WorldWideScience

Sample records for surfactant phospholipid composition

  1. Mixed micelle formation between amino acid-based surfactants and phospholipids.

    Science.gov (United States)

    Faustino, Célia M C; Calado, António R T; Garcia-Rio, Luís

    2011-07-15

    The mixed micelle formation in aqueous solutions between an anionic gemini surfactant derived from the amino acid cystine (C(8)Cys)(2), and the phospholipids 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC, a micelle-forming phospholipid) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, a vesicle-forming phospholipid) has been studied by conductivity and the results compared with the ones obtained for the mixed systems with the single-chain surfactant derived from cysteine, C(8)Cys. Phospholipid-surfactant interactions were found to be synergistic in nature and dependent on the type of phospholipid and on surfactant hydrophobicity. Regular solution theory was used to analyse the gemini surfactant-DHPC binary mixtures and the interaction parameter, β(12), has been evaluated, as well as mixed micelle composition. The results have been interpreted in terms of the interplay between reduction of the electrostatic repulsions among the ionic head groups of the surfactants and steric hindrances arising from incorporation of the zwitterionic phospholipids in the mixed micelles.

  2. Maternal Baicalin Treatment Increases Fetal Lung Surfactant Phospholipids in Rats

    Directory of Open Access Journals (Sweden)

    Chung-Ming Chen

    2011-01-01

    Full Text Available Baicalin is a flavonoid compound purified from the medicinal plant Scutellaria baicalensis Georgi and has been reported to stimulate surfactant protein (SP-A gene expression in human lung epithelial cell lines (H441. The aims of this study were to determine whether maternal baicalin treatment could increase lung surfactant production and induce lung maturation in fetal rats. This study was performed with timed pregnant Sprague-Dawley rats. One-day baicalin group mothers were injected intraperitoneally with baicalin (5 mg/kg/day on Day 18 of gestation. Two-day baicalin group mothers were injected intraperitoneally with baicalin (5 mg/kg/day on Days 17 and 18 of gestation. Control group mothers were injected with vehicle alone on Day 18 of gestation. On Day 19 of gestation, fetuses were delivered by cesarean section. Maternal treatment with 2-day baicalin significantly increased saturated phospholipid when compared with control group and total phospholipid in fetal lung tissue when compared with control and 1-day baicalin groups. Antenatal treatment with 2-day baicalin significantly increased maternal growth hormone when compared with control group. Fetal lung SP-A mRNA expression and maternal serum corticosterone levels were comparable among the three experimental groups. Maternal baicalin treatment increases pulmonary surfactant phospholipids of fetal rat lungs and the improvement was associated with increased maternal serum growth hormone. These results suggest that antenatal baicalin treatment might accelerate fetal rat lung maturation.

  3. Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals.

    Science.gov (United States)

    Lang, Carol J; Postle, Anthony D; Orgeig, Sandra; Possmayer, Fred; Bernhard, Wolfgang; Panda, Amiya K; Jürgens, Klaus D; Milsom, William K; Nag, Kaushik; Daniels, Christopher B

    2005-11-01

    Pulmonary surfactant, a complex mixture of lipids and proteins, lowers the surface tension in terminal air spaces and is crucial for lung function. Within an animal species, surfactant composition can be influenced by development, disease, respiratory rate, and/or body temperature. Here, we analyzed the composition of surfactant in three heterothermic mammals (dunnart, bat, squirrel), displaying different torpor patterns, to determine: 1) whether increases in surfactant cholesterol (Chol) and phospholipid (PL) saturation occur during long-term torpor in squirrels, as in bats and dunnarts; 2) whether surfactant proteins change during torpor; and 3) whether PL molecular species (molsp) composition is altered. In addition, we analyzed the molsp composition of a further nine mammals (including placental/marsupial and hetero-/homeothermic contrasts) to determine whether phylogeny or thermal behavior determines molsp composition in mammals. We discovered that like bats and dunnarts, surfactant Chol increases during torpor in squirrels. However, changes in PL saturation during torpor may not be universal. Torpor was accompanied by a decrease in surfactant protein A in dunnarts and squirrels, but not in bats, whereas surfactant protein B did not change in any species. Phosphatidylcholine (PC)16:0/16:0 is highly variable between mammals and is not the major PL in the wombat, dunnart, shrew, or Tasmanian devil. An inverse relationship exists between PC16:0/16:0 and two of the major fluidizing components, PC16:0/16:1 and PC16:0/14:0. The PL molsp profile of an animal species is not determined by phylogeny or thermal behavior. We conclude that there is no single PL molsp composition that functions optimally in all mammals; rather, surfactant from each animal is unique and tailored to the biology of that animal.

  4. [Liposome phospholipid substitution and lung function in surfactant deprived rats].

    Science.gov (United States)

    Obladen, M

    1985-01-01

    In vivo activity of an artificial surfactant was studied in surfactant depleted rats. After tenfold alveolar lavage, PaO2, tidal volume, and compliance of the respiratory system fell to one third of initial value. Substitution of large unilamellar vesicles containing 90% Dipalmitoylphosphatidylcholine and 10% unsaturated phosphatidylglycerol largely restored oxygenation and lung mechanics in most animals. Complete normalization with weaning from the ventilator, however, was achieved neither with liposomes nor with natural surfactant concentrate.

  5. Influence of Long-Term Inhaled Glucocorticoids on the Lung Surfactant Phospholipid Levels in Rats

    Directory of Open Access Journals (Sweden)

    A.A. Seiliev

    2016-09-01

    Full Text Available Background: Damage to lung surfactant, which is responsible for the lung local immunity, may contribute to the development of bronchial inflammation in patients with bronchial asthma. Different doses of glucocorticoids produce a stimulating or inhibiting effect on the synthesis of the surfactant protein (SP-A mRNA. Lung surfactant disorders may negatively influence bronchial homeostasis and aggravate the condition of patients with bronchial asthma and COPD. The objective of this study was to evaluate the influence of long-term inhaled corticosteroids on the phospholipid levels of the lung surfactant in rats. Methods and Results: Inhalations of prednisolone hemisuccinate (PH were given to white non-pedigree rats weighing 180-200g at a dose of 0.3mg/kg daily for 30 days. Already by the end of the first study period (10 days, lung surfactant phospholipid levels were found to decrease significantly from 1.35±0.060mg to 1.02±0.045mg (P<0.001. The decrease was further recorded at Day 20 and Day 30 of the inhalation period: down to 0.94±0.042 mg (P<0.001 and 1.04±0.047mg (P<0.01, respectively. The phospholipid content continued to decrease after termination of inhalations down to 0.80±0.036mg (P<0.001 and 0.63±0.028mg (P<0.001 at Day 40 and 50 of the experiment. By Day 60 of the experiment (30 days after termination of PH, the phospholipid content in the lung surfactant was restored to the baseline level of 1.29±0.058mg. Conclusion: The content of lung surfactant was found to decrease significantly as a result of long-term ICS treatment, which may have a negative effect for chronic lung diseases.

  6. Model Lung Surfactant Films: Why Composition Matters

    Energy Technology Data Exchange (ETDEWEB)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf; DeWolf, Christine E.

    2016-10-18

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

  7. Production Technology and Physicochemical Properties of Composition Containing Surfactant Proteins

    Directory of Open Access Journals (Sweden)

    Valery V. Novochadov

    2016-06-01

    Full Text Available The article describes a production method of substance containing great amount of phospolipids (up to 36 % and surfactant proteins (up to 2 % in terms of lyophilisate composition. Basic physical and chemical characteristics of the substance (density, viscosity, surface tension and the coefficient of sliding friction indicate a high lubricant capacity of the derived product. These properties are kept when mixed with native human synovial fluid in the ratio of 1 to 9 inclusive. The obtained data allows to consider the derived composition, containing surfactant proteins and phospholipids, a variety of bionic lubricant suitable for testing as a potential equivalent of synovial fluid which can be used in traumatology and orthopedics, a cosmetic component or agent which increases the stability of the cell suspension during culturing in bioreactors.

  8. The Collapse of Monolayers Containing Pulmonary Surfactant Phospholipids Is Kinetically Determined

    OpenAIRE

    Yan, Wenfei; Piknova, Barbora; Hall, Stephen B.

    2005-01-01

    Prior studies have shown that during and after slow compressions of monomolecular films containing the complete set of purified phospholipids (PPL) from calf surfactant at an air/water interface, surface pressures (π) reach and sustain values that are remarkably high relative to expectations from simple systems with model lipids. Microscopy shows that the liquid-expanded, tilted-condensed, and collapsed phases are present together in the PPL films between 45 and 65 mN/m. The Gibbs phase rule ...

  9. [Tracheal phospholipid composition and respiratory distress syndrome of the newborn].

    Science.gov (United States)

    Obladen, M

    1979-03-01

    Tracheal or pharyngeal aspirates were collected in 50 newborn infants with and without respiratory distress syndrome (RDS). After lipid extraction the phospholipids were analyzed with 2-dimensional thin layer chromatography. Surface-active are lecithin (PC), phosphatidylglycerol (PG), and phosphatidylinositol (PI). Newborn infants with RDS always have a complete lack of PG, which makes up to 11% of phospholipid-phosphors in mature newborns. In all infants with and without RDS, a sharp increase of PC occurs in the lung effluent after birth. The recovery from RDS is characterized by marked changes of PI: this phospholipid rises up to twice its initial value if the infants survive. The PI-increase parallels the clinical improvement and reaches its maximum usually on the 5th day of life. At the time of the PI-peak, the infants' surfactant function is sufficient to maintain alveolar stability with spontaneous breathing. In infants dying from RDS the PI-increase was not observed.

  10. Molecular dynamics of dibenz[a,h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers.

    Science.gov (United States)

    Padilla-Chavarría, Helmut I; Guizado, Teobaldo R C; Pimentel, Andre S

    2015-08-28

    The interaction of dibenz[a,h]anthracene and its ultimate carcinogenic 3,4-diol-1,2-epoxide with lung surfactant phospholipid bilayers was successfully performed using molecular dynamics. The DPPC/DPPG/cholesterol bilayer (64 : 64 : 2) was used as the lung surfactant phospholipid bilayer model and compared with the DPPC bilayer as a reference. Dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide were inserted in water and lipid phases in order to investigate their interactions with the lung surfactant phospholipid bilayers. The radial distribution function between two P atoms in polar heads shows that the 3,4-diol-1,2-epoxide affects the order between the P atoms in the DPPC/DPPG/cholesterol model more than dibenz[a,h]anthracene, which is a consequence of its preference for the polar heads and dibenz[a,h]anthracene prefers to be located in the hydrocarbon chain of the phospholipid bilayers. Dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide may form aggregates in water and lipid phases, and in the water-lipid interface. The implications for the possible effect of dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide in the lung surfactant phospholipid bilayers are discussed.

  11. Effect of vasoactive intestinal peptide on pulmonary surfactants phospholipid synthesis in lung explants

    Institute of Scientific and Technical Information of China (English)

    Lian LI; Zi-qiang LUO; Fu-wen ZHOU; Dan-dan FENG; Cha-xiang GUAN; Chang-qing ZHANG; Xiu-hong SUN

    2004-01-01

    AIM: To investigate the effect of vasoactive intestinal peptide (VIP) on pulmonary surfactants (PS) phospholipid synthesis in cultured lung explants. METHODS: Lung explants were cultured with serum-free medium, [methyl-3H]choline incorporation, total phospholipid, phosphatidylcholine, activity of choline-phosphate cytidylyltransferase (CCT) and CCTα mRNA level in lung explants were determined. RESULTS: (1) VIP (10-10-10-7 mol/L) for 16 h promoted [methyl-3H]choline incorporation in dose dependence and VIP (10-8 mol/L) for 2 h-16 h promoted [methylz3H]choline incorporation in time dependence. (2) VIP (10-8 mol/L) enhanced the contents of total phospholipidsand phosphatidylcholine in lung explants. (3) VIP (10-10-10-7 mol/L) elevated microsomal CCT activity of lung explants in dose dependence. (4) VIP (10-8 mol/L) increased expression of CCTα mRNA in lung explants and alveolar type Ⅱ cells (ATII). (5) [D-P-Cl-Phe(6)-Leu(17)]-VIP (10-6 mol/L), a VIP receptors antagonist, abolished the increase of [3H]choline incorporation, microsomal CCT activity and CCTα mRNA level induced by VIP (10-8 mol/L) in lung explants. CONCLUSION: VIP could enhance synthesis of phosphatidylcholine, the major component of pulmonary surfactants by enhancing microsomal CCT activity and CCTα mRNA level via VIP receptormediated pathway.

  12. Transient exposure of pulmonary surfactant to hyaluronan promotes structural and compositional transformations into a highly active state.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Cruz, Antonio; Richter, Ralf P; Taeusch, H William; Pérez-Gil, Jesús

    2013-10-11

    Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations.

  13. Pulmonary toxicity of trichloroethylene: induction of changes in surfactant phospholipids and phospholipase A2 activity in the mouse lung.

