WorldWideScience

Sample records for surfactant removal step

  1. Metathesis depolymerization for removable surfactant templates.

    Energy Technology Data Exchange (ETDEWEB)

    Zifer, Thomas (Sandia National Laboratories, Livermore, CA); Wheeler, David Roger; Rahimian, Kamayar; McElhanon, James Ross (Sandia National Laboratories, Livermore, CA); Long, Timothy Michael; Jamison, Gregory Marks; Loy, Douglas Anson (Los Alamos National Laboratories, Los Alamos, NM); Kline, Steven R. (National Institute of Standards and Technology, Gaithersburg, MD); Simmons, Blake Alexander (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

  2. REMOVAL OF ORGANIC CHEMICALS FROM WASTEWATER BY SURFACTANT SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-01-01

    This research presents a novel hybrid process for removing organic chemicals from contaminated water. The process uses surfactant to carry out two unit operations (1) Extraction; (2) Foam flotation. In the first step, surfactant is used to extract most of the amounts of organic contaminants in the stream. In the second step, foam flotation is used to further reduce organic contaminants and recover surfactant from the stream. The process combines the advantages of extraction and foam flotation, which allows the process not only to handle a wide range of organic contaminants, but also to effectively treat a wide range of the concentration of organic contaminants in the stream and reduce it to a very low level. Surfactant regeneration can be done by conventional methods. This process is simple and low cost. The wastes are recoverable. The objective of this research is to develop an environmentally innocuous process for the wastewater or reclaimed water treatment with the ability to handle a wide range of organic contaminants, also to effectively treat a wide range of the concentration of organic contaminants in contaminated water and reduce it to a very low level, finally, provides simpler, less energy cost and economically-practical process design. Another purpose is to promote the environmental concern in minority students and encourage minority students to become more involved in environmental engineering research.

  3. Tick Removal: A Step-by-Step Guide (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Tick Removal: A Step-by-Step Guide KidsHealth > For Parents > Tick Removal: A Step-by-Step Guide A A ... isn't a freckle at all. It's a tick. What should you do? First, don't panic. ...

  4. Adsorptive Removal of Copper by Using Surfactant Modified Laterite Soil

    Directory of Open Access Journals (Sweden)

    Tien Duc Pham

    2017-01-01

    Full Text Available Removal of copper ion (Cu2+ by using surfactant modified laterite (SML was investigated in the present study. Characterizations of laterite were examined by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, inductively coupled plasma mass spectrometry (ICP-MS, and total carbon analysis. The optimum conditions for removal of Cu2+ by adsorption using SML were systematically studied and found as pH 6, contact time 90 min, adsorbent dosage 5 mg/mL, and ionic strength 10 mM NaCl. The equilibrium concentration of copper ions was measured by flame atomic absorption spectrometry (F-AAS. Surface modification of laterite by anionic surfactant sodium dodecyl sulfate (SDS induced a significant increase of the removal efficiency of Cu2+. The surface modifications of laterite by preadsorption of SDS and sequential adsorption of Cu2+ were also evaluated by XRD and FT-IR. The adsorption of Cu2+ onto SML increases with increasing NaCl concentration from 1 to 10 mM, but at high salt concentration this trend is reversed because desorption of SDS from laterite surface was enhanced by increasing salt concentration. Experimental results of Cu2+/SML adsorption isotherms at different ionic strengths can be represented well by a two-step adsorption model. Based on adsorption isotherms, surface charge effects, and surface modification, we suggest that the adsorption mechanism of Cu2+ onto SML was induced by electrostatic attraction between Cu2+ and the negatively charged SML surface and nonelectrostatic interactions between Cu2+ and organic substances in the laterite.

  5. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    Science.gov (United States)

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture.

  6. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing

    Science.gov (United States)

    Torres, Luis G.; Lopez, Rosario B.; Beltran, Margarita

    Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As. There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.

  7. Removal of cationic surfactant (CTAB from aqueous solution on to activated carbon obtained from corncob.

    Directory of Open Access Journals (Sweden)

    S. M. Yakout

    2009-05-01

    Full Text Available Direct and indirect releases of large quantities of surfactants to the environment may result in serious health and environmental problems. Therefore, surfactants should be removed from water before water is released to the environment or delivered for public use. Using powdered activated carbon (PAC as adsorbent may be an effective technique to remove surfactants. In this study, the removal of surfactants by PAC was investigated and the influencesof the operating parameters on the effectiveness on adsorption rate were studied. Cationic surfactant, Cetyl trimethyl ammonium bromide (CTAB was selected for the experiments. A series of batch experiments were performed to determine the sorption isotherms of surfactants to PAC. The results showed that carbon structure affect mainly on the surfactant adsorption. Surfactant equilibrium data fitted very well to the binary langmuir model. The pseudo first-,second- order and intraparticle diffusion kinetic models were applied. Both, the external mass transfer and intraparticle diffusion mechanisms involve in CTAB sorption.

  8. Rational selection of alternative, environmentally compatible surfactants for biotechnological production of pharmaceuticals--a step toward green biotechnology.

    Science.gov (United States)

    Straub, Jürg Oliver; Shearer, Russel; Studer, Martin

    2014-09-01

    The biotechnological production of pharmaceutical active substances needs ancillary substances. Surfactants are used at the end of the cell culture as a protection against potential viral or bacterial contamination and to lyse the producing cells for isolation and purification of the products. To find a replacement for a surfactant that had raised environmental concern, environmentally relevant data for potential alternatives were searched for in the literature. Significant data gaps were filled with additional tests: biodegradability, algal growth inhibition, acute daphnid immobilization and chronic daphnid reproduction toxicity, acute fish toxicity, and activated sludge respiration inhibition. The results were used to model removal in the wastewater treatment plants (WWTPs) serving 3 biotechnological production sites in the Roche Group. Predicted environmental concentrations (PECs) were calculated using realistic amounts of surfactants and site-specific wastewater fluxes, modeled removals for the WWTPs and dilution factors by the respective receiving waters. Predicted no-effect concentrations (PNECs) were derived for WWTPs and for both fresh and marine receiving waters as the treated wastewater of 1 production site is discharged into a coastal water. This resulted in a spreadsheet showing PECs, PNECs, and PEC ÷ PNEC risk characterization ratios for the WWTPs and receiving waters for all investigated surfactants and all 3 sites. This spreadsheet now serves as a selection support for the biotechnological developers. This risk-based prioritization of surfactants is a step toward green biotechnological production.

  9. Pyrene removal from contaminated soil using electrokinetic process combined with surfactant

    Directory of Open Access Journals (Sweden)

    Seyed Enayat Hashemi

    2015-07-01

    Full Text Available Background: Pyrene is one of the stable polycyclic aromatic hydrocarbons that is considered as an important pollutants, because of extensive distribution in the environment and carcinogenic and mutagenic properties. Among the various treatment techniques, electrokinetic method is an environmental- friendly process for organic and mineral pollutants adsorbed to soil with fine pore size the same as clay and low hydraulic conductivity soils. For improving the efficiency of pyrene removal from soil, soulobilization of pyrene from soil could be used by surfactants. Materials and Methods : In this study, clay soil was selected as model because of the specific properties. Combined method using surfactant and electrokinetic was applied for pyrene removal from soil. Experiments were designed using response surface methodology (RSM, and effect of three variables includes surfactant concentration, voltage and surfactant type were evaluated for pyrene removal from contaminated soil. Results: Pyrene removal using anionic surfactants(SDS and nonionic surfactants(TX100 as a solubilizing agents has high removal efficiency. In the optimum condition with 95% confidence coefficient, utilizing mixed surfactants of sodium dodecyl sulfate and triton X-100 with the same volume, induced of 18.54 volt and 6.53 percent surfactant concentration have 94.6% pyrene removal efficiency. Conclusion:: Results of this study shows that electrokinetic process combined with surfactant as solubilizing agent could be applied as an efficient method for treating the pyrene-contaminated soils.

  10. Removal of petroleum aromatic hydrocarbons by surfactant-modified natural zeolite: the effect of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Torabian, Ali; Seifi, Laleh; Bidhendi, Gholamreza Nabi; Azimi, Ali Akbar [Faculty of the Environment, University of Tehran (Iran); Kazemian, Hossein [SPAG Zeolite R and D Group, Technology Incubation Centre, Science and Technology Park of Tehran University, Tehran (Iran); Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario (Canada); Ghadiri, Seid Kamal [Department of Environmental Health Engineering, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran (Iran)

    2010-01-15

    Monoaromatic hydrocarbons including benzene, toluene, ethylbenzene and xylene isomers (BTEX) are a very important category of water pollutants. These volatile compounds are very hazardous because of their fast migration in soil and water bodies and their acute and chronic toxicities when inhaled or ingested, especially benzene which is a known carcinogenic molecule. In this study, a natural zeolite (i. e., clinoptilolite-rich tuffs) was modified by two cationic surfactants (i. e., hexadecyltrimethyl ammonium chloride (HDTMA-Cl), and N-cetylpyridinium bromide (CPB)). The prepared adsorbents were then characterized, and their adsorptive capabilities for BTEX examined at different experimental conditions. The results of adsorption tests at 24 h revealed that the adsorption capacity of the modified zeolites improved by increasing the surfactant loading (i. e., less than the critical micelle concentration (CMC), to higher than the CMC), which caused an increase in sorption capacity from 60 to 70% for HDTMA-modified samples, and from 47 to 99% for CPB-modified zeolite. Adsorption kinetic tests showed the optimum contact time was 48 h with an average BTEX removal of 90 and 93% for HDTMA-modified and CPB-modified zeolite, respectively. Results showed that by increasing of pH from 3 to 11, the sorption capacity of the adsorbent decreased markedly from 97 to 75%. Analyzing the influence of temperature showed that the adsorption efficiency of adsorbents for benzene reduced from 93% at 20 C to 10% at 4 C. However, the influence of temperature on other compounds was not remarkable. Overall, CPB-modified zeolite exhibited higher selectivity toward BTEX compounds at optimum experimental conditions. Although commercial powder activated carbon (PAC) showed a higher capacity for all BTEX compounds and faster adsorption kinetics, the adsorption capacity of the CPB-modified zeolite at optimized conditions was competitive with PAC results. (Abstract Copyright [2010], Wiley Periodicals

  11. Synthesis of organic rectorite with novel Gemini surfactants for copper removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guocheng; Han, Yang [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Xiaoying, E-mail: xyw@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Shijie, E-mail: sjliu@163.com [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Department of Paper and Bioprocess Engineering, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 (United States); Sun, Runcang [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); China Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-30

    Graphical abstract: Three Gemini surfactants showed stronger rapid intercalation capacity into rectorite and behaved better on Cu{sup 2+} removal than two single-chain surfactants, which were positive to their increasing amount and chain length. - Highlights: • Modification of rectorite (REC) with several surfactants was performed in 1 h. • The arrangement of Gemini surfactants in REC layers was discussed. • All ORECs displayed better adsorption capacities on Cu{sup 2+} than pure REC. • Gemini-REC behaved better than single-chain surfactant modified REC on Cu{sup 2+} removal. • The adsorption capacity was positive to the amount and chain length of surfactant. - Abstract: Three novel Gemini surfactants were used to prepare organic rectorite (OREC) under microwave irradiation, in comparison with single-chain surfactant ester quaternary ammonium salt (EQAS) and cetyltrimethyl ammonium bromide (CTAB). The structure and morphology of OREC were characterized by XRD, BET, FT-IR, TEM and TGA. The removal of Cu{sup 2+} on OREC from aqueous solution was performed. The results reveal that Gemini surfactants modified REC had larger interlayer distance and higher surface area than single-chain surfactants EQAS and CTAB, and the increasing amount or chain length of Gemini surfactants led to larger layer spacing and higher adsorption capacities. The adsorption behavior of Gemini surfactant modified REC can be better described by Freundlich adsorption isotherm model, with a maximum adsorption capacity of 15.16 mg g{sup −1}. The desorption and regeneration experiments indicate good reuse property of Gemini modified REC adsorbent. Therefore, this study may widen the utilization of Gemini surfactants modified layered silicates.

  12. Stratum corneum lipid removal by surfactants: relation to in vivo irritation.

    Science.gov (United States)

    Froebe, C L; Simion, F A; Rhein, L D; Cagan, R H; Kligman, A

    1990-01-01

    The relationship between the in vivo irritation potential of sodium lauryl sulfate (SLS) and linear alkyl benzene sulfonate (LAS) and the ability of these two surfactants to remove lipid from the stratum corneum (SC) in vitro were investigated. Either surfactant removes detectable levels of lipids only above its critical micelle concentration (CMC). At high concentrations the surfactants removed only very small amounts of cholesterol, free fatty acid, the esters of those materials, and possibly squalene. SLS and LAS have been shown, below the CMC, to bind to and irritate the SC. Thus, clinical irritation provoked by SLS or LAS is unlikely to be directly linked with extraction of SC lipid. The milder forms of irritation--dryness, tightness, roughness--may involve both surfactant binding to and denaturation of keratin as well as disruption of lipid. Our findings challenge earlier assumptions that surfactants' degreasing of the SC is involved in the induction of erythema.

  13. Development of a new surfactant liquid formulation for TBP removal in reprocessing plants for decommissioning purposes

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, B.; Bisel, I.; Pochon, P.; Delagrange, J.; Fulconis, J.M. [French Atomic Energy Commission, CEA/Siege, 31-33, rue de la Federation, 75752 Paris cedex 15 (France); Causse, J. [Universite de Montpellier, Place Eugene Bataillon 34095 Montpellier Cedex II (France)

    2003-07-01

    CEA has developed in the past years surfactant liquid solutions to remove organic matter located at the surfaces of nuclear components used in reprocessing facilities. These components may be covered with Tributyl Phosphate or products resulting from TBP radiolysis like Dibutyl phosphate or Monobutyl phosphate. These molecules can be combined either with uranium, plutonium or metal ions like zirconium for example. Conventional treatment used for decontamination usually have poor degreasing effect (like sodium hydroxide) so few of these products can be removed successfully. The aim of developing these new treatments is to achieve a better degreasing effect and eliminate sodium ions from the secondary liquid wastes. In a first step, low alkaline formulations have been developed (sodium content about 0,5 M to 1 M). In a second step, it is aimed to remove sodium ions completely, together with keeping a high degreasing efficiency. Another advantage to remove sodium hydroxide from decontamination solutions is to avoid Pu precipitation during the decontamination process. This paper describes the study of a degreasing formulation based on the use of fully soluble low foaming surfactants in nitric acid medium. One presents laboratory scale experiments, experiments on active samples, liquid secondary waste processing, a scale one experiment, and associated basic studies. In conclusion, chemical properties of a surfactant solution in nitric acid medium have been detailed. Aim of the formulation was to remove TBP molecules from metallic surfaces. Efficiency of the treatment was evaluated on inactive and hot samples and compared to more conventional treatments like concentrated sodium hydroxide and pure nitric acid. A micellization of 5,3 g/L of TBP in 0,5 M nitric acid is obtained. This value is about 15 times larger than TBP solubility in acid. The efficiency was found to be higher than that of sodium hydroxide and consequently the risk of Pu and U insolubilization is

  14. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water

    NARCIS (Netherlands)

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2007-01-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interact

  15. Adsorptive removal of naphthalene induced by structurally different Gemini surfactants in a soil-water system.

    Science.gov (United States)

    Wei, Jia; Li, Jun; Huang, Guohe; Wang, Xiujie; Chen, Guanghui; Zhao, Baihang

    2016-09-01

    A new generation of surfactant, Gemini surfactants, have been synthesized and have attracted the attention of various industrial and academic research groups. This study focused on the use of symmetric and dissymmetric quaternary ammonium Gemini surfactants to immobilize naphthalene onto soil particles, and is used as an example of an innovative application to remove HOC in situ using the surfactant-enhanced sorption zone. The sorption capacity of modified soils by Gemini surfactant and natural soils was compared and the naphthalene sorption efficiency, in the absence and presence of Gemini surfactants with different alkyl chain lengths, was investigated in the soil-water system. The results have shown that the increased added Gemini surfactant formed admicelles at the interface of soil/water having superior capability to retard contaminant. Symmetric and dissymmetric Gemini surfactants have opposite effect on the aspect of removing of PAH attributing to their solubilization and sorption behavior in soil-water system. Compared with the natural soil, sorption of naphthalene by Gemini-modified soil is noticeably enhanced following the order of C12-2-16 < C12-2-12 < C12-2-8. However, the symmetric Gemini surfactant C12-2-12 is the optimized one for in situ barrier remediation, which is not only has relative high retention ability but also low dosage.

  16. Surfactant Removal Study for Nano-Scale SmCo5 Powder Prepared by High Energy Ball Milling (Postprint)

    Science.gov (United States)

    2014-04-01

    DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) April 2014 Interim 19 March 2014 – 31 March 2014 4. TITLE AND SUBTITLE SURFACTANT ...thickness of 300 nm were prepared by high energy ball milling using valeric acid as a surfactant . In order to remove the surfactant the as-milled...investigated. Partial (58%) and nearly complete (96%) surfactant removal was observed by DSC after treatments at 200°C and 400°C, respectively, without oxide

  17. Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots

    KAUST Repository

    Zhang, Haitao

    2011-12-14

    A novel method is reported to create inorganically connected nanocrystal (NC) assemblies for both II-VI and IV-VI semiconductors by removing surfactant ligands using (NH 4) 2S. This surface modification process differs from ligand exchange methods in that no new surfactant ligands are introduced and the post-treated NC surfaces are nearly bare. The detailed mechanism study shows that the high reactivity between (NH 4) 2S and metal-surfactant ligand complexes enables the complete removal of surfactant ligands in seconds and converts the NC metal-rich shells into metal sulfides. The post-treated NCs are connected through metal-sulfide bonding and form a larger NCs film assembly, while still maintaining quantum confinement. Such "connected but confined" NC assemblies are promising new materials for electronic and optoelectronic devices. © 2011 American Chemical Society.

  18. Method for removing strongly adsorbed surfactants and capping agents from metal to facilitate their catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav R.; Gong, Kuanping; Cai, Yun; Wong, Stanislaus; Koenigsmann, Christopher

    2016-11-08

    A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.

  19. Removal of Organic Dyes from Aqueous Solutions with Surfactant-Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wybieralska Katarzyna

    2014-06-01

    Full Text Available The paper presents the results of studies on the possibility of using magnetic nanoparticles modified with selected hydrophobic surfactants for model post-production water purification. Colloidal solutions of iron hydroxide (III and iron oxide (II and III were obtained and their particles were subjected to surface modification using surfactants. Thus obtained magnetic fluids were used as active agents in the process of removing selected organic dyes from their aqueous solutions. The effectiveness of the modified compounds was analysed using spectrophotometric methods. It has been shown that the effectiveness of the process depends on the type of surfactant used to modify selected magnetic nanoparticles.

  20. Removal of Organic Dyes from Aqueous Solutions with Surfactant-Modified Magnetic Nanoparticles

    OpenAIRE

    Wybieralska Katarzyna; Wajda Anna

    2014-01-01

    The paper presents the results of studies on the possibility of using magnetic nanoparticles modified with selected hydrophobic surfactants for model post-production water purification. Colloidal solutions of iron hydroxide (III) and iron oxide (II and III) were obtained and their particles were subjected to surface modification using surfactants. Thus obtained magnetic fluids were used as active agents in the process of removing selected organic dyes from their aqueous solutions. The effecti...

  1. Acidic surfactant solutions for tributylphosphate removal in nuclear fuel reprocessing plants: A formulation study

    Energy Technology Data Exchange (ETDEWEB)

    Causse, J.; Faure, S. [CEA Marcoule, LPAD, SPDE, DEN, 30 (France)

    2009-04-15

    The removal of tributylphosphate (TBP), an organic solvent widely used as a complexing agent for uranium and plutonium in nuclear plants, was investigated to understand and adapt the mechanisms involved in TBP detachment and solubilization in acidic surfactant solutions. Two well-known degreasing mechanisms, roll-up and emulsification, should be combined for maximum effect. These mechanisms were characterized with a CCD camera to measure contact angles between a solid substrate and a liquid drop. We measured the contact angles of a TBP drop deposited on a stainless steel plate immersed in an acidic surfactant solution, and quantified the amount of TBP solubilized in the micelles by turbidity measurements. Preliminary results of micelle size characterization by dynamic light scattering are presented. We formulated new acidic surfactant solutions associating two industrial surfactants, Pluronic P123 and Rewopal X1207L, with improvement factors in various fields (total organic matter content, oil detachment and solubilization efficiency, emulsion stability, etc.). (authors)

  2. Removal of Hg (II and Mn (II from aqueous solution using nanoporous carbon impregnated with surfactants

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-09-01

    Full Text Available Mesoporous carbons were impregnated with the anionic and cationic surfactants to increase adsorbing capacity for heavy metal ions. Prepared samples were characterized by X-ray diffraction (XRD and nitrogen adsorption–desorption isotherms. Batch adsorption studies were carried out to study the effect of various parameters like contact time, pH, metal ion concentration and agitation speed. The mercury removal by cationic surfactant cetyltrimethyl ammonium bromide (CTAB, anionic surfactant sodium dodecyl sulfate (SDS modified mesoporous carbon and unmodified mesoporous carbon were found to be 94%, 81.6% and 54.5%, respectively while the manganese removal for these adsorbents were found to be 82.2%, 70.5% and 56.8%, respectively. The sorption data were fit better with the Langmuir adsorption isotherm than Freundlich isotherm.

  3. Synergetic effect of chelating agent and nonionic surfactant for benzotriazole removal on post Cu-CMP cleaning

    Science.gov (United States)

    Yanlei, Li; Yuling, Liu; Chenwei, Wang; Yue, Li

    2016-08-01

    The cleaning of copper interconnects after chemical mechanical planarization (CMP) process is a critical step in integrated circuits (ICs) fabrication. Benzotriazole (BTA), which is used as corrosion inhibitor in the copper CMP slurry, is the primary source for the formation of organic contaminants. The presence of BTA can degrade the electrical properties and reliability of ICs which needs to be removed by using an effective cleaning solution. In this paper, an alkaline cleaning solution was proposed. The alkaline cleaning solution studied in this work consists of a chelating agent and a nonionic surfactant. The removal of BTA was characterized by contact angle measurements and potentiodynamic polarization studies. The cleaning properties of the proposed cleaning solution on a 300 mm copper patterned wafer were also quantified, total defect counts after cleaning was studied, scanning electron microscopy (SEM) review was used to identify types of BTA to confirm the ability of cleaning solution for BTA removal. All the results reveal that the chelating agent can effectively remove the BTA residual, nonionic surfactant can further improve the performance. Project supported by the Natural Science Foundation of Hebei Province, China (No. F2015202267) and the Scientific Innovation Grant for Excellent Young Scientists of Hebei University of Technology (No. 2015007).

  4. Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites.

    Science.gov (United States)

    Guan, Huade; Bestland, Erick; Zhu, Chuanyu; Zhu, Honglin; Albertsdottir, Dora; Hutson, John; Simmons, Craig T; Ginic-Markovic, Milena; Tao, Xian; Ellis, Amanda V

    2010-11-15

    Surfactant modified zeolites (SMZs) have the capacity to target various types of water contaminants at relatively low cost and thus are being increasingly considered for use in improving water quality. It is important to know the surfactant loading performance of a zeolite before it is put into application. In this work we compare the loading capacity of a surfactant, hexadecyltrimethylammonium bromide (HDTMA-Br), onto four natural zeolites obtained from specific locations in the USA, Croatia, China, and Australia. The surfactant loading is examined using thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. We then compare the resulting SMZs performance in removing nitrate from water. Results show that TGA is useful to determine the HDTMA loading capacity on natural zeolites. It is also useful to distinguish between a HDTMA bi-layer and a HDTMA mono-layer on the SMZ surface, which has not been previously reported in the literature. TGA results infer that HDTMA (bi-layer) loading decreases in the order of US zeolite>Croatian zeolite>Chinese zeolite>Australian zeolite. This order of loading explains variation in performance of nitrate removal between the four SMZs. The SMZs remove 8-18 times more nitrate than the raw zeolites. SMZs prepared from the selected US and Croatian zeolites were more efficient in nitrate removal than the two zeolites commercially obtained from Australia and China.

  5. Effect of EDTA with and without surfactants or ultrasonics on removal of smear layer.

    Science.gov (United States)

    Lui, Jeen-Nee; Kuah, Hong-Guan; Chen, Nah-Nah

    2007-04-01

    This study compared the in vitro efficacy of Smear Clear (Sybron Endo, CA), a 17% ethylenediaminetetraacetic acid (EDTA) solution with surfactants, to 17% EDTA, with and without the use of ultrasonics, in removal of the smear layer. Seventy-five extracted teeth, randomly distributed into 5 test groups, were prepared by using ProFile rotary instruments (Dentsply Maillefer, Ballaigues, Switzerland) and subjected to different final irrigating regimes; group A, 1% sodium hypochlorite; group B, 17% EDTA; group C, 17% EDTA with ultrasonics; group D, Smear Clear; and group E, Smear Clear with ultrasonics. Samples were examined under the scanning electron microscope and scored for debris and smear layer removal. Statistical analysis showed that groups D and E did not perform significantly better than groups B and C. Group C performed significantly better than group B. Addition of surfactants to EDTA in Smear Clear did not result in better smear layer removal. The use of ultrasonics with 17% EDTA improved smear layer removal.

  6. Surfactant enhanced removal of PCE in a nominally two-dimensional, saturated, stratified porous medium

    Science.gov (United States)

    Walker, R. C.; Hofstee, C.; Dane, J. H.; Hill, W. E.

    1998-10-01

    Although surfactant enhanced remediation of nonaqueous phase liquids (NAPLs) by pump-and-treat technology has been studied extensively in the laboratory with one-dimensional columns, very few multi-dimensional investigations have been reported. In this study we focus on the removal of perchloroethylene (PCE) from a two-dimensional, saturated porous medium containing a low permeability sand layer situated in an otherwise high permeability sand. A PCE spill was applied at the surface of the porous medium and allowed to redistribute until static equilibrium was achieved. The porous medium was then flushed with various surfactant and co-solvent formulations injected at the PCE source location and extracted at the bottom of the porous medium using a configuration similar to that of Abdul and Ang [Abdul, S.A., Ang, C.C., 1994. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated field site: Phase II. Pilot study. Ground Water 32, 727-734]. Effluent samples were analyzed for dissolved PCE concentrations. Volumetric water and PCE content values were determined at a number of locations by means of dual-energy gamma radiation measurements. Once surfactant flushing had started, PCE moved as a distinct separate phase ahead of the surfactant front. Most of this downward moving PCE accumulated on top of the low permeability sand layer. Some PCE, however, passed quickly through this layer and subsequently through the high permeability sand below it. Movement of some of the PCE into and through the low permeability sand layer was attributed to local heterogeneities combined with reduced interfacial tensions associated with the surfactant formulation. Clean-up of PCE in most of the high permeability sand was considered to be effective. PCE accumulated on top of the fine layer, however, posed a significant challenge to remediation and required several pumping configurations and surfactant/co-solvent formulations before most of it was removed.

  7. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water

    OpenAIRE

    2007-01-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6–1.7 g LAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activ...

  8. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water.

    Science.gov (United States)

    Schouten, Natasja; van der Ham, Louis G J; Euverink, Gert-Jan W; de Haan, André B

    2007-10-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6-1.7 gLAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activated carbons, result in a lower adsorption capacity of 0.02-0.6 gLAS/g. Negatively charged materials, such as cation exchange resins or bentonite clay, have negligible adsorption capacities for LAS. Similar results are obtained for alpha olefin sulfonate (AOS). Cost comparison of different adsorbents shows that an inorganic anion exchange material (layered double hydroxide) and activated carbons are the most cost-effective materials in terms of the amount of surfactant adsorbed per dollar worth of adsorbent.

  9. Biological wastewater treatment followed by physicochemical treatment for the removal of fluorinated surfactants.

    Science.gov (United States)

    Schröder, H F R; José, H J; Gebhardt, W; Moreira, R F P M; Pinnekamp, J

    2010-01-01

    Perfluorinated surfactants (PFS) have become compounds of high concern during the last decade. While "conventional surfactants" are degraded to a great extent in the biological wastewater treatment process, partly or perfluorinated surfactants are not only stable against biodegradation but also against oxidizing agents, they even resist OH-radical attacks. Our objectives were to eliminate the fluorinated surfactants perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by adsorption, separation or degradation with a balance of precursor compounds and follow-up of degradation products. Therefore, municipal wastewater was spiked with these fluorinated surfactants before membrane bioreactor (MBR) treatment-applying microfiltration membranes--was performed and before permeates were treated using ozone (O3) or different advanced oxidation treatment (AOP) techniques. O3 or hydrogen peroxide (H2O2), both in combination with UV radiation or in combination with catalysts, was applied. Removal by adsorption or membrane separation as well as degradation were monitored by substance specific determination and identification. High resolution mass spectrometry after high performance liquid chromatography (HPLC/HRMS and -MS(n)) was used for analysis. Contact to Teflon and/or glass during all analytical procedures was avoided.

  10. Effect of surfactant on removal of particle contamination on Si wafers in ULSI

    Institute of Scientific and Technical Information of China (English)

    TAN Bai-mei; LI Wei-wei; NIU Xin-huan; WANG Sheng-li; LIU Yu-ling

    2006-01-01

    The adsorption mechanism of particle on the surface of silicon wafer after polishing or grinding whose surface force field is very strong was discussed,and the removal method of particle was studied. Particle is deposited on the wafer surface by interactions,mainly including the Van der Waals forces and static forces. In order to suppress particles depositing on the wafer surface,it is essential that the wafer surface and the particles should have the same polarity of the zeta potential. According to colloid chemistry and lots of experiments,this can be achieved by adding surfactants. Nonionic complex surfactant was used as megasonic cleaning solution,and the adsorptive state of particle on Si wafers was effectively controlled. The efficiency and effect of megasonic particle removal is greatly improved. A perfect result is also obtained in wafer cleaning.

  11. THE REMOVAL INVESTIGATION OF NONYLPHENOL ETOXILAT SURFACTANTS IN ACTIVATED SLUDGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Batool Ahansazan

    2014-07-01

    Full Text Available The most significant source of environmental pollution derived from perilous wastes is the circumstantial and intentional emancipation of specific industrial wastes including resistant and/or toxic pollutants to natural environments. Although, biological treatment methods have been commonly found as most effective alternatives in the removal of persistent compounds in industrial wastewaters, they require some increase for obtaining acceptable removal efficiencies, due to the presence of refractory or toxic compounds in the wastewaters. In this study, the use of surfactant of nonylphenol ethoxylates (NPE in the removal of persistent organic pollutants by biological treatment processes was investigated as an enhancement technique. The application of surfactants can enhance soil and groundwater remediation by increasing contaminant locomotion and solubility to ameliorate the performance of practical conventional remediation technology and by barricading the departure of contaminants to speed the rate of biodegradation of contaminants in environment. The proven effectiveness of surfactants in soil and groundwater remediation has been considered reasonable to expect that surfactants can also enhance the removal of persistent organic pollutants in wastewaters. Different concentrations of nonylphenol ethoxylates (NPE (1000, 1500, 2000 ppm were tested to optimize biosurfactant-enhanced degradation of persistent pollutants in wastewaters. The results of this study demonstrate that the biodegradation of persistent organic pollutants in wastewaters is elevated by the use of biosurfactants. The principal mechanism that raises the biodegradation is the augment solvability of poorly soluble compounds in the wastewater. According to the results of this study, it can be anticipated that biosurfactant-enhanced degradation would result in faster and more complete degradation.

  12. Surfactant-modified bentonite clays: preparation, characterization, and atrazine removal.

    Science.gov (United States)

    Dutta, Anirban; Singh, Neera

    2015-03-01

    Bentonite clay was modified using quaternary ammonium cations, viz. phenyltrimethylammonium (PTMA), hexadecyltrimethylammonium (HDTMA), trioctylmethylammonium (TOMA) [100 % of cation exchange capacity of clay], and stearylkonium (SK) [100 % (SK-I) and 250 % (SK-II) of cation exchange capacity of clay]. The organoclays were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning electron microscopy (SEM). Atrazine adsorption on modified clays was studied using a batch method. Bentonite clay was a poor adsorbent of atrazine as 9.4 % adsorption was observed at 1 μg mL(-1) atrazine concentration. Modification of clay by PTMA cation did not improve atrazine adsorption capacity. However, atrazine adsorption in HDTMA-, TOMA-, and SK-bentonites varied between 49 and 72.4 % and data fitted well to the Freundlich adsorption isotherm (R > 0.96). Adsorption of atrazine in organoclays was nonlinear and slope (1/n) values were bentonites was 239.2, 302.4, and 256.6, respectively, while increasing the SK cation loading in the clay (SK-II) decreased atrazine adsorption [K f(1/n) - 196.4]. Desorption of atrazine from organoclays showed hysteresis and TOMA- and SK-I-bentonites were the best organoclays to retain the adsorbed atrazine. Organoclays showed better atrazine removal from wastewater than an aqueous solution. The synthesized organoclays may find application in soil and water decontamination and as a carrier for atrazine-controlled released formulations.

  13. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  14. Surfactant-assisted synthesis of conducting polymers. Application to the removal of nitrates from water.

    Science.gov (United States)

    García-Fernández, M Jesús; Sancho-Querol, Sara; Pastor-Blas, M Mercedes; Sepúlveda-Escribano, Antonio

    2017-05-15

    Three different conducting polymers, polythiophene (PT), polypirrol (PPY) and polyaniline (PANI) have been synthesized via oxidative chemical polymerization in aqueous media, in such a way that the synthesis protocol did not involve any toxic solvents. They have been tested in the abatement of nitrates from an aqueous solution without the need of any metal catalyst. The N-containing polymers (PANI and PPy) were able to remove nitrates to a level that accomplishes the European legislation requirements; however, the nature of each polymer greatly influenced the process mechanism. Whereas ion exchange between Cl(-) and SO4(2)(-) counter-ions in the polymer and NO3(-) from water is the main responsible for the effective nitrate removal in PANI, as assessed by FTIR and XPS analyses, the nitrate removal mechanism on PPy is based in an electron transfer from the polymer to nitrate through N sites located in the pyrrolic ring. On the other hand, PT was not able to exchange nitrate unless it was synthesized with FeCl3 as oxidant/dopant and an anionic surfactant (sodium dodecyl sulfate -SDS-) is used. In that case, the electrostatic attraction between sulfate (OSO3(-)) groups from the surfactant and Fe(3+) ions from FeCl3 produced the anchoring of Cl(-) to the oxidized PT growing chain, this favoring ion exchange with nitrate in the aqueous solution, followed by a redox process.

  15. Effects of anionic surfactant on n-hexane removal in biofilters.

    Science.gov (United States)

    Cheng, Yan; He, Huijun; Yang, Chunping; Yan, Zhou; Zeng, Guangming; Qian, Hui

    2016-05-01

    The biodegradability of three anion surfactants by biofilm microorganisms and the toxicity of the most readily biodegradable surfactant to biofilm microorganisms were examined using batch experiments, and the optimal concentration of SDS for enhanced removal of hexane was investigated using two biotrickling filters (BTFs) for comparison. Results showed that SDS could be biodegraded by microorganisms, and its toxicity to microorganisms within the experimental range was negligible. The best concentration of SDS in biofiltration of n-hexane was 0.1 CMC and the elimination capacity (EC) of 50.4 g m(-3) h(-1) was achieved at a fixed loading rate (LR) of 72 g m(-3) h(-1). When an inlet concentration of n-hexane increased from 600 to 850 mg m(-3), the removal efficiency (RE) decreased from 67% to 41% by BTF2 (with SDS) and from 52% to 42% by BTF1 (without SDS). SDS could enhance hexane removal from 43% (BTF1) to 60% (BTF2) at gas empty-bed residence time (EBRT) of 7.5 s and an inlet concentration of 200 mg m(-3).

  16. Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw.

    Science.gov (United States)

    Ibrahim, Shariff; Ang, Ha-Ming; Wang, Shaobin

    2009-12-01

    Barley straw, an agricultural waste, was chemically modified and evaluated for the removal of emulsified oils from aqueous solution. The chemical modification was performed using NaOH and a cationic surfactant, hexadecylpyridinium chloride monohydrate (CPC). The surface textural and chemical properties of the surfactant modified barley straw (BMBS) were characterized by N(2) adsorption, FT-IR, SEM and water soluble mineral content. The adsorption tests were carried out in batch adsorption system for removal of standard mineral oil (SMO) and canola oil (CO) from water. For both emulsified oils in wastewater, adsorption was found to be strongly related with solution pH. The isotherm study indicated that emulsified oil adsorption on BMBS could be fitted well with the Langmuir model other than Freundlich model. The maximum adsorption capacity for CO and SMO at 25 degrees C determined from the Langmuir isotherm is 613.3 and 584.2 mg g(-1), respectively. Desorption tests in water solution show that oil is strongly bonded with adsorbent and desorption is only about 1-2% in 24 h.

  17. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.

    Science.gov (United States)

    Ghosh, Jaydeep; Tick, Geoffrey R

    2013-12-01

    A pore-scale study was conducted to understand interfacial processes contributing to the removal of crude oils from a homogeneous porous medium during surfactant-induced remediation. Synchrotron X-ray microtomography (SXM) was used to obtain high-resolution three-dimensional images of the two-fluid-phase oil/water system, and quantify temporal changes in oil blob distribution, blob morphology, and blob surface area before and after sequential surfactant flooding events. The reduction of interfacial tension in conjunction with the sufficient increase in viscous forces as a result of surfactant flushing was most likely responsible for mobilization and recovery of the two lighter oil fractions. However, corresponding increases in viscous forces as a result of a reduction of interfacial tension were insufficient to initiate and maintain the displacement (recovery) of the heavy crude oil fraction during surfactant flushing. In contrast to the heavy oil system, changes in trapping number for the lighter fraction crude oils were sufficient to initiate mobilization as a result of surfactant flushing. Both light and medium oil fractions showed an increase in the number of blobs and total blob surface area, and a reduction in the total volume after 2 pore volumes (PVs) of surfactant flooding. This increase in surface area was attributed to the change in blob morphology from spherical to more complex non-spherical ganglia shape characteristics. Moreover, the increase in the number of oil blobs from larger to smaller particles after surfactant flushing may have contributed to the greater cumulative oil surface area. Complete recovery of light and medium oil fractions resulted after 5 PVs of surfactant flooding, whereas the displacement efficiency of heavy-oil fraction was severely limited, even after extended periods of flushing. The results of these experiments demonstrate the utility of SXM for quantifying pore-scale interfacial characteristics for specific crude

  18. Surfactant molecules to promote removal of cadmium ions from solid surfaces: A complementary experimental-simulational study

    Science.gov (United States)

    Pacheco-Blas, María del Alba; Dominguez, Hector; Rivera, Margarita

    2017-03-01

    Sodium dodecyl sulfate (SDS) was used to interact with metallic ions to demonstrate the efficiency of surfactant molecules to promote desorption of metals from solid surfaces. Scanning electron and atomic force microscopy were employed to study desorption of cadmium ions from highly oriented pyrolytic graphite (HOPG), as a model to understand the removal of metallic ions from carbon substrates. Contact angle measurements were carried out to investigate the wettability behavior of the surfactant on the contaminated surface. The desorption mechanism from a microscopic level was studied by using molecular dynamic simulations. Density profiles and pair correlation functions were analyzed to determine the cadmium-surface interaction in the presence of surfactant molecules to improve ion detachment. Simulations showed that surfactant molecules moved in between the adsorbed cadmium ions and the graphite surface pushing up the metallic groups to improve metal desorption. The experimental and theoretical results agree with atomic absorption spectroscopy results.

  19. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Science.gov (United States)

    Moraes, M. C. F.; Romanelli, M. F.; Sena, H. C.; Pasqualini da Silva, G.; Sampa, M. H. O.; Borrely, S. I.

    2004-09-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  20. Simultaneous Removal of Surfactant Template from MCM-41 and Implantation of Transition Metal Complexes into Mesopores with Supercritical Fluid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The simultaneous removal of up to 92% of the surfactant template and chemical implantation of transition metal complexes into mesopores has been successfully achieved by treating as-synthesized pure siliceous MCM-41 with supercritical CO2 modified with CH2Cl2/MeOH mixture, resulting in the formation of functionalized material with uniform pore structure.

  1. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Alkaram, Uday F.; Mukhlis, Abduljabar A. [Department of Chemistry, College of Education, Ibn Al-Haitham, University of Baghdad, Baghdad (Iraq); Al-Dujaili, Ammar H., E-mail: ahdujaili@yahoo.com [Department of Chemistry, College of Education, Ibn Al-Haitham, University of Baghdad, Baghdad (Iraq)

    2009-09-30

    The natural bentonite (BC) and kaolinite (KC) were modified with two surfactant of hexadecyltrimethylammonium bromide (HDTMA) and phenyltrimethylammonium bromide (PTMA) to form four kinds of organic-modified clays, i.e., HDTMA-bentonite (BHM), HDTMA-kaolinite (KHM), PTMA-bentonite (KPM) and PTMA-kaolinite (KPM). The modified minerals were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. The surface areas were determined using methylene blue adsorption method. Cation-exchange capacity (CEC) was estimated using an ethylenediamine complex of copper method and the modifier loading was calculated from the total carbon analysis. The ability of raw and organo-modified clays to remove phenol from aqueous solutions has been carried out as a function of contact time, pH and temperatures using a batch technique. The removal of phenol from aqueous solutions by modified clays seems to be more effective than unmodified samples. The adsorption capacity was found to increase with increasing temperature indication that the adsorptions were endothermic. The adsorption of phenol onto these clays was found to be increased by increasing of pH value and the adsorption patterns data are correlated well by Langmuir and Freundlich isotherm models and that the adsorption is physical in nature. The experimental data fitted very well with the pseudo-second-order kinetic model. The thermodynamic study of adsorption process showed that the adsorption of phenol with these six adsorbents was carried out spontaneously, and the process was endothermic in nature.

  2. Enhanced removal of a human norovirus surrogate from fresh vegetables and fruits by a combination of surfactants and sanitizers.

    Science.gov (United States)

    Predmore, Ashley; Li, Jianrong

    2011-07-01

    Fruits and vegetables are major vehicles for transmission of food-borne enteric viruses since they are easily contaminated at pre- and postharvest stages and they undergo little or no processing. However, commonly used sanitizers are relatively ineffective for removing human norovirus surrogates from fresh produce. In this study, we systematically evaluated the effectiveness of surfactants on removal of a human norovirus surrogate, murine norovirus 1 (MNV-1), from fresh produce. We showed that a panel of surfactants, including sodium dodecyl sulfate (SDS), Nonidet P-40 (NP-40), Triton X-100, and polysorbates, significantly enhanced the removal of viruses from fresh fruits and vegetables. While tap water alone and chlorine solution (200 ppm) gave only <1.2-log reductions in virus titer in all fresh produce, a solution containing 50 ppm of surfactant was able to achieve a 3-log reduction in virus titer in strawberries and an approximately 2-log reduction in virus titer in lettuce, cabbage, and raspberries. Moreover, a reduction of approximately 3 logs was observed in all the tested fresh produce after sanitization with a solution containing a combination of 50 ppm of each surfactant and 200 ppm of chlorine. Taken together, our results demonstrate that the combination of a surfactant with a commonly used sanitizer enhanced the efficiency in removing viruses from fresh produce by approximately 100 times. Since SDS is an FDA-approved food additive and polysorbates are recognized by the FDA as GRAS (generally recognized as safe) products, implementation of this novel sanitization strategy would be a feasible approach for efficient reduction of the virus load in fresh produce.

  3. Removal of polycyclic aromatic hydrocarbons and phenols from coking wastewater by simultaneously synthesized organobentonite in a one-step process

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Wu; Lizhong Zhu

    2012-01-01

    The optimal condition for a one-step process removing organic compounds from coiking wastewater by simultaneously synthesized organobentonite as a pretreatment was investigated.Results showed that sorption of organic compounds by organobentonite was positively correlated to the cation surfactant exchange on the bentonite and the octanol-water partition coefficient (Kow) of the solutes.With 0.75 g/L bentonite and 180 mg/L (60% of bentonite cation exchange capacity) cetyltrimethylammonium bromide,the removal efficiencies of the 16 polycyclic aromatic hydrocarbon (PAHs) specified by the US Environmental Protection Agency in coking waste0water except naphthalene were more than 90%,and that of benzo(a)pyrene was 99.5%.At the same time,the removal efficiencies of CODCr,NH3-N,volatile phenols,colour and turbidity were 28.6%,13.2%,8.9%,55% and 84.3%,respectively,and the ratio of BOD5/CODcr increased from 0.31 to 0.41.These results indicated that the one-step process had high removal efficiency for toxic and refractory hydrophobic organic compounds,and could improve the biodegradability of the coking wastewater.Therefore it could be a promising technology for the pretreatment of toxic and refractory organic wastewater.

  4. Strong textured SmCo5 nanoflakes with ultrahigh coercivity prepared by multistep (three steps) surfactant-assisted ball milling

    Science.gov (United States)

    Zuo, Wen-Liang; Zhao, Xin; Xiong, Jie-Fu; Zhang, Ming; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2015-08-01

    The high coercivity of 26.2 kOe for SmCo5 nanoflakes are obtained by multistep (three steps) surfactant-assisted ball milling. The magnetic properties, phase structure and morphology are studied by VSM, XRD and SEM, respectively. The results demonstrate that the three step ball-milling can keep more complete crystallinity (relatively less defects) during the process of milling compared with one step high energy ball-milling, which enhances the texture degree and coercivity. In addition, the mechanism of coercivity are also studied by the temperature dependence of demagnetization curves for aligned SmCo5 nanoflakes/resin composite, the result indicates that the magnetization reversal could be controlled by co-existed mechanisms of pinning and nucleation.

  5. Effect of different surfactants on removal efficiency of heavy metals in sewage sludge treated by a novel method combining bio-acidification with Fenton oxidation

    Institute of Scientific and Technical Information of China (English)

    任苗苗; 林宁波; 袁兴中; 朱艺; 黄华军; 曾光明; 李辉; 陈明; 王侯; 陈畅亚

    2014-01-01

    The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfactants were adopted such as anionic surfactant (sodium dodecyl benzene sulfonate, SDBS), nonionic surfactants (tween-20 and tween-60) and cationic surfactant (hexadecyl trimethyl ammonium chloride, HTAC), respectively. The indigenous sulfur-oxidizing bacteria in bio-acidification phase were enriched and cultured from fresh activated sludge obtained from a wastewater treatment plant. It is shown that different surfactants exhibited distinct effect on the removal efficiency of heavy metals from sewage sludge. The nonionic surfactants, especially tween-60, promotes the solubilization of heavy metals, while the anionic and cationic surfactants hinder the removal of heavy metals. Copper is efficiently leached. The removal efficiency of cadium is relatively lower than that of Cu due to the demand for rigorous pH value. Lead is leached with a low efficiency as the formation of low soluble PbSO4 precipitates.

  6. REMOVAL OF PHENOL AND SURFACTANT FROM LANDFILL LEACHATE BY COAGULATION-FLOCCULATION PROCESS

    Directory of Open Access Journals (Sweden)

    H. BAKRAOUY

    2016-02-01

    Full Text Available Following the action of rainfall and natural fermentation, the stored waste produces a liquid fraction called leachate. This leachate is rich in organic matter (biodegradable but also refractory and trace elements. There are many techniques of treating the leachate, in particular, biological, physicochemical, membrane processes. The choice of a technique instead of another depends on several parameters including: the age of the leachate, composition... In this work we applied a coagulation-flocculation process to treat intermediate landfill leachate of Rabat city with a combined ferric chloride coagulant and a polymer flocculant. We were inspired by full factorial design, including twenty five experiments, to determine optimal dosages of coagulant and flocculant. We operate at pH 8.4, the best removal efficiencies obtained were 88 % for Turbidity, 98 % for Phenol and 82 % for surfactant. The optimum dosages values determined by this study were 13.2 g∙L-1 of coagulant, 62 mL∙L-1 of flocculant.

  7. Synthesis and Catalytic Activity of Pt Monolayer on Pd Tetrahedral Nanocrystals with CO-adsorption-induced Removal of Surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Gong K.; Vukmirovic M.B.; Ma C.; Zhu Y.; Adzic R.R.

