The analysis focused on specific well capacity, a parameter that represents the technical and natural aspects of well life. To exclude any aging factor, an examination of specific well capacity acquired only in the first pumping tests of a new well was performed. The results show that wells drilled between 1961 and 2004 have similar values of specific well capacity and prove that > 40 years discharge has had little influence on hydrodynamic conditions of the aquifer, i.e., clogging has either not occurred or is of low intensity. This implies that, in the total water balance of the Kalisz- Lis well barrier, riverbank filtration water made little contribution. In comparison, a similar analysis of archive data on the Mosina-Krajkowo wells of two generations of well barriers located in the Warta flood plains was performed; this has revealed a different trend. There was a significant drop in specific well capacity from the first pumping test of substitute wells. Thus, long-term groundwater discharge in the Warta valley has had a great impact on the reduction of the hydraulic conductivity of sediments and has worsened hydrodynamic conditions due to clogging of river bed and aquifer, which implies a large contribution of riverbank filtration water in the total water well balance. For both well fields conclusions were corroborated by mathematical modeling; in Kalisz-Lis 16.2% of water comes from riverbank filtration, whereas the percentage for Mosina-Krajkowo is 78.9%.

  13. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilizationpce

    Science.gov (United States)

    Jean-Christophe Domec; Sari Palmroth; Eric Ward; Chris Maier; M. Therezien; Ram Oren

    2009-01-01

    We investigated how leaf hydraulic conductance (Kleaf) of loblolly pine trees is influenced by soil nitrogen amendment (N) in stands subjected to ambient or elevated CO2 concentrations CO2 a and CO2 e, respectively). We also examined how Kleaf varies with changes in reference leaf water potential (...

  14. Analysis of hydraulic tests of the Culebra and Magenta Dolomites and Dewey Lake Redbeds conducted at the Waste Isolation Pilot Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.; Ruskauff, G.J. [Duke Engineering and Services, Inc., Albuquerque, NM (United States)

    1998-09-01

    This report presents interpretations of hydraulic tests conducted at 15 well locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico between 1980 and 1996. The WIPP is a US Department of Energy (DOE) facility to demonstrate safe disposal of transuranic wastes arising form the nation`s defense programs. The WIPP repository lies within bedded halite of the Salado Formation, 2,155 ft below ground surface. The tests reported herein were, with two exceptions, conducted in the Culebra Dolomite member of the Rustler Formation, which overlies the Salado Formation. The remaining tests were conducted in the Magenta Member of the Rustler and in the overlying formation, the Dewey Lake Redbeds. This report completes the documentation of hydraulic-test interpretations used as input to the WIPP Compliance Certification Application (US DOE, 1996).

  15. Analysis of hydraulic tests of the Culebra and Magenta Dolomites and Dewey Lake Redbeds conducted at the Waste Isolation Pilot Plant Site

    International Nuclear Information System (INIS)

    Beauheim, R.L.

    1998-09-01

    This report presents interpretations of hydraulic tests conducted at 15 well locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico between 1980 and 1996. The WIPP is a US Department of Energy (DOE) facility to demonstrate safe disposal of transuranic wastes arising form the nation's defense programs. The WIPP repository lies within bedded halite of the Salado Formation, 2,155 ft below ground surface. The tests reported herein were, with two exceptions, conducted in the Culebra Dolomite member of the Rustler Formation, which overlies the Salado Formation. The remaining tests were conducted in the Magenta Member of the Rustler and in the overlying formation, the Dewey Lake Redbeds. This report completes the documentation of hydraulic-test interpretations used as input to the WIPP Compliance Certification Application (US DOE, 1996)

  16. Implications of the "observer effect" on modelling a long-term pumping test with hydraulically conductive boreholes in a discrete fracture network system.

    Science.gov (United States)

    Holton, D.; Frampton, A.; Cvetkovic, V.

    2006-12-01

    The Onkalo underground research facility for rock characterisation for nuclear waste disposal is located at Olkiluoto island, just off the Finnish coast in the Baltic Sea. Prior to the start of the excavation of the Onkalo facility, an extensive amount of hydraulic data has been collected during various pumping experiments from a large number of boreholes placed throughout an area of approximately 10 km2, reaching depths of 1000 meters below sea level. In particular, the hydraulic borehole data includes classical measurements of pressure, but also new measurements of flow rate and flow direction in boreholes (so called flow-logging). These measurements indicate large variations in heterogeneity and are a clear reflection of the discrete nature of the system. Here we present results from an ongoing project which aims to explore and asses the implications of these new flow-logging measurements to site descriptive modelling and modelling at performance assessment scales. The main challange of the first phase of this project is to obtain a greater understanding of a strongly heterogenious and anisotropic groundwater system in which open boreholes are located; that is, a system in which the observation boreholes themselves create new hydraulic conductive features of the groundwater system. The results presented are from recent hydraulic flow modelling simulations with a combined continuous porous media and discrete fracture network approach using a commercial finite-element software. An advantage of this approach is we may adapt a continuum mesh on the regional scale, were only a few conductive features are known, together with a local scale discrete fracture network approach, where detailed site-investigation has revealed a large amount of conductive features. Current findings indicate the system is sensitive to certain combinations of hydraulic features, and we quantify the significance of including these variations in terms of their implications for reduction of

  17. The impact of storm events on a riverbed system and its hydraulic conductivity at a site of induced infiltration.

    Science.gov (United States)

    Levy, Jonathan; Birck, Matthew D; Mutiti, Samuel; Kilroy, Kathryn C; Windeler, Britton; Idris, Ominigho; Allen, Lauren N

    2011-08-01

    The spatial and temporal variability of riverbed vertical hydraulic conductivity (K(v)) was investigated at a site of induced infiltration, associated with a municipal well field, to assess the impact of high-stage events on scour and subsequently the riverbed K(v). Such impacts are important when considering the potential loss of riverbank filtration capacity due to storm events. The study site, in and along the Great Miami River in southwest Ohio, overlaid a highly productive glacial-outwash aquifer. A three-layer model for this system was conceptualized: a top layer of transient sediment, a second layer comprising large sediment resistant to scour, but clogged with finer sediment (the armor/colmation layer), and a third layer that was transitional to the underlying higher-K(v) aquifer. One location was studied in detail to confirm and quantify the conceptual model. Methods included seepage meters, heat-flow modeling, grain-size analyses, laboratory permeameter tests, slug tests and the use of scour chains and pressure-load cells to directly measure the amount of sediment scour and re-deposition. Seepage meter measured riverbed K(v) ranged from 0.017 to 1.7 m/d with a geometric mean of 0.19 m/d. Heat-transport model-calibrated estimates were even lower, ranging from 0.0061 to 0.046 m/d with a mean of 0.017 m/d. The relatively low K(v) was indicative of the clogged armor layer. In contrast, slug tests in the underlying riverbed sediment yielded K(v) values an order of magnitude greater. There was a linear relationship between scour chain measured scour and event intensity with a maximum scour of only 0.098 m. Load-cell pressure sensor data over a 7-month period indicated a total sediment-height fluctuation of 0.42 m and a maximum storm-event scour of 0.28 m. Scour data indicated that the assumed armor/colmation layer almost always remained intact. Based on measured layer conductivities and thicknesses, the overall K(v) of this conceptualized system was 1.6 m

  18. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

    Science.gov (United States)

    Bresciani, Etienne; Cranswick, Roger H.; Banks, Eddie W.; Batlle-Aguilar, Jordi; Cook, Peter G.; Batelaan, Okke

    2018-03-01

    Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR) or subsurface flow from the mountain (mountain-block recharge, MBR). While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC) data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream-aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC) data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.

  19. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

    Directory of Open Access Journals (Sweden)

    E. Bresciani

    2018-03-01

    Full Text Available Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR or subsurface flow from the mountain (mountain-block recharge, MBR. While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream–aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.

  20. Hydraulic conductivity measurements with HTU at Eurajoki, Olkiluoto, drillholes OL-KR19, OL-KR45 and OL-KR46 in 2009 and 2010

    Energy Technology Data Exchange (ETDEWEB)

    Haemaelaeinen, H. [Geopros Oy, Helsinki (Finland)

    2011-10-15

    As a part of the site investigations for the disposal of spent nuclear fuel, hydraulic conductivity measurements were carried out with HTU-equipment in drillholes OL-KR19, OL-KR45 and OL-KR46 at Eurajoki, Olkiluoto. The objective was to investigate the distribution of the hydraulic conductivity in the surrounding bedrock volume. Measurements were carried out during 2009 and 2010. The total length of the borehole OL-KR19 is 544,34 m, 241,80 m of which was covered by 121 standard tests with 2 m packer separation as specified in the measurement plan. Respectively, OL-KR45 is 1023,30 m long and 63 similar tests were made in it covering 126,00 m of the hole and OL-KR46 600,10 m long, 151 tests made covering 301,35 m. The measured sections are around the depths of the planned repository. Double-packer constant-head method was used throughout with nominal 200 kPa overpressure. Injection stage lasted normally 20 minutes and fall-off stage 10 minutes. The tests were often shortened if there were clear indications that the hydraulic conductivity is below the measuring range of the system. The pressure in the test section was let to stabilise at least 5 min before injection. In some test sections the test stage times were extended. Two transient (Horner and 1/Q) interpretations and one stationary- state (Moye) interpretation were made in-situ immediately after the test. The Hydraulic Testing Unit (HTU-system) is owned by Posiva Oy and it was operated by Geopros Oy. (orig.)

  1. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland.

    Science.gov (United States)

    Skelton, Robert P; Brodribb, Timothy J; McAdam, Scott A M; Mitchell, Patrick J

    2017-09-01

    Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Hydraulic Conductivity Measurements with HTU at Eurajoki, Olkiluoto, Boreholes OL-KR16, 16B, 17, 17B, 18 and 18B, Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Haemaelaeinen, H.

    2005-07-01

    As a part of the site investigations for the disposal of spent nuclear fuel, hydraulic con- ductivity measurements were carried out in boreholes OL-KR16, 16B, 17, 17 B, 18 and 18B at Eurajoki, Olkiluoto. The objective was to investigate the distribution of the hydraulic conductivity in the surrounding bedrock volume. Measurements were carried out during spring-summer 2004. The total lengths of the boreholes are: OL-KR16 170,20 m, OL-KR17 157,13 m and OL-KR18 125,49 m. Corresponding B-holes are around 45 m deep, parallel and adjacent to their 'parent' holes so representing the cased sections of them. The conbined measurable length of the holes is about 453,57 m, of which 429,15 m was covered with 217 standard tests at 2 m packer separation as specified in the research plan. 246 tests were initiated, but some had to be cancelled due to errors or unsuitable control parameters. Double-packer constant-head method was used throughout with nominal 200 kPa overpressure. Injection stage lasted normally 20 minutes and fall-off stage 10 minutes. The tests were often shortened if there were clear indications that the hydraulic conductivity is below the measuring range of the system. The pressure in the test section was let to stabilise at least 5 min before injection. In some test sections the stabilisation, injection or fall-off stage lasted several hours. Two transient (Horner and 1/Q) interpretations and one stationary-state (Moye) interpretation were made in-situ immediately after the test. The Hydraulic Testing Unit (HTU-system) is owned by Posiva Oy and it was operated by Geopros Oy. (orig.)

  3. Changes of Root Hydraulic Conductivity and Root/Shoot Ratio of Durum Wheat and Barley in Relation to Nitrogen Availability and Mercury Exposure

    Directory of Open Access Journals (Sweden)

    Giovanna Angelino

    2011-02-01

    Full Text Available The aim of this research was to verify, on whole plant level and during all the plant cycle, the hypothesis that nitrogen deficiency reduces root hydraulic conductivity through the water channels (aquaporins activity, and that the plant reacts by changing root/shoot ratio. Root hydraulic conductivity, plant growth, root/shoot ratio and plant water status were assessed for durum wheat (Triticum durum Desf. and barley (Hordeum vulgare L., as influenced by nitrogen availability and HgCl2 treatment. On both species during the plant cycle, nitrogen deficiency induced lower root hydraulic conductivity (-49 and -66% respectively for barley and wheat and lower plant growth. On wheat was also observed cycle delay, lower plant nitrogen content, but not lower leaf turgor pressure and epidermic cell dimension. The lower plant growth was due to lower plant dimension and lower tillering. Root /shoot ratio was always higher for nitrogen stressed plants, whether on dry matter or on surface basis. This was due to lower effect of nitrogen stress on root growth than on shoot growth. On wheat HgCl2 treatment determined lower plant growth, and more than nitrogen stress, cycle delay and higher root/shoot ratio. The mercury, also, induced leaf rolling, lower turgor pressure, lower NAR, higher root cell wall lignification and lower epidermic cell number per surface unity. In nitrogen fertilized plants root hydraulic conductivity was always reduced by HgCl2 treatment (-61 and 38%, respectively for wheat and barley, but in nitrogen unfertilized plants this effect was observed only during the first plant stages. This effect was higher during shooting and caryopsis formation, lower during tillering. It is concluded that barley and durum wheat react to nitrogen deficiency and HgCl2 treatment by increasing the root/shoot ratio, to compensate water stress due to lower water root conductivity probably induced by lower aquaporin synthesis or inactivation. However, this

  4. Changes of Root Hydraulic Conductivity and Root/Shoot Ratio of Durum Wheat and Barley in Relation to Nitrogen Availability and Mercury Exposure

    Directory of Open Access Journals (Sweden)

    Celestino Ruggiero

    2007-09-01

    Full Text Available The aim of this research was to verify, on whole plant level and during all the plant cycle, the hypothesis that nitrogen deficiency reduces root hydraulic conductivity through the water channels (aquaporins activity, and that the plant reacts by changing root/shoot ratio. Root hydraulic conductivity, plant growth, root/shoot ratio and plant water status were assessed for durum wheat (Triticum durum Desf. and barley (Hordeum vulgare L., as influenced by nitrogen availability and HgCl2 treatment. On both species during the plant cycle, nitrogen deficiency induced lower root hydraulic conductivity (-49 and -66% respectively for barley and wheat and lower plant growth. On wheat was also observed cycle delay, lower plant nitrogen content, but not lower leaf turgor pressure and epidermic cell dimension. The lower plant growth was due to lower plant dimension and lower tillering. Root /shoot ratio was always higher for nitrogen stressed plants, whether on dry matter or on surface basis. This was due to lower effect of nitrogen stress on root growth than on shoot growth. On wheat HgCl2 treatment determined lower plant growth, and more than nitrogen stress, cycle delay and higher root/shoot ratio. The mercury, also, induced leaf rolling, lower turgor pressure, lower NAR, higher root cell wall lignification and lower epidermic cell number per surface unity. In nitrogen fertilized plants root hydraulic conductivity was always reduced by HgCl2 treatment (-61 and 38%, respectively for wheat and barley, but in nitrogen unfertilized plants this effect was observed only during the first plant stages. This effect was higher during shooting and caryopsis formation, lower during tillering. It is concluded that barley and durum wheat react to nitrogen deficiency and HgCl2 treatment by increasing the root/shoot ratio, to compensate water stress due to lower water root conductivity probably induced by lower aquaporin synthesis or inactivation. However, this

  5. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  6. Unsaturated hydraulic conductivity of a red-yellow podzolic soil in the Northern Zona da Mata of Pernambuco State - Brazil; Condutividade hidraulica nao saturada de um solo podzolico vermelho amarelo da Zona da Mata, Norte de Pernambuco

    Energy Technology Data Exchange (ETDEWEB)

    Maciel Netto, A

    1994-08-01

    The determination of the hydraulic conductivity of a Red-Yellow Podzolic Soil was carried out during an experiment in a plot measuring 3.5 m x 3.5 m, at the Experimental Station of Itapirema, Goiania, in Pernambuco State, Brazil. The internal drainage method proposed by Hillel (1972) was used to obtain the hydraulic conductivity as a function of soil water content, K({theta}), in the three characteristic horizons of the soil. Three neutron probes were used for measuring the humidity, that was determined by a calibration curve. Three characteristic horizons of the Red-Yellow Podzolic Soil were investigated for hydraulic conductivity. The sandy A horizon, with large pores, has a high conductivity while the B1t horizon, with a massive structure and few visible pores, has a low infiltration rate. The hydraulic dynamics of the B2 horizon is more complex due to its heterogeneity. (author). 79 refs, 17 figs, 11 tabs.

  7. Measurement of field-saturated hydraulic conductivity on fractured rock outcrops near Altamura (Southern Italy) with an adjustable large ring infiltrometer

    Science.gov (United States)

    Caputo, Maria C.; de Carlo, L.; Masciopinto, C.; Nimmo, J.R.