    Science.gov (United States)

    Scott, J E; Forkert, P G; Oulton, M; Rasmusson, M G; Temple, S; Fraser, M O; Whitefield, S

    1988-08-01

    Trichloroethylene (TCE) is a common organic solvent in use as a dry cleaning agent as well as an inhalant anesthetic. Nevertheless the effects of this material on the pulmonary surfactant which prevents alveolar collapse at maximal expiration is not known. Therefore, we have examined the effect of TCE on the intra- and extracellular surfactant pools and the activity of phospholipase A2, an enzyme which controls the remodeling of phosphatidylcholine to dipalmitoylphosphatidylcholine, the primary constituent of the pulmonary surfactant. Male CD-1 mice were treated ip with 2500 or 3000 mg/kg TCE. Twenty-four hours later mice were anesthetized and the lungs lavaged. Mice were then killed, the lungs perfused and excised, and subcellular fractions including lamellar bodies prepared. Some lungs were prepared for ultrastructural examination. Phospholipase A2 was assayed in all subcellular fractions. Phospholipid was assayed in the lavage (extracellular surfactant) and the lamellar bodies (intracellular surfactant). TCE (2500 mg/kg) caused selective exfoliation of Clara cells. However, only the dose of 3000 mg/kg TCE produced a significant decrease in the intracellular surfactant phospholipid. Minimal changes occurred in the phospholipid profiles. Phospholipase A2 specific activity was significantly decreased at both dosages within the lung microsomal fraction. In addition after treatment with 3000 mg/kg TCE the enzyme activity in the lamellar body fraction was significantly increased. These data suggest that inhalation of TCE may damage the enzymes which are responsible for synthesizing the pulmonary surfactant resulting in lower amounts of surfactant being stored and available for secretion into the alveolus.

  14. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.

    Science.gov (United States)

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar

    2012-08-14

    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  15. Erythrocyte phospholipid and polyunsaturated fatty acid composition in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Philippe Koehrer

    Full Text Available Long chain polyunsaturated fatty acids (LCPUFAs including docosahexaenoic acid and arachidonic acid are suspected to play a key role in the pathogenesis of diabetes. LCPUFAs are known to be preferentially concentrated in specific phospholipids termed as plasmalogens. This study was aimed to highlight potential changes in the metabolism of phospholipids, and particularly plasmalogens, and LCPUFAs at various stages of diabetic retinopathy in humans.We performed lipidomic analyses on red blood cell membranes from controls and mainly type 2 diabetes mellitus patients with or without retinopathy. The fatty acid composition of erythrocytes was determined by gas chromatography and the phospholipid structure was determined by liquid chromatography equipped with an electrospray ionisation source and coupled with a tandem mass spectrometer (LC-ESI-MS/MS. A significant decrease in levels of docosahexaenoic acid and arachidonic acid in erythrocytes of diabetic patients with or without retinopathy was observed. The origin of this decrease was a loss of phosphatidyl-ethanolamine phospholipids esterified with these LCPUFAs. In diabetic patients without retinopathy, this change was balanced by an increase in the levels of several phosphatidyl-choline species. No influence of diabetes nor of diabetic retinopathy was observed on the concentrations of plasmalogen-type phospholipids.Diabetes and diabetic retinopathy were associated with a reduction of erythrocyte LCPUFAs in phosphatidyl-ethanolamines. The increase of the amounts of phosphatidyl-choline species in erythrocytes of diabetic patients without diabetic retinopathy might be a compensatory mechanism for the loss of LC-PUFA-rich phosphatidyl-ethanolamines.

  16. Thermally stable surfactants and compositions and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Woodridge, IL)

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  17. The Effect of Phospholipids (Surfactant) on Adhesion and Biomechanical Properties of Tendon: A Rat Achilles Tendon Repair Model.

    Science.gov (United States)

    Dabak, T Kursat; Sertkaya, Omer; Acar, Nuray; Donmez, B Ozgur; Ustunel, Ismail

    2015-01-01

    Adhesion of the tendon is a major challenge for the orthopedic surgeon during tendon repair. Manipulation of biological environment is one of the concepts to prevent adhesion. Lots of biochemicals have been studied for this purpose. We aimed to determine the effect of phospholipids on adhesion and biomechanical properties of tendon in an animal tendon repair model. Seventy-two Wistar rats were divided into 4 groups. Achilles tendons of rats were cut and repaired. Phospholipids were applied at two different dosages. Tendon adhesion was determined histopathologically and biomechanical test was performed. At macroscopic evaluation of adhesion, there are statistically significant differences between multiple-dose phospholipid injection group and Control group and also hyaluronic acid group and Control group (p 0.008). Ultimate strength was highest at hyaluronic acid injection group and lowest at multiple-dose phospholipid injection group. Single-dose phospholipids (surfactant) application may have a beneficial effect on the tendon adhesion. Although multiple applications of phospholipids seem the most effective regime to reduce the tendon adhesion among groups, it deteriorated the biomechanical properties of tendon.

  18. Time resolved studies of interfacial reactions of ozone with pulmonary phospholipid surfactants using field induced droplet ionization mass spectrometry.

    Science.gov (United States)

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-07-29

    Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when

  19. Correlations of Mechanical Stability, Morphology, Pulmonary Surfactant, and Phospholipid Content in the Developing Lamb Lung*

    Science.gov (United States)

    Brumley, George W.; Chernick, Victor; Hodson, W. Alan; Normand, Colin; Fenner, Axel; Avery, Mary Ellen

    1967-01-01

    Pressure-volume characteristics and surface tension measurements of the lamb of 120 to 130 days gestational age were typical of the mature lung in the upper lobes and the immature lung in the lower lobes. By term both upper and lower lobes had findings characteristic of the mature animal. Phospholipid concentration per milligram DNA and per cent saturated fatty acids on pulmonary phosphatidyl choline were relatively constant from 60 to 120 days gestational age; thereafter there was a significant increase in both measurements. These changes usually coincided with an increase in osmiophilic inclusion bodies in the large alveolar cell. A concentration of disaturated phosphatidyl choline per milligram DNA in excess of 0.170 mg per mg was associated with a minimal surface tension below 13 dynes per cm (p < 0.001). Newborn animal lungs contained over 3 times this critical concentration, whereas adult lungs contained 1.5 times this value. The excess disaturated phosphatidyl choline per milligram DNA may represent a reservoir of pulmonary surfactant. Images PMID:6025487

  20. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    Training improves insulin sensitivity, which in turn may affect performance by modulation of fuel availability. Insulin action, in turn, has been linked to specific patterns of muscle structural lipids in skeletal muscle. This study investigated whether regular exercise training exerts an effect...... on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P

  1. Dynamic properties of cationic diacyl-glycerol-arginine-based surfactant/phospholipid mixtures at the air/water interface.

    Science.gov (United States)

    Lozano, Neus; Pinazo, Aurora; Pérez, Lourdes; Pons, Ramon

    2010-02-16

    In this Article, we study the binary surface interactions of 1,2-dimyristoyl-rac-glycero-3-O-(N(alpha)-acetyl-L-arginine) hydrochloride (1414RAc) with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) on 0.1 M sodium chloride solutions. 1414RAc is a novel monocationic surfactant that has potential applications as an antimicrobial agent, is biodegradable, and shows a toxicity activity smaller than that of other commercial cationic surfactants. DPPC phospholipid was used as a model membrane component. The dynamic surface tension of 1414RAc/DPPC aqueous dispersions injected into the saline subphase was followed by tensiometry. The layer formation for the mixtures is always accelerated with respect to DPPC, and surprisingly, the surface tension reduction is faster and reaches lower surface tension values at surfactant concentration below its critical micellar concentration (cmc). Interfacial dilational rheology properties of mixed films spread on the air/water interface were determined by the dynamic oscillation method using a Langmuir trough. The effect of surfactant mole fraction on the rheological parameters of 1414RAc/DPPC mixed monolayers was studied at a relative amplitude of area deformation of 5% and a frequency of 50 mHz. The monolayer viscoelasticity shows a nonideal mixing behavior with predominance of the surfactant properties. This nonideal behavior has been attributed to the prevalence of electrostatic interactions.

  2. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations.

    Science.gov (United States)

    Timmer, Niels; Droge, Steven T J

    2017-02-22

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

  3. Effects of clove oil-phospholipid mixtures on rheology of gum tragacanth - possible application for surfactant action on mucus gel simulants.

    Science.gov (United States)

    Banerjee, R; Puniyani, R R

    2000-01-01

    The present study evaluates the effectiveness of specialised biomaterials consisting of clove oil- phospholipid mixtures as possible substitute surfactants in diseases of altered mucus viscosity by studying their effect on the viscosity of mucus gel simulants in vitro. Test surfactants consisting of phospholipid-clove oil mixtures in the ratio of 1 part of oil to 9 parts of phospholipid were prepared. The phospholipids used were dipalmitoyl phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) and binary mixtures of PC: PE and PC: PG in the ratio of 2 parts of PC to 3 parts of PE or PG. The effects of the phospholipid-clove oil mixtures on the viscosity of mucus gel simulant (MGS: a polymeric gel consisting predominantly of gum tragacanth and simulating respiratory mucus), was studied by application of steady shear rates ranging from 0.512 to 51.2/s in a concentric cylinder viscometer at 37 degrees C. The change in MGS viscosity, after incubation with surfactants, was found to have a non-Newtonian character and to follow the power law model with R2 values >0.8. The addition of clove oil-phospholipid mixtures caused a decrease in the MGS viscosity when compared with the effect of the phospholipid alone at low shear rates in case of PC, PG and PCPG. The combination of PC : PG with clove oil caused ratios of change in MGS viscosity rheology.

  4. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, Inés; Rivas, Luis; Keough, Kevin M W

    2004-01-01

    In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate spontaneou......In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate...

  5. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Kania, Magdalena; Turska-Szewczuk, Anna; Danikiewicz, Witold; Russa, Ryszard; Fuchs, Beate

    2014-01-01

    Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL). The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0), octadecenoyl (18∶1 Δ9) and hexadecanoyl (16∶0). However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE), phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24) and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of these

  6. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Directory of Open Access Journals (Sweden)

    Marta Palusinska-Szysz

    Full Text Available Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL. The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0, octadecenoyl (18∶1 Δ9 and hexadecanoyl (16∶0. However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE, phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24 and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of

  7. Lung surfactant: Function and composition in the context of development and respiratory physiology.

    Science.gov (United States)

    Bernhard, Wolfgang

    2016-11-01

    Lung surfactant is a complex with a unique phospholipid and protein composition. Its specific function is to reduce surface tension at the pulmonary air-liquid interface. The underlying Young-Laplace equation, applying to the surface of any geometrical structure, is the more important the smaller its radii are. It therefore applies to the alveoli and bronchioli of mature lungs, as well as to the tubules and saccules of immature lungs. Surfactant comprises 80% phosphatidylcholine (PC), of which dipalmitoyl-PC, palmitoyl-myristoyl-PC and palmitoyl-palmitoleoyl-PC together are 75%. Anionic phosphatidylglycerol and cholesterol are about 10% each, whereas surfactant proteins SP-A to -D comprise 2-5%. Maturation of the surfactant system is not essentially due to increased synthesis but to decreased turnover of specific components. Molecular differences correlate with resting respiratory rate (RR), where PC16:0/16:0 is the lower the higher RR is. PC16:0/14:0 is increased during alveolar formation, and decreases immune reactions that might impair alveolar development. In rigid bird lungs, with air-capillaries rather than alveoli, and no surface area changes during the respiratory cycle, PC16:0/16:0 is highest and PC16:0/14:0 absent. As there is no need for a surface-associated surfactant reservoir, SP-C is absent in birds as well. Airflow is lowest and particle sedimentation highest in the extrapulmonary air-sacs, rather than in the gas-exchange area. Consequently, SP-A and -D for particle opsonization are absent in bird surfactant. In essence, comparative analysis is consistent with the concept that surfactant is adapted to the physiologic needs of a given vertebrate species at a given developmental stage.

  8. Composition and fatty acid distribution of bovine milk phospholipids from processed milk products.

    Science.gov (United States)

    Gallier, Sophie; Gragson, Derek; Cabral, Charles; Jiménez-Flores, Rafael; Everett, David W

    2010-10-13

    The aim of this work was to assess the accuracy of different extraction methods of phospholipids and to measure the effect that processing has on phospholipid composition. Four methods of extracting phospholipids from buttermilk powder were compared to optimize recovery of sphingomyelin. Using the optimal method, the phospholipid profile of four dairy products (raw milk, raw cream, homogenized and pasteurized milk, and buttermilk powder) was determined. A total lipid extraction by the Folch method followed by a solid-phase extraction using the Bitman method was the most efficient technique to recover milk sphingomyelin. Milk processing (churning, centrifuging, homogenization, spray-drying) affected the profile of milk phospholipids, leading to a loss of sphingomyelin and phosphatidylcholine after centrifugation for cream separation. A corresponding decrease in the saturation content of the raw cream phospholipids and a loss of phosphatidylethanolamine after spray-drying to produce buttermilk powder were also observed.

  9. Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Hansen, Soren; Berzina, Zane

    2013-01-01

    This work comprises a structural and dynamical study of monolayers and bilayers composed of native pulmonary surfactant from mice. Spatially resolved information was obtained using fluorescence (confocal, wide field and two photon excitation) and atomic force microscopy methods. Lipid mass...... spectrometry experiments were also performed in order to obtain relevant information on the lipid composition of this material. Bilayers composed of mice pulmonary surfactant showed coexistence of distinct domains at room temperature, with morphologies and lateral packing resembling the coexistence of liquid...... ordered (lo)/liquid disordered (ld)-like phases reported previously in porcine lung surfactant. Interestingly, the molar ratio of saturated (mostly DPPC)/non-saturated phospholipid species and cholesterol measured in the innate material corresponds with that of a DOPC/DPPC/cholesterol mixture showing lo...

  10. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    Science.gov (United States)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  11. Factors influencing surfactant composition in the newborn infant.