    2011-11-01

    We synthesized the Pt monolayer shell-Pd tetrahedral core electrocatalysts that are notable for their high activity and stable performance. A small number of low-coordination sites and defects, and high content of the (1 1 1)-oriented facets on Pd tetrahedron makes them a suitable support for a Pt monolayer to obtain an active O{sub 2} reduction reaction (ORR) electrocatalyst. The surfactants, used to control size and shape of Pd tetrahedral nanoparticles, are difficult to remove and cause adverse effects on the ORR. We describe a simple and noninvasive method to synthesize high-purity tetrahedral Pd nanocrystals (TH Pd) by combining a hydrothermal route and CO adsorption-induced removal of surfactants. Poly(vinylpyrrolidone) (PVP), used as a protecting and reducing agent in hydrothermal reactions, is strongly bonded to the surface of the resulting nanocrystals. We demonstrate that PVP was displaced efficiently by adsorbed CO. A clean surface was achieved upon CO stripping at a high potential (1.0 V vs RHE). It played a decisive role in improving the activity of the Pt monolayer/TH Pd electrocatalyst for the ORR. Furthermore, the results demonstrate a versatile method for removal of surfactants from various nanoparticles that severely limited their applications.

  8. Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution.

    Science.gov (United States)

    Anari-Anaraki, Mostafa; Nezamzadeh-Ejhieh, Alireza

    2015-02-15

    Natural clinoptilolite tuff was mechanically converted to micro (MCP) and nano (NCP) particles. The MCP and NCP powders were respectively modified with hexadecyltrimethyl ammonium bromide (HDTMA) and dithizone (DTZ). The raw and modified samples were characterized by X-ray diffraction (XRD), Fourier transformation infra red (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and thermogravimetry (TG) and used for the removal of Pb(II) from aqueous solution. The results confirm that both ion exchange and complexation processes are responsible for removal of Pb(II) cations in the modified samples, while Pb(II) cations were only removed via an ion exchange process by the raw clinoptilolite. In this sorbent, the anionic removal property of surfactant modified zeolites (SMZs) changed to cationic removal property by an additional modification step. The best removal efficiency was observed by NCP-HDTMA-DTZ at the following experimental conditions: C(Pb(II)): 800 mg L(-1), HDTMA dosage: 0.2 mol L(-1), DTZ dosage: 5 mmol L(-1), contact time of DTZ with NCP-HDTMA: 1800 min and contact time of the sorbent with Pb(II): 360 min. The NCP-HDTMA-DTZ sorbent showed good efficiency for the removal of lead in the presence of different multivalent cations. Adsorption isotherms of Pb(II) ions obey the Langmuir equation that indicate the monolayer sorption of Pb(II). The adsorption kinetics based on the pseudo-second-order rate equation indicates that the rate limiting step involving a chemical reaction. The negative ΔH and ΔG indicate an exothermic and spontaneous process.

  9. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    Science.gov (United States)

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  10. Removal of para-nitrochlorobenzene from aqueous solution on surfactant-modified nanoscale zero-valent iron/graphene nanocomposites.

    Science.gov (United States)

    Wu, Yan; Luo, Hanjin; Wang, Hou

    2014-01-01

    This study demonstrated a remarkably simple and efficient method for the synthesis of nanoscale zero-valent iron (NZVI)/graphene (GN) nanocomposites. In order to prevent the agglomeration and restack of nanocomposites, chemical functionalization of nanocomposites with cetyltrimethylammonium bromide was proposed. The adsorption performance of surfactant-modified NZVI/GN nanocomposites was evaluated for the removal of para-nitrochlorobenzene (p-NCB) from aqueous solutions. The characteristics of nanocomposites were characterized by X-ray diffraction, BET surface area, Fourier transform infrared spectrum, thermogravimetric analysis and scanning electron microscopy. The effect factors including initial solution pH, contact time, reaction temperature, dosage, initial concentration of humic acid (HA) on the adsorption property of p-NCB onto surfactant-modified nanocomposites were investigated. The adsorption kinetics fitted well with pseudo-second-order model. The adsorption capacity of p-NCB on surfactant-modified nanocomposites inferred from the Langmuir model was 105.15 mg/g at 293 K. The thermodynamic parameters indicated that the adsorption of p-NCB onto surfactant-modified nanocomposites was an exothermic and spontaneous process. HA had a strong suppression effect on p-NCB uptake in the adsorption experiment.

  11. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  12. Simple one step synthesis of nonionic dithiol surfactants and their self-assembling with silver nanoparticles: Characterization, surface properties, biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elaal, Ali A., E-mail: ali_ashour5@yahoo.com; Tawfik, Salah M.; Shaban, Samy M.

    2015-07-01

    Graphical abstract: - Highlights: • Nonionic dithiol surfactants were synthesized by simple one step esterification. • The surface activity of the synthesized dithiol surfactants showed high tendency toward adsorption and micellization. • The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared. • The silver nanoparticles enhanced the biological activity of the synthesized dithiol surfactants. - Abstract: Simple esterification of 2-mercaptoacetic acid and polyethylene glycol with different molecular weights was done to form the desired nonionic dithiol surfactants. The chemical structures of synthesized thiol surfactants were confirmed using FT-IR and {sup 1}H NMR spectra. The surface activity of the synthesized surfactants was determined by measurement of the surface tension at different temperatures. The surface activity measurements showed their high tendency towards adsorption and micellization. The thermodynamic parameters of micellization (ΔG{sub mic}, ΔH{sub mic} and ΔS{sub mic}) and adsorption (ΔG{sub ads}, ΔG{sub ads} and ΔS{sub ads}) showed their tendency toward adsorption at the interfaces and also micellization in the bulk of their solutions. The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared and investigated using UV and TEM techniques. Screening tests of the synthesized dithiol surfactants and their nanostructure with silver nanoparticles, against gram positive bacteria (Bacillus subtilis and Microccus luteus), gram negative bacteria (Escherichia coli and Bordatella pertussis) and fungi (Aspergillus niger and Candida albicans) showed that they are highly active biocides. The presence of silver nanoparticles enhancement the biological activities of the individual synthesized nonionic dithiol surfactants.

  13. Removal of crystal violet dye from aqueous solution using triton X-114 surfactant via cloud point extraction

    Directory of Open Access Journals (Sweden)

    Arunagiri Appusamy

    2014-09-01

    Full Text Available In this work, the cloud point extraction (CPE was carried out for the removal of crystal violet dye from aqueous solution using triton X-114 surfactant. Density, refractive index and viscosity of pure components and two different phases of the mixture were measured, and the corresponding excess molar volume was calculated. Most of the dye molecules get solubilized in the coacervate phase, leaving a dye free dilute phase. This experiment was conducted for different sets of surfactant and solute concentration in order to find out the cloud point temperature and their influencing factors such as extraction efficiency, phase volume ratio, distribution coefficient and pre-concentration factor. Furthermore, the thermodynamic parameters like change in Gibbs-free energy (ΔG0, the change in enthalpy (ΔH0 and the change in entropy (ΔS0 were analyzed and found that cloud point extraction with surfactant was a more feasible process in the removal of dyes from aqueous solution.

  14. Simultaneous treatment of chlorinated organics and removal of metals and radionuclides with bimetals and complexing acids - application to surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Gu, B. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Currently available methods for separation and treatment of radioactive mixed waste are typically energy-intensive, and often require high temperatures. Passive methods that operate at ambient temperatures are needed. The purpose of this task is to develop bimetallic substrates, using a base metal such as iron and a promoter metal such as palladium (Pd), to provide a passive, low-energy solution to a substantial portion of DOE`s mixed-waste problem. This technology consists of a porous medium that can simultaneously dechlorinate hazardous organics such as TCE and polychlorinated biphenyls (PCBs) at the same time that it removes metallic and hazardous wastes from a solvent/surfactant solution. The porous medium consists of a bimetallic substrate such as palladized iron (Pd/Fe). Palladium is readily chemically plated on iron and preliminary studies suggest that only 0.05 to 0.1% Pd is needed for an efficient reaction. Thus, the cost of the material is reasonable especially is it is long-lived or can be regenerated. Field implementation would consist of the passage of a surfactant-laden, mixed waste through a column or bed of the bimetallic substrate. The organic component of this mixed waste may contain semivolatile compounds such as PCBs or pesticides and herbicides. The bimetal simultaneously removes radionuclides and metals and degrades halogenated hydrocarbons. Virtually any concentration can be treated. Following reaction of the bimetal with the waste stream, the resulting effluent will consist of an uncontaminated aqueous solution of surfactant or solvent that can be reused. The bimetal would then be rinsed with a dilute mineral acid or a mild complexing acid (e.g., oxalic or citric acid) to regenerate the surface and to remove sorbed metals and non-hazardous organic residue. The latter effluent would be low-level radioactive waste in some cases, but it would now be much easier to manage and be of a lower volume than the original mixed waste.

  15. Investigations on humic acid removal from water using surfactant-modified zeolite as adsorbent in a fixed-bed reactor

    Science.gov (United States)

    Elsheikh, Awad F.; Ahmad, Umi Kalthom; Ramli, Zainab

    2016-12-01

    Natural organic matter (NOM) is ubiquitous in aquatic environments and has recently become an issue of worldwide concern in drinking water treatment. The major component of NOM is humic acids (HA). In this study, a natural zeolite (mordenite) was modified employing hexadecyltrimethylammonium bromide (HDTMA) to enhance greater efficient sites for sorption of HA. The natural zeolite and surfactant-modified zeolite (SMZ) were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectrometer (FT-IR), N2 Adsorption-desorption isotherms and BET-specific surface area, thermographic analysis, derivative thermographic analysis (TGA-DTA) and Field emission scanning electron microscopy (FESEM). A fixed-bed reactor was used for the removal of HA and the effects of different experimental parameters such as HDTMA loading levels, HA solution flow rate, solution pH and eluent concentration were investigated. The results indicated that the SMZ bed with HDTMA loading of 75% of external cation exchange capacity (ECEC) at a flow rate of 2 BV/h and pH of 10 showed the greatest enhanced removal efficiency of HA while ethanol solutions (25%v/v) with feed flow rate of 2 BV/h were sufficient for complete regeneration of SMZ and desorption of HA. Measurements of surface area of SMZ indicated that a monolayer formation of the surfactant at those conditions allowed the optimum removal of HA.

  16. Surfactant modified coir pith, an agricultural solid waste as adsorbent for phosphate removal and fertilizer carrier to control phosphate release.

    Science.gov (United States)

    Namasivayam, C; Kumar, M V Suresh

    2005-10-01

    The surface of coir pith, an agricultural solid waste was modified using a cationic surfactant, hexadecyltrimethylammonium bromide (HDTMA) and the modified coir pith was investigated to assess the capacity for the removal of phosphate from aqueous solution. Optimum pH for maximum phosphate adsorption was found to be 4.0. Langmuir and Freundlich isotherms were used to model the adsorption equilibrium data. Kinetic studies showed that the adsorption obeyed second order kinetics. Thermodynamic parameters were evaluated and the overall adsorption process was spontaneous and endothermic. Effect of coexisting anions has also been studied. The feasibility of using spent adsorbent as fertilizer carrier to control phosphate release was also investigated.

  17. Theoretical evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process

    Institute of Scientific and Technical Information of China (English)

    ZHU Gui-bing; PENG Yong-zhen

    2006-01-01

    Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.

  18. Effect of application rates and media types on nitrogen and surfactant removal in trickling filters applied to the post-treatment of effluents from UASB reactors

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. S. de; Taveres, F. v. F.; Chernicharo, C. A. I.

    2009-07-01

    Tricking filters are a very promising alternative for the post treatment of effluents from UASB reactors treating domestic sewage,especially in developing countries. Although a fair amount of information is already available regarding organic mater removal in this combined system, very little is known in relation to nitrogen and surfactant removal in trickling filters post-UASB reactors. Therefore, the purpose of this study was to evaluate and compare the effect evaluate and compare the effect of different application rates and packing media types on trickling filters applied to the post-treatment of effluents from UASB reactors, regarding the removal of ammonia nitrogen and surfactants. (Author)

  19. Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jie; Meng, Wenna [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China); Wu, Deyi, E-mail: dywu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China); Zhang, Zhenjia; Kong, Hainan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Surfactant modified zeolite could greatly retain organic pollutants. Black-Right-Pointing-Pointer Uptake of organic compounds was due to the loaded surfactant. Black-Right-Pointing-Pointer k{sub ow} is crucial for the uptake of both ionizable and non-ionizable organic solutes. Black-Right-Pointing-Pointer pK{sub a} is another factor affecting adsorption process of ionizable organic pollutants. Black-Right-Pointing-Pointer Adsorption mechanisms of the two kinds of organic pollutants were proposed. - Abstract: The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK{sub a}) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na{sub 6}Al{sub 6}Si{sub 10}O{sub 32}{center_dot}12H{sub 2}O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Angstrom-Sign Multiplication-Sign 4.5 Angstrom-Sign [1 0 0] and 2.8 Angstrom-Sign Multiplication-Sign 4.8 Angstrom-Sign [1 0 1]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k{sub ow} value, suggesting that more hydrophobic organic contaminants are more easily retained

  20. Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding.

    Science.gov (United States)

    Li, Fengmin; Lu, Lun; Zheng, Xiang; Ngo, Huu Hao; Liang, Shuang; Guo, Wenshan; Zhang, Xiuwen

    2014-10-01

    Four horizontal subsurface flow constructed wetlands (HSFCWs), named HSFCW1 (three-stage, without step-feeding), HSFCW2 (three-stage, with step-feeding), HSFCW3 (five-stage, without step-feeding) and HSFCW4 (five-stage, with step-feeding) were designed to investigate the effects of dissolved oxygen (DO) and step-feeding on nitrogen removal. High removal of 90.9% COD, 99.1% ammonium nitrogen and 88.1% total nitrogen (TN) were obtained simultaneously in HSFCW4 compared with HSFCW1-3. The excellent TN removal of HSFCW4 was due to artificial aeration provided sufficient DO for nitrification and the favorable anoxic environment created for denitrification. Step-feeding was a crucial factor because it provided sufficient carbon source (high COD: nitrate ratio of 14.3) for the denitrification process. Microbial activities and microbial abundance in HSFCW4 was found to be influenced by DO distribution and step-feeding, and thus improve TN removal. These results suggest that artificial aeration combined with step-feeding could achieve high nitrogen removal in HSFCWs.

  1. Enhanced nutrient removal in three types of step feeding process from municipal wastewater.

    Science.gov (United States)

    Peng, Yongzhen; Ge, Shijian

    2011-06-01

    An anoxic/oxic step feeding process was improved to enhance nutrient removal by reconfiguring the process into (1) anaerobic/anoxic/oxic step feeding process or (2) modified University of Capetown (UCT) step feeding process. Enhanced nitrogen and phosphorus removal and optimized organics utilization were obtained simultaneously in the modified UCT type with both internal and sludge recycle ratios of 75% as well as anaerobic/anoxic/oxic volume ratio of 1:3:6. Specifically, the UCT configuration and optimized operational conditions lead to the enrichment of denitrifying phosphorus removal microorganisms and achieved improved anaerobic P-release and anoxic P-uptake activities, which were beneficial to the denitrifying phosphorus removal activities and removal efficiencies. Due to high mixed liquor suspended solid and uneven distributed dissolved oxygen, 35% of total nitrogen was eliminated through simultaneous nitrification and denitrification process in aerobic zones. Moreover, 62 ± 6% of influent chemical oxygen demands was involved in the denitrification or phosphorus release processes.

  2. Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds.

    Science.gov (United States)

    Xie, Jie; Meng, Wenna; Wu, Deyi; Zhang, Zhenjia; Kong, Hainan

    2012-09-15

    The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK(a)) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na(6)Al(6)Si(10)O(32)·12H(2)O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Å × 4.5 Å [100] and 2.8 Å × 4.8 Å [101]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k(ow) value, suggesting that more hydrophobic organic contaminants are more easily retained by modified zeolite. Based on the different adsorption behavior, the uptake of non-ionizable pollutants was thought to be a single partitioning process into the surfactant bilayer. For ionizable compounds, however, interaction of the phenol group(s) with the positively charged "head" of surfactant additionally functions.

  3. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  4. Enhanced removal of soluble Cr(VI) by using zero-valent iron composite supported by surfactant-modified zeolites.

    Science.gov (United States)

    Dang, Hongyu; Zhang, Yongxiang; Du, Peiwen

    2014-01-01

    Zero-valent iron (ZVI) was immobilized onto surfactant-modified zeolites (SMZ) using calcium alginate. Scanning electron microscopy showed that ZVI powder was uniformly immobilized on the surface of the SMZ. The added ZVI powder resulted in enhanced dichromate removal efficiency and the heterogeneous surface of the composite. The adsorption of dichromate onto the ZVI-SMZ composites fitted well to a pseudo-second-order model and the Langmuir adsorption isotherm. The maximum dichromate adsorption capacity of the composite was 2.49 mg/g at the temperature of 293 K. Higher removal efficiency was obtained at pH lower than 7. X-ray photoelectron spectrometry revealed that the composites combined the strong reductive quality of ZVI and superior adsorption of SMZ.

  5. Speckle evolution with multiple steps of least-squares phase removal

    CSIR Research Space (South Africa)

    Chen, M

    2011-08-01

    Full Text Available The authors study numerically the evolution of speckle fields due to the annihilation of optical vortices after the least-squares phase has been removed. A process with multiple steps of least-squares phase removal is carried out to minimize both...

  6. Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy.

    Science.gov (United States)

    Ma, Juan; Peng, Yongzhen; Wang, Shuying; Wang, Li; Liu, Yang; Ma, Ningping

    2009-01-01

    A bench-scale cyclic activated sludge technology (CAST) was operated to study the biological phosphorus removal performance and a series of batch tests was carried out to demonstrate the accumulation of denitrifying polyphosphate-accumulating organisms (DNPAOs) in CAST system. Under all operating conditions, step-feed CAST with enough carbon sources in influent had the highest nitrogen and phosphorus removal efficiency as well as good sludge settling performance. The average removal rate of COD, NH4+-N, PO4(3-)-P and total nitrogen (TN) was 88.2%, 98.7%, 97.5% and 92.1%, respectively. The average sludge volume index (SVI) was 133 mL/g. The optimum anaerobic/aerobic/anoxic (AOA) conditions for the cultivation of DNPAOs could be achieved by alternating anoxic/oxic operational strategy, thus a significant denitrifying phosphorus removal occurred in step-feed CAST. The denitrification of NOx(-)-N completed quickly due to step-feed operation and enough carbon sources, which could enhance phosphorus release and further phosphorus uptake capability of the system. Batch tests also proved that polyphosphate-accumulating organisms (PAOs) in the step-feed process had strong denitrifying phosphorus removal capacity. Both nitrate and nitrite could be used as electron acceptors in denitrifying phosphorus removal. Low COD supply with step-feed operation strategy would favor DNPAOs accumulation.

  7. Surfactant-directed synthesis of mesoporous films made single-step by a tandem photosol-gel/photocalcination route

    Directory of Open Access Journals (Sweden)

    Héloïse De Paz-Simon

    2014-11-01

    Full Text Available In view of their technological impact in materials chemistry, a simplified and more efficient synthetic route to mesoporous films is highly sought. We report, herein, a smart UV-mediated approach coupling in a one-stage process sol-gel photopolymerization and photoinduced template decomposition/ablation to making mesoporous silica films. Performed at room temperature with a solvent-free solution of silicate precursor and amphiphilic poly(ethylene oxide-poly(propylene oxide-poly(ethylene oxide block copolymer, the synthesis relies on photoacid generation to induce the fast formation (≈10 min of mesostructured silica/surfactant domains. Continuation of UV exposure for three additional hours enables subsequent and complete photodegradation of the polyether copolymer, resulting in ordered or disordered mesoporous silica film. One of the most attractive features is that the one-step procedure relies on a continuous illumination provided by the same conventional medium-pressure Hg-Xe arc lamp equipped with a 254 nm reflector to enhance the emission of energetic photons <300 nm. In addition to X-ray diffraction and transmission electron microscopy, time-resolved Fourier transform infrared spectroscopy has proved to be a powerful in situ technique to probe the different chemical transformations accompanying irradiation. Photocalcination strengthens the inorganic network, while allowing to preserve a higher fraction of residual silanol groups compared with thermal calcination. A polyether chain degradation mechanism based on oxygen reactive species-mediated photo-oxidation is proposed.

  8. Removal of natural organic matter (NOM) from an aqueous solution by NaCl and surfactant-modified clinoptilolite.

    Science.gov (United States)

    Niri, Mehdi Vosoughi; Mahvi, Amir Hosein; Alimohammadi, Mahmoud; Shirmardi, Mohammad; Golastanifar, Hafez; Mohammadi, Mohamma Javad; Naeimabadi, Abolfazl; Khishdost, Maria

    2015-06-01

    Zeolitic tuffs are found in different parts of the world. Iranian zeolite is a low-cost material that can be frequently found in nature. Surfactant-modified zeolite (SMZ) can be used for the adsorption of natural organic matter (NOM) from aqueous solutions. The adsorption study was conducted to evaluate the adsorption capacity of SMZ; furthermore, the effects of contact time, initial pH, and the initial adsorbent dose on the adsorption process were investigated in a batch system. The kinetic studies showed that the adsorption of NOM on SMZ was a gradual process. The optimum initial pH values for the adsorption of NOM on SMZ were in the acidic ranges. The batch kinetic experiments showed that the adsorption followed the pseudo-second-order kinetic model with good correlation coefficients. The equilibrium data were well described by the Langmuir isotherm model. The results show that the natural zeolite being modified with NaCl and hexadecyltrimethylammonium bromide as a cationic surfactant was an appropriate adsorbent for the removal of NOM.

  9. Use of naturalized coagulants in removing laundry waste surfactant using various unit processes in lab-scale.

    Science.gov (United States)

    Mohan, S Mariraj

    2014-04-01

    This lab-scale experiment is aimed at demonstrating a treatment system for purification and reuse of laundry rinsing water generated from households. The main objective of the study is to compare the efficiencies of various natural coagulants in removing laundry waste surfactants and other major pollutants from the laundry rinsing water. The treatment system consists of Coagulation-Flocculation, Sand filtration and Granular Activated Carbon (GAC) adsorption. Four experiments were conducted in batch process by varying the coagulants (Nirmali seed and Pectin extracted from pith of Orange peel). Coagulants have been selected due to their local availability at affordable cost and technical feasibility. From the study it is concluded that laundry rinsing water polluted with high turbidity and anionic surfactant treated with Nirmali seeds as coagulant at a retention time of 24 h gives the best results. The treatment system where Orange peel pectin is used as coagulant at a retention time of 24 h is found to be the most efficient one based on the weighted factor. Hence the treatment of laundry rinsing water by aforesaid combination results in better water quality.

  10. Removal and recovery of molybdenum from aqueous solutions by adsorption onto Surfactant-Modified coir pith, a lignocellulosic polymer

    Energy Technology Data Exchange (ETDEWEB)

    Namasivayam, Chinnaiya [Environmental Chemistry Division, Department of Environmental Sciences, Bharathiar University, Coimbatore (India); Sureshkumar, Molagoundanpalayam Venkatachalam [Department of Chemistry, PARK College of Engineering and Technology, Coimbatore (India)

    2009-01-15

    Coconut coir pith, a lignocellulosic polymer, is an unwanted by-product of the coir fiber industry. The pith was used as a biosorbent for the removal of Molybdenum(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. The optimum pH for maximum adsorption of Mo(VI) was found to be 3.0. Langmuir, Freundlich and Dubinin Radushkevich isotherms were used to model the adsorption equilibrium data and the system was seen to follow all three isotherms. The Langmuir adsorption capacity of the biosorbent was found to be 57.5 mg g{sup -1}. Kinetic studies showed that the adsorption generally obeyed a second-order kinetic model. Desorption studies showed that the recovery of Mo(VI) from the spent adsorbent was feasible. The effect of foreign anions on the adsorption of Mo(VI) was also examined. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Comparison between the removal of phenol and catechol by modified montmorillonite with two novel hydroxyl-containing Gemini surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuening; Gao, Manglai, E-mail: mlgao@cup.edu.cn; Gu, Zheng; Luo, Zhongxin; Ye, Yage; Lu, Laifu

    2014-02-01

    Highlights: • Organo-clays were prepared by two novel hydroxyl-containing Gemini surfactants. • The kinetics and thermodynamics of the novel organo-clays were studied. • The hydroxyl group of organo-clays can increase the adsorption capacity. • BHHP-Mt was proved to be a high-efficiency adsorbent to remove phenols. - Abstract: Na-montmorillonites were modified with two novel hydroxyl-containing Gemini surfactants, 1,3-bis(hexadecyldimethylammonio)-2-hydroxypropane dichloride (BHHP) and 1,3-bis(octyldimethylammonio)-2-hydroxypropane dichloride (BOHP), via ion-exchange reaction in this study. The modified samples were characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy. Phenol and catechol were removed from aqueous solution by these two kinds of organo-montmorillonites in a batch system. Important parameters have been investigated, which affect the adsorption efficiency, such as the amount of modifier, temperature, pH and contact time. The adsorption kinetics of phenol and catechol were discussed using pseudo-first-order, pseudo-second-order and intra-particle diffusion model. It indicated that the experimental data fitted very well with the pseudo-second-order kinetic model, and the equilibrium adsorption data was proved in good agreement with the Langmuir isotherm. The result also showed the adsorption capacity of catechol was higher than that of phenol in the same conditions, which might result from the extra hydroxyl in the structure of catechol. Thermodynamic quantities such as Gibbs free energy (ΔG°), the enthalpy (ΔH°), and the entropy change of sorption (ΔS°) were also determined. These parameters suggested the adsorption of phenol was a spontaneous and exothermic process, while the sorption of catechol was endothermic.

  12. Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency.

    Science.gov (United States)

    Limbach, Ludwig K; Bereiter, Robert; Müller, Elisabeth; Krebs, Rolf; Galli, René; Stark, Wendelin J

    2008-08-01

    The rapidly increasing production of engineered nanoparticles has created a demand for particle removal from industrial and communal wastewater streams. Efficient removal is particularly important in view of increasing long-term persistence and evidence for considerable ecotoxicity of specific nanoparticles. The present work investigates the use of a model wastewater treatment plant for removal of oxide nanoparticles. While a majority of the nanoparticles could be captured through adhesion to clearing sludge, a significant fraction of the engineered nanoparticles escaped the wastewater plant's clearing system, and up to 6 wt % of the model compound cerium oxide was found in the exit stream of the model plant. Our study demonstrates a significant influence of surface charge and the addition of dispersion stabilizing surfactants as routinely used in the preparation of nanoparticle derived products. A detailed investigation on the agglomeration of oxide nanoparticles in wastewater streams revealed a high stabilization of the particles against clearance (adsorption on the bacteria from the sludge). This unexpected finding suggests a need to investigate nanoparticle clearance in more detail and demonstrates the complex interactions between dissolved species and the nanoparticles within the continuously changing environment of the clearing sludge.

  13. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent.

    Science.gov (United States)

    Namasivayam, C; Sureshkumar, M V

    2008-05-01

    Coconut coir pith, an agricultural solid waste was used as biosorbent for the removal of chromium(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. Optimum pH for Cr(VI) adsorption was found to be 2.0. Reduction of Cr(VI) to Cr(III) occurred to a slight extent during the removal. Langmuir, Freundlich and Dubinin Radushkevich (D-R) isotherms were used to model the adsorption equilibrium data and the system followed all the three isotherms. The adsorption capacity of the biosorbent was found to be 76.3 mg g(-1), which is higher or comparable to the adsorption capacity of various adsorbents reported in literature. Kinetic studies showed that the adsorption obeyed second order and Elovich model. Thermodynamic parameters such as delta G0, delta H0 and delta S0 were evaluated, indicating that the overall adsorption process was endothermic and spontaneous. Effects of foreign anions were also examined. The adsorbent was also tested for the removal of Cr(VI) from electroplating effluent.

  14. Effect of surfactants on the removal of magnesium impurities from phosphate ore%表面活性剂对磷矿脱镁过程的影响

    Institute of Scientific and Technical Information of China (English)

    陈宇; 王琪; 崔鹏

    2013-01-01

    The effect of surfactants on removal of magnesium impurities from phosphate ore with a mixture of phosphoric and sulfuric acid was studied. The results showed that the removal of magnesium impurities was inhibited by anionic surfactant (SDBS and SDS) ;the removal of magnesium impurities was promoted and the loss of P2O5 was increased by cationic surfactant ( CTAC and CTAB) ;the removal of magnesium impurities was promoted and the loss of P2O5 was decreased by nonionic surfactant (PEG).%在磷硫混酸浸提的磷矿脱镁过程中,加入不同类型的表面活性,考察其对脱镁率及磷损失率的影响.结果表明,阴离子表面活性剂十二烷基苯磺酸钠和十二烷基磺酸钠的加入不利脱镁反应的进行;阳离子表面活性剂十六烷基三甲基溴化铵和十六烷基三甲基氯化铵,在促进脱镁反应的同时增加了磷损失;非离子表面活性剂聚乙二醇有利于抑制脱镁过程中的磷损失,并有效地促进了脱镁反应的进行.

  15. Presence of nonylphenol ethoxylate surfactants in a watershed in central Mexico and removal from domestic sewage in a treatment wetland.

    Science.gov (United States)

    Belmont, Marco A; Ikonomou, Michael; Metcalfe, Chris D

    2006-01-01

    The Texcoco River in central Mexico is polluted with domestic wastewater as a result of discharges of untreated or inadequately treated sewage. Since nonylphenol ethoxylate (NPEO) surfactants and their intermediate degradation products such as nonylphenol (NP) and NP mono- and diethoxylate (NP1EO, NP2EO) have been found in domestic wastewater and in surface waters near wastewater discharges in industrialized countries, the Texcoco River was sampled to determine whether these compounds were present. The results indicated that NPEOs were present at very high concentrations (> 100 microg/L) in the lower reaches of the Texcoco River, but unlike rivers in industrialized countries, relatively low concentrations of intermediate degradation products, including NP1EO, NP2EO, and NP, were present. The presence and fate of NPEOs compounds in wastewater treatment plants have been studied only in conventional treatment systems in industrialized countries. In this study, the fate of these compounds was studied in a pilot-scale treatment wetland constructed in the small community of Santa Maria Nativitas in the Texcoco River watershed. The treatment wetland removed > 75% of NPEOs from the domestic wastewater, but the greatest proportion of removal occurred in parts of the treatment wetland where sedimentation existed. This is the first report of NPEO compounds in the water resources of a developing country. These data indicate that construction of low-cost and technologically simple treatment wetlands may be one solution to reducing the impacts of contaminants from domestic sewage in developing countries, such as Mexico.

  16. Evaluation of one-step micro polishers for residual resin removal after debonding on fluorosed teeth

    Directory of Open Access Journals (Sweden)

    Padmalatha Challa

    2014-01-01

    Full Text Available Aim and objectives: To evaluate the effectiveness of one step micro polishers for residual resin removal on fluorosed teeth using scanning electron microscope (SEM. Methods and Material: 55 teeth with mild to moderate fluorosis were selected with five teeth as control. Metal brackets were bonded onto 50 teeth which were divided into 5 groups. The finishing and polishing methods which were tested include tungsten carbide burs (TCB, multistep finishing system (Sof-Lex, one step polishers (PoGo and combination of TCB with multistep and one step polishing systems. After resin removal, all the samples were examined under SEM for assessment of the enamel surface. Results: The enamel surface was closest to untouched enamel in samples finished with the PoGo one step polishers followed by Sof-Lex multistep finishing system. However, they took the longest time to finish. TCB required the shortest time for residual resin removal. Conclusions: All polishing systems produce a certain degree of damage to the enamel surface with the smoothest surface being produced by one step polishers on fluorosed teeth.

  17. Computer aided planning of orthopaedic surgeries: the definition of generic planning steps for bone removal procedures.

    Science.gov (United States)

    Putzer, David; Moctezuma, Jose Luis; Nogler, Michael

    2017-09-18

    An increasing number of orthopaedic surgeons are using computer aided planning tools for bone removal applications. The aim of the study was to consolidate a set of generic functions to be used for a 3D computer assisted planning or simulation. A limited subset of 30 surgical procedures was analyzed and verified in 243 surgical procedures of a surgical atlas. Fourteen generic functions to be used in 3D computer assisted planning and simulations were extracted. Our results showed that the average procedure comprises 14 ± 10 (SD) steps with ten different generic planning steps and four generic bone removal steps. In conclusion, the study shows that with a limited number of 14 planning functions it is possible to perform 243 surgical procedures out of Campbell's Operative Orthopedics atlas. The results may be used as a basis for versatile generic intraoperative planning software.

  18. TPH removal by a microflora aported by organic materials and humic acids as surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Diaz, C.; Ferrera Cerrato, R.; Esparza Garcia, F.; Barrera-Cortes, J.

    2009-07-01

    Nowadays, a great variety of hydrocarbonoclastic microorganisms with the capacity to remove hydrocarbons of low molecular weight (aliphatics and polycyclic aromatic hydrocarbons (PAHs) of simple structures) have been reported. Concerning to the PAHs of high molecular weight, one of the principal factors determining its degradation is their very low bioavailability which has been associated to adsorption phenomena and high hydrophobicity. (Author)

  19. One step effective removal of Congo Red in chitosan nanoparticles by encapsulation

    Science.gov (United States)

    Alver, Erol; Bulut, Mehmet; Metin, Ayşegül Ülkü; Çiftçi, Hakan

    2017-01-01

    Chitosan nanoparticles (CNPs) were prepared with ionotropic gelation between chitosan and tripolyphosphate for the removal of Congo Red. The production of chitosan nanoparticles and the dye removal process was carried out in one-step. The removal efficiency of Congo Red by encapsulation within chitosan from the aqueous solution and its storage stability are examined at different pH values. The influence of some parameters such as the initial dye concentration, pH value of the dye solution, electrolyte concentration, tripolyphosphate concentration, mixing time and speed on the encapsulation is examined. Congo Red removal efficiency and encapsulation capacity of chitosan nanoparticles were determined as above 98% and 5107 mg Congo Red/g chitosan, respectively.

  20. H2O2/UV process for surfactants removal from water

    OpenAIRE

    Melihen, Andrej

    2015-01-01

    Besides conventional approaches to water and wastewater treatment, we know many of advanced processes that are considered as more efficient ways of treatment. Amongst them have an important role, so called, advanced oxidation processes (AOP’s) that generates highly reactive hydroksyl radicals which degrade and remove a wide specter of biologicaly nondegradable pollutants. While operating a source of UV radiation can be used or not. In present study, H2O2/UV-C treatment was appl...

  1. Removal of anionic and nonionic surfactants in a wastewater treatment plant with anaerobic digestion: a comparative study

    OpenAIRE

    Prats Rico, Daniel; Ruiz Beviá, Francisco; Vázquez, Beatriz; Rodríguez Pastor, Manuel

    1995-01-01

    This paper presents a comparative study of the elimination of anionic surfactants (linear alkylbenzene sulphonates, LAS) and nonionic surfactants in a conventional municipal activated sludge plant. The LAS were analysed by high performance liquid chromatography, after extraction and purification. The nonionic surfactants was analysed by the Wickbold method. The elimination of the surl4actants in water, suspended solids and sludges were determined in the different stages of the ...

  2. Single-step synthesis of magnetic chitosan composites and application for chromate (Cr(VI)) removal

    Institute of Scientific and Technical Information of China (English)

    杨卫春; 唐琼芝; 董舒宇; 柴立元; 王海鹰

    2016-01-01

    Magnetic chitosan composites (Fe3O4@chitosan) were synthesized in one single-step, characterized and applied in Cr(VI) removal from water. With the increase of loading proportion of chitosan, Cr(VI) adsorption capacity of Fe3O4@chitosan composites increased from 10.771 to 21.040 mg/g. The optimum adsorption capacities of Cr(VI) on Fe3O4@chitosan-3 were found in a pH range of 3.0−5.0. Kinetic study results show that the adsorption process follows pseudo-second-order model, indicating that the rate-limiting step in the adsorption of Cr(VI) involves chemisorptions. Moreover, FT-IR spectra analysis confirms that the amine and hydroxyl groups of chitosan are predominantly responsible for binding. Results from this work demonstrate that the prepared Fe3O4@chitosan composites possess great potential in Cr(VI) removal from contaminated water.

  3. Anion Exchange on Cationic Surfactant Micelles, and a Speciation Model for Estimating Anion Removal on Micelles during Ultrafiltration of Water.

    Science.gov (United States)

    Chen, Ming; Jafvert, Chad T

    2017-07-05

    Surfactant micelles combined with ultrafiltration can partially, or sometimes nearly completely, separate various ionic and nonionic pollutants from water. To this end, the selectivity of aqueous micelles composed of either cetyltrimethylammonium (CTA(+)) bromide or cetylpyridinium (CP(+)) chloride toward many environmentally relevant anions (IO3(-), F(-), Cl(-), HCO3(-), NO2(-), Br(-), NO3(-), H2PO4(-), HPO4(2-), SO4(2-), and CrO4(2-)) was investigated. Selectivity coefficients of CTA(+) micelles (with respect to Br(-)) and CP(+) micelle (with respect to Cl(-)) for these anions were evaluated using a simple thermodynamic ion exchange model. The sequence of anion affinity for the CTA(+) micelles and for the CP(+) micelles were the same, with decreasing affinity occurring in the order of: CrO4(2-) > SO4(2-) > HPO4(2-) > NO3(-) > Br(-) > NO2(-) > Cl(-) > HCO3(-) > H2PO4(-) ≈ F(-). From the associated component mass balance and ion exchange (i.e., mass action) equations, an overall speciation model was developed to predict the distribution of all anions between the aqueous and micellar pseudophase for complex ionic mixtures. Experimental results of both artificial and real surface waters were in good agreement to model predictions. Further, the results indicated that micelles combined with ultrafiltration may be a potential technology for nutrient and other pollutant removal from natural or effluent waters.

  4. Removal of copper(II) from some environmental samples by sorptive-flotation using powdered marble wastes as sorbents and oleic acid as surfactant.

    Science.gov (United States)

    Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M

    2004-11-01

    A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.

  5. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    Science.gov (United States)

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency.

  6. Gastric Band Removal in Revisional Bariatric Surgery, One-Step Versus Two-Step: a Systematic Review and Meta-analysis.

    Science.gov (United States)

    Dang, Jerry T; Switzer, Noah J; Wu, Jeremy; Gill, Richdeep S; Shi, Xinzhe; Thereaux, Jérémie; Birch, Daniel W; de Gara, Christopher; Karmali, Shahzeer

    2016-04-01

    We aimed to systematically review the literature comparing the safety of one-step versus two-step revisional bariatric surgery from laparoscopic adjustable gastric banding (LAGB) to Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). There is debate on the safety of removing the gastric band and performing revisional surgery immediately or in a delayed, two-step fashion due to potential higher complications in one-step revisions. A systematic and comprehensive search of the literature was conducted. Included studies directly compared one-step and two-step revisional surgery. Eleven studies were included with 1370 patients. Meta-analysis found comparable rates of complications, morbidity, and mortality between one-step and two-step revisions for both RYGB and SG groups. This suggests that immediate or delayed revisional bariatric surgeries are both safe options for LAGB revisions.

  7. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.

    Science.gov (United States)

    Kim, Seung-Hyun; Jeong, Gyoung Hwa; Choi, Donghyeuk; Yoon, Sunyoung; Jeon, Heung Bae; Lee, Sang-Min; Kim, Sang-Wook

    2013-01-01

    We carried out hydrazine-free, surfactant-free synthesis of noble metal/graphene nanocomposites. The reduction of the noble metals and GO was carried out simultaneously in hot water using ascorbic acid as a reductant. In the noble metal/graphene nanocomposites of Pd, Pt, Au, and Ag nanoparticles, the GO and metal salts were reduced completely by this synthetic method. In addition, the Pd/graphene nanocomposites showed good catalytic activity in the Suzuki coupling reaction and could be reused many times without loss of catalytic activity.

  8. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum.

    Science.gov (United States)

    Cheng, K Y; Lai, K M; Wong, J W C

    2008-10-01

    This paper evaluates the effects of pig manure compost (PMC) and Tween 80 on the removal of phenanthrene (PHE) and pyrene (PYR) from soil cultivated with Agropyron elongatum. Soils spiked with about 300 mg kg(-1) of PHE and PYR were individually amended with 0%, 2.5%, 5% and 7.5% (dry wt) of PMC or 0, 20 and 100 mg kg(-1) of Tween 80. Unplanted and sterile microcosms were prepared as the controls. PAH concentration, total organic matter (TOM), dissolved organic carbon (DOC), total heterotrophic and PAH degrading microbial populations in soil were quantified before and after 60d period. The results indicated that A. elongatum could significantly enhance PYR removal (from 46% to 61%) but had less impact on PHE removal (from 96% to 97%). Plant uptake of the PAHs was insignificant. Biodegradation was the key mechanism of PAH removals (Tween 80 levels increased the removal of PYR but not of PHE. Maximal PYR removal of 79% and 92% were observed in vegetated soil receiving 100 mg kg(-1) Tween 80 and 7.5% PMC, respectively. Enhanced PYR removal in soil receiving PMC could be explained by the elevated levels of DOC, TOM and microbial populations as suggested by Pearson correlation test. While the positive effect of Tween 80 on PYR removal could probably due to its capacities to enhance PYR bioavailability in soil. This paper suggests that the addition of either PMC or nonionic-surfactant Tween 80 could facilitate phytoremediation of PAH contaminated soil.

  9. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Chung-Hyeon; Joo, Sung-Jun [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-10-30

    Highlights: • We performed the two-step flash light sintering for copper nanoparticle ink to remove substrate warping. • 12 J/cm{sup 2} of preheating and 7 J/cm{sup 2} of main sintering energies were determined as optimum conditions to sinter the copper nanoparticle ink. • The resistivity of two-step sintered copper nanoparticle ink was 3.81 μΩ cm with 5B adhesion level, 2.3 times greater than that of bulk copper. • The two-step sintered case showed a high conductivity without any substrate warping. - Abstract: A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  10. VOC removal from contaminated groundwater through membrane pervaporation. (Ⅱ): 1,1,1-trichloroethane- SDS surfactant solution system

    Institute of Scientific and Technical Information of China (English)

    PENG Ming; Sean LIU

    2003-01-01

    The conventional "pump-and-treat" technology for subsurface remediation of groundwater contaminated with volatile organic compounds(VOCs) such as 1,1,1-trichloroethane(TCA), a common chlorinated organic solvent, has limitation of prohibitively long treatment time due to extremely low water solubility of the VOCs. Surfactant-based soil remediation has emerged as the effective technology that substantially reduces the treatment time. In order to make the whole process economical, the surfactant used in soil washing has to be recovered and reused. This study examined the recovery of anionic surfactant, sodium dodecyl sulfate (SDS), from soil remediation fluids containing TCA, using a bench-scale membrane pervaporation unit. The effects of high TCA concentration, surfactant dosage, and flow rate on permeation flux and selectivity( α value) of the process were evaluated. In general, higher surfactant concentration yielded lower TCA flux and constant water flux, resulting in declining α values; higher flow rate of TCA feed stream results in higher VOC flux and selectivity, an indication of the effect of concentration polarization; higher TCA feed concentration produces higher TCA permeation across the membrane, however, the selectivity was virtually unchanged unless the total TCA concentration exceeded 2000 ppm.

  11. Morphologically tuned 3D/1D rutile TiO2 hierarchical hybrid microarchitectures engineered by one-step surfactant free hydrothermal method

    Science.gov (United States)

    Maria John, Maria Angelin Sinthiya; Ramamurthi, K.; Sethuraman, K.; Ramesh Babu, R.

    2017-05-01

    Present investigation reports on the surfactant free hydrothermal synthesize of the morphologically tuned hierarchical hybrid rutile titanium oxide (TiO2) microarchitectures showing three dimensional microflower structures and cook pine tree like structures on the one dimensional nanorods formed over TiO2 seed layer coated glass substrates by tuning growth temperature. TiO2 seed layer of ∼100 nm thick was coated on the glass substrates employing sol-gel spin coating method and then rutile TiO2 microarchitectures were synthesized on the TiO2 seed layer by one-step surfactant free hydrothermal method. Deposited samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy techniques. Influence of the growth temperature on the crystallinity, morphology and optical properties along with the growth mechanism to achieve hierarchical microarchitectures was investigated. Present work revealed that the structural, morphological and optical properties of the TiO2 hierarchical microarchitectures strongly depend on the growth temperature. Further we proposed a model for the cause to effect possible morphological changes of rutile TiO2 microarchitectures as a function of growth temperatures on the TiO2 seeded glass substrates.

  12. The study of furfural removal from aqueous solutions using activated carbon and bentonite modified with cetyltrimethylammonium bromide (CTAB, a cationic surfactant

    Directory of Open Access Journals (Sweden)

    M Leili

    2016-01-01

    Full Text Available Background and Objectives: Furfural is one of the toxic chemical compounds used in many industries such as petrochemical, food, paper products, pharmaceutical, etc., due to having some characteristics. Therefore, furfural could be found at different concentrations in the effluent from these industries and can enter the environment. Hence, the aim of this study was the assessment the efficiency of a low cost bentonite modified with cationic surfactant in the removal of furfural from aqueous solution. Material and Methods: In this experimental study, bentonite was purchased from one of the Mines of Zanjan Province, Iran and then the efficiency of bentonite modified with the cationic surfactant CTAB (CTAB-Bent was assessed in the adsorption of furfural from aqueous solution. Activated carbon (AC was also purchased as commercial grade. Results: Under optimum conditions, the removal efficiency of AC and CTAB-Bent was about 52 and 66%, respectively. For both adsorbents used in this study, the increase of contact time and sorbent dosage resulted in increasing the removal efficiency, but the removal efficiency was decreased with the increase of furfural initial concentrations. Regarding pH, the removal efficiency was the highest in relative acidic and neutral environment, (60 and 69% for AC and CTAB-Bent respectively. The kinetics studies revealed that the highest correlation coefficients were obtained for the pseudo-second order rate kinetic model. Adsorption data from both adsorbents was also fitted with Langmuir isotherm.   Conclusion: It was found that modified bentonite with CTAB as a natural adsorbent could have better efficiencies compared with activated carbon in the furfural removal, although more contact times is needed.

  13. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  14. Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer.

    Science.gov (United States)

    Bhardwaj, Deepesh; Sharma, Monika; Sharma, Pankaj; Tomar, Radha

    2012-08-15

    This article introduces the synthesis of clinoptilolite and montmorillonite, and their surfactant modification by using solutions of hexadecyltrimethylammonium bromide (CH(3)(CH(2))(15)N(Br)(CH(3))(3), HDTMAB) and dioctadecyldimethylammonium bromide ((CH(3)(CH(2))(17))(2)N(Br)(CH(3))(2), DODMAB). The feasibility of using surfactant modified silicates (SMSs) as a potential adsorbent for nitrate and for slow release of nutrient has been investigated. Adsorption isotherms of NO(3)(-) on SMSs have been measured at aqueous concentration of 160-280 mg L(-1). The SMSs show much higher adsorption capacity than the unmodified materials as determined by Langmuir adsorption isotherm. The surfactant modification and increased surfactant loading concentration enhance the nitrate anion retaining capacity of silicates (montmorillonite (16.05 mg g(-1))clinoptilolite (30.58 mg g(-1))clinoptilolite (75.19 mg g(-1))clinoptilolite (125.00 mg g(-1))). The adsorption data fitted well with the Langmuir and Freundlich isotherms. The slow nutrient release studies have been performed by thin layers-funnel analytical test and soil column percolating system. The obtained results indicate that SMSs are very good adsorbent for NO(3)(-) and a slow release of nitrogen is achievable as it releases NO(3)(-) still after 15-20 days of leaching study.

  15. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale.

    Science.gov (United States)

    Casentini, Barbara; Falcione, Fabiano Teo; Amalfitano, Stefano; Fazi, Stefano; Rossetti, Simona

    2016-12-01

    Different countries in Europe still suffer of elevated arsenic (As) concentration in groundwaters used for human consumption. In the case of households not connected to the distribution system, decentralized water supply systems, such as Point of Use (POU) and Point of Entry (POE), offer a direct benefit for the consumers. Field scale ex-situ treatment systems based on metallic iron (ZVI) are already available for the production of reduced volumes of drinking water in remote areas (village scale). To address drinking water needs at larger scale, we designed a pilot unit able to produce an elevated daily volume of water for human consumption. We tested the long-term As removal efficiency of a two steps ZVI treatment unit for the production of 400 L/day clean water based on the combination of ZVI corrosion process with sedimentation and retention of freshly formed Fe precipitates. The system treated 100 μg/L As(V)-contaminated oxic groundwater in a discontinuous operation mode at a flow rate of 1 L/min for 31 days. Final removal was 77-96% and the most performing step was aeration/sedimentation (A/S) tank with a 60-94% efficiency. Arsenic in the outflow slightly exceeded the drinking water limit of 10 μg/L only after 6000 L treated and Fe concentration was always below 0.2 mg/L. Under proposed operating conditions ZVI passivation readily occurred and, as a consequence, Fe production sharply decreased. Arsenic mobility attached to particulate was 13-60% after ZVI column and 37-100% after A/S tank. Uniform amorphous cluster of Fe nanoparticles (100 nm) formed during aeration drove As removal process with an adsorption capacity corresponding to 20.5 mgAs/gFe. Research studies often focus only on chemico-physical aspects disregarding the importance of biological processes that may co-occur and interfere with ZVI corrosion, As removal and safe water production. We explored the microbial transport dynamics by flow cytometry, proved as a suitable tool to monitor

  16. Mathematical evaluation of activated carbon adsorption for surfactant recovery in a soil washing process.

    Science.gov (United States)

    Ahn, Chi K; Lee, Min W; Lee, Dae S; Woo, Seung H; Park, Jong M

    2008-12-15

    The performances of various soil washing processes, including surfactant recovery by selective adsorption, were evaluated using a mathematical model for partitioning a target compound and surfactant in water/sorbent system. Phenanthrene was selected as a representative hazardous organic compound and Triton X-100 as a surfactant. Two activated carbons that differed in size (Darco 20-40 mesh and >100 mesh sizes) were used in adsorption experiments. The adsorption isotherms of the chemicals were used in model simulations for various washing scenarios. The optimal process conditions were suggested to minimize the dosage of activated carbon and surfactant and the number of washings. We estimated that the requirement of surfactant could be reduced to 33% of surfactant requirements (from 265 to 86.6g) with a reuse step using 9.1g activated carbon (>100 mesh) to achieve 90% removal of phenanthrene (initially 100mg kg-soil(-1)) with a water/soil ratio of 10.