    2010-01-01

    Up to now, field studies set up to measure field-saturated hydraulic conductivity to evaluate contamination risks, have employed small cylinders that may not be representative of the scale of measurements in heterogeneous media. In this study, a large adjustable ring infiltrometer was designed to be installed on-site directly on rock to measure its field-saturated hydraulic conductivity. The proposed device is inexpensive and simple to implement, yet also very versatile, due to its large adjustable diameter that can be fixed on-site. It thus allows an improved representation of the natural system's heterogeneity, while also taking into consideration irregularities in the soil/rock surface. The new apparatus was tested on an outcrop of karstic fractured limestone overlying the deep Murge aquifer in the South of Italy, which has recently been affected by untreated sludge disposal, derived from municipal and industrial wastewater treatment plants. The quasi-steady vertical flow into the unsaturated fractures was investigated by measuring water levels during infiltrometer tests. Simultaneously, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil, due to unsaturated water flow in the fractures. The proposed experimental apparatus works well on rock outcrops, and allows the repetition of infiltration tests at many locations in order to reduce model uncertainties in heterogeneous media. ?? 2009 Springer-Verlag.

  8. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment

    Science.gov (United States)

    Ebel, Brian A.; Martin, Deborah

    2017-01-01

    Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil-hydraulic properties, such as field-saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed-scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run-off and erosion, existing quantitative relations to predict Kfsrecovery with time since wildfire are lacking. Here, we conduct meta-analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3-year duration. The meta-analyses focus on fitting 2 quantitative relations (linear and non-linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil-water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.

  9. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Domec, J.C.; North Carolina State Univ., Raleigh, NC; Schafer, K.; Oren, R.; Kim, H.S.; McCarthy, H.R.

    2010-01-01

    Tree growth and wood quality are being affected by changes in atmospheric carbon dioxide (CO 2 ) concentrations and precipitation regimes. Plant photosynthesis is likely to be higher under elevated atmospheric CO 2 concentrations, thereby increasing the availability of carbohydrates for growth. This study quantified the effect of elevated CO 2 concentration on anatomical and functional traits related to water transport, gas exchange, water economy and drought tolerance. The conditions under which embolism in the xylem of roots and branches are most likely to occur were investigated on 4 tree species at the Duke Forest free-air CO 2 enrichment (FACE) facility. The trees occupied different canopy strata and represented different xylem types. The study determined whether different xylem anatomies result in a wide range of hydraulic conductance and difference in resistance to cavitation. The link between liquid and gas-phase transport and how it is affected by elevated CO 2 was then quantified. Physiological changes observed under elevated CO 2 were not clearly related to structural change in the xylem of any of the species. The study showed that in some species, elevated CO 2 changed the hydraulic pathways, most likely structurally, thereby affecting the liquid phase transport and reducing stomatal conductance. The results provided a better understanding of the physiological and anatomical mechanisms that determine the responses of tree species to drought, and more generally to global change. 96 refs., 3 tabs., 8 figs.

  10. Evaluation of the effectiveness of the sealed double-ringed infiltrometers and the effects of changes in atmospheric pressure on hydraulic conductivity

    International Nuclear Information System (INIS)

    McMullin, S.R.

    1994-01-01

    The Savannah River Site (SRS) is currently evaluating some 40 hazardous and radioactive-waste sites for remediation. A remedial alternative under consideration is the closing of a waste site with a RCRA-style closure cap. The closure cap is a moisture barrier designed to inhibit the free flow of water downward into the buried wastes. When a remedial design is prepared, it is often necessary to test the cap materials to verify compliance with this recommended limit. Among the EPA-recommended test instruments is the sealed double-ring infiltrometer (SDRI). During recent testing at the Savannah River Site (SRS), six SDRI were installed and tested on a single kaolin clay cap. The purpose of this testing was to obtain a measure of the distribution of hydraulic conductivity across a model kaolin clay cap. The test results provide an evaluation of instrument performance and a measure of the repeatability of results. In addition, the testing identified variations in the unsaturated hydraulic conductivity. This paper presents an overview of the SDRI, the testing program at SRS, and an evaluation of the observations and test results

  11. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    Science.gov (United States)

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  12. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    Science.gov (United States)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  13. Variable conductivity and embolism in roots, trunks and branches of tree species growing under future atmospheric CO2 concentration (DUKE FACE site): impacts on whole-plant hydraulic performance and carbon assimilation

    Science.gov (United States)

    domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.

    2013-12-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.

  14. Effects of age-related increases in sapwood area, leaf area, and xylem conductivity on height-related hydraulic costs in two contrasting coniferous species

    Science.gov (United States)

    Jean-Christophe Domec; Barbara Lachenbruch; Michele L. Pruyn; Rachel Spicer

    2012-01-01

    Introduction: Knowledge of vertical variation in hydraulic parameters would improve our understanding of individual trunk functioning and likely have important implications for modeling water movement to the leaves. Specifically, understanding how foliage area (Al), sapwood area (As), and hydraulic specific...

  15. Measurement of unsaturated hydraulic conductivity and chemical transport in Yucca Mountain Tuff: Milestone Report 3044-WBS1.2.3.4.1.4.1

    International Nuclear Information System (INIS)

    Conca, J.L.

    1993-12-01

    Hydraulic conductivities, K, were experimentally determined as a function of volumetric water content, θ, in tuff from the Yucca Mountain site. In addition, the retardation factor, R f , in Yucca Mountain tuff with respect to selenium, as the selenite species, was measured under unsaturated conditions. These data were used to determine the feasibility of applying a new unsaturated flow technology (UFA) to further hydrologic studies at Yucca Mountain. The UFA directly measures K(θ) rapidly in Yucca Mountain tuff and is shown to agree well with traditional methods. Hysteresis does not appear important during this testing. Hydraulic steady-state is achieved fastest during desaturation from a saturated state. Imbibition into dry tuff requires a long time for steady-state to occur because of slow filling of the diffusion porosity which can take a few weeks. The existing UFA is a prototype, and a new design of the next generation UFA is completed that eliminates some of the earlier problems. These preliminary investigations demonstrates that the UFA is a useful investigate technique that should be used to compliment existing techniques for hydrogeochemical characterization at Yucca Mountain and other arid sites

  16. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    Science.gov (United States)

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Uncertainties in repository performance from spatial variability of hydraulic conductivities - statistical estimation and stochastic simulation using PROPER

    International Nuclear Information System (INIS)

    Lovius, L.; Norman, S.; Kjellbert, N.

    1990-02-01

    An assessment has been made of the impact of spatial variability on the performance of a KBS-3 type repository. The uncertainties in geohydrologically related performance measures have been investigated using conductivity data from one of the Swedish study sites. The analysis was carried out with the PROPER code and the FSCF10 submodel. (authors)

  18. Vertical hydraulic conductivity of a clayey-silt aquitard: accelerated fluid flow in a centrifuge permeameter compared with in situ conditions

    Science.gov (United States)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Guinea, A.; Acworth, R. I.

    2014-03-01

    Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, extraction of fuels from strata such as coal beds, and confinement of waste within the earth. Characterizing low or negligible flow rates and transport of solutes can require impractically long periods of field or laboratory testing, but is necessary for evaluations over regional areas and over multi-decadal timescales. The current work reports a custom designed centrifuge permeameter (CP) system, which can provide relatively rapid and reliable hydraulic conductivity (K) measurement compared to column permeameter tests at standard gravity (1g). Linear fluid velocity through a low K porous sample is linearly related to g-level during a CP flight unless consolidation or geochemical reactions occur. The CP module is designed to fit within a standard 2 m diameter, geotechnical centrifuge with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length. At maximum RPM the resultant centrifugal force is equivalent to 550g at base of sample or a total stress of ~2 MPa. K is calculated by measuring influent and effluent volumes. A custom designed mounting system allows minimal disturbance of drill core samples and a centrifugal force that represents realistic in situ stress conditions is applied. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the resultant K value. Vertical hydraulic conductivity (Kv) results from CP testing of core from the sites in the same clayey silt formation varied (10-7 to 10-9 m s-1, n = 14) but higher than 1g column permeameter tests of adjacent core using deionized water (10-9 to 10-11 m s-1, n = 7). Results at one site were similar to in situ Kv values (3 × 10-9 m s-1) from pore pressure responses within a 30 m clayey sequence in a homogenous area of the formation. Kv sensitivity to sample heterogeneity was observed, and anomalous flow via

  19. Applying distributions of hydraulic conductivity for anisotropic systems and applications to Tc Transport at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Hunt, Allen G.

    2008-01-01

    43Tc99 is spreading mostly laterally through the U.S. Department of Energy Hanford site sediments. At higher tensions in the unsaturated zone, the hydraulic conductivity may be strongly anisotropic as a consequence of finer soils to retain more water than coarser ones, and for these soils to have been deposited primarily in horizontal structures. We have tried to develop a consistent modeling procedure that could predict the behavior of Tc plumes. Our procedure consists of: (1) Adapting existing numerical recipes based on critical path analysis to calculate the hydraulic conductivity, K, as a function of tension, h, (2) Statistically correlating the predicted K at various values of the tension with fine content, (3) Seeking a tension value, for which the anisotropy and the horizontal K values are both sufficiently large to accommodate multi-kilometer spreading, (4) Predicting the distribution of K values for vertical flow as a function of system support volume, (5) Comparing the largest likely K value in the vertical direction with the expected K in the horizontal direction, (6) Finding the length scale at which the two K values are roughly equal, (7) Comparing that length scale with the horizontal spreading of the plume. We find that our predictions of the value of the tension at which the principle spreading is likely occurring compares very well with experiment. However, we seem to underestimate the physical length scale at which the predominantly horizontal spreading begins to take on significant vertical characteristics. Our data and predictions would seem to indicate that this should happen after horizontal transport of somewhat over a km, but the chiefly horizontal transport appears to continue out to scales of 10km or so.

  20. Unit-bar migration and bar-trough deposition: impacts on hydraulic conductivity and grain size heterogeneity in a sandy streambed

    Science.gov (United States)

    Korus, Jesse T.; Gilmore, Troy E.; Waszgis, Michele M.; Mittelstet, Aaron R.

    2018-03-01

    The hydrologic function of riverbeds is greatly dependent upon the spatiotemporal distribution of hydraulic conductivity and grain size. Vertical hydraulic conductivity ( K v) is highly variable in space and time, and controls the rate of stream-aquifer interaction. Links between sedimentary processes, deposits, and K v heterogeneity have not been well established from field studies. Unit bars are building blocks of fluvial deposits and are key to understanding controls on heterogeneity. This study links unit bar migration to K v and grain size variability in a sand-dominated, low-sinuosity stream in Nebraska (USA) during a single 10-day hydrologic event. An incipient bar formed parallel to the thalweg and was highly permeable and homogenous. During high flow, this bar was submerged under 10-20 cm of water and migrated 100 m downstream and toward the channel margin, where it became markedly heterogeneous. Low- K v zones formed in the subsequent heterogeneous bar downstream of the original 15-40-cm-thick bar front and past abandoned bridge pilings. These low- K v zones correspond to a discontinuous 1-cm layer of fine sand and silt deposited in the bar trough. Findings show that K v heterogeneity relates chiefly to the deposition of suspended materials in low-velocity zones downstream of the bar and obstructions, and to their subsequent burial by migration of the bar during high flow. Deposition of the unit bar itself, although it emplaced the vast majority of the sediment volume, was secondary to bar-trough deposition as a control on the overall pattern of heterogeneity.

  1. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    Science.gov (United States)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  2. A synchronous increase in hydraulic conductive capacity and mechanical support in conifers with relatively uniform xylem structure.

    Science.gov (United States)

    Jagels, Richard; Visscher, George E

    2006-02-01

    The dual function provided by longitudinal tracheids in conifers has led to a generally held trade-off concept that increasing wall thickness and/or volume of latewood tracheids improves mechanical support, while increasing cell diameter and/or volume of earlywood tracheids enhances conductive potential. Yet, some conifers have either uniform cell structure across the growth ring or, at most, a small amount of latewood. How do these trees accomplish the needs for increasing support and conduction with height growth? We examined Metasequoia glyptostroboides, a species that we previously demonstrated improves its mechanical properties with increasing age without a change in specific gravity or secondary wall microfibril angle. In this paper, we showed that lignin and extractive contents are not contributing factors, and through composite structure analysis, we eliminated a role for tracheid length. Using micromorphometric analysis, we demonstrated that as cell diameter increases, total primary wall decreases, secondary wall increases, and strength and conductive capacity increase with no change in specific gravity. Meta-analysis using other species of Cupressaceae, Podocarpaceae, and Araucariaceae provided strong corroborative evidence for this design strategy.

  3. Hydraulic conductivity obtained by instantaneous profile method using retention curve and neutron probes and Genuchten model; Condutividade hidraulica obtida pelo metodo do perfil instantaneo utilizando curva de retencao e sonda de neutrons e pelo modelo de Genuchten

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, Ana Lucia Olmedo

    1999-07-01

    The hydraulic conductivity is one of the most important parameters to understand the movement of water in the unsaturated zone. Reliable estimations are difficult to obtain, once the hydraulic conductivity is highly variable. This study was carried out at 'Escola Superior de Agricultura Luiz de Queiroz', Universidade de Sao Paulo, in a Kandiudalfic Eutrudox soil. The hydraulic conductivity was determined by a direct and an indirect method. The instantaneous profile method was described and the hydraulic conductivity as a function of soil water content was determined by solving the Richards equation. Tensiometers were used to estimate the total soil water potential, and the neutron probe and the soil retention curve were used to estimate soil water content in the direct method. The neutron probe showed to be not adequately sensible to the changes of soil water content in this soil. Despite of the soil retention curve provides best correlation values to soil water content as a function of water redistribution time, the soil water content in this soil did not vary too much till the depth of 50 cm, reflecting the influence of the presence of a Bt horizon. The soil retention curve was well fitted by the van Genuchten model used as an indirect method. The values of the van Genuchten and the experimental relative hydraulic conductivity obtained by the instantaneous profile method provided a good correlation. However, the values estimated by the model were always lower than that ones obtained experimentally. (author)

  4. Analyses and estimates of hydraulic conductivity from slug tests in alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Houston, Natalie A.; Braun, Christopher L.

    2004-01-01

    This report describes the collection, analyses, and distribution of hydraulic-conductivity data obtained from slug tests completed in the alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, during October 2002 and August 2003 and summarizes previously available hydraulic-conductivity data. The U.S. Geological Survey, in cooperation with the U.S. Air Force, completed 30 slug tests in October 2002 and August 2003 to obtain estimates of horizontal hydraulic conductivity to use as initial values in a ground-water-flow model for the site. The tests were done by placing a polyvinyl-chloride slug of known volume beneath the water level in selected wells, removing the slug, and measuring the resulting water-level recovery over time. The water levels were measured with a pressure transducer and recorded with a data logger. Hydraulic-conductivity values were estimated from an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. Although nearly two-thirds of the tested wells recovered 90 percent of their slug-induced head change in less than 2 minutes, 90-percent recovery times ranged from 3 seconds to 35 minutes. The estimates of hydraulic conductivity range from 0.2 to 200 feet per day. Eighty-three percent of the estimates are between 1 and 100 feet per day.

  5. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    Science.gov (United States)

    Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2001-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.

  6. Quantifying canal leakage rates using a mass-balance approach and heat-based hydraulic conductivity estimates in selected irrigation canals, western Nebraska, 2007 through 2009

    Science.gov (United States)

    Hobza, Christopher M.; Andersen, Michael J.

    2010-01-01

    The water supply in areas of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or overappropriated by the Nebraska Department of Natural Resources (NDNR). Enacted legislation (Legislative Bill 962) requires the North Platte Natural Resources District (NPNRD) and the NDNR to develop an Integrated Management Plan (IMP) to balance groundwater and surface-water supply and demand in the NPNRD. A clear understanding of the groundwater and surface-water systems is critical for the development of a successful IMP. The primary source of groundwater recharge in parts of the NPNRD is from irrigation canal leakage. Because canal leakage constitutes a large part of the hydrologic budget, spatially distributing canal leakage to the groundwater system is important to any management strategy. Surface geophysical data collected along selected reaches of irrigation canals has allowed for the spatial distribution of leakage on a relative basis; however, the actual magnitude of leakage remains poorly defined. To address this need, the U.S. Geological Survey, in cooperation with the NPNRD, established streamflow-gaging stations at upstream and downstream ends from two selected canal reaches to allow a mass-balance approach to be used to calculate daily leakage rates. Water-level and sediment temperature data were collected and simulated at three temperature monitoring sites to allow the use of heat as a tracer to estimate the hydraulic conductivity of canal bed sediment. Canal-leakage rates were estimated by applying Darcy's Law to modeled vertical hydraulic conductivity and either the estimated or measured hydraulic gradient. This approach will improve the understanding of the spatial and temporal variability of canal leakage in varying geologic settings identified in capacitively coupled resistivity surveys. The high-leakage potential study reach of the Tri-State Canal had two streamflow-gaging stations and two temperature monitoring

  7. Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry

    Science.gov (United States)

    Frenck, Georg; Leitinger, Georg; Obojes, Nikolaus; Hofmann, Magdalena; Newesely, Christian; Deutschmann, Mario; Tappeiner, Ulrike; Tasser, Erich

    2018-02-01

    For central Europe in addition to rising temperatures an increasing variability in precipitation is predicted. This will increase the probability of drought periods in the Alps, where water supply has been sufficient in most areas so far. For Alpine grasslands, community-specific imprints on drought responses are poorly analyzed so far due to the sufficient natural water supply. In a replicated mesocosm experiment we compared evapotranspiration (ET) and biomass productivity of two differently drought-adapted Alpine grassland communities during two artificial drought periods divided by extreme precipitation events using high-precision small lysimeters. The drought-adapted vegetation type showed a high potential to utilize even scarce water resources. This is combined with a low potential to translate atmospheric deficits into higher water conductance and a lower biomass production as those measured for the non-drought-adapted type. The non-drought-adapted type, in contrast, showed high water conductance potential and a strong increase in ET rates when environmental conditions became less constraining. With high rates even at dry conditions, this community appears not to be optimized to save water and might experience drought effects earlier and probably more strongly. As a result, the water use efficiency of the drought-adapted plant community is with 2.6 gDW kg-1 of water much higher than that of the non-drought-adapted plant community (0.16 gDW kg-1). In summary, the vegetation's reaction to two covarying gradients of potential evapotranspiration and soil water content revealed a clear difference in vegetation development and between water-saving and water-spending strategies regarding evapotranspiration.