    Science.gov (United States)

    Obladen, M

    1978-07-01

    In order to evaluate the surfactant maturation of the neonate, tracheal aspirates were analyzed in 84 newborn infants with 12h of birth. Using 2-dimensional thin-layer chromatography, 9 different phospholipids were identified. Dynamic surface tension measurements were performed with a modified Wilhelmy balance. Five different groups of infants with typical phospholipid patterns were characterized: i.e., 1. Normal term newborn. 2. RDS in the preterm infant. 3. Acceleration of lung maturity in preterm infants without RDS. 4. Retardation in term infants with RDS. 5. Therapeutic induction of pulmonary maturity in preterm infants following maternal glucocorticoid administration. Mature lung effluent contains high concentrations of phosphatidylcholine (PC) and phsophatidylglycerol (PG). In infants with RDS, PC is low and PG absent. Accelerated lung maturity was observed after chronic prenatal stress, such as prolonged rupture of the membranes, chronic vaginal bleeding, and maternal hepatitis or drug addiction. Retardation of pulmonary maturity was seen in infants with alpha-1-AT-deficiency, maternal diabetes and maternal hypothyroidism. Administration of methylprednisolone to the mother 24 h to 72h before birth induced both the synthesis of PC and PG in the preterm infants, resulting in an almost full-term phospholipid pattern as early as 31 weeks of gestation. The significance of these factors on the pathogenesis of RDS is discussed.

  12. Changes in fatty acid composition of sulfolipid and phospholipids during maturation of alfalfa.

    Science.gov (United States)

    Klopfenstein, W E; Shigley, J W

    1967-07-01

    Lipids were extracted from alfalfa samples collected at intervals over the growing season and were fractionated to yield pure sulfolipid. In the sulfolipid and in a phospholipid fraction the major fatty acids were palmitic, linolenic, and linoleic, of which the palmitic acid increased in proportion during the season while the proportion of linolenic acid dropped. The sulfolipid contained more linolenic acid and less palmitic and linoleic acids than the phospholipids, and had a greater rate of change of fatty acid composition.

  13. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.

    Science.gov (United States)

    Raesch, Simon Sebastian; Tenzer, Stefan; Storck, Wiebke; Rurainski, Alexander; Selzer, Dominik; Ruge, Christian Arnold; Perez-Gil, Jesus; Schaefer, Ulrich Friedrich; Lehr, Claus-Michael

    2015-12-22

    Pulmonary surfactant (PS) constitutes the first line of host defense in the deep lung. Because of its high content of phospholipids and surfactant specific proteins, the interaction of inhaled nanoparticles (NPs) with the pulmonary surfactant layer is likely to form a corona that is different to the one formed in plasma. Here we present a detailed lipidomic and proteomic analysis of NP corona formation using native porcine surfactant as a model. We analyzed the adsorbed biomolecules in the corona of three NP with different surface properties (PEG-, PLGA-, and Lipid-NP) after incubation with native porcine surfactant. Using label-free shotgun analysis for protein and LC-MS for lipid analysis, we quantitatively determined the corona composition. Our results show a conserved lipid composition in the coronas of all investigated NPs regardless of their surface properties, with only hydrophilic PEG-NPs adsorbing fewer lipids in total. In contrast, the analyzed NP displayed a marked difference in the protein corona, consisting of up to 417 different proteins. Among the proteins showing significant differences between the NP coronas, there was a striking prevalence of molecules with a notoriously high lipid and surface binding, such as, e.g., SP-A, SP-D, DMBT1. Our data indicate that the selective adsorption of proteins mediates the relatively similar lipid pattern in the coronas of different NPs. On the basis of our lipidomic and proteomic analysis, we provide a detailed set of quantitative data on the composition of the surfactant corona formed upon NP inhalation, which is unique and markedly different to the plasma corona.

  14. Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice.

    Science.gov (United States)

    Bernardino de la Serna, Jorge; Hansen, Soren; Berzina, Zane; Simonsen, Adam C; Hannibal-Bach, Hans K; Knudsen, Jens; Ejsing, Christer S; Bagatolli, Luis A

    2013-11-01

    This work comprises a structural and dynamical study of monolayers and bilayers composed of native pulmonary surfactant from mice. Spatially resolved information was obtained using fluorescence (confocal, wide field and two photon excitation) and atomic force microscopy methods. Lipid mass spectrometry experiments were also performed in order to obtain relevant information on the lipid composition of this material. Bilayers composed of mice pulmonary surfactant showed coexistence of distinct domains at room temperature, with morphologies and lateral packing resembling the coexistence of liquid ordered (lo)/liquid disordered (ld)-like phases reported previously in porcine lung surfactant. Interestingly, the molar ratio of saturated (mostly DPPC)/non-saturated phospholipid species and cholesterol measured in the innate material corresponds with that of a DOPC/DPPC/cholesterol mixture showing lo/ld phase coexistence at a similar temperature. This suggests that at quasi-equilibrium conditions, key lipid classes in this complex biological material are still able to produce the same scaffold observed in relevant but simpler model lipid mixtures. Also, robust structural and dynamical similarities between mono- and bi-layers composed of mice pulmonary surfactant were observed when the monolayers reach a surface pressure of 30mN/m. This value is in line with theoretically predicted and recently measured surface pressures, where the monolayer-bilayer equivalence occurs in samples composed of single phospholipids. Finally, squeezed out material attached to pulmonary surfactant monolayers was observed at surface pressures near the beginning of the monolayer reversible exclusion plateau (~40mN/m). Under these conditions this material adopts elongated tubular shapes and displays ordered lateral packing as indicated by spatially resolved LAURDAN GP measurements.

  15. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  16. Study on Phospholipid Composition of Erythrocyte Membrane in Hypophosphatemic Cows

    Institute of Scientific and Technical Information of China (English)

    SHI Fa-qing; XUAN Da-wei; XU Shi-Wen; WANG Zhen-yong

    2002-01-01

    The phospholipid constituents of the erythrocyte membrane of cows in hypophosophorus were detected with the field cases and the group comparison. The cows were divided into three groups: the hemoglobinuria group (HN), the hypophosphatemia group (HP) and the control group (CK). The content of the phospholipid constituent in HN and HP obviously changed: phosphatidylethaanolamine (PE) content in HN was significantly lower than that in HP and CK; but sphingomyline (SM) and phosphatidycholine (PC)+ phosphatidylserine (PS) content in HN were significantly higher than that in the two other groups; in comparison between HP and CK, PC + PS content was lower and SM content was higher in HP; significant positive correlation and negative correlation were observed between serum phosphorus and PE content, serum phosphorus and SM content respectively.

  17. Effect of lead on lipid peroxidation, phospholipids composition, and methylation in erythrocyte of human.

    Science.gov (United States)

    Shafiq-ur-Rehman

    2013-09-01

    Lead (Pb) is one of the most abundant heavy metals on earth considered as number one environmental persistent toxin and health hazard affecting millions of people in all age groups. After entering bloodstream, 99% of Pb is accumulated in erythrocytes and causes poisoning. Toxic Pb effects on erythrocytes membrane's composition of phosphatidyl serine (PS), phosphatidyl ethanolamine (PE), phosphatidyl choline (PC), and sphingomyelin (SM), and phospholipids transmethylation were determined. Lipid peroxidation in Pb-exposed erythrocytes was evaluated as malondialdehyde (MDA) formation in presence of Fe and vitamin E to understand severity of Pb toxicity and its mitigation. Pb (0.5-5.0 μM) degraded PS (12 to 31%, P phospholipids in membranes (34, 41, and 50%, respectively, with 0.5, 2.5, and 5.0 μM). Pb-induced dose-related MDA production (P phospholipids, inhibition of transmethylation, and exasperated phospholipid peroxidative damage are the active phenomena of Pb toxicity in erythrocytes.

  18. Composition and metabolism of phospholipids of Fasciola hepatica, the common liver fluk

    NARCIS (Netherlands)

    Oldenborg, V.; Vugt, F. van; Golde, L.M.G. van

    1975-01-01

    1. 1. The phospholipid composition of Fasciola hepatica, the common liver fluke, was compared to that of the liver of the host animals (rats and cattle). Considerable differences were found: monoacyl-sn-glycero-3-phosphorylcholine, hardly detectable in the liver, was found in significant amounts in

  19. Composition and metabolism of phospholipids of Fasciola hepatica, the common liver fluk

    NARCIS (Netherlands)

    Oldenborg, V.; Vugt, F. van; Golde, L.M.G. van

    1. 1. The phospholipid composition of Fasciola hepatica, the common liver fluke, was compared to that of the liver of the host animals (rats and cattle). Considerable differences were found: monoacyl-sn-glycero-3-phosphorylcholine, hardly detectable in the liver, was found in significant amounts in

  20. Composition and metabolism of phospholipids of Fasciola hepatica, the common liver fluk

    NARCIS (Netherlands)

    Oldenborg, V.; Vugt, F. van; Golde, L.M.G. van

    1975-01-01

    1. 1. The phospholipid composition of Fasciola hepatica, the common liver fluke, was compared to that of the liver of the host animals (rats and cattle). Considerable differences were found: monoacyl-sn-glycero-3-phosphorylcholine, hardly detectable in the liver, was found in significant amounts in

  1. Formation of oil-in-water emulsions from natural emulsifiers using spontaneous emulsification: sunflower phospholipids.

    Science.gov (United States)

    Komaiko, Jennifer; Sastrosubroto, Ashtri; McClements, David Julian

    2015-11-18

    This study examined the possibility of producing oil-in-water emulsions using a natural surfactant (sunflower phospholipids) and a low-energy method (spontaneous emulsification). Spontaneous emulsification was carried out by titrating an organic phase (oil and phospholipid) into an aqueous phase with continuous stirring. The influence of phospholipid composition, surfactant-to-oil ratio (SOR), initial phospholipids location, storage time, phospholipid type, and preparation method was tested. The initial droplet size depended on the nature of the phospholipid used, which was attributed to differences in phospholipid composition. Droplet size decreased with increasing SOR and was smallest when the phospholipid was fully dissolved in the organic phase rather than the aqueous phase. The droplets formed using spontaneous emulsification were relatively large (d > 10 μm), and so the emulsions were unstable to gravitational separation. At low SORs (0.1 and 0.5), emulsions produced with phospholipids had a smaller particle diameter than those produced with a synthetic surfactant (Tween 80), but at a higher SOR (1.0), this trend was reversed. High-energy methods (microfluidization and sonication) formed significantly smaller droplets (d < 10 μm) than spontaneous emulsification. The results from this study show that low-energy methods could be utilized with natural surfactants for applications for which fine droplets are not essential.

  2. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  3. Effect of different phospholipid-cholesterol membrane compositions on liposome-mediated formation of calcium phosphates.

    Science.gov (United States)

    Skrtic, D; Eanes, E D

    1992-03-01

    The present report compares the effects of different membrane phospholipid (PL)-cholesterol compositions on the kinetics of liposome-mediated formation of calcium phosphates from metastable solutions (2.25 mM CaCl2; 1.5 mM KH2PO4) at 22 degrees C, pH 7.4 and 240 mOsm. In most experiments, the liposomes were composed of 7:2:X mixtures of phosphatidylcholine (PC), neutral or acidic phospholipids, and cholesterol (Chol, X = 0, 10, 35, or 50 mol%). The neutral phospholipids (NPL) examined, in addition to PC, were phosphatidylethanolamine (PE) and sphingomyelin (Sph), and the acidic phospholipids (APL) examined were dicetylphosphate (DCP), dioleolylphosphatidylglycerol (DOPG), dioleolylphosphatidic acid (DOPA), phosphatidylserine (PS) and phosphatidylinositol (PI). The 7:2:X liposomes did not initiate mineralization in metasable external solutions per se or, with the exception of DOPA, show extensive Ca-PL binding. However, solution Ca2+ losses due to precipitation occurred when the liposomes were encapsulated with 50 mM KH2PO4 and made permeable to external Ca2+ with X-537A. The extent of these Ca2+ losses was sensitive to both the phospholipid and Chol makeup of the membrane. Moderate-to-extensive intraliposomal precipitation occurred in all 7PC:2APL and 7PC:2NPL liposomes containing 0 or 10 mol% Chol. In contrast, at 50 mol% Chol, mineralization inside all liposomes was negligible. The only significant discriminating effect on internal mineralization among the different phospholipids was observed at 35 mol% Chol, where mineral accumulations ranged from negligible to moderate. At 0 or 10 mol% Chol, extraliposomal precipitation was extensive in all but DOPA- and PS-containing liposomes.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women

    Directory of Open Access Journals (Sweden)

    Karla A. Bascuñán

    2014-11-01

    Full Text Available Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA, which are critical nutrients during pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA in this period. We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. Eighty healthy pregnant women (20–36 years old in the 3rd–6th month of pregnancy were included in the study. Dietary assessment was done applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. Fatty acids of erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat, low in mono- and PUFA, high in n-6 PUFA (linoleic acid and low in n-3 PUFA (alpha-linolenic acid and DHA, with imbalance in the n-6/n-3 PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pregnant women showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low DHA content of erythrocyte phospholipids. Imbalance between n-6/n-3 PUFA could negatively affect fetal development. New strategies are necessary to improve n-3 PUFA intake throughout pregnancy and breast feeding periods. Furthermore, it is necessary to develop dietary interventions to improve the quality of consumed foods with particular emphasis on n-3 PUFA.

  5. Multilayered composite microgels synthesized by surfactant-free seeded polymerization.

    Science.gov (United States)

    Suzuki, Daisuke; Yamagata, Tomoyo; Murai, Masaki

    2013-08-20

    We report on a simple and rapid method to produce multilayered composite microgels. Thermosensitive microgels were synthesized by aqueous free radical precipitation polymerization using N-isopropylacrylamide (NIPAm) as a monomer. Using the microgels as cores, surfactant-free seeded polymerization of an oil-soluble monomer, glycidyl methacrylate (GMA), was carried out at 70 °C, where the microgels were highly deswollen in water. All of the oil-soluble monomers were polymerized, and the resultant polymers were attached on the pre-existing microgel cores, resulting in hard shell formation. It is worth mentioning that secondary particles of oil-soluble monomers have never been formed during the polymerization. The composite microgels were characterized by electron microscopy and dynamic light scattering. In particular, X-ray photoelectron spectroscopy (XPS) measurements revealed that the surface of the composite microgels was composed of a hydrogel layer, although microgel cores were covered by polyGMA shell. The mechanism of the trilayered composite microgel formation will be discussed.