  17. Performance evaluation of a modified step-feed anaerobic/anoxic/oxic process for organic and nutrient removal

    Institute of Scientific and Technical Information of China (English)

    A.R. Majdi Nasab; S.M. Soleymani; M. Nosrati; S.M. Mousavi

    2016-01-01

    A pilot scale modified step-feed process was improved to increase nutrient (N and P) and organic removal operations from municipal wastewater. It combined the step-feed process and a method named“University of Cape Town (UCT)”. The effect of nutrient ratios and inflow distribution ratios were studied. The highest uptake efficiency of 95%for chemical oxygen demand (COD) has been achieved at the inflow distribution ratio of 40/35/25. However, maximum removal efficiency obtained for total nitrogen (TN) and phosphorus at 93%and 78%, respectively. The average mixed liquor suspended solids (MLSS) was 5500 mg·L−1. In addition, convenient values for dissolved oxygen (DO) concentration, and pH were obtained throughout different stages. The proposed system was identified to be an appropriate enhanced biological nutrient removal process for wastewater treatment plants owing to relatively high nutrient removal, sturdy sludge settle ability and COD removal.

  18. Effectiveness of nanozeolite modified by cationic surfactant in the removal of disinfection by-product precursors from water solution

    Directory of Open Access Journals (Sweden)

    Amir Mohammadi

    2012-01-01

    Conclusions: This study showed that modification of nanozeolite by cationic surfactants, to reduce its negative surface charge, could markedly improve its efficiency in the adsorption of disinfection by-product precursors from an aqueous solution. The HDTMA-Br/Clinoptilolite nanozeolite (CNZ ratio of 0.07, pH have to coincide in iso-electric point, can be an optimum ratio for the modification.

  19. One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhiwei; Zhang, Yaoyao; Qian, Xiaoming; Shi, Jie; Chen, Lei; Li, Baodong; Niu, Jiarong; Liu, Liangsen, E-mail: 83019163@163.com

    2014-10-15

    Highlights: • PAM-g-graphene is synthesized by the co-irradiation between GO and AM monomers. • PAM graft on GO has led to the exfoliation of GO into individual sheets. • The γ-ray induced reduction of GO. • PAM-g-graphene exhibits high adsorption capacities toward Pb(II) ions. • PAM-g-graphene provides a new idea for heavy metal pollutants’ removal in water. - Abstract: Polyacrylamide grafted graphene (PAM-g-graphene) from graphite oxide (GO) was successfully prepared by γ-ray irradiation with acrylamide monomers in aqueous at room temperature in this paper. Our strategy involves the PAM chains graft on the surface and between the layers of GO by in situ radical polymerization which led to the exfoliation of GO into individual sheets. Results show that the degree of grafting of PAM-g-graphene samples is 24.2%, and the thickness is measured to be 2.59 nm. Moreover, the as-prepared PAM-g-graphene with some amino from PAM and little oxygen functional groups exhibit superior adsorption of Pb(II) ions. The adsorption processes reach equilibrium in just 30 min and the adsorption isotherms are described well by Langmuir and Freundlich classical isotherms models. The determined adsorption capacity of PAM-g-graphene is 819.67 mg g{sup −1} (pH 6) for Pb(II), which is 20 times and 8 times capacities of that for graphene nanosheets and carbon nanotubes according to reports, respectively. This chemically modified graphene synthesized by this fast one-step approach, featuring a good versatility and adaptability, excellent adsorption capacity and rapid extraction, may provide a new idea for the global problem of heavy metal pollutants’ removal in water.

  20. Certain surfactants significantly enhance the activity of antibiotics in the mouse model of MTB and drug resistant MTB infection and effectively remove the bacteria from a pulmonary cavity in human ex-vivo study.

    Science.gov (United States)

    Risin, Semyon A; Hunter, Robert L; Kobak, Mikhail; Ariel, Boris; Vishnevsky, Boris; Erokhin, Vladislav; Demikhova, Olga; Bocharova, Irina; Stoops, James K

    2014-01-01

    Surfactants have the potential to overcome natural resistance of MTB to antibiotics which is mediated by barriers that impede the penetration of drugs to their targets. A major component of this barrier is trehalose dimycolate (TDM) which surrounds the bacteria with a thick lipid shield. In this study dodecyl maltoside (DDM) was evaluated for this purpose. This surfactant is an excellent cellular permeabilizing agent with associated low toxicity. The administration of the surfactant as an aerosol into the lungs of the infected mice achieved a 5-10 times enhancement of the isoniazid (INH) treatment gauged by the reduction of the colony forming units. This study also established proof of principle that surfactants alone applied as an aerosol can reduce the bacteria count in lungs infected with MTB. The potential of the surfactant in the therapy of human cavitary TB was also investigated using a surgically removed lung from a patient with extreme drug resistant MTB (XDR-TB). A cavity in this lung was flushed with DDM solution ex-vivo. The procedure readily removed the bacteria, excessive amounts of TDM and necrotic tissue from the cavity. These studies demonstrate that DDM can disrupt the layers of TDM and free embedded MTB and, consequently, surfactants have promise as a proficient modality for the treatment of pulmonary MTB.

  1. Removal of an iron matrix with polyoxyethylene-type surfactant-coated amberlite XAD-4 for the determination of trace impurities in high-purity iron.

    Science.gov (United States)

    Matsumiya, Hiroaki; Furuzawa, Shigeru; Hiraide, Masataka

    2005-08-15

    Admicellar sorbents for the removal of an iron matrix were prepared for the determination of trace impurities in high-purity iron. A 1.0-g amount of Amberlite XAD-4 (macroreticular styrene-divinylbenzene copolymer) was coated with 0.14-1.3 mmol of polyoxyethylene-type surfactants, including polyoxyethylene-4-tert-octylphenoxy ethers (Triton X series) and polyoxyethylene-4-isononylphenoxy ethers (PONPEs). The surfactant-coated XAD-4 was packed into a polypropylene column (7 mm i.d. x 50 mm high). A 5.0-cm(3) volume of sample solution was passed through the column at a flow rate of 0.5 cm(3) min(-1). Milligram amounts of iron(III) were effectively sorbed on the column from 8 mol dm(-3) hydrochloric acid solutions. Among the surfactants tested, polyoxyethylene(20)-4-isononylphenoxy ether (PONPE-20) showed the best performance: the iron leaked from the PONPE-20 column was 4 microg when 25 mg of iron(III) was introduced onto the column. Trace elements, such as Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II), Pb(II), and Bi(III), were not retained on the column and thus quantitatively recovered in the column effluent. The effective separation of trace elements from an iron matrix allowed their accurate determinations by inductively coupled plasma-mass spectrometry or graphite furnace atomic absorption spectrometry. The detection limits (3sigma blank) were in the nanogram per gram range. The proposed method was successfully applied to the determination of trace impurities in high-purity iron samples.

  2. Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ).

    Science.gov (United States)

    Ozdemir, Ozgur; Turan, Mustafa; Turan, Abdullah Zahid; Faki, Aysegul; Engin, Ahmet Baki

    2009-07-30

    In this study, the ability of surfactant-modified zeolite (SMZ) to remove color from real textile wastewater was investigated. Tests were performed in a fixed-bed column reactor and the surface of natural zeolite was modified with a quaternary amine surfactant hexadecyltrimethylammonium bromide (HTAB). The zeolite bed that was modified at 1 g L(-1) HTAB concentration and HTAB flow rate of 0.015 L min(-1) showed good performance in removing color. Effects of wastewater color intensity, flow rates and bed heights were also studied. Wastewater was diluted several times in the ratios of 25%, 50% and 75% in order to assess the influence of wastewater strength. The breakthrough curves of the original and diluted wastewaters are dispersed due to the fact that breakthrough came late at lower color intensities and saturation of the bed appeared faster at higher color intensities. The column had a 3-cm diameter and four different bed heights of 12.5, 25, 37.5 and 50 cm, which treated 5.25, 19.50, 35.25 and 51 L original textile wastewater, respectively, at the breakthrough time at a flow rate of 0.025 L min(-1). The theoretical service times evaluated from bed depth service time (BDST) approach for different column variables. The calculated and theoretical values of the exchange zone height were found with a difference of 27%. The various design parameters obtained from fixed-bed experimental studies showed good correlation with corresponding theoretical values, under different bed heights. The regeneration of the SMZ was also evaluated using a solution consisting of 30 g L(-1) NaCl and 1.5 g L(-1) NaOH at pH 12 and temperature 30 degrees C. Twice-regenerated SMZ showed the best performance compared with the others while first- and thrice-regenerated perform lower than the original SMZ.

  3. High-rate nitrogen removal and its behavior of granular sequence batch reactor under step-feed operational strategy.

    Science.gov (United States)

    Zhong, Chen; Wang, Yaqin; Wang, Yongjian; Lv, Junping; Li, Yaochen; Zhu, Jianrong

    2013-04-01

    Alternating anoxic/oxic (A/O) combined with the step-feed granular sequence batch reactor (step-feed SBR) was operated in laboratory scale to investigate nitrogen removal. The results showed that when the total inorganic nitrogen (TIN) and chemical oxygen demand (COD) levels were 55 and 320 mg/L in the influent, the TIN removal efficiencies were 89.7-92.4% in the step-feed mode and 48.1-59.5% in the conventional alternating A/O single-feed mode within a 360 min cycle. The pH and dissolved oxygen (DO) were used to optimize the process of denitrification and nitrification in the step-feed mode. The optimized operational condition was achieved by shortening the cycle time to 207 min, resulting in a nitrogen removal rate of 0.27 kg N/m3 d, which was much higher than those achieved using activated sludge systems. The dominant community in the aerobic granules was coccus-like bacteria, and filamentous bacteria were hardly found. Granules were well maintained throughout the 90 days of continuous step-feed operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Adsorptive removal of Cu(II) and Ni(II) from single-metal, binary-metal, and industrial wastewater systems by surfactant-modified alumina.

    Science.gov (United States)

    Khobragade, Moni U; Pal, Anjali

    2015-01-01

    Batch adsorption was carried out to investigate the possibility of utilizing surfactant-modified alumina (SMA) as an adsorbent for the removal of Cu(II) and Ni(II) from single-metal and binary-metal solutions. Scanning electron microscopic (SEM) images of SMA before and after metal removal from single-metal matrix, showed no significant changes, whereas energy dispersive X-ray (EDX) studies confirmed the incorporation of Cu(II) (∼ 0.74 atomic%) and Ni(II) (∼ 0.64 atomic%) on the adsorbent surface. The removal of Cu(II) and Ni(II), using SMA depends on contact time, adsorbent dose and medium pH. The sorption kinetics followed pseudo-second-order model for Cu(II). However, for Ni(II), either pseudo-first-order or pseudo-second-order model is applicable. The batch experimental data were fitted to Langmuir and Freundlich isotherm, and based on the correlation coefficient value (R(2)), the adsorption could be described more precisely by the Freundlich isotherm. The maximum adsorption capacity from Langmuir isotherm of Cu(II) was 9.34 mg g(-1) and for Ni(II) 6.87 mg g(-1). In a synthetic binary mixture of Cu(II) and Ni(II), having a concentration of 10 mg L(-1) each, removal of Cu(II) was better. The treatment method was further applied to real wastewater from an electroplating industry. The batch experiment results showed that SMA was effective in the simultaneous removal of Cu(II) and Ni(II) to a significant extent, with additional improvement of water quality of the industrial effluent considered.

  5. Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Glenda Cea-Barcia

    2013-01-01

    Full Text Available Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results underscore that organic micropollutants removal is coupled to the initial stages of anaerobic digestion (acidogenesis and acetogenesis. In addition, the organic micropollutants kinetics suggest that the main removal mechanisms of these hydrophobic compounds are biodegradation and/or sequestration depending on the compounds.

  6. Application of Photo-Fenton Process for COD Removal from Wastewater Produced from Surfactant-Washed  Oil-Contaminated (TPH Soils

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mehrasbi

    2012-10-01

    Full Text Available Backgrounds and Objectives: The base structure of total petroleum hydrocarbons (TPH is made of hydrogen and carbon. Widespread use, improper disposal and accidental spills of this compounds lead to long term remaining of contaminations such as organic solvents and poly aromatic hydrocarbons (PAHs in the soil and groundwater resources, resulting in critical environmental issues. In this study, an oil-contaminated soil was washed using Tween 80 surfactant and the application of photo-Fenton process (UV/Fe2+/H2O2 for treatment of the produced wastewater was evaluated. Materials and Methods: Tween 80 is a yellow liquid with high viscosity and soluble in water. In order to determine of the photo-Fenton process efficiency, we studied effective variables including Fe concentration, pH, H2O2 concentration, and irradiation time. The UV irradiation source was a medium-pressure mercury vapor lamp (400 w vertically immersed in the solution within 2L volume glass cylindrical reactor.Results: The results showed that efficiency of COD removal depends on the initial Fe concentration, pH, H2O2 concentration and irradiation time. Under optimum conditions, (Fe: 0.1mM, H2O2: 0.43 mM, pH: 3 and UV light irradiation time: 2 hours the removal efficiency of COD was 67.3%. pH plays a crucial role in the photo-Fenton process such that the removal efficiency increased with decreasing of pH. Conclusion: According to the results of this study, under acidic condition, this process is an efficient method for COD removal from the wastewater studied.

  7. SCREENING METHODS FOR SELECTION OF SURFACTANT FORMULATIONS FOR IOR FROM FRACTURED CARBONATE RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu; Seung Soon Jang

    2005-07-01

    This topical report presents details of the laboratory work performed to complete Task 1 of this project; developing rapid screening methods to assess surfactant performance for IOR (Improved Oil Recovery) from fractured carbonate reservoirs. The desired outcome is to identify surfactant formulations that increase the rate and amount of aqueous phase imbibition into oil-rich, oil-wet carbonate reservoir rock. Changing the wettability from oil-wet to water-wet is one key to enhancing this water-phase imbibition process that in turn recovers additional oil from the matrix portion of a carbonate reservoir. The common laboratory test to evaluate candidate surfactant formulations is to measure directly the aqueous imbibition rate and oil recovery from small outcrop or reservoir cores, but this procedure typically requires several weeks. Two methods are presented here for the rapid screening of candidate surfactant formulations for their potential IOR performance in carbonate reservoirs. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant performance reported in the literature.

  8. Simple one step synthesis of nonionic dithiol surfactants and their self-assembling with silver nanoparticles: Characterization, surface properties, biological activity

    Science.gov (United States)

    Abd-Elaal, Ali A.; Tawfik, Salah M.; Shaban, Samy M.

    2015-07-01

    Simple esterification of 2-mercaptoacetic acid and polyethylene glycol with different molecular weights was done to form the desired nonionic dithiol surfactants. The chemical structures of synthesized thiol surfactants were confirmed using FT-IR and 1H NMR spectra. The surface activity of the synthesized surfactants was determined by measurement of the surface tension at different temperatures. The surface activity measurements showed their high tendency towards adsorption and micellization. The thermodynamic parameters of micellization (ΔGmic, ΔHmic and ΔSmic) and adsorption (ΔGads, ΔGads and ΔSads) showed their tendency toward adsorption at the interfaces and also micellization in the bulk of their solutions. The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared and investigated using UV and TEM techniques. Screening tests of the synthesized dithiol surfactants and their nanostructure with silver nanoparticles, against gram positive bacteria (Bacillus subtilis and Microccus luteus), gram negative bacteria (Escherichia coli and Bordatella pertussis) and fungi (Aspergillus niger and Candida albicans) showed that they are highly active biocides. The presence of silver nanoparticles enhancement the biological activities of the individual synthesized nonionic dithiol surfactants.

  9. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    Energy Technology Data Exchange (ETDEWEB)

    Schaar, Heidemarie, E-mail: hschaar@iwag.tuwien.ac.a [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria); Clara, Manfred; Gans, Oliver [Umweltbundesamt, Spittelauer Lande 5, 1090 Vienna (Austria); Kreuzinger, Norbert [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria)

    2010-05-15

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17alpha-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O{sub 3} g DOC{sup -1} increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  10. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  11. Single-step coacervate-mediated preconcentration of metals and metal-chelates in supramolecular vesicular surfactant assemblies and determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tsogas, George Z. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Giokas, Dimosthenis L. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)]. E-mail: dgiokas@cc.uoi.gr; Paleologos, Evangelos K. [Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlessidis, Athanasios G. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Evmiridis, Nicholaos P. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2005-04-29

    The use of ionic surfactant supramolecular aggregates is described, as means for accomplishing the concentration of analytes with different polarities using the same extraction pattern. The proposed method is based on the phase separation of an anionic surfactant through the formation of perplexed lamellar phases, allowing for the extraction of hydrated metal cations by complexation and metal-chelates by hydrophobic interactions. The data suggest that both extraction and phase separation are controlled by the presence of ionic surfactant as a function of the degree of phase divergence from the lamellar to bilayer phase. This again is determined by the composition of the phase-forming parameters, these are the surfactant concentration, the kind and amount of metallic counterparts and ionic strength. On the basis of these findings, the proposed method was successfully applied to the determination of metal species in natural waters. The limits of detection were easily brought down to the low microgram per liter levels by simply preconcentrating 10 mL of sample volume in the presence of at least 0.45% (w/v) of anionic surfactant. The method provided extraction recoveries higher than 94.0% with standard deviations well below 7.0%.

  12. Removal of a broad range of surfactants from municipal wastewater--comparison between membrane bioreactor and conventional activated sludge treatment.

    Science.gov (United States)

    González, Susana; Petrovic, Mira; Barceló, Damià

    2007-02-01

    Elimination of alkylphenol ethoxylates (APEO) and their degradation products (alkylphenols and alkylphenoxy carboxylates), as well as linear alkylbenzene sulfonates (LAS) and coconut diethanol amides (CDEA), was studied in a pilot plant membrane bioreactor (MBR) working in parallel to a full-scale wastewater treatment plant (WWTP) using conventional activated sludge (CAS). In the CAS system 87% of parent long ethoxy chain NPEOs were eliminated, but their decomposition yielded persistent acidic and neutral metabolites which were poorly removed. The elimination of short ethoxy chain NPEOs (NP(1)EO and NP(2)EO) averaged 50%, whereas nonylphenoxy carboxylates (NPECs) showed an increase in concentrations with respect to the ones measured in influent samples. Nonylphenol (NP) was the only nonylphenolic compound efficiently removed (96%) in the CAS treatment. On the other hand, MBR showed good performance in removing nonylphenolic compounds with an overall elimination of 94% for the total pool of NPEO derived compounds (in comparison of 54%-overall elimination in the CAS). The elimination of individual compounds in the MBR was as follows: 97% for parent, long ethoxy chain NPEOs, 90% for short ethoxy chain NPEOs, 73% for NPECs, and 96% for NP. Consequently, the residual concentrations were in the low mug/l level or below it. LAS and CDEA showed similar elimination in the both wastewater treatment systems that were investigated, and no significant differences were observed between the two treatment processes. Nevertheless, for all studied compounds the MBR effluent concentrations were consistently lower and independent of the influent concentrations. Additionally, MBR effluent quality in terms of chemical oxygen demand (COD), NH(4)(+) concentration and total suspended solids (TSS) was always superior to the ones of the CAS and also independent of the influent quality, which demonstrates high potential of MBRs in the treatment of municipal wastewaters.

  13. Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant.

    Science.gov (United States)

    Cao, Dan; Jin, Xiaoying; Gan, Li; Wang, Ting; Chen, Zuliang

    2016-09-01

    This study investigated the use of cetyltrimethylammonium bromide (CTAB) as a stabilizer in green synthesis to improve the reactivity of iron oxide nanoparticles (IONP). Results show that efficiency in removing phosphate increased from 71.0% to 97.3%. To understand how to improve the reactivity of IONP by CTAB: firstly, characterizations of IONP before and after phosphate removal by SEM, EDS, FTIR, XPS show the adsorption of P onto the IONP; secondly, batch experiments indicate that the adsorption capacity of phosphate increased when temperature or initial phosphate concentration increased and decreased with an increase in both adsorbent dose and pH. Adsorption followed the pseudo-second-order kinetics model and the equilibrium data fitted well to the Langmuir isotherm. Thermodynamic data confirmed the spontaneous and endothermic nature of the adsorption process. Finally, it was proposed that the adsorption of phosphate using CTAB-modified IONP was mainly associated with inner-sphere complexing mechanism and electrostatic attraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Characterization, kinetic, and isotherm data for Cr (VI removal from aqueous solution by Populus alba biochar modified by a cationic surfactant

    Directory of Open Access Journals (Sweden)

    Maryam Shahverdi

    2016-12-01

    Full Text Available Populus alba is fast and auto- growing tree which profoundly accessible in around the world. The usage of the wastes of this tree would be admirable from environmental and solid waste management point of view. Thus, herein, this data set presents a facile method for providing an adsorbent from wastes of P. alba tree. The prepared adsorbent was modified by the cationic surfactant of (C16H33N(CH33Br and applied to remove Cr (VI from aqueous solution. The characterization data of the modified adsorbent were analyzed using FTIR and SEM methods. The information regarding kinetics, isotherms, and thermodynamics of chromium ions adsorption were listed. The data implied that the maximum adsorption capacity of adsorbent to uptake Cr (VI from aqueous solution was obtained 52.63 mg/g. The acquired data indicated that the adsorption of Cr (VI by the adsorbent prepared from P. alba is an promising technique for treating Cr-bearing wastewaters.

  15. Highly precise detection, discrimination, and removal of anionic surfactants over the full pH range via cationic conjugated polymer: an efficient strategy to facilitate illicit-drug analysis.

    Science.gov (United States)

    Hussain, Sameer; Malik, Akhtar H; Iyer, Parameswar K

    2015-02-11

    A water-soluble cationic conjugated polyelectrolyte (CPE), poly(1,4-bis(6-(1-methylimidazolium)-hexyloxy)-benzene bromide) (PMI) displays extraordinary stability over the full pH range of 1-14 as well as in seawater, brine, urine, and other solutions and carries out efficient detection, discrimination, and removal of moderately dissimilar anionic surfactants (viz., sodium dodecyl benzenesulfonate (SDBS) and sodium dodecyl sulfate (SDS)) at very low levels (31.7 and 17.3 parts per billion (ppb), respectively). PMI formed stable hydrogels in the presence of SDS that remained unaffected by strong acids/bases, heating, ultrasonication, or exposure to light, whereas SDBS formed precipitate with PMI as a result of its different interpolymer cofacial arrangement via Columbic attraction. The complex-forming ability of PMI with SDS and SDBS facilitated their elimination from water or drug-doped urine samples without the use of any organic solvent, chromatographic technique, or solid support. This protocol, the first of its kind for the removal of anionic surfactants at very low concentrations from any type of solution and competitive environments, demonstrates an original application using a CPE. The surfactant-free sample solutions could be precisely analyzed for the presence of illicit drugs by any standard methods. Using PMI, a newly developed CPE, a rapid and practical method for the efficient detection, discrimination, and removal of SDS and SDBS at ppb levels from water and urine, under harsh conditions, and in natural chemical environments is demonstrated.

  16. Surfactant-promoted Prussian Blue-modified carbon electrodes: enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences.

    Science.gov (United States)

    Salazar, P; Martín, M; O'Neill, R D; Roche, R; González-Mora, J L

    2012-04-01

    We report here for the first time a comparison of the beneficial effects of different cationic surfactants - cetyl trimethyl ammonium bromide (CTAB), benzethonium chloride (BZT) and cetylpyridinium chloride (CPC) - for the electrochemical synthesis of Prussian Blue (PB) films, using cyclic voltammetry (CV), on screen-printed carbon electrodes (SPCEs). Their electrochemical properties were investigated, paying special attention to parameters such as the amount of PB deposited, film thickness, charge transfer rate, permeability, reversibility, stability and sensitivity to hydrogen peroxide detection. All surfactant-enhanced PB-modified SPCEs displayed a significant improvement in their electrochemical properties compared with PB-modified SPCEs formed in the absence of surfactants. Surfactant-modified electrodes displayed a consistently higher PB surface concentration value of 2.1±0.4×10(-8) mol cm(-2) (mean±SD, n=3) indicating that PB deposition efficiency was improved 2-3 fold. K(+) and Na(+) permeability properties of the films were also studied, as were kinetic parameters, such as the surface electron transfer rate constant (k(s)) and the transfer coefficient (α). The hydrogen peroxide sensitivity of surfactant-modified PB films generated by 10 electro-deposition CV cycles gave values of 0.63 A M(-1) cm(-2), which is higher than those reported previously for SPCEs by other authors. Finally, the first lactate microbiosensor described in the literature based on BZT-modified PB-coated carbon fiber electrodes is presented. Its very small cross-section (~10 μm diameter) makes it particularly suitable for neuroscience studies in vivo.

  17. A three step approach for removing organic matter from South African water sources and treatment plants

    Science.gov (United States)

    Nkambule, T. I.; Krause, R. W. M.; Haarhoff, J.; Mamba, B. B.

    The high variability in the levels and composition of natural organic matter (NOM) in South-African water sources in different regions means that no single treatment process can be prescribed for each water treatment plant operating in the country. In order to remove NOM from water in a water treatment train, the composition of the NOM in the source water must be taken into account, especially as it may not necessarily be uniform since the composition is dependent on local environmental situation. The primary objective of this study was to characterise the NOM present in South African source waters through an extensive sampling of representative water types across the country and then develop a rapid NOM characterisation protocol. Water samples were thus collected from eight different water treatment plants located throughout the country at different sites of their water treatment trains. Raw water samples, the intermediate samples before filtration and water samples before disinfection were collected at these drinking water treatment plants. The fluorescence excitation-emission matrices (FEEMs), biodegradable dissolved organic carbon (BDOC), ultraviolet (UV) characterisation (200-900 nm) and dissolved organic carbon (DOC) analysis were used to characterise the NOM in the water samples. The FEEM and UV results revealed that the samples were composed mainly of humic substances with a high UV-254 absorbance, while some samples had marine humic substances and non-humic substances. The sample’s DOC results were within the range of 3.25-21.44 mg C/L, which was indicative of the varying nature of the NOM composition in the regions where samples were obtained. The BDOC fraction of the NOM, on the other hand, ranged from 20% to 65%, depending on the geographical location of the sampling site. It is evident from the results obtained that the NOM composition varied per sampling site which would eventually have a bearing on its treatability. The various water treatment

  18. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    Science.gov (United States)

    Ryu, Chung-Hyeon; Joo, Sung-Jun; Kim, Hak-Sung

    2016-10-01

    A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  19. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, F. Q.L. [Grinnell College, IA (United States)

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  20. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, F. Q.L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-20

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  1. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    Science.gov (United States)

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 cu mm volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales 1 s).

  2. Surfactant recovery from water using foam fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Tharapiwattananon, N.; Osuwan, S. [Chulalongkorn Univ., Bangkok (Thailand); Scamehorn, J.F. [Inst. of Oklahoma, Norman, OK (United States)] [and others

    1996-05-01

    The purpose of this study was to investigate the use of foam fractionation to recover surfactant from water. A simple continuous mode foam fractionation was used and three surfactants were studied (two anionic and one cationic). The effects of air flow rate, foam height, liquid height, liquid feed surfactant concentration, and sparger porosity were studied. This technique was shown to be effective in either surfactant recovery or the reduction of surfactant concentration in water to acceptable levels. As an example of the effectiveness of this technique, the cetylpyridinium chloride concentration in water can be reduced by 90% in one stage with a liquid residence time of 375 minutes. The surfactant concentration in the collapsed foam is 21.5 times the feed concentration. This cationic surfactant was easier to remove from water by foam fractionation than the anionic surfactants studied.

  3. Automatic control strategy for step feed anoxic/aerobic biological nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    ZHU Gui-bing; PENG Yong-zhen; WU Shu-yun; WANG Shu-ying

    2005-01-01

    Control of sludge age and mixed liquid suspended solids concentration in the activated sludge process is critical for ensuring effective wastewater treatment. A nonlinear dynamic model for a step-feed activated sludge process was developed in this study. The system is based on the control of the sludge age and mixed liquor suspended solids in the aerator of last stage by adjusting the sludge recycle and wastage flow rates respectively. The simulation results showed that the sludge age remained nearly constant at a value of 16 d in the variation of the influent characteristics. The mixed liquor suspended solids in the aerator of last stage were also maintained to a desired value of 2500 g/m3 by adjusting wastage flow rates.

  4. Single step synthesis of amine-functionalized mesoporous magnetite nanoparticles and their application for copper ions removal from aqueous solution.

    Science.gov (United States)

    Gao, Jining; He, Yingjuan; Zhao, Xianying; Ran, Xinze; Wu, Yonghui; Su, Yongping; Dai, Jianwu

    2016-11-01

    Amine-functionalized mesoporous superparamagnetic Fe3O4 nanoparticles with an average size of 70nm have been synthesized using a single step solvothermal method by the introduction of triethylenetetramine (TETA), a chelating agent recommended for the removal of excess copper in patients with Wilson's disease. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption/desorption isotherm, vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR). It is confirmed that the magnetic nanoparticles have been functionalized with TETA during the synthetic process, and the concentration of TETA is crucial for the formation of monodisperse mesoporous nanoparticles. The obtained single-crystal magnetic nanoparticles have a high magnetization, which enhances their response to external magnetic field and therefore should greatly facilitate the manipulation of the particles in practical uses. Reaction parameters affecting the formation of mesoporous structure were explored, and a possible formation mechanism involving templated aggregation and recrystallization processes was proposed. The capacity of the synthesized amine-functionalized Fe3O4 nanoparticles toward Cu(II) removal from aqueous solution was investigated. The adsorption rate of Cu(II) on amine-functionalized Fe3O4 nanoparticles followed a pseudo-second order kinetic model. The results of this study demonstrated that the amine-functionalized mesoporous superparamagnetic Fe3O4 nanoparticles could be used as an efficient adsorbent in water treatment and would also find potential application for Cu(II) removal in vivo.

  5. Characterization of the start-up period of single-step autotrophic nitrogen removal in a sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    GUO Jin-song; QIN Yu; FANG Fang; YANG Guo-hong

    2008-01-01

    The characteristics of the start-up period of single-step autotrophic nitrogen removal process were investigated. The autotrophic nitrogen removal process used a sequencing batch reactor to treat wastewater of medium to low ammonia-nitrogen concentration, with dissolved oxygen (DO), hydraulic retention time (HRT) and temperature controlled. The experimental conditions were temperature at (30(2) (C, ammonia concentration of (60 to 120) mg/L, DO of (0.8 to 1.0) mg/L, pH from 7.8 to 8.5 and HRT of 24 h. The rates of nitrification and nitrogen removal turn out to be 77% and 40%, respectively, after a start up period going through three stages divided according to nitrite accumulation: sludge domestication, nitrifying bacteria selection and sludge adaptation. It is demonstrated that dissolved oxygen is critical to nitrite accumulation and elastic YJZH soft compound packing is superior to polyhedral hollow balls in helping the bacteria adhere to the membrane.

  6. Separation of single-walled carbon nanotubes by gel-based chromatography using surfactant step-gradient techniques and development of new instrumentation for studying SWCNT reaction processes

    Science.gov (United States)

    Breindel, Leonard M.

    Single-walled carbon nanotube (SWCNT) synthesis methods such as CoMoCATTM, HiPcoTM, pulsed laser vaporization (PLV), and catalytic chemical vapor deposition (CCVD) produce several different distributions of (n,m) SWCNT structures, where ( n,m) defines the nanotube diameter and chiral wrapping angle. Post-synthesis processing such as functionalization and/or separations must therefore be employed to yield high purity electronic or single (n,m) samples. Through the use of a surfactant gradient across a gel-based chromatographic column, separations of single (n,m) species can be achieved. Anionic surfactants such as SDS, SDBS, and AOT display different separation effectiveness for single (n,m) species. Results of near-infrared optical absorption for separated SWCNT surfactant suspensions will be discussed, leading to a broader understanding of the important factors necessary for the gel chromatography separation technique. In particular, the effects of SWCNT/surfactant micelle structure are found to be key to achieving fast, simple SWCNT electronic type separations. Additionally, development of new instrumentation for the near-infrared spectrofluorimetric analysis (NIR-SFA) of SWCNTs is useful to the advancement of fundamental SWCNT research and applications. NIR-SFA, for instance, allows for the (n,m) structures of a sample to be identified and monitored during the progress of a chemical reaction or separation experiment. Seeking to achieve the time resolutions necessary for such experiments, the design and optimizations of a system utilizing single-wavelength excitation by diode lasers coupled with a fast NIR detection system are presented.

  7. AROMATIC COMPOUNDS REMOVAL BY ADSORPTION ON SURFACTANT-MODIFIED CLAY%表面活性剂改性粘土吸附去除芳香族化合物

    Institute of Scientific and Technical Information of China (English)

    邵杰; 黄英; 张小燕

    2012-01-01

    According to the different types of surfactants used in clay-modification, the application of modified clay in aromatic compounds removal by sorption was introduced, the modification mechanism in improving the adsorption properties and the influence of pH, temperature, ionic strength on aromatic compounds' removal efficiency were discussed. Enhance the stability of the surfactant modified clay was one of the urgent problems; surfactant modified clay had very broad prospects of application in the treatment of polluted water bodies.%基于改性用表面活性剂的种类不同,介绍了改性粘土在芳香族化合物吸附去除中的应用,探讨了改性提高吸附性能的作用机理,讨论了pH、温度、离子强度等水化环境对去除效果的影响.认为加强表面活性剂改性粘土的稳定性,是急需解决的问题之一;表面活性剂改性粘土在污染水体处理中的应用前景非常广阔.

  8. Switchable Surfactants

    National Research Council Canada - National Science Library

    Yingxin Liu; Philip G. Jessop; Michael Cunningham; Charles A. Eckert; Charles L. Liotta

    2006-01-01

    .... We report that long-chain alkyl amidine compounds can be reversibly transformed into charged surfactants by exposure to an atmosphere of carbon dioxide, thereby stabilizing water/alkane emulsions...

  9. Single step purification of recombinant proteins using the metal ion-inducible autocleavage (MIIA) domain as linker for tag removal.

    Science.gov (United States)

    Ibe, Susan; Schirrmeister, Jana; Zehner, Susanne

    2015-08-20

    For fast and easy purification, proteins are typically fused with an affinity tag, which often needs to be removed after purification. Here, we present a method for the removal of the affinity tag from the target protein in a single step protocol. The protein VIC_001052 of the coral pathogen Vibrio coralliilyticus ATCC BAA-450 contains a metal ion-inducible autocatalytic cleavage (MIIA) domain. Its coding sequence was inserted into an expression vector for the production of recombinant fusion proteins. Following, the target proteins MalE and mCherry were produced as MIIA-Strep fusion proteins in Escherichia coli. The target proteins could be separated from the MIIA-Strep part simply by the addition of calcium or manganese(II) ions within minutes. The cleavage is not affected in the pH range from 5.0 to 9.0 or at low temperatures (6°C). Autocleavage was also observed with immobilized protein on an affinity column. The protein yield was similar to that achieved with a conventional purification protocol.

  10. Removal of pharmaceutical residues using ozonation as intermediate process step at Linköping WWTP, Sweden.

    Science.gov (United States)

    Baresel, Christian; Malmborg, Jonas; Ek, Mats; Sehlén, Robert

    2016-01-01

    Pilot tests as basis for the design, implementation and operation of a future full-scale oxidation plant completing the existing sewage treatment in Linköping, Sweden, were performed. Using an ozonation step between bio-sedimentation and post-denitrification processes, the primary goal was the removal of the highest priority substances to effluent water levels that will not cause adverse effects in the recipient considering the natural dilution. The study included initial emission screenings, dose control trials, treatment performance studies and eco-toxicity studies. At an ozone dose of 5 mg O3/L, most substances could be removed. Ecotoxicological tests showed no negative effect for the tested ozone doses. High levels of oxygen into the denitrification could be rapidly reduced in the biology. The number of bacteria in the treated water could be significantly reduced even at relatively low ozone doses. Based on these results, the planning for the full-scale implementation of the treatment system was initiated in 2015.

  11. Optimization of Nitrogen Removal from Synthetic Wastewater by Eliminating Nitrification Step of a Fixed-Film Bed Reactor

    Directory of Open Access Journals (Sweden)

    M Hajsardar

    2016-06-01

    Full Text Available Background and Objectives: In order to optimize wastewater nitrogen removal and to reduce the problems of entering nutrients in final receptors, for example, a lake, partial nitrification, as a novel nitrogen removal method, was studied. Materials and Methods: The efficiency of simultaneous nitrification and denitrification (SND in partial nitrification through nitrification/denitrification in fixed-film reactor was surveyed. In this process, ammonium was converted to nitrite by ammonium oxidizing bacteria (AOB but the activity of nitrite oxidizing bacteria (NOB was limited at low dissolved oxygen (DO level. The inflection points of oxidation-reduction potential (ORP profile were used as the indicators of process optimization. Results: This research showed that in period 2 at fixed DO level of 0.5 mg/L, nitrite accumulation rate (NAR was higher than period 1 in which DO was declined from 1 to 0.5 mg/L. In contrast to period 1, SND efficiency was reduced in period 2. In period 3, by increment of the carbon to nitrogen ratio (C/N to 12.5, NAR increased to 71.4 % and SND efficiency increased to 96.7%. In the long term analysis of proposed method, SND efficiency was, at least, 90%.    Conclusion: Proper C/N ratio and minimum DO level resulted in higher nitrogen removal efficiencies than the operation in which DO was decreased during aerobic phase. By using a fixed-film reactor and without considering an anoxic step, at DO level of 0.5 mg/L, maximum SND efficiency and maximum NAR would be achieved. 

  12. Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review.

    Science.gov (United States)

    Laha, Shonali; Tansel, Berrin; Ussawarujikulchai, Achara

    2009-01-01

    Surfactants are amphiphilic molecules that reduce aqueous surface tension and increase the solubility of hydrophobic organic compounds (HOCs). Surfactant-amended remediation of HOC-contaminated soils and aquifers has received significant attention as an effective treatment strategy - similar in concept to using soaps and detergents as washing agents to remove grease from soiled fabrics. The proposed mechanisms involved in surfactant-amended remediation include: lowering of interfacial tension, surfactant solubilization of HOCs, and the phase transfer of HOC from soil-sorbed to pseudo-aqueous phase. However, as with any proposed chemical countermeasures, there is a concern regarding the fate of the added surfactant. This review summarizes the current state of knowledge regarding nonionic micelle-forming surfactant sorption onto soil, and serves as an introduction to research on that topic. Surfactant sorption onto soil appears to increase with increasing surfactant concentration until the onset of micellization. Sorbed-phase surfactant may account for the majority of added surfactant in surfactant-amended remediation applications, and this may result in increased HOC partitioning onto soil until HOC solubilization by micellar phase surfactant successfully competes with increased HOC sorption on surfactant-modified soil. This review provides discussion of equilibrium partitioning theory to account for the distribution of HOCs between soil, aqueous phase, sorbed surfactant, and micellar surfactant phases, as well as recently developed models for surfactant sorption onto soil. HOC partitioning is characterized by apparent soil-water distribution coefficients in the presence of surfactant.

  13. Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from polymer contaminants.

    Science.gov (United States)

    Baglioni, M; Raudino, M; Berti, D; Keiderling, U; Bordes, R; Holmberg, K; Baglioni, P

    2014-09-21

    Nanostructured fluids containing anionic surfactants are among the best performing systems for the cleaning of works of art. Though efficient, their application may result in the formation of a precipitate, due to the combination with divalent cations that might leach out from the artifact. We propose here two new aqueous formulations based on nonionic surfactants, which are non-toxic, readily biodegradable and insensitive to the presence of divalent ions. The cleaning properties of water-nonionic surfactant-2-butanone (MEK) were assessed both on model surfaces and on a XIII century fresco that could not be cleaned using conventional methods. Structural information on nanofluids has been gathered by means of small-angle neutron scattering, dynamic light scattering and nuclear magnetic resonance with diffusion monitoring. Beside the above-mentioned advantages, these formulations turned out to be considerably more efficient in the removal of polymer coatings than those based on anionic surfactants. Our results indicate that the cleaning process most likely consists of two steps: initially, the polymer film is swollen by the MEK dissolved in the continuous domain of the nanofluid; in the second stage, surfactant aggregates come into play by promoting the removal of the polymer film with a detergency-like mechanism. The efficiency can be tuned by the composition and nature of amphiphiles and is promoted by working as close as possible to the cloud point of the formulation, where the second step proceeds at maximum rate.

  14. Research Progress on Removal Method of Nonionic Surfactant in Wastewater%废水中非离子表面活性剂去除的研究进展

    Institute of Scientific and Technical Information of China (English)

    那仁格日勒; 唐楷; 樊义康; 杨益祥; 邹伟; 颜杰

    2015-01-01

    非离子表面活性剂因独特的性能被广泛应用于国民生产生活的各个领域,但大量未经任何处理的含非离子表面活性剂的废水直接排放到自然界中,带来严重的环境污染。本文通过比较和总结近年来含表面活性剂污水中非离子表面活性剂的脱除方法,希望为含非离子表面活性剂污水的处理找一种切实可行的方法,减轻环境的污染。%As its unique properties, the nonionic surfactants had been applied extensively in the field of domestic production and life. However, untreated wastewater with nonionic surfactants had been directly discharged to the nature, which caused serious environmental problems. In this paper, the removal methods of nonionic surfactants in wastewater were compared and summarized. To reduce environmental pollution, a practicable method may be found in the treatment prospectively.

  15. Reduction in adverse effects of mechanical ventilation in rabbits with acute respiratory failure by treatment with extracorporeal CO2 removal and a large fluid volume of diluted surfactant

    NARCIS (Netherlands)

    Plotz, FB; Mook, PH; Jansen, NJG; Oetomo, SB; Wildevuur, CRH

    1997-01-01

    The long-term outcome of infants with severe respiratory distress syndrome can be improved by optimizing surfactant therapy and minimizing the risk for pulmonary barovolutrauma and oxygen toxicity. The authors hypothesized that this may be achieved with low frequency ventilation and extracorporeal C

  16. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water

    Science.gov (United States)

    Wang, Zhe; Xing, Mingchao; Fang, Wenkan; Wu, Deyi

    2016-03-01

    A self-assembled magnetite core/zirconia shell (Fe3O4@ZrO2) nanoparticle material was fabricated by the one-step co-precipitation method to capture phosphate from water. Fe3O4@ZrO2 with different Fe/Zr molar ratios were obtained and characterized by XRD, TEM, BET surface area and magnetization. It was shown that, with the decreasing of Fe/Zr molar ratio, magnetization decreased whereas surface area and adsorption capacity of phosphate increased. Fe3O4@ZrO2 with the ratio of higher than 4:1 had satisfactory magnetization property (>23.65 emu/g), enabling rapid magnetic separation from water and recycle of the spent adsorbent. The Langmuir adsorption capacity of Fe3O4@ZrO2 reached 27.93-69.44 mg/g, and the adsorption was fast (90% of phosphate removal within 20 min). The adsorption decreases with increasing pH, and higher ionic strength caused slight increase in adsorption at pH > about 5.5. The presence of chloride, nitrate and sulfate anions did not bring about significant changes in adsorption. As a result, Fe3O4@ZrO2 performed well to remove phosphate from real wastewater. These results were interpreted by the ligand exchange mechanism, i.e., the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. Results suggested that phosphate reacted mainly with surface hydroxyl groups but diffusion into interior of zirconia phase also contributed to adsorption. The adsorbed phosphate could be desorbed with a NaOH treatment and the regenerated Fe3O4@ZrO2 could be repeatedly used.

  17. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Xing, Mingchao; Fang, Wenkan; Wu, Deyi, E-mail: dywu@sjtu.edu.cn

    2016-03-15

    Graphical abstract: - Highlights: • Magnetite core/zirconia shell nanocomposite was prepared by one-step method. • Fe/Zr molar ratio of 4/1 allowed high magnetization and high adsorption capacity. • The nanocomposite had good selectivity towards phosphate. • Ligand exchange was the adsorption mechanism of phosphate. • Desorption of adsorbed phosphate could be achieved by NaOH treatment. - Abstract: A self-assembled magnetite core/zirconia shell (Fe{sub 3}O{sub 4}@ZrO{sub 2}) nanoparticle material was fabricated by the one-step co-precipitation method to capture phosphate from water. Fe{sub 3}O{sub 4}@ZrO{sub 2} with different Fe/Zr molar ratios were obtained and characterized by XRD, TEM, BET surface area and magnetization. It was shown that, with the decreasing of Fe/Zr molar ratio, magnetization decreased whereas surface area and adsorption capacity of phosphate increased. Fe{sub 3}O{sub 4}@ZrO{sub 2} with the ratio of higher than 4:1 had satisfactory magnetization property (>23.65 emu/g), enabling rapid magnetic separation from water and recycle of the spent adsorbent. The Langmuir adsorption capacity of Fe{sub 3}O{sub 4}@ZrO{sub 2} reached 27.93–69.44 mg/g, and the adsorption was fast (90% of phosphate removal within 20 min). The adsorption decreases with increasing pH, and higher ionic strength caused slight increase in adsorption at pH > about 5.5. The presence of chloride, nitrate and sulfate anions did not bring about significant changes in adsorption. As a result, Fe{sub 3}O{sub 4}@ZrO{sub 2} performed well to remove phosphate from real wastewater. These results were interpreted by the ligand exchange mechanism, i.e., the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. Results suggested that phosphate reacted mainly with surface hydroxyl groups but diffusion into interior of zirconia phase also contributed to adsorption. The adsorbed phosphate could be desorbed with a NaOH treatment and the regenerated Fe

  18. The transparaspinal approach: A novel technique for one-step removal of dumb-bell-shaped spinal tumors.

    Science.gov (United States)

    Singh, Deepak Kumar; Singh, Neha; Rastogi, Manu; Husain, Mazhar

    2011-07-01

    Complex dumb-bell spinal tumors are challenging surgical lesions. Combined antero-posterior exposures have traditionally been used in their management. This combined exposure has the disadvantage of a two-stage operation with transthoracic or retroperitoneal dissection. With better understanding of biomechanics of spine and evolution of microsurgical technique, there has been resurgence of single stage surgeries, among which the transparaspinal exposure provides the simplest and the most direct route for resection of dumb-bell tumors. A 16-year-old male was admitted with history of back pain with radiation to left lower limb for 6 months, progressive weakness of both lower limbs for two months, and hesitancy of micturition for 1 month. A clinical diagnosis of cauda-conus lesion was made. Radiological investigations revealed a complex dumb-bell spinal tumor extending from lower part of L2-L4 vertebra, with large paraspinal extension through left L3 intervertebral foramina. Tumor was successfully removed in one step using a transparaspinal approach. We discuss technical details of this novel approach along with limitations and possible complications.

  19. The transparaspinal approach: A novel technique for one-step removal of dumb-bell-shaped spinal tumors

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Singh

    2011-01-01

    Full Text Available Complex dumb-bell spinal tumors are challenging surgical lesions. Combined antero-posterior exposures have traditionally been used in their management. This combined exposure has the disadvantage of a two-stage operation with transthoracic or retroperitoneal dissection. With better understanding of biomechanics of spine and evolution of microsurgical technique, there has been resurgence of single stage surgeries, among which the transparaspinal exposure provides the simplest and the most direct route for resection of dumb-bell tumors. A 16-year-old male was admitted with history of back pain with radiation to left lower limb for 6 months, progressive weakness of both lower limbs for two months, and hesitancy of micturition for 1 month. A clinical diagnosis of cauda-conus lesion was made. Radiological investigations revealed a complex dumb-bell spinal tumor extending from lower part of L2-L4 vertebra, with large paraspinal extension through left L3 intervertebral foramina. Tumor was successfully removed in one step using a transparaspinal approach. We discuss technical details of this novel approach along with limitations and possible complications.