  8. Influence of a thin veneer of low-hydraulic-conductivity sediment on modelled exchange between river water and groundwater in response to induced infiltration

    Science.gov (United States)

    Rosenberry, Donald O.; Healy, Richard W.

    2012-01-01

    A thin layer of fine-grained sediment commonly is deposited at the sediment–water interface of streams and rivers during low-flow conditions, and may hinder exchange at the sediment–water interface similar to that observed at many riverbank-filtration (RBF) sites. Results from a numerical groundwater-flow model indicate that a low-permeability veneer reduces the contribution of river water to a pumping well in a riparian aquifer to various degrees, depending on simulated hydraulic gradients, hydrogeological properties, and pumping conditions. Seepage of river water is reduced by 5–10% when a 2-cm thick, low-permeability veneer is present on the bed surface. Increasing thickness of the low-permeability layer to 0·1 m has little effect on distribution of seepage or percentage contribution from the river to the pumping well. A three-orders-of-magnitude reduction in hydraulic conductivity of the veneer is required to reduce seepage from the river to the extent typically associated with clogging at RBF sites. This degree of reduction is much larger than field-measured values that were on the order of a factor of 20–25. Over 90% of seepage occurs within 12 m of the shoreline closest to the pumping well for most simulations. Virtually no seepage occurs through the thalweg near the shoreline opposite the pumping well, although no low-permeability sediment was simulated for the thalweg. These results are relevant to natural settings that favour formation of a substantial, low-permeability sediment veneer, as well as central-pivot irrigation systems, and municipal water supplies where river seepage is induced via pumping wells

  9. Hydraulic Conductivity Distributions for Anisotropic Systems and Application to Tc Transport at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Hunt, A. G.

    2006-01-01

    At the United States Department of Energy Hanford Site a spill of radioactive Technetium has been migrating horizontally in the vadose zone rather than flowing vertically to the water table. This result has been interpreted as being due to horizontal anisotropy in the hydraulic conductivity, K, (a tendency for fluids to migrate more easily in the horizontal direction) due to high horizontal connectivity of sedimentary deposits with a tendency for larger values of K. Such layers have larger components of silt and clay than the predominantly sandy soils at the Hanford site. It is generally accepted that effects of such anisotropy tend to be greater at smaller length scales, probably because of the lack of perfect correlations at large length scales. It has also been suggested that this anisotropy in K is maximized under relatively dry conditions when finer soils (with smaller pores) trap moisture more effectively than sands and gravels. The random component of the distribution of the Hanford flood deposits requires a probabilistic framework for the calculation of K. The work on this project had two main components: (1) to use continuum percolation theory applied to random fractal models to produce a general framework for calculating distributions of K under anisotropic conditions and as a function of system scale, (2) to apply the scheme for calculation to the Hanford site. The results of the general calculation (submitted for publication in Philosophical Magazine) are that the mean horizontal and vertical K values become equal in the limit of large system size (in agreement with general perception above) while the distributions of K values cause significant overlap of expected experimental values of K in the vertical and horizontal directions already at intermediate length scales. In order to make these calculation specific to the Hanford site, however, values of the appropriate length scales to describe the Hanford subsurface as well as to describe the maximum

  10. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  11. Inverse Porosity-Hydraulic Conductivity Relationship in Sand-and-Gravel Aquifers Determined From Analysis of Geophysical Well Logs: Implications for Transport Processes

    Science.gov (United States)

    Morin, R. H.

    2004-05-01

    It is intuitive to think of hydraulic conductivity K as varying directly and monotonically with porosity P in porous media. However, laboratory studies and field observations have documented a possible inverse relationship between these two parameters in unconsolidated deposits under certain grain-size distributions and packing arrangements. This was confirmed at two sites in sand-and-gravel aquifers on Cape Cod, Massachusetts, where sets of geophysical well logs were used to examine the interdependence of several aquifer properties. Along with K and P, the resistivity R and the natural-gamma activity G of the surrounding sediments were measured as a function of depth. Qualitative examination of field results from the first site was useful in locating a contaminant plume and inferred an inverse relation between K and P; this was substantiated by a rigorous multivariate analysis of log data collected from the second site where K and P were determined to respond in a bipolar manner among the four independent variables. Along with this result come some implications regarding our conceptual understanding of contaminant transport processes in the shallow subsurface. According to Darcy's law, the interstitial fluid velocity V is proportional to the ratio K/P and, consequently, a general inverse K-P relationship implies that values of V can extend over a much wider range than conventionally assumed. This situation introduces a pronounced flow stratification within these granular deposits that can result in large values of longitudinal dispersivity; faster velocities occur in already fast zones and slower velocities in already slow zones. An inverse K-P relationship presents a new perspective on the physical processes associated with groundwater flow and transport. Although the results of this study apply strictly to the Cape Cod aquifers, they may merit a re-evaluation of modeling approaches undertaken at other locations having similar geologic environments.

  12. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1.

    Science.gov (United States)

    Li, Guowei; Tillard, Pascal; Gojon, Alain; Maurel, Christophe

    2016-04-01

    The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.1, nrt1.2, nrt1.5 and nrt2.1), signaling (nrt1.1 and nrt2.1) and metabolism (nia) mutants in Arabidopsis, grown under various NO3(-) conditions. First, a strong positive relationship between Lpr and NO3(-) accumulation, in shoots rather than in roots, was revealed. Secondly, a specific 30% reduction of Lpr in nrt2.1 plants unraveled a major role for the high-affinity NO3(-) transporter NRT2.1 in increasing Lpr These results indicate that NO3(-)signaling rather than nitrogen assimilation products governs Lpr in Arabidopsis. Quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assays (ELISAs) were used to investigate the effects of NO3(-) availability on plasma membrane aquaporin (plasma membrane intrinsic protein; PIP) expression. Whereas PIP regulation mostly occurs at the post-translational level in wild-type plants, a regulation of PIPs at both the transcriptional and translational levels was uncovered in nrt2.1 plants. In conclusion, this work reveals that control of Arabidopsis Lpr and PIP functions by NO3(-) involves novel shoot to root signaling and NRT2.1-dependent functions. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  14. Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle

    Science.gov (United States)

    David A. Galvez; M.T. Tyree

    2009-01-01

    Physiological mechanisms behind plant-herbivore interactions are commonly approached as input-output systems where the role of plant physiology is viewed as a black box. Studies evaluating impacts of defoliation on plant physiology have mostly focused on changes in photosynthesis while the overall impact on plant water relations is largely unknown. Stem hydraulic...

  15. An analysis of the factors affecting the hydraulic conductivity and swelling pressure of Kyungju ca-bentonite for use as a clay-based sealing material for a high level waste repository

    International Nuclear Information System (INIS)

    Cho, Won Jin; Lee, Jae Owen; Kwon, Sang Ki

    2012-01-01

    The buffer and backfill are important components of the engineered barrier system in a high-level waste repository, which should be constructed in a hard rock formation at a depth of several hundred meters below the ground surface. The primary function of the buffer and backfill is to seal the underground excavation as a preferred flow path for radionuclide migration from the deposited high-level waste. This study investigates the hydraulic conductivity and swelling pressure of Kyungju Ca-bentonite, which is the candidate material for the buffer and backfill in the Korean reference high-level waste disposal system. The factors that influence the hydraulic conductivity and swelling pressure of the buffer and backfill are analyzed. The factors considered are the dry density, the temperature, the sand content, the salinity and the organic carbon content. The possibility of deterioration in the sealing performance of the buffer and backfill is also assessed.

  16. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  17. Estimación de la conductividad hidráulica saturada in situ en un suelo tratado con vinaza Field satured hydraulic conductivity estimation on vinasse trated soil

    Directory of Open Access Journals (Sweden)

    Ludwig M Rojas D

    2008-06-01

    Full Text Available Se estimaron los cambios en la conductividad hidráulica saturada mediante las técnicas de caída de carga" y "fuente localizada de agua en un suelo Ustipsamment típico arenoso isohipertérmico con dosis diluidas de vinazas. La investigación se realizó en el centro experimental de la Universidad Nacional de Colombia Sede Palmira (3° 25'39.81" N y 76° 25'45.70" o, 953 m.s.n.m, 24 °C y 60% HR, 1.020 mm. Los dos métodos no difirieron de forma significativa (pChanges of the satured hydraulic conductivity in a soil was estimated using the “falling head” and “point source” methods. The soil treated with vinasse was an Ustipsamment Typic Sandy Isohipertermic located at the experimental center of the National University of Colombia at Palmira (3° 25' 39.81" N, 76° 25' 45.70" W; 953 m.a.s.l., 24 °C, 60% RH. and 1020 mm.. The field methods used did not show statistical differences for the estimation of the satured hydraulic conductivity (p<0.05. However, a decreasing exponential relationship between hydraulic conductivity and vinasse concentration was found. The hydraulic conductivity was reduced about of 50% from the initial value to 2° Brix in a sandy soil, 5.3° brix to a sandy loam soil and 6.1° Brix to a clay loam soil.

  18. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  19. Desenvolvimento de um modelo fractal para a estimativa da condutividade hidráulica de solos não saturados A fractal model to estimate the unsaturated hydraulic conductivity of soils

    Directory of Open Access Journals (Sweden)

    Carlos Fuentes

    2005-02-01

    Full Text Available Baseado nos conceitos da geometria fractal e nas leis de Laplace e de Poiseuille, foi criado um modelo geral para estimar a condutividade hidráulica de solos não saturados, utilizando a curva de retenção da água no solo, conforme representada por um modelo em potência. Considerando o fato de que este novo modelo da condutividade hidráulica introduz um parâmetro de interpolação ainda desconhecido, e que, por sua vez, depende das propriedades dos solos, a validação do modelo foi realizada, utilizando dois valores-limite fisicamente representativos. Para a aplicação do modelo, os parâmetros de forma da curva de retenção da água no solo foram escolhidos de maneira a se obter o modelo de van Genuchten. Com a finalidade de obter fórmulas algébricas da condutividade hidráulica, foram impostas relações entre seus parâmetros de forma. A comparação dos resultados obtidos com o modelo da condutividade e a curva experimental da condutividade dos dois solos, Latossolo Vermelho-Amarelo e Argissolo Amarelo, permitiu concluir que o modelo proposto é simples em sua utilização e é capaz de predizer satisfatoriamente a condutividade hidráulica dos solos não saturados.From a conceptual model based on fractal geometry and Laplace's and Poiseuille's laws, a versatile and general fractal model for the hydraulic conductivity to be used in the soils was developed. The soil-moisture retention curve is derived from a power model. Due to the fact that the proposed model of hydraulic conductivity introduces a still unknown interpolation parameter, which in turn is a function of soil properties, its limiting values were considered for the analysis. To apply the model in the soil, the form parameters of the soil-moisture retention curve were chosen so as to reproduce van Genuchten's equation. In order to obtain a closed-form equation for the hydraulic conductivity, relationships between the form parameters were imposed. The comparison between

  20. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  1. Minidisk against ring infiltrometer measurements to assess the saturated hydraulic conductivity in Mediterranean vineyards (Vitis vinifera L.) under Tillage and No-Tillage managements

    Science.gov (United States)

    Burguet, Maria; Di Prima, Simone; Prosdocimi, Massimo; Taguas, Encarnación V.; Cerdà, Artemi

    2016-04-01

    Vineyard is one of the main crops in the Mediterranean region and it forms, along with wheat and olive, what it is known as the 'Mediterranean triad'. According to the Food and Agriculture Organization of the United Nations (FAO, 2010), the European Union has 4.5 million hectares of land occupied by vineyards. Out of all, the Mediterranean region has the largest total area of vineyards. France, Italy and Spain together are responsible for 48% of global wine production. In Spain, the total surface occupied by vineyards is 1.048.104 ha (Ministry of Agriculture, Food and Environment, 2009), which is translated in a 13% of world total (Wine Institute, 2014). In terms of environmental factors, vineyards are a source of sediments and water due to the tillage and the soil compaction, the lack of vegetation cover and the soil organic matter depletion (Novara et al., 2011; Lieskovsky' et al., 2014; Rodrigo Comino et al., 2015). The infiltration capacity of soils is a key component of the hydrological cycle that can control the non-sustainable rates of runoff and erosion (Cerdà, 1997,1999). In this way research focused on the soil hydrological properties will bring knowledge on how to control the high erosion rates (Cammeraat et al., 2010). Saturated hydraulic conductivity, ks, is the most determining physical parameter in terms of quantifying the components of the global water balance as it interferes in all those processes which are related with water and solute movement and transport through the soil. ks values are required for an adequate modelling of the infiltration and runoff generation processes. However, it is a variable with high variability when it comes to agricultural soils due to different soil managements and the fact that the soil is not a continuous media (Polo et al., 2003). For instance, Leonard and Andrieux (1998) reported in a study done in untilled vineyards in France high differences in infiltration rates through the use of rainfall simulations, which

  2. Experimental hydraulic analysis in conduction tunnels at the trunk section working as a channel considering compound roughness; Analisis hidraulico experimental en tuneles de conduccion en seccion baul trabajando como canal, considerando rugosidades compuestas

    Energy Technology Data Exchange (ETDEWEB)

    Marengo-Mogollon, Humberto; Cortes-Cortes, Carlos [Comision Federal de Electricidad (Mexico); Arreguin-Cortes, Felipe I [Comision Nacional del Agua (Mexico)

    2008-01-15

    This paper presents the roughness coefficients of a conduction tunnel at the trunk section working as a channel obtained experimentally using a hydraulic model of the diversion tunnel of the Hydroelectric Project called El Cajon (Mexico). A comparative analysis between experimental and theoretical coefficients obtained in the literature is shown. [Spanish] Se presentan los coeficientes de rugosidad compuesta de un tunel de conduccion en seccion baul trabajando como canal obtenidos en forma experimental en un modelo hidraulico del tunel de desvio del Proyecto Hidroelectrico El Cajon (Mexico). Se muestra un analisis comparativo entre los coeficientes experimentales y los teoricos obtenidos en la literatura.

  3. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  4. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress.

    Science.gov (United States)

    Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio

    2012-10-01

    We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.