  6. Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, I; Cruz, A; Casals, C;

    2001-01-01

    A dansylated form of porcine surfactant-associated protein C (Dns-SP-C), bearing a single dansyl group at its N-terminal end, has been used to characterize the lipid-protein and protein-protein interactions of SP-C reconstituted in phospholipid bilayers, using fluorescence spectroscopy. The fluor......A dansylated form of porcine surfactant-associated protein C (Dns-SP-C), bearing a single dansyl group at its N-terminal end, has been used to characterize the lipid-protein and protein-protein interactions of SP-C reconstituted in phospholipid bilayers, using fluorescence spectroscopy...... of the N-terminal segment of the protein into less polar environments that originate during protein lateral segregation. This suggests that conformation and interactions of the N-terminal segment of SP-C could be important in regulating the lateral distribution of the protein in surfactant bilayers...

  7. Effect of Growth on Fatty Acid Composition of Total Intramuscular Lipid and Phospholipids in Ira Rabbits.

    Science.gov (United States)

    Xue, Shan; He, Zhifei; Lu, Jingzhi; Tao, Xiaoqi; Zheng, Li; Xie, Yuejie; Xiao, Xia; Peng, Rong; Li, Hongjun

    2015-01-01

    The changes in fatty acid composition of total intramuscular lipid and phospholipids were investigated in the longissimus dorsi, left-hind leg muscle, and abdominal muscle of male Ira rabbits. Changes were monitored at 35, 45, 60, 75, and 90 d. Analysis using gas chromatography identified 21 types of fatty acids. Results showed that the intramuscular lipid increased and the intramuscular phospholipids (total intramuscular lipid %) decreased in all muscles with increasing age (pIra rabbits at different ages and muscles. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and arachidonic acid (C20:4) were the major fatty acids, which account to the dynamic changes of the n-6/n-3 value in Ira rabbit meat.

  8. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films

    DEFF Research Database (Denmark)

    Plasencia, Inés; Keough, Kevin M W; Perez-Gil, Jesus

    2005-01-01

    Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is ins......Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP...

  9. Changes of Tumor Necrosis Factor, Surfactant Protein A, and Phospholipids in Bronchoalveolar Lavage Fluid in the Development and Progression of Coal Workers' Pneumoconiosis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To evaluate the alterations of biomarkers in the development and progression of coal workers'pneumoconiosis (CWP). Methods The type and number of cells, and the levels of tumor necrosis factor-alpha (TNF-α),pulmonary surfactant protein, phospholipids and fibronectin in bronchoalveolar lavage fluid were assayed in 14 health active coal miners, 21 coal miners without CWP and 13 miners with CWP of 0/1 to 1/1. Results Compared to active coal miners without CWP (8.23 μg/mL), TNF-α concentration was gradually decreased when dust exposure was stopped (5.90 μg/mL).Elevated surfactant protein A (SP-A) level and phosphatidylglycerol (PG) to phosphatidylinositol (PI) ratio were found in miners actively exposed to coal dust (6528 ng/mL for SP-A and 10. for PG/PI), and both parameters decreased when CWP progressed from CWP (0/1) (3419 μg/mL for SP-A and 5.9 for PG/PI) to CWP (1/1) (1654 μg/mL for SP-A and 5.5 for PG/PI).Conclusion Biomarkers in bronchoalveolar lavage fluid can be used to screen coal miners at high risk of developing coal workers' pneumoconiosis.

  10. [Changes produced by trematode larvae in the phospholipid fatty acid composition of digestive gland of the mollusc Littorina saxatilis].

    Science.gov (United States)

    Arakelova, E S; Chebotareva, M A; Zabelinskiĭ, S A; Shukoliukova, E P

    2007-01-01

    Lipids of the digestive gland of the mollusc Littorina saxatilis from the White and Barents Seas were studied. Changes of its biochemical composition are discussed in the connection with different temperature of the habitat and with infestation with trematode larvae. Comparative analysis of the fatty acid (FA) composition of each of phospholipids in intact molluscs has revealed essential differences. Phosphatidylcholine and monophosphatidylinositol (MPI) FA did not differ in the omega 3/omega 6 ratio, which is due to their tolerance to the temperature factor, whereas more unsaturated phospholipids--phosphatidylethanolamine (FEA), its plasmalogen form (pFEA), and phosphatidylserine--differed 1.5-2 times in the studied molluscs. Predominance of omega 3 acids in the Borents Sea molluscs undoubtedly is due to the lower habitat temperatures, as it provides a higher fluidity of membrane phospholipids. Infestation affected to the greatest degree the quantitative FA composition in pFEA and MPI. At infestation, out of all considered phospholipids, only in MPI there was revealed a threefold decrease of the content of eikosenoic acid C20 : 1, whereas in all other phospholipids, in the contrary, it increased. Monophosphatidylinositols also differed essentially from other phospholipids by the saturated FA amount, which changed the unsaturation index of these phospholipids. Since the functional significance of this minor phospholipid is determined by its participation in the so-called phosphatidylinositol system of the hormonal signal transduction, it seems interesting to elucidate whether an increase of this membrane phospholipid saturation at invasion affects the reflex connection between signals from receptors located in a parasite and enzymatic processes.

  11. The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity

    Directory of Open Access Journals (Sweden)

    O. V. Onopchenko

    2014-02-01

    Full Text Available We used alimentary obesity-induced insulin resistance (IR model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influen­ce of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.

  12. Phospholipid Analyses for Microbial Community Composition in Alpine Acid Rock Drainage

    Science.gov (United States)

    Webster, C. E.; Tapp, J. B.; Pfiffner, S. M.

    2008-12-01

    This project is examining factors of non-anthropogenic acid rock drainage that influence microbial community composition in the Peekaboo Gulch drainage basin (Sawatch Range, Colorado). At this site, natural acid rock drainage outflows from acidic springs (pH=2.6) on Red Mountain. The acid drainage converges with South Fork Lake Creek (pH ~ 7.0, prior to convergence) two miles down gradient. Sediment samples were collected across confluences with gradient of pH, temperature, conductivity and metal concentration. In-situ parameter measurements ranged from 2.3 to 7.9 of pH, 3.8 to 16.6 degree Celsius for temperature, and 34.9 to 1820 for conductivity. Biomass as measured by phospholipids ranged from 280 to 95,900 pmol/g sediment. The only relationship between the in situ parameters and the phospholipid profiles is a weak positive correlation between pH and branched monounsaturated fatty acid methyl esters in that at a pH greater than 5.0 these fatty acid methyl esters were detected. The phospholipid profiles were diverse across the samples. These profiles changed with respect to the spatial relationship within the drainage pattern. The highest alpine samples contained greater relative abundances of monounsaturated fatty acid methyl esters compared to the lower alpine samples. Microbial community profiles shifted at each confluence depending on water source chemistry. Continuing research is needed to determine other biogeochemical factors that may influence these community shifts.

  13. Composition, structure and properties of POPC–triolein mixtures. Evidence of triglyceride domains in phospholipid bilayers

    DEFF Research Database (Denmark)

    Duelund, Lars; Jensen, Grethe Vestergaard; Hannibal-Bach, Hans Kristian

    2013-01-01

    We have in this study investigated the composition, structure and spectroscopical properties of multilamellar vesicles composed of a phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and up to 10mol% of triolein (TO), a triglyceride. We found in agreement with previous result......% TO contained pure TO domains. These observations are consistent with an earlier MD simulation study by us and our co-workers suggesting triglycerides to be located in lens shaped, blister-like domains between the two lipid bilayer leaflets (Khandelia et al. (2010) [26])....

  14. Effects of monovalent and divalent salts on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.

    Science.gov (United States)

    Miller, K J

    1986-09-01

    The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.

  15. Altered heart and kidney phospholipid fatty acid composition are associated with cardiac hypertrophy in hypertensive rats.

    Science.gov (United States)

    Kim, Oh Yoen; Jung, Young-Sang; Cho, Yoonsu; Chung, Ji Hyung; Hwang, Geum-Sook; Shin, Min-Jeong

    2013-08-01

    We examined the association of cardiac hypertrophy or fibrosis with the phospholipid fatty acid (FA) composition of heart and kidney in hypertensive rats. Eight-week-old spontaneously hypertensive rats (SHRs) (n=8) and Wistar Kyoto rats (WKYs, n=8) as a normotensive control, were fed ad libitum for 6 weeks with regular AIN-76 diet. Phospholipid FA compositions in the left ventricle and kidney were measured and histological analyses were performed. Compared with WKYs, SHRs had lower proportions of γ-linolenic acid, α-linolenic acid, eicosadienoic acid, eicosatrienoic acid, dihomo-γ-linoleic acid, docosadienoic acid and nervonic acid in heart, and stearic acid (SA), γ-linolenic acid, and eicosapentaenoic acid (EPA) in kidney. After adjusting for food intake, SHRs still maintained higher proportions of SA, and total saturated FAs in the heart and a lower proportion of eicosapentaenoic acid in the kidney. Additionally, compared with WKYs, SHRs showed larger cardiomyocyte diameters in the left ventricles, indicating cardiac hypertrophy and interstitial fibrosis. Cardiomyocyte diameters also positively correlated with cardiac SA (r=0.550, pcardiac hypertrophy in a hypertensive setting, implicating the pathogenic role of tissue FAs in hypertension and related complications. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Remodeling of phospholipid composition in colon cancer cells by 1α,25(OH)2D3 and its analogs.

    Science.gov (United States)

    Leyssens, Carlien; Marien, Eyra; Verlinden, Lieve; Derua, Rita; Waelkens, Etienne; Swinnen, Johannes V; Verstuyf, Annemieke

    2015-04-01

    Alterations in cellular phospholipid composition are emerging as important traits in the development and progression of cancer. In this study we investigated the effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] and two of its more antiproliferative analogs on the cellular phospholipid composition of various human colon cancer cell lines. Treatment of Caco-2, SW1417 and SW480-ADH cells with 3×10(-8)M 1,25(OH)2D3, CD578 or WU515 evoked significant changes in phospholipid composition, with the analogs being more potent than the natural compound. Observed effects included changes in acyl chain elongation and acyl chain saturation, and were substantially different in the various cell lines. Consistent with the alterations in phospholipid profiles, 1,25(OH)2D3 and its analogs provoked changes in several lipogenic enzymes such as fatty acid synthase (FASN), acetyl-CoA carboxylase (ACACA) and fatty acid elongases (ELOVLs). These effects were also cell line dependent. Taken together these findings indicate that 1,25(OH)2D3 and its analogs have divergent effects on the phospholipid composition of different colon cancer cell lines and warrant further investigation of the effect of 1,25(OH)2D3 and its analogs on lipid metabolism in various subtypes of primary human colon cancers.

  17. Optimization of the process variables of tilianin-loaded composite phospholipid liposomes based on response surface-central composite design and pharmacokinetic study.

    Science.gov (United States)

    Zeng, Cheng; Jiang, Wen; Tan, Meie; Yang, Xiaoyi; He, Chenghui; Huang, Wei; Xing, Jianguo

    2016-03-31

    Tilianin is attracting considerable attention because of its antihypertensive, anti-atherogenic and anticonvulsive efficacy. However, tilianin has poor oral bioavailability. Thus, to improve the oral bioavailability of tilianin, composite phospholipid liposomes were adopted in this work as a novel nanoformulation. The aim was to develop and formulate tilianin composite phospholipid liposomes (TCPLs) through ethanol injection and to apply the response surface-central composite design to optimize the tilianin composite phospholipid liposome formulation. The independent variables were the amount of phospholipids (X1), amount of cholesterol (X2) and weight ratio of phospholipid to drug (X3); the depended variables were particle size (Y1) and encapsulation efficiency (EE) (Y2) of TCPLs. Results indicated that the optimum preparation conditions were as follows: phospholipid amount, 500 mg, cholesterol amount, 50mg and phospholipid/drug ratio, 25. These variables were also the major contributing variables for particle size (101.4 ± 6.1 nm), higher EE (90.28% ± 1.36%), zeta potential (-18.3 ± 2.6 mV) and PDI (0.122 ± 0.027). Subsequently, differential scanning calorimetry techniques were used to investigate the molecular interaction in TCPLs, and the in vitro drug release of tilianin and TCPLs was investigated by the second method of dissolution in the Chinese Pharmacopoeia (Edition 2015). Furthermore, pharmacokinetics in Sprague Dawley rats was evaluated using a rat jugular vein intubation tube. Results demonstrated that the Cmax of TCPLs became 5.7 times higher than that of tilianin solution and that the area under the curve of TCPLs became about 4.6-fold higher than that of tilianin solution. Overall, our results suggested that the prepared tilianin composite phospholipid liposome formulations could be used to improve the bioavailability of tilianin after oral administration.

  18. Effect of surfactants on pressure-sensitivity of CNT filled cement mortar composites

    Science.gov (United States)

    Han, Baoguo; Yu, Xun

    2014-11-01

    Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as surfactants to disperse multi-walled carbon nanotubes (MWNT) in cement mortar and fabricate pressure-sensitive carbon nanotubes filled cement mortar composites. The pressure-sensitivity of cement mortar composites with different concentrations of MWNT and different surfactants was explored under repeated loading and impulsive loading, respectively. Experimental results indicate that the response of the electrical resistance of composites with NaDDBS to external force is more stable and sensitive than that of composites with SDS. Therefore, NaDDBS has higher efficiency than SDS for the dispersion of MWNT in cement mortar, and it is an effective surfactant for fabricating MWNT filled cement mortar composites with superior pressure-sensitivity.

  19. Influence of the fatty acid composition of high-density lipoprotein phospholipids on the cholesterol efflux from cultured fibroblasts.