  20. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.

    Science.gov (United States)

    Huang, Shouying

    2014-10-08

    In the present study, a superhydrophobic polyurethane (PU) sponge with hierarchically structured surface, which exhibits excellent performance in absorbing oils/organic solvents, was fabricated for the first time through mussel-inspired one-step copolymerization approach. Specifically, dopamine (a small molecular bioadhesive) and n-dodecylthiol were copolymerized in an alkaline aqueous solution to generate polydopamine (PDA) nanoaggregates with n-dodecylthiol motifs on the surface of the PU sponge skeletons. Then, the superhydrophobic sponge that comprised a hierarchical structured surface similar to the chemical/topological structures of lotus leaf was fabricated. The topological structures, surface wettability, and mechanical property of the sponge were characterized by scanning electron microscopy, contact angle experiments, and compression test. Just as a result of the highly porous structure, superhydrophobic property and strong mechanical stability, this sponge exhibited desirable absorption capability of oils/organic solvents (weight gains ranging from 2494% to 8670%), suggesting a promising sorbents for the removal of oily pollutants from water. Furthermore, thanks to the nonutilization of the complicated processes or sophisticated equipment, the fabrication of the superhydrophobic sponge seemed to be quite easy to scale up. All these merits make the sponge a competitive candidate when compared to the conventional absorbents, for example, nonwoven polypropylene fabric.

  1. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process

    OpenAIRE

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-01-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly us...

  2. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles.

    Science.gov (United States)

    Leonardi, Antonio; Bucolo, Claudio; Romano, Giovanni Luca; Platania, Chiara Bianca Maria; Drago, Filippo; Puglisi, Giovanni; Pignatello, Rosario

    2014-08-15

    Addition of one or more surfactant agents is often necessary for the production of nanostructured lipid and polymeric systems. The removal of residual surfactants is a required step for technological and toxicological reasons, especially for peculiar applications, such as the ophthalmic field. This study was planned to assess the technological properties of some surfactants, commonly used for the production of lipid nanoparticles, as well as their ocular safety profile. Stable and small-size solid lipid nanoparticles were obtained using Dynasan(®) 114 as the lipid matrix and all the tested surfactants. However, from a toxicological point of view, the nanocarriers produced using Kolliphor(®) P188 were the most valuable, showing no irritant effect on the ocular surface up to the highest tested surfactant concentration (0.4%, w/v). The SLN produced using Cremophor(®) A25 and Lipoid(®) S100 were tolerated up to a surfactant concentration of 0.2% by weight, while for Tween(®) 80 and Kolliphor(®) HS 15 a maximum concentration of 0.05% can be considered totally not-irritant.

  3. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  4. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration.

    Science.gov (United States)

    Pichot, R; Spyropoulos, F; Norton, I T

    2010-12-01

    The stability against coalescence of O/W emulsions in the presence of both surfactants and colloidal particles was investigated. In particular the effect of the surfactant type and concentration in these emulsifier mixtures on the O/W emulsions' stability was studied. Two types of surfactants were selected; those that have the ability to stabilise O/W emulsions on their own (O/W surfactants) and those that cannot (W/O surfactants). Tween 60 and Sodium Caseinate were selected as the O/W surfactants and lecithin as the W/O surfactant. Oil-in-water emulsions prepared with both particles and any of the three surfactants were stable against coalescence but, depending on the type of surfactant, the behaviour of the systems was found to depend on surfactant concentration. The droplet sizes of emulsions stabilised by mixed emulsifier systems containing low concentrations of O/W surfactants (Tween 60 or Sodium Caseinate) were smaller than those solely stabilised by either the surfactant or particles alone. At intermediate O/W surfactants concentrations, the droplet sizes of the emulsions increased. Further increases in the O/W surfactants' concentration, resulted in the complete removal of particles from the interface with the system now behaving as a surfactant-only stabilised emulsion. The behaviour of emulsions stabilised by emulsifier mixtures containing W/O surfactants was not dependent on the concentration of surfactant: no removal of particles was observed. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy.

    Science.gov (United States)

    Fan, Jinlin; Liang, Shuang; Zhang, Bo; Zhang, Jian

    2013-04-01

    Oxygen and carbon source supply are usually insufficient in subsurface flow constructed wetlands. Simultaneous removal of organic pollutants and nitrogen in five batch-operated vertical flow constructed wetlands under different operating conditions was investigated. Alternate aerobic and anaerobic regions were created well with intermittent aeration. Four-month experiments showed that the wetland-applied intermittent aeration combined with step feeding strategy (reactor E) greatly improved the removal of organics, ammonium nitrogen (NH4-N), and total nitrogen (TN) simultaneously, which were 97, 96, and 82%, respectively. It was much better than non-aerated reactors A and B and outperformed intermittently aerated reactor D without step feeding. Continuous aeration (reactor C) significantly enhanced the organics removal and nitrification, but it limited the TN removal (29%) seriously as a result of low denitrification level, and the high operation cost remained a question. The effect of plants was confirmed in this study, and the monitoring data showed that the plants could grow normally. Intermittent aeration as well as step feeding had no obvious influence on the growth of wetland plants in this study.

  6. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals adsorptive removal, resulting in rapid concentration

  7. Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal.

    Science.gov (United States)

    Wang, Wei; Han, Hongjun; Yuan, Min; Li, Huiqiang; Fang, Fang; Wang, Ke

    2011-05-01

    A two-continuous mesophilic (37 ± 2°C) UASB system with step-feed was investigated as an attractive optimization strategy for enhancing COD and total phenols removal of the system and improving aerobic biodegradability of real coal gasification wastewater. Through the step-feed period, the maximum removal efficiencies of COD and total phenols reached 55-60% and 58-63% respectively in the system, at an influent flow distribution ratio of 0.2 and influent COD concentration of 2500 mg/L; the corresponding efficiencies were at low levels of 45-50% and 43-50% respectively at total HRT of 48 h during the single-feed period. The maximum specific methanogenic activity and substrate utilization rate were 592 ± 16 mg COD-CH(4)/(g VSS d) and 89 ± 12 mg phenol/(g VSS d) during the step-feed operation. After the anaerobic digestion with step-feed, the aerobic effluent COD concentration decreased from 270 ± 9 to 215 ± 10 mg/L. The results suggested that step-feed enhanced the degradation of refractory organics in the second reactor.

  8. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)

    1997-07-01

    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  9. Removal of surfactants from water by adsorption on activated carbon and advanced oxidation process; Eliminacion de surfactantes de las aguas mediante adsorcion sobre carbon activado y oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Diaz, J. D.; Sanchez Polo, M.; Rivera Utrilla, J.; Bautista, M. I.

    2007-07-01

    The objective of this study was to analyze the elimination process of surfactants from water, using sodium dode-cilbencenesulfonate (SDBS) as model compound, by means of adsorption on activated carbons as well as different processes of advanced oxidation (O{sub 3}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon). Results obtained have shown that the activated carbons used have a high efficiency to eliminate SDBS from waters which was enhanced when the adsorption process was carried out in the presence of bacteria. With regard to the oxidation processes studied, the results have indicated that the efficiency in the elimination of SDBS from water of the system based on the simultaneous use of O{sub 3} and powder activated carbon (PAC) is much higher than those of the other systems studied (O{sub 3},O{sub 3}/H{sub 2}O{sub 2}). (Author) 15 refs.

  10. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...... both for complex surfactant systems as well as for oil and brine systems. It is widely accepted that an increase in oil recovery can be obtained through flooding, whether it is simple waterflooding, waterflooding where the salinity has been modified by the addition or removal of specific ions (socalled...... “smart” waterflooding) or surfactant flooding. High pressure experiments have been carried out in this work on a surfactant system (surfactant/ oil/ brine) and on oil/ seawater systems (oil/ brine). The high pressure experiments were carried out on a DBR JEFRI PVT cell, where a glass window allows...

  11. Palm oil based surfactant products for petroleum industry

    Science.gov (United States)

    Permadi, P.; Fitria, R.; Hambali, E.

    2017-05-01

    In petroleum production process, many problems causing reduced production are found. These include limited oil recovery, wax deposit, asphaltene deposit, sludge deposit, and emulsion problem. Petroleum-based surfactant has been used to overcome these problems. Therefore, innovation to solve these problems using surfactant containing natural materials deserves to be developed. Palm oil-based surfactant is one of the potential alternatives for this. Various types of derivative products of palm oil-based surfactant have been developed by SBRC IPB to be used in handling problems including surfactant flooding, well stimulation, asphaltene dissolver, well cleaning, and wax removal found in oil and gas industry.

  12. One-Step Transpapillary Balloon Dilation under Cap-Fitted Endoscopy without a Preceding Sphincterotomy for the Removal of Bile Duct Stones in Billroth II Gastrectomy.

    Science.gov (United States)

    Lee, Tae Hoon; Hwang, Jae Chul; Choi, Hyun Jong; Moon, Jong Ho; Cho, Young Deok; Yoo, Byung Moo; Park, Sang-Heum; Kim, Jin Hong; Kim, Sun-Joo

    2012-01-01

    Endoscopic sphincterotomy may be limited in Billroth II gastrectomy because of difficulty in orientating the duodenoscope and sphincterotome as a result of altered anatomy. This study was planned to investigate the efficacy and safety of endoscopic transpapillary large balloon dilation (EPBD) without preceding sphincterotomy for removal of large CBD stones in Billroth II gastrectomy. Between March 2010 and February 2011, one-step EPBD under cap-fitted forward-viewing endoscopy was performed in patients who had undergone Billroth II gastrectomy at two tertiary referral centers. Main outcome measurements were successful duct clearance and EPBD-related complications. Successful access to major duodenal papilla was performed in 13 patients, but successful selective CBD cannulation was achieved in 12 patients (92.3%). Median maximum transverse stone size was 11.5 mm (10 to 14 mm). The mean number of stones was 2 (1-5). The median CBD diameter was 15 mm (12 to 19 mm). Mean procedure time from successful biliary access to complete stone removal was 17.8 min. Complete duct clearance was achieved in all patients. Four patients (33.3%) needed one more session of ERCP for removal of remnant stones. Asymptomatic hyperamylasemia in two patients and minor bleeding in another occurred. Without preceding sphincterotomy, one-step EPBD (≥10 mm) under cap-fitted forward-viewing endoscopy may be safe and effective for the removal of large stones (≥10 mm) with CBD dilatation in Billroth II gastrectomy.

  13. Innovation in surfactant therapy I: surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques.

    Science.gov (United States)

    Dargaville, Peter A

    2012-01-01

    Innovation in the field of exogenous surfactant therapy continues more than two decades after the drug became commercially available. One such innovation, lung lavage using dilute surfactant, has been investigated in both laboratory and clinical settings as a treatment for meconium aspiration syndrome (MAS). Studies in animal models of MAS have affirmed that dilute surfactant lavage can remove meconium from the lung, with resultant improvement in lung function. In human infants both non-randomised studies and two randomised controlled trials have demonstrated a potential benefit of dilute surfactant lavage over standard care. The largest clinical trial, performed by our research group in infants with severe MAS, found that lung lavage using two 15-ml/kg aliquots of dilute surfactant did not reduce the duration of respiratory support, but did appear to reduce the composite outcome of death or need for extracorporeal membrane oxygenation. A further trial of lavage therapy is planned to more precisely define the effect on survival. Innovative approaches to surfactant therapy have also extended to the preterm infant, for whom the more widespread use of continuous positive airway pressure (CPAP) has meant delaying or avoiding administration of surfactant. In an effort to circumvent this problem, less invasive techniques of bolus surfactant therapy have been trialled, including instillation directly into the pharynx, via laryngeal mask and via brief tracheal catheterisation. In a recent clinical trial, instillation of surfactant into the trachea using a flexible feeding tube was found to reduce the need for subsequent intubation. We have developed an alternative method of brief tracheal catheterisation in which surfactant is delivered via a semi-rigid vascular catheter inserted through the vocal cords under direct vision. In studies to date, this technique has been relatively easy to perform, and resulted in rapid improvement in lung function and reduced need for

  14. Thermally cleavable surfactants

    Science.gov (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  16. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  17. One Step In-Situ Formed Magnetic Chitosan Nanoparticles as an Efficient Sorbent for Removal of Mercury Ions From Petrochemical Waste Water: Batch and Column Study

    Directory of Open Access Journals (Sweden)

    Rahbar

    2015-10-01

    Full Text Available Background In the recent years, mercury contamination has attracted great deal of attention due to its serious environmental threat. Objectives The main goal of this study was application of one-step synthesized magnetic (magnetite chitosan nanoparticles (MCNs in the removal of mercury ions from petrochemical waste water. Materials and Methods This study was performed in batch and column modes. Effects of various parameters such as pH, adsorbent dose, contact time, temperature and agitation speed for the removal of mercury ions by MCNs investigated in batch mode. Afterwards, optimum conditions were exploited in column mode. Different kinetic models were also studied. Results An effective Hg (II removal (99.8% was obtained at pH 6, with 50 mg of MCNs for an initial concentration of this ion in petrochemical waste water (5.63 mg L-1 and 10 minutes agitation of the solution. The adsorption kinetic data was well fitted to the pseudo-second-order model. Conclusions Experimental results showed that MCNs is an excellent sorbent for removal of mercury ions from petrochemical waste water. In addition, highly complex matrix of this waste does not affect the adsorption capability of MCNs.

  18. Synergistic disinfection and removal of biofilms by a sequential two-step treatment with ozone followed by hydrogen peroxide.

    Science.gov (United States)

    Tachikawa, Mariko; Yamanaka, Kenzo

    2014-11-01

    Synergistic disinfection and removal of biofilms by ozone (O3) water in combination with hydrogen peroxide (H2O2) solution was studied by determining disinfection rates and observing changes of the biofilm structure in situ by confocal laser scanning microscopy (CLSM) using an established biofilm of Pseudomonas fluorescence. The sequential treatment with O3, 1.0-1.7 mg/L, followed by H2O2, 0.8-1.1%, showed synergistic disinfection effects, while the reversed treatment, first H2O2 followed by O3, showed only an additive effect. The decrease of synergistic disinfection effect by addition of methanol (CH3OH), a scavenger of hydroxyl radical (OH), into the H2O2 solution suggested generation of hydroxyl radicals on or in the biofilm by the sequential treatment with O3 followed by H2O2. The primary treatment with O3 increased disinfection rates of H2O2 in the secondary treatment, and the increase of O3 concentration enhanced the rates. The cold temperature of O3 water (14 °C and 8 °C) increased the synergistic effect, suggesting the increase of O3 adsorption and hydroxyl radical generation in the biofilm. CLSM observation showed that the sequential treatment, first with O3 followed by H2O2, loosened the cell connections and thinned the extracellular polysaccharides (EPS) in the biofilm. The hydroxyl radical generation in the biofilm may affect the EPS and biofilm structure and may induce effective disinfection with H2O2. This sequential treatment method may suggest a new practical procedure for disinfection and removal of biofilms by inorganic oxidants such as O3 and H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Optimization of main factors associated with nitrogen removal in hybrid sludge sequencing batch reactor with step-feeding of swine wastewater.

    Science.gov (United States)

    Han, Zhiying; Wu, Weixiang; Ding, Ying; Zhu, Jun; Chen, Yingxu

    2008-02-01

    To attain a high nitrogen removal efficiency and good sludge settleability in a step-fed sequencing batch reactor (SFSBR) treating swine wastewater, L(9)(3(4)) orthogonal experiments were carried out to optimize main factors associated with nitrogen removal, namely, the influent C/N ratio, feeding volume ratio, nitrogen loading rate and aeration intensity. Results showed that nitrogen loading rate contributed most for the build-up of NO(2)(-)-N, NO(3)(-)-N and NH(4)(+)-N in the effluent, while aeration intensity was the most important factor for net nitrogen removal efficiency based on the initial and final nitrogen concentrations in the SFSBR cycle. Additionally, the periodic starvation created by stepwise feeding was the major inducing force for granulation in the SFBSR process and the influent C/N ratio had a profound influence on sludge settleability and granular sludge stability in terms of sludge volume index (SVI) and the fraction of granular sludge with diameter over 0.5 mm (f(0.5 mm)), respectively. Considering the most and secondary important control factor for individual response index, the optimal operating condition for nitrogen removal of SFSBR treating swine wastewater was determined as A(3)B(3)C(1)D(2), i.e., influent C/N ratio 7.0 mg COD/mg NH(4)(+)-N, feeding volume ratio 3:1, nitrogen loading rate 0.026 g NH(4)(+)-N/gVSS . d and aeration intensity 4.2 L/m(3) . s, respectively. Under the optimal operating conditions, inorganic nitrogen concentration in the effluent, net nitrogen removal efficiency, SVI and f(0.5 mm) reached 21 mg/L, 72 %, 40.7 mL/g and 4.3 %, respectively.

  20. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity.

  1. One-step synthesis of water-dispersible cysteine functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles for mercury(II) removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaofang, E-mail: xfshen@jiangnan.edu.cn [State Key Laboratory of Dairy Biotechnology, Technology Center, Bright Dairy and Food Co. Ltd., Shanghai 200436 (China); State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang, Qin; Chen, WenLing; Pang, Yuehong [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China)

    2014-10-30

    Graphical abstract: Using Fe{sup 2+} as precursors, air as oxidant and cysteine as protectant, this novel cysteine functionalized Fe{sub 3}O{sub 4} magnetic nanoparticles (Cys-Fe{sub 3}O{sub 4} MNPs) was facilely one-pot synthesized at room temperature by oxidation–precipitation method with the assistance of sonication. Then the Cys-Fe{sub 3}O{sub 4} MNPs were demonstrated as an inexpensive and quite efficient magnetic nano-adsorbent for as high as 95% Hg(II) removal efficiency. These results indicated that Cys-Fe{sub 3}O{sub 4} MNPs is a potentially attractive material for the removal of Hg(II) from water. - Highlights: • A simplified one-step synthesis method of superparamagnetic Cys-Fe{sub 3}O{sub 4} MNPs was developed. • It was synthesized at room temperature by oxidation-precipitation method with the assistance of sonication. • It was demonstrated as an inexpensive and quite efficient magnetic nano-adsorbent for Hg(II) removal. - Abstract: Cysteine functionalized Fe{sub 3}O{sub 4} magnetic nanoparticles (Cys-Fe{sub 3}O{sub 4} MNPs) were prepared facilely for Hg(II) removal from aqueous solutions. Using Fe{sup 2+} as precursors, air as oxidant and Cys as protectant, this novel material was one-pot synthesis at room temperature by oxidation–precipitation method with the assistance of sonication. The MNPs were characterized by TEM, VSM, FTIR, X-ray powder diffraction analysis (XRD) and TGA methods. Under the optimum experimental conditions, the removal efficiency was as high as 95% and the maximum sorption capacity is found to be 380 mg/mol for Hg(II). Study on adsorption kinetics shows that adsorption of Hg(II) onto Cys-Fe{sub 3}O{sub 4} MNPs follows pseudo-first-order kinetic model and the adsorption rate constant was 0.22 min{sup −1}. Additionally, the Hg(II)-loaded Cys-Fe{sub 3}O{sub 4} MNPs could be easily regenerated up to 95% using 1.0 M acetic acid. These results indicated that Cys-Fe{sub 3}O{sub 4} MNPs is a potentially attractive material

  2. 2-DE using hemi-fluorinated surfactants.

    Science.gov (United States)

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.

  3. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants

    Science.gov (United States)

    One-step green synthesis of gold (Au) nanostructures is described using naturally occurring biodegradable plant surfactants such as VeruSOL-3™ (mixture of d-limonene and plant-based surfactants), VeruSOL-10™, VeruSOL-11™ and VeruSOL-12™ (individual plant-based surfactants deri...

  4. Treatment of surfactant stabilized oil-in-water emulsions by means of chemical oxidation and coagulation.

    Science.gov (United States)

    Kulik, N; Trapido, M; Veressinina, Y; Munter, R

    2007-12-01

    The model wastewater samples investigated in the current study represented oil-in-water (O/W) emulsions with small oil (diesel/black oil) and high surfactant (Anrol/Decon90) concentrations generated during washing of oil tankers or tank-wagons. Coagulation with aluminium sulphate, ferric chloride and lime milk, and chemical oxidation by hydrogen peroxide catalyzed ferrous ions were applied as traditional and advanced treatment processes, respectively. Coagulation proved more feasible for oil content removal than for COD reduction. Both COD and oil content removal, were higher if Anrol was used as a surface active agent. The comparison of wastewater samples with different oil products but the same detergent showed more effective black oil removal. Coagulation was found ineffective as a pre-treatment technology for biodegradability improvement and toxicity reduction in surfactant stabilized O/W emulsion wastewater samples. The application of Fenton chemistry showed significant COD, UV absorbance and BOD removal, but no improvement in wastewater samples biodegradability. The maximum COD reduction and oil content removal from wastewater samples was above 90%. The oxidation of wastewater containing Decon90 required higher dosages of the Fenton reagent than wastewater with Anrol. Both Anrol and Decon90 contaminated wastewater samples were found to be detoxified even after moderate hydrogen peroxide dosages had been applied in the oxidation step.

  5. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Suman; Karak, Niranjan, E-mail: karakniranjan@yahoo.com

    2014-04-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb{sup 2+} and Cd{sup 2+} within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous.

  6. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  7. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  8. Dendrimer-surfactant interactions.

    Science.gov (United States)

    Cheng, Yiyun; Zhao, Libo; Li, Tianfu

    2014-04-28

    In this article, we reviewed the interactions between dendrimers and surfactants with particular focus on the interaction mechanisms and physicochemical properties of the yielding dendrimer-surfactant aggregates. In order to provide insight into the behavior of dendrimers in biological systems, the interactions of dendrimers with bio-surfactants such as phospholipids in bulk solutions, in solid-supported bilayers and at the interface of phases or solid-states were discussed. Applications of the dendrimer-surfactant aggregates as templates to guide the synthesis of nanoparticles and in drug or gene delivery were also mentioned.

  9. Surfactant Sector Needs Urgent Readjustment

    Institute of Scientific and Technical Information of China (English)

    Huang Hongzhou

    2007-01-01

    @@ Surfactant industrial system has been basically established After 50 years' development, China has already established a surfactant industrial system with a relatively complete product portfolio and can produce 4714 varieties of surfactants in cationic,anionic, nonionic and amphoteric categories.

  10. Use of surfactants for the remediation of contaminated soils: a review.

    Science.gov (United States)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  11. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  12. SURFACTANTS IN LUBRICATION

    Science.gov (United States)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  13. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo. Re

  14. Use of surfactants for the remediation of contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xuhui, E-mail: clab@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Jiang, Rui; Xiao, Wei [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2015-03-21

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  15. The effect of surfactant on pollutant biosorption of Trametes versicolor

    Science.gov (United States)

    Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve

    2016-04-01

    The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.

  16. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite

  17. Surfactant apoprotein in nonmalignant pulmonary disorders.

    Science.gov (United States)

    Singh, G.; Katyal, S. L.

    1980-01-01

    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to lung injury. The intra-alveolar material in pulmonary alveolar proteinosis stained intensely for surfactant apoprotein, indicating that the accumulated proteinaceous material contained pulmonary surfactant. Type II pneumocytes in pulmonary alveolar proteinosis exhibited hyperplasia as well as hypertrophy. The few macrophages in lung affected by pulmonary alveolar proteinosis stained intensely for lysozyme. The excessive intraalveolar accumulation of proteinaceous material in pulmonary alveolar proteinosis may be the result of both an over-production as well as a deficient removal of pulmonary surfactant. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 p[57]-a PMID:7004201

  18. Surfactants in the environment.

    Science.gov (United States)

    Ivanković, Tomislav; Hrenović, Jasna

    2010-03-01

    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  19. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of th

  20. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  1. Remediation of sandy soils using surfactant solutions and foams.

    Science.gov (United States)

    Couto, Hudson J B; Massarani, Guilio; Biscaia, Evaristo C; Sant'Anna, Geraldo L

    2009-05-30

    Remediation of sandy soils contaminated with diesel oil was investigated in bench-scale experiments. Surfactant solution, regular foams and colloidal gas aphrons were used as remediation fluids. An experimental design technique was used to investigate the effect of relevant process variables on remediation efficiency. Soils prepared with different average particle sizes (0.04-0.12 cm) and contaminated with different diesel oil contents (40-80 g/kg) were used in experiments conducted with remediation fluids. A mathematical model was proposed allowing for the determination of oil removal rate-constant (k(v)) and oil content remaining in the soil after remediation (C(of)) as well as estimation of the percentage of oil removed. Oil removal efficiencies obtained under the central experimental design conditions were 96%, 88% and 35% for aphrons, regular foams and surfactant solutions, respectively. High removal efficiencies were obtained using regular foams and aphrons, demanding small amounts of surfactant.

  2. Phosphine oxide surfactants revisited.

    Science.gov (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  3. Enhanced Biological Nutrients Removal in Modified Step-feed Anaerobic/Anoxic/Oxic Process%改进型分段进水厌氧/缺氧/好氧工艺强化营养物去除

    Institute of Scientific and Technical Information of China (English)

    王伟; 王淑莹; 彭永臻; 张善锋; 殷芳芳

    2009-01-01

    In order to enhance phosphorus removal in traditional step-feed anoxic/oxic nitrogen removal process, a modified pilot-scale step-feed anaerobic/anoxic/oxic (SFA~2/O) system was developed, which combined a reactor similar to UCT-type configuration and two-stage anoxic/oxic process. The simultaneous nitrogen and phosphorus removal capacities and the potential of denitrifying phosphorus removal, in particular, were investigated with four different feeding patterns using real municipal wastewater. The results showed that the feeding ratios (Q_1) in the first stage determined the nutrient removal performance in the SFA~2/O system. The average phosphorus removal efficiency increased from 19.17% to 96.25% as Q_1 was gradually increased from run 1 to run 4, but the nitrogen removal efficiency exhibited a different tendency, which attained a maximum 73.61% in run 3 and then decreased to 59.62% in run 4. As a compromise between nitrogen and phosphorus removal, run 3 (Q_1 = 0.45Q_(total)) was identified as the optimal and stable case with the maximum anoxic phosphorus uptake rate of 1.58 mg(g MLSS)~(-1)·h~(-1). The results of batch tests showed that ratio of the anoxic phosphate uptake capacity to the aerobic phosphate uptake capacity increased from 11.96% to 36.85% with the optimal influent feeding ratio to the system in run 3, which demonstrated that the denitrifying polyP accumulating organisms could be accumulated and contributed more to the total phosphorus removal by optimizing the inflow ratio distribution. However, the nitrate recirculation to anoxic zone and influent feeding ratios should be carefully controlled for carbon source saving.

  4. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Jin Danyue; Jiang Xia [State Environmental Protect Key Laboratory of Lake Eutrophication Control, Research Center of Lake Environment, Chinese Research Academy of Environmental Science, No. 8 Dayangfang, An Wai Bei Yuan, Beijing 100012 (China)]. E-mail: jiangxia@craes.org.cn; Jing Xin [State Environmental Protect Agency of China (China); Ou Ziqing [Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016 (China)

    2007-06-01

    The effects of concentration, polar/ionic head group, and structure of surfactants on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase, as well as their effects on the bacterial activity were investigated. The toxicity ranking of studied surfactants is: non-ionic surfactants (Tween 80, Brij30, 10LE and Brij35) < anionic surfactants (LAS) < cationic surfactants (TDTMA). For the same head group and similar molecular structure, the toxicity to the bacteria is due to the chain length, in which the toxicity becomes lower as the chain length increases. The bacterial growth increased slightly when phenanthrene and LAS ({<=}10 mg L{sup -1}) served the sole carbon and energy resource. However, the degradation of {sup 14}C-phenanthrene showed either a decrease or no obvious change with the surfactants present at all tested concentrations (5-40 mg L{sup -1}). Thus, the surfactant addition is not beneficial to the removal of phenanthrene or other PAH contaminants due presumably to the preferential utilization of surfactants at low levels as the non-toxic nutrient resource and to the high toxicity of the surfactants at high levels to the microorganism activity. Biodegradation of phenanthrene was also influenced by the surfactant concentration, head group type, and structure. Much more research has yet to be completed on the use of surfactants for soil remediation due to the surfactant toxicity or biodegradation effect.

  5. Reversibly enhanced aqueous solubilization of volatile organic compounds using a redox-reversible surfactant

    Institute of Scientific and Technical Information of China (English)

    Yingjie Li; Senlin Tian; Hong Mo; Ping Ning

    2011-01-01

    Surfactant-enhanced remediation (SER) is an effective method for the removal of volatile organic compounds (VOCs) from contaminated soils and groundwater.To reuse the surfactant the VOCs must be separated from the surfactant solutions.The water solubility of VOCs can be enhanced using reversible surfactants with a redox-acive group,(ferrocenylmethyl)dodecyldimethylammonium bromide (Fc12) and (ferrocenylmethyl)tetradecanedimethylammonium bromide (Fc14),above and below their critical micelle concentrations (CMC) under reducing (I+) and oxidative (I2+) conditions.The CMC values of Fc12 and Fc14 in I+ are 0.94 and 0.56 mmol/L and the solubilization of toluene by Fc12 and Fc14 in I+ for toluene is higher than the solubilization achieved with sodium dodecyl sulfate,cetyltrimethylammonium bromide and Trition X-114.The solubilization capacity of the ferrocenyl surfactants for each tested VOCs ranked as follows:ethylbenzene > toluene > benzene.The solubilities of VOCs by reversible surfactant in I+ were 30% higher than those in 12+ at comparable surfactant concentrations.The effects of Fc14 concentrations on VOCs removal efficiency were as follows:benzene > toluene > ethylbenzene.However,an improved removal efficiency was achieved at low ferrocenyl surfactant concentrations.Furthermore,the reversible surfactant could be recycled through chemical approaches to remove organic pollutants,which could significantly reduce the operating costs of SER technology.

  6. 应用表面活性剂-生物柴油微乳液去除污染土壤中多环芳烃%Application of microemulsion synthesized by surfactant and biodiesel to remove polycyclic aromatic hydrocarbons from contaminated soil

    Institute of Scientific and Technical Information of China (English)

    孙翼飞; 巩宗强; 苏振成; 王晓光; 图影

    2012-01-01

    It has been an issue that remediation of soils with high concentrations of PAHs will spend too much.Four kinds of solutions,non-edible plant oil,biodiesel,surfactants and microemulsion which was synthesized by surfactant and biodiesel or vegetable oil,were selected as the washing agents to study the PAH removal.Results showed that microemulsion got a higher total PAH removal than surfactact addition alone,which indicated that biodiesel and non-edible plant oil could enhance desorption of PAHs from MGP soil in the presence of surfactants.2.5% tween 80 solution resulted in more obvious enhancement of PAH desorption from the contaminated soil compared to 1% tween 80,the PAH removals were 14% and 11% individually.Microemulsion from 2.5% tween 80 induced a higher PAH removal than microemulsion from 1% tween 80,PAH removal ranged from 15% and 11% to 30% and 18%,separately.Addition bidiesel to surfactant obtained higher PAH removals compared to vegetable oil addition,the PAH removals were ranged from 17% and 15% to 30% and 23%,respectively,and a good correlation was found between removals of individual PAHs and their logKow.%针对修复焦化厂高浓度多环芳烃污染土壤高成本的现实,采用以非食用性植物油、生物柴油、表面活性剂及其乳化合成的微乳液为淋洗剂,比较不同淋洗剂的淋洗效果。结果表明乳化合成的微乳液对焦化厂土壤中多环芳烃的总去除率高于单独使用表面活性剂为淋洗剂对土壤中多环芳烃的总去除率,说明生物柴油及植物油与表面活性剂乳化形成的微乳液对原污染土壤中的多环芳烃具有显著的增溶作用。1%TW-80和2.5%TW-80对土壤中多环芳烃总去除率分别为11%和14%;以2.5%TW-80为原料乳化合成的微乳液的淋洗去除率较以1%TW-80为原料乳化合成的微乳液高,总去除率分别为15%~30%和11%~18%;以生物柴油为原料乳化合成的微乳液的淋洗去除率较以植物油为原料乳化合

  7. Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw.

    Science.gov (United States)

    Chang, Ken-Lin; Chen, Xi-Mei; Wang, Xiao-Qin; Han, Ye-Ju; Potprommanee, Laddawan; Liu, Jing-Yong; Liao, Yu-Ling; Ning, Xun-An; Sun, Shui-Yu; Huang, Qing

    2017-03-01

    This work describes an environmentally friendly method for pretreating rice straw by using 1-Allyl-3-methylimidazolium chloride ([AMIM]Cl) as an ionic liquid (IL) assisted by surfactants. The impacts of surfactant type (including nonionic-, anionic-, cationic- and bio-surfactant) on the ionic liquid pretreatment were investigated. The bio-surfactant+IL-pretreated rice straw showed significant lignin removal (26.14%) and exhibited higher cellulose conversion (36.21%) than the untreated (16.16%) rice straw. The cellulose conversion of the rice straw pretreated with bio-surfactant+IL was the highest and the lowest was observed for pretreated with cationic-surfactant+IL. Untreated and pretreated rice straw was thoroughly characterized through SEM and AFM. In conclusion, the results provided an effective and environmental method for pretreating lignocellulosic substrates by using green solvent (ionic liquid) and biodegradable bio-surfactant.

  8. Effect of alkyl length of cationic surfactants on desorption of Cs from contaminated clay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hyun; Park, Chan Woo; Yang, Hee Man; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, So Jin [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    In this study, desorption characteristics of Cs from clay according to the hydrophobic alkyl chain length of the cationic surfactant were investigated. Alkyltrimethylammonium bromide was used as a cationic surfactant, and the length of the hydrophobic alkyl chain of the cationic surfactant was varied from –octyl to –cetyl. The adsorbed amount of the cationic surfactant on montmorillonite increased with the length of the hydrophobic alkyl chain, and intercalation of the cationic surfactant into the clay interlayer increased the interlayer distances. The Cs removal efficiency was also enhanced with increasing alkyl chain length, and the cationic surfactant with the cetyl group showed a maximum Cs removal efficiency of 99±2.9%.

  9. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2015-08-01

    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  10. Characterization and control of surfactant-mediated Norovirus interactions.

    Science.gov (United States)

    Mertens, Brittany S; Velev, Orlin D

    2015-11-28

    Understanding of the colloidal interactions of Norovirus particles in aqueous medium could provide insights on the origins of the notorious stability and infectivity of these widespread viral agents. We characterized the effects of solution pH and surfactant type and concentration on the aggregation, dispersion, and disassembly of Norovirus virus-like particles (VLPs) using dynamic light scattering, electrophoretic light scattering, and transmission electron microscopy. Owing to net negative surface charge of the VLPs at neutral pH, low concentrations of cationic surfactant tend to aggregate the VLPs, whereas low concentrations of anionic surfactant tend to disperse the particles. Increasing the concentration of these surfactants beyond their critical micelle concentration leads to virus capsid disassembly and breakdown of aggregates. Non-ionic surfactants, however, had little effect on virus interactions and likely stabilized them additionally in suspension. The data were interpreted on the basis of simple models for surfactant binding and re-charging of the virus capsid. We used zeta potential data to characterize virus surface charge and interpret the mechanisms behind these demonstrated surfactant-virus interactions. The fundamental understanding and control of these interactions will aid in practical formulations for virus inactivation and removal from contaminated surfaces.

  11. Effects of surfactants and salt on Henry's constant of n-hexane.

    Science.gov (United States)

    Yang, Chunping; Chen, Fayuan; Luo, Shenglian; Xie, Gengxin; Zeng, Guangming; Fan, Changzheng

    2010-03-15

    n-Hexane biological removal is intrinsically limited by its hydrophobic nature and low bioavailability. The addition of surfactants could enhance the transport of volatile organic compounds (VOCs) and change the gas-liquid equilibrium of VOCs. In this paper, the effects of four surfactants, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), tert-octylphenoxypoly-ethoxyethanol (Triton X-100), polyoxyethylene (20) sorbitan monooleate (Tween 80), and sodium nitrate on apparent Henry's constant of n-hexane in surfactant solutions were investigated. The apparent Henry's constants were significantly reduced when surfactants concentrations exceeded their critical micelle concentrations (cmc's). On a cmc basis, the anionic surfactant SDS was found to have the greatest effect on the apparent Henry's constant with CTAB succeeding, then followed by Triton X-100 and Tween 80. However, the apparent Henry's constant of n-hexane decreased even more rapidly when Triton X-100, a nonionic surfactant, was added than when the ionic surfactant of SDS or CTAB was applied under identical mass concentration and other conditions. These results suggest that Triton X-100 have the biggest solubilization of n-hexane among the four surfactants. Sodium nitrate slightly decreased the apparent Henry's constant of n-hexane in surfactant solutions, and could be considered as a cosolvent in the surfactant-(n-hexane) solution. In addition, the relationship between apparent Henry's constant and surfactant concentration was further developed.

  12. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    Science.gov (United States)

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  13. Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2014-01-01

    nanoparticles (nZVI) could be a competitive alternative to the commonly adapted solutions of incineration or landfilling. Surfactants can enhance the PCB desorption, dechlorination, and the contaminated soil cleanup. In this work, two different surfactants (saponin and Tween 80) were tested to enhance PCB...... desorption and removal from a soil sampled at a polluted site, in a two-compartment cell where the soil was stirred in a slurry with 1% surfactant, 10mL of nZVI commercial suspension, and a voltage gradient of 1Vcm(-1). The highest PCB removal was obtained with saponin. Higher chlorinated PCB congeners...... (penta, hexa, hepta and octachlorobiphenyl) showed removal percentages between 9% and 96%, and the congeners with highest removal were PCB138, PCB153 and PCB180. The use of low level direct current enhanced PCB removal, especially with saponin. Electrodechlorination of PCB with surfactants and n...

  14. Surfactant and adhesive formulations from alkaline biomass extracts

    Science.gov (United States)

    Baxter, Matthew

    This work studies the ability to produce effective surfactant and adhesive formulations using surface active biological material extracted from different biomass sources using alkaline extraction methods. Two urban waste biomass sources were used to produce surfactants, Return Activated Sludge (RAS), and solid Urban Refuse (UR). The third biomass source investigated was isolated mustard protein (MP). RAS and MP extracts were investigated for adhesive production. The results indicate that extracts from the waste biomass sources, RAS and UR, can be combined with a commercial surfactant, sodium dioctyl sulfosuccinate (AOT), to produce surfactants with low interfacial tensions against various oils. These highly surface-active formulations were shown to be useful in the removal of bitumen from contaminated sand. RAS and MP showed potential as protein-based wood adhesives. These sources were used in adhesive formulations to produce a strong bond strength under low-pressure, ambient pressing conditions.

  15. Polymers and surfactants in solution and at interfaces : a model study on detergency

    NARCIS (Netherlands)

    Torn, L.H.

    2000-01-01

    This thesis deals with detergency-related adsorption phenomena of (mixtures of) polymers and surfactants. Both types of molecules play an important role in the removal and subsequent stabilization of soil from a substrate. Starting with a model detergency system consisting of polymers, surfactants,

  16. Sizing up surfactant synthesis.

    Science.gov (United States)

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  17. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite

  18. Dimensioning of a plant for enhanced biological phosphorous removal by estimation of partial steps. Berechnungsansatz fuer die biologische Phosphorelimination durch Bewertung prozessbestimmender Teilschritte

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, I.; Schoenborn, C. (Technische Univ. Dresden (Germany))

    1992-05-01

    For the design of wastewater treatment plants with enhanced biological phosphorus removal and simultaneous removal of nitrogen a calculation model is proposed. The model derived from long-term investigations on bench scale plants. The key variables of the P-elimination process can be described by statistically confident equations. The calculation model can be well handled by engineers and designers. The model includes only a small number of variables, which can be measured in routine analysis. Two versions of the model are described in detail. The calculation model has been verified with independent data from five full-scale wastewater treatment plants in Germany. (orig.).

  19. Adsorption and intercalation of anionic surfactants onto layered double hydroxides—XRD study

    Indian Academy of Sciences (India)

    R Anbarasan; W D Lee; S S Im

    2005-04-01

    Layered double hydroxides (LDH) with brucite like structure was modified with various anionic surfactants containing sulfonate, carboxyl, phosphonate and sulfate end group through ion-exchange method. XRD reports indicated that the sulfonate group containing surfactants led to an adsorption process whereas the sulfate, carboxyl and phosphonate group containing surfactant led to an intercalation process. This can be evidenced from the change in basal spacing of LDH. The presence of anionic surfactants in the LDH was supported by FTIR spectroscopy. The FTIR spectrum indicated that complete removal of carbonate anion from the inter layer space of LDH is very difficult. The phosphonate intercalated HT showed less thermal stability than pristine LDH.

  20. Utilização de surfactantes, na polpação kraft de madeira de eucalipto, como auxiliar na remoção de extrativos lipofílicos Surfactant utilization in kraft pulping of eucalyptus wood to improve lipophilic extractives removal

    Directory of Open Access Journals (Sweden)

    Deusanilde de Jesus Silva

    2004-12-01

    Full Text Available Problemas de deposição de "pitch" em fábricas de celulose e de papel são atribuídos aos extrativos lipofílicos existentes na madeira. Uma das maneiras mais eficientes de controlar essa deposição é através da remoção de seus precursores do sistema, logo que possível, nas etapas de cozimento, lavagem da polpa marrom e pré-deslignificação com oxigênio. O uso de surfactantes como aditivos da polpação tem sido investigado, mas há grande deficiência de informações técnicas, e a aplicação industrial é, ainda, incipiente. A proposta deste trabalho foi analisar a viabilidade de minimizar a deposição de "pitch", intensificando a remoção de suas substâncias precursoras na etapa de polpação pelo uso de tensoativos sintéticos com propriedades umectantes e solubilizantes. Foram testados 20 princípios ativos de surfactantes em cozimento kraft convencional de madeira de eucalipto. Os resultados, alguns estatisticamente significativos, apontaram redução do teor de substâncias lipofílicas na polpa marrom. Foi observado que a remoção dos extrativos lipofílicos da madeira é afetada, inversamente, pelo teor de óxido de eteno na molécula do surfactante. Outros parâmetros de cozimento, como deslignificação, rendimento, teor de rejeitos e viscosidade da polpa, foram também avaliados.Extractives are pitch precursors and may decrease pulping efficiency and affect pulp quality. Probably, the most efficient way to minimize pitch problems is to remove their precursors from the system during cooking, pulp washing and oxygen delignification. Use of surfactants as pulping additives has been investigated but technical information is deficient and industrial application is very incipient. The objective of this study was to analyze the performance of different surfactants as additives for kraft pulping of Eucalyptus wood. Twenty surfactants with different basic chemical structures were used. The results demonstrated that

  1. Surfactant Enhanced Electroremediation of Phenanthrene

    Institute of Scientific and Technical Information of China (English)

    佘鹏; 杨建刚; 等

    2003-01-01

    Removal of hydrophobic organic contaminants(HOCs) form soil of low permeability by electroremediation was investigated by using phenanthrene and kaolinite as a model system.Tween 80 was added into the purging solution in order to enhance the solubility of phenanthrene.The effects of pH on the adsorption of phenanthrene and Tween 80 on kaolinite and the magnitude of ζ-potential of kaolinite were examined,respectively.The effects of electric field strength indicated by electric current on the electroremediation behavior,including the pH of purging solution,the conductivity,phenanthrene concentration and flow rate of effluent,were experimentally investigated,repectively,In case of an electric field of 25mA applied for 72 hours,over 90% of phenanthrene was removed from 424g(dry mass)of kaolinite at an energy consumption of 0.148kW.h.The experimental results described in present study show that the addition of surfactant into purging solution greatly enhances the removel of HOCs by electroremediation.

  2. Long-term survival and vitality outcomes of permanent teeth following deep caries treatment with step-wise and partial-caries-removal: A Systematic Review.

    Science.gov (United States)

    Hoefler, Vaughan; Nagaoka, Hiroko; Miller, Craig S

    2016-11-01

    A systematic review was performed to compare the long-term survival of deep dentine caries-affected permanent teeth treated with partial-caries-removal (PCR) versus similar teeth treated with stepwise-caries-removal techniques (SWT). Clinical studies investigating long-term PCR and SWT outcomes in unrestored permanent teeth with deep dentine caries were evaluated. Failures were defined as loss of pulp vitality or restorative failures following treatment. PubMed, Web of Science, Dentistry and Oral Sciences Source, and Central databases were systematically searched. From 136 potentially relevant articles, 9 publications utilizing data from 5 studies (2 RCTs, and 3 observational case-series) reporting outcomes for 426 permanent teeth over two to ten years were analyzed. Regarding restorative failures, >88% success at two years for both techniques was reported. For loss of pulp vitality, observational studies reported >96% vitality at two years for each technique, while one RCT reported significantly higher vitality (pdeep dentine caries. Partial-caries-removal may result in fewer pulpal complications over a three year period than SWT, although claims of a therapeutic advantage are based on very few, limited-quality studies. Partial-caries-removal and SWT are deep caries management techniques that reduce pulp exposure risk. Permanent teeth with deep dentine caries treated with either technique have a high likelihood for survival beyond two years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Use of watershed factors to predict consumer surfactant toxic units in the upper Trinity river, Texas

    DEFF Research Database (Denmark)

    Johnson, David; Sanderson, Hans; Atkinson, Sam

    2009-01-01

    for surfactant loading into the environment. The objective of this project was to determine whether surfactant concentrations, expressed as toxic units, in-stream water quality, and aquatic habitat in the upper Trinity River could be predicted based on easily accessible watershed characteristics. Surface water...... surfactant concentrations were determined, and total surfactant toxic units were calculated. GIS models of geospatial, anthropogenic factors (e.g., population density) and natural factors (e.g., soil organic matter) were collected and analyzed according to subwatersheds. Multiple regression analyses using......Surfactants are high production volume chemicals that are used in a wide assortment of "down-the-drain" consumer products. Wastewater treatment plants (WWTPs) generally remove 85 to more than 99% of all surfactants from influents, but residual concentrations are discharged into receiving waters via...

  4. Phenol removal pretreatment process

    Science.gov (United States)

    Hames, Bonnie R.

    2004-04-13

    A process for removing phenols from an aqueous solution is provided, which comprises the steps of contacting a mixture comprising the solution and a metal oxide, forming a phenol metal oxide complex, and removing the complex from the mixture.

  5. Dynamic modelling of solids in a full-scale activated sludge plant preceded by CEPT as a preliminary step for micropollutant removal modelling.

    Science.gov (United States)

    Baalbaki, Zeina; Torfs, Elena; Maere, Thomas; Yargeau, Viviane; Vanrolleghem, Peter A

    2017-04-01

    The presence of micropollutants in the environment has triggered research on quantifying and predicting their fate in wastewater treatment plants (WWTPs). Since the removal of micropollutants is highly related to conventional pollutant removal and affected by hydraulics, aeration, biomass composition and solids concentration, the fate of these conventional pollutants and characteristics must be well predicted before tackling models to predict the fate of micropollutants. In light of this, the current paper presents the dynamic modelling of conventional pollutants undergoing activated sludge treatment using a limited set of additional daily composite data besides the routine data collected at a WWTP over one year. Results showed that as a basis for modelling, the removal of micropollutants, the Bürger-Diehl settler model was found to capture the actual effluent total suspended solids (TSS) concentrations more efficiently than the Takács model by explicitly modelling the overflow boundary. Results also demonstrated that particular attention must be given to characterizing incoming TSS to obtain a representative solids balance in the presence of a chemically enhanced primary treatment, which is key to predict the fate of micropollutants.

  6. Barrier or carrier? Pulmonary surfactant and drug delivery.

    Science.gov (United States)

    Hidalgo, Alberto; Cruz, Antonio; Pérez-Gil, Jesús

    2015-09-01

    To consider the lung as a target for drug delivery and to optimise strategies directed at the pulmonary route, it is essential to consider the role of pulmonary surfactant, a thin lipid-protein film lining the respiratory surface of mammalian lungs. Membrane-based surfactant multilayers are essential for reducing the surface tension at the respiratory air-liquid interface to minimise the work of breathing. Different components of surfactant are also responsible for facilitating the removal of potentially pathological entities such as microorganisms, allergens or environmental pollutants and particles. Upon inhalation, drugs or nanoparticles first contact the surfactant layer, and these interactions critically affect their lifetime and fate in the airways. This review summarises the current knowledge on the possible role and effects of the pulmonary surfactant system in drug delivery strategies. It also summarises the evidence that suggests that pulmonary surfactant is far from being an insuperable barrier and could be used as an efficient shuttle for delivering hydrophobic and hydrophilic compounds deep into the lung and the organism.