  5. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  6. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  7. Determination of hydraulic conductivity using the inverse problem of the hydrus-1d software = Determinação da condutividade hidráulica do solo utilizando o problema inverso do software hydrus-1d

    Directory of Open Access Journals (Sweden)

    João José da Silva Junior

    2013-12-01

    Full Text Available Knowledge of soil hydraulic conductivity is essential for any study that involves the movement of water in soil. The hydraulic conductivity decreases considerably with decreases in the volumetric water content (θ, or increases in the matric potential modulus (h. The relationship among these variables may be represented by the functions K(θ and K(h. Field or laboratory methods for determining the values of the parameters that describe these functions are time consuming, costly and involve considerable uncertainty. An alternative method to determine these parameters is to employ the reverse process (inverse method. In the inverse method, the causes are determined based on their effects. This study aimed to determine the Ks parameter (saturated hydraulic conductivity of functions K(θ and K(h, defined according to the van Genuchten model, by solving, with the use of the Hydrus-1D software, an inverse problem based on cumulative infiltration data collected in the field. It was found that there is great variability in the value of the Ks estimates. The proposed inverse problem method allows the unsaturated hydraulic conductivity to be determined based on data collected under a wide range of soil moisture values and matric potential moduli. The inverse problem was adequately defined for the estimates of Ks in the 0-0.20 and 0.20-0.60 m layers but did not allow for a reliable Ks estimate of the 0.60-1.00 m layer. = O conhecimento da condutividade hidráulica do solo é essencial para qualquer estudo que envolva o movimento da água no solo. A condutividade hidráulica do solo decresce acentuadamente com a diminuição da umidade volumétrica (θ, ou aumento do módulo do potencial mátrico (h, sendo estas relações representadas pela funções K(θ e K(h, respectivamente. Determinações dos parâmetros que descrevem estas funções, por métodos de laboratório ou de campo, são demoradas, de custo elevado e envolvem considerável incerteza. Uma

  8. Field satured hydraulic conductivity estimation on vinasse trated soil Estimación de la conductividad hidráulica saturada in situ en un suelo tratado con vinaza

    Directory of Open Access Journals (Sweden)

    Menjívar Flórez Juan Carlos

    2008-06-01

    Full Text Available Changes for soil satured hydraulic conductivity were estimated by using the “falling head” and “point source” methods. The soil type trated with vinasse was Ustipsamment Typic Sandy Isohipertermic located at Colombia National University experimental center (3° 25' 39.81"; N, 76° 25' 45.70"; W; 953 m.s.n.m., 24 °C, 60% HR. and 1020 mm.. The used field methods did not show statistical differences for the estimation of the satured hydraulic conductivity (p<0.05, however a decreasing exponential relationship between hydraulic conductivity and vinasse concentration was found. The hydraulic conductivity was reduced about of 50% from the initial value to 2° brix in sandy soil, 5.3° brix to sandy loam soil and 6.1° brix to clay loam.Key words: Point source method; Simulation models; Falling head method; Irrigation.Se estimaron los cambios en la conductividad hidráulica saturada mediante las técnicas de “caída de carga” y “fuente localizada de agua” en un suelo Ustipsamment típico arenoso isohipertérmico con dosis diluidas de vinazas. La investigación se realizó en la Universidad Nacional de Colombia Sede Palmira (3° 25'39.81"; N y 76° 25'45.70"; O, 953 m.s.n.m, 24 °C y 60% HR, 1.020 mm. Los dos métodos no difirieron de forma significativa (p<0.05 en la estimación de la conductividad hidráulica saturada promedio, la cual se redujo de forma exponencial al incrementar la concentración de vinaza. Los resultados obtenidos nos indican una reducción de la conductividad hidráulica del 50% para una concentración de vinaza de 2° Brix en un suelo arenoso, 5.3° Brix en el suelo franco arenoso y 6.1° Brix en el suelo franco arcilloso.On simple methods for unsaturated soil hydraulic conductivity determination Sobre métodos simplificados de determinação da condutividade hidráulica do solo

    Directory of Open Access Journals (Sweden)

    O.O.S. Bacchi

    1993-09-01

    Full Text Available The simple methods of LIBARDI et al. (1980 and SISSON et al. (1980 for K(theta estimation, although developed on completely different theoretical basis, are rigorously identical for the exponential hydraulic conductivity model. The unit gradient approximation used in these methods seems valid for practical purposes but is theoretically in valid.Os métodos simplicados de LIBARDI et al (1980 e de SISSON et al (1980, para determinação da função K(teta, apesar de serem desenvolvidos sobre bases teóricas completamente diferentes, são rigorosamente iguais para o modelo exponencial de condutividade hidráulica. A hipótese do gradiente unitário utilizada nestes métodos parece ser válida apenas para efeito prático, mas não o sendo teoricamente.

  9. Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways.

    Science.gov (United States)

    Bramley, Helen; Turner, Neil C; Turner, David W; Tyerman, Stephen D

    2007-07-01

    Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in

  10. Relações matemáticas entre porosidade drenável e condutividade hidráulica do solo saturado Mathematical relationships between drainable porosity and saturated soil hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    Kátia D. Ribeiro

    2007-12-01

    Full Text Available A estimativa de algumas propriedades do solo através do uso de equações empíricas apresenta-se importante para redução do tempo e custo das análises laboratoriais, especialmente para aplicação rápida e precisa desses valores em projetos agrícolas, razão por que se objetiva, com este trabalho, testar e avaliar alguns modelos matemáticos existentes na literatura para estimativa da porosidade drenável em função da condutividade hidráulica do solo saturado. Trabalhou-se, então, com a camada superficial (0-15 cm de solos da sub-bacia do Ribeirão Marcela (município de Nazareno, MG, utilizando-se 165 pontos amostrais. A equação proposta por Poulsen et al. (1999a foi a que melhor se ajustou, indicando os menores valores de erro padrão de estimativa.The estimative of some soil properties using empirical equations is important for reducing time and costs of laboratorial analysis, especially for rapid and precise application of these values in agricultural projects. The objective of this work was to test and evaluate some mathematical models presented in the literature to estimate drainable porosity as a function of saturated soil hydraulic conductivity. Drainable porosity and hydraulic conductivity were measured in 165 samples from the superficial layer (0-15 cm of soils from the Marcela Brook Sub-Basin (Nazareno, Minas Gerais, Brazil. The equation developed by Poulsen et al. (1999a presented the best results and the smallest error values.

  11. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  12. HEXEREI: a multi-channel heat conduction convection code for use in transient thermal hydraulic analysis of high-temperature, gas-cooled reactors. Interim report

    International Nuclear Information System (INIS)

    Giles, G.E.; DeVault, R.M.; Turner, W.D.; Becker, B.R.

    1976-05-01

    A description is given of the development and verification of a generalized coupled conduction-convection, multichannel heat transfer computer program to analyze specific safety questions involving high temperature gas-cooled reactors (HTGR). The HEXEREI code was designed to provide steady-state and transient heat transfer analysis of the HTGR active core using a basic hexagonal mesh and multichannel coolant flow. In addition, the core auxiliary cooling systems were included in the code to provide more complete analysis of the reactor system during accidents involving reactor trip and cooling down on the auxiliary systems. Included are brief descriptions of the components of the HEXEREI code and sample HEXEREI analyses compared with analytical solutions and other heat transfer codes

  13. A low cost apparatus for measuring the xylem hydraulic conductance in plants Um aparato de baixo custo para medição da condutância hidráulica do xilema em plantas

    Directory of Open Access Journals (Sweden)

    Luciano Pereira

    2012-01-01

    Full Text Available Plant yield and resistance to drought are directly related to the efficiency of the xylem hydraulic conductance and the ability of this system to avoid interrupting the flow of water. In this paper we described in detail the assembling of an apparatus proposed by TYREE et al. (2002, and its calibration, as well as low cost adaptations that make the equipment accessible for everyone working in this research area. The apparatus allows measuring the conductance in parts of roots or shoots (root ramifications or branches, or in the whole system, in the case of small plants or seedlings. The apparatus can also be used to measure the reduction of conductance by embolism of the xylem vessels. Data on the hydraulic conductance of eucalyptus seedlings obtained here and other reports in the literature confirm the applicability of the apparatus in physiological studies on the relationship between productivity and water stress.A produtividade das plantas e a capacidade de resistência à seca estão diretamente relacionadas com a eficiência da condutância hidráulica do xilema e a capacidade desse sistema em evitar a interrupção do fluxo de água. No presente trabalho, detalha-se a montagem de um aparato proposto por TYREE et al. (2002, e sua calibração, bem como adaptações com peças de menor custo que tornam o aparelho acessível a qualquer um trabalhando nesta linha de pesquisa. Esse aparato possibilita medir a condutância de partes do sistema radicular ou da parte aérea (ramificações radiculares ou ramos, ou em todo o sistema, no caso de plantas de porte pequeno ou plântulas. O aparato também pode ser usado para medir a redução da condutância pela embolização dos vasos do xilema. Medições de condutância hidráulica feitas em plântulas de eucalipto e outros trabalhos encontrados na literatura confirmaram a aplicabilidade desse aparato em estudos fisiológicos de produtividade relacionada ao estresse hídrico.

  14. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  15. Hydraulic generation

    International Nuclear Information System (INIS)

    Machado, L.E.

    1998-01-01

    The present article describes the various types of hydroelectric utilization, those which defer according to the variables of fall of the water and the accumulation of energy. Also it presents the different structures of civil works, as are: Press, Work of takes, Work of conduct and Central or machines house

  16. Advantages of Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  17. Condutividade hidráulica de solos de Pernambuco em resposta à condutividade elétrica e RAS da água de irrigação Hydraulic conductivity of soils from Pernambuco in response to electrical conductivity and SAR of irrigation water

    Directory of Open Access Journals (Sweden)

    Maria B. G. dos S. Freire

    2003-04-01

    Full Text Available Objetivando-se avaliar a condutividade hidráulica em solos irrigados com águas de diferentes condutividades elétricas (CE e relações de adsorção de sódio (RAS realizaram-se ensaios em permeâmetros de coluna vertical e carga constante. Os tratamentos corresponderam a nove solos, três CE (175, 500 e 1.500 miS cm-1 e seis RAS (de 0 a 30 para solos arenosos, de 0 a 25 para solos de textura média e de 0 a 15 para solos de textura argilosa. De início, realizou-se o ajuste da relação Na:Ca no complexo de troca catiônico dos solos, utilizando-se soluções na concentração de 50 mmol c L-1, nos níveis de RAS descritos; depois, determinou-se a condutividade hidráulica em meio saturado (K0 e se calculou a condutividade hidráulica relativa (K0R, atribuindo-se o valor de 100% à máxima K0 média de cada solo. Os valores de K0R foram relacionados com a CE e a RAS dos tratamentos impostos, ajustando-se superfícies de resposta. As correlações entre K0 e a percentagem de sódio trocável (PST indicaram relação inversa entre as duas variáveis, na maioria dos solos estudados. O incremento da RAS levou à diminuição da K0R. Não foi possível se fixar um único valor de PST no estabelecimento de um limite para solos sódicos, devendo esta característica ser associada à CE da água de irrigação e a outras propriedades do solo, como textura e mineralogia.An experiment was carried out in permeameters provided on vertical soil columns with constant hydraulic head in order to evaluate the hydraulic conductivity of soils with contrasting characteristics, and treated with solutions of different electrical conductivities (EC and sodium adsorption ratios (SAR. The treatments consisted of nine soils, three EC values (175, 500 and 1.500 muS cm-1 and six SAR values of the irrigation water (0 to 30 for sandy soils, 0 to 25 for medium textured soils, and 0 to 15 for clay textured soils. Initially, an adjustment of the Na:Ca ratio in the cation

  18. Hydraulic gradients in rock aquifers

    International Nuclear Information System (INIS)

    Dahlblom, P.

    1992-05-01

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)

  19. Selective perceptions of hydraulic fracturing.

    Science.gov (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  1. Applicability estimation of flowmeter logging for detecting hydraulic pass

    International Nuclear Information System (INIS)

    Miyakawa, Kimio; Tanaka, Yasuji; Tanaka, Kazuhiro

    1997-01-01

    Estimation of the hydraulic pass governing hydrogeological structure contributes significantly to the siting HLW repository. Flowmeter logging can detect hydraulic passes by measuring vertical flow velocity of groundwater in the borehole. We reviewed application of this logging in situ. The hydraulic pass was detected with combination of ambient flow logging, with pumping and/or injecting induced flow logging. This application showed that the flowmeter logging detected hydraulic passes conveniently and accurately compared with other hydraulic tests. Hydraulic conductivity by using flowmeter logging was assessed above 10 -6 m/sec and within one order from comparison with injection packer tests. We suggest that appropriate application of the flowmeter logging for the siting is conducted before hydraulic tests because test sections and monitoring sections are decided rationally for procurement of quantitative hydraulic data. (author)

  2. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  3. Hydraulic characterization of " Furcraea andina

    Science.gov (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.

    2012-04-01

    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  4. Analysis of Hydraulic Conductance Components in Field Grown, Mature Sweet Cherry Trees Análisis de los Componentes de Conductancia Hidráulica en Árboles Maduros de Cerezo Dulce en Condiciones de Campo

    Directory of Open Access Journals (Sweden)

    Ricardo Oyarzún

    2010-03-01

    Full Text Available As a necessary step towards understanding soil water extraction and plant water relationships, the components of hydraulic conductance (K of mature sweet cherry (Prunus avium L. trees were evaluated in situ based on a Ohm´s law analog method. In June 2004, K was determined for 10-yr-old ‘Bing’/‘Gisela® 5’ trees, from simultaneous measurements of whole canopy gas exchange and leaf (sunlit and shaded and stem water potentials (Ψ. Leaf water potential of sunlit leaves was lower than shaded leaves, reaching minimum values of ca. -2.3 MPa around 14:00 h (solar time. Average total hydraulic conductance was 60 ± 6 mmol s-1 MPa-1, presenting a slight decreasing trend as the season progressed. The analysis of tree K components showed that it was higher on the stem-leaf pathway (150 ± 50 mmol s-1 MPa-1, compared to the root-stem component (100 ± 20 mmol s-1 MPa-1, which is in agreement with literature reports for other fruit trees. A weak hysteresis pattern in the daily relationship between whole-canopy transpiration (weighted sunlit and shaded leaves vs. Ψ was observed, suggesting that water storage within the tree is not a significant component of sweet cherry water balance.Como un paso necesario para la comprensión de la extracción de agua desde el suelo y las relaciones suelo-agua-planta, los componentes de la conductancia hidráulica (K en árboles adultos de cerezo (Prunus avium L. fue evaluada in situ con un método basado en una analogía de la Ley de Ohm. En Junio de 2004, K fue determinada para árboles ‘Bing’/‘Gisela® 5’ de 10 años de edad, a partir de mediciones simultáneas de intercambio gaseoso del follaje en forma integrada y potenciales hídricos (Ψ de hojas individuales (soleadas y sombreadas y del xilema. Los potenciales hídricos de las hojas soleadas fueron menores que los de las hojas sombreadas, alcanzando valores mínimos de ca. -2.3 MPa alrededor de 14:00 h (hora solar. La conductancia hidr

  5. Variabilidade espacial de classes de textura, salinidade e condutividade hidráulica de solos em planície aluvial Spatial variability of textural classes, salinity and hydraulic conductivity of soil in an alluvial plain

    Directory of Open Access Journals (Sweden)

    Abelardo A. A. Montenegro

    2006-03-01

    , 320, and 520 m, respectively. It has been verified that the indicator geostatistics preserved the spatial correlation between texture and hydraulic conductivity, and between texture and electrical conductivity. Thus, the main soil classes can be adopted to represent different leaching and salinisation risk patterns. The discussed methodology has a potential for spatial variability investigations on soil physical properties in alluvial areas where contrasting soil classes prevail.

  6. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  7. Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Matray, J.-M. [Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, (France); Yu, C.; Gonçalvès, J. [Aix Marseille Université UMR 6635 CEREGE Technopôle Environnement Arbois-Méditerranée Aix-en-Provence, Cedex 4 (France); and others

    2017-04-15

    The deep borehole (DB) experiment gave the opportunity to acquire hydraulic parameters in a hydraulically undisturbed zone of the Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Three methods were used to estimate hydraulic conductivity and specific storage values of the Opalinus Clay formation and its bounding formations through the 248 m deep borehole BDB-1: application of a Poiseuille-type law involving petrophysical measurements, spectral analysis of pressure time series and in situ hydraulic tests. The hydraulic conductivity range in the Opalinus Clay given by the first method is 2 × 10{sup -14}-6 × 10{sup -13} m s{sup -1} for a cementation factor ranging between 2 and 3. These results show low vertical variability whereas in situ hydraulic tests suggest higher values up to 7 × 10{sup -12} m s{sup -1}. Core analysis provides economical estimates of the homogeneous matrix hydraulic properties but do not account for heterogeneities at larger scale such as potential tectonic conductive features. Specific storage values obtained by spectral analysis are consistent and in the order of 10{sup -6} m{sup -1}, while formulations using phase shift and gain between pore pressure signals were found to be inappropriate to evaluate hydraulic conductivity in the Opalinus Clay. The values obtained are globally in good agreement with the ones obtained previously at the rock laboratory. (authors)

  8. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area.

    Science.gov (United States)

    Zhang, Yanqun; Oren, Ram; Kang, Shaozhong

    2012-03-01

    Vineyards were planted in the arid region of northwest China to meet the local economic strategy while reducing agricultural water use. Sap flow, environmental variables, a plant characteristic (sapwood-to-leaf area ratio, A(s)/A(l)) and a canopy characteristic (leaf area index, L) were measured in a vineyard in the region during the growing season of 2009, and hourly canopy stomatal conductance (G(si)) was estimated for individual vines to quantify the relationships between G(si) and these variables. After accounting for the effects of vapor pressure deficit (D) and solar radiation (R(s)) on G(si), much of the remaining variation of reference G(si) (G(siR)) was driven by that of leaf-specific hydraulic conductivity, which in turn was driven by that of A(s)/A(l). After accounting for that effect on G(siR), appreciable temporal variation remained in the decline rate of G(siR) with decreasing vineyard-averaged relative extractable soil water (θ(E)). This variation was related to the differential decline ofθ(E) near each monitored vine, decreasing faster between irrigation events near vines where L was greater, thus adding to the spatiotemporal variation of G(siR) observed in the vineyard. We also found that the vines showed isohydric-like behavior whenθ(E) was low, but switched to anisohydric-like behavior with increasingθ(E). Modeledθ(E) and associated G(s) of a canopy with even L (1.9 m(2) m(-2)) were greater than that of the same average L but split between the lowest and highest L observed along sections of rows in the vineyard (1.2 and 2.6 m(2) m(-2)) by 6 and 12%, respectively. Our results suggest that managing sectional L near the average, rather than allowing a wide variation, can reduce soil water depletion, maintaining G(s) higher, thus potentially enhancing yield.