    Science.gov (United States)

    Esteva, O; Baudet, M F; Lasserre, M; Jacotot, B

    1986-02-12

    The purpose of this work was to determine whether the changes induced by dietary manipulations in the chemical composition of high-density lipoproteins (HDL) (particularly phospholipid fatty acid composition) modified their capacity to promote [3H]cholesterol efflux from cultured fibroblasts. Plasma HDL were obtained from subjects fed for six successive long periods on diets consisting of one predominant fat: peanut oil, corn oil, olive oil, soybean oil, low erucic acid rapeseed oil or milk fats. The [3H]cholesterol efflux from cells in the presence of plasma HDL was studied by means of normal adult human fibroblasts in culture. The [3H]cholesterol efflux from fibroblasts appeared to be independent of the overall composition of HDL and of the degree of saturation of the HDL phospholipid fatty acids, but it was correlated with the phospholipid fatty acid chain length. The [3H]cholesterol efflux from fibroblasts is highly and positively correlated with the sum of the HDL phospholipid C20, C22, C24 fatty acids, and negatively correlated with the sum of the HDL phospholipid C18 fatty acids.

  20. Fish Oil Supplementation in Humans: Effects on Platelet Responses, Phospholipid Composition and Metabolism.

    Science.gov (United States)

    Skeaff, Clark Murray

    Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity

  1. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies

    Directory of Open Access Journals (Sweden)

    Giovanna Contarini

    2013-01-01

    Full Text Available Glycerophospholipids and sphingolipids are quantitatively the most important phospholipids (PLs in milk. They are located on the milk fat globule membrane (MFGM and in other membranous material of the skim milk phase. They include principally phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine, while sphingomyelin is the dominant species of sphingolipids There is considerable evidence that PLs have beneficial health effects, such as regulation of the inflammatory reactions, chemopreventive and chemotherapeutic activity on some types of cancer, and inhibition of the cholesterol absorption. PLs show good emulsifying properties and can be used as a delivery system for liposoluble constituents. Due to the amphiphilic characteristics of these molecules, their extraction, separation and detection are critical points in the analytical approach. The extraction by using chloroform and methanol, followed by the determination by high pressure liquid chromatography (HPLC, coupled with evaporative light scattering (ELSD or mass detector (MS, are the most applied procedures for the PL evaluation. More recently, nuclear magnetic resonance spectrometry (NMR was also used, but despite it demonstrating high sensitivity, it requires more studies to obtain accurate results. This review is focused on milk fat phospholipids; their composition, biological activity, technological properties, and significance in the structure of milk fat. Different analytical methodologies are also discussed.

  2. Effects of temperature and sodium chloride concentration on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.

    Science.gov (United States)

    Miller, K J

    1985-04-01

    The phospholipid headgroup composition and fatty acid composition of a gram-positive halotolerant Planococcus sp. (strain A4a) were examined as a function of growth temperature (5 to 35 degrees C) and NaCl content (0 to 1.5 M) of the growth medium. When the growth temperature was decreased, the relative amount of mono-unsaturated branched-chain fatty acids increased. When Planococcus sp. strain A4a was grown in media containing high NaCl concentrations, the relative amount of the major fatty acid, Ca15:0, increased. The relative amount of anionic phospholipid also increased when the NaCl concentration of the growth medium was increased. The increase in anionic phospholipid content resulted from a decrease in the relative mole percent content of phosphatidylethanolamine and an increase in the relative mole percent content of cardiolipin.

  3. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    Science.gov (United States)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, Pfatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  4. Research on the nanolevel influence of surfactants on structure formation of the hydrated Portland cement compositions

    Directory of Open Access Journals (Sweden)

    Guryanov Alexander

    2016-01-01

    Full Text Available The research of the structure formation process on a nanolevel of the samples of hydrated Portland cement compositions containing the modifying additives has been conducted with the help of small angle neutron scattering method. Carbonate and aluminum alkaline slimes as well as the complex additives containing surfactants were used as additives. The influence of slimes and surfactants on structural parameters change of Portland cement compositions of the average size of the disseminating objects, fractal dimension samples is considered. These Portland cement compositions are shown to be fractal clusters.

  5. Different effects of surfactant proteins B and C - implications for development of synthetic surfactants.

    Science.gov (United States)

    Curstedt, Tore; Johansson, Jan

    2010-06-01

    Treatment of premature newborn rabbits with synthetic surfactants containing a surfactant protein C analogue in a simple phospholipid mixture gives similar tidal volumes as treatment with poractant alfa (Curosurf(R)) but ventilation with a positive end-expiratory pressure (PEEP) is needed for this synthetic surfactant to stabilize the alveoli at end-expiration. The effect on lung gas volumes seems to depend on the structure of the peptide since treatment with a synthetic surfactant containing the 21-residue peptide (LysLeu(4))(4)Lys (KL(4)) gives low lung gas volumes in experiments also performed with PEEP. Surfactant preparations containing both surfactant proteins B and C or their analogues prevent alveolar collapse at end-expiration even if ventilated without PEEP. Treatment of premature newborn rabbits with different natural surfactants indicates that both the lipid composition and the proteins are important in order to stabilize the alveoli at end-expiration. Synthetic surfactants containing two peptides may be able to replace natural surfactants within the near future but more trials need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants.

  6. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... to three groups who received chow with added fish oil (n = 8), vitamin C (n = 8) or no supplement (n = 7). After 3 weeks of feeding, calf muscles on one side were stimulated electrically during anaesthesia causing eccentric contractions. Two days later the white gastrocnemius, a part of the stimulated calf...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0...

  7. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of th

  8. Microporosity of Bicontinuous Polymer Composites: Diffusion of Water and Surfactant

    Science.gov (United States)

    Kuta, K.; Challa, V.; Cheung, M.; Lopina, S.; von Meerwall, E.

    2000-10-01

    We have used the proton NMR pulsed-gradient spin-echo method to study the self-diffusion of water and surfactant in bicontinuous microcomposites formed with methyl methacrylate and hydroxy ethyl methacrylate, crosslinked with ethylene glycol dimethacrylate, in the presence of water containing 10 wt. percent sodium dodecyl sulfate as surfactant. Measurements were made over the full bicontinuous range of water content, (30 to 96 wt. percent) at 50 deg. C at a diffusion time of 12-15 ms. At spin-echo times greater than a few ms the echo of the glassy open-cell network phase was unobservable. The diffusivity spectrum of the mobile fraction is cleanly separable into two components differing by a factor of at least 30, attributable to water and surfactant. We find that the diffusivity of water increases with increasing water content, but that of the surfactant decreases. Measurements of restricted diffusion (non-adherence to Fick's second law) can reveal the size of the diffusionally accessible pores and its distribution, and their degree of interconnection. Corresponding measurements of time-resolved apparent diffusion are in progress.

  9. Influence of Development and Dietary Phospholipid Content and Composition on Intestinal Transcriptome of Atlantic Salmon (Salmo salar)

    Science.gov (United States)

    De Santis, Christian; Taylor, John F.; Martinez-Rubio, Laura; Boltana, Sebastian; Tocher, Douglas R.

    2015-01-01

    The inclusion of intact phospholipids in the diet is essential during larval development and can improve culture performance of many fish species. The effects of supplementation of dietary phospholipid from marine (krill) or plant (soy lecithin) sources were investigated in Atlantic salmon, Salmo salar. First feeding fry were fed diets containing either krill oil or soybean lecithin supplying phospholipid at 2.6%, 3.2%, 3.6% and 4.2% of diet. Fish were sampled at ~ 2.5 g (~1,990°day post fertilization, dpf) and ~10 g (2,850°dpf). By comparison of the intestinal transcriptome in specifically chosen contrasts, it was determined that by 2,850°dpf fish possessed a profile that resembled that of mature and differentiated intestinal cell types with a number of changes specific to glycerophospholipid metabolism. It was previously shown that intact phospholipids and particularly phosphatidylcholine are essential during larval development and that this requirement is associated with the inability of enterocytes in young fry to endogenously synthesize sufficient phospholipid for the efficient export of dietary lipid. In the immature phase (~1,990°dpf), the dietary phospholipid content as well as its class composition impacted on several biochemical and morphological parameters including growth, but these differences were not associated with differences in intestinal transcriptomes. The results of this study have made an important contribution to our understanding of the mechanisms associated with lipid transport and phospholipid biosynthesis in early life stages of fish. PMID:26488165

  10. Effect of pulmonary surfactant and phospholipid hexadecanol tyloxapol on recombinant human-insulin absorption from intratracheally administered dry powders in diabetic rats.

    Science.gov (United States)

    Zheng, Jianheng; Zhang, Ge; Lu, Yang; Fang, Fang; He, Jiake; Li, Ning; Talbi, Amer; Zhang, Ying; Tang, Yue; Zhu, Jiabi; Chen, Xijing

    2010-12-01

    The purpose of the present study was to evaluate the enhancement effect of the natural pulmonary surfactant (PS) or its artificial substitute, phospholipid hexadecanol tyloxapol (PHT) on the bioavailability and hypoglycemic activity of recombinant human insulin (rh-insulin) in a pulmonary delivery system. PS- or PHT-loaded insulin formulation was administered to streptozotocin induced diabetic rats, at doses of 5 U/kg, 10 U/kg and 20 U/kg insulin, respectively. The hypoglycemic effect caused by PS or PHT containing rh-insulin was analyzed and the area above the curves (AAC) of serum glucose levels versus time, the minimum glucose concentration (C(min)), the time to C(min) (T(min)) and the pharmacological availability (PA%) were derived from the serum glucose profiles. Results showed that PS and PHT caused significantly decrease in serum glucose levels. The decrease in plasma glucose levels continued for about 5 h after the nadir. The highest AAC value was obtained when 20 U/kg rh-insulin with PS or PHT as absorption enhancer was administered to rats. AAC(0-360 min) of PS- or PHT-loaded rh-insulin was 2-3 times as much as that without PS or PHT and PA% increased by 1.3-2 fold. Thus, the extent of oral absorption of insulin from PS- or PHT-loaded particles was significantly greater when compared with that without them. In addition, PHT as well as PS did not change the lactate dehydrogenase (LDH) activity, alkaline phosphatase (AKP) activity and N-acetyl-β-D-glucoaminidase (NAG) activity in bronch fluid which are sensitive indicators of acute toxicity to lung cells in bronchoalveolar lavage (BAL). It is concluded that PS and PHT is a promising absorption enhancer for pulmonary delivery systems of large molecule drugs as rh-insulin.

  11. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils

    Institute of Scientific and Technical Information of China (English)

    YAO Huai-ying; LIU Yue-yan; XUE Dong; HUANG Chang-yong

    2006-01-01

    The phospholipid fatty acid (PLFA) composition was analyzed in two red soils experimentally contaminated with copper at different concentrations. The total amounts ofphospholipid fatty acids (PLFAs) in both red soils were significantly correlated with soil microbial biomass C and N, which decreased consistently with increasing levels of copper. The relative quantities of the PLFAs 17:0(10 Me), i 16:0, il 5:0 and 16:1 w5c, decreased with increasing heavy metal concentration, while those of cy 17:0, which is an indicator of gram-negative bacteria, increased. The Shannon index calculated from the PLFA data indicated that Cu addition in the red soils decreased the population diversity of soil microbial communities. Multivariate analysis of PLFA data demonstrated that high levels of Cu application had a significant impact on microbial community structure and there is a threshold metal concentration for PLFA composition. Comparatively higher toxic effect on microbial biomass and community structure were found in the red sandy soil than those in the red clayey soil. The differential effect of Cu addition on microbial communities in the two soils may be due to differences in soil texture and cation exchange capacity.

  12. Fatty acid composition of phospholipids and esterified cholesterol of the blood plasma of rabbit under arginine acute pancreatitis

    Directory of Open Access Journals (Sweden)

    O. O. Hopanenko

    2015-04-01

    Full Text Available The content and fatty acid composition of phospholipids and esterified cholesterol were studied in the blood plasma of rabbits under acute arginine pancreatitis and its correction using linseed oil. It is established that the transport and anti-inflammatory functions of blood plasma deteriorates under acute arginine pancreatitis due to a decrease of the content of polyunsaturated fatty acids in phospholi­pids. The amount of cholesterol esterified with saturated and monounsaturated fatty acids increases in the blood plasma of rabbits. The concentration of phospholipids­ and esterified cholesterol is normali­zed and their fatty acid composition is improved in the lipid composition of the blood plasma of rabbits with acute arginine pancreatitis fed with linseed oil.

  13. Surfactant phospholipids and proteins in lung defence%肺防御系统中的表面磷脂酶和蛋白

    Institute of Scientific and Technical Information of China (English)

    Haagsman HP; Herias V; van Eijk M

    2003-01-01

    Pulmonary surfactant comprises two hydrophobic proteins SP-B and SP-C, which are important forthe adsorption and spreading of the surfactant film at the air-liquid interface. Besides the hydrophobic proteins two other surfactant proteins have been described: SP-A and SP-D. These proteins are members of a family

  14. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  15. Susceptibility to hydrophobic molecules and phospholipid composition in Pasteurella multocida and Actinobacillus lignieresii.

    Science.gov (United States)

    Hart, M E; Champlin, F R

    1988-09-01

    Despite its typically gram-negative cell envelope ultrastructure, Pasteurella multocida is susceptible to the hydrophobic antibiotic novobiocin and is unable to initiate growth on MacConkey agar, a parameter often used to effect is differentiation from other members of the family Pasteurellaceae such as Actinobacillus lignieresii. However, growth on basal medium supplemented with individual selective factors and an agar diffusion assay revealed the bile salts contained in MacConkey agar to be toxic to both organisms. Four P. multocida surface hydrophobicity variants exhibited consistent in vitro susceptibility to the hydrophobic antibiotics novobiocin, rifamycin SV, and actinomycin D as determined by broth dilution. Readily extractable lipid fractions were obtained by chloroform-methanol extraction of freeze-dried whole cells from exponential-phase cultures. No major differences in total cellular readily extractable lipid content were observed among the P. multocida and A. lignieresii strains examined, although hydrophobic P. multocida strains appeared to contain slightly more than did hydrophilic strains. Analytical thin-layer chromatography and quantitation of resolved readily extractable lipid components revealed the major cell envelope phospholipids of both organisms to be phosphatidylethanolamine and phosphatidylglycerol in a molar ratio of approximately 4:1 regardless of cell surface hydrophobicity properties. Similar results were obtained for Pseudomonas aeruginosa, which is notably refractory to hydrophobic molecules. These data support the conclusion that the permeability of the P. multocida cell envelope to structurally unrelated, hydrophobic molecules is not dependent on cell surface hydrophobicity and cannot be explained on the basis of anomalous polar lipid composition.