  7. MICROBIAL SURFACTANTS. I. GLYCOLIPIDS

    Directory of Open Access Journals (Sweden)

    Pirog T. Р.

    2014-02-01

    Full Text Available The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates are summarized. It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.

  8. MICROBIAL SURFACTANTS. II. LIPOPEPTIDES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2014-04-01

    Full Text Available The classification and the chemical structure of the lipopeptides and their producers (bacteria of the genera Bacillus and Pseudomonas are given. The role of the lipopeptides in cells motility, biofilm formation, metal binding and xenobiotics degradation and their action on the cells of pro- and eukaryotes is summarized. The stages of the nonribosomal lipopeptides synthesis and the role of two-component (GacA/GacS, ComA/ComP and the quorum system regulation of this process are shown. The potential of lactic acid bacteria and marine microorganisms as alternative surfactants producers (glycolipids, lipopeptides, phospholipids and fatty acids, glycolipopeptides are discussed. Their productivity and advantages over traditional producers are given as well. The properties of surfactants synthesized by lactic acid bacteria (the reduction of the surface tension, the critical micelle concentration, the stability in a wide range of pH, the temperature, the biological activity are summarized. Surfactants of nonpathogenic probiotic bacteria could be used as effective antimicrobial agents and antiadhesive and marine producers which able to synthesize unique metabolites that are not produced by other microorganisms.

  9. Surfactants at the Design Limit.

    Science.gov (United States)

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  10. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay.

    Science.gov (United States)

    Huang, Jianhua; Liu, Yuanfa; Jin, Qingzhe; Wang, Xingguo; Yang, Jun

    2007-05-08

    The removal of water-soluble Reactive Red MF-3B from aqueous media by sonication-surfactant-modified attapulgite clay was studied in a batch system. The surfactant used was octodecyl trimethyl ammonium chloride (OTMAC). Adsorbent characterizations were investigated using X-ray diffraction, infrared spectroscopy, and surface area analysis. The effects of pH, contact time, initial solute concentration, adsorbent dose, and temperature on the adsorption of Reactive Red MF-3B onto modified clay were investigated. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and second-order adsorption kinetics was observed in the case. Film diffusion was found to be the rate-limiting step. Reactive Red MF-3B adsorption was found to increase with increase temperature. The Reactive Red MF-3B equilibrium adsorption data were fitted to Freundlich and Langmuir isotherm models, the former being found to provide the better fit of the experimental data. Thermodynamic parameters were calculated. From the results it can be concluded that the surfactant-modified clay could be a good adsorbent for treating Reactive Red MF-3B-contaminated waters.

  11. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    Science.gov (United States)

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  12. BINDING ISOTHERMS SURFACTANT-PROTEINS

    Directory of Open Access Journals (Sweden)

    Elena Irina Moater

    2011-12-01

    Full Text Available The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ion-selective electrode method and surface tension. High affinity isotherms which are typical of an anionic surfactant - protein bonding, exhibit an initial increase steep followed by a slow growth region and then a vertical growth above a certain concentration. This isotherm is typical of ionic surfactant to protein binding. Often the high affinity initial bond appears at very low concentrations of surfactant and therefore in some protein-surfactant systems, the exact shape of the isotherm in this region may be missing. The surfactant - protein binding is influenced by a number of variables such as the nature and chain length of surfactant, pH, ionic strength, temperature, nature of this protein and additives.

  13. Synthesis of zeolites coal ash in surfactant modified in application and removal of orange 8 acid solution: study in batch, fixed bed column and evaluation ecotoxicological; Sintese de zeolitas de cinzas de carvao modificada por surfactante e aplicacao na remocao de acido laranja 8 de solucao aquosa: estudo em leito movel, coluna de leito fixo e avaliacao ecotoxicologica

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena, Carina Pitwak

    2015-09-01

    In this study, synthesized zeolitic material from coal ash and modified cationic surfactant was used for removing the acid dye Orange 8 (AL8) by adsorption process using moving bed and fixed-bed column. The raw material and adsorbents were characterized by different techniques, such as X-ray diffraction, X-ray fluorescence spectroscopy, among others. The adsorption of AL8 was performed by moving bed in order to optimize the results when they are launched in a fixed bed. The effects of adsorption on zeolite AL8 were compared: (1) Effect of counterions Br{sup -} and Cl{sup -} surfactant used in the modification of the zeolite; (2) effect of type of coal ash used as raw material in the synthesis of zeolites (fly and bottom). The following adsorbents were used in the study: fly and bottom zeolite modified by surfactant hexadecyltrimethylammonium bromide (ZLMS-Br-Br and ZPMS-Br) and fly zeolite modified by surfactant hexadecyltrimethylammonium chloride (ZLMS-Cl). The pseudo-second-order kinetic described the adsorption of the dye on all adsorbents. The equilibrium time was reached 40, 60 and 120 min for ZLMS-Br, ZLMS-Cl and ZPMS-Br, respectively. The adsorption equilibrium was analyzed by the equations of the models of linear and nonlinear isotherms of Langmuir, Freundlich, Temkin and Dubinin- Radushkevivh (DR) and the criterion of best fit was evaluated using the error functions.The DR model was adjusted better to the experimental data for the system AL8 / ZLMS-Br, the Freundlich model for AL8 / ZLMS-Cl and Langmuir for AL8 / ZPMS. According to the Langmuir maximum adsorption capacity was 4.67, 1.48 and 1.38 mg g{sup -1} for ZLMS-Br, ZLMS-Cl and ZPMS-Br, in order. In studies employing fixed bed columns, the effects of inlet concentration (20- 30 mg L{sup -1}), flow rate (4.0 -5.3 mL min{sup -1}) and the bed height (5, 5 - 6.5 cm) above the breakthrough curves characteristics in the adsorption system were determined. The Adams-Bohart, Thomas, Yoon-Nelson models were

  14. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    Science.gov (United States)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  15. Evolution of mixed surfactant aggregates in solutions and at solid/solution interfaces

    Science.gov (United States)

    Zhang, Rui

    Surfactant systems have been widely used in such as enhanced oil recovery, waste treatment and metallurgy, etc., in order to solve the problem of global energy crisis, to remove the pollutants and to generate novel energy resources. Almost all surfactant systems are invariably mixtures due to beneficial and economic considerations. The sizes and shapes of aggregates in solutions and at solid/solution interfaces become important, since the nanostructures of mixed aggregates determine solution and adsorption properties. A major hurdle in science is the lack of information on the type of complexes and aggregates formed by mixtures and the lack of techniques for deriving such information. Using techniques such as analytical ultracentrifuge, small angle neutron scattering, surface tension, fluorescence, cryo-TEM, light scattering and ultrafiltration, the nanostructures of aggregates of sugar based n-dodecyl-beta-D-maltoside (DM) and nonionic pentaethyleneglycol monododecyl ether or nonyl phenol ethoxylated decyl ether (NP-10) and their mixtures have been investigated to prove the hypothesis that the aggregation behavior is linked to packing of the surfactant governed by the molecular interactions as well as the molecular structures. The results from both sedimentation velocity and sedimentation equilibrium experiments suggest coexistence of two types of micelles in nonyl phenol ethoxylated decyl ether solutions and its mixtures with n-dodecyl-beta-D-maltoside while only one micellar species is present in n-dodecyl-beta-D-maltoside solutions, in good agreement with those from small angle neutron scattering, cryo-TEM, light scattering and ultrafiltration. Type I micelles were primary micelles at cmc while type II micelles were elongated micelles. On the other hand, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing index. As a continuation of the Somasundaran-Fuersteneau adsorption model, a

  16. REMEDIATION OF SOILS CONTAMINATED WITH MOTOR OIL BY HIGHLY BIODEGRADABLE SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Ignacio Moya-Ramírez

    2014-06-01

    Full Text Available The remediation of a sandy soil contaminated with motor oil was studied by applying two different washing procedures: one discontinuous and the other continuous. In addition the capacity of three highly biodegradable surfactants, two synthetic (Glucopon 600 and Findet 1214N/23 and a biosurfactant from Bacillus subtilis, to enhance oil removal was tested. The results obtained with the continuous procedure were much better than those achieved with the discontinuous one, even in experiments conducted with distilled water. Both the addition of surfactants and the rise in temperature significantly increased the removal of the pollutant in experiments conducted with the discontinuous procedure, but the biosurfactant showed a higher capacity for soil remediation than the synthetic surfactants at concentrations close to its CMC. Conversely, when the continuous method was used, surfactant concentration seems to have a lower effect on motor oil removal, at least below the CMC.

  17. Interaction of nonionic surfactant AEO9 with ionic surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo; YIN Hong

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, αAEO9 =0.5. The surface properties of the surfactants, critical micelle concentration (CMC),effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Гmax) and minimum area per molecule at the air/solution interface (Amin) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.

  18. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.

    Science.gov (United States)

    Ni, Hewei; Zhou, Wenjun; Zhu, Lizhong

    2014-05-01

    The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (Tween 80. These results may be explained by the lower sorption loss and reduced interfacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation.

  19. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    the CSC have been determined for mixtures of cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to {approx}10's {mu}m in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)

  20. The Effects of Periodic Wall Stretch on Surfactant and Liquid Transport

    Science.gov (United States)

    Bull, Joseph; Halpern, David; Grotberg, James

    1999-11-01

    The cycle-mean transport of soluble surfactant and airway surface liquid is examined using a mathematical model of Marangoni flows which accounts for airway branching and for time-periodic radial and axial airway stretch. The transport of surfactant and liquid is fundamental to surfactant replacement therapy as well as liquid and surfactant clearance from healthy lungs. The majority of surfactant and liquid transport occurs in the cycle-mean spreading which follows the very brief initial transient spreading phase. We consider either delivery of surfactants into the lung, by setting the proximal boundary condition to a higher concentration compared to the distal boundary condition, or removal from the lung by switching these end conditions. Starting with a steady-state, non-cycled, non-uniform, surfactant distribution we find that transport of surfactant into the lung is enhanced for larger strain amplitudes and frequency, though frequency is less important. For surfactant clearance from the lung we find, as in the case of delivery, that larger strain amplitude enhances transport. But, cycling frequency has the opposite effect with larger frequencies leading to reduced transport. Liquid clearance is enhanced by larger strain amplitudes and slower frequencies. This work supported by NIH grant HL-41126 and NSF grant CTS-9412523.

  1. Next Step for STEP

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Claire [CTSI; Bremner, Brenda [CTSI

    2013-08-09

    The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.

  2. Next Step for STEP

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Claire [CTSI; Bremner, Brenda [CTSI

    2013-08-09

    The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.

  3. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  4. Surfactant monitoring by foam generation

    Science.gov (United States)

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  5. Surfactant adsorption kinetics in microfluidics

    Science.gov (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  6. Transient exposure of pulmonary surfactant to hyaluronan promotes structural and compositional transformations into a highly active state.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Cruz, Antonio; Richter, Ralf P; Taeusch, H William; Pérez-Gil, Jesús

    2013-10-11

    Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations.

  7. Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9°C in short-term anammox biofilm tests.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Mandel, Anni; Kroon, Kristel; Seiman, Andrus; Mihkelson, Jana; Tenno, Taavo; Tenno, Toomas

    2016-08-01

    The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment. When deammonification applications move towards low temperature applications (mainstream wastewater has low temperature), temperature effect has to be studied. In current research, in a deammonification moving bed biofilm reactor a maximum total nitrogen removal rate (TNRR) of 1.5 g N m(-2 )d(-1) (0.6 kg N m(-3 )d(-1)) was achieved. Temperature was gradually lowered by 0.5°C per week, and a similar TNRR was sustained at 15°C during biofilm cultivation. Statistical analysis confirmed that a temperature decrease from 20°C down to 15° did not cause instabilities. Instead, TNRR rose and treatment efficiency remained stable at lower temperatures as well. Quantitative polymerase chain reaction analyses showed an increase in Candidatus Brocadia quantities from 5 × 10(3) to 1 × 10(7) anammox gene copies g(-1) total suspended solids (TSS) despite temperature lowered to 15°C. Fluctuations in TNRR were rather related to changes in influent [Formula: see text] concentration. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments were performed which showed sufficient TNRRs even at 9-15°C (1.24-3.43 mg N g(-1 )TSS h(-1), respectively) with anammox temperature constants (Q10) ranging 1.3-1.6. Experiments showed that a biofilm adapted to 15°C can perform N-removal most sufficiently at temperatures down to 9°C as compared with biofilm adapted to higher temperature. After biomass was adapted to 15°C, the decrease in TNRR in batch tests at 9°C was lower (15-20%) than that for biomass adapted to 17-18°C.

  8. 分段进水对人工快渗系统脱氮效率的影响%Impact of step-feed mode on removal of nitrogen in a constructed rapid infiltration system

    Institute of Scientific and Technical Information of China (English)

    汪贵和; 方涛; 陈晓国; 唐巍; 朱文涛; 李威

    2012-01-01

    In order to improve the removal performance of constructed rapid infiltration(CRI) system,two CRI systems were operated with bank sand/steel slag(system 1) or bank sand/zeolite(system 2) as media material,respectively,and the effect of step-feed position and step-feed ratio on the removal efficiencies of nitrogen and CODMn as well as the vertical distribution patterns of nitrogen in them were investigated.The results showed that when the step-feed ratio was 2∶ 1 and step-feed position was at a depth of 600 mm below the surface,the TN removal efficiencies of system 1 and system 2 reached 50.90% and 45.93%,respectively,increasing by 12.45% and 12.23% compared with the normal flooding pattern,whereas no significant effect was observed for NH3-N and CODMn removal.The TN removal efficiencies of system 1 and system 2 were 47.80% and 36.21%,respectively,increasing only by 9.35% and 2.51% when the step-feed ratio was 1∶ 1 and the step-feed position was at 1 000 mm depth,and the removal efficiencies of NH3-N and CODMn decreased dramatically.The vertical distribution patterns of different forms of nitrogen,DO and ORP(oxidation-reduction potential) in CRI system suggested that the aerobic conditions in the upper layer favored nitrification and organic matter degradation,while the anoxic conditions in the bottom layer enhanced denitrification.Furthermore,the addition of steel slag was more efficient than zeolite in removing pollutants.These results implied that an improved nitrogen removal can be achieved through optimizing step-feed position and step-feed ratio in the CRI system.%为提高人工快速渗滤系统(CRI)的处理效率,研究了分段进水方式下以河砂/钢渣(1#)和河砂/天然沸石(2#)为填料的两个快渗池中氮的垂直分布规律,以及对氨氮、硝酸盐氮、亚硝酸盐氮及总氮四种形态的氮和CODMn的去除效果。结果表明,1#池、2#池采用2∶1的进水比例在表层下600 mm处分段进水对总氮

  9. Experimental Study on a Two-step Bioleaching Removal of Phosphorus from High-phosphorus Iron Ore%高磷赤铁矿两步法生物除磷实验研究

    Institute of Scientific and Technical Information of China (English)

    钟乐乐; 龚文琪; 李育彪; 王楠; 陆玉; 刘时健; 张鹏超

    2012-01-01

    Acidithiobacillus thiooxidans {At, t) was used in bioleaching removal of phosphorus from the high-phosphorus iron ore (iron grade 43. 50%, p content 0. 85%) by direct bioleaching and two-step bioleaching, respectively. The experimental results showed that with the pulp density of 2%, by direct bioleaching the phosphorus removal rate reached 62. 35% and the sulfur content reached up to 28. 57%; At. t bacteria were used in bioleaching removal of phosphorus by the two-step bioleaching in a shaking table. After 24 d, the pH of the bacteria solution was close to 0, 8, the phosphorus concentration was reduced to 0. 15%, and the sulfur content was reduced to 1. 09%. After cultivation in the self-fabricated bioreactor for 8 d the pH of the At. t solution was close to 0. 98. The phosphorus concentration of the iron ore was reduced to 0. 18% after leaching in the supernatant of the bacteria solution for 12 h. The bioleaching of the magnetic separation concentrate by the two-step bioleaching method showed a remarkable efficiency of phosphorus removal when the pulp density was below 3%.%采用嗜酸氧化硫硫杆菌(At.t)直接浸出和两步法浸出,对鄂西高磷鲕状赤铁矿(铁品位43.50%,磷含量0.85%)进行生物除磷的实验研究.结果表明:矿浆浓度为2%时,At.t菌直接浸出除磷率为62.35%,且硫含量高达28.57%;采用两步法摇床培养At.t菌,24 d菌液pH值接近0.8,磷含量可降至0.15%,硫含量为1.09%;采用自行设计制作的生物反应器培养At.t菌8d,菌液pH值接近0.98,分离菌液浸出原矿12 h磷含量为0.18%.对磁选精矿进行的两步法浸出表明,当矿浆浓度为3%以下时菌液的徐磷效果明显.

  10. Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions.

    Science.gov (United States)

    El-Naggar, M R; El-Kamash, A M; El-Dessouky, M I; Ghonaim, A K

    2008-06-15

    Pure zeolites can be synthesized from silica extracts obtained from fly ash by alkaline leaching. The extraction potential of industrial by-product fly ash was investigated under repeated fusion process conditions. The amount of extracted silica was 131.43 g/kg ash while the amount extracted alumina was limited to 41.72 g/kg ash. The results of zeolite synthesis from the Si-bearing extracts demonstrated that pure zeolites with high cation exchange capacity (4.624 meq/g) can be produced. The sorption potential of synthesized A-X zeolite blend for the removal of cesium ions has been investigated. The influences of pH, contact time and temperature have been reported. Thermodynamic parameters such as changes in Gibbs free energy (DeltaG degrees), enthalpy (DeltaH degrees) and entropy (DeltaS degrees) were calculated. A comparison of kinetic models applied to the sorption data was evaluated for pseudo first-order, pseudo second-order and homogeneous particle diffusion models. The results showed that both the pseudo second-order and the homogeneous particle diffusion models were found to best correlate the experimental rate data.

  11. Innovation in surfactant therapy II: surfactant administration by aerosolization.

    Science.gov (United States)

    Pillow, J Jane; Minocchieri, S

    2012-01-01

    Instilled bolus surfactant is the only approved surfactant treatment for neonatal respiratory distress syndrome. However, recent trends towards increased utilization of noninvasive respiratory support for preterm infants with surfactant deficiency have created a demand for a similarly noninvasive means of administering exogenous surfactant. Past approaches to surfactant nebulization met with varying success due to inefficient aerosol devices resulting in low intrapulmonary delivery doses of surfactant with variable clinical effectiveness. The recent development of vibrating membrane nebulizers, coupled with appropriate positioning of the interface device, indicates that efficient delivery of aerosolized surfactant is now a realistic goal in infants. Evidence of clinical effect despite low total administered dose in pilot studies, together with suggestions of enhanced homogeneity of pulmonary distribution indicate that this therapy may be applied in a cost-effective manner, with minimal patient handling and disruption. These studies need to be subjected to appropriately designed randomized controlled trials. Further work is also required to determine the optimum delivery route (mask, intranasal prong, nasopharyngeal or laryngeal), dosing amount and redosing interval.

  12. Interaction of nonionic surfactant AEO9 with ionic surfactants*

    OpenAIRE

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, α AEO9=0.5. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γ CMC), maximum surface excess concentration (Γ max) and minimum area per...

  13. Evaluation of surfactant flushing for remediating EDC-tar contamination

    Science.gov (United States)

    Liang, Chenju; Hsieh, Cheng-Lin

    2015-06-01

    Ethylene dichloride tar (EDC-tar) is a dense non-aqueous phase liquid (DNAPL) waste originated from the process of vinyl chloride production, with major constituents including chlorinated aliphatic and aromatic hydrocarbons. This study investigated the feasibility of Surfactant Enhanced Aquifer Remediation (SEAR) for treating EDC-tar contaminated aquifers. Initial experiments explored the potential to enhance the apparent solubility of EDC-tar using single or mixed surfactants. The results showed that an aqueous solution mixed anionic and non-ionic surfactants (i.e., SDS/Tween 80) exhibited higher EDC-tar apparent solubility and lower surface tension than other surfactant systems tested. Additionally, alkaline pH aids in increasing the EDC-tar apparent solubility. In column flushing experiments, it was seen that the alkaline mixed SDS/Tween 80 solution showed better removal of pure EDC-tar from silica sand porous media. Furthermore, separation of EDC-tar in the surfactant solution was conducted employing a salting-out effect. Significant separation of DNAPL was observed when 13 wt.% or more NaCl was added to the solution. Overall, this study evaluates the feasibility of using SEAR for remediating EDC-tar contaminated subsurface soil and groundwater.

  14. Surfactants enhance recovery of poorly soluble drugs during microdialysis sampling

    DEFF Research Database (Denmark)

    Koplin, Sebastian; Kumpugdee-Vollrath, Mont; Bauer-Brandl, Annette

    2017-01-01

    Aim of this project was to investigate the applicability of a recently developed in vitro microdialysis-sampling approach in connection with a dissolution-/permeation (D/P) system, especially the impact of surfactants within the perfusion fluid. The D/P-system is based on side-by-side chambers...... drug-dissolution (-release) and drug permeation. Furthermore, it should allow quantification of the unbound (free) drug concentration. In the first step, it was assessed, if the addition of the anionic surfactant sodium dodecyl sulphate (SDS) to the perfusate of the microdialysis system affects...... celecoxib, i.e. the fraction of drug, which is not associated with taurocholate surfactant micelles. In buffer, the measured concentrations matched the overall CXB concentrations. By the use of SDS-containing perfusates microdialysis sampling enabled reliable quantification of minute amounts of free CXB...

  15. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  16. 荷电膜去除水中表面活性剂十二烷基苯磺酸钠研究%STUDY ON THE REMOVAL OF SURFACTANT SODIUM DODECYL BENZENE SULFONATE BY CHARGED MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    张洁欣; 魏俊富; 张环

    2011-01-01

    采用自制等离子体改性聚砜荷电膜对表面活性剂十二烷基苯磺酸钠(SDBS)进行截留测试,通过改变溶液的初始SDBS质量浓度(40~400 mg· L-1)、操作压力(0.15~0.35 MPa),离子强度(NaCl质量浓度100~300 mg·L-1)以及pH(2~12)等影响因素,观察荷电膜对SDBS溶液的截留率以及通量的变化,分析作用机理.结果表明,静电斥力为主要作用力,同时伴有机械筛分作用.初始SDBS含量低时比高时截留效果好,SDBS初始质量浓度为40 mg· L-1时截留率可达85.68%;低离子强度时静电斥力发挥主要作用,截留率比高离子强度时高;压力越大,截留率越高;溶液pH接近中性时截留效果最好.%Surfactant sodium dodecyl benzene sulfonate solution was retained by the plasma modified polysulfone charged membrane. The rejection tests were at different factors including solution concentration, operating pressure (0.15~0.35 Mpa), ionic strength (concentration of NaCl 100~300 mg*L') and pH (2~12). The retention rate and flux of SDBS solution retained by charged membrane were observed. The mechanism of retention was analyzed. Experimental results revealed that electrostatic repulsion was the main force in the process. And size exclusion also existed. Solutions possessing low concentration showed better rejection effect than those having high concentration. When initial feed concentration was 40 mg'L', the retention rate could reach 85.68%. Electrostatic repulsion played an important role at low ionic strength. The retention rate at low ionic strength was higher than those at high ionic strength. The retention rate increased as the operating pressure presented high. And the rejection performed well when pH was close to neutral.

  17. Electrokinetic investigation of surfactant adsorption.

    Science.gov (United States)

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  18. Use of polymers and a surfactant in the treatment of Kraft process wastewater

    OpenAIRE

    Seyffert, Hans J.

    1988-01-01

    This study-investigated the use of cationic polymers, and a surfactant, EHDABr, in the color removal treatment of Kraft pulp and paper wastewater. Four polymers were evaluated for their color removal performance by jar test procedures. The polymers removed between 77 and 87% of the wastewater color. The affect of pH upon polymer performance varied with the polymer tested. Powdered activated carbon addition improved the performance of the polymers. The color removal abili...

  19. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen

    2009-03-01

    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  20. Preparation and evaluation of some amide ether carboxylate surfactants

    Directory of Open Access Journals (Sweden)

    M.M.A. El-Sukkary

    2012-06-01

    Full Text Available A homologous series of new mild surfactants, namely: Alkyl amide ether carboxylates surfactants (AEC RCO–NHCH2CH2O (CH2CH2O6CH2COONa, were synthesized by esterification, amidation, ethoxylation and carboxymethylation reaction steps of fatty acids (Lauric, Myristic, palmitic, stearic, oleic or linoleic. The chemical structures of the prepared compounds were confirmed using different spectroscopic techniques, FTIR spectroscopy, mass spectra and HNMR. The surface properties including surface and interfacial tensions, foaming height, emulsification power, calcium ion stability, stability to hydrolysis and critical micelle concentration (cmc were determined. The study of their surface properties showed their stability in hard water and in acidic and alkaline media. These compounds have high calcium ion stability. The low foaming power could have an application in the dyeing auxiliary industry. The lower values of the interfacial tension values indicate the ability of using these surfactants in several applications as corrosion inhibitors and biocides. The data revealed various advantages and potentials as a main surfactant as well as co- surfactants.

  1. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  2. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media

    Science.gov (United States)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia

    2017-07-01

    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets

  3. Tick Removal: A Step-by-Step Guide (For Parents)

    Science.gov (United States)

    ... 2: Pull firmly and steadily until the tick lets go of the skin. Do not twist the tick or rock it from side to side. If part of the tick stays in the skin, don't worry. It will eventually come out on its ...

  4. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant metabol

  5. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil.

    Science.gov (United States)

    Zhu, Hongbo; Aitken, Michael D

    2010-10-01

    We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C(12)E(8)), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant's critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C(12)E(8) did not enhance PAH removal at any dose. In the absence of surfactant, PAH desorbed from the soil over an 18 day period. Brij 30 addition at the lowest dose significantly increased the desorption of most PAHs, whereas the addition of C(12)E(8) at the lowest dose actually decreased the desorption of all PAHs. These findings suggest that the effects of the two surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited.

  6. Electrochemical Oscillations Induced by Surfactants

    Institute of Scientific and Technical Information of China (English)

    翟俊红; 贺占博

    2003-01-01

    A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO4 aqueous and an aluminum rod in Al(NO3)3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg2SO4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.

  7. Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes.

    Science.gov (United States)

    Jardak, K; Drogui, P; Daghrir, R

    2016-02-01

    Surfactants belong to a group of chemicals that are well known for their cleaning properties. Their excessive use as ingredients in care products (e.g., shampoos, body wash) and in household cleaning products (e.g., dishwashing detergents, laundry detergents, hard-surface cleaners) has led to the discharge of highly contaminated wastewaters in aquatic and terrestrial environment. Once reached in the different environmental compartments (rivers, lakes, soils, and sediments), surfactants can undergo aerobic or anaerobic degradation. The most studied surfactants so far are linear alkylbenzene sulfonate (LAS), quaternary ammonium compounds (QACs), alkylphenol ethoxylate (APEOs), and alcohol ethoxylate (AEOs). Concentrations of surfactants in wastewaters can range between few micrograms to hundreds of milligrams in some cases, while it reaches several grams in sludge used for soil amendments in agricultural areas. Above the legislation standards, surfactants can be toxic to aquatic and terrestrial organisms which make treatment processes necessary before their discharge into the environment. Given this fact, biological and chemical processes should be considered for better surfactants removal. In this review, we investigate several issues with regard to: (1) the toxicity of surfactants in the environment, (2) their behavior in different ecological systems, (3) and the different treatment processes used in wastewater treatment plants in order to reduce the effects of surfactants on living organisms.

  8. Accurate assessment of the biodegradation of cationic surfactants in activated sludge reactors (OECD TG 303A)

    NARCIS (Netherlands)

    Geerts, R.; Ginkel, van C.G.; Plugge, C.M.

    2015-01-01

    The continuous-fed activated sludge test (OECD TG 303A) was used to predict the removal of cationic surfactants from wastewater in activated sludge plants. However, a method to differentiate between adsorption and biodegradation is not provided in these guidelines. Assessment of removal by biodegrad

  9. Accurate assessment of the biodegradation of cationic surfactants in activated sludge reactors (OECD TG 303A)

    NARCIS (Netherlands)

    Geerts, R.; Ginkel, van C.G.; Plugge, C.M.

    2015-01-01

    The continuous-fed activated sludge test (OECD TG 303A) was used to predict the removal of cationic surfactants from wastewater in activated sludge plants. However, a method to differentiate between adsorption and biodegradation is not provided in these guidelines. Assessment of removal by biodegrad

  10. Accurate assessment of the biodegradation of cationic surfactants in activated sludge reactors (OECD TG 303A)

    NARCIS (Netherlands)

    Geerts, R.; Ginkel, van C.G.; Plugge, C.M.

    2015-01-01

    The continuous-fed activated sludge test (OECD TG 303A) was used to predict the removal of cationic surfactants from wastewater in activated sludge plants. However, a method to differentiate between adsorption and biodegradation is not provided in these guidelines. Assessment of removal by

  11. Persurf, a New Method to Improve Surfactant Delivery: A Study in Surfactant Depleted Rats

    OpenAIRE

    2012-01-01

    PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary di...

  12. Determination of methylene blue biosorption by Rhizopus arrhizus in the presence of surfactants with different chemical structures.

    Science.gov (United States)

    Karatay, Sevgi Ertuğrul; Gül, Ulküye Dudu; Dönmez, Gönül

    2014-10-03

    Methylene blue (MB) biosorption properties of Rhizopus arrhizus were investigated in the presence of surfactants. The effects of cationic and anionic surfactants on MB removal by dead biomass (1 g L(-1)) were determined. MB removal was tested as a function of initial pH (2-12), contact time (5-1440 min), and dye (37.4-944.7 mg L(-1)) and surfactant (0-10 mM) concentrations. The opposite charged anionic surfactant dodecylbenzenesulfonic acid sodium salt (DBS) enhanced sorption of cationic MB by biomass dramatically. Maximum biosorption capacity was 471.5 mg g(-1) at pH 8 with 0.5 mM DBS at 944.7 mg L(-1) MB concentration. The surfactant-stimulated fungal decolorization method may provide a highly efficient, inexpensive, and time-saving procedure in biological wastewater treatment technologies.

  13. Biomimicry of surfactant protein C.

    Science.gov (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  14. Performance Analysis of Modified UCT Step-feed Nutrients Removal Process%改良UCT分段进水脱氮除磷工艺的性能分析

    Institute of Scientific and Technical Information of China (English)

    葛士建; 彭永臻

    2011-01-01

    Combined with the upgrading and reconstruction project of a wastewater treatment plant in Beijing, the mechanisms for organic degradation, enhanced nitrogen and phosphorus removal in a novel modified UCT step-feed nutrients removal process treating real municipal wastewater were studied, and the process characteristics and the main points in design and operation were discussed. The results of the pilot-scale test for about two years show that the average TN, TP and COD in the effluent are 8.51 mg/L, 0.44 mg/L and 44 mg/L respectively, meeting the requirement of the first-A discharge standard in China. Both the conventional nitrification and denitrification process and aerobic simultaneous nitrification and denitrification process contribute to the advanced nitrogen removal, and the anoxic phosphorus uptake, which accounts for approximately 32. 6% to 39. 5% of the total phosphorus uptake, is benefit for the phosphorus removal. Moreover, the system has high utilization efficiency of the influent organics since 55.9% of the influent organics are efficiently utilized in the anaerobic phosphorus release and denitrification process. Compared to A/O and A2/O processes, the modified UCT step-feed nutrients removal process just needs to cancel the internal recycle system and adjust the influent pipelines, and therefore the process is easy to be used in upgrading and reconstruction of existing wastewater treatment plants with a promising application market.%结合北京某污水处理厂升级改造工程,以实际生活污水为处理对象,研究新型改良UCT分段进水深度脱氮除磷工艺降解有机物、深度脱氮和除磷机理,并在此基础上探讨了工艺特点及设计和操作运行要点.长达2年的中试结果表明,出水总氮平均为8.51 mg/L,总磷为0.44mg/L,COD为44 mg/L,达到国家一级A排放标准;系统深度脱氮途径主要包括传统硝化反硝化和好氧同步硝化反硝化两个过程;缺氧吸磷量

  15. Surfactant for pediatric acute lung injury.

    Science.gov (United States)

    Willson, Douglas F; Chess, Patricia R; Notter, Robert H

    2008-06-01

    This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.

  16. Heavy metal removal from sediments by biosurfactants.

    Science.gov (United States)

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Batch washing experiments were used to evaluate the feasibility of using biosurfactants for the removal of heavy metals from sediments. Surfactin from Bacillus subtilis, rhamnolipids from Pseudomonas aeruginosa and sophorolipid from Torulopsis bombicola were evaluated using a metal-contaminated sediment (110mg/kg copper and 3300mg/kg zinc). A single washing with 0.5% rhamnolipid removed 65% of the copper and 18% of the zinc, whereas 4% sophorolipid removed 25% of the copper and 60% of the zinc. Surfactin was less effective, removing 15% of the copper and 6% of the zinc. The technique of ultrafiltration and zeta potential measurements were used to determine the mechanism of metal removal by the surfactants. It was then postulated that metal removal by the biosurfactants occurs through sorption of the surfactant on to the soil surface and complexation with the metal, detachment of the metal from the soil into the soil solution and hence association with surfactant micelles. Sequential extraction procedures were used on the sediment to determine the speciation of the heavy metals before and after surfactant washing. The carbonate and oxide fractions accounted for over 90% of the zinc present in the sediments. The organic fraction constituted over 70% of the copper. Sequential extraction of the sediments after washing with the various surfactants indicated that the biosurfactants, rhamnolipid and surfactin could remove the organically-bound copper and that the sophorolipid could remove the carbonate and oxide-bound zinc. Therefore, heavy metal removal from sediments is feasible and further research will be conducted.

  17. A double injection ADSA-CSD methodology for lung surfactant inhibition and reversal studies.

    Science.gov (United States)

    Saad, Sameh M I; Policova, Zdenka; Dang, Andrew; Acosta, Edgar J; Hair, Michael L; Neumann, A Wilhelm

    2009-10-15

    This paper presents a continuation of the development of a drop shape method for film studies, ADSA-CSD (Axisymmetric Drop Shape Analysis-Constrained Sessile Drop). ADSA-CSD has certain advantages over conventional methods. The development presented here allows complete exchange of the subphase of a spread or adsorbed film. This feature allows certain studies relevant to lung surfactant research that cannot be readily performed by other means. The key feature of the design is a second capillary into the bulk of the drop to facilitate addition or removal of a secondary liquid. The development will be illustrated through studies concerning lung surfactant inhibition. After forming a sessile drop of a basic lung surfactant preparation, the bulk phase can be removed and exchanged for one containing different inhibitors. Such studies mimic the leakage of plasma and blood proteins into the alveolar spaces altering the surface activity of lung surfactant in a phenomenon called surfactant inhibition. The resistance of the lung surfactant to specific inhibitors can be readily evaluated using the method. The new method is also useful for surfactant reversal studies, i.e. the ability to restore the normal surface activity of an inhibited lung surfactant film by using special additives. Results show a distinctive difference between the inhibition when an inhibitor is mixed with and when it is injected under a preformed surfactant film. None of the inhibitors studied (serum, albumin, fibrinogen, and cholesterol) were able to penetrate a preexisting film formed by the basic preparation (BLES and protasan), while all of them can alter the surface activity of such preparation when mixed with the preparation. Preliminary results show that reversal of serum inhibition can be easily achieved and evaluated using the modified methodology.

  18. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants

    Science.gov (United States)

    Garland, J. L.; Levine, L. H.; Yorio, N. C.; Hummerick, M. E.

    2004-01-01

    Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.

  19. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants

    Science.gov (United States)

    Garland, J. L.; Levine, L. H.; Yorio, N. C.; Hummerick, M. E.

    2004-01-01

    Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.

  20. Dyes removal of textile wastewater onto surfactant modified zeolite from coal ash and evaluation of the toxic effects; Remocao de corantes de efluente textil por zeolita de cinzas de carvao modificada por surfactante e avaliacao dos efeitos toxicos

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Patricia Cunico

    2015-07-01

    Zeolites synthesized from fly and bottom ashes and modified with hexadecyltrimethylammonium (HDTMA) were used as adsorbent to remove dyes - Solophenyl Navy (SN) and Solophenyl Turquoise (ST) and their hydrolysed forms Solophenyl Navy Hydrolysed (SNH) and Solophenyl Turquoise Hydrolysed (STH), from simulated textile wastewater. The HDTMA-modified fly zeolite (ZMF) and HDTMA-modified bottom zeolite (ZMB) were characterized by different techniques, as X-ray fluorescence spectrometry, X-ray diffraction and scanning electron microscopy, etc. The ZMF and ZMB presented negative charge probably due to the formation of a partial bilayer of HDTMA on exchangeable active sites on the external surface of unmodified zeolite. Initial dye concentration, contact time and equilibrium adsorption were evaluated. The adsorption kinetic for SN, ST, SNH and STH onto the zeolites followed the pseudo second-order model. The equilibrium time was 20 min for SN and ST and 30 min for SNH and STH, respectively. Langmuir, Freundlich and Temkin models were applied to describe the adsorption isotherms. Adsorption of the dyes were best described by the Langmuir model, with exception to SN/ZPM, SNH/ZPM and SNH/ZLM systems that followed Freundlich model. The maximum adsorption capacities were 3,64; 3,57; 2,91 e 4,93 for SN, ST, SNH e STH by ZLM, respectively and 0,235; 0,492; 1,26 e 1,86 by ZPM, in this order. The best performance for hydrolyzed dyes has been attributed to reduction of the size of dyes molecules during the hydrolysis process. Acute toxicity of the dyes to a different organism were evaluated by different test-organisms. Waterflea, Ceriodaphnia dubia showed EC50 value of 1,25; 54,5; 0,78 and 2,56 mgL{sup -1} for SN, ST, SNH and STH, respectively. The plant Lemna minor showed EC50 values of 18,9; 69,4; 10,9 and 70,9 mgL{sup -1} for SN, ST, SNH and STH, respectively. Midges larvae of Chironomus tepperi showed EC50 values of 119 and 440 mgL{sup -1} for SN and ST, respectively. Regarding

  1. Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system.

    Science.gov (United States)

    Jin, Haiwei; Zhou, Wenjun; Zhu, Lizhong

    2013-07-01

    An integrative technology including the surfactant enhanced sorption and subsequent desorption and biodegradation of phenanthrene in the soil-water system was introduced and tested. For slightly contaminated agricultural soils, cationic-nonionic mixed surfactant-enhanced sorption of organic contaminants onto soils could reduce their transfer to plants, therefore safe-guarding agricultural production. After planting, residual surfactants combined with added nonionic surfactant could also promote the desorption and biodegradation of residual phenanthrene, thus providing a cost-effective pollution remediation technology. Our results showed that the cationic-nonionic mixed surfactants dodecylpyridinium bromide (DDPB) and Triton X-100 (TX100) significantly enhanced soil retention of phenanthrene. The maximum sorption coefficient Kd of phenanthrene for contaminated soils treated by mixed surfactants was about 24.5 times that of soils without surfactant (Kd) and higher than the combined effects of DDPB and TX100 individually, which was about 16.7 and 1.5 times Kd, respectively. On the other hand, TX100 could effectively remove phenanthrene from contaminated soils treated by mixed surfactants, improving the bioavailability of organic pollutants. The desorption rates of phenanthrene from these treated soils were greater than 85% with TX100 concentration above 2000 mg/L and approached 100% with increasing TX100 concentration. The biodegradation rates of phenanthrene in the presence of surfactants reached over 95% in 30 days. The mixed surfactants promoted the biodegradation of phenanthrene to some extent in 10-22 days, and had no obvious impact on phenanthrene biodegradation at the end of the experiment. Results obtained from this study provide some insight for the production of safe agricultural products and a remediation scheme for soils slightly contaminated with organic pollutants.

  2. Evaluation of a common commercial surfactant in a water recycle system

    Energy Technology Data Exchange (ETDEWEB)

    Rector, T.; Jackson, A.; Rainwater, K. [Texas Tech Univ., Water Resources Center, Texas (United States); Pickering, S. [Johnson Space Center, NASA, Houston, Texas (United States)

    2002-06-15

    The fate of a common commercial surfactant was investigated in the biological reactors of a water recycle system. A NO{sub 2}{sup -} reducing packed-bed bioreactor was employed to evaluate degradation of surfactant present in a typical greywater stream. The research was conducted to determine if an alternative commercial surfactant could be used in a biological water recycle system proposed for space travel in place of the current surfactant. The commercial soap used in the research was Pert Plus for Kids (PPK), which contains sodium laureth sulfate (SLES) as the active surfactant. Experiments included a combination of microcosm studies as well as a continuous-flow packed-bed bioreactor. The hydraulic retention time of the packed-bed bioreactor was varied through changes in flow rate to yield different steady-state values for NO{sub 2}-N, TOC, and COD. Steady-state values will allow the determination of the bacterial kinetic parameters. Initial results suggest that the commercial surfactant may be difficult to treat in the time frame of typical biological systems. NO{sub 2}{sup -} reduction was favorable in the packed-bed reactor, but TOC removal rates did not correspond to the NO{sub 2}{sup -} removal. It is theorized that, due to its high K{sub oc} value (1200), SLES has an affinity to absorb to the media contained in the bed, which in turn allows for adsorption of the surfactant. Future research will include development of an isotherm model to characterize the adsorption rates and correlate them to surfactant removal. (author)

  3. New multifunctional surfactants from natural phenolic acids.

    Science.gov (United States)

    Centini, Marisanna; Rossato, Maria Sole; Sega, Alessandro; Buonocore, Anna; Stefanoni, Sara; Anselmi, Cecilia

    2012-01-11

    Several new multifunctional molecules derived from natural sources such as amino acids and hydroxycinnamic acids were synthesized. They exhibit various activities such as emulsifying, UV-protecting, and radical scavenging, thereby conforming to the latest requirements for cosmetic ingredients. The synthesis comprises only a few steps: (i) the amino acid, the acid groups of which are protected by esterification, is coupled with ferulic or caffeic acid; (ii) the p-hydroxyl group of the cinnamic derivative reacts with dodecyl bromide in the presence of potassium carbonate (the resulting compounds are highly lipophilic and tested as water/oil (W/O) emulsifiers); (iii) these molecules, by deprotonating the acid groups of the amino acids, with successive salification, are more hydrophilic, with stronger O/W emulsifying properties. The new multifunctional surfactants might prove useful for the treatment of multiple skin conditions, including loss of cellular antioxidants, damage from free radicals, damage from UV, and others.

  4. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  5. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳

    2004-01-01

    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  6. Complex Formation Between Polyelectrolytes and Ionic Surfactants

    OpenAIRE

    1998-01-01

    The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and biology. In this paper we present a theory of polyelectrolyte ionic-surfactant solutions. The new theory successfully explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic-surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic polymer-sur...

  7. Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment.

    Science.gov (United States)

    Adrion, Alden C; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-04-05

    A total of five nonionic surfactants (Brij 30, Span 20, Ecosurf EH-3, polyoxyethylene sorbitol hexaoleate, and R-95 rhamnolipid) were evaluated for their ability to enhance PAH desorption and biodegradation in contaminated soil after treatment in an aerobic bioreactor. Surfactant doses corresponded to aqueous-phase concentrations below the critical micelle concentration in the soil-slurry system. The effect of surfactant amendment on soil (geno)toxicity was also evaluated for Brij 30, Span 20, and POESH using the DT40 B-lymphocyte cell line and two of its DNA-repair-deficient mutants. Compared to the results from no-surfactant controls, incubation of the bioreactor-treated soil with all surfactants increased PAH desorption, and all except R-95 substantially increased PAH biodegradation. POESH had the greatest effect, removing 50% of total measured PAHs. Brij 30, Span 20, and POESH were particularly effective at enhancing biodegradation of four- and five-ring PAHs, including five of the seven carcinogenic PAHs, with removals up to 80%. Surfactant amendment also significantly enhanced the removal of alkyl-PAHs. Most treatments significantly increased soil toxicity. Only the no-surfactant control and Brij 30 at the optimum dose significantly decreased soil genotoxicity, as evaluated with either mutant cell line. Overall, these findings have implications for the feasibility of bioremediation to achieve cleanup levels for PAHs in soil.

  8. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the cati

  9. Surfactant analysis in oil-containing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gronsveld, J.; Faber, M.J. (Koninklijke Shell Exploratie en Produktie Laboratorium, Rijswijk (Netherlands))

    The total surfactant concentration in aqueous phase samples can be analysed with a potentiometric titration. In enhanced oil recovery research, however, the surfactant is produced not only in aqueous phase samples but also in oleic phase samples. The oleic constituents in the oliec phase samples interfere in the surfactant analysis and, therefore, the titration method has been adapted. (orig.).

  10. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  11. Effects of the surfactant Tween 80 on the growth and dibenzothiophene utilization by Exophiala spinifera isolated from oil- contaminated soil

    Directory of Open Access Journals (Sweden)

    Fatemeh Elmi

    2016-06-01

    Full Text Available Introduction: Oil is one of the most important energy sources that contain variety of organosulfur compounds that are combustible and can produce sulfur dioxide which will cause pollution over the atmosphere and the soil. Dibenzothiophene (DBT is often used as a model for biodesulfurization studies and surfactant Tween80 increases the solubility of DBT in water that leads to higher consumption by microorganisms. Materials and methods: DBT specific UV spectrophotometry at a wavelength of 323 nm was used to evaluate the ability of isolated Exophiala spinifera fungus in removal of DBT. The effect of various concentrations of surfactant Tween80 on the growth of the fungus and DBT utilization was studied. Results: Exophiala spinifera was able to remove 100% DBT after 7 days of incubation at 30 ° C and 180 rpm shaking. The effect of different concentrations of surfactant Tween80 on growth and DBT utilization by this fungus was examined and it was observed that the presence of surfactant in the culture medium increased the growth and removal of DBT, therefore the amount of DBT utilized with 0.4% concentration of the surfactant was about 30% more than that utilized without surfactant. However, higher concentrations of surfactant Tween80 decreased the growth and consumption of DBT by fungi. Discussion and conclusion: Exophiala spinifera was isolated from oil contaminated soil and able to utilize toxic compound DBT as a sulfur source in the presence of other carbon sources such as glucose. So this isolated strain could be a good candidate for the petroleum desulfurization and it is the first report about desulfurization of DBT by fungus Exophiala spinifera. Growth and removal of DBT by fungus increased in the presence of surfactant Tween80. It can be concluded that the surfactant increases the total DBT transfer between the organic and aqueous phases and has a potential application in DBT bioremediation system by the studied fungus biocatalyst.

  12. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  13. Surfactant mediated slurry formulations for Ge CMP applications

    KAUST Repository

    Basim, G. Bahar

    2013-01-01

    In this study, slurry formulations in the presence of self-assembled surfactant structures were investigated for Ge/SiO2 CMP applications in the absence and presence of oxidizers. Both anionic (sodium dodecyl sulfate-SDS) and cationic (cetyl trimethyl ammonium bromide-C12TAB) micelles were used in the slurry formulations as a function of pH and oxidizer concentration. CMP performances of Ge and SiO2 wafers were evaluated in terms of material removal rates, selectivity and surface quality. The material removal rate responses were also assessed through AFM wear rate tests to obtain a faster response for preliminary analyses. The surfactant adsorption characteristics were studied through surface wettability responses of the Ge and SiO2 wafers through contact angle measurements. It was observed that the self-assembled surfactant structures can help obtain selectivity on the silica/germanium system at low concentrations of the oxidizer in the slurry. © 2013 Materials Research Society.

  14. FLOTATION DE-INKING OF 50% ONP/ 50% OMG RECOVERED PAPERS MIXTURES USING NONIONIC SURFACTANT, SOAP, AND SURFACTANT/SOAP BLENDS

    Directory of Open Access Journals (Sweden)

    Jeremy Allix

    2010-11-01

    Full Text Available A laboratory flotation column equipped with Venturi aerators and an adjustable froth removal system was used to study the effect of calcium soap and a mixture of calcium soap/alkyl phenol ethoxylate surfactant on ink and fibres transfer during flotation de-inking of a 50% old newprint (ONP / 50% old magazines (OMG recovered papers mixture. Mass transport phenomena determining the yield of the flotation process were interpreted using model equations describing particle removal in terms of flotation, entrainment, and drainage in the froth. A decrease in the ink and mineral fillers flotation rate constant, drainage through the froth, and in fibre entrainment was observed when increasing the surfactant concentration. These trends were consistent with the typical dispersing action of the studied nonionic surfactant. An opposite effect on ink and fillers was observed when using calcium soap alone, and the increase in the flotation rate constant and drainage through the froth were consistent with the collecting and defoaming action of the calcium soap. Moreover, fibre entrainment decreased when increasing the soap concentration. The study of the surfactant/soap mixture highlighted the absence of synergy between the calcium soap and the surfactant.