  9. Comparison of empirical models and laboratory saturated hydraulic ...

    African Journals Online (AJOL)

    Numerous methods for estimating soil saturated hydraulic conductivity exist, which range from direct measurement in the laboratory to models that use only basic soil properties. A study was conducted to compare laboratory saturated hydraulic conductivity (Ksat) measurement and that estimated from empirical models.

  10. Uncertainty in hydraulic tests in fractured rock

    International Nuclear Information System (INIS)

    Ji, Sung-Hoon; Koh, Yong-Kwon

    2014-01-01

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  11. Characteristics of Air Entrainment in Hydraulic Jump

    Science.gov (United States)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  12. Alternativa para caracterização da condutividade hidráulica saturada do solo utilizando probabilidade de ocorrência Alternative of characterization to the soil hydraulic conductivity utilizing probability of occurrence

    Directory of Open Access Journals (Sweden)

    Maria da Glória Bastos de Freitas Mesquita

    2007-12-01

    Full Text Available A Condutividade Hidráulica Saturada (Ksat devido à sua importância em informar sobre a capacidade de transporte de água, solutos e substâncias químicas no solo deve ser bem caracterizada, pois de um modo geral, seu valor é utilizado nos cálculos de fluxos no solo. Com o objetivo de propor uma alternativa para caracterizá-la, a partir de uma série de dados, utilizou-se a função densidade de probabilidade lognormal para obter os valores da propriedade correspondentes aos níveis de 5 a 95% de probabilidade de ocorrência, visando descrever e indicar melhores valores a serem adotados como Ksat para a área considerada. Como resultado obteve-se uma análise da variável em termos de probabilidade de ocorrência. Essa representação, na medida em que associa o nível de probabilidade ao valor adotado para a propriedade, permite ao pesquisador avaliar o risco na estimativa de medidas dependentes de Ksat, visto que esta propriedade no solo apresenta alta variabilidade.The Saturated Hydraulic Conductivity of the soil (Ksat due to its importance in inform about the capacity of transport of water, solutes and chemical substances in the soil should be well characterized, since in general, this value is used in calculations of flows in the soil. Aiming at proposing an alternative to characterize the Ksat, starting from a series of data, the function density of probability lognormal was used to obtain the values of the property which corresponde to the levels of occurrence probability from 5 to 95%, in order to describe and to indicate better values to be adopted as Ksat for the considered area. As a result, it was obtained an analysis of the values of the variable in terms of occurrence probability. This representation, associating each value to a probability level, allows to the researcher to evaluate the error on estimation of measurements that depend on Ksat, due to the fact that, this property in the soil presents high variability.

  13. Permeâmetro de carga decrescente associado a programa computacional para a determinação da condutividade hidráulica do solo saturado Falling head permeameter and software to determine the hydraulic conductivity of saturated soil

    Directory of Open Access Journals (Sweden)

    Paulo Ivonir Gubiani

    2010-06-01

    Full Text Available A condutividade hidráulica do solo saturado (Kθs é uma propriedade com grande variabilidade, o que exige a utilização de um número maior de determinações para que sua descrição possa ser feita adequadamente pela função densidade de probabilidade normal. Consequentemente, há aumento de trabalho e de tempo para a obtenção dos resultados, principalmente se as determinações forem feitas com equipamentos de pouca praticidade. A construção de equipamentos de maior praticidade e o desenvolvimento de ferramentas computacionais podem tornar o processo de análise mais rápido e preciso. Com esse objetivo, foi construído um permeâmetro de carga decrescente e desenvolvido um software para a aquisição de dados. As medidas de Kθs obtidas com esses equipamentos, em amostras de um Argissolo, mostraram menor variabilidade, avaliada pelo coeficiente de variação, o que resultou em maior precisão das determinações. Além disso, o tempo de análise foi reduzido em 30 %.The soil saturated hydraulic conductivity (Kθs is a property with great variability, which requires the use of a greater number of determinations so that they can be described by the normal probability density function. Consequently, there is an increase in time and labor to obtain Kθs results if determined by conventional equipment. The use of more practical equipment and computational tools allows a faster and more accurate analysis. With this aim a falling head permeameter was built and a software for data acquisition was developed. Values of Kθs obtained with this equipment in Hapludalf samples showed less variability, as assessed by the coefficient of variation, resulting in more precise measurements. Moreover, the time of analysis was reduced by 30 %.

  14. Experimental thermal hydraulics in support of FBR

    International Nuclear Information System (INIS)

    Padmakumar, G.; Anand Babu, C.; Kalyanasundaram, P.; Vaidyanathan, G.

    2009-01-01

    The thermal hydraulic design plays a crucial role for the safe and economical deployment of Liquid Metal Cooled Fast Breeder Reactor (LMFBR). Robust experimental programmes are required in support of LMFBR thermal hydraulics design. The philosophy of testing has been to construct small scale models to understand the physical behaviour and to build larger scale models to optimize the component design. The experiments are conducted either in sodium or using a simulant like water/air. The paper gives a brief account of the various thermal hydraulic experiments carried out in support of the design of Prototype Fast Breeder Reactor (PFBR). (author)

  15. PENGARUH SIFAT FISIK TANAH PADA KONDUKTIVITAS HIDROLIK JENUH DI 5 PENGGUNAAN LAHAN (STUDI KASUS DI KELURAHAN SUMBERSARI MALANG Effect of Soil Physical Properties on Saturated Hydraulic Conductivity in The 5 Land Use (A Case Study in Sumbersari Malang

    Directory of Open Access Journals (Sweden)

    Elsa Rosyidah

    2013-11-01

    Full Text Available Water movement in saturated soil will affect runoff and infiltration in an area, while water movement in soil processes influenced by soil physical properties. Changes in land use affect the soil physical properties. Changes in land use and differences in the nature of land which includes land use previously existing vegetation into land that does not exist or lack of vegetation resulted in infiltration and percolation rate be changed on the ground and allow the process of infiltration of large, causing the decrease in recharge areas direct rainwater and decrease the availability of ground water. Measurement of water movement in saturated soil conditions or soil Saturated Hydraulic Conductivity (SHC is very important because SHC role in determining water runoff, infiltration and percolation. The research aimed to know the value of saturated hydraulic conductivity of soil in different land use by using the constant head method and the physical properties of soil including soil texture, weight, density, and porosity in the five land use on three different soil depths. Research conducted in the area Sumbersari in December 2008 until October 2009. Research effect of soil physical properties on using constant head method on five land use is residential population (T1, field (T2, garden tomatoes (T3, shrubs (T4, irrigated rice field (T5 at three different depths ie 0-15 cm (K1, 15-30 cm (K2, and 30-45 cm (K3. The physical properties of soil analyzed include soil texture, weight, density, porosity, and soil moisture content. Results showed that the highest SHC value at all points of location is the location of irrigated rice fields with a depth of 30-45 cm. The main factor affecting the value of SHC is the weight value. Soil physical properties that influence the value of SHC is the soil texture and soil porosity. The results SHC recommended as a reference for land use conditions and other locations with similar soil physical properties. Keywords: Soil

  16. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  17. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  18. Hydraulic Structures : Caissons

    NARCIS (Netherlands)

    Voorendt, M.Z.; Molenaar, W.F.; Bezuyen, K.G.

    These lecture notes on caissons are part of the study material belonging to the course 'Hydraulic Structures 1' (code CTB3355), part of the Bachelor of Science education and the Hydraulic Engineering track of the Master of Science education for civil engineering students at Delft University of

  19. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  20. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  1. Effect of Subsoil Compaction on Hydraulic Parameters

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Berisso, Feto Esimo; Schjønning, Per

    Soil compaction is a major threat to sustainable soil quality and is increasing since agricultural machinery is becoming heavier and is used more intensively. Compaction not only reduces pore volume, but also modifies the pore connectivity. The inter-Nordic research project POSEIDON (Persistent...... effects of subsoil compaction on soil ecological services and functions) put forward the hypothesis that due to a decrease in the hydraulic conductivity in the soil matrix, compaction increases the frequency of preferential flow events in macropores and therefore increases the leaching of otherwise....... In the field the near-saturated hydraulic conductivity was measured with a tension infiltrometer in the same treatments at a depth of 30 cm. In the laboratory saturated and near-saturated hydraulic conductivity and the bulk density were measured as well. Also, macropores in the large soil cores were made...

  2. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    2015-01-07

    Jan 7, 2015 ... injection and recovery tests were conducted for verification of the ... Keywords: self-potential method, hydraulically-conductive fractures, constant pressure injection and recovery ...... porous media 1: theory of the zeta potential.

  3. Control rod driving hydraulic device

    International Nuclear Information System (INIS)

    Sugano, Hiroshi.

    1993-01-01

    In a control rod driving hydraulic device for an improved BWR type reactor, a bypass pipeline is disposed being branched from a scram pipeline, and a control orifice and a throttle valve are interposed to the bypass pipeline for restricting pressure. Upon occurrence of scram, about 1/2 of water quantity flowing from an accumulator of a hydraulic control unit to the lower surface of a piston of control rod drives by way of a scram pipeline is controlled by the restricting orifice and the throttle valve, by which the water is discharged to a pump suction pipeline or other pipelines by way of the bypass pipeline. With such procedures, a function capable of simultaneously conducting scram for two control rod drives can be attained by one hydraulic control unit. Further, an excessive peak pressure generated by a water hammer phenomenon in the scram pipeline or the control rod drives upon occurrence of scram can be reduced. Deformation and failure due to the excessive peak pressure can be prevented, as well as vibrations and degradation of performance of relevant portions can be prevented. (N.H.)

  4. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  5. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  6. Hydraulic hoisting and backfilling

    Science.gov (United States)

    Sauermann, H. B.

    In a country such as South Africa, with its large deep level mining industry, improvements in mining and hoisting techniques could result in substantial savings. Hoisting techniques, for example, may be improved by the introduction of hydraulic hoisting. The following are some of the advantages of hydraulic hoisting as against conventional skip hoisting: (1) smaller shafts are required because the pipes to hoist the same quantity of ore hydraulically require less space in the shaft than does skip hoisting equipment; (2) the hoisting capacity of a mine can easily be increased without the necessity of sinking new shafts. Large savings in capital costs can thus be made; (3) fully automatic control is possible with hydraulic hoisting and therefore less manpower is required; and (4) health and safety conditions will be improved.

  7. Hydraulic Shearing and Hydraulic Jacking Observed during Hydraulic Stimulations in Fractured Geothermal Reservoir in Pohang, Korea

    Science.gov (United States)

    Min, K. B.; Park, S.; Xie, L.; Kim, K. I.; Yoo, H.; Kim, K. Y.; Choi, J.; Yoon, K. S.; Yoon, W. S.; Lee, T. J.; Song, Y.

    2017-12-01

    Enhanced Geothermal System (EGS) relies on sufficient and irreversible enhancement of reservoir permeability through hydraulic stimulation and possibility of such desirable change of permeability is an open question that can undermine the universality of EGS concept. We report results of first hydraulic stimulation campaign conducted in two deep boreholes in fractured granodiorite geothermal reservoir in Pohang, Korea. Borehole PX-1, located at 4.22 km, was subjected to the injection of 3,907 m3 with flow rate of up to 18 kg/s followed by bleeding off of 1,207 m3. The borehole PX-2, located at 4.35 km, was subjected to the injection of 1,970 m3 with flow rate of up to 46 kg/sIn PX-1, a sharp distinct decline of wellhead pressure was observed at around 16 MPa of wellhead pressure which was similar to the predicted injection pressure to induce hydraulic shearing. Injectivity interpretation before and after the hydraulic shearing indicates that permanent increase of permeability was achieved by a factor of a few. In PX-2, however, injectivity was very small and hydraulic shearing was not observed due possibly to the near wellbore damage made by the remedying process of lost circulation such as using lost circulation material during drilling. Flow rate of larger than 40 kg/s was achieved at very high well head pressure of nearly 90 MPa. Hydraulic jacking, that is reversible opening and closure of fracture with change of injection pressure, was clearly observed. Although sharp increase of permeability due to fracture opening was achieved with elevated injection pressure, the increased permeability was reversed with decreased injection pressure.Two contrasting response observed in the same reservoir at two different boreholes which is apart only 600 m apart provide important implication that can be used for the stimulation strategy for EGS.This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology

  8. Endurance Pump Tests With Fresh and Purified MIL-PRF-83282 Hydraulic Fluid

    National Research Council Canada - National Science Library

    Sharma, Shashi

    1999-01-01

    .... Two endurance pump tests were conducted with F-16 aircraft hydraulic pumps, using both fresh and purified MIL-PRF-83282 hydraulic fluid, to determine if fluid purification had any adverse effect on pump life...

  9. The hydraulic wheel

    International Nuclear Information System (INIS)

    Alvarez Cardona, A.

    1985-01-01

    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  10. Field determined variation of the unsaturated hydraulic conductivity functions using simplified analysis of internal drainage experiments Variação da condutividade hidráulica do solo não saturado determinada em condições de campo utilizando análises simplificadas de experimentos de drenagem interna

    Directory of Open Access Journals (Sweden)

    M. M. Villagra

    1994-04-01

    Full Text Available Experimentally determined values of unsaturated soil hydraulic conductivity are presented for an Alfisol of the county of Piracicaba, S.P., Brazil. Simultaneous measurements of soil water content and pressure head are made along a 125 m transect within an irrigated field during the internal drainage process. Calculations of the soil hydraulic conductivity were made using the instantaneous profile method (Watson, 1966 and the unit gradient method (LIBARDI et al., 1980. The spatial variability of the soil hydraulic conductivity manifested along the transect indicates the need to develop a field method to measure K(theta within prescribed fiducial limits, taking into account quantitative evaluation of spatial and temporal variances associated with the mathematical model, instrument calibration and soil properties.São apresentados dados experimentais de condutividade hidráulica do solo, para uní Alfisol (terra roxa estruturada do Município de Piracicaba,SP - Brasil. Medidas simultâneas de umidade do solo e de potencial total da água no solo foram realizadas ao longo de uma transeção de 125 m, dentro de um campo irrigado, durante o processo de drenagem interna. Os cálculos de condutividade hidráulica foram feitos utilizando o método do perfil instantâneo (WATSON, 1966 e o método do gradiente unitário (LIBARDI et al., 1980. A variabilidade espacial da condutividade hidráulica do solo observada ao longo da transeção aponta a necessidade do desenvolvimento de método de campo para a medida de K (teta dentro de limites preestabelecidos de precisão, levando em conta a medida quantitativa das variâncias temporal e espacial associadas ao modelo matemático, a calibração dos instrumentos e as propriedades do solo.

  11. DETERMINAÇÃO DA CONDUTIVIDADE HIDRÁULICA E DA SORVIDADE DE UM SOLO NÃO-SATURADO UTILIZANDO-SE PERMEÂMETRO A DISCO DETERMINATION OF UNSATURATED HYDRAULIC CONDUCTIVITY AND SORPTIVITY OF A SOIL USING A DISK PERMEAMETER

    Directory of Open Access Journals (Sweden)

    EDVANE BORGES

    1999-11-01

    Full Text Available Dois métodos, utilizando permeâmetros a disco, foram usados para medir a sorvidade e a condutividade hidráulica em três horizontes de um solo de Santa Maria da Boa Vista, Pernambuco, utilizando-se potenciais de fornecimento de água de 0, -2,5, -5 e -10 cm de água. No primeiro método, a condutividade hidráulica foi obtida através de estimativas da sorvidade e do fluxo estacionário, utilizando-se apenas um permeâmetro. No segundo, as medidas da sorvidade e da condutividade hidráulica foram feitas utilizando-se valores dos fluxos estacionários, obtidos a partir de dois permeâmetros de diferentes raios. Esse segundo método apresentou resultados mais consistentes dos tempos -- gravitacional e geométrico --, e do raio característico de poros que o primeiro método. A sorvidade foi tão importante quanto a condutividade hidráulica para caracterizar o processo de infiltração. A redução brusca dos valores dos raios característicos de poros do horizonte A2/B, com mudanças no potencial de fornecimento de água, revelou a heterogeneidade da estrutura deste horizonte, permitindo identificar a influência dos volumes argilosos compactados sobre o processo de infiltração.Sorptivity and hydraulic conductivity were determined by two methods using disc permeameters. Infiltration experiments were carried out on three horizons of a representative soil of the semi-arid region, located in Santa Maria da Boa Vista, State of Pernambuco, Brazil. Water was supplied to this soil by disc permeameters at potentials of 0, -2.5, -5 and -10 cm of water. In the first method, hydraulic conductivity was measured using estimates of sorptivity and steady state fluxes. In the second, sorptivity and hydraulic conductivity were determined using measurements of steady state fluxes with two disc permeameters of different radius. Results of the second method, regarding characteristic times and characteristic pore radius, were more consistent than those of the

  12. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  13. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  14. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    Science.gov (United States)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  15. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  16. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  17. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  18. Hydraulic Arm Modeling via Matlab SimHydraulics

    Czech Academy of Sciences Publication Activity Database

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    Roč. 16, č. 4 (2009), s. 287-296 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : simulatin modeling * hydraulics * SimHydraulics Subject RIV: JD - Computer Applications, Robotics

  19. Mine drivage in hydraulic mines

    Energy Technology Data Exchange (ETDEWEB)

    Ehkber, B Ya

    1983-09-01

    From 20 to 25% of labor cost in hydraulic coal mines falls on mine drivage. Range of mine drivage is high due to the large number of shortwalls mined by hydraulic monitors. Reducing mining cost in hydraulic mines depends on lowering drivage cost by use of new drivage systems or by increasing efficiency of drivage systems used at present. The following drivage methods used in hydraulic mines are compared: heading machines with hydraulic haulage of cut rocks and coal, hydraulic monitors with hydraulic haulage, drilling and blasting with hydraulic haulage of blasted rocks. Mining and geologic conditions which influence selection of the optimum mine drivage system are analyzed. Standardized cross sections of mine roadways driven by the 3 methods are shown in schemes. Support systems used in mine roadways are compared: timber supports, roof bolts, roof bolts with steel elements, and roadways driven in rocks without a support system. Heading machines (K-56MG, GPKG, 4PU, PK-3M) and hydraulic monitors (GMDTs-3M, 12GD-2) used for mine drivage are described. Data on mine drivage in hydraulic coal mines in the Kuzbass are discussed. From 40 to 46% of roadways are driven by heading machines with hydraulic haulage and from 12 to 15% by hydraulic monitors with hydraulic haulage.