  16. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-01-01

    Reasonable suspicion has accumulated that inhaled nano-scale particulate matter influences the biophysical function of the pulmonary surfactant system. Hence, it is evident to provide novel insights into the extent and mechanisms of nanoparticle-surfactant interactions in order to facilitate the fabrication of safe nanomedicines suitable for pulmonary applications. Negatively- and positively-charged poly(styrene) nanoparticles (diameters of ~100nm) served as model carriers. Nanoparticles were incubated with several synthetic and naturally-derived pulmonary surfactants to characterize the sensitivity of each preparation to biophysical inactivation. Changes in surface properties (i.e. adsorption and dynamic surface tension behavior) were monitored in a pulsating bubble surfactometer. Both nanoparticle formulations revealed a dose-dependent influence on the biophysical behavior of all investigated pulmonary surfactants. However, the surfactant sensitivity towards inhibition depended on both the carrier type, where negatively-charged nanoparticles showed increased inactivation potency compared to their positively-charged counterparts, and surfactant composition. Among the surfactants tested, synthetic mixtures (i.e. phospholipids, phospholipids supplemented with surfactant protein B, and Venticute®) were more susceptible to surface-activity inhibition as the more complex naturally-derived preparations (i.e. Alveofact® and large surfactant aggregates isolated from rabbit bronchoalveolar lavage fluid). Overall, nanoparticle characteristics and surfactant constitution both influence the extent of biophysical inhibition of pulmonary surfactants.

  17. Composition and physical state of phospholipids in calanoid copepods from India and Norway

    Digital Repository Service at National Institute of Oceanography (India)

    Farkas, T.; Storebakken, T.; Bhosle, N.B.

    the adaptation of membrane lipids with seawater temperatures Phospholipid vesicles obtained from the tropic copepods proved more rigid than those from C finmarchicus, as assessed by diphenylhexatriene fluorescence polarization techniques In each case, there were...

  18. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells

    Directory of Open Access Journals (Sweden)

    Fraga M

    2011-10-01

    Full Text Available Michelle Fraga1,2, Fernanda Bruxel1, Valeska Lizzi Lagranha2,3, Helder Ferreira Teixeira1, Ursula Matte2,31Post Graduation Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, 2Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, 3Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, BrazilBackground: Cationic nanoemulsions have been recently considered as potential delivery systems for nucleic acids. This study reports the influence of phospholipids on the properties of cationic nanoemulsions/DNA plasmid complexes.Methods: Nanoemulsions composed of medium-chain triglycerides, stearylamine, egg lecithin or isolated phospholipids, ie, DSPC, DOPC, DSPE, or DOPE, glycerol, and water were prepared by spontaneous emulsification. Gene transfer to Hep G2 cells was analyzed using real-time polymerase chain reaction.Results: The procedure resulted in monodispersed nanoemulsions with a droplet size and zeta potential of approximately 250 nm and +50 mV, respectively. The complexation of cationic nanoemulsions with DNA plasmid, analyzed by agarose gel retardation assay, was complete when the complex was obtained at a charge ratio of ≥1.0. In these conditions, the complexes were protected from enzymatic degradation by DNase I. The cytotoxicity of the complexes in Hep G2 cells, evaluated by MTT assay, showed that an increasing number of complexes led to progressive toxicity. Higher amounts of reporter DNA were detected for the formulation obtained with the DSPC phospholipid. Complexes containing DSPC and DSPE phospholipids, which have high phase transition temperatures, were less toxic in comparison with the formulations obtained with lecithin, DOPC, and DOPE.Conclusion: The results show the effect of the DNA/nanoemulsion complexes composition on the toxicity and transfection results.Keywords: plasmids, cationic nanoemulsions

  19. Phospholipid composition and organization of cytochrome c oxidase preparations as determined by 31P-nuclear magnetic resonance.

    Science.gov (United States)

    Seelig, A; Seelig, J

    1985-05-14

    The molecular organization as well as the composition of the phospholipids in cytochrome c oxidase preparations (bovine heart) were investigated by 31P-nuclear magnetic resonance. In the so-called 'lipid-rich' preparation the lipids were found to form a fluid bilayer around the enzyme since the 31P-NMR spectrum was characteristic of a fast, axially symmetric motion of the phosphate groups with a chemical shift anisotropy of delta sigma = -45 ppm. In contrast, the 'lipid-depleted' cytochrome c oxidase gave rise to a broader spectrum where the motion of the phospholipids was no longer axially symmetric. Nevertheless, the total width of the spectrum was still considerably narrower than observed for immobilized phospholipids in solid crystals. Both enzyme preparations were dissolved in 1% detergent solution and used for high-resolution 31P-NMR spectroscopy. Narrow lines of about 20 Hz linewidth were obtained for both types of enzyme preparations, and well-resolved resonances could be assigned to cardiolipin, phosphatidylethanolamin and phosphatidylcholine. The major differences between lipid-rich and lipid-depleted cytochrome c oxidase were the absolute amount of phospholipid associated with the protein and the relative contribution of the individual lipid classes to the 31P-NMR spectrum. For lipid-rich cytochrome c oxidase about 130 molecules phospholipid were bound per enzyme (approx. 11 cardiolipins, 54 phosphatidylethanolamines and 64 phosphatidylcholines). For lipid-depleted cytochrome c oxidase only 6-18 lipids were bound per enzyme (1 or 2 cardiolipins, 3-8 phosphatidylethanolamines and 2-8 phosphatidylcholines). In contrast to earlier suggestions that cardiolipin is the only remaining lipid in lipid-depleted cytochrome c oxidase, the 31P-NMR studies demonstrate that all three lipids remain associated with the protein.

  20. Composition and metabolism of phospholipids in Octopus vulgaris and Sepia officinalis hatchlings.

    Science.gov (United States)

    Reis, Diana B; Acosta, Nieves G; Almansa, Eduardo; Tocher, Douglas R; Andrade, José P; Sykes, António V; Rodríguez, Covadonga

    2016-10-01

    The objective of the present study was to characterise the fatty acid (FA) profiles of the major phospholipids, of Octopus vulgaris and Sepia officinalis hatchlings, namely phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE); and to evaluate the capability of both cephalopod species on dietary phospholipid remodelling. Thus, O. vulgaris and S. officinalis hatchlings were in vivo incubated with 0.3μM of L-∝-1-palmitoyl-2-[1-(14)C]arachidonyl-PC or L-∝-1-palmitoyl-2-[1-(14)C]arachidonyl-PE. Octopus and cuttlefish hatchlings phospholipids showed a characteristic FA profiles with PC presenting high contents of 16:0 and 22:6n-3 (DHA); PS having high 18:0, DHA and 20:5n-3 (EPA); PI a high content of saturated FA; and PE showing high contents of DHA and EPA. Interestingly, the highest content of 20:4n-6 (ARA) was found in PE rather than PI. Irrespective of the phospholipid in which [1-(14)C]ARA was initially bound (either PC or PE), the esterification pattern of [1-(14)C]ARA in octopus lipids was similar to that found in their tissues with high esterification of this FA into PE. In contrast, in cuttlefish hatchlings [1-(14)C]ARA was mainly recovered in the same phospholipid that was provided. These results showed a characteristic FA profiles in the major phospholipids of the two species, as well as a contrasting capability to remodel dietary phospholipids, which may suggest a difference in phospholipase activities.

  1. Quantitation of pulmonary surfactant protein SP-B in the absence or presence of phospholipids by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Oviedo, J M; Valiño, F; Plasencia, I

    2001-01-01

    We have developed an enzyme-linked immunosorbent assay (ELISA) that uses polyclonal or monoclonal anti-surfactant protein SP-B antibodies to quantitate purified SP-B in chloroform/methanol and in chloroform/methanol extracts of whole pulmonary surfactant at nanogram levels. This method has been...

  2. Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles.

    Science.gov (United States)

    Martins, Susana; Tho, Ingunn; Souto, Eliana; Ferreira, Domingos; Brandl, Martin

    2012-04-11

    Physicochemical properties of lipid nanoparticles (LN), such as size, size distribution and surface charge, have a major influence both, on in vitro stability and delivery of the incorporated drug in vivo. With the purpose of understanding how these properties are influenced by variations of LN composition (e.g. lipid and surfactant type and concentration) 2(2) factorial designs with centre point were applied for several types of lipids and surfactants in the present study. Tested factors and levels were the type and concentration of lipid (cetyl palmitate, Dynasan 114 and Witepsol E85) at the concentrations of 5%, 10% and 15%, in combination with type and concentration of surfactant (polysorbate 20, 40, 60 and 80 and poloxamer 188 and 407) at concentrations of 0.8%, 1.2% and 2.0%. Responses measured within the design space were the mean size and polydispersity index (photon correlation spectroscopy), content of microparticles (optical single particle sizing), macroscopic appearance, pH and zeta potential on the day of production, 1 and 2 years after production. Multivariate evaluation and modelling were performed starting with a principal component analysis (PCA) and followed by partial least square regression analysis (PLS) to assess both qualitative and quantitative influence of the investigated factors in the LN. Our study showed that both, lipid and surfactant concentration and the type of surfactant are crucial parameters for the particle size of the LN prepared by high pressure homogenisation (HPH). For LN stability during 2 years both, lipid and surfactant types and concentrations were identified as the most relevant parameters. Among the surfactants most suitable for producing LN with small sizes were the polysorbates and the lipid yielding best storage stability was cetyl palmitate. Furthermore, the models allowed the prediction of the mean size of LN that could be achieved with a certain lipid/surfactant combination and concentration. The obtained

  3. Surface tension of compositions of polyhexametyleneguanidine hydrochloride - surfactants

    Directory of Open Access Journals (Sweden)

    S. Kumargaliyeva

    2012-12-01

    Full Text Available We made up songs bactericidal polyhexamethyleneguanidine hydrochloride (metacyde with the surface-active substances - anionic sodium dodecylsulfate, cationic cetylpyridinium bromide, and nonionic Tween-80 and measured the surface tension of water solutions. The study showed that the composition metacyde with surface-active agents have a greater surface activity than the individual components.

  4. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    Science.gov (United States)

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  5. Lipospheres as a Vaccine Carrier System: Effects of Size, Charge, and Phospholipid Composition

    Science.gov (United States)

    1992-01-01

    triglycerides and lecithin ). The surflace activity of’ lipospheres is provided by thle phospholipid component embedded in the particle surface. 390) LIP...131.19;- 21t9 7. Hilleman M: Critical appraisal of emulsified oil adjuvant,, applied to viral vaccinces. Prtigr. -Mcd N tilol I 964 I ; 182. 8. Beebe GW

  6. Composition-insensitive highly viscous wormlike micellar solutions formed in anionic and cationic surfactant systems.

    Science.gov (United States)

    Aramaki, Kenji; Iemoto, Suzuka; Ikeda, Naoaki; Saito, Keitaro

    2010-01-01

    We investigated phase behavior and rheological properties of aqueous micellar phase formed in water/cocoyl glutamate neutralized with triethanol amine (CGT-n)/hexadecyl trimethylammonium salt (CTAB or CTAC) systems, where n is a degree of neutralization. Micellar phase appears in wide composition range with respect to the surfactant mixing fraction in ternary phase diagrams at 25 degrees C. At high mixing fraction of cationic surfactant in the water/CGT-n/CTAB systems, one can observe a highly viscous micellar phase in which worm-like micelles are expected to form. Contrary to conventional systems in which worm-like micelles are formed, the zero-shear viscosity of the micellar solution in the water/CGT-n/CTAB system with n=1.2 increases with the addition of cationic cosurfactant and once decreases after a maximum, then increases again and decreases after the second maximum. At n=1.5 and 2, highly viscous solution is observed in the relatively wide range of surfactant mixing fraction instead of two maxima of the viscosity curve observed at n=1.2. In the case of CTAC instead of CTAB we can observe narrow composition range for the maximum viscosity. Frequency sweep measurements were performed on the highly viscous samples in the water/CGT-1.5/CTAB system. Typical viscoelastic behavior of worm-like micellar solutions is observed; i.e. the curves of storage (G') and loss (G") moduli make a crossover and the data points of G' and G" can be fitted to the Maxwell model. Relaxation time against the mixing fraction of two surfactants behaves similarly to the zero-shear viscosity change, whereas the plateau modulus continuously increases in the plateau region for the zero-shear viscosity curve.

  7. Phospholipid classes and fatty acid composition of ewe’s and goat’s milk

    Directory of Open Access Journals (Sweden)

    Zancada, L.