  15. Physical properties of botanical surfactants.

    Science.gov (United States)

    Müller, Lillian Espíndola; Schiedeck, Gustavo

    2017-08-24

    Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or used fresh and chopped. The neutral bar soap was used as a positive control. The drying and grinding of samples were the preparation method that resulted in higher foam column height in both species but Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756 and 1017 respectively. Critical micelle concentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40mNm(-1) while neutral bar soap was 0.15% with 34.96mNm(-1). Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Interactions of Ovalbumin with Ionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; YAN Hui; GUO Rong

    2008-01-01

    The interactions of ovalbumin (OVA) with one anionic surfactant,sodium dodecyl sulfate (SDS),and two cationic surfactants,dodecyl trimethylammonium bromide (DTAB) and cetyl trimethylammonium bromide (CTAB),in water have been studied through fluorescence and UV-Vis spectroscopies and transmission electronic microscopy,combined with the measurement of conductivity.OVA can increase the critical micelle concentrations (cmc) of SDS and CTAB but has little effect on that of DTAB.The interaction between surfactant monomer and OVA is greater than that between surfactant micelles and OVA.Moreover,SDS can make OVA unfolded while cationic surfactants cannot.

  17. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  18. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  19. Synthesis and crystal structures of gold nanowires with Gemini surfactants as directing agents.

    Science.gov (United States)

    Xu, Feng; Hou, Hao; Gao, Zhinong

    2014-12-15

    The preparation of crystalline gold nanowires (NWs) by using gemini surfactants as directing agents through a three-step seed-mediated method is reported. Unlike the nanorods with relatively low aspect ratios (typically below 20) obtained by using cetyltrimethylammonium bromide as a directing agent, the NWs obtained in this investigation can reach up to 4.4 μm, and the largest aspect ratio is calculated to be 210. For this, each of seven different gemini surfactants are utilized as directing agents, and the length and/or aspect ratio of the NWs can be tuned by varying the hydrocarbon chain lengths of the gemini surfactants. Both single and twinned crystalline structures are elucidated by selected-area electron diffraction and high-resolution transmission electron microscopy studies. The use of gemini surfactants not only advances the synthesis of gold nanostructures, but improves the understanding of the growth mechanism for seed-mediated growth.

  20. An anionic surfactant for EOR applications

    Science.gov (United States)

    Sagir, Muhammad; Tan, Isa M.; Mushtaq, Muhammad

    2014-10-01

    This work is to investigate the new anionic surfactants for the Enhanced Oil Recovery (EOR) application. Sulfonated anionic surfactant was produced by attaching SO3 to an ethoxylated alcohol to increase the performance of the surfactant. Methallyl chloride and ethoxylated alcohol was reacted followed by the reaction with sodium bisulfite to produce anionic sulfonated surfactant in 80.3 % yield. The sulfonation reaction parameters such as reactants mole ratio, reaction temperature and catalyst amount were optimized. The generation and stability of foam from the synthesized surfactant is also tested and results are reported. The synthesized novel surfactant was further investigated for the effect on the CO2 mobility in porous media and the findings are presented here. This in house developed surfactant has a great potential for CO2- EOR applications.

  1. Method for obtaining biodegradable surfactants from cellulose in a single reactor

    OpenAIRE

    Corma, Avelino; Villander, Nicolás

    2010-01-01

    [EN] The invention relates to a method for obtaining surfactants from cellulose and hemicellulose, which comprises one reaction in a single reactor (one pot) and which includes at least the following steps: e) a frrst hydrolysis step, in which the cellulose is mixed with at least one ionic liquid, water and a catalyst; and f) a second glycosylation step, in which at least one alcohol is added when the hydrolysis level ofthe cellulose is between 10 and 80%. The resulting products are ...

  2. Effect of fat chain length of sorbitan surfactant on the porosity of mesoporous silica

    Directory of Open Access Journals (Sweden)

    Marco Antonio Utrera Martines

    2009-08-01

    Full Text Available The influence of the fat chain length of sorbitan surfactant was systematically explored, especially its influence on the material pore size. Then, mesoporous silica was synthesized according to a two-step process that provides intermediary stable hybrid micelles using ethoxylated derivative of fatty esters of sorbitan surfactants as the directing-structure agent and tetraethyl orthosilicate Si(OEt4 as the silica source. Finally, the materials’ porosity could be controlled by adjusting the preparation parameters during the two steps synthesis of mesoporous silica.

  3. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Akiba, Kazuki

    2016-01-01

    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.

  4. Sorption of melanoidin onto surfactant modified zeolite

    Directory of Open Access Journals (Sweden)

    Onyango Maurice S.

    2011-01-01

    Full Text Available Melanoidin is responsible for the dark brown colour of distillery wastewater. Discharge of coloured wastewater has a major environmental impact on the biota of the receiving water body. Consequently, this study explores the removal of melanodin from aqueous solution. The equilibrium, kinetics and thermodynamics of melanoidin sorption are studied by varying initial solution pH, initial concentration, adsorbent dose and temperature. Kinetically, the melanoidin removal from solution by a surfactant modified zeolite is rapid and the amount adsorbed is dependent on pH, initial concentration, adsorbent dose and temperature. The equilibrium sorption data are fitted to the Freundlich and Langmuir models while the sorption, kinetics is described by the Ho pseudo-second order and Elovich models. The thermodynamic analysis indicates that the sorption is spontaneous and endothermic in nature. The FTIR spectra analyses show no new peaks or shift in peaks after sorption indicating that the melanoidin sorption may have occurred by a physical process. The results from desorption studies showed that melanoidin eluted back easily to the solution using distilled water which corroborates the physical sorption mechanism.

  5. SURFACTANT SPRAY: A NOVEL TECHNOLOGY TO IMPROVE FLOTATION DEINKING PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Yulin Deng; Junyong Zhu

    2004-01-31

    Based on the fundamental understanding of ink removal and fiber loss mechanism in flotation deinking process, we developed this innovative technology using surfactant spray to improve the ink removal efficiency, reduce the water and fiber loss, reduce the chemical consumption and carry over in the flotation deinking. The innovative flotation deinking process uses a spray to deliver the frothing agent during flotation deinking to control several key process variables. The spray can control the foam stability and structure and modify the fluid dynamics to reduce the fibers entrapped in the froth layer. The froth formed at the top part of the flotation column will act as a physical filter to prevent the penetration of frothing agent into the pulp suspension to eliminate fiber contamination and unfavorable deinking surface chemistry modification due to surfactant adsorption on the fiber surface. Because of the filter effect, frothing agents will be better utilized. Under the sponsorships of the US Dept. of Energy (DOE) and the member companies of the Institute of Paper Science and Technology, we studied the chem-mechanical mechanism of surfactant spray for flotation deinking using different furnishes, chemicals, and flotation devices in the past four years. In the final year of the project, we successfully conducted mill trials at Abitibi-Consolidated, Inc., Snowflake paper recycling operation of 100% mixture of ONP/OMG. Results from laboratory, pilot-plant and mill trials indicated that surfactant spray technology can significantly reduce fiber loss in flotation deinking. It can be concluded that paper industry can profit greatly when this technology is commercialized in flotation deinking mills.

  6. Feed Forward Artificial Neural Network Model to Estimate the TPH Removal Efficiency in Soil Washing Process

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2017-01-01

    Full Text Available Background & Aims of the Study: A feed forward artificial neural network (FFANN was developed to predict the efficiency of total petroleum hydrocarbon (TPH removal from a contaminated soil, using soil washing process with Tween 80. The main objective of this study was to assess the performance of developed FFANN model for the estimation of   TPH removal. Materials and Methods: Several independent repressors including pH, shaking speed, surfactant concentration and contact time were used to describe the removal of TPH as a dependent variable in a FFANN model. 85% of data set observations were used for training the model and remaining 15% were used for model testing, approximately. The performance of the model was compared with linear regression and assessed, using Root of Mean Square Error (RMSE as goodness-of-fit measure Results: For the prediction of TPH removal efficiency, a FANN model with a three-hidden-layer structure of 4-3-1 and a learning rate of 0.01 showed the best predictive results. The RMSE and R2 for the training and testing steps of the model were obtained to be 2.596, 0.966, 10.70 and 0.78, respectively. Conclusion: For about 80% of the TPH removal efficiency can be described by the assessed regressors the developed model. Thus, focusing on the optimization of soil washing process regarding to shaking speed, contact time, surfactant concentration and pH can improve the TPH removal performance from polluted soils. The results of this study could be the basis for the application of FANN for the assessment of soil washing process and the control of petroleum hydrocarbon emission into the environments.

  7. Combined soil washing and CDEO for the removal of atrazine from soils

    OpenAIRE

    Vieira Santos, Elisama; Saez, C.; Martínez-Huitle, Carlos A.; Cañizares Cañizares, Pablo; Rodrigo Rodrigo, Manuel Andrés

    2015-01-01

    In this work, it is studied the removal of atrazine from spiked soils by soil washing using surfactant fluids, followed by the treatment of the resulting washing waste by electrolysis with boron doped diamond anode. Results confirm that combination of both technologies is efficient for the removal and total mineralization of atrazine. Ratio surfactant/soil is a key parameter for the removal of atrazine from soil and influences significantly in the characteristic of the wastewater produced, af...

  8. Removal of Sulfide and COD from a Crude Oil Wastewater Model by Aluminum and Iron Electrocoagulation

    Directory of Open Access Journals (Sweden)

    K. I. Dermentzis

    2016-04-01

    Full Text Available The treatment of petroleum wastewater was studied using the electrocoagulation process with aluminum and iron electrodes aiming to simultaneous removal of sulfide and COD. All affecting parameters, such as solution pH, applied current density, time of electroprocessing, electrode material and addition of surfactant, were investigated. Sulfide was rapidly and effectively removed using iron electrodes. The removal of COD was effectively effectively enhanced by performing the electrocoagulation process after addition of the surfactant polyethylene glycol oleate.

  9. Solubilization and separation of p-tert-butylphenol using polyelectrolyte/surfactant complexes in colloid-enhanced ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Hirotaka; Christian, S.D.; Tucker, E.E.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))

    1994-03-15

    Water-soluble polyelectrolyte/surfactant complexes, involving oppositely charged species, can form at quite low thermodynamic activities of the surfactant. This fact can be exploited in colloid-enhanced ultrafiltration separations, where both molecular organic pollutants and toxic ions are to be removed from contaminated aqueous streams. Investigations have been made of (a) the solubilization and ultrafiltration of solutions of organic solutes in polymer/surfactant solutions, for comparison with studies of micellar surfactant solutions in the absence of added polymers; (b) the penetration of surfactant through the membrane (leakage of monomer) in dialysis and ultrafiltration experiments; and (c) the utility of polyelectrolytes as scavengers'' for surfactant species that-enter the permeate or filtrate in colloid-enhanced ultrafiltration separations. The polyelectrolyte chosen for the studies is sodium poly(styrenesulfonate) and the surfactant is cetylpyridinium chloride (hexadecylpyridinium chloride). A detailed study has been made of the solubilization and separation of p-tert-butylphenol in aqueous mixtures of sodium poly(styrenesulfonate) and cetylpyridinium chloride, at polyelectrolyte to surfactant mole ratios of two to one and three to one.

  10. Surfactants in tribology, v.3

    CERN Document Server

    Biresaw, Girma

    2013-01-01

    The manufacture and use of almost every consumer and industrial product rely on application of advanced knowledge in surface science and tribology. These two disciplines are of critical importance in major economic sectors, such as mining, agriculture, manufacturing (including metals, plastics, wood, computers, MEMS, NEMS, appliances), construction, transportation, and medical instruments, transplants, and diagnostic devices. An up-to-date reference with contributions by experts in surface science and tribology, Surfactants in Tribology, Volume 3 discusses some of the underlying tribological a

  11. Anaerobic Biodegradation of Detergent Surfactants

    OpenAIRE

    Erich Jelen; Ute Merrettig-Bruns

    2009-01-01

    Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have str...

  12. Optimization of layered double hydroxide stability and adsorption capacity for anionic surfactants

    NARCIS (Netherlands)

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2007-01-01

    Low cost adsorption technology offers high potential to clean up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) proved to be an interesting material for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS) which is the main contamina

  13. Optimization of layered double hydroxide stability and adsorption capacity for anionic surfactants

    NARCIS (Netherlands)

    Schouten, Natasja; Ham, van der Louis G.J.; Euverink, Gert-Jan W.; Haan, de André B.

    2007-01-01

    Low cost adsorption technology offers high potential to clean up laundry rinsing water. From an earlier selection of adsorbents (Schouten et al. 2007), layered double hydroxide (LDH) proved to be an interesting material for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS) whic

  14. Influence of microbial and synthetic surfactant on the biodegradation of atrazine.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2014-02-01

    The present study reports the effect of surfactants (rhamnolipids and triton X-100) on biodegradation of atrazine herbicide by strain A6, belonging to the genus Acinetobacter. The strain A6 was able to degrade nearly 80 % of the 250-ppm atrazine after 6 days of growth. The bacterium degraded atrazine by de-alkylation process. Bacterial cell surface hydrophobicity as well as atrazine solubility increased in the presence of surfactant. However, addition of surfactant to the mineral salt media reduced the rate and extent of atrazine degradation by decreasing the bioavailability of herbicide. On the contrary, addition of surfactant to atrazine-contaminated soil increased the rate and extent of biodegradation by increasing the bioavailability of herbicide. As compared to triton X-100, rhamnolipids were more efficient in enhancing microbial degradation of atrazine as a significant amount of atrazine was removed from the soil by rhamnolipids. Surfactants added for the purpose of hastening microbial degradation may have an unintended inhibitory effect on herbicide degradation depending upon contiguous condition, thus highlighting the fact that surfactant must be judiciously used in bioremediation of herbicides.

  15. Solid mesostructured polymer-surfactant films at the air-liquid interface.

    Science.gov (United States)

    Pegg, Jonathan C; Eastoe, Julian

    2015-08-01

    Pioneering work by Edler et al. has spawned a new sub-set of mesostructured materials. These are solid, self-supporting films comprising surfactant micelles encased within polymer hydrogel; composite polymer-surfactant films can be grown spontaneously at the air-liquid interface and have defined and controllable mesostructures. Addition of siliconalkoxide to polymer-surfactant mixtures allows for the growth of mesostructured hybrid polymer-surfactant silica films that retain film geometry after calcinations and exhibit superior mechanical properties to typically brittle inorganic films. Growing films at the air-liquid interface provides a rapid and simple means to prepare ordered solid inorganic films, and to date the only method for generating mesostructured films thick enough (up to several hundred microns) to be removed from the interface. Applications of these films could range from catalysis to encapsulation of hydrophobic species and drug delivery. Film properties and mesostructures are sensitive to surfactant structure, polymer properties and polymer-surfactant phase behaviour: herein it will be shown how film mesostructure can be tailored by directing these parameters, and some interesting analogies will be drawn with more familiar mesostructured silica materials.

  16. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    Science.gov (United States)

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  17. Surfactant inhibition in acute respiratory failure : consequences for exogenous surfactant therapy

    NARCIS (Netherlands)

    E.P. Eijking (Eric)

    1993-01-01

    textabstractThe neonatal respiratory distress syndrome (RDS) is characterized by immaturity of the lung, resulting in relative or absolute absence of pulmonary surfactant. Worldwide, neonates suffering from RDS have been treated successfully with exogenous surfactant preparations. Currently, exogeno

  18. One-Step Synthesis of Fe@SiO2 and Its Application in Cr(VI) Removal%纳米Fe@SiO2—步合成及其对Cr(VI)的去除

    Institute of Scientific and Technical Information of China (English)

    李勇超; 李铁龙; 王学; 金朝晖

    2011-01-01

    Without using aqueous ammonia and a surface modifier, a facile one-step method was developed to fabricate Fe nanoparticles coated with a SiO2 shell (Fe@SiO2) by a modified Stober method combined with an aqueous reduction method. The Fe@SiO2 was prepared by directly adding potassium borohydride to a mixed solution of tetraethylorthosilicate (TEOS) and anhydrous ferric chloride. The structure and morphology of the as-synthesized powders were investigated by X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier-transform infrared (FTIR) spectrometry and X-ray photoelectron spectroscopy (XPS). The feasibility of using the prepared Fe@SiO2 for the reductive immobilization of Cr(VI) in water was studied. The influence of TEOS addition on Cr(VI) removal by Fe@SiO2 was investigated. The results showed that the prepared Fe@SiO2 had a distinct core-shell structure. One or two Fe nanoparticles (20-30 nm in diameter) were homogeneously coated by a porous SiO2 shell. With an increase in the amount of added TEOS the Fe nanoparticles had better dispersion and the thickness of the SiO2 coating increased gradually. Compared with uncoated Fe nanoparticles, Cr(VI) removal by Fe@SiO2 increased greatly. At a TEOS dosage of 0.1 mL the removal ability of the prepared Fe@SiO2 was the highest. The highest removal ability of Fe@SiO2 was 466.67 mg ? G"1 and it was only 76.35 mg-g-1 for uncoated Fe nanoparticles.%利用液相还原与改进的St(o)br法相结合,在不使用表面改性剂和氨水的条件下,通过向原硅酸乙酯(TEOS)和氯化铁混合溶液直接添加硼氢化钾,一步合成了二氧化硅包覆的纳米铁复合材料(Fe@SiO2).通过X射线粉末衍射(XRD)仪、能量色散X射线仪(EDAX)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)吸收分光光度计、傅里叶红外(FTIR)光谱仪、X射线光电子能谱仪(XPS)等对所得样

  19. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  20. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    Science.gov (United States)

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.

  1. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    Science.gov (United States)

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  2. Hair Removal

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hair Removal KidsHealth > For Teens > Hair Removal A A A ... recommend an electrologist with the proper credentials. Laser Hair Removal How It Works: A laser is directed through ...

  3. Hair Removal

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Hair Removal KidsHealth > For Teens > Hair Removal Print A ... you need any of them? Different Types of Hair Before removing hair, it helps to know about ...

  4. Influence of phase separation for surfactant driven pattern formation during ion beam erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, Hans; Zhang, Kun; Vetter, Ulrich; Bobes, Omar; Pape, Andre; Gehrke, Hans-Gregor; Broetzmann, Marc [II. Physikalisches Institut, Goettingen Univ. (Germany)

    2012-07-01

    We will present results on metal surfactant driven self-organized pattern formation on surfaces by ion beam erosion, with a focus on the role of phase separation for the initial steps of pattern formation. Si substrates were irradiated with 5 keV Xe ions at normal incidence and ion fluences up to 5.10{sup 17} Xe/cm{sup 2} under continuous deposition of surfactant atoms. In the absence of such surfactants uniform flat surfaces are obtained, while in the presence of Fe and Mo surfactants pronounced patterns like dots, combinations of dots and ripples with wavelengths around 100 nm are generated. The surfactant coverage and deposition direction determine the pattern type and the pattern orientation, respectively. A critical steady-state coverage for onset of dot formation and onset of ripple formation is in the range of 10{sup 15} and 5.10{sup 15} Xe/cm{sup 2}. The steady-state surface region consists of a thin amorphous metal silicide layer with high metal concentration in the ripple and dot regions. Pattern formation is explained by ion induced diffusion and phase separation of the initially flat amorphous silicide layer and subsequent ion beam erosion with composition dependent sputter yield. To investigate the role of initial phase separation we additionally compare the pattern formation for different other metal surfactants.

  5. Enhanced degradation of carbon tetrachloride by surfactant-modified zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    MENG Ya-feng; GUAN Bao-hong; WU Zhong-biao; WANG Da-hui

    2006-01-01

    Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVI is of great importance. This experiment was aimed at enhancing the sorption of CT by ZVI and the degradation rate of CT by modification of surfactants. This study showed that ZVI modified by cationic surfactants has favorable synergistic effect on the degradation of CT. The CT degradation rate of ZVI modified by cetyl pyridinium bromide (CPB) was higher than that of the unmodified ZVI by 130%, and the CT degradation rate of ZVI modified by cetyl trimethyl ammonium bromide (CTAB) was higher than that of the unmodified ZVI by 81%. This study also showed that the best degradation effect is obtained at the near critical micelle concentrations (CMC) and that high loaded cationic surfactant does not have good synergistic effect on the degradation due to its hydrophilicity and the block in surface reduction sites. Furthermore degradation of CT by ZVI modified by nonionic surfactant has not positive effect on the degradation as the ionic surfactant and the ZVI modified by anionic surfactant has hardly any obvious effects on the degradation.

  6. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  7. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  8. Using biologically soft surfactants for dust suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Kolodiichak, V.K.; Motrii, A.E.; Severin, V.D.

    1982-07-01

    This article discusses environmental aspects of using surfactants in coal mines for dust suppression. Surfactants for underground black coal mines in the USSR are divided into three classes: so-called soft surfactants with a decomposition period from 1 to 3 days, hard surfactants with decomposition exceeding a month and an intermediary group. The decomposition process is analyzed; the role played by fermentation is stressed. Environmental effects of surfactant decomposition are evaluated. Selected surfactants tested in Soviet laboratories are described. The results of experimental use of diethanolamide as a surfactant for water injection in coal seams are evaluated. Wetting time amounts to 1 s when a 0.2% concentration is used. When surfactant concentration in water is reduced to 0.05% wetting time does not change; when concentration decreases to 0.025% wetting time increases to 3 s. Surfactant efficiency is investigated under operational conditions in a Donbass mine. Specifications of the working face, mining system and air pollution caused by a shearer loader are discussed. When diethanolamide is used dust suppression efficiency ranges from 86.4 to 90.4%. During the tests diethanolamide concentration in water was 0.05%.

  9. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  10. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  11. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  12. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  13. CFD analysis and flow model reduction for surfactant production in helix reactor

    NARCIS (Netherlands)

    Nikačević, N.M.; Thielen, L.; Twerda, A.; Hof, P.M.J. van den

    2014-01-01

    Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR) were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD) simulations. Non-reactive flow is simul

  14. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Prof. P. Somasundaran

    2003-03-31

    The aim of the project is to develop a knowledge base to help with the design of enhanced process for mobilizing and extracting untrapped oil. We emphasize on evaluating novel surfactant mixtures and on obtaining optimum combinations of the surfactants in chemical flooding EOR process. An understanding of the micellar shape and size is crucial since these physical properties directly determine the crude oil removal efficiency. Analytical ultracentrifugation experiments were used to test the multi-micelle model proposed earlier and formulate the relationships between mixed micelle formation and the surfactant structure. Information on partial specific volume of surfactants and their mixtures is required to treat analytical ultracentrifuge data. In the last report, it was noted that the partial specific volumes of the sugar-based surfactants obtained experimentally did not agree with those from theoretical calculations. A scrutiny of partial specific volumes of the four sugar-based surfactants revealed that conformational changes upon micelle formation are responsible for the large deviation. From sedimentation equilibrium experiments, two types of micelles were identified for the nonionic polyethylene surfactant and its mixtures with the sugar-based surfactant, dodecyl maltoside. The average aggregation numbers of n-dodecyl-{beta}-D-maltoside and nonyl phenol ethoxylated decyl ether agreed with those reported in literature using other techniques. Our study displayed, for the first time, that small micelles might coexist with large micelles at high concentrations due to unique structures of the surfactant although classical thermodynamic theory supports only one type of micelle. Initial dynamic light scattering results support the results for the same mixed surfactant system from analytical ultracentrifuge equilibrium technique. The implication of this finding lies in the fact that efficiency of oil recovery will be improved due to the large micellar size, its

  15. Hemolysis by surfactants--A review.

    Science.gov (United States)

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.

  16. Cloud Point Extraction of Toxic Reactive Black 5 Dye from Water Samples Using Triton X-100 as Nonionic Surfactant

    Directory of Open Access Journals (Sweden)

    Raziyeh Mousavi

    2011-01-01

    Full Text Available A surfactant mediated cloud point extraction (CPE procedure has been developed to remove color from wastewater containing reactive black 5, using triton x-100 (TX-100 as non-ionic surfactant. The effects of the concentration of the surfactant, pH, temperature and salt concentration on the different concentrations of dye have been studied and optimum conditions were obtained for the removal of reactive black 5 (RB 5. The concentration of RB 5 in the dilute phase was measured using UV-Vis spectrophotometer. It was found that the separation of phases was complete and the recovery of RB 5 was very effective in the presence of NaCl as an electrolyte. The results showed that up to 600 mg L-1 of RB 5 can quantitatively be removed (>97% by cloud point extraction procedure in a single extraction using optimum conditions.

  17. Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs.

    Science.gov (United States)

    Hahladakis, John N; Lekkas, Nikolaos; Smponias, Andreas; Gidarakos, Evangelos

    2014-06-01

    This study focused on the sequential application of a chelating agent (citric acid) followed by a surfactant in the simultaneous electroremediation of real contaminated sediments from toxic metals and Polycyclic Aromatic Hydrocarbons (PAHs). Furthermore, the efficiency evaluation of two innovative non-ionic surfactants, commercially known as Poloxamer 407 and Nonidet P40, was investigated. The results indicated a removal efficacy of approximately 43% and 48% for the summation of PAHs (SUM PAHs), respectively for the aforementioned surfactants, much better than the one obtained by the use of Tween 80 (nearly 21%). Individual PAHs (e.g. fluorene) were removed in percentages that reached almost 84% and 92% in the respective electrokinetic experiments when these new surfactants were introduced. In addition, the combined-enhanced sequential electrokinetic treatment with citric acid improved dramatically the removal of Zn and As, compared to the unenhanced run, but did not favor the other toxic metals examined. Since no improvement in metal removal percentages occurred when Tween 80 was used, significant contribution to this matter should also be attributed to the solubilization capacity of these innovative, in electrokinetic remediation, non-ionic surfactants.

  18. Sugar ester surfactants: enzymatic synthesis and applications in food industry.

    Science.gov (United States)

    Neta, Nair S; Teixeira, José A; Rodrigues, Lígia R

    2015-01-01

    Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.

  19. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxiang [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guohe, E-mail: huang@iseis.org [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Wei, Jia [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 (Canada); Li, Huiqin; Zheng, Rubing; Zhou, Ya [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Gemini surfactant micellar enhanced ultrafiltration was used to remove phenol. Black-Right-Pointing-Pointer The effect of different hydrophilic head groups of surfactant was analyzed. Black-Right-Pointing-Pointer SEM, ATR-FTIR and mercury porosimeter were applied to elucidate membrane fouling. Black-Right-Pointing-Pointer Gemini surfactant had superior performance in comparing with conventional surfactant. - Abstract: Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L{sub m}) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated

  20. Linear algebra step by step

    CERN Document Server

    Singh, Kuldeep

    2013-01-01

    Linear algebra is a fundamental area of mathematics, and is arguably the most powerful mathematical tool ever developed. It is a core topic of study within fields as diverse as: business, economics, engineering, physics, computer science, ecology, sociology, demography and genetics. For an example of linear algebra at work, one needs to look no further than the Google search engine, which relies upon linear algebra to rank the results of a search with respect to relevance. The strength of the text is in the large number of examples and the step-by-step explanation of each topic as it is introduced. It is compiled in a way that allows distance learning, with explicit solutions to set problems freely available online. The miscellaneous exercises at the end of each chapter comprise questions from past exam papers from various universities, helping to reinforce the reader's confidence. Also included, generally at the beginning of sections, are short historicalbiographies of the leading players in the field of lin...

  1. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  2. Surfactant Adsorption: A Revised Physical Chemistry Lab

    Science.gov (United States)

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  3. Surfactant effects on soil aggregate tensile strength

    Science.gov (United States)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  4. Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: effect of partition coefficient and sweep efficiency.

    Science.gov (United States)

    Wang, Hao; Chen, Jiajun

    2012-01-01

    Foam flushing is an in situ soil remediation technology based on the traditional surfactant flushing method. The contribution of mobility control to contaminant removal by foam is helpful for improving this technology. Foam flushing of polychlorinated biphenyl (PCB)-contaminated unconsolidated media was performed to evaluate the effect of the partition coefficient (PC) and sweep efficiency (SE) on PCB removal. Column flushing with surfactant solution and foam with different types and concentrations of surfactant was carried out for PCB removal. Two types of quartz sand were investigated to evaluate the Jamin effect on the SE value of the washing agent. The results demonstrate that a small PC value and large SE value are necessary to achieve high PCB removal for foam flushing. Compared with solution flushing, the introduction of foam can effectively control the mobility of the washing agent. Similar to solution flushing, solubilization is a key factor which dominates the removal of PCBs in foam flushing. In addition, the SE value and PCB removal by foam flushing is less affected by particle size. Therefore, foam flushing was proved to be more effective in porous media with low hydraulic conductivity and high porosity. An integrated flushing with water, surfactant solution and foam was performed and the results prove that this technology successfully combines the advantages of solution solubilization and mobility control by foam, and thus further increases the remediation efficiency of PCBs to 94.7% for coarse sand.

  5. Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: Effect of partition coefficient and sweep efficiency

    Institute of Scientific and Technical Information of China (English)

    Hao Wang; Jiajun Chen

    2012-01-01

    Foam flushing is an in situ soil remediation technology based on the traditional surfactant flushing method.The contribution of mobility control to contaminant removal by foam is helpful for improving this technology.Foam flushing of polychlorinated biphenyl (PCB)-contaminated unconsolidated media was performed to evaluate the effect of the partition coefficient (PC) and sweep efficiency (SE) on PCB removal.Column flushing with surfactant solution and foam with different types and concentrations of surfactant was carried out for PCB removal.Two types of quartz sand were investigated to evaluate the Jamin effect on the SE value of the washing agent.The results demonstrate that a small PC value and large SE value are necessary to achieve high PCB removal for foam flushing.Compared with solution flushing,the introduction of foam can effectively control the mobility of the washing agent.Similar to solution flushing,solubilization is a key factor which dominates the removal of PCBs in foam flushing.In addition,the SE value and PCB removal by foam flushing is less affected by particle size.Therefore,foam flushing was proved to be more effective in porous media with low hydraulic conductivity and high porosity.An integrated flushing with water,surfactant solution and foam was performed and the results prove that this technology successfully combines the advantages of solution solubilization and mobility control by foam,and thus further increases the remediation efficiency of PCBs to 94.7% for coarse sand.

  6. Fibrinogen stability under surfactant interaction.

    Science.gov (United States)

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Development and Experimental Evaluation of a Steady-state Model for the Step-feed Biological Nitrogen Removal Process%分段进水生物脱氮工艺稳态模型的开发与试验评价

    Institute of Scientific and Technical Information of China (English)

    祝贵兵; 彭永臻; 王淑莹; 左金龙; 王亚宜; 郭建华

    2007-01-01

    In this article, a steady-state mathematical model was developed and experimentally evaluated to investigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the total nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods, this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia, nitrate, and total nitrogen in the effluent.To verify the simulation results, pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results, which proved the validity of the developed model.The sensitivity of the model predictions was analyzed.After verification of the validity, the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period, the effluent total nitrogen concentrations were all below 5mg·L-1.with more than 90% removal efficiency.

  8. Effect of anionic surfactants on the process of Fenton degradation of methyl orange.

    Science.gov (United States)

    Yang, C W; Wang, D

    2009-01-01

    Fenton process has been shown to be very successful to remove dyes from water. However, the influence of other constituents in dyeing industry wastewater, such as Sodium Dodecyl Sulphate (SDS) surfactants, has not been investigated. In this study, the effect of SDS surfactant on the kinetics of Methyl Orange degradation undergoing Fenton process was investigated. Results show that Methyl Orange degradation rate decreased as SDS concentration increased, which was attributed to the consumption of hydroxyl radicals (OH) by surfactants and the formation of Methyl Orange-SDS complex. No evidence was found that the Methyl Orange degradation pathway was affected by the presence of SDS. The kinetics modelling indicates the reaction was the first-order reaction to Methyl Orange.

  9. Surfactant-assisted Nanocasting Route for Synthesis of Highly Ordered Mesoporous Graphitic Carbon and Its Application in CO2 Adsorption

    Science.gov (United States)

    Wang, Yangang; Bai, Xia; Wang, Fei; Qin, Hengfei; Yin, Chaochuang; Kang, Shifei; Li, Xi; Zuo, Yuanhui; Cui, Lifeng

    2016-05-01

    Highly ordered mesoporous graphitic carbon was synthesized from a simple surfactant-assisted nanocasting route, in which ordered mesoporous silica SBA-15 maintaining its triblock copolymer surfactant was used as a hard template and natural soybean oil (SBO) as a carbon precursor. The hydrophobic domain of the surfactant assisted SBO in infiltration into the template’s mesoporous channels. After the silica template was carbonized and removed, a higher yield of highly-ordered graphitic mesoporous carbon with rod-like morphology was obtained. Because of the improved structural ordering, the mesoporous carbon after amine modification could adsorb more CO2 compared with the amine-functionalized carbon prepared without the assistance of surfactant.

  10. Surfactant enhanced pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea).

    Science.gov (United States)

    Cheema, Sardar Alam; Khan, Muhammad Imran; Tang, Xianjin; Shen, Chaofeng; Farooq, Muhammad; Chen, Yingxu

    2016-09-01

    The present study was conducted to evaluate the effect of two non ionic surfactants (Tween 80 and Triton X-100), a biosurfactant (Lecithin), and randomly methylated-β-cyclodextrins (RAMEB) on the remediation of pyrene from soil planted with tall fescue (Festuca arundinacea). Soils with pyrene concentration of about 243 mg kg(-1) was grown with tall fescue and were individually amended with 0, 200, 600, 1000, and 1500 mg kg(-1) of Tween 80, Triton X-100, biosurfactant, and RAMEB. The results show that all surfactants significantly increased plant biomass compared to unamended soil. Dehydrogenase activity was also stimulated as a result of surfactant addition. Only 3.9 and 3.2 % of pyrene was decreased in the uncovered and covered abiotic sterile control, suggesting that microbial degradation was the main removal mechanism of pyrene from soil. In the planted treatment receiving no surfactant, the remediation of pyrene was 45 % which is significantly higher than that of corresponding unplanted control soil, suggesting that the cultivation of tall fescue alone could enhance the overall remediation of pyrene in soil. All surfactants had significantly higher rates of pyrene remediation compared to the unamended planted soil. Generally, RAMEB displayed the highest remediation rates, i.e., 64.4-79.1 % followed by the Triton X-100, i.e., 60.1-74.8 %. The positive impact of surfactants on pyrene remediation could possibly be because of their capacities to increase its bioavailability in soil. The evidence from this study suggests that the addition of surfactants could enhance phytoremediation of PAHs polluted soil.

  11. Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanlin, E-mail: zhangyl@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, J.W.C. [Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Liu Peihong [School of Chemistry and Environment, South China Normal University, Guangzhou (China); Yuan Min [Research Resources Center, South China Normal University, Guangzhou (China)

    2011-07-15

    Highlights: {yields} Degradation of phenanthrene in surfactant solution and the role of surfactant have been elucidated. {yields} Possible pathway of phenanthrene degradation in surfactant solution is proposed. {yields} The degradation of phenanthrene follows pseudo-second-order kinetics. {yields} It is proved that applying the surfactants as solubilizing agents to remove contaminants from soils followed by photocatalytic degradation is a promising strategy for soil remediation. - Abstract: Photocatalytic degradation of phenanthrene (PHE) over TiO{sub 2} in aqueous solution containing nonionic surfactant micelles was investigated. All photocatalytic experiments were conducted using a 253.7 nm mercury monochromatic ultraviolet lamp in a photocatalytic reactor. The surfactant micelles could provide a nonaqueous 'cage' to result in a higher degradation rate of PHE than in an aqueous solution, but the higher Triton X-100 concentration (more than 2 g/L) lowered the degradation ratio of PHE because the additional surfactant micelles hindered the movement of micelles containing PHE so as to reduce their adsorption onto titania. Pseudo-second-order kinetics was observed for the photocatalytic degradation of PHE. Alkaline solution environment was beneficial to the photocatalytic degradation of PHE. PHE degradation could mainly be attributed to the formation of hydroxyl radicals as evident from the comparison of degradation efficiencies when O{sub 2}, H{sub 2}O{sub 2} and tert-butyl alcohol (TBA) were applied as oxidants or hydroxyl radical scavenger. Based on the GC/MS analysis of the intermediates, the possible pathways of the photocatalytic degradation of PHE were proposed.

  12. 9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Haga, Mariko; Watanabe, Gou; Shinoda, Yuhki; Endo, Satoshi; Kajiwara, Yu; Tanaka, Hiroyuki; Inagaki, Naoki; El-Kabbani, Ossama; Hara, Akira

    2012-02-01

    9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, induces apoptosis via the generation of reactive oxygen species (ROS) because of 9,10-PQ redox cycling. We have found that intratracheal infusion of 9,10-PQ facilitates the secretion of surfactant into rat alveolus. In the cultured rat lung, treatment with 9,10-PQ results in an increase in a lower-density surfactant by ROS generation through redox cycling of the quinone. The surfactant contains aldo-keto reductase (AKR) 1C15, which reduces 9,10-PQ and the enzyme level in the surfactant increases on treatment with 9,10-PQ suggesting an involvement of AKR1C15 in the redox cycling of the quinone. In six human cell types (A549, MKN45, Caco2, Hela, Molt4 and U937) only type II epithelial A549 cells secrete three human AKR1C subfamily members (AKR1C1, AKR1C2 and AKR1C3) with the surfactant into the medium; this secretion is highly increased by 9,10-PQ treatment. Using in vitro enzyme inhibition analysis, we have identified AKR1C3 as the most abundantly secreted AKR1C member. The AKR1C enzymes in the medium efficiently reduce 9,10-PQ and initiate its redox cycling accompanied by ROS production. The exposure of A549 cells to 9,10-PQ provokes viability loss, which is significantly protected by the addition of the AKR1C3 inhibitor and antioxidant enzyme and by the removal of the surfactants from the culture medium. Thus, the AKR1C enzymes secreted in pulmonary surfactants probably participate in the toxic mechanism triggered by 9,10-PQ.

  13. Surfactant replacement therapy--economic impact.

    Science.gov (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  14. Photoactivation and perturbation of photoluminescent properties of aqueous ZnS nanoparticles: Probing the surfactant-semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, S.K., E-mail: skmehta@pu.ac.in [Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014 (India); Kumar, Sanjay [Department of Chemistry, Government College, Chowari, Chamba, H.P. 176302 (India)

    2011-12-15

    Graphical abstract: The variation in PL emission intensity of growing ZnS NPs during first hour of their growth depends upon the nature of surfactants used for their stabilization. Highlights: Black-Right-Pointing-Pointer Photoluminescence (PL) intensity of growing ZnS NPs increases linearly with time. Black-Right-Pointing-Pointer Significant PL enhancement in anionic surfactant stabilized ZnS NPs on irradiation. Black-Right-Pointing-Pointer PL decay with delay time after removing from UV-irradiation in all the surfactants. Black-Right-Pointing-Pointer Better PL stability of ZnS NPs stabilized in anionic surfactants than cationic ones. - Abstract: The in situ photochemistry of aqueous colloidal ZnS has been studied in relation to variety of the surfactants as surface passivating agents. The photoluminescence (PL) intensity of ZnS nanoparticles (NPs) has been drastically enhanced as compared to their bare counterparts due to surface passivation by surfactants depending upon their molecular structure. Cationic surfactants of alkyltrimethylammonium bromide series with different chain lengths (C{sub 16}, C{sub 14} and C{sub 12}) have been tested. The PL emission of ZnS NPs decreases with decrease in chain length because of ineffective stabilization and passivation of surface because the larger sized NPs were produced in the surfactant with smaller chain length. On the other hand, three anionic surfactants with C{sub 12} chain length with different head groups have been capable of comparatively effective passivation to produce stable NPs with better luminescence. The changing nature of surface states during growth and long time ripening of ZnS NPs has also been monitored by comparing time evolution PL emission in different surfactants. The influence of UV-light irradiation in enhancing the PL emission has been found to be surfactant structure dependent with maximum enhancement observed with the surfactants having {pi}-electrons in their head group functionalities. The

  15. Different effects of surfactant proteins B and C - implications for development of synthetic surfactants.

    Science.gov (United States)

    Curstedt, Tore; Johansson, Jan

    2010-06-01

    Treatment of premature newborn rabbits with synthetic surfactants containing a surfactant protein C analogue in a simple phospholipid mixture gives similar tidal volumes as treatment with poractant alfa (Curosurf(R)) but ventilation with a positive end-expiratory pressure (PEEP) is needed for this synthetic surfactant to stabilize the alveoli at end-expiration. The effect on lung gas volumes seems to depend on the structure of the peptide since treatment with a synthetic surfactant containing the 21-residue peptide (LysLeu(4))(4)Lys (KL(4)) gives low lung gas volumes in experiments also performed with PEEP. Surfactant preparations containing both surfactant proteins B and C or their analogues prevent alveolar collapse at end-expiration even if ventilated without PEEP. Treatment of premature newborn rabbits with different natural surfactants indicates that both the lipid composition and the proteins are important in order to stabilize the alveoli at end-expiration. Synthetic surfactants containing two peptides may be able to replace natural surfactants within the near future but more trials need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants.

  16. Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

    Directory of Open Access Journals (Sweden)

    Alexei Birkun

    2014-01-01

    Full Text Available Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium in vitro and to identify appropriate combination(s for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa. Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia.

  17. Tick Removal

    Science.gov (United States)

    ... ticks Tickborne diseases abroad Borrelia miyamotoi Borrelia mayonii Tick Removal Recommend on Facebook Tweet Share Compartir If ... a tick quite effectively. How to remove a tick Use fine-tipped tweezers to grasp the tick ...

  18. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2004-11-20

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable. They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity

  19. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review.

    Science.gov (United States)

    Trellu, Clément; Mousset, Emmanuel; Pechaud, Yoan; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The release of hydrophobic organoxenobiotics such as polycyclic aromatic hydrocarbons, petroleum hydrocarbons or polychlorobiphenyls results in long-term contamination of soils and groundwaters. This constitutes a common concern as these compounds have high potential toxicological impact. Therefore, the development of cost-effective processes with high pollutant removal efficiency is a major challenge for researchers and soil remediation companies. Soil washing (SW) and soil flushing (SF) processes enhanced by the use of extracting agents (surfactants, biosurfactants, cyclodextrins etc.) are conceivable and efficient approaches. However, this generates high strength effluents containing large amount of extracting agent. For the treatment of these SW/SF solutions, the goal is to remove target pollutants and to recover extracting agents for further SW/SF steps. Heterogeneous photocatalysis, technologies based on Fenton reaction chemistry (including homogeneous photocatalysis such as photo-Fenton), ozonation, electrochemical processes and biological treatments have been investigated. Main advantages and drawbacks as well as target pollutant removal mechanisms are reviewed and compared. Promising integrated treatments, particularly the use of a selective adsorption step of target pollutants and the combination of advanced oxidation processes with biological treatments, are also discussed.

  20. Fluorescence emission of pyrene in surfactant solutions.

    Science.gov (United States)

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih

    2015-01-01

    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  1. A study of surfactant-assisted waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  2. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  3. Influence of surfactants in forced dynamic dewetting.

    Science.gov (United States)

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s(-1) the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  4. Evidence based decontamination protocols for the removal of external Δ9-tetrahydrocannabinol (THC) from contaminated hair.

    Science.gov (United States)

    Duvivier, Wilco F; Peeters, Ruth J P; van Beek, Teris A; Nielen, Michel W F

    2016-02-01

    External contamination can cause false positive results in forensic hair testing for drugs of abuse and is therefore a major concern when hair evidence is used in court. Current literature about decontamination strategies is mainly focused on external cocaine contamination and no consensus on the best decontamination procedure for hair samples containing cannabinoids has been reached so far. In this study, different protocols with solvents, both organic as well as aqueous, were tested on blank and drug user hair for their performance on removing external cannabis contamination originating from either smoke or indirect contact with cannabis plant material. Smoke contamination was mimicked by exposing hair samples to smoke from a cannabis cigarette and indirect contact contamination by handling hair with cannabis contaminated gloves or hands. Δ9-tetrahydrocannabinol (THC) levels in the hair samples and wash solvents were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Aqueous surfactant solutions removed more THC contamination compared to water, but much less than organic solvents. Methanol, dichloromethane and chloroform were most efficient in removing THC contamination. Due to its lower environmental impact, methanol was chosen as the preferred decontamination solvent. After testing of different sequential wash steps on externally contaminated blank hair, three protocols performed equally well, removing all normal level and more than 99% of unrealistically high levels of external cannabis contamination. Thorough testing on cannabis users' hair, both as such and after deliberate contamination, showed that using these protocols all contamination could be washed from the hair while no incorporated THC was removed from truly positive samples. The present study provides detailed scientific evidence in support of the recommendations of the Society of Hair Testing: a protocol using a single methanol wash followed by a single aqueous

  5. Surfactant-Assisted Coal Liquefaction

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  6. Gemini surfactants from natural amino acids.

    Science.gov (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  7. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  8. Studies on the electrocapillary curves of anionic surfactants in presence of non-ionic surfactants.

    Science.gov (United States)

    Bembi, R; Goyal, R N; Malik, W U

    1976-09-01

    Polyoxyethylated non-ionic surfactants such as Tween 20, Tween 40, Nonidet P40 and Nonex 501 have been supposed to be associated with cationic characteristics. Studies on the effect of these surfactants on the electrocapillary curves of the anionic surfactants Aerosol IB, Manaxol OT and sodium lauryl sulphate (SLS), show that the electrocapillary maxima shift towards positive potentials. The order of adsorption of the anionic surfactants is SLS > Manaxol OT > Aerosol IB while the shift in maxima is in the order Aerosol IB ~ Manaxol OT > SLS which confirms association of cationic characteristics with the micelles of these non-ionic surfactants. The magnitude of the shift in electrocapillary maxima is Nonex 501 > Nonidet P40 > Tween 20 > Tween 40 which may be the order of magnitude of the positive charge carried by these non-ionic surfactants.

  9. Synthesis of novel quaternary ammonium surfactants containing adamantane

    Institute of Scientific and Technical Information of China (English)

    Jian Wei Guo; Xing Zhong; Hua Zhu; Li Juan Feng; Ying De Cui

    2012-01-01

    A series of novel quaternary ammonium surfactants containing adamantane were designed and synthesized from 1-adamantanecarboxylic acid.The structures of target surfactants were confirmed by 1H NMR,elements analysis and FTIR.Surface properties of these surfactants were investigated.Due to the lipophilicity of adamantane,the critical micelle concentration (CMC) and C20 values of the synthesized quaternary ammonium surfactants are lower than that of conventional quaternary ammonium surfactants.

  10. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  11. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Science.gov (United States)

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+) and Ig-Hepta(-/-) mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space.

  12. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.

    Science.gov (United States)

    Goldsipe, Arthur; Blankschtein, Daniel

    2007-05-22

    In article 1 of this series, we developed a molecular-thermodynamic (MT) theory to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. In this article, we extend the MT theory to model mixtures containing a pH-sensitive surfactant. The MT theory was validated by examining mixtures containing both a pH-sensitive surfactant and a conventional surfactant, which effectively behave like ternary surfactant mixtures. We first compared the predicted micellar titration data to experimental micellar titration data that we obtained for varying compositions of mixed micelles containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) mixed with either a cationic surfactant (dodecyltrimethylammonium bromide, C12TAB), a nonionic surfactant (dodecyl octa(ethylene oxide), C12E8), or an anionic surfactant (sodium dodecyl sulfate, SDS) surfactant. The MT theory accurately modeled the titration behavior of C12DAO mixed with C12E8. However, C12DAO was observed to interact more favorably with SDS and with C12TAB than was predicted by the MT theory. We also compared predictions to data from the literature for mixtures of C12DAO and SDS. Although the pH values of solutions with no added acid were modeled with only qualitative accuracy, the MT theory resulted in quantitatively accurate predictions of solution pH for mixtures containing added acid. In addition, the predicted degree of counterion binding yielded a lower bound to the experimentally measured value. Finally, we predicted the critical micelle concentration (cmc) of solutions of two pH-sensitive surfactants, tetradecyldimethylamine oxide (C14DAO) and hexadecyldimethyl betaine (C16Bet), at varying solution pH and surfactant composition. However, at the pH values considered, the pH sensitivity of C16Bet could be neglected, and it was equivalently modeled as a zwitterionic surfactant. The cmc's predicted using the MT theory agreed well with the experimental

  13. Effects of Interactions Among Surfactants,Water and Oil on Equilibrium Configuration of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Yin-quan; SUN Zhi-bo; XIE Yun; ZOU Xian-wu

    2004-01-01

    The distribution and configuration of surfactants at interface in surfactant-water-oil systems have been investigated using discontinuous molecular dynamic simulations. There exists a certain equilibrium concentration of surfactants at interface for the systems with certain interactions among surfactant, water and oil. The interface length and equilibrium morphology of the systems are dependent on the equilibrium concentration of surfactants at interface and the total amount of surfactants. The interaction strengths among surfactant, water and oil determine the equilibrium concentration of surfactants at interface. Three typical configurations of surfactants at interface have been observed: ① surfactant molecules are perpendicular to the interface and arranged closely; ② perpendicular to the interface and arranged at interval of two particles; ③ lie down in the interface partly.