  20. Preparation of hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement by the use of oil-shale residues is characterized in that the oil-shale refuse is mixed with granular basic blast-furnace slag and a small amount of portland cement and ground together.

  1. Small hydraulic turbine drives

    Science.gov (United States)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  2. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  3. Manual Hydraulic Structures

    NARCIS (Netherlands)

    Molenaar, W.F.; Voorendt, M.Z.

    This manual is the result of group work and origins in Dutch lecture notes that have been used since long time. Amongst the employees of the Hydraulic Engineering Department that contributed to this work are dr.ir. S. van Baars, ir.K.G.Bezuijen, ir.G.P.Bourguignon, prof.ir.A.Glerum,

  4. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  5. Cradle modification for hydraulic ram

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70 degrees and 90 degrees)

  6. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  7. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  8. Hydraulic Hybrid Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Vehicle Publications Hydraulic Hybrid Vehicle Publications The following technical papers and fact sheets provide information about NREL's hydraulic hybrid fleet vehicle evaluations . Refuse Trucks Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles. Bob

  9. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  10. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  11. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  12. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  13. Hydraulic Properties related to Stream Reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  14. Hydraulic properties related to stream reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  15. On hydraulics of capillary tubes

    Directory of Open Access Journals (Sweden)

    N.G. Aloyan

    2016-03-01

    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  16. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  17. Hydraulic Limits on Maximum Plant Transpiration

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  18. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  19. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  20. Hydraulic tests for the Excavation Disturbed Zone in NATM drift of North Extension

    International Nuclear Information System (INIS)

    Matsuoka, Eiken

    1997-03-01

    Investigation for characterization of rock properties of the Excavation Disturbed Zone (EDZ) were carried out in NATM drift of North Extension in the Tono Mine. As a part of this investigation, hydraulic tests were performed by means of the hydraulic measuring instrument, which had been developed by PNC Tono Geoscience Center. The purpose of this tests is to characterize the change in hydraulic properties of the EDZ caused by drift excavation using machine (boom header). The hydraulic tests were performed in the burials MH-1,2,3, in which hydraulic tests had been performed before the drift excavation in 1994. The test results indicate that the measured values of pore water pressure have decreased after excavation of the drift. The values ranged from -0.037 kgf/cm 2 to 0.039 kgf/cm 2 . The measured hydraulic conductivities ranged from 2.2*10 -11 cm/s to 9.1*10 -11 cm/s for mud stone and from 2.8*10 -9 cm/s to 2.4*10 -7 cm/s for conglomerate. The measured hydraulic conductivities for mud stone are below the lower limit of the instrument, and the change in the hydraulic conductivities for conglomerate is little. The hydraulic conductivities for conglomerate and mad stone (reference values) are interpreted. The change in hydraulic conductivities measured before and after excavation of the drift is insignificant. (author)

  1. Research of performance prediction to energy on hydraulic turbine

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Li, Q F; Han, W; Su, Q M

    2012-01-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  2. Thermal-Hydraulic Experiment Facility (THEF)

    International Nuclear Information System (INIS)

    Martinell, J.S.

    1982-01-01

    This paper provides an overview of the Thermal-Hydraulic Experiment Facility (THEF) at the Idaho National Engineering Laboratory (INEL). The overview describes the major test systems, measurements, and data acquisition system, and presents objectives, facility configuration, and results for major experimental projects recently conducted at the THEF. Plans for future projects are also discussed. The THEF is located in the Water Reactor Research Test Facility (WRRTF) area at the INEL

  3. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  4. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    Science.gov (United States)

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak. © The Author 2014. Published by Oxford University Press. All rights reserved

  5. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study...

  6. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  7. Hydraulic fracturing proppants

    Directory of Open Access Journals (Sweden)

    V. P. P. de Campos

    Full Text Available Abstract Hydrocarbon reservoirs can be classified as unconventional or conventional depending on the oil and gas extraction difficulty, such as the need for high-cost technology and techniques. The hydrocarbon extraction from bituminous shale, commonly known as shale gas/oil, is performed by using the hydraulic fracturing technique in unconventional reservoirs where 95% water, 0.5% of additives and 4.5% of proppants are used. Environmental problems related to hydraulic fracturing technique and better performance/development of proppants are the current challenge faced by companies, researchers, regulatory agencies, environmentalists, governments and society. Shale gas is expected to increase USA fuel production, which triggers the development of new proppants and technologies of exploration. This paper presents a review of the definition of proppants, their types, characteristics and situation in the world market and information about manufacturers. The production of nanoscale materials such as anticorrosive and intelligent proppants besides proppants with carbon nanotubes is already carried out on a scale of tonnes per year in Belgium, Germany and Asia countries.

  8. Hydraulic jett mixing

    International Nuclear Information System (INIS)

    Ackerman, J.R.

    1989-01-01

    Efficient mixing of reactants into a waste stream has always been a problem in that there has been no mixer capable of combining all the elements of enhanced mixing into a single piece of equipment. Through the development of a mixing system for the mining industry to treat acid mine water containing heavy metals, a versatile new hydraulic jetting static mixer has been developed that has no moving parts and a clean bore with no internal components. This paper reports that the main goal of the development of the hydraulic jett mixer was to reduce the size of the tankage required for an acid mine drainage (AMD) treatment plant through development of a static mixing device that could coincidentally aerate the treatment flow. This process equipment being developed would simultaneously adjust the pH and oxidize the metals allowing formation of the hydroxide sludges required for sedimentation and removal of the metals from the treatment stream. In effect, the device eliminates two reaction tanks, the neutralization/mixing tank and the aeration tank

  9. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  10. Crack formation in cementitious materials used for an engineering barrier system and their impact on hydraulic conductivity from the viewpoint of performance assessment of a TRU waste disposal system

    International Nuclear Information System (INIS)

    Hirano, Fumio; Mihara, Morihiro; Honda, Akira; Otani, Yoshiteru; Kyokawa, Hiroyuki; Shimizu, Hiroyuki

    2016-01-01

    The mechanical analysis code MACBECE2014 has been developed at the Japan Atomic Energy Agency (JAEA) to make realistic simulations of the physical integrity of the near field for performance assessment of the geological disposal of TRU waste in Japan. The MACBECE2014 code can be used to evaluate long-term changes in the mechanical behavior of the near field and any subsequent changes in the permeability of engineering barrier components, including crack formation in cementitious materials caused by expansion due to metal corrosion. Cracks in cementitious materials are likely to channel the flow of groundwater and so the represent preferred flow paths of any released radionuclides. Mechanical analysis was conducted using the MACBECE2014 code to investigate the concept of the TRU waste disposal system described in JAEA's Second Progress TRU Report. Simulated results of a disposal system with a bentonite buffer demonstrated that the low permeability of the engineering barrier system could be maintained for long time periods because the physical integrity of the bentonite buffer remained intact even if cracks in the cementitious components had formed locally. Simulated results of the disposal system with a concrete backfill instead of a bentonite buffer showed that crack formation leads to a significant increase in the permeability of the engineering barrier system. (author)

  11. Process of preparing hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-12-11

    A process of preparing hydraulic cement from oil shale or shale coke is characterized in that the oil shale or shale coke after the distillation is burned long and hot to liberate the usual amount of carbonic acid and then is fine ground to obtain a slow hardening hydraulic cement.

  12. Control rod drive hydraulic device

    International Nuclear Information System (INIS)

    Takekawa, Toru.

    1994-01-01

    The device of the present invention can reliably prevent a possible erroneous withdrawal of control rod driving mechanism when the pressure of a coolant line is increased by isolation operation of hydraulic control units upon periodical inspection for a BWR type reactor. That is, a coolant line is connected to the downstream of a hydraulic supply device. The coolant line is connected to a hydraulic control unit. A coolant hydraulic detection device and a pressure setting device are disposed to the coolant line. A closing signal line and a returning signal line are disposed, which connect the hydraulic supply device and a flow rate control valve for the hydraulic setting device. In the device of the present invention, even if pressure of supplied coolants is elevated due to isolation of hydraulic control units, the elevation of the hydraulic pressure can be prevented. Accordingly, reliability upon periodical reactor inspection can be improved. Further, the facility is simplified and the installation to an existent facility is easy. (I.S.)

  13. Hydraulically centered control rod

    International Nuclear Information System (INIS)

    Horlacher, W.R.; Sampson, W.T.; Schukei, G.E.

    1981-01-01

    A control rod suspended to reciprocate in a guide tube of a nuclear fuel assembly has a hydraulic bearing formed at its lower tip. The bearing includes a plurality of discrete pockets on its outer surface into which a flow of liquid is continuously provided. In one embodiment the flow is induced by the pressure head in a downward facing chamber at the end of the bearing. In another embodiment the flow originates outside the guide tube. In both embodiments the flow into the pockets produces pressure differences across the bearing which counteract forces tending to drive the rod against the guide tube wall. Thus contact of the rod against the guide tube is avoided

  14. Equipment for hydraulic testing

    International Nuclear Information System (INIS)

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  15. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....... a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...

  16. Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration

    Science.gov (United States)

    Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.

    2017-01-01

    Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.

  17. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  18. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... the full turbine code in FAST, and the mathematical model of the hydraulic yaw system in Matlab/Simulink and Amesim is developed in order to analyze a full scale model of the hydraulic yaw system in combination with the implemented friction model for the yaw system. These results are also promising...

  19. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores

    Directory of Open Access Journals (Sweden)

    Jianming He

    2016-12-01

    Full Text Available Hydraulic fracturing is an important method of reservoir stimulation in the exploitation of geothermal resources, and conventional and unconventional oil and gas resources. In this article, hydraulic fracturing experiments with shale, sandstone cores (from southern Sichuan Basin, and granite cores (from Inner Mongolia were conducted to investigate the different hydraulic fracture extension patterns in these three reservoir rocks. The different reactions between reservoir lithology and pump pressure can be reflected by the pump pressure monitoring curves of hydraulic fracture experiments. An X-ray computer tomography (CT scanner was employed to obtain the spatial distribution of hydraulic fractures in fractured shale, sandstone, and granite cores. From the microscopic and macroscopic observation of hydraulic fractures, different extension patterns of the hydraulic fracture can be analyzed. In fractured sandstone, symmetrical hydraulic fracture morphology could be formed, while some micro cracks were also induced near the injection hole. Although the macroscopic cracks in fractured granite cores are barely observed by naked eye, the results of X-ray CT scanning obviously show the morphology of hydraulic fractures. It is indicated that the typical bedding planes well developed in shale formation play an important role in the propagation of hydraulic fractures in shale cores. The results also demonstrated that heterogeneity influenced the pathway of the hydraulic fracture in granite cores.

  20. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    mean weight diameter (MWD), water dispersible silt (WDSi), aggregate size distributions (> 2 mm, 1-0.5 mm and < 0.25 ... above sea level. ... and red to brownish red and derived from sandy ... where Q = steady state volume of outflow from the.

  1. Effects on saturated hydraulic conductivity and rhizome yield

    African Journals Online (AJOL)

    SERVER

    2007-09-05

    Sep 5, 2007 ... ... as recorded at. Umudike, followed the bi-modal pattern, typical of the tropical rain- ... coefficients of determination and regression equations, were used ... Effects of mulch types, rates and sampling depth on selected physical properties of an arenic hapludult. .... as the independent variable to explain the.

  2. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    The 4 x 3 factorial experiment was laid in a randomized complete block design with four replicates. Fruit fibre .... cheap land preparation method especially when unmulched .... Table 3. The effect of seed bed preparation and mulching methods on the cost and .... improved soil physic-chemical properties including nutrients ...

  3. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    Sokoto, and Illela coversand) of Sokoto-Rima river basin area of Sokoto state. ... Morphological properties of the soils revealed a dominant spectral colour hue of 7.5YR ..... roots; sh=shale, ch=channel Fe=ironstone crust, Fec=iron concretion; ...

  4. Involvement of rootstocks and their hydraulic conductance in the ...

    African Journals Online (AJOL)

    Improving drought resistance of rubber trees has become a pressing issue with the extension of rubber plantations and the prevalence of seasonal drought. Root system is vital to water and nutrients uptake of all plants, therefore, rootstocks could play decisive roles in drought resistance of grafted rubber trees on a specific ...

  5. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    pH 6.8 using a 4 × 6 × 8 between and within factorial design comprising of 4 enzyme types. (GELIN0 ... Activation energy (Ea) values for the degradation of linamarin (GELIN0 – GELIN3) ... obtain about 0.82 g of white substrate (mp.143. oC).

  6. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    2008-04-12

    Apr 12, 2008 ... therefore faced with inherent risks resulting to marked variations in seasonal and annual food supply. Cassava crops can relatively adapt to marginal soils and erratic rainfall conditions compared with other crops and have the capability of maintaining continuity of supply throughout the year. The need to ...

  7. A tensor approach to the estimation of hydraulic conductivities in ...

    African Journals Online (AJOL)

    2006-07-03

    Jul 3, 2006 ... representative elementary volume (REV) can be defined, it may not be appropriate to directly apply the .... and shallow and deep groundwater circulation. With regard to ... ter modelling processing. Note that the quantity of HC ...

  8. The effect of liner hydraulic conductivity on disposal cell performance

    International Nuclear Information System (INIS)

    Yu, C.; Yuan, Y.C.; Chia, Y.P.

    1988-01-01

    Multilayered disposal cells are frequently used for the disposal of radioactive and hazardous wastes. These disposal cells consist of materials with different permeabilities that are placed in various thicknesses at the bottom as well as in the cover of the cell. Typically, a layer of permeable material is placed above a layer with low permeability; the permeable layer functions as a drainage/leachate collection system and the low-permeability layer functions as a migration barrier/liner. This paper analyzes the effects of infiltration through unsaturated soil liners on the long-term performance of the disposal cell. Based on the results of this study, it is concluded that the long-term performance of a disposal cell is dependent on a well-designed cell cover. The design should emphasize a cap with less permeable material to prevent water from infiltrating the disposal cell. An impermeable bottom liner is effective only in the short term; however, it can eventually result in saturation of the wastes and cause the bathtub effect over the long term

  9. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies

    DEFF Research Database (Denmark)

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard

    2015-01-01

    inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation...... small-scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional...... and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed...

  10. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    observed in many self-pollinated crop species ... environments are important. .... components used in determining grain yield. ... Table 1: Form of Analysis of variance showing sources of Variation, Degrees of Freedom and Mean Square ...

  11. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    International Nuclear Information System (INIS)

    Shi, Q

    2010-01-01

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  12. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Q, E-mail: qhshi@dfem.com.c [Dong Fang Electrical Machinery Co., Ltd., DEC 188, Huanghe West Road, Deyang, 618000 (China)

    2010-08-15

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  13. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    Science.gov (United States)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  14. Hydraulic release oil tool

    International Nuclear Information System (INIS)

    Mims, M.G.; Mueller, M.D.; Ehlinger, J.C.