    2013-06-01

    Full Text Available The content, distribution of individual species, and the fatty acid composition of phospholipids (PL from ewe’s and goat’s milk were analyzed. The binding of enterotoxigenic and uropathogenic Escherichia coli strains to PL and the inhibition of bacterial hemagglutination by PL were addressed using high performance thin-layer chromatography-overlay assays and microtiter plates, respectively. Ovine and caprine milk contained more PL than bovine milk but less than human milk. The profile of individual PL was similar, including sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol in both ovine and caprine milk. Regarding the fatty acid composition, a high content of long-chain fatty acids (more than C16 and unsaturated fatty acids, with C18:1 as the most abundant was found in ovine and caprine milk PL. Ovine milk has longer and less saturated fatty acids while caprine milk has shorter and more saturated ones. Neither the adhesion of any bacterial strains assayed to the individual PL from ovine or caprine milk nor the inhibition of bacterial hemagglutination by PL were observed. These are important constituents of the milk fat globule membrane, but it seems that they do not play a role in the defence of new-borns against bacteria if the results obtained are taken into account.Se ha analizado el contenido, distribución de las especies individuales y la composición en ácidos grasos de los fosfolípidos (FL de la leche de oveja y de cabra. Se ha estudiado también la unión de cepas enterotoxigénicas y uropatogénicas de Escherichia coli a estos compuestos y el efecto de los FL sobre la hemaglutinación provocada por estas bacterias mediante inmunodetección en placa y ensayos en placas multipocillo, respectivamente. La leche de oveja y de cabra contiene más FL que la de vaca, pero menos que la leche humana. El perfil de FL individuales es similar en la leche de oveja y de cabra e incluye

  8. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  9. Dendrimer-surfactant interactions.

    Science.gov (United States)

    Cheng, Yiyun; Zhao, Libo; Li, Tianfu

    2014-04-28

    In this article, we reviewed the interactions between dendrimers and surfactants with particular focus on the interaction mechanisms and physicochemical properties of the yielding dendrimer-surfactant aggregates. In order to provide insight into the behavior of dendrimers in biological systems, the interactions of dendrimers with bio-surfactants such as phospholipids in bulk solutions, in solid-supported bilayers and at the interface of phases or solid-states were discussed. Applications of the dendrimer-surfactant aggregates as templates to guide the synthesis of nanoparticles and in drug or gene delivery were also mentioned.

  10. Fungicide leaching from golf greens: effects of root zone composition and surfactant use.

    Science.gov (United States)

    Larsbo, Mats; Aamlid, Trygve S; Persson, Lave; Jarvis, Nick

    2008-01-01

    Soil water repellency in golf putting greens may induce preferential "finger flow," leading to enhanced leaching of surface applied fungicides. We examined the effects of root zone composition, treatment with a non-ionic surfactant, and the use of the fungicide iprodion or a combination of azoxystrobin and propiconazole on soil water repellency, soil water content distributions, fungicide leaching, and turf quality during 1 yr. Soil water repellency was measured using the water drop penetration time (WDPT) test and tension infiltrometers. Our study was made on a 3-yr-old experimental green seeded with creeping bentgrass (Agrostis stolonifera L.) 'Penn A-4' at Landvik in southeast Norway. The facility consists of 16 lysimeters with two different root zone materials: (i) straight sand (1% gravel, 96% sand, 3% silt and clay, 4 g kg(-1) organic matter) (SS) and (ii) straight sand mixed with garden compost to an organic matter content of 21 g kg(-1) (Green Mix [GM]). Surfactant treatment resulted in 96% lower average WDPTs at 1 cm depth, three times higher water infiltration rates at the soil surface, and reduced spatial variation in soil water contents. Fungicide leaching was close to zero for the GM lysimeters probably due to stronger sorption. Concentrations in the drainage water from SS lysimeters often exceeded surface water guideline values for all three fungicides, but surfactant treatment dramatically reduced fungicide leaching from these lysimeters. In autumn and winter, surfactant-treated plots were more infected with fungal diseases probably because of higher water content in the turfgrass thatch layer.

  11. Development of analytical procedures to study changes in the composition of meat phospholipids caused by induced oxidation.

    Science.gov (United States)

    Cascone, Annunziata; Eerola, Susanna; Ritieni, Alberto; Rizzo, Aldo

    2006-07-07

    Lipid peroxidation affects quality of meat products. The aim of this study was to develop a model system and analytical procedures for evaluating the oxidation level of meat samples, by studying the changes in meat phospholipids (PL) composition and the compounds generated by induced oxidation. Different techniques (liquid-, dry column-, accelerated solvent extraction) were investigated to identify a suitable lipid extraction system for extracting PL from bovine meat and to induce lipid oxidation by using tert-butyl hydroperoxide, 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP) or Fe(2+) and Cu(2+) salts. Accelerated solvent extraction (ASE) gave results not significantly different from the other extraction methods, but offered the advantage of being a rapid and solvent-saving procedure. The method using a silica column proved to be valid in eluting and separating the components of the phospholipidic fraction and the PL standard mixture. The analytical techniques used to analyse oxidation products of PL included GC-FID, HPLC with corona charged aerosol detector (CAD), MDA determination and the spectrophotometric measurement of peroxide levels (PxL). By means of CAD, PL were quantified and their concentration in the lipid extract was 0.98%+/-0.17 (w/w+/-SD, n=10). The oxidation method induced by ABAP proved to be fast and did not produce any artifacts. Three oxidation times were monitored (0, 90 and 180 min). The oxidation levels after 180 min correlated with a significant increase in the peroxide levels PxL (+71%), MDA (+29%) and aldehydes (+75%), whereas a decrease or even total disappearance of some unsaturated fatty acids was observed. The results obtained demonstrate that the model used in this work is useful for studying oxidation of meat phospholipids. Also, the use of the innovative detector CAD proved to be a good complementary technique in the investigation of lipids.

  12. Effect of Surfactants and Manufacturing Methods on the Electrical and Thermal Conductivity of Carbon Nanotube/Silicone Composites

    Directory of Open Access Journals (Sweden)

    Martina Hřibová

    2012-11-01

    Full Text Available The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA, the cationic surfactant cetyltrimethylammonium bromide (CTAB, and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  13. The Optimization of the Oiling Bath Cosmetic Composition Containing Rapeseed Phospholipids and Grapeseed Oil by the Full Factorial Design

    Directory of Open Access Journals (Sweden)

    Michał Górecki

    2015-04-01

    Full Text Available The proper condition of hydrolipid mantle and the stratum corneum intercellular matrix determines effective protection against transepidermal water loss (TEWL. Some chemicals, improper use of cosmetics, poor hygiene, old age and some diseases causes disorder in the mentioned structures and leads to TEWL increase. The aim of this study was to obtain the optimal formulation composition of an oiling bath cosmetic based on rapeseed phospholipids and vegetable oil with high content of polyunsaturated fatty acids. In this work, the composition of oiling bath form was calculated and the degree of oil dispersion after mixing the bath preparation with water was selected as the objective function in the optimizing procedure. The full factorial design 23 in the study was used. The concentrations of rapeseed lecithin ethanol soluble fraction (LESF, alcohol (E and non-ionic emulsifier (P were optimized. Based on the calculations from our results, the optimal composition of oiling bath cosmetic was: L (LESF 5.0 g, E (anhydrous ethanol 20.0 g and P (Polysorbate 85 1.5 g. The optimization procedure used in the study allowed to obtain the oiling bath cosmetic which gives above 60% higher emulsion dispersion degree 5.001 × 10−5 cm−1 compared to the initial formulation composition with the 3.096 × 10−5 cm−1.

  14. Significantly Enhanced Actuation Performance of IPMC by Surfactant-Assisted Processable MWCNT/Nafion Composite

    Institute of Scientific and Technical Information of China (English)

    Qingsong He; Min Yu; Dingshan Yu; Yan Ding; Zhendong Dai

    2013-01-01

    The performance of Ionic Polymer Metal Composite (IPMC) actuator was significantly enhanced by incorporating surfactant-assisted processable Multi-Walled Carbon Nanotubes (MWCNTs) into a Nation solution.Cationic surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) was employed to disperse MWCNTs in the Nation matrix,forming a homogeneous and stable dispersion of nanotubes.The processing did not involve any strong acid treatment and thus effectively preserved the excellent electronic properties associated with MWCNT.The as-obtained MWCNT/Nafion-IPMC actuator was tested in terms of conductivity,bulk and surface morphology,blocking force and electric current.It was shown that the blocking force and the current of the new IPMC are 2.4 times and 1.67 times higher compared with a pure Nation-based IPMC.Moreover,the MWCNT/IPMC performance is much better than previously reported Nafion-IPMC doped by acid-treated MWCNT.Such significantly improved performance should be attributed to the improvement of electrical property associated with the addition of MWCNTs without acid treatment.

  15. Nonionic surfactants with linear and branched hydrocarbon tails: compositional analysis, phase behavior, and film properties in bicontinuous microemulsions.

    Science.gov (United States)

    Frank, Christian; Frielinghaus, Henrich; Allgaier, Jürgen; Prast, Hartmut

    2007-06-05

    Nonionic alcohol ethoxylates are widely used as surfactants in many different applications. They are available in a large number of structural varieties as technical grade products. This variety is mainly based on the use of different alcohols, which can be linear or branched and contain primary, secondary, or tertiary OH groups. Technical grade products are poorly defined as they are composed of alcohol mixtures being different in chain length and structure. On the other hand, monodisperse alcohol ethoxylates are commercially available; however, these surfactants exist only with primary and linear alcohols. In the field of microemulsion research the monodisperse alcohol ethoxylates are widely used. The phase behavior and film properties of these surfactants were studied intensively with respect to the size of the hydrophilic and hydrophobic moieties. Due to the lack of appropriate model surfactants until now, there is little information on how the structure of the hydrocarbon tail influences the microemulsion behavior. To examine structural influences, we synthesized a series of surfactants with the composition C10E5 and having different linear and branched hydrocarbon tails. The surfactants were monodisperse with respect to the hydrocarbon tail but polydisperse with respect to the ethoxylation degree. However, a detailed characterization showed that they were similar concerning the average ethoxylation degree and EO chain length distribution. The phase behavior was investigated for bicontinuous microemulsions, and the film properties were analyzed by small-angle neutron scattering (SANS). Our results show that the structure of the hydrocarbon tail strongly influences the microemulsion behavior. The most efficient surfactant is obtained if the hydrocarbon tail is linear and the hydrophilic group is attached in the C-1 position. Surfactants having the hydrophilic group bound to the C-2 or C-4 position or which contain a branched hydrocarbon tail are less efficient

  16. Effect of ultrasound-enhanced fat separation on whey powder phospholipid composition and stability.

    Science.gov (United States)

    Torkamani, Amir E; Juliano, Pablo; Fagan, Peter; Jiménez-Flores, Rafael; Ajlouni, Said; Singh, Tanoj K

    2016-06-01

    Fat from freshly pasteurized liquid whey was partially separated by gravity for 5, 10, and 30min, with and without simultaneous application of ultrasound. Ultrasound treatments were carried out at 400 and 1,000 kHz at different specific energy inputs (23-390 kJ/kg). The fat-enriched top layers (L1) and the fat-depleted bottom layers (L2) were separately removed and freeze-dried. Nonsonicated and sonicated L2 powders were stored for 14d at ambient temperature to assess their oxidative stability. Creaming was enhanced at both frequencies and fat separation increased with higher ultrasonic energy, extended sonication, or both. The oxidative volatile compound content decreased in defatted whey powders below published odor detection threshold values for all cases. Sonication had a minor influence on the partitioning of phospholipids with fat separation. The current study suggested that ultrasonication at high frequency enhanced fat separation from freshly pasteurized whey while improving whey powder oxidative stability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Protein adsorption resistant surface on polymer composite based on 2D- and 3D-controlled grafting of phospholipid moieties

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Toru [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuno, Ryosuke [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sawaguchi, Takashi [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kanda-surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Konno, Tomohiro; Takai, Madoka [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ishihara, Kazuhiko [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: ishihara@mpc.t.u-tokyo.ac.jp

    2008-11-15

    To prepare the biocompatible surface, a phosphorylcholine (PC) group was introduced on this hydroxyl group generated by surface hydrolysis on the polymer composite composed of polyethylene (PE) and poly (vinyl acetate) (PVAc) prepared by supercritical carbon dioxide. Two different procedures such as two-dimensional (2D) modification and three-dimensional (3D) modification were applied to obtain the steady biocompatible surface. 2D modification was that PC groups were directly anchored on the surface of the polymer composite. 3D modification was that phospholipid polymer was grafted from the surface of the polymer composite by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC). The surfaces were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle measurements, and atomic force microscope. The effects of the poly(MPC) chain length on the protein adsorption resistivity were investigated. The protein adsorption on the polymer composite surface with PC groups modified by 2D or 3D modification was significantly reduced as compared with that on the unmodified PE. Further, the amount of protein adsorbed on the 3D modified surface that is poly(MPC)-grafted surface decreased with an increase in the chain length of the poly(MPC). The surface with an arbitrary structure and the characteristic can be constructed by using 2D and 3D modification. We conclude that the polymer composites of PE/PVAc with PC groups on the surface are useful for fabricating biomedical devices due to their good mechanical and surface properties.

  18. Synthesis of ZSM-5@Ordered Mesoporous Silica Composites by Dodecylamine Surfactant

    Institute of Scientific and Technical Information of China (English)

    MA Kuoyan; YU Haijun; FENG Guanglin; WANG Changguo; DAI Ya

    2014-01-01

    The core-shell structures of ZSM-5 coated with mesoporous silica were synthesized by means of dodecylamine (DDA) surfactant. The results show that the mesoporous silica shells are coated on ZSM-5 cores and result in the formation of hierarchical porous structures. The thickness of the coating shell can be controlled by changing the adding amount of TEOS. The core-shell composites with the thickness of 35 nm possess high surface areas (about 528 m2·g-1), large pores (about 3.5 nm in diameter) on the silica shells. The composite molecular sieves display higher adsorption capacity for benzene (140.2 mg·g-1) and butyraldehyde (213.7 mg·g-1) than that of pristine ZSM-5 for benzene (99.2 mg·g-1) and butyraldehyde (134.7 mg·g-1). The composite molecular sieves show a wide application foreground for harmful gas adsorbent for environmental protection.

  19. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport.