  14. Aggregation of sulfosuccinate surfactants in water

    Energy Technology Data Exchange (ETDEWEB)

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.

    1983-12-22

    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  15. Investigation of the adsorption of anionic surfactants at different pH values by means of active carbon and the kinetics of adsorption

    OpenAIRE

    2004-01-01

    In this study, the effect of pH on the removal of anionic surfactants, such as linear alkyl benzene sulfonate (LABS) and dodecyl benzene sulfonate (DBS) by means of adsorption by activated carbon was investigated. For this purpose activated carbon was used as adsorbent. Anionic surfactant solutions with initial pH values of 3, 6, 8 and 12 were used. The adsorption isotherms for the adsorption of anionic surfactants by active carbon at different pH were determined. These adsorption isotherms w...

  16. Investigation of a polyether trisiloxane surfactant

    OpenAIRE

    Michel, Amandine

    2016-01-01

    Thanks to their adaptability and high efficiency compared to traditional carbon based surfactants, silicone surfactants are a success in many different applications, from pesticides to cosmetics, polyurethane foam, textile and car care products. In spite of those numerous applications, no analytical method existed for their trace determination in environmental samples and no data have been available regarding their environmental occurrence and fate. An analytical method for the trace ana...

  17. Surfactant apoprotein in nonmalignant pulmonary disorders.

    OpenAIRE

    Singh, G.; Katyal, S. L.

    1980-01-01

    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to l...

  18. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    Science.gov (United States)

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C12TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes.

  19. Evaluation of Surfactant Effects on Newborns

    Directory of Open Access Journals (Sweden)

    N. Khalessi

    2006-10-01

    Full Text Available Introduction & Objective: One of the standard therapies in neonates with severe respiratory distress syndrome (RDS is surfactant administration in early course of therapy that cause reduction in mortality, pneumothorax and need to mechanical ventilation. In this study that was carried out in Aliasghar Hospital NICU in 1994-1995 & 2001-2002, the goal was to compare two groups of neonates with severe RDS that had been ventilated in the first 24 hours but one group had received surfactant and the other group (7 years ago was deprived of this substance. Materials & Methods: In our study, 36 neonates that received surfactant and 52 neonates with only mechanical ventilation therapy were compared. Data collected and analyzed using SPSS.Results: We found that mortality in patients with surfactant administration was significantly lower compared to the second group who did not receive surfactant. There were not any significant differences in incidences of HIV, pneumothorax, sepsis, and PDA and also course of hospitalization and need to ventilation between two groups. Conclusion: As a result, all of these findings reflect obligatory surfactant administration in sever RDS in NICU under observation of an educated expert.

  20. Nonlinear water waves with soluble surfactant

    Science.gov (United States)

    Lapham, Gary; Dowling, David; Schultz, William

    1998-11-01

    The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.

  1. Performance of some surfactants as wetting agents

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, M.N.; El-Shanny, O.A.A. [Egyptian Petroleum Research Institute (EPRI), Cairo (Egypt). Evaluation and Analysis Dept.

    2005-12-01

    The wetting power of anionic surfactant: sodium dodecyl sulfate (SDS), and nonionic surfactants: polyoxyethelene(14)monolaurate [La(EO){sub 14}] and polyoxyethelene(14)monoeleate [OI(EO){sub 14}] has been studied to determine their performance as wetting agents. The study reveals that the nonionic compound with a long hydrophobic chain exhibits higher wettability than the shorter one when used at very low cocentrations (below CMC) and the reverse is shown with high concentrations (above CMC). the wetting power of the investigated surfactants increases as the CMC values increases. In case of the nonionic compounds and at surfactant concentrations equal their CMC values, OI(EO){sub 14} shows a higher wetting power than La(EO){sub 14} while is possesses a lower HLB value. The anionic surfactant shows an optimum wetting in comparison with the tested nonionic one. The wettability of all the investigated samples increases as the surface tension of their solutions increases to the allowed limit that can be reached in the presence of surfactant. (orig.)

  2. Spinodal Decomposition in Mixtures Containing Surfactants

    Science.gov (United States)

    Melenekvitz, J.

    1998-03-01

    Spinodal decomposition in mixtures containing two immiscible liquids (A and B) plus surfactant was investigated using a recently developed (J. Melenkevitz and S. H. Javadpour, J. Chem. Phys., 107, 623 (1997).) 3-component Ginzburg-Landau model. The time dependent Ginzburg-Landau (TDGL) equations governing the evolution of structure were numerically integrated in 2-dimensions. We found the growth rate of the average domain size, R(t), decreased with increasing surfactant concentration over a wide range of relative amounts of A and B. This can be attributed to the surfactant accumulating at the growing interface between the immiscible liquids, which leads to a reduction in the surface tension. At late times, the growth rate was noticeably altered when thermal fluctuations were added to the numerical simulations. In this case, power law behavior was observed for R(t) at late times, R(t) ~ t^α, with the exponent α decreasing as the amount of surfactant increased. The dynamics at early times were determined by linearizing the TDGL equations about a uniformly mixed state. The growth rate at ealry times was found to be strongly dependent on the model parameters describing the surfactant miscibility in A and B and the surfactant strength. Comparison with recent measurements on SBR / PB mixtures with added PB-SBR diblock copolymer will also be presented.

  3. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2005-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Imbibition in an originally oil-wet 2D capillary is the fastest in the case of Alf-38 and slowest in the case of DTAB (among the surfactants studied). Force of adhesion studies and contact angle measurements show that greater wettability alteration is possible with these anionic surfactants than the cationic surfactant studied. The water imbibition rate does not increase monotonically with an increase in the surfactant concentration. A numerical model has been developed that fits the rate of imbibition. Plans for the next quarter include conducting simulation and imbibition studies.

  4. Enhanced hydrolysis of bamboo biomass by chitosan based solid acid catalyst with surfactant addition in ionic liquid.

    Science.gov (United States)

    Si, Wenqing; Li, Yichen; Zheng, Jie; Wei, Shun'an; Wang, Dan

    2017-10-15

    Surfactants were used for the hydrolysis of bamboo biomass to enhance lignocellulose hydrolysis. Tween 80, polyethylene glycol 4000 (PEG 4000), and sodium dodecyl sulfate (SDS) were tested as surfactants for improving the bamboo hydrolysis with a novel sulfonated cross-linked chitosan solid acid catalyst (SCCAC) in ionic liquid (IL). Compared to the use of only SCCAC in 1-Butyl-3-methylimidazolium chloride ([BMIM]Cl), the surfactants facilitated hydrolysis and improved the yield of total reducing sugar (TRS) under the same conditions. Tween 80 was the most effective surfactant, with a TRS yield of 68.01% achieved at 120°C after 24h. Surfactants broke the lignocellulose structure, promoted lignin removal, and increased positive interactions between cellulose and the catalyst, which were favorable for hydrolysis. This novel surfactant-assisted hydrolysis strategy with SCCAC and IL as the solvent demonstrated a promise for the large-scale transformation of biomass into biofuels and bioproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chlorpyrifos-methyl solubilisation by humic acids used as bio-surfactants extracted from lignocelluloses and kitchen wastes.

    Science.gov (United States)

    Scaglia, Barbara; Baglieri, Andrea; Tambone, Fulvia; Gennari, Mara; Adani, Fabrizio

    2016-09-01

    Chlorpyrifos-methyl (CLP-m) is a widely used organophosphate insecticide that can accumulate in soil and become toxic to humans. CLP-m can be removed from soil by its solubilisation using synthetic surfactants. However, synthetic surfactants can accumulate in soil causing contamination phenomena themselves. Bio-surfactants can be used as an alternative to synthetic ones, reducing costs and environmental issues. In this work, humic acid (HA) extracted from raw biomasses, i.e. lignocelluloses (HAL) and lignocelluloses plus kitchen food waste (HALF), corresponding composts (C) (HALC and HALFC) and leonardite (HAc), were tested in comparison with commercial surfactants, i.e. SDS, Tween 20 and DHAB, to solubilize CLP-m. Results obtained indicated that only biomass-derived HA, composted biomass-derived HA, and SDS solubilized CLP-m: SDS = 0.006; HAL = 0.007; HALC = 0.009 g; HALF = 0.025; HALFC = 0.024) (g CLP-m g(-1) surfactant). Lignocelluloses HAs (HAL, HALF) solubilized CLP-m just as well as SDS while lignocellulosic plus kitchen food waste HA (HALF, HALFC) showed a three times higher CLP-m solubilisation capability. This difference was attributed to the higher concentration of alkyl-Carbon that creates strong links with CLP-m in the hydrophobic micelle-core of the surfactants.

  6. Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants.

    Science.gov (United States)

    Jangkorn, Siriprapha; Kuhakaew, Sinchai; Theantanoo, Suwapee; Klinla-or, Harit; Sriwiriyarat, Tongchai

    2011-01-01

    A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals including coagulants and chemicals for pH adjustment is costly for treating this wastewater. The objective of this study was to evaluate the feasibility of reusing the aluminum sulfate (alum) sludge as a coagulant or as a coagulation aid so that the fresh alum dosage can be minimized or the removal efficiency can be enhanced. The experiments were conducted in a jar-test apparatus simulating the coagulation-flocculation process for simultaneous removals of organic matters, anionic surfactants, suspended solids, and turbidity. At the optimum initial pH value of 10 and the fresh alum concentration of 400 mg/L, the total suspended solids (TSS), total chemical oxygen demand (TCOD), total anionic surfactants, and turbidity removal efficiencies were 71.5%, 76.4%, 95.4%, and 98.2%, respectively. The addition of alum sludge as a coagulant alone without any fresh alum addition could significantly remove the turbidity, TCOD, and anionic surfactants. The TSS was left in the supernatants after the settling period, but would subsequently be removed by adding the fresh alum. The TSS, TCOD, and turbidity removal efficiencies were also enhanced when both the alum sludge and the fresh alum were employed. The TCOD removal efficiency over 80% has been accomplished, which has never fulfilled by using the fresh alum alone. It is concluded that the alum sludge could be reused for the treatment of industrial wastewater generated by the consumer products industry.

  7. Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants

    Institute of Scientific and Technical Information of China (English)

    Siriprapha Jangkorn; Sinchai Kuhakaew; Suwapee Theantanoo; Harit Klinla-or; Tongchai Sriwiriyarat

    2011-01-01

    A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals including coagulants and chemicals for pH adjustment is costly for treating this wastewater. The objective of this study was to evaluate the feasibility of reusing the aluminum sulfate (alum) sludge as a coagulant or as a coagulation aid so that the fresh alum dosage can be minimized or the removal efficiency can be enhanced. The experiments were conducted in a jar-test apparatus simulating the coagulation-fiocculation process for simultaneous removals of organic matters, anionic surfactants, suspended solids, and turbidity. At the optimum initial pH value of 10 and the fresh alum concentration of 400 mg/L, the total suspended solids (TSS), total chemical oxygen demand (TCOD), total anionic surfactants,and turbidity removal efficiencies were 71.5%, 76.4%, 95.4%, and 98.2%, respectively. The addition of alum sludge as a coagulant alone without any fresh alum addition could significantly remove the turbidity, TCOD, and anionic surfactants. The TSS was left in the supernatants after the settling period, but would subsequently be removed by adding the fresh alum. The TSS, TCOD, and turbidity removal efficiencies were also enhanced when both the alum sludge and the fresh alum were employed. The TCOD removal efficiency over 80% has been accomplished, which has never fulfilled by using the fresh alum alone. It is concluded that the alum sludge could be reused for the treatment of industrial wastewater generated by the consumer products industry.

  8. Hydrocarbon chain conformation in an intercalated surfactant monolayer and bilayer

    Indian Academy of Sciences (India)

    N V Venkataraman; S Vasudevan

    2001-10-01

    Cetyl trimethyl ammonium (CTA) ions have been confined within galleries of layered CdPS3 at two different grafting densities. Low grafting densities are obtained on direct intercalation of CTA ions into CdPS3 to give Cd0.93PS3(CTA)0.14. Intercalation occurs with a lattice expansion of 4.8 Å with the interlamellar surfactant ion lying flat forming a monolayer. Intercalation at higher grafting densities was effected by a two-step ion-exchange process to give Cd0.83PS3(CTA)0.34, with a lattice expansion of 26.5 Å. At higher grafting densities the interlamellar surfactant ions adopt a tilted bilayer structure. 13C NMR and orientation-dependent IR vibrational spectroscopy on single crystals have been used to probe the conformation and orientation of the methylene ‘tail’ of the intercalated surfactant in the two phases. In the monolayer phase, the confined methylene chain adopts an essentially all-trans conformation with most of the trans chain aligned parallel to the gallery walls. On lowering the temperature, molecular plane aligns parallel, so that the methylene chain lies flat, rigid and aligned to the confining surface. In the bilayer phase, most bonds in the methylene chain are in trans conformation. It is possible to identify specific conformational sequences containing a gauche bond, in the interior and termini of the intercalated methylene. These high energy conformers disappear on cooling leaving all fifteen methylene units of the intercalated cetyl trimethyl ammonium ion in trans conformational registry at 40 K.

  9. Silicone antifoam performance enhancement by nonionic surfactants in potato medium.

    Science.gov (United States)

    Christiano, Steven P; Fey, Kenneth C

    2003-01-01

    The ability of a silicone antifoam to retard foaming in a liquor prepared from potatoes is enhanced by the addition of ethoxylated nonionic surfactants. The enhancement is non-linear for surfactant concentration, with all 12 surfactants tested possessing a concentration at which foam heights strongly diminish, referred to as the surfactant critical antifoaming concentration (SCAFC). SCAFCs vary between surfactants, with lower values indicating better mass efficiency of antifoaming enhancement. SCAFCs decrease with degree of ethoxylation and decrease with the hydrophilic-lipophilic balance for ethoxylated nonionic surfactants. Surfactant addition produces a mixed water-surface layer containing surfactant and surface-active components in the potato medium. Surface tension reduction does not correlate well with antifoam performance enhancement. A model is proposed where surfactant adsorption promotes desorption of surface-active potato medium components from the water surface. At the SCAFC, desorption is not complete, yet the rate of bubble rupture is sufficiently enhanced to provide excellent foam control.

  10. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  11. Mineralization of Surfactants by the Microbiota of Submerged Plant Detritus

    Science.gov (United States)

    Federle, Thomas W.; Ventullo, Roy M.

    1990-01-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 μg of 14C-labeled linear alkylbenzene sulfonate (LAS), linear alcohol ethoxylate, stearyltrimethyl ammonium chloride, distearyldimethyl ammonium chloride, benzoic acid, or mixed amino acids per liter. Sorption of the test compounds to the detritus and evolution of 14CO2 were followed with time. All of the compounds sorbed to the detritus to various degrees, with LAS and stearyltrimethyl ammonium chloride the most sorptive and benzoic acid the least. All compounds were mineralized without a lag. With leaves from the laundromat wastewater pond, half-lives were 12.6 days for LAS, 8.4 days for linear alcohol ethoxylate, 14.2 days for stearyltrimethyl ammonium chloride, 1.0 days for benzoic acid, and 2.7 days for mixed amino acids. Mineralization of LAS and linear alcohol ethoxylate by control pond leaves was slower and exhibited an S-shaped rather than a typical first-order pattern. This study shows that detritus represents a significant site of surfactant removal in detritus-rich systems. Images PMID:16348111

  12. Optimization of layered double hydroxide stability and adsorption capacity for anionic surfactants

    OpenAIRE

    2007-01-01

    Low cost adsorption technology offers high potential to clean up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) proved to be an interesting material for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS) which is the main contaminant in rinsing water. The main research question was to identify the effect of process parameters of the LDH synthesis on the stability of the LDH structure and the adsorption capacity of LAS. LDH w...

  13. Influence of surfactants on the sorption of two chloroacetanilide in an Romanian chernozem soil.

    Science.gov (United States)

    Coroi, I G; De Wilde, T; Cara, M S; Jitareanu, G; Steurbaut, W

    2011-01-01

    Pesticides have been extensively used in modern agriculture. Due to the prevalent use, there have been serious problems generated by pesticides wastes which could eventually endanger water resources and human health. The development of technologies for the decontamination of soils and waters polluted by hydrophobic organic compounds has encouraged research into the use of non-ionic surfactants as potential agents for the enhanced solubilization and removal of contaminants from soils and sediments. Sorption of two chloroacetanilide herbicides, acetochlor and metolachlor was studied on a representative chernozem soil of the Main Agricultural Research Station Ezareni belonging to the "Ion Ionescu de la Brad" University of Agriculture and Veterinary Medicine lasi, Romania, in the presence and absence of surfactants. Three different non-ionic surfactants were selected: Tween-20, Synperonic 91/5 and Silwet L-77, to verify the influence of their presence on herbicide sorption at different concentrations. Our results showed that the sorption of the studied herbicides within the soil-water-non-ionic surfactant system was influenced by the presence of non-ionic surfactants. The n values obtained were lower than 1 for all pesticide-surfactant combinations, which indicates that the amount of acetochor and metolachlor sorbed decreased with an increase in pesticide concentration. The sorption of acetochlor increased in the following order: Acetochlor+Synperonic 91/5 < Acetochlor < Acetochlor+Tween-20 < Acetochlor+Silwet L-77. In the case of metolachlor+Synperonic and metolachlor+Silwet L-77, the Kf values were significantly higher than the Kf value of metolachlor+Tween-20 on soil, where a lower Kf value could be observed with however a higher n value which indicate a higher sorption capacity at higher concentrations.

  14. Effect of bio-surfactant on municipal solid waste composting process

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou; LIU Hong-liang; HUANG G H; ZHANG Bai-yu; QIN Xiao-sheng

    2005-01-01

    Bio-surfactant is a new type of surfactant that is produced in microbial metabolism. Adding bio-surfactant during composting process, especially to those contain some toxic substances, has been proved to be a promising way. In this study, Strains Ⅲ (2), a bacterial with high activity to produce bio-surfactant, were isolated firstly. Following comparison experiments with and without adding Strains Ⅲ (2), namely Run 1 and Run R, were conducted, respectively. The experimental results showed that, by adding Strains Ⅲ (2),the surface tension could reduce from 46.5 mN/m to 39.8 mN/m and the corresponding time to maintain the surface tension under 50 mN/m could prolong from 60 h to 90 h. The oxygen uptake rate and total accumulated oxygen consumption with Stains Ⅲ (2) were both higher than those without Strains Ⅲ (2), while the accumulation of H2S in outlet gas was reduced to around 50% of Run R. Moreover, two additional experiments were also carried out to examine the effects of strains coming from different systems. One is adding Strains Ⅲ (2)with a dose of 0.4% (Run 2), and the other is seedling commercial Strains at the same conditions, the composting experiments showed that: Run 2 was more effective than Run 3, because the commercial Strains can be suppressed significantly in a complex composting system with different pH, high temperature and some of metals. The bio-surfactant was also added into the solid waste, which contained some toxic substances, the corresponding results showed that the remove rate of Hg and sodium pentachlorophenolate(PCP-Na) could be improved highly. Thus, the microenvironment, reactionrate and composting quality could be enhanced effectively by adding bio-surfactant to the composting process.

  15. Palm oil anionic surfactants based emulsion breaker (Case study of emulsions breaker at Semanggi Field production wells)

    Science.gov (United States)

    Muhpidah; Hambali, E.; Suryani, A.; Kartika, I. A.

    2017-05-01

    The presence of emulsion in oil production process is undesirable. The emulsion will increase the production costs, transportation and costs related to emulsion separation process between water and oil. The development of palm oil-based surfactant as an emulsion breaker needs to be conducted given the availability of abundant raw materials in Indonesia and as an alternative to petroleum-based surfactant. The purpose of this study is to produce palm oil-based emulsion breaker, assessing the effect of additive application to the emulsion breaker and analyze the performance of the emulsion breaker. This research was conducted by formulating palm oil anionic surfactant in water formation with the addition of co-surfactant additive and co-solvent. Palm oil anionic surfactant-based emulsion breaker with 0.5% concentration in water can reduce 50% of emulsions with the interfacial tension (IFT) of 2.33x10-2 dyne/cm. The addition of co-solvent (toluene: xylene) is able to remove the emulsion formed with a lower IFT namely 10-3 dyne / cm. The resulting emulsion breaker is capable to remove the emulsion between water and oil. The performance test of emulsion breaker show that the emulsion is able to maintain its performance at reservoir temperature with no indicate of plugging and the value generated incremental oil recovery values is 13%.

  16. Critical interaction strength for surfactant-induced mesomorphic structures in polymer-surfactant systems

    NARCIS (Netherlands)

    Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Vahvaselka, S.; Saariaho, M.; ten Brinke, G.; Ikkala, O.; Vahvaselkä, Sakari

    1996-01-01

    The critical interaction strength to induce mesomorphic structures in flexible polymers by complexing with surfactants is determined by using surfactants with different hydrogen-bonding strengths;. Two essential requirements have to be satisfied: (i) the association has to be strong enough, otherwis

  17. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1998-01-01

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV a

  18. Use of watershed factors to predict consumer surfactant risk, water quality, and habitat quality in the upper Trinity River, Texas.

    Science.gov (United States)

    Atkinson, S F; Johnson, D R; Venables, B J; Slye, J L; Kennedy, J R; Dyer, S D; Price, B B; Ciarlo, M; Stanton, K; Sanderson, H; Nielsen, A

    2009-06-15

    Surfactants are high production volume chemicals that are used in a wide assortment of "down-the-drain" consumer products. Wastewater treatment plants (WWTPs) generally remove 85 to more than 99% of all surfactants from influents, but residual concentrations are discharged into receiving waters via wastewater treatment plant effluents. The Trinity River that flows through the Dallas-Fort Worth metropolitan area, Texas, is an ideal study site for surfactants due to the high ratio of wastewater treatment plant effluent to river flow (>95%) during late summer months, providing an interesting scenario for surfactant loading into the environment. The objective of this project was to determine whether surfactant concentrations, expressed as toxic units, in-stream water quality, and aquatic habitat in the upper Trinity River could be predicted based on easily accessible watershed characteristics. Surface water and pore water samples were collected in late summer 2005 at 11 sites on the Trinity River in and around the Dallas-Fort Worth metropolitan area. Effluents of 4 major waste water treatment plants that discharge effluents into the Trinity River were also sampled. General chemistries and individual surfactant concentrations were determined, and total surfactant toxic units were calculated. GIS models of geospatial, anthropogenic factors (e.g., population density) and natural factors (e.g., soil organic matter) were collected and analyzed according to subwatersheds. Multiple regression analyses using the stepwise maximum R(2) improvement method were performed to develop prediction models of surfactant risk, water quality, and aquatic habitat (dependent variables) using the geospatial parameters (independent variables) that characterized the upper Trinity River watershed. We show that GIS modeling has the potential to be a reliable and inexpensive method of predicting water and habitat quality in the upper Trinity River watershed and perhaps other highly urbanized

  19. Lycopene recovery from tomato peel under mild conditions assisted by enzymatic pre-treatment and non-ionic surfactants.

    Science.gov (United States)

    Papaioannou, Emmanouil H; Karabelas, Anastasios J

    2012-01-01

    The tomato processing industry generates large quantities of tomato peel residues, usually creating environmental problems. These residues are a significant source of lycopene, thus providing an attractive alternative for profitable handling of these otherwise problematic by-products. The enzymatic pretreatment of these residues for lycopene recovery has already been employed, although the use of surfactants for enhancing the recovery has not been examined so far. The enzymatic pretreatment of tomato peels, using two commercially available pectinolytic enzyme preparations, was evaluated suggesting that there is an optimum pretreatment time of about 1 h, enzyme amount 250 Units/mL and no significant pH influence. Lycopene surfactant - assisted extraction was further investigated, showing that, among eight surfactants used, the most suitable was "Span 20", with an optimum ratio of 6-7 surfactant molecules per lycopene molecule. Sequential enzymatic pretreatment and surfactant-assisted extraction (30 min for each step) was evaluated leading to an improved lycopene extraction yield, with a somewhat smaller surfactant molar ratio (i.e. 4-5). In the latter case, the yield of lycopene recovery was almost four times greater compared to just 1 hr enzymatic pretreatment, and was approximately ten times greater compared to the recovery from untreated peels. Furthermore, such lipophilic compound recovery, avoiding the use of organic solvents, is environmentally attractive and ensures direct lycopene use in the food and cosmetics industries.

  20. TEMPORARY REMOVAL

    DEFF Research Database (Denmark)

    Calkins, Hugh; Hindricks, Gerhard; Cappato, Riccardo

    2017-01-01

    The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.e...

  1. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-09-01

    Surfactants and inorganic ligands are pointed as efficient to simultaneous removal of heavy metals and hydrophobic organic pollutants from soil. However, the biosurfactants are potentially less toxic to soil organisms than other chemical agents. Thus, in this study the efficiency of combinations of iodide (I(-)) ligand and surfactants produced by different bacterial species in the simultaneous removal of cadmium (Cd(2+)) and phenanthrene in a Haplustox soil sample was investigated. Four microbial surfactants and the synthetic surfactant Triton X-100 were tested with different concentrations of ligand. Soil samples contaminated with Cd(2+) and phenanthrene underwent consecutive washings with a surfactant/ligand solution. The removal of Cd(2+) increased with increased ligand concentration, particularly in solutions containing biosurfactants produced by the bacterial strains Bacillus subtilis LBBMA155 (lipopeptide) and Flavobacterium sp. LBBMA168 (mixture of flavolipids) and Triton X-100. Maximum Cd(2+) removal efficiency was 99.2% for biosurfactant produced by Arthrobacter oxydans LBBMA 201 (lipopeptide) and 99.2% for biosurfactant produced by Bacillus sp. LBBMA111A (mixed lipopeptide) in the presence of 0.336 mol iodide l(-1), while the maximum efficiency of Triton X-100 removal was 65.0%. The biosurfactant solutions removed from 80 to 88.0% of phenanthrene in soil, and the removal was not influenced by the presence of the ligand. Triton X-100 removed from 73 to 88% of the phenanthrene and, differently from the biosurfactants, iodide influenced the removal efficiency. The results indicate that the use of a single washing agent, called surfactant-ligand, affords simultaneous removal of organic contaminants and heavy metals.

  2. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes.

  3. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness.

    Science.gov (United States)

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu

    2014-01-01

    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.

  4. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  5. A Review on Progress in QSPR Studies for Surfactants

    Directory of Open Access Journals (Sweden)

    Zhengwu Wang

    2010-03-01

    Full Text Available This paper presents a review on recent progress in quantitative structure-property relationship (QSPR studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc and surface tension (γ of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for nonionic surfactants, biodegradation potential and some other properties of surfactants are evaluated .

  6. The use of surfactant in lung transplantation.

    Science.gov (United States)

    Amital, Anat; Shitrit, David; Raviv, Yael; Saute, Milton; Medalion, Benjamin; Bakal, Llana; Kramer, Mordechai R

    2008-12-15

    Lung transplantation impairs surfactant activity, which may contribute to primary graft dysfunction (PGD). Prompted by studies in animals and a few reports in humans, this study sought to determine if the administration of surfactant during transplantation serves as an effective preventive measure. An open, randomized, controlled prospective design was used. Forty-two patients scheduled for single (n=38) or double (n=4) lung transplantation at a major tertiary medical center were randomly assigned to receive, or not, intraoperative surfactant treatment. In the treated group, bovine surfactant was administered at a dose of 20 mg phospholipids/kg through bronchoscope after the establishment of bronchial anastomosis. The groups were compared for oxygenation (PaO2/FiO2), chest X-ray findings, PGD grade, and outcome. Compared with the untreated group, the patients who received surfactant were characterized by better postoperative oxygenation mean PaO2/FiO2 (418.8+/-123.8 vs. 277.9+/-165 mm Hg, P=0.004), better chest radiograph score, a lower PGD grade (0.66 vs. 1.86, P=0.005), fewer cases of severe PGD (1 patient vs. 12, P<0.05), earlier extubation (by 2.2 hr; 95% CI 1.1-4.3 hr, P=0.027), shorter intensive care unit stay (by 2.3 days; 95% CI 1.47-3.74 days, P=0.001), and better vital capacity at 1 month (61% vs. 50%, P=0.022). One treated and 2 untreated patients died during the first postoperative month. Surfactant instillation during lung transplantation improves oxygenation, prevents PGD, shortens intubation time, and enhances early posttransplantation recovery. Further, larger studies are needed to assess whether surfactant should be used routinely in lung transplantation.

  7. Surfactants and the Mechanics of Respiration

    Science.gov (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  8. Development of cost-effective surfactant flooding technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

  9. Development of cost-effective surfactant flooding technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

  10. Novel strategy involving surfactant-polymer combinations for enhanced stability of aqueous teflon dispersions.

    Science.gov (United States)

    Sharma, Mukesh; Bharatiya, Bhavesh; Mehta, Krupali; Shukla, Atindra; Shah, Dinesh O

    2014-06-24

    Among various polymers, the Teflon surface possesses extreme hydrophobicity (low surface energy), which is of great interest to both industry and academia. In this report, we discuss the stability of aqueous Teflon dispersions (particle size range of 100-3000 nm) formulated by a novel strategy that involves distinct combinations of surfactant and polymer mixtures for dispersion stabilization. As a first step, the hydrophobic Teflon particles were wetted using a range of surfactants (ionic, Triton, Brij, Tween, and Pluronic series) bearing different hydrophobic-lipophilic balance (HLB) and further characterized by contact angle and liquid penetration in packed powder measurements. The interaction between hydrophobic chains of surfactants and the Teflon particle surface is the driving force resulting in wetting of the Teflon particle surface. Further, these wetted particles in aqueous solutions were mixed with various polymers, for example, poly(vinyl alcohol) (PVA), polyvinylpyrrolidone (PVP), hydroxyethyl cellulose (HEC), and hydroxypropyl methyl cellulose (HPMC). The rate of sedimentation for the final dispersions was measured using a pan suspended into the dispersion from a transducer recording the increase in weight with time. A significant stability was noticed for Teflon particles suspended in surfactant + polymer mixtures, which was linearly proportional to the concentration of added polymer. The observed phenomenon can be possibly explained by molecular interactions between the hydrophobic chains of surfactant molecules and polar groups in the polymer architecture. Brij-O10 + HEC mixture was found to be the best surfactant-polymer combination for decreasing the sedimentation of the Teflon particles in the final dispersion. As measured by dynamic light scattering (DLS), the hydrodynamic volume of the Teflon particles increases up to ∼55% in the final formulation. These dispersions could be further explored for various technological applications such as

  11. Synthesis of soybean oil-based polymeric surfactants in supercritical carbon dioxide and investigation of their surface properties

    Science.gov (United States)

    This paper reports the preparation of polymeric surfactants (HPSO) via a two-step synthetic procedure: polymerization of soybean oil (PSO) in supercritical carbon dioxide and followed by hydrolysis of PSO with a base. HPSO was characterized and identified by using a combination of FTIR, 1H NMR, 13C...

  12. Hypoxia-inducible factor 2α plays a critical role in the formation of alveoli and surfactant

    NARCIS (Netherlands)

    Y. Huang (Yao); M. Buscop-Van Kempen (Marjon); A. de Munck (Anne); S.M.A. Swagemakers (Sigrid); M.J.F. Driegen (Siska); P. Mahavadi (Poornima); D.N. Meijer (Dies); W.F.J. van IJcken (Wilfred); P.J. van der Spek (Peter); F.G. Grosveld (Frank); A. Günther (Andreas); D. Tibboel (Dick); R.J. Rottier (Robbert)

    2012-01-01

    textabstractAlveolarization of the developing lung is an important step toward the switch from intrauterine life to breathing oxygen-rich air after birth. The distal airways structurally change to minimize the gas exchange path, and Type II pneumocytes increase the production of surfactants, which a

  13. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    Science.gov (United States)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  14. Risk characterization of detergent surfactants in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Feijtel, T. [Proctor and Gamble, Strombeek (Belgium); Plassche, E. van de [RIVM, Bilthoven (Netherlands). National Inst. of Public Health and Environmental Protection

    1995-12-31

    The Dutch Soap Association (NVZ) and the Dutch Environmental Ministry (VROM) developed in 1991 an aquatic hazard priority list of all detergent ingredients. The agreed priority list consisted of linear alkylbenzene sulfonate (LAS), alcohol ethoxylates (AE), alcohol ethoxylated sulfates (AES), and soap. A stepwise or tiered risk assessment approach was adopted as the recommended approach to evaluate the risk of these surfactants. This implies that depending on the risk (or PEC/PNEC) ratio, the sequential test program or assessment would proceed further, to ensure adequate protection of the ecosystem. The agreed calculation scheme for the aquatic compartment is based on the comparison of the 90th percentile of Predicted Environmental Concentrations (PEC) in the Netherlands -- at 1,000 meter below the sewage outfall -- to the Predicted No Effect Concentration (PNEC) for ecosystems. The 90th percentile surfactant concentrations at 1,000 meter below the sewage outfall can be calculated using information or data on (1) release, (2) in-sewer removal, (3) treatment efficiency, (4) dilution and (5) instream-removal and/or measured in representative sites in The Netherlands. In addition, all toxicological data was critically reviewed by company experts and experts of RIVM and VROM to present a rationale for a sound database for the derivation of a Predicted No Effect Concentration (PNEC). It was concluded that the risk of LAS, AE and AES and soap for the aquatic environment is low. Also taking the estimated uncertainty into account, the predicted environmental concentrations are always considerably lower that the predicted no effect concentrations.

  15. INTERACTION BETWEEN SURFACTANT AND COLLAGEN

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Interactions of collagen fibres (made from Beef Achilles tendons )with sodium dodecyl sulfate (SDS),sodium dodecylbenzene sulfonate (SDBS),cetylpyridinium bromide(CPB)and Igepal CA-720 were studied.Sorptions isotherms of all ionic surfactants under different reaction conditions were found out.At suitable conditions S-isotherms were obtained,while under isoeletric conditions isotherms were logaritmic.Igepal had no sorption.The interaction of surfactants with collagen is connected with its mass changes. Changes depend on reaction conditions,namely pH and ionic strenght of reaction solution.Degree of swelling(αm)was used for the description of these changes.At pH=3,in absence SDBS and under low ionic strenghts,a high swelling was attained.An addition of SDBS to reaction mixture led to vigerous deswelling and when the bound amount of SDBS reached about 1 mmol.g-1 αm became independent on a futher bound SDBS.With higher ionic strenghts αm was independent on the equilibrium bound amount of SDBS.Under isoeletric conditions changes of αm were markedly smaller than in acid region and had the opposite character.%研究了十二烷基硫酸钠(SDS)、二十烷基苯磺酸钠(SDBS)、溴化十六烷基吡啶翁(CPB)和Igepal CA-720等表面活性剂与胶原(来源于牛跟腱)间的相互作用.发现了不同的反应条件下,上述离子性表面活性剂的吸附等温线,得到了适当条件下的吸附等温线,同时发现在等电条件下等温线呈对数关系,Igepal没有吸附.表面活性剂与胶原的作用情况与其质量的变化是相互关联的,这种变化取决于反应条件,即pH值和反应溶液中的离子强度,胶原的膨胀程度(am)被用来描述这种变化.在pH3.0,无SDBS存在且在低的离子强度下,胶原得到了大的膨胀:加入SDBS将会导致强烈的消肿作用,并且当胶原对SDBS的结合量达到1mmol/g时,am的值将不再随SDBS结合量的进一步增加而变化.在高的离子

  16. History of surfactant up to 1980.

    Science.gov (United States)

    Obladen, Michael

    2005-01-01

    Remarkable insight into disturbed lung mechanics of preterm infants was gained in the 18th and 19th century by the founders of obstetrics and neonatology who not only observed respiratory failure but also designed devices to treat it. Surfactant research followed a splendid and largely logical growth curve. Pathological changes in the immature lung were characterized in Germany by Virchow in 1854 and by Hochheim in 1903. The Swiss physiologist von Neergard fully understood surfactant function in 1929, but his paper was ignored for 25 years. The physical properties of surfactant were recognized in the early 1950s from research on warfare chemicals by Pattle in Britain and by Radford and Clements in the United States. The causal relationship of respiratory distress syndrome (RDS) and surfactant deficiency was established in the USA by Avery and Mead in 1959. The Australian obstetrician Liggins induced lung maturity with glucocorticoids in 1972, but his discovery was not fully believed for another 20 years. A century of basic research was rewarded when Fujiwara introduced surfactant substitution in Japan in 1980 for treatment and prevention of RDS.

  17. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  18. Foaming behaviour of polymer-surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-MartInez, Alfredo [Departamento de Investigacion en PolImeros y Materiales, Universidad de Sonora, Apartado Postal 130, 83000 Hermosillo, Sonora (Mexico); Maldonado, Amir [Departamento de Fisica, Universidad de Sonora, Apartado Postal 1626, 83000 Hermosillo, Sonora (Mexico)

    2007-06-20

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions.

  19. Surfactant effects on SF6 hydrate formation.

    Science.gov (United States)

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  20. Syntheses of surfactants from oleochemical epoxides

    Directory of Open Access Journals (Sweden)

    Warwel Siegfried

    2001-01-01

    Full Text Available Sugar-based surfactants were obtained in good yields (up to 100% under mild conditions (70°C, methanol or mixtures of methanol and water by ring-opening of terminal epoxides with aminopolyols, derived from glucose. Reaction of N-methyl glucamine with epoxides from even-numbered C4-C18 alpha-olefins or from terminal unsaturated fatty acid methyl esters leads to linear products, while corresponding reactions with N-dodecyl glucamine or glucamine yield surfactants with different Y-structures. Products obtained by conversion of omega-epoxy fatty acid methyl esters were saponificated with NaOH or hydrolyzed enzymatically to sodium salts or free acids respectively, which are amphoteric surfactants. Studies of the surfactants at different pH-values demonstrate different surface active properties in aqueous solutions. Critical micelle concentrations (c.m.c. in a range between 2 and 500mg/l and surface tensions of 25-40mN/m were measured for several of the synthesized sugar-based surfactants. The ring-opening products are rather poor foamers, whereas some of the corresponding hydrobromides show good foaming properties.

  1. Purification and Characterization of Surfactant-Stable Protease from Bacillus Licheniformis: A Potential Additive for Laundry Detergent

    Directory of Open Access Journals (Sweden)

    Vivi Mardina

    2016-04-01

    Full Text Available This study purified and characterized the protease from Bacillus licheniformis that was cultured in skim latex serum fortified media. Ammonium sulphate precipitation and ion exchange chromatograph was employed in purification steps with the enzyme activity increase to 2.28 fold of purification compare to the crude enzyme. Assessment of the purified protein by SDS PAGE showed a single band with molecular mass of about 47 kDa. The enzyme was stable at temperature range of 35 oC to 65 oC and also at pH 6.0 and 7.0 for 60 min. The presence of Mn2+ and Ca2+ ions in the produced protease stimulated strongly the activity of the enzyme by 176.65% and 119.07% respectively, while inhibitory effects were found in the presence of Cu2+, Zn2+, Mg2+, and EDTA. The enzyme exhibited their stability toward surfactants (Triton X100, Tween 20, SDS, solvents (acetone, chloroform, hexane and toluene, oxidizing agent (H2O2 and Tesco Everyday Value® detergent with the residual activity around 80%. It also demonstrated the removal activity of blood stain completely with supplementation of the 7 mg/ml detergent solution. The established characteristics of the enzyme indicated their potentiality for detergent application.

  2. Filtration of Pathogenic Parasites Using Surfactant-Modified Zeolites

    Science.gov (United States)

    Lehner, T.; Schulze-Makuch, D.; Bowman, R.

    2003-12-01

    Migration of pathogenic microorganisms, specifically Cryptosporidium parvum and Giardia lamblia, in groundwater due to sewage effluent and mismanaged wastewater has become an increased concern for human health in many regions. Cryptosporididosis and Giardiasis produces moderate to severe intestinal illness for many weeks and is a serious threat for immunodeficient persons. Previous studies by Schulze-Makuch et al. (2002) indicated that surfactant-modified zeolites (SMZ) removed all of the bacteria and most viruses in laboratory experiments. This study focuses on the efficiency of the SMZ to prevent migration of the protozoan spores in groundwater. Adsorption of the spores involves interactions between the surface properties of the spores and the SMZ. The efficiency of removal is tested simulating natural conditions. Laboratory experiments are conducted in a plexiglass model aquifer and pathogen removal is measured by taking water samples from strategically placed piezometers in the model. Since C. parvum and G. lamblia are hazardous to humans and move primarily in spore state through groundwater, polystyrene microspheres of similar sizes and Bacillus subtilis, a sporulating bacterium, are used as analogues for the protozoa. Preliminary results show a significant decrease in concentration of the B. subtilis spores down-gradient of the barrier.

  3. NITRATE REMOVAL FROM WATER USING SURFACE-MODIFIED ULTRAFILTRATION MEMBRANES

    OpenAIRE

    Habuda-Stanić, Mirna; Nujić, Marija; Santo, Vera

    2014-01-01

    Elevated nitrate concentrations in natural water sources are a worldwide concern due to the extensive levels of soil N-fertilization. This study investigates three commercially available polyethersulfone (PES) ultrafiltration (UF) membranes with different molecular weight cut-offs (5, 10, and 30 kDa), which we modified with a cationic surfactant, cetylpyridinium chloride to improve their nitrate removal. The nitrate removal efficiency of these membranes was examinated as functions of initial ...

  4. The Optimization of Aniline Adsorption from Aqueous Solutions by Raw Bentonite and Bentonite Modified with Cationic Surfactants Using the Taguchi Model

    Directory of Open Access Journals (Sweden)

    F. Taherkhani

    2015-04-01

    Full Text Available Introduction & Objectives: Aniline is an organic compound widely used in various industries. The release of this compound has had various environmental impacts. Thus, the assessment of efficient and practical methods for the removal of aniline from wastewater of these industries is remarkable. Taguchi model is a model for the analysis of experiments, that predicts both the effects of each factors and the optimum level of them using a certain number of experiment. The purpose of this study was the optimization of aniline adsorption on the raw and modified bentonite with a cationic surfactant using Taguchi model. Materials & Methods: In this experimental study, the raw bentonite and modified bentonite was prepared in a few steps. Then, 4 main factors (i.e. pollutant concentration, contact time, pH, and adsorbent dosage on 4 levels were selected by Matrix L16 trials and the experiments were conducted in this matrix. The factors were also ranked based on the R-value. Then , the data were analyzed with Minitab 17 software. Finally, the adsorption of aniline on raw and modified bentonite was determined in optimal conditions. Results: The optimization of adsorption process using Taguchi model showed that the factors of importance for optimizing respectively were: contact time of 360 minutes, pH =10 pH, ani-line initial concentration of 300 mg/L and adsorbent dosages of 40 g/L. The maximum ad-sorption of aniline onto raw bentonite and modified bentonite with cationic surfactant in op-timal conditions were determined 81.86 and 8.75, respectively. The results revealed that Freundlich isotherm and pseudo-second-order kinetic model provided a better ?t to the ex-perimental data. Conclusion: The results showed that the bentonite modified with cationic surfactant is efficient in the removal of aniline. At the same time, since bentonite is cheap and easily accessible ,it is considered a desirable adsorbant. (Sci J Hamadan Univ Med Sci 2015; 22 (1:55-64

  5. A simple route for making surfactant free lead sulfide (PbS) quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Firoz; Kumar, Neetesh; Dutta, Viresh, E-mail: vdutta@ces.iitd.ac.in

    2015-05-15

    Highlights: • Surfactant free PbS NCs were successfully synthesised using CoSP technique. • The technique eliminates the requirements of washing to remove the ligands. • Grinding using mortar and pestle creates well separated PbS QDs. • Surfactant free PbS NCs are stable and do not show any degradation with time. - Abstract: An efficient, cost effective and less time consuming method suitable for mass production of surfactant free quantum dots (QDs) of lead sulfide (PbS) is reported. PbS nanocrystals (NCs) are first synthesised by continuous spray pyrolysis (CoSP) technique and de-agglomeration into PbS quantum dots (QDs) is achieved by vigorous mechanical grinding using mortar and pestle. Lead acetate and thiourea were used as the precursor materials for preparation of surfactant free PbS NCs. The broadening in XRD peaks of ground NCs as compared to as synthesized PbS NCs clearly indicated the reduction in particle size to be QDs of PbS. The TEM images also showed that ground PbS NCs were nearly spherical in shape having an average diameter in the range of 4–6 nm. The shift in optical gap from 0.41 eV to 1.47 eV supported the QD formation.

  6. Comprehensive review of several surfactants in marine environments: Fate and ecotoxicity.

    Science.gov (United States)

    Jackson, Mathew; Eadsforth, Charles; Schowanek, Diederik; Delfosse, Thomas; Riddle, Andrew; Budgen, Nigel

    2016-05-01

    Surfactants are a commercially important group of chemicals widely used on a global scale. Despite high removal efficiencies during wastewater treatment, their high consumption volumes mean that a certain fraction will always enter aquatic ecosystems, with marine environments being the ultimate sites of deposition. Consequently, surfactants have been detected within marine waters and sediments. However, aquatic environmental studies have mostly focused on the freshwater environment, and marine studies are considerably underrepresented by comparison. The present review aims to provide a summary of current marine environmental fate (monitoring, biodegradation, and bioconcentration) and effects data of 5 key surfactant groups: linear alkylbenzene sulfonates, alcohol ethoxysulfates, alkyl sulfates, alcohol ethoxylates, and ditallow dimethyl ammonium chloride. Monitoring data are currently limited, especially for alcohol ethoxysulfates and alkyl sulfates. Biodegradation was shown to be considerably slower under marine conditions, whereas ecotoxicity studies suggest that marine species are approximately equally as sensitive to these surfactants as freshwater species. Marine bioconcentration studies are almost nonexistent. Current gaps within the literature are presented, thereby highlighting research areas where additional marine studies should focus.

  7. Surfactant-enhanced alkaline flooding for light oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1996-05-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12. 0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are discussed.

  8. Sorption of a nonionic surfactant Tween 80 by minerals and soils.

    Science.gov (United States)

    Kang, Soyoung; Jeong, Hoon Young

    2015-03-02

    Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina-water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclaseTween 80 sorption. The greater sorption by untreated soils than H2O2-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  9. Surfactant-enhanced alkaline flooding for light oil recovery. Final report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1995-12-01

    In this report, the authors present the results of their experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are summarized.

  10. The synthesis and properties of a new nonionic Gemini surfactant

    Science.gov (United States)

    Ren, Yanmei; Lv, Tong; Wang, Qi; Tian, Zhenxing

    2010-07-01

    A new Gemini nonionic surfactant was prepared, taking anhydrous glucose, glycol, maleic anhydride, lauric acid as main materials, and the reaction was carried out by three steps. Firstly, glycol glucoside was synthesized by the direct glycosidation of the anhydrous glucose with glycol in the presence of acidic catalyst. The synthesis and the characterization of this have been reported previously.Secondly, reaction intermediate was prepared by ring opening reaction of maleic anhydride with glycol glucoside. The last, primary hydroxyl group in glucose of reaction intermediate was esterified with lauric acid for synthesis of target product. It was analyzed and characterized by IR, 1HNMR and 13CNMR. Besides, the critical micelle concentration (cmc) and the corresponding surface tension of the target product were measured to be 8.87×10-3molL-1 and 20.70mNm-1 (20°C), respectively.

  11. Biomimetic Templating of Porous Lamellar Silicas by Vesicular Surfactant Assemblies

    Science.gov (United States)

    Tanev, Peter T.; Pinnavaia, Thomas J.

    1996-03-01

    A biomimetic templating approach to the synthesis of lamellar silicas is demonstrated. The procedure is based on the hydrolysis and cross-linking of a neutral silicon alkoxide precursor in the interlayered regions of multilamellar vesicles formed from a neutral diamine bola-amphiphile. Unlike earlier surfactant-templating approaches, this method produces porous lamellar silicas (designated MSU-V) with vesicular particle morphology, exceptional thermal stability, a high degree of framework cross-linking, unusually high specific surface area and pore volume, and sorption properties that are typical of pillared lamellar materials. This approach circumvents the need for a separate pillaring step in building porosity into a lamellar host structure and offers new opportunities for the direct fabrication of adsorbents, catalysts, and nanoscale devices.