    1992-01-01

    This patent describes a hydraulic release tool. It comprises a setting assembly; a coupling member for coupling to drill string or petroleum production components, the coupling member being a plurality of sockets for receiving the dogs in the extended position and attaching the coupling member the setting assembly; whereby the setting assembly couples to the coupling member by engagement of the dogs in the sockets of releases from and disengages the coupling member in movement of the piston from its setting to its reposition in response to a pressure in the body in exceeding the predetermined pressure; and a relief port from outside the body into its bore and means to prevent communication between the relief port and the bore of the body axially of the piston when the piston is in the setting position and to establish such communication upon movement of the piston from the setting position to the release position and reduce the pressure in the body bore axially of the piston, whereby the reduction of the pressure signals that the tool has released the coupling member

  15. HYDRAULICS, SHELBY COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDRAULICS, MEADE COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  18. Steam generator thermal-hydraulics

    International Nuclear Information System (INIS)

    Inch, W.W.; Scott, D.A.; Carver, M.B.

    1980-01-01

    This paper discusses a code for detailed numerical modelling of steam generator thermal-hydraulics, and describes related experimental programs designed to promote in-depth understanding of three-dimensional two-phase flow. (auth)

  19. Influência de resíduo de serragem de mármore na condutividade hidráulica do solo e na qualidade da água Influence of marble cutting waste on soil hydraulic conductivity and water quality

    Directory of Open Access Journals (Sweden)

    Ana Paula Almeida Bertossi

    2011-01-01

    Full Text Available A grande quantidade de resíduos gerada na serragem de rochas ornamentais e as características destes materiais indicam possibilidades de uso no enriquecimento mineral e na correção de acidez de solos. No entanto, seus efeitos no meio ambiente são ainda desconhecidos, sendo necessário realizar estudos que garantam sua utilização de forma segura, sem oferecer riscos à qualidade da água e do solo. Nesse sentido, com objetivo de avaliar a influência da adição de resíduos provenientes da serragem de mármore na condutividade hidráulica de solos e na qualidade da água percolada, foram realizados ensaios em colunas preenchidas com misturas de solo e resíduo, interligadas a um permeâmetro de carga constante. Os valores de condutividade hidráulica obtidos nas misturas de solo e resíduo de mármore, comparados com solo sem adição de resíduo mostraram que não houve influência na velocidade de percolação da água. Na água percolada houve aumento da condutividade elétrica, do pH e dos teores de Ca e Mg, e diminuição do Mn. Os parâmetros de qualidade da água foram comparados com a normatização do Conselho Nacional de Meio Ambiente (CONAMA, que fixa os limites aceitáveis para a água subterrânea. Também foram feitas comparações quanto ao grau de restrição do uso da água para irrigação, buscando verificar possíveis riscos ao crescimento vegetal.The high quantities of wastes that have been produced by dimension stone industry and the characteristics of these materials indicate possibilities of using them as soil enriching and corrective of soil acidity. However, their environmental effects are not known requiring studies to guarantee a safe utilization. Tests using a constant head permeameter interconnected to columns filled with mixture of soil and marble waste were conducted aiming to analyze the influence of wastes on soil hydraulic conductivity and quality of percolated water. Results showed that the aggregation

  20. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  1. Robust Prediction of Hydraulic Roughness

    Science.gov (United States)

    2011-03-01

    Manning’s n were required as input for further hydraulic analyses with HEC - RAS . HYDROCAL was applied to compare different estimates of resistance... River Restoration Science Synthesis (NRRSS) demonstrated that, in 2007, river and stream restoration projects and funding were at an all time high...behavior makes this parameter very difficult to quan- tify repeatedly and accurately. A fundamental concept of hydraulic theory in the context of river

  2. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    Science.gov (United States)

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Science.gov (United States)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  4. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions...

  5. Results of single borehole hydraulic testing in the Mizunami Underground Research Laboratory project. Phase 2

    International Nuclear Information System (INIS)

    Daimaru, Shuji; Takeuchi, Ryuji; Onoe, Hironori; Saegusa, Hiromitsu

    2012-09-01

    This report summarize the results of the single borehole hydraulic tests of 79 sections conducted as part of the Construction phase (Phase 2) in the Mizunami Underground Research Laboratory (MIU) Project. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical method used are presented in this report. (author)

  6. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species

    Science.gov (United States)

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Maria E. Arce

    2009-01-01

    We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (Leaf) hydraulic conductivity, wood density (Pw), rooting depth, and specific leaf...

  7. Year-round estimation of soil moisture content using temporally variable soil hydraulic parameters

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2017-01-01

    Roč. 31, č. 6 (2017), s. 1438-1452 ISSN 0885-6087 R&D Projects: GA ČR GA16-05665S Institutional support: RVO:67985874 Keywords : hydrological modelling * pore-size distribution * saturated hydraulic conductivity * seasonal variability * soil hydraulic parameters * soil moisture Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 3.014, year: 2016

  8. Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery.

    Science.gov (United States)

    Chen, Jun-Wen; Zhang, Qiang; Li, Xiao-Shuang; Cao, Kun-Fang

    2010-07-01

    The response of plants to drought has received significant attention, but far less attention has been given to the dynamic response of plants during recovery from drought. Photosynthetic performance and hydraulic capacity were monitored in seedlings of Hevea brasiliensis under water stress and during recovery following rewatering. Leaf water relation, gas exchange rate and hydraulic conductivity decreased gradually after water stress fell below a threshold, whereas instantaneous water use efficiency and osmolytes increased significantly. After 5 days of rewatering, leaf water relation, maximum stomatal conductance (g(s-max)) and plant hydraulic conductivity had recovered to the control levels except for sapwood area-specific hydraulic conductivity, photosynthetic assimilation rate and osmolytes. During the phase of water stress, stomata were almost completely closed before water transport efficiency decreased substantially, and moreover, the leaf hydraulic pathway was more vulnerable to water stress-induced embolism than the stem hydraulic pathway. Meanwhile, g(s-max) was linearly correlated with hydraulic capacity when water stress exceeded a threshold. In addition, a positive relationship was shown to occur between the recovery of g(s-max) and of hydraulic capacity during the phase of rewatering. Our results suggest (i) that stomatal closure effectively reduces the risk of xylem dysfunction in water-stressed plants at the cost of gas exchange, (ii) that the leaf functions as a safety valve to protect the hydraulic pathway from water stress-induced dysfunction to a larger extent than does the stem and (iii) that the full drought recovery of gas exchange is restricted by not only hydraulic factors but also non-hydraulic factors.

  9. Monitoring hydraulic stimulation using telluric sounding

    Science.gov (United States)

    Rees, Nigel; Heinson, Graham; Conway, Dennis

    2018-01-01

    The telluric sounding (TS) method is introduced as a potential tool for monitoring hydraulic fracturing at depth. The advantage of this technique is that it requires only the measurement of electric fields, which are cheap and easy when compared with magnetotelluric measurements. Additionally, the transfer function between electric fields from two locations is essentially the identity matrix for a 1D Earth no matter what the vertical structure. Therefore, changes in the earth resulting from the introduction of conductive bodies underneath one of these sites can be associated with deviations away from the identity matrix, with static shift appearing as a galvanic multiplier at all periods. Singular value decomposition and eigenvalue analysis can reduce the complexity of the resulting telluric distortion matrix to simpler parameters that can be visualised in the form of Mohr circles. This technique would be useful in constraining the lateral extent of resistivity changes. We test the viability of utilising the TS method for monitoring on both a synthetic dataset and for a hydraulic stimulation of an enhanced geothermal system case study conducted in Paralana, South Australia. The synthetic data example shows small but consistent changes in the transfer functions associated with hydraulic stimulation, with grids of Mohr circles introduced as a useful diagnostic tool for visualising the extent of fluid movement. The Paralana electric field data were relatively noisy and affected by the dead band making the analysis of transfer functions difficult. However, changes in the order of 5% were observed from 5 s to longer periods. We conclude that deep monitoring using the TS method is marginal at depths in the order of 4 km and that in order to have meaningful interpretations, electric field data need to be of a high quality with low levels of site noise.[Figure not available: see fulltext.

  10. Inherent Limitations of Hydraulic Tomography

    Science.gov (United States)

    Bohling, Geoffrey C.; Butler, J.J.

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  11. Birth of a hydraulic jump

    Science.gov (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  12. Wood anatomy and plant hydraulics in a changing climate

    Science.gov (United States)

    William R.L. Anderegg; Frederick C. Meinzer

    2015-01-01

    Due to their hydraulic system that allows them to transport water from the soil to leaves, woody plants have become incredibly successful in terrestrial ecosystems since their evolution ~400 million years ago (Hartmann 2011). This vascular system lets trees conduct water from the soil up to more than 100 m (Koch et al. 2004), allowing trees to compete for light and...

  13. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    ... in the initial stage of a site investigation to select the optimal site location or to evaluate the hydrogeological properties of fractures in underground exploration studies, such as those related geothermal reservoir evaluation and radioactive waste disposal. Keywords: self-potential method, hydraulically-conductive fractures, ...

  14. Determination of hydraulic characteristics of an aquifer capacity from ...

    African Journals Online (AJOL)

    Constant rate, single well pumping tests were conducted using boreholes located in four communities in the study area with the aim of determining the aquifer hydraulic properties using the Cooper Jacob method. Fractured shales yielded groundwater into the wells whose depths ranged from 26 to 35m while the static water ...

  15. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  16. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  17. Hydraulic lifter for an underwater drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Garan' ko, Yu L

    1981-01-15

    A hydraulic lifter is suggested for an underwater drilling rig. It includes a base, hydraulic cylinders for lifting the drilling pipes connected to the clamp holder and hydraulic distributor. In order to simplify the design of the device, the base is made with a hollow chamber connected to the rod cavities and through the hydraulic distributor to the cavities of the hydraulic cylinders for lifting the drilling pipes. The hydraulic distributor is connected to the hydrosphere through the supply valve with control in time or by remote control. The base is equipped with reverse valves whose outlets are on the support surface of the base.

  18. Hydraulic lifter of a drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Velikovskiy, L S; Demin, A V; Shadchinov, L M

    1979-01-08

    The invention refers to drilling equipment, in particular, devices for lowering and lifting operations during drilling. A hydraulic lifter of the drilling unit is suggested which contains a hydraulic cylinder, pressure line and hollow plunger whose cavities are hydraulically connected. In order to improve the reliability of the hydraulic lifter by balancing the forces of compression in the plunger of the hydraulic cylinder, a closed vessel is installed inside the plunger and rigidly connected to its ends. Its cavity is hydraulically connected to the pressure line.

  19. ENERGY EFFICIENCY OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION TESTS AT LOCOMOTIVE REPAIR PLANT

    Directory of Open Access Journals (Sweden)

    B. E. Bodnar

    2015-10-01

    Full Text Available Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing. Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator. Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted. Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated. Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn wil allow testing in

  20. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  1. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  2. Avaliação da condutividade hidraulica do solo saturada utilizando dois métodos de laboratório numa topossequência com diferentes coberturas vegetais no Baixo Amazonas Evaluation of the saturated hydraulic conductivity using two laboratory methods in a topossequence with different vegetation cover in the lower Amazon

    Directory of Open Access Journals (Sweden)

    Jean Dalmo de Oliveira Marques

    2008-01-01

    Full Text Available O objetivo desse trabalho foi avaliar dois métodos de laboratório para a determinação da condutividade hidráulica do solo saturada (Ko conhecidos como Permeâmetro de carga constante (PCC e Permeâmetro de carga decrescente (PCD, com o intuito de verificar sua aplicabilidade e variabilidade em solos amazônicos. Coletaram-se 125 amostras de solo com estrutura indeformada, através de amostrador tipo Uhland, com anéis volumétricos, de 0,072 m de altura e 0,069 m de diâmetro, devido à variabilidade apresentada pelas determinações de tal parâmetro. Nos mesmos pontos de amostragens da Ko, procedeu-se coleta de anéis volumétricos para a determinação da porosidade do solo. Ainda nesses pontos foram coletadas amostras com estrutura deformada para análises físicas e químicas. Os resultados obtidos demonstram que o método do PCC foi o mais apropriado para a classe dos Latossolos estudados, apresentando os menores coeficientes de variação e desvio padrão ao longo da topossequência. Os valores de Ko estiveram distribuídos entre P1(2,65 à 3,34 cm dia-1, P2(2,85 à 3,38 cm dia-1, P3(2,86 à 3,63 cm dia-1, P4(2,75 à 3,49 cm dia-1, P5(2,38 à 3,83 cm dia-1 e P6 (2,47 à 3,52 cm dia-1; havendo uma tendência para maiores valores de Ko na superficie. A utilização de Ko como parâmetro de análise hídrica em solos porosos na superfície e muito argilosos em profundidade, como os amazônicos, necessita ser realizada com precaução, evitando a interrupção da continuidade dos poros e compactação da amostra. Mudanças na condutividade hidráulica saturada estiveram mais relacionadas a alterações nas propriedades físicas do solo e posição no relevo do que nas alterações das coberturas vegetais ao longo da topossequência.The objective of this work was to evaluate two different laboratory methods for determining the saturated hydraulic conductivity (Ko, namely, the constant head permeameter method (PCC and the falling

  3. Coupling of hydraulic and electric gradients in sandy soils

    Energy Technology Data Exchange (ETDEWEB)

    Gregolec, G.; Zorn, R.; Kurzbach, A.; Roehl, K.E.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Laboratory studies were conducted to investigate the influence of hydraulic gradient on the migration of ions caused by an applied dc electric field. The model soil used was a uniform sand which was placed into an electrokinetic cell and saturated with sodium chloride solution. Applying only an electric gradient, steady state conditions are reached where the concentration distribution of sodium and chloride coincides with a theoretical model. The combination of electric and hydraulic gradients shows that it is possible to hinder ions from moving with the groundwater flow by applying an electric field. (orig.)

  4. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance

    Science.gov (United States)

    Frederick C. Meinzer; Daniel M. Johnson; Barbara Lachenbruch; Katherine A. McCulloh; David R. Woodruff

    2009-01-01

    The xylem pressure inducing 50% loss of hydraulic conductivity due to embolism (P50) is widely used for comparisons of xylem vulnerability among species and across aridity gradients. However, despite its utility as an index of resistance to catastrophic xylem failure under extreme drought, P50 may have no special...

  5. Hydraulic performance of Compacted Clay Liners (CCLs) under combined temperature and leachate exposures.

    Science.gov (United States)

    Aldaeef, A A; Rayhani, M T

    2014-12-01

    Experimental investigations were carried out to investigate the effect of thermo-chemical exposures on the hydraulic performance of Compacted Clay Liners (CCLs) in landfills. Hydraulic conductivity of most CCL specimens was increased by two to three times their initial values when exposed to 55 °C for 75 days. CCL specimens also experienced increases in their hydraulic conductivities when exposed to leachate at room temperature. This behaviour could be due to the decrease in viscosity when the permeant was changed from tap water to leachate. However, as the leachate exposure time exceeded the first 15 days, hydraulic conductivity readings decreased to as much as one order of magnitude after 75 days of leachate permeation at room temperature. The gradual decrease in the CCLs hydraulic conductivities was most likely due to chemical precipitation and clogging of pore voids within the soils which seemed to reduce the effective pore volume. The rate of hydraulic conductivity reduction due to leachate permeation was slower at higher temperatures, which was attributed to the lower permeant viscosity and lower clogging occurrence. The observed hydraulic behaviours were correlated to the physical, mineral, and chemical properties of the CCLs and described below. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, C. H.; Kim, Y. S.

    2007-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  7. Hydraulic behaviour of a representative structural volume for containment buildings

    International Nuclear Information System (INIS)

    Jason, Ludovic; Pijaudier-Cabot, Gilles; Ghavamian, Shahrokh; Huerta, Antonio

    2007-01-01

    For particular structures like containment buildings of nuclear power plants, the study of the hydraulic behaviour is of great concern. These structures are indeed the third barrier used to protect the environment in case of accidents. The evolution of the leaking rate through the porous medium is closely related to the changes in the permeability during the ageing process of the structure. It is thus essential to know the relation between concrete degradation and the transfer property when the consequences of a mechanical loading on the hydraulic behaviour have to be evaluated. A chained approach is designed for this purpose. The mechanical behaviour is described by an elastic plastic damage formulation, where damage is responsible for the softening evolution while plasticity accounts for the development of irreversible strains. The drying process is evaluated according to a non-linear equation of diffusion. From the knowledge of the damage and the degree of saturation, a relation is proposed to calculate the permeability of concrete. Finally, the non-homogeneous distribution of the hydraulic conductivity is included in the hydraulic problem which is in fact the association of the mass balance equation for gas phase and Darcy law. From this methodology, it is shown how an indicator for the hydraulic flows can be deduced

  8. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  9. Tree Hydraulics: How Sap Rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  10. Tubing Cutter is Activated Hydraulically

    Science.gov (United States)

    Mcsmith, D. G.; Richardson, J. I.

    1983-01-01

    Hydraulically-actuated tubing cutter severs tubing when operator squeezes handle grip. "Gooseneck" extension enables cutter to be used in areas where accessiblity is limited. Cutter has potential as flight-line tool and is useful in automobile and fire rescue work.

  11. Hydraulics calculation in drilling simulator

    Science.gov (United States)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  12. Hydraulics submission for Middlesex County, NJ

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating base flood elevation for a flood insurance...