  12. Interaction of Fluorocarbon Containing Hydrophobically Modified Polyelectrolyte with Nonionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO,Jin-Feng(郭金峰); ZHUANG,Dong-Qing(庄东青); ZHOU,Hui(周晖); ZHANG,Yun-Xiang(章云祥)

    2002-01-01

    The interaction of fluorocarbon containing hydrophobically modified polyelectrolyte (FMPAANa) with two kinds of nonionic surfactants (hydrogenated and fluorinated) in a semidilute (0.5 wt% ) aqueous solution had been studied by rheological measurements. Association behavior was found in both systems. The hydrophobic interaction of FMPAANa with fluorinated surfactant (FC171) is much stronger than that with hydrogenated surfactant (NP7.5) at low surfactant concentrations. The interaction is strengthened by surfactants being added for the density of active junctions increased. Whereas distinct phenomena for FC171 and NP7. 5 start to be found as the surfactants added over their respective certain concentration. The interaction of polyelectrolyte with fluorinated surfactant increases dramatical ly while that with hydrogenated surfactant decreases.

  13. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  14. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    CERN Document Server

    Voisin, D

    2002-01-01

    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each po...

  15. Fullerene surfactants and their use in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  16. Performance evaluation of organic emulsion liquid membrane on phenol removal

    CERN Document Server

    Ng, Y S; Hashim, M A

    2014-01-01

    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.

  17. Tattoo removal.

    Science.gov (United States)

    Adatto, Maurice A; Halachmi, Shlomit; Lapidoth, Moshe

    2011-01-01

    Over 50,000 new tattoos are placed each year in the United States. Studies estimate that 24% of American college students have tattoos and 10% of male American adults have a tattoo. The rising popularity of tattoos has spurred a corresponding increase in tattoo removal. Not all tattoos are placed intentionally or for aesthetic reasons though. Traumatic tattoos due to unintentional penetration of exogenous pigments can also occur, as well as the placement of medical tattoos to mark treatment boundaries, for example in radiation therapy. Protocols for tattoo removal have evolved over history. The first evidence of tattoo removal attempts was found in Egyptian mummies, dated to have lived 4,000 years BC. Ancient Greek writings describe tattoo removal with salt abrasion or with a paste containing cloves of white garlic mixed with Alexandrian cantharidin. With the advent of Q-switched lasers in the late 1960s, the outcomes of tattoo removal changed radically. In addition to their selective absorption by the pigment, the extremely short pulse duration of Q-switched lasers has made them the gold standard for tattoo removal.

  18. Surfactant studies for bench-scale operation

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  19. Nanotube Dispersions Made With Charged Surfactant

    Science.gov (United States)

    Kuper, Cynthia; Kuzma, Mike

    2006-01-01

    Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.

  20. BIOSYNTHESIS OF SURFACTANTS ON INDUSTRIAL WASTE

    Directory of Open Access Journals (Sweden)

    Pirog T. P.

    2014-10-01

    Full Text Available The literature and own experimental data on the synthesis of microbial surfactants of different chemical nature (rhamnolipids, sophorolipids, manozylerythritollipids, lipopeptides at various waste (vegetable oil and fat, sugar, dairy industry, agriculture, forestry, biodiesel, as well as waste — fried vegetable oils are presented. Most suitable substrates for the synthesis of microbial surfactants are oil containing waste that, unlike, for example, lignocellulose, whey, technical glycerol do not require pre-treatment and purification. Replacing traditional substrates for the biosynthesis of surfactant with industrial waste will help to reduce the cost of technology by several times, dispose of unwanted waste, solve the problem of storage or disposal of large amounts of waste from the food industry, agricultural sector and companies that produce biodiesel, which spent large amount of energy and money for such needs

  1. Natural surfactants used in cosmetics: glycolipids.

    Science.gov (United States)

    Lourith, N; Kanlayavattanakul, M

    2009-08-01

    Cosmetic surfactant performs detergency, wetting, emulsifying, solubilizing, dispersing and foaming effects. Adverse reactions of chemical synthesis surfactant have an effect on environment and humans, particularly severe in long term. Biodegradability, low toxicity and ecological acceptability which are the benefits of naturally derived surfactant that promises cosmetic safety are, therefore, highly on demand. Biosurfactant producible from microorganisms exhibiting potential surface properties suitable for cosmetic applications especially incorporate with their biological activities. Sophorolipids, rhamnolipids and mannosylerythritol lipids are the most widely used glycolipids biosurfactant in cosmetics. Literatures and patents relevant to these three glycolipids reviewed were emphasizing on the cosmetic applications including personal care products presenting the cosmetic efficiency, efficacy and economy benefits of glycolipids biosurfactant.

  2. A Review on Progress in QSPR Studies for Surfactants

    OpenAIRE

    Zhengwu Wang; Xiaoyi Zhang; Jiwei Hu

    2010-01-01

    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies o...

  3. Surfactant-Polymer Interaction for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  4. Optimization of a greener method for removal phenol species by cloud point extraction and spectrophotometry.

    Science.gov (United States)

    Zain, N N M; Abu Bakar, N K; Mohamad, S; Saleh, N Md

    2014-01-24

    A greener method based on cloud point extraction was developed for removing phenol species including 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 4-nitrophenol (4-NP) in water samples by using the UV-Vis spectrophotometric method. The non-ionic surfactant DC193C was chosen as an extraction solvent due to its low water content in a surfactant rich phase and it is well-known as an environmentally-friendly solvent. The parameters affecting the extraction efficiency such as pH, temperature and incubation time, concentration of surfactant and salt, amount of surfactant and water content were evaluated and optimized. The proposed method was successfully applied for removing phenol species in real water samples.

  5. Optimization of a greener method for removal phenol species by cloud point extraction and spectrophotometry

    Science.gov (United States)

    Zain, N. N. M.; Abu Bakar, N. K.; Mohamad, S.; Saleh, N. Md.

    2014-01-01

    A greener method based on cloud point extraction was developed for removing phenol species including 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 4-nitrophenol (4-NP) in water samples by using the UV-Vis spectrophotometric method. The non-ionic surfactant DC193C was chosen as an extraction solvent due to its low water content in a surfactant rich phase and it is well-known as an environmentally-friendly solvent. The parameters affecting the extraction efficiency such as pH, temperature and incubation time, concentration of surfactant and salt, amount of surfactant and water content were evaluated and optimized. The proposed method was successfully applied for removing phenol species in real water samples.

  6. Performance of electroremediation in real contaminated sediments using a big cell, periodic voltage and innovative surfactants.

    Science.gov (United States)

    Hahladakis, John N; Latsos, Antonis; Gidarakos, Evangelos

    2016-12-15

    The present work focused on evaluating the electrokinetic (EK) treatment of real contaminated sediments with toxic metals and polycyclic aromatic hydrocarbons (PAHs), using a big laboratory EK cell, periodic voltage and recently tested non-ionic surfactants. The results indicated that the "day on-night off" application mode of voltage, in conjunction with the selected solubilising agents, favoured the overall EK process. Arsenic, nickel and chromium exhibited the highest removal percentages, obtaining 83%, 67% and 63%, respectively, while zinc and lead attained 54% and 41% at the maximum. Furthermore, in the experiments where the non-ionic surfactants were introduced in the electrolyte chambers, there was a major uniformly removal of PAHs from the entire sediment across the EK cell, indicating the high solubilisation capacity of the enhancing agents. Essentially, transport and in some cases removal of PAHs (particularly from sections adjacent to the electrolyte compartments) also occurred in the unenhanced EK run, mainly due their negative charge, their potential weak bonds to the soil matrix and to the periodic application of voltage. Maximum removal was obtained by the use of Nonidet P40 where app. 1/3 (ca. 6498μg out of 20145μg) of the total initial amount of PAHs were removed from the cell.

  7. Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis

    DEFF Research Database (Denmark)

    Lima, Ana T.; Ottosen, Lisbeth M.; Heister, Katja

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent and toxic contaminants which are difficult to remove from fine porous material like clayey soils. The present work aims at studying two electroremediation techniques for the removal of PAHs from a spiked natural silt soil from Saudi Arabia...... and a silty loam soil from The Netherlands which has been exposed to tar contamination for over 100years. The two techniques at focus are electro-osmosis and electrodialysis. The latter is applied for the first time for the removal of PAH. The efficiency of the techniques is studied using these two soils......, having been subjected to different PAH contact times.Two surfactants were used: the non-ionic surfactant Tween 80 and anionic surfactant sodium dodecyl sulphate (SDS) to aid desorption of PAHs from the soil. Results show a large discrepancy in the removal rates between spiked soil and long-term field...

  8. Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    Yi Jian CHEN; Gui Ying XU; Shi Ling YUAN; Hai Ying SUN

    2005-01-01

    Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems,the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. Theresults reveal that the surface activity of C12C2C12 suffactant is higher than DTAB surfactant.

  9. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    Liang, Xujun; Guo, Chuling; Liao, Changjun; Liu, Shasha; Wick, Lukas Y; Peng, Dan; Yi, Xiaoyun; Lu, Guining; Yin, Hua; Lin, Zhang; Dang, Zhi

    2017-06-01

    Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future. Copyright © 2017. Published by Elsevier Ltd.

  10. Surfactant therapy in late preterm infants

    Directory of Open Access Journals (Sweden)

    Murat Yurdakök

    2013-06-01

    Full Text Available Late preterm (LPT neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS, transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature infants, leading to a gap in knowledge and understanding of the developmental biology and mechanism of pulmonary diseases in LPT neonates. Surfactant deficiency is the most frequent etiology of RDS in very preterm and moderately preterm infants, while cesarean section and lung infection play major roles in RDS development in LPT infants. The clinical presentation and the response to surfactant therapy in LPT infants may be different than that seen in very preterm infants. Incidence of pneumonia and occurrence of pneumothorax are significantly higher in LPT and term infants. High rates of pneumonia in these infants may result in direct injury to the type II alveolar cells of the lung with decreasing synthesis, release, and processing of surfactant. Increased permeability of the alveolar capillary membrane to both fluid and solutes is known to result in entry of plasma proteins into the alveolar hypophase, further inhibiting the surface properties of surfactant. However, the oxygenation index value do not change dramatically after ventilation or surfactant administration in LPT infants with RDS compared to very preterm infants. These finding may indicate a different pathogenesis of RDS in late preterm and term infants. In conclusion, surfactant therapy may be of significant benefit in LPT infants with serious respiratory failure secondary to a number of insults. However, optimal timing and dose of administration are not so clear in this group. Additional

  11. Influence of surfactant concentration on nanohydroxyapatite growth

    Indian Academy of Sciences (India)

    D Gopi; J Indira; S Nithiya; L Kavitha; U Kamachi Mudali; K Kanimozhi

    2013-10-01

    Nanohydroxyapatite particles with different morphologies were synthesized through a microwave coupled hydrothermal method using CTAB as a template. A successful synthesis of nanosized HAP spheres, rods and fibres is achieved through this method by controlling the concentration of the surfactant. The concentration of the surfactant was tuned in such a way that the desired HAP nanostructures were obtained. The resultant powders were sintered at 900 °C in order to obtain phase pure HAP particles. The results obtained by Fourier transform infrared spectroscopy (FT–IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have substantiated the formation of nanosized HAP spheres and fibres.

  12. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  13. Design of Agglomerated Crystals of Ibuprofen During Crystallization: Influence of Surfactant

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-01-01

    Full Text Available Objective(sIbuprofen is a problematic drug in tableting, and dissolution due to its poor solubility, hydrophobicity, and tendency to stick to surface. Because of the bad compaction behavior ibuprofen has to be granulated usually before tableting. However, it would be more satisfactory to obtain directly during the crystallization step crystalline particles that can be directly compressed and quickly dissolved. Materials and Methods Crystallization of ibuprofen was carried out using the quasi emulsion solvent diffusion method in presence of surfactant (sodium lauryl sulfate (SLS, Tween 80. The particles were characterized by differential scanning calorimetry (DSC, powder X-ray diffraction (XRPD and were evaluated for particle size, flowability, drug release and tableting behavior. ResultsIbuprofen particles obtained in the presence of surfactants consisted of numerous plate- shaped crystals which had agglomerated together as near spherical shape. The obtained agglomerates exhibited significantly improved micromeritic properties as well as tableting behavior than untreated drug crystals. The agglomerates size and size distribution was largely controlled by surfactant concentration, but there was no significant influence found on the tableting properties. The dissolution tests showed that the agglomerates obtained in presence of SLS exhibited enhanced dissolution rate while the agglomerates made in the presence of Tween 80 had no significant impact on dissolution rate of ibuprofen in comparison to untreated sample. The XRPD and DSC results showed that during the agglomeration process, ibuprofen did not undergo any polymorphic changes.Conclusion The study highlights the influence of surfactants on crystallization process leading to modified performance.

  14. Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions.

    Science.gov (United States)

    Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K

    2009-08-04

    The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.

  15. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    Science.gov (United States)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)

    2001-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which

  16. VESICLE-SURFACTANT INTERACTIONS - EFFECTS OF ADDED SURFACTANTS ON THE GEL TO LIQUID-CRYSTAL TRANSITION FOR 2 VESICULAR SYSTEMS

    NARCIS (Netherlands)

    Blandamer, M.J; Briggs, B.; Cullis, P.M.; Engberts, J.B.F.N.; Kacperska, A.

    1995-01-01

    Interactions of both cationic and anionic surfactants with vesicles formed by dimethyldioctadecylammonium bromide (DOAB) and by sodium didodecylphosphate (DDP) have been probed using differential scanning microcalorimetry. The scans show that the surfactants are incorporated into the vesicle bilayer

  17. Vesicle-Surfactant Interactions : Effects of Added Surfactants on the Gel to Liquid-crystal Transition for Two Vesicular Systems

    NARCIS (Netherlands)

    Blandamer, Michael J.; Briggs, Barbara; Cullis, Paul M.; Engberts, Jan B.F.N.; Kacperska, Anna

    1995-01-01

    Interactions of both cationic and anionic surfactants with vesicles formed by dimethyldioctadecylammonium bromide (DOAB) and by sodium didodecylphosphate (DDP) have been probed using differential scanning microcalorimetry. The scans show that the surfactants are incorporated into the vesicle bilayer

  18. Synthesis and Properties of Novel Cationic Maleic Diester Polymerizable Surfactants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three new cationic polymerizable surfactants are synthesized by the reaction of alkylmaleic hemiester with glycidyltrimethylammonium chloride. Their structures are confirmed by 1H NMR, IR and elements analysis. The values of CMC and gCMC of these surfactants have been measured. One can obtain nearly monodisperse polystyrene latex by emulsion polymerization using the polymerizable surfactant.

  19. Surfactant phosphatidylcholine metabolism in preterm infants studied with stable isotopes

    NARCIS (Netherlands)

    J.E.H. Bunt (Jan Erik)

    2000-01-01

    textabstractAIM OF THE STUDIES 1. To develop and use a novel method to study surfactant metabolism in preterm and older infants. (chapters 3 and 4). 2. To study endogenous surfactant synthesis in relation to prenatal glucocorticosteroids. (chapters 5 and 6). 3. To study the influence of surfactant

  20. Effects of selected surfactants on soil microbial activity

    Science.gov (United States)

    Surfactants (surface-active agents) facilitate and accentuate the emulsifying, dispersing, spreading, and wetting properties of liquids. Surfactants are used in industry to reduce the surface tension of liquid and to solubilize compounds. For agricultural pest management, surfactants are an import...

  1. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.

    1969-01-14

    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  2. Surfactant phosphatidylcholine metabolism in preterm infants studied with stable isotopes

    NARCIS (Netherlands)

    J.E.H. Bunt (Jan Erik)

    2000-01-01

    textabstractAIM OF THE STUDIES 1. To develop and use a novel method to study surfactant metabolism in preterm and older infants. (chapters 3 and 4). 2. To study endogenous surfactant synthesis in relation to prenatal glucocorticosteroids. (chapters 5 and 6). 3. To study the influence of surfactant t

  3. Advanced Coating Removal Techniques

    Science.gov (United States)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  4. Combined soil washing and CDEO for the removal of atrazine from soils

    Energy Technology Data Exchange (ETDEWEB)

    Vieira dos Santos, Elisama [Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova CEP 59078-970, Natal, RN (Brazil); Sáez, Cristina [Department of Chemical Engineering, Universidad de Castilla – La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071 Ciudad Real (Spain); Martínez-Huitle, Carlos Alberto [Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova CEP 59078-970, Natal, RN (Brazil); Cañizares, Pablo; Rodrigo, Manuel Andres [Department of Chemical Engineering, Universidad de Castilla – La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071 Ciudad Real (Spain)

    2015-12-30

    Highlights: • Sequential soil washing-waste electrolysis is an efficient treatment for removing atrazine. • Ratio surfactant/soil influences on the size of micelles and organic load. • Electrolysis with diamond anodes oxidizes pollutants from soils washing wastes. • Electrolysis of soil washing fluids promotes the reduction in size of micelles. • Sulphate ions release from the oxidation of SDS participates in the oxidation process. - Abstract: In this work, it is studied the removal of atrazine from spiked soils by soil washing using surfactant fluids, followed by the treatment of the resulting washing waste by electrolysis with boron doped diamond (BDD) anode. Results confirm that combination of both technologies is efficient for the removal and total mineralization of atrazine. Ratio surfactant/soil is a key parameter for the removal of atrazine from soil and influences significantly in the characteristic of the wastewater produced, affecting not only to the total organic load but also to the mean size of micelles. The higher the ratio surfactant soil, the lower is the size of the particles. Electrolyses of this type of waste attain the complete mineralization. TOC and COD are removed from the start of the treatment but the key of the treatment is the reduction in size of the micelles, which lead to a higher negative charge in the surface and to the faster depletion of the surfactant as compared with the pesticide.

  5. Use of two-surfactants mixtures to attain specific HLB values for assisted TPH-diesel biodegradation

    Institute of Scientific and Technical Information of China (English)

    Luis G. Torres; Neftalí Rojas; Rosario Iturbe

    2004-01-01

    In a surfactant assisted biodegradation process, the choice of surfactant(s) is of crucial importance. The question is: does the type of surfactant (i.e. chemical family) affect the biodegradation process at fixed hidrophillic-lypofillic balance HLB values? Microcosm assessments were developed using contaminated soil, with around of 5000 mg/kg of hydrocarbons as TPH-diesel. Mixtures of three nonionic surfactants were employed to get a wide range of specific HLB values. Tween20 and Span20 were mixed in the appropriate proportions to get HLB values between 8.6 and 16.7. Tween/Span60 mixtures reached HLB values between 4.7 and 14.9. Finally, Tween/Span80 combinations yielded HLB values between 4.3 and 15. TPH-diesel biodegradation was measured at the beginning, and after 8 weeks, as well as the FCU/grsoil, as a measure of microorganisms′ development during the biodegradation period. A second aim of this work was to assess the use of guar gum as a biodegradation enhancer instead of synthetic products. The conclusions of this work are that surfactant chemical family, and not only the HLB value clearly affects the assisted biodegradation rate. Surfactant's synergism was clearly observed. Regarding the use of guar gum, no biodegradation enhancement was observed for the three assessed concentrations i.e., 2, 20, and 200 mg/kg, respectively. On the contrary, TPH-diesel removal was lower as the gum concentration increased. It is quite possible that guar gum was used as a microbial substrate.

  6. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  7. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: hakbas34@yahoo.com [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)

    2011-12-15

    Highlights: > Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. > Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. > Dimeric surfactants have attracted increasing attention due to their superior surface activity. > The positive values of {Delta}G{sub cp}{sup 0} indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-{alpha}-{omega}-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C{sub 16} alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy ({Delta}G{sub cp}{sup 0}), the enthalpy ({Delta}H{sub cp}{sup 0}) and the entropy ({Delta}S{sub cp}{sup 0}) of the clouding phenomenon were found positive in all cases. The standard free energy ({Delta}G{sub cp}{sup 0}) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic

  8. SREF - a Simple Removable Epoxy Foam decomposition chemistry model.

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L.

    2003-12-01

    A Simple Removable Epoxy Foam (SREF) decomposition chemistry model has been developed to predict the decomposition behavior of an epoxy foam encapsulant exposed to high temperatures. The foam is composed of an epoxy polymer, blowing agent, and surfactant. The model is based on a simple four-step mass loss model using distributed Arrhenius reaction rates. A single reaction was used to describe desorption of the blowing agent and surfactant (BAS). Three of the reactions were used to describe degradation of the polymer. The coordination number of the polymeric lattice was determined from the chemical structure of the polymer; and a lattice statistics model was used to describe the evolution of polymer fragments. The model lattice was composed of sites connected by octamethylcylotetrasiloxane (OS) bridges, mixed product (MP) bridges, and bisphenol-A (BPA) bridges. The mixed products were treated as a single species, but are likely composed of phenols, cresols, and furan-type products. Eleven species are considered in the SREF model - (1) BAS, (2) OS, (3) MP, (4) BPA, (5) 2-mers, (6) 3-mers, (7) 4-mers, (8) nonvolatile carbon residue, (9) nonvolatile OS residue, (10) L-mers, and (11) XL-mers. The first seven of these species (VLE species) can either be in the condensed-phase or gas-phase as determined by a vapor-liquid equilibrium model based on the Rachford-Rice equation. The last four species always remain in the condensed-phase. The 2-mers, 3-mers, and 4-mers are polymer fragments that contain two, three, or four sites, respectively. The residue can contain C, H, N, O, and/or Si. The L-mer fraction consists of polymer fragments that contain at least five sites (5-mer) up to a user defined maximum mer size. The XL-mer fraction consists of polymer fragments greater than the user specified maximum mer size and can contain the infinite lattice if the bridge population is less than the critical bridge population. Model predictions are compared to 133-thermogravimetric

  9. Molecular dynamics of surfactant protein C

    DEFF Research Database (Denmark)

    Ramírez, Eunice; Santana, Alberto; Cruz, Anthony

    2006-01-01

    Surfactant protein C (SP-C) is a membrane-associated protein essential for normal respiration. It has been found that the alpha-helix form of SP-C can undergo, under certain conditions, a transformation from an alpha-helix to a beta-strand conformation that closely resembles amyloid fibrils, which...

  10. Titration procedure for low ethoxylated nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, N. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany); Huelskoetter, F. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany)

    1997-01-01

    Highly lipophilic surfactants are frequently used as emulsifiers for preparing oil-in-water emulsions (e.g. coolants lubricants). Typical surfactants used for this purpose are low ethoxylated alcohols and ethoxylated alkylphenols. Due to the low degree of ethoxylation they cannot be analysed by conventional methods. The method described in this article is based on the introduction of an anionic group into the molecule by a derivatization reaction. The reaction product can be determined by conventional titration methods for anionic surfactants without any modification. The use of the new method for other nonionic surfactants like sorbitan esters, (ethoxylated) fatty acid amides or glycerol fatty acid partial esters is also described as well as the sample preparation for coolants lubricants. (orig.) [Deutsch] Lipophile Tenside werden haeufig zur Herstellung von Oel-in-Wasser-Emulsionen verwandt, wie sie beispielsweise in Kuehlschmiermitteln eingesetzt werden. Typische Vertreter dieser Tenside sind niedrig ethoxylierte Fettalkohole und Alkylphenole. Wegen ihres geringen Ethoxylierungsgrades koennen sie mit den konventionellen Methoden nicht analytisch bestimmt werden. Die hier beschriebene Analysenmethode beruht auf der Derivatisierung der Ethoxylate zu entsprechenden anionischen Tensiden (Ethersulfate). Diese koennen ohne weiteres mit den etablierten Titrationsverfahren bestimmt werden. Die Anwendung dieses neuen Verfahrens auf die Bestimmung anderer nichtionischer Tenside - Sorbitanester, (ethoxylierte) Fettsaeureamide und Partialglyceride - wird ebenso beschrieben wie die Probenvorbereitung fuer die Analyse von Kuehlschmiermitteln. (orig.)

  11. Mitoxantrone-Surfactant Interactions: A Physicochemical Overview

    Directory of Open Access Journals (Sweden)

    Mirela Enache

    2016-10-01

    Full Text Available Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest. Further, quantitative understanding of the interactions of drugs with biomimicking structures like surfactant micelles may provide helpful information for the control of physicochemical properties and bioactivities of encapsulated drugs in order to design better delivery systems with possible biomedical applications. The present review describes the physicochemical aspects of the interactions between the anticancer drug mitoxantrone and different surfactants. Mitoxantrone-micelle binding constants, partitions coefficient of the drug between aqueous and micellar phases and the corresponding Gibbs free energy for the above processes, and the probable location of drug molecules in the micelles are discussed.

  12. Photosensitive surfactants: micellization and interaction with DNA.

    Science.gov (United States)

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-28

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  13. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete

    2008-01-01

    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...

  14. Photosensitive surfactants: Micellization and interaction with DNA

    Science.gov (United States)

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-01

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  15. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Madsen, Jens; Kejling, Karin

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd...

  16. Topological transformation of a surfactant bilayer

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2000-01-01

    Surfactant lamellar phases are often complicated by the formation of multilamellar (onions) under shear, which can originate simply by shaking the sample. A systematic study has been performed on the C10E3-D2O system in which different bilayer structures under a steady shear flow were investigated...

  17. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  18. Thermally stable surfactants and compositions and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Woodridge, IL)

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  19. Minimally Invasive Surfactant Therapy and Noninvasive Respiratory Support.

    Science.gov (United States)

    Kribs, Angela

    2016-12-01

    Respiratory distress syndrome (RDS) caused by surfactant deficiency is major cause for neonatal mortality and short- and long-term morbidity of preterm infants. Continuous positive airway pressure and other modes of noninvasive respiratory support and intubation and positive pressure ventilation with surfactant therapy are efficient therapies for RDS. Because continuous positive airway pressure can fail in severe surfactant deficiency, and because traditional surfactant therapy requires intubation and positive pressure ventilation, this entails a risk of lung injury. Several strategies to combine noninvasive respiratory therapy with minimally invasive surfactant therapy have been described. Available data suggest that those strategies may improve outcome of premature infants with RDS.

  20. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  1. Surfactant Sensors in Biotechnology; Part 1 – Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Milan Sak-Bosnar

    2004-01-01

    Full Text Available An overview on electrochemical surfactant sensors is given with special attention to papers published since 1993. The importance of surfactants in modern biotechnology is stressed out. Electrochemical sensors are usually divided according to the measured physical quantity to potentiometric, amperometric, conductometric and impedimetric surfactant sensors. The last ones are very few. Potentiometric surfactant sensors are the most numerous due to their simplicity and versatility. They can be used either as end-point titration sensors or as direct EMF measurement sensors, in batch or flow-through mode. Some amperometric surfactant sensors are true biosensors that use microorganisms or living cells.

  2. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  3. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages.

    Science.gov (United States)

    De Backer, Lynn; Naessens, Thomas; De Koker, Stefaan; Zagato, Elisa; Demeester, Jo; Grooten, Johan; De Smedt, Stefaan C; Raemdonck, Koen

    2015-11-10

    The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers. In this study, we evaluated pulmonary surfactant-coated dextran nanogels for the delivery of siRNA to rAM upon pharyngeal aspiration in BALB/c mice. Both the surfactant-coated and uncoated nanogels achieved high levels of siRNA uptake in rAM, yet only the surfactant-coated formulation could significantly reduce gene expression on the protein level. Surfactant-coated nanogels induced a profound downregulation of target mRNA levels, reaching 70% knockdown with ~1mgkg(-1) siRNA dose. In addition, only mild acute pro-inflammatory cytokine and chemokine responses were detected one day after nanoparticle aspiration, accompanied by a moderate neutrophil infiltration in the bronchoalveolar lumen. The latter could be substantially reduced by removal of excess surfactant from the formulation. Overall, our hybrid core-shell nanoparticles have demonstrated safe and effective siRNA delivery to rAM, providing a new therapeutic approach for treatment of inflammatory pathologies in the lung.

  4. Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method

    Directory of Open Access Journals (Sweden)

    Murahari Kolli

    2015-12-01

    Full Text Available In this paper, Taguchi method was employed to optimize the surfactant and graphite powder concentration in dielectric fluid for the machining of Ti-6Al-4V using Electrical Discharge Machining (EDM. The process parameters such as discharge current, surfactant concentration and powder concentration were changed to explore their effects on Material Removal Rate (MRR, Surface Roughness (SR, Tool wear rate (TWR and Recast Layer Thickness (RLT. Detailed analysis of structural features of machined surface was carried out using Scanning Electron Microscope (SEM to observe the influence of surfactant and graphite powder on the machining process. It was observed from the experimental results that the graphite powder and surfactant added dielectric fluid significantly improved the MRR, reduces the SR, TWR and RLT at various conditions. Analysis of Variance (ANOVA and F-test of experimental data values related to the important process parameters of EDM revealed that discharge current and surfactant concentration has more percentage of contribution on the MRR and TWR whereas the SR, and RLT were found to be affected greatly by the discharge current and graphite powder concentration.

  5. Interactions among pulmonary surfactant, vernix caseosa, and intestinal enterocytes: intra-amniotic administration of fluorescently liposomes to pregnant rabbits.

    Science.gov (United States)

    Nishijima, Koji; Shukunami, Ken-ichi; Yoshinari, Hideo; Takahashi, Jin; Maeda, Hideyuki; Takagi, Hitoshi; Kotsuji, Fumikazu

    2012-08-01

    Although vernix caseosa is known to be a natural biofilm at birth, human pulmonary surfactant commences to remove the vernix from fetal skin into the amniotic fluid at gestational week 34, i.e., well before delivery. To explain this paradox, we first produced two types of fluorescently labeled liposomes displaying morphology similar to that of pulmonary surfactant and vernix caseosa complexes. We then continuously administered these liposomes into the amniotic fluid space of pregnant rabbits. In addition, we produced pulmonary surfactant and vernix caseosa complexes and administered them into the amniotic fluid space of pregnant rabbits. The intra-amniotic infused fluorescently labeled liposomes were absorbed into the fetal intestinal epithelium. However, the liposomes were not transported to the livers of fetal rabbits. We also revealed that continuous administration of micelles derived from pulmonary surfactants and vernix caseosa protected the small intestine of the rabbit fetus from damage due to surgical intervention. Our results indicate that pulmonary surfactant and vernix caseosa complexes in swallowed amniotic fluid might locally influence fetal intestinal enterocytes. Although the present studies are primarily observational and further studies are needed, our findings elucidate the physiological interactions among pulmonary, dermal-epidermal, and gastrointestinal developmental processes.

  6. Phase diagrams of DNA-photosensitive surfactant complexes: effect of ionic strength and surfactant structure.

    Science.gov (United States)

    Zakrevskyy, Yuriy; Titov, Evgenii; Lomadze, Nino; Santer, Svetlana

    2014-10-28

    Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Löhmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity.

  7. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  8. A high-resolution study of surfactant partitioning and kinetic limitations for two-component internally mixed aerosols

    Science.gov (United States)

    Suda, S. R.; Petters, M. D.

    2013-12-01

    leads to kinetic limitations on the partitioning process we introduced a pre-humidification step at RH ~80% followed by a 30s to 6 min delay before CCN analysis. Data were evaluated against various theoretical models using activity coefficients at RH near cloud-droplet activation (99%) determined with an improved high accuracy tandem differential mobility analyzer technique. Results confirm previous studies that show that surfactants do not enhance cloud droplet activation relative to what would be predicted from water activity alone. The data obtained with and without time delay were indistinguishable within measurement uncertainty, suggesting that dynamic surface tension need not be considered in Köhler theory. With the exception of the SDS system, linear mixing rules can well-approximate CCN activity, although some non-linearity in the mixing rules were detected by the measurement system.

  9. Partition behavior of surfactants, butanol, and salt during application of density-modified displacement of dense non-aqueous phase liquids

    Energy Technology Data Exchange (ETDEWEB)

    Damrongsiri, S. [Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Phaya-Thai Rd., Bangkok (Thailand); Tongcumpou, C., E-mail: tchantra@chula.ac.th [Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Phaya-Thai Rd., Bangkok (Thailand); Environmental Research Institute, Chulalongkorn University (Thailand); Sabatini, D.A. [School of Civil Engineering and Environmental Science, The University of Oklahoma, Oklahoma (United States)

    2013-03-15

    Highlights: ► Aqueous surfactant increases the partition of butanol aqueous phase. ► Water partition to NAPL phase via butanol and surfactant in NAPL phase. ► PCE partition to aqueous phase by solubilization into micelles. ► Surfactants cause the dramatically partition of water to NAPL phase. ► Aqueous salt dispels surfactant to NAPL phase. -- Abstract: Density-modified displacement (DMD) is a recent approach for removal of trapped dense NAPL (DNAPL). In this study, butanol and surfactant are contacted with the DNAPL to both reduce the density as well as release the trapped DNAPL (perchloroethylene: PCE). The objective of the study was to determine the distribution of each component (e.g., butanol, surfactant, water, PCE) between the original aqueous and PCE phases during the application of DMD. The results indicated that the presence of the surfactant increased the amount of n-butanol required to make the NAPL phase reach its desired density. In addition, water and anionic surfactant were found to partition along with the BuOH into the PCE phase. The water also found partitioned to reverse micelles in the modified phase. Addition of salt was seen to increase partitioning of surfactant to BuOH containing PCE phase. Subsequently, a large amount of water was solubilized into reverse micelles which lead to significantly increase in volume of the PCE phase. This work thus demonstrates the role of each component and the implications for the operation design of an aquifer treatment using the DMD technique.

  10. The way to collisions, step by step

    CERN Multimedia

    2009-01-01

    While the LHC sectors cool down and reach the cryogenic operating temperature, spirits are warming up as we all eagerly await the first collisions. No reason to hurry, though. Making particles collide involves the complex manoeuvring of thousands of delicate components. The experts will make it happen using a step-by-step approach.

  11. Internship guide : Work placements step by step

    NARCIS (Netherlands)

    Haag, Esther

    2013-01-01

    Internship Guide: Work Placements Step by Step has been written from the practical perspective of a placement coordinator. This book addresses the following questions : what problems do students encounter when they start thinking about the jobs their degree programme prepares them for? How do you

  12. Internship guide : Work placements step by step

    NARCIS (Netherlands)

    Haag, Esther

    2013-01-01

    Internship Guide: Work Placements Step by Step has been written from the practical perspective of a placement coordinator. This book addresses the following questions : what problems do students encounter when they start thinking about the jobs their degree programme prepares them for? How do you fi

  13. On Computational Small Steps and Big Steps

    DEFF Research Database (Denmark)

    Johannsen, Jacob

    rules in the small-step semantics cause the refocusing step of the syntactic correspondence to be inapplicable. Second, we propose two solutions to overcome this in-applicability: backtracking and rule generalization. Third, we show how these solutions affect the other transformations of the two...

  14. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl

    Science.gov (United States)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen

    2017-09-01

    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  15. Oxidation of polyvinylpyrrolidone and an ethoxylate surfactant in phase-inversion wastewater.

    Science.gov (United States)

    Loraine, Gregory A

    2008-04-01

    In this paper, components of an industrial wastewater that cause operational problems during biological treatment were oxidized by UV light and hydrogen peroxide (UV/H202). Preoxidation of wastewater was shown to remove polyvinylpyrrolidone (PVP) and ethoxylate surfactant and increase overall biodegradability. Several UV intensities and hydrogen peroxide concentrations were tested to find optimal conditions for the complete depolymerization of PVP in a synthetic wastewater composed of high concentrations of hydroxyl radical scavengers. To compare treatment options, absorption isotherms for PVP on granular activated carbon (GAC) in water and in the synthetic phase-inversion wastewater matrix were determined. The data were extrapolated to estimate the cost of using UV/H2O2, GAC, or off-site treatment. It was found that UV/H2O2 pretreatment was economically viable. Incomplete oxidation of an ethoxylate surfactant increased foaming tendency and foam stability; however, extended oxidation (> 90 minutes) destroyed the foam.

  16. Effect of silk protein surfactant on silk degumming and its properties.

    Science.gov (United States)

    Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing

    2015-10-01

    The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts.

  17. Formation at low surfactant concentrations and characterization of mesoporous MCM-41

    Institute of Scientific and Technical Information of China (English)

    陈晓银; 丁国忠; 陈海鹰; 李全芝

    1997-01-01

    At low concentrations of cetyltrimethylammonium bromide,all silica-based mesoporous materials with hexagonal phase have been synthesized via interactions between self-assembled surfactant molecule aggregates and aniomc silicate polymers.The resulting materials are characterized by XRD,FT-IR,solid state 29Si MAS NMR,thermal analysis and N2 adsorption-desorption measurements.After soluble ions are removed,the interactors between surfactant micelles and silicate polymers are reorganized and then form mesostructures 1 he hexagonal framework is sonsistent with amorphous silica gel.The structures of materials depend on the synthesis conditions Hydrothermal process improves the interactions between molecules and increases the degree of framework silicon atom polymerization The.surface area and the mesopore volume of the material prepared at 100℃ increase by 87% and 71 %,respectively,compared with those obtained at room temperature.

  18. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  19. Surfactant-induced alteration of arachidonic acid metabolism of mammalian cells in culture.

    Science.gov (United States)

    De Leo, V A; Harber, L C; Kong, B M; De Salva, S J

    1987-04-01

    Primary irritancy in human and animal skin is characterized by an inflammatory reaction mediated, in part, by membrane-derived arachidonate metabolites. One of the mechanisms of this reaction was investigated in cultured mammalian cells using three surfactants: linear alkyl benzene sulfonate (LAS), alkyl ethoxylate sulfate (AEOS), and TWEEN 20. These compounds listed in order in vivo irritancy are LAS greater than AEOS greater than TWEEN 20. Each of these compounds was studied in C3H-10T1/2 cells and human keratinocytes which had been prelabeled with 3H-labeled arachidonic acid (AA). After labeling, media were removed, cells were washed, and fresh media with or without surfactant were added. Cells were then incubated for 2 hr, media were removed and centrifuged, and an aliquot was assayed by liquid scintillation for release of label. In C3H-10T1/2 cells LAS and AEOS in 5-50 microM concentration stimulated 2 to 10 times the release of [3H]AA as compared to controls. In contrast, concentrations of 50-100 microM of TWEEN were required to release [3H]AA. With keratinocytes the same rank order of surfactant concentrations necessary for release was obtained as found with C3H-10T1/2 cells. High-performance liquid chromatography of media extracts of both cell systems revealed surfactant stimulation of the production of cyclooxygenase AA metabolites. These results confirm the induction of release by primary irritants of fatty acid groups from membrane phospholipids. Subsequent metabolism of these fatty acid groups are an integral part of the primary irritant response. Data presented with three known irritants in this in vitro model show a direct correlation with in vivo studies.

  20. CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lebone T. Moeti; Ramanathan Sampath

    2001-09-28

    This final technical report describes work performed under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to August 31, 2001 which covers the total performance period of the project. During this period, detailed information on optimal salinity, temperature, emulsion morphologies, effectiveness for surfactant retention and oil recovery was obtained for an Alcohol Ethoxycarboxylate (AEC) surfactant to evaluate its performance in flooding processes. Tests were conducted on several AEC surfactants and NEODOX (23-4) was identified as the most suitable hybrid surfactant that yielded the best proportion in volume for top, middle, and bottom phases when mixed with oil and water. Following the selection of this surfactant, temperature and salinity scans were performed to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexisted. NEODOX 23-4 formed three phases between 4 and 52.5 C. It formed an aqueous rich microemulsion phase at high temperatures and an oleic rich microemulsion phase at low temperatures--a characteristic of the ionic part of the surfactant. The morphology measurement system was set-up successfully at CAU. The best oil/water/surfactant system defined by the above phase work was then studied for emulsion morphologies. Electrical conductivities were measured for middle and bottom phases of the NEODOX 23-4/dodecane/10mM water system and by mixing measured volumes of the middle phase into a fixed volume of the bottom phase and vice versa at room temperature. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. These experiments were then repeated for bottom/middle (B/M) and middle/bottom (M/B) conjugate pair phases at 10, 15, 25, 30, 35, 40, and 45 C. Electrical conductivity measurements were then compared with the predictions of the conductivity model developed in

  1. Protein denaturation due to the action of surfactants: a study by SAXS and ITC

    Energy Technology Data Exchange (ETDEWEB)

    Oseliero Filho, Pedro Leonidas; Oliveira, Cristiano Luis Pinto de [Universidade de Sao Paulo (USP), SP (Brazil); Pedersen, Jan Skov; Otzen, Daniel Erik [University of Aarhus (Denmark)

    2012-07-01

    Full text: Proteins are the major constituent of biological systems along with carbohydrates, lipids and nucleic acids (DNA and RNA). According to their structure and composition, proteins perform several functions in the organism, starting from the macroscopic level, with participation on the olfaction of animals, down to the cellular level, allocated in the membrane and making the connection between extra and intracellular environment. The function of a protein (which may be enzymatic, hormonal, structural, energetic, transport etc) is related to several factors including its structure (primary, secondary, tertiary or quaternary). Denaturation occurs when the secondary structure and/or tertiary is lost, which is almost always followed by the loss of the associated biological function. Temperature, pH and the action of surfactants influence the process of the denaturation. The influence of surfactants to the protein structure and function is the aim of this work. Therefore we are using an isolated protein, {alpha}-lactalbumin, that is found in the milk and whose function is related to the synthesis of galactose. The purpose is to characterize, in a thermodynamic-structural point of view, the denaturation of alpha-lactalbumin in the presence of surfactants anionic (sodium dodecyl sulfate - SDS), cationic (tetradecyltrimethylammonium bromide - TTAB), zwitterionic (2-diheptanoyl-sn-glycero-3- phosphocholine - DHPC) and nonionic (decyl-{beta}-D-Maltopyranoside - DM). The isothermal titration calorimetry (ITC) technique, which provides information of structural changes from changes in energy, represents the starting point for the study, while the technique of small angle X-ray scattering (SAXS) provides information about the structural characteristics of surfactant-protein complexes formed at each step of the denaturation process. The data analysis is in the initial stage, but it was possible to obtain general parameters related to the complex formed from the

  2. Microsoft Office professional 2010 step by step

    CERN Document Server

    Cox, Joyce; Frye, Curtis

    2011-01-01

    Teach yourself exactly what you need to know about using Office Professional 2010-one step at a time! With STEP BY STEP, you build and practice new skills hands-on, at your own pace. Covering Microsoft Word, PowerPoint, Outlook, Excel, Access, Publisher, and OneNote, this book will help you learn the core features and capabilities needed to: Create attractive documents, publications, and spreadsheetsManage your e-mail, calendar, meetings, and communicationsPut your business data to workDevelop and deliver great presentationsOrganize your ideas and notes in one placeConnect, share, and accom

  3. Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation

    Directory of Open Access Journals (Sweden)

    Elizabeth I. Braun

    2016-06-01

    Full Text Available It is well known that surfactant-suspended carbon nanotube (CNT samples can be purified by centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, centrifugation is not always part of protocols to prepare CNT samples used in biomedical applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs suspended in water without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in aqueous cMWCNT suspensions was enriched by ∼40% by a single low-speed centrifugation step. This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions has not been previously appreciated and is important because the degree of surface acidity is known to affect the interactions of cMWCNTs with biological systems.

  4. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    and chromophore. Longer wavelengths and cooling are safer for patients with darker skin types. Hair removal with lasers and IPL sources are generally safe treatment procedures when performed by properly educated operators. However, safety issues must be addressed since burns and adverse events do occur. New...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair...... systems. Evidence has been found for long-term hair removal efficacy beyond 6 months after repetitive treatments with alexandrite, diode, and long-pulse Nd:YAG lasers, whereas the current long-term evidence is sparse for IPL devices. Treatment parameters must be adjusted to patient skin type...

  5. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    and chromophore. Longer wavelengths and cooling are safer for patients with darker skin types. Hair removal with lasers and IPL sources are generally safe treatment procedures when performed by properly educated operators. However, safety issues must be addressed since burns and adverse events do occur. New...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair...... systems. Evidence has been found for long-term hair removal efficacy beyond 6 months after repetitive treatments with alexandrite, diode, and long-pulse Nd:YAG lasers, whereas the current long-term evidence is sparse for IPL devices. Treatment parameters must be adjusted to patient skin type...

  6. Removing Bureaucracy

    Science.gov (United States)

    2015-08-01

    11 Defense AT&L: July–August 2015 Removing Bureaucracy Katharina G. McFarland McFarland is Assistant Secretary of Defense for Acquisition. I once...managed a new start program to deliver a revolutionary warfighting capability in Battlefield Management/Command and Control . The Service sponsor was...involvement from all of the Service warfighting areas came together to scrub the program requirements due to concern over the “ bureaucracy ” and

  7. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge.

    Science.gov (United States)

    Petkova, R; Tcholakova, S; Denkov, N D

    2012-03-20

    Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.

  8. Removal of Safranine from Aqueous Solution by Using Adsorptive Bubble Separation Techniques

    Institute of Scientific and Technical Information of China (English)

    Chung Shin LU; Chiing Chang CHEN; Ya Ping SU; Kung Tung CHEN

    2005-01-01

    Safranine, a cationic dye, was removed from synthetic wastewater by ion flotation.Over 98% of safranine was removed from the solution in 10 min. A stoichiometric amount of surfactant (1 mol of surfactant to 1 mol of dye) was found to be most effective for safranine removal. The separation efficiency of safranine decreased with increasing concentration of NaNO3. Safranine was also removed by adsorbing colloid flotation technique using Fe(OH)3 as the coagulant. Sodium lauryl sulfate was used as the collector, and over 97% of safranine was removed in 5 min. The separation efficiency decreased with increasing ionic strength of the solution. The deleterious effect of neutral salt was compensated somewhat with the aid of A13+ as the activator. Both ion flotation and adsorbing colloid flotation may be applicable in the removal of safranine from wastewater.

  9. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria.

    Science.gov (United States)

    Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa

    2013-09-17

    We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.

  10. Developing Instructional Videotapes Step by Step.

    Science.gov (United States)

    Sweet, Thomas E.

    1990-01-01

    Discusses the eight steps in developing an instructional videotape: planning, brainstorming content, sequencing the storyline, defining the treatment, developing the introduction and conclusion, scripting the video and audio, controlling the production, and specifying the postproduction. (DMM)

  11. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  12. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers.

    Science.gov (United States)

    Dohm, Michelle T; Mowery, Brendan P; Czyzewski, Ann M; Stahl, Shannon S; Gellman, Samuel H; Barron, Annelise E

    2010-06-16

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of beta-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers, inspired by the post-translational modifications found in SP-C, affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers.

  13. Step by step: Revisiting step tolling in the bottleneck model

    NARCIS (Netherlands)

    Lindsey, C.R.; Berg, van den V.A.C.; Verhoef, E.T.

    2010-01-01

    In most dynamic traffic congestion models, congestion tolls must vary continuously over time to achieve the full optimum. This is also the case in Vickrey's (1969) 'bottleneck model'. To date, the closest approximations of this ideal in practice have so-called 'step tolls', in which the toll takes o

  14. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1.

    Science.gov (United States)

    Zhang, Dong; Zhu, Lizhong

    2012-05-01

    The sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1 (PYR-1) in the presence of nonionic surfactant Tween 80 were investigated toward a better understanding that how surfactants can affect biodegradation of hydrophobic organic compounds. The results indicated that Tween 80 can promote the removal, sorption and biodegradation of pyrene depending on the surfactant concentration, of which the most significant promotion of biodegradation was achieved at critical micelle concentration of Tween 80 with an improvement of 22.4%. A highly positive correlation (PTween 80. Biosorption experiments showed the same trends as biodegradation and further illustrated the improved biodegradation of pyrene was mainly due to surfactant-facilitated sorption. The regularly changes of cell surface hydrophobicity suggested formation of more hydrophobic surface caused by surfactant sorption lead to stimulation of pyrene sorption.

  15. Pulmonary surfactant adsorption is increased by hyaluronan or polyethylene glycol.

    Science.gov (United States)

    Taeusch, H William; Dybbro, Eric; Lu, Karen W

    2008-04-01

    In acute lung injuries, inactivating agents may interfere with transfer (adsorption) of pulmonary surfactants to the interface between air and the aqueous layer that coats the interior of alveoli. Some ionic and nonionic polymers reduce surfactant inactivation in vitro and in vivo. In this study, we tested directly whether an ionic polymer, hyaluronan, or a nonionic polymer, polyethylene glycol, enhanced adsorption of a surfactant used clinically. We used three different methods of measuring adsorption in vitro: a modified pulsating bubble surfactometer; a King/Clements device; and a spreading trough. In addition we measured the effects of both polymers on surfactant turbidity, using this assay as a nonspecific index of aggregation. We found that both hyaluronan and polyethylene glycol significantly increased the rate and degree of surfactant material adsorbed to the surface in all three assays. Hyaluronan was effective in lower concentrations (20-fold) than polyethylene glycol and, unlike polyethylene glycol, hyaluronan did not increase apparent aggregation of surfactant. Surfactant adsorption in the presence of serum was also enhanced by both polymers regardless of whether hyaluronan or polyethylene glycol was included with serum in the subphase or added to the surfactant applied to the surface. Therefore, endogenous polymers in the alveolar subphase, or exogenous polymers added to surfactant used as therapy, may both be important for reducing inactivation of surfactant that occurs with various lung injuries.

  16. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.