  13. DCS Hydraulics Submittal, Bullock County, Alabama, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  14. DCS Hydraulics Submittal, Butler County, Alabama, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  15. DCS Hydraulics Submittal, Covington County, Alabama, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  16. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    International Nuclear Information System (INIS)

    WITTEKIND WD

    2007-01-01

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% 239 Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: (sm b ullet)bare, (sm b ullet)1 inch of hydraulic fluid, or (sm b ullet)12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection

  17. Hydraulics submission for Gloucester County, NJ

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating base flood elevation for a flood insurance...

  18. Subsea Hydraulic Leakage Detection and Diagnosis

    OpenAIRE

    Stavenes, Thomas

    2010-01-01

    The motivation for this thesis is reduction of hydraulic emissions, minimizing of process emergency shutdowns, exploitation of intervention capacity, and reduction of costs. Today, monitoring of hydraulic leakages is scarce and the main way to detect leakage is the constant need for filling of hydraulic fluid to the Hydraulic Power Unit (HPU). Leakage detection and diagnosis has potential, which would be adressed in this thesis. A strategy towards leakage detection and diagnosis is given....

  19. Hydraulic properties of domestic bentonite-sand mixture as a backfill material in the high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    This study is intended to investigate the effect of dry density and sand content on hydraulic conductivities of bentonite-sand mixtures. The hydraulic conductivities of bentonite-sand mixtures with dry densities of 1.6 and 1.8 Mg/m{sup 3} are lower than 10{sup -11} m/s if their sand contents are less than 70 wt%. However at the sand content of 90 wt%, the hydraulic conductivities increase sharply. In the case of sand contents not exceeding 70 wt%, the logarithm of the hydraulic conductivity of bentonite-sand mixture increase linearly with increasing sand content. The hydraulic conductivity of the mixture can be explained using 'effective clay dry density' concept. 16 refs., 21 figs., 5 tabs. (Author)

  20. Temperature effects on geotechnical and hydraulic properties of bentonite hydrated with inorganic salt solutions

    DEFF Research Database (Denmark)

    Rashid, H. M. A.; Kawamoto, K.; Saito, T.

    2015-01-01

    © 2015, International Journal of GEOMATE. This study investigated the combined effect of temperature and single-species salt solutions on geotechnical properties (swell index and liquid limit) and hydraulic conductivity of bentonite applying different cation types, concentrations, and temperatures...

  1. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  2. Multiphase flow models for hydraulic fracturing technology

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  3. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    International Nuclear Information System (INIS)

    Dixon, K; Mark Phifer, M

    2008-01-01

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples

  4. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K; Mark Phifer, M

    2008-03-19

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  5. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission's research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment

  6. Investigation on the effect of seawater to hydraulic property and wetting process of bentonite

    International Nuclear Information System (INIS)

    Hasegawa, Takuma

    2004-01-01

    On high-level waste disposal, bentonite is one of the most promising material for buffer and backfill material. The hydraulic properties and wetting process of bentonite are important not only for barrier performance assessment but also for prediction of waste disposal environment, such as resaturation time and thermal distribution. In Japan, we should consider the effect of seawater for bentonite, because radioactive waste will be disposed of in coastal area and in marine sediment where seawater remained. However, it is not enough to understand the effect of seawater. Therefore, experimental study was conducted to investigate the effect of seawater on the hydraulic conductivity and wetting process of bentonite. The effect of seawater on hydraulic conductivity is significant for Na-bentonite, the hydraulic conductivity of Na-bentonite in seawater is one order to magnitude higher than that in distilled water. On the other hand, the hydraulic conductivity of Ca-bentonite is not influenced by seawater. The hydraulic conductivity of bentonite decreases as effective montmorillonite density increases. The effective montmorillonite density is ratio between the weight of montmorillonite and volume of porosity and montmorillonite. The hydraulic conductivity of bentonite is close related to swelling property since the hydraulic conductivity decrease as the swelling pressure increase. Wetting process of compacted bentonite could be evaluated by diffusion phenomena since infiltration rate and change of saturation rate and represented by diffusion equation. The effect of seawater on water diffusivity is significant for Na-type bentonite with low effective montmorillonite density. Except for that condition, the water diffusivity of bentonite is almost constant and is not influenced by effective montmorillonite density and seawater. (author)

  7. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    Science.gov (United States)

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average

  8. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    International Nuclear Information System (INIS)

    Dixon, K.; Harbour, J.; Phifer, M.

    2008-01-01

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties

  9. Thermo-Hydraulic Modelling of Buffer and Backfill

    International Nuclear Information System (INIS)

    Pintado, X.; Rautioaho, E.

    2013-09-01

    The temporal evolution of saturation, liquid pressure and temperature in the components of the engineered barrier system was studied using numerical methods. A set of laboratory tests was conducted to calibrate the parameters employed in the models. The modelling consisted of thermal, hydraulic and thermo-hydraulic analysis in which the significant thermo-hydraulic processes, parameters and features were identified. CODE B RIGHT was used for the finite element modelling and supplementary calculations were conducted with analytical methods. The main objective in this report is to improve understanding of the thermo-hydraulic processes and material properties that affect buffer behaviour in the Olkiluoto repository and to determine the parametric requirements of models for the accurate prediction of this behaviour. The analyses consisted of evaluating the influence of initial canister temperature and gaps in the buffer, and the role played by fractures and the rock mass located between fractures in supplying water for buffer and backfill saturation. In the thermo-hydraulic analysis, the primary processes examined were the effects of buffer drying near the canister on temperature evolution and the manner in which heat flow affects the buffer saturation process. Uncertainties in parameters and variations in the boundary conditions, modelling geometry and thermo-hydraulic phenomena were assessed with a sensitivity analysis. The material parameters, constitutive models, and assumptions made were carefully selected for all the modelling cases. The reference parameters selected for the simulations were compared and evaluated against laboratory measurements. The modelling results highlight the importance of understanding groundwater flow through the rock mass and from fractures in the rock in order to achieve reliable predictions regarding buffer saturation, since saturation times could range from a few years to tens of thousands of years depending on the hydrogeological

  10. Hydraulic design development of Xiluodu Francis turbine

    International Nuclear Information System (INIS)

    Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N

    2012-01-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  11. Development of thermal hydraulic evaluation code for CANDU reactors

    International Nuclear Information System (INIS)

    Kim, Man Woong; Yu, Seon Oh; Choi, Yong Seog; Shin, Chull; Hwang, Soo Hyun

    2004-02-01

    To enhance the safety of operating CANDU reactors, the establishment of the safety analysis codes system for CANDU reactors is in progress. As for the development of thermal-hydraulic analysis code for CANDU system, the studies for improvement of evaluation model inside RELAP/CANDU code and the development of safety assessment methodology for GSI (Generic Safety Issues) are in progress as a part of establishment of CANDU safety assessment system. To develop the 3-D thermal-hydraulic analysis code for moderator system, the CFD models for analyzing the CANDU-6 moderator circulation are developed. One model uses a structured grid system with the porous media approach for the 380 Calandria tubes in the core region. The other uses a unstructured grid system on the real geometry of 380 Calandria tubes, so that the detailed fluid flow between the Calandria tubes can be observed. As to the development of thermal-hydraulic analysis code for containment, the study on the applicability of CONTAIN 2.0 code to a CANDU containment was conducted and a simulation of the thermal-hydraulic phenomena during the accident was performed. Besides, the model comparison of ESFs (Engineered Safety Features) inside CONTAIN 2.0 code and PRESCON code has also conducted

  12. Compatibility between Hydraulic and Mechanical Properties of Ceramic Water Filters

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-05-01

    Full Text Available In this paper, ceramic water filters were produced by using ten mixtures of different ratios of red clay and sawdust under different production conditions. The physical properties of these filters were tested. The production conditions include five press pressures ranged from 10 to 50MPa and a firing schedule having three different final temperatures of 1000, 1070, and 1100˚C. The tests results of the physical properties were used to obtain best compatibility between the hydraulic and the mechanical properties of these filters. Results showed that as the press pressure and the firing temperature are increased, the bulk density and the compressive and bending strengths of the produced filters are increased, while, the porosity and absorption are decreased. As the sawdust content is increased the bulk density and the compressive and bending strengths are decreased, while, the porosity and absorption are increased. High hydraulic conductivity is obtained at a firing temperature of 1070˚C when the sawdust content is less than 10%. Otherwise, it is increased as sawdust content and the firing temperature are increased. Filters made of mixture 92.5% red clay and 7.5% sawdust formed . under a press pressure of 20MPa and a firing temperature of 1070˚C gave the best compatibility between hydraulic and mechanical properties. In this case, the hydraulic conductivity was 50mm/day, the compressive strength was 14MPa, and the bending strength was 10.8MPa.

  13. Modeling multidomain hydraulic properties of shrink-swell soils

    Science.gov (United States)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  14. Advanced energy saving hydraulic elevator

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, A.; Sevilleja, J.; Servia, A.

    1993-08-24

    An hydraulic elevator is described comprising: a counterweighted elevator comprising a car, a counterweight, and a rope connecting the car and the counterweight; a ram having a first reaction surface for driving one of the car or the counterweight upwardly and a second reaction surface for driving one of the car or the counterweight downwardly; multiplier means for moving the car a distance greater than a stroke of the ram, the multiplier means connecting the ram to the counterweighted elevator, the multiplier means comprising: a first pulley; a second pulley; means for rigidly connecting the first and second pulley, the means having a length corresponding to a rise of the hydraulic elevator, the means attaching to the ram; and a pulley rope which: has a first end attaching to a first fixed point, extends about the first pulley, extends about the second pulley, and has a second end attaching to a second fixed point.

  15. Model for polygonal hydraulic jumps

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...... nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal...... states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners...

  16. GCFR thermal-hydraulic experiments

    International Nuclear Information System (INIS)

    Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

    1980-01-01

    The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

  17. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  18. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  19. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

    Science.gov (United States)

    Sevanto, Sanna; Mcdowell, Nate G; Dickman, L Turin; Pangle, Robert; Pockman, William T

    2014-01-01

    Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity. PMID:23730972

  20. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...... to enable efficient operation. These valves are complex components to design, as multiple design aspects are present in these integrated valve units, with conflicting objectives and interdependencies. A preliminary study on a small scale single-cylinder digital hydraulic pump has initially been conducted...

  1. Field study comparing the effect of hydraulic mixing on septic tank performance and sludge accumulation.

    Science.gov (United States)

    Almomani, Fares

    2016-01-01

    This study investigates the effect of hydraulic mixing on anaerobic digestion and sludge accumulation in a septic tank. The performance of a septic tank equipped with a hydraulic mixer was compared with that of a similar standard septic tank over a period of 10 months. The study was conducted in two phases: Phase-I--from May to November 2013 (6 months); Phase-II--from January to May 2014 (4 months). Hydraulic mixing effectively reduced the effluent biological oxygen demand (BOD) and total suspended solids, and reduced the sludge accumulation rate in the septic tank. The BOD removal efficiencies during Phase-II were 65% and 75% in the standard septic tank and a septic tank equipped with hydraulic mixer (Smart Digester™), respectively. The effect of hydraulic mixing reduced the rate of sludge accumulation from 0.64 cm/day to 0.27 cm/day, and increased the pump-out interval by a factor of 3.

  2. Computing in Hydraulic Engineering Education

    Science.gov (United States)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  3. Conducting Polymers

    Indian Academy of Sciences (India)

    would exhibit electronic conductivity, their conductivities (of compressed pellets) were indeed measured by others, and were found to be .... Polyaniline. Polyphenylene. Polypheny lene- vinylene. Table 1. G!NeRAl I ARTICl! structure. Maximum conductivity Stem Stability. Processability. ~. 1.5 x 105. Reacts with Film not n air.

  4. Discussion on Stochastic Analysis of Hydraulic Vibration in Pressurized Water Diversion and Hydropower Systems

    Directory of Open Access Journals (Sweden)

    Jianxu Zhou

    2018-03-01

    Full Text Available Hydraulic vibration exists in various water conveyance projects and has resulted in different operating problems, but its obvious effects on system’s pressure head and stable operation have not been definitively addressed in the issued codes for engineering design, especially considering the uncertainties of hydraulic vibration. After detailed analysis of the randomness in hydraulic vibration and the commonly used stochastic approaches, in the basic equations for hydraulic vibration analysis, the random parameters and the formed stochastic equations were discussed for further probabilistic characteristic analysis of the random variables. Furthermore, preliminary investigation of the stochastic analysis of hydraulic vibration in pressurized pipelines and possible self-excited vibration in pumped-storage systems was presented for further consideration. The detailed discussion indicates that it is necessary to conduct further and systematic stochastic analysis of hydraulic vibration. Further, with the obtained frequencies and amplitudes in the form of a probability statement, the stochastic characteristics of various hydraulic vibrations can be investigated in detail and these solutions will be more reasonable for practical applications. Eventually, the stochastic analysis of hydraulic vibration will provide a basic premise to introduce its effect into the engineering design of water diversion and hydropower systems.

  5. Magnetic Field and Torque Output of Packaged Hydraulic Torque Motor

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2018-01-01

    Full Text Available Hydraulic torque motors are one key component in electro-hydraulic servo valves that convert the electrical signal into mechanical motions. The systematic characteristics analysis of the hydraulic torque motor has not been found in the previous research, including the distribution of the electromagnetic field and torque output, and particularly the relationship between them. In addition, conventional studies of hydraulic torque motors generally assume an evenly distributed magnetic flux field and ignore the influence of special mechanical geometry in the air gaps, which may compromise the accuracy of analyzing the result and the high-precision motion control performance. Therefore, the objective of this study is to conduct a detailed analysis of the distribution of the magnetic field and torque output; the influence of limiting holes in the air gaps is considered to improve the accuracy of both numerical computation and analytical modeling. The structure and working principle of the torque motor are presented first. The magnetic field distribution in the air gaps and the magnetic saturation in the iron blocks are analyzed by using a numerical approach. Subsequently, the torque generation with respect to the current input and assembly errors is analyzed in detail. This shows that the influence of limiting holes on the magnetic field is consistent with that on torque generation. Following this, a novel modified equivalent magnetic circuit is proposed to formulate the torque output of the hydraulic torque motor analytically. The comparison among the modified equivalent magnetic circuit, the conventional modeling approach and the numerical computation is conducted, and it is found that the proposed method helps to improve the modeling accuracy by taking into account the effect of special geometry inside the air gaps.

  6. [Hydraulic limitation on photosynthetic rate of old Populus simonii trees in sandy soil of north Shaanxi Province].

    Science.gov (United States)

    Zuo, Li-Xiang; Li, Yang-Yang; Chen, Jia-Cun

    2014-06-01

    'Old and dwarf trees' on the loess plateau region mainly occurred among mature trees rather than among small trees. To elucidate the mechanism of tree age on 'old and dwarf trees' formation, taking Populus simonii, a tree species that accounted for the largest portion of 'old and dwarf trees' on the loess plateau, as an example, the growth, photosynthesis and hydraulic traits of P. simonii trees with different ages (young: 13-15 years, mid-aged: 31-34 years, and old: 49-54 years) were measured. The results showed that the dieback length increased, and net photosynthetic rate, stomatal conductance, transpiration rate, and whole plant hydraulic conductance decreased significantly with the increasing tree age. Both net photosynthetic rate and stomatal conductance measured at different dates were significantly and positively related to the whole plant hydraulic conductance, suggesting that the decreasing photosynthetic rate of old trees was possibly caused by the declined hydraulic conductance. Although the resistance to cavitation in stems and leaves was stronger in old trees than in young and mid-aged trees, there were no differences in midday native stem embolization degree and leaf hydraulic conductance based on the vulnerability curve estimation, suggesting that the increased hydraulic resistance of the soil-root system is probably the most important reason for decreasing the whole plant hydraulic conductance of old trees.

  7. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  8. Automated software for hydraulic simulation of pipeline operation

    Directory of Open Access Journals (Sweden)

    Hurgin Roman

    2018-01-01

    Full Text Available Design of modern water supply systems of large cities as well as their management via renovation of hydraulic models poses time-consuming tasks to researchers, and coping with this task requires specific approaches. When tackling these tasks, water services companies come across a lot of information about various objects of water infrastructure, the majority of which is located underground. In those cases, modern computer-aided design systems containing various components come to help. These systems help to solve a wide array of problems using existing information regarding pipelines, analysis and optimization of their basic parameters. CAD software is becoming an integral part of water supply systems management in large cities, and its capabilities allow engineering and operating companies to not only collect all the necessary data concerning water supply systems in any given city, but also to conduct research aimed at improving various parameters of these systems, including optimization of their hydraulic properties which directly determine the quality of water. This paper contains the analysis of automated CAD software for hydraulic design and management of city water supply systems in order to provide safe and efficient operation of these water supply systems. Authors select the most suitable software that might be used to provide hydraulic compatibility of old and new sections of water supply ring mains after selective or continuous draw-in renovation and decrease in diameter of distribution networks against the background of water consumption decrease in the cities.

  9. Hydraulic testing in granite using the sinusoidal variation of pressure