    Science.gov (United States)

    Li, Feng; Zhu, Lizhong

    2014-07-01

    The effects of the surfactants, Tween 80 and sodium dodecyl benzene sulfonate (SDBS) on a membrane's fatty acid composition and the transmembrane transport of phenanthrene were investigated. The results indicated that both surfactants could modify the composition of fatty acids of Citrobacter sp. Strain SA01 cells, 50 mg L(-1) of both surfactants changed the composition of the fatty acids the most, increasing the amount of unsaturated fatty acids. The comparison of fatty acid profiles with diphenylhexatriene fluorescence anisotropy, a probe for plasma membrane fluidity, suggested that an increased amount of unsaturated fatty acids corresponded to greater membrane fluidity. In addition, increased unsaturated fatty acids promoted phenanthrene to partition from the extracellular matrix to cell debris, which increased reverse partitioning from the cell debris to the cytochylema. The results of this study were expected in that the addition of a surfactant is a simple and effective method for accelerating the rate-limiting step of transmembrane transport of hydrophobic organic compounds (HOCs) in bioremediation.

  20. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections.

    Science.gov (United States)

    Han, SeungHye; Mallampalli, Rama K

    2015-05-01

    Pulmonary surfactant is essential for life as it lines the alveoli to lower surface tension, thereby preventing atelectasis during breathing. Surfactant is enriched with a relatively unique phospholipid, termed dipalmitoylphosphatidylcholine, and four surfactant-associated proteins, SP-A, SP-B, SP-C, and SP-D. The hydrophobic proteins, SP-B and SP-C, together with dipalmitoylphosphatidylcholine, confer surface tension-lowering properties to the material. The more hydrophilic surfactant components, SP-A and SP-D, participate in pulmonary host defense and modify immune responses. Specifically, SP-A and SP-D bind and partake in the clearance of a variety of bacterial, fungal, and viral pathogens and can dampen antigen-induced immune function of effector cells. Emerging data also show immunosuppressive actions of some surfactant-associated lipids, such as phosphatidylglycerol. Conversely, microbial pathogens in preclinical models impair surfactant synthesis and secretion, and microbial proteinases degrade surfactant-associated proteins. Deficiencies of surfactant components are classically observed in the neonatal respiratory distress syndrome, where surfactant replacement therapies have been the mainstay of treatment. However, functional or compositional deficiencies of surfactant are also observed in a variety of acute and chronic lung disorders. Increased surfactant is seen in pulmonary alveolar proteinosis, a disorder characterized by a functional deficiency of the granulocyte-macrophage colony-stimulating factor receptor or development of granulocyte-macrophage colony-stimulating factor antibodies. Genetic polymorphisms of some surfactant proteins such as SP-C are linked to interstitial pulmonary fibrosis. Here, we briefly review the composition, antimicrobial properties, and relevance of pulmonary surfactant to lung disorders and present its therapeutic implications.

  1. Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus.

    Directory of Open Access Journals (Sweden)

    Sylvain Giroud

    Full Text Available Polyunsaturated fatty acids (PUFA have strong effects on hibernation and daily torpor. Increased dietary uptake of PUFA of the n-6 class, particularly of Linoleic acid (LA, C18:2 n-6 lengthens torpor bout duration and enables animals to reach lower body temperatures (T(b and metabolic rates. As previously hypothesized, this well-known influence of PUFA may be mediated via effects of the membrane fatty acid composition on sarcoplasmic reticulum (SR Ca(2+-ATPase 2a (SERCA in the heart of hibernators. We tested the hypotheses that high proportions of n-6 PUFA in general, or specifically high proportions of LA (C18:2 n-6 in SR phospholipids (PL should be associated with increased cardiac SERCA activity, and should allow animals to reach lower minimum T(b in torpor. We measured activity of SERCA from hearts of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus in vitro at 35 °C. Further, we determined the PL fatty acid composition of the SR membrane of these hearts. We found that SERCA activity strongly increased as the proportion of LA in SR PL increased but was negatively affected by the content of Docosahexaenoic acid (DHA; C22:6 n-3. SR PL from hibernating hamsters were characterized by high proportions of LA and low proportions of DHA. As a result, SERCA activity was significantly higher during entrance into torpor and in torpor compared to inter-bout arousal. Also, animals with increased SERCA activity reached lower T(b during torpor. Interestingly, a subgroup of hamsters which never entered torpor but remained euthermic throughout winter displayed a phenotype similar to animals in summer. This was characterized by lower proportions of LA and increased proportions of DHA in SR membranes, which is apparently incompatible with torpor. We conclude that the PUFA composition of SR membranes affects cardiac function via modulating SERCA activity, and hence determines the minimum T(b tolerated by hibernators.

  2. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    Science.gov (United States)

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity.

  3. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  4. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films.

    Science.gov (United States)

    Parra, Elisa; Pérez-Gil, Jesús

    2015-01-01

    The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.

  6. The regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase

    DEFF Research Database (Denmark)

    Shi, Xun; Li, Juan; Zou, Xiaoju;

    2013-01-01

    desaturase mutants, independently, and in combination with mutants disrupted in conserved lipid metabolic pathways. C. elegans with impaired SCD activity displayed both reduced fat stores and decreased lipid droplet size. Mutants in the daf-2 (insulin-like growth factor receptor), rsks-1 (homolog of p70S6......Fatty acid desaturation regulates membrane function and fat storage in animals. To determine the contribution of stearoyl-CoA desaturase (SCD) activity on fat storage and development in the nematode Caenorhabditis elegans, we analyzed the lipid composition and lipid droplet size in the fat-6;fat-7...

  7. Surfactant nebulisation : Safety, efficiency and influence on surface lowering properties and biochemical composition

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Piers, DA; Weller, E; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: The objectives of this study were, to select a nebuliser first, that operates safely in a neonatal ventilator setting and, second, that is most efficient. Thirdly, we studied the particle sizes of the surfactant aerosol. Fourthly, we studied where the nebulised surfactant is deposited in

  8. The use of natural and synthetic phospholipids as pharmaceutical excipients*

    Science.gov (United States)

    van Hoogevest, Peter; Wendel, Armin

    2014-01-01

    In pharmaceutical formulations, phospholipids obtained from plant or animal sources and synthetic phospholipids are used. Natural phospholipids are purified from, e.g., soybeans or egg yolk using non-toxic solvent extraction and chromatographic procedures with low consumption of energy and minimum possible waste. Because of the use of validated purification procedures and sourcing of raw materials with consistent quality, the resulting products differing in phosphatidylcholine content possess an excellent batch to batch reproducibility with respect to phospholipid and fatty acid composition. The natural phospholipids are described in pharmacopeias and relevant regulatory guidance documentation of the Food and Drug Administration (FDA) and European Medicines Agency (EMA). Synthetic phospholipids with specific polar head group, fatty acid composition can be manufactured using various synthesis routes. Synthetic phospholipids with the natural stereochemical configuration are preferably synthesized from glycerophosphocholine (GPC), which is obtained from natural phospholipids, using acylation and enzyme catalyzed reactions. Synthetic phospholipids play compared to natural phospholipid (including hydrogenated phospholipids), as derived from the number of drug products containing synthetic phospholipids, a minor role. Only in a few pharmaceutical products synthetic phospholipids are used. Natural phospholipids are used in oral, dermal, and parenteral products including liposomes. Natural phospholipids instead of synthetic phospholipids should be selected as phospholipid excipients for formulation development, whenever possible, because natural phospholipids are derived from renewable sources and produced with more ecologically friendly processes and are available in larger scale at relatively low costs compared to synthetic phospholipids. Practical applications: For selection of phospholipid excipients for pharmaceutical formulations, natural phospholipids are preferred

  9. Dispersive Stabilization of Liquid Crystal-in-Water with Acrylamide Copolymer/Surfactant Mixture: Nematic Curvilinear Aligned Phase Composite Film.

    Science.gov (United States)

    Park; Lee

    1999-11-01

    The effect of nonionic surfactant, (H(OCH(2)-CH(2))(8)-OC(6)H(4)-C(9)H(19)), on the dispersion stabilization of liquid crystal (LC)-in-water with acrylamide copolymer containing the related nonylphenyl groups was studied. It was observed that the addition of nonionic surfactant increases the stability of LC dispersions and improves the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. On the basis of the surface tension, reduced viscosity, cloud point, and coalescence time measurements, it was proposed that formation of an integrated structure induced by interactions between hydrophobic groups in the polymer chains is probably important to fabrication of a polymer composite film made of LC and polymer matrix. Copyright 1999 Academic Press.

  10. Hexagonal Nanoarchitecture of Composite Monolayer of Magnetite Nanoparticles and Geminus Surfactant 1,3-Propylenebis (dodecyldimethylammonium) Dibromide

    Institute of Scientific and Technical Information of China (English)

    LIU,Ming-Xian; GAN,Li-Hua; HAO,Zhi-Xian; XU,Zi-Jie; ZHU,Da-Zhang; CHEN,Long-Wu

    2008-01-01

    Negatively charged magnetite nanoparticles with an average size of about 10 nm have been synthesized by a chemical coprecipitation method using sodium dodecyl benzene sulphonate as a surface modifying reagent. Composite Langmuir monolayer of Fe3O4 nanoparticles and geminus surfactant 1,3-propylenebis(dodecyldimethylammonium) dibromide (C12-C3-C12) was prepared on the subphase of Fe3O4 nanoparticle hydrosols. In the presence of the magnetite nanoparticles, the collapse pressure of the composite monolayer and the limited mean molecular area of C12-C3-C12 are higher than those on pure water subphase. Transmission electron microscopy observation of a C12-C3-C12/Fe3O4 nanoparticle complex shows that Fe3O4 nanoparticles and geminus surfactant had an unexpected hexagonal nanoarchitecture at the air-liquid interface when the surface pressure of the composite monolayer increased to about 12 mN·m-1. A mechanism for constructing the particular nanopatterned configuration of the C12-C3-C12/Fe3O4 nanoparticle complex in the Langmuir layer directly from the unique molecular structure of the geminus surfactant and the interfacial interactions between C12-C3-C12 and the components in the subphase was proposed.

  11. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  12. Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca(2+) uptake, without altering permeability transition or left ventricular function.

    Science.gov (United States)

    O'Connell, Kelly A; Dabkowski, Erinne R; de Fatima Galvao, Tatiana; Xu, Wenhong; Daneault, Caroline; de Rosiers, Christine; Stanley, William C

    2013-06-01

    High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mitochondrial phospholipid fatty acyl side chain composition and mitochondrial membrane function, though a direct comparison has not been previously reported. We fed healthy adult rats a standard low-fat diet (11% of energy intake from fat), a low-fat diet supplemented with DHA (2.3% of energy intake) or a high-fat diet comprised of long chain saturated fatty acids (45% fat) for 6 weeks. There were no differences among the three diets in cardiac mass or function, mitochondrial respiration, or Ca(2+)-induced mitochondrial permeability transition. On the other hand, there were dramatic differences in mitochondrial phospholipid fatty acyl side chains. Dietary supplementation with DHA increased DHA from 7% to ∼25% of total phospholipid fatty acids in mitochondrial membranes, and caused a proportional depletion of arachidonic acid (20:4n6). The saturated fat diet increased saturated fat and DHA in mitochondria and decreased linoleate (18:2n6), which corresponded to a decrease in Ca(2+) uptake by isolated mitochondria compared to the other diet groups. In conclusion, despite dramatic changes in mitochondrial phospholipid fatty acyl side chain composition by both the DHA and high saturated fat diets, there were no effects on mitochondrial respiration, permeability transition, or cardiac function.

  13. 摄食不同来源磷脂对大鼠脂质代谢及脑内磷脂脂肪酸组成的影响%Effects of different dietary phospholipids on lipid metabolism and brain phospholipids fatty acid composition in rats

    Institute of Scientific and Technical Information of China (English)

    王玉明; 李金章; 薛勇; 李兆杰; 王静凤; 薛长湖

    2012-01-01

    The effects of dietary phospholipids on lipid metabolism and brain phospholipids fatty acid composition in rats were studied. Male SD rats were randomly divided into soybean oil basal group(9% soybean oil) , milk phospholipids group (5% milk phospholipids and 4% soybean oil) , soybean phospholipids group (5% soybean phospholipids and 4% soybean oil) and egg phospholipids group (5% egg phospholipids and 4% soybean oil). After 3 weeks feeding, the serum total cholesterol and hepatic lipid levels, and brain phospholipids fatty acids composition were determined. The results showed that the three phospholipids intake improved body weight and visceral index to different extents comparedwith soybean oil basal group, and the egg phospholipids group showed a significant effect. All of the phospholipids dietary reduced serum TC, TG and FFA contents at different levels, especially soybean phospholipids significantly reduced TC and TC levels, milk phospholipids and egg phospholipids FFA significantly reduced FFAlevels. Serum HDL - C content was improved significantly by dietary soybean phospholipids. Hepatic TC was significantly reduced by milk phospholipids and soybean phospholipids, and hepatic TG was significantly reduced by all of the three. Brain phospholipids fatty acid composition was differently changed,and saturated fatty acids(SFA) content in brain phospholipids fatty acid composition was significantly improved by milk phospholipids, while soybean phospholipids and egg phospholipids improved polyunsaturated fatty acids (PUFA) content. The three phospholipids, especially soybean phospholipids could reduce serum and hepatic lipid contents. Soybean phospholipids and egg phospholipids were better than milk phospholipids on the intelligence improvement.%研究了摄食不同来源磷脂对大鼠脂质代谢及其脑内磷脂脂肪酸组成的影响.雄性SD大鼠按体重随机分为大豆油对照组(添加9%)、牛乳磷脂组(添加5%)、大豆磷脂组(添加5

  14. Phospholipids in foods: prooxidants or antioxidants?

    Science.gov (United States)

    Cui, Leqi; Decker, Eric A

    2016-01-15

    Lipid oxidation is one of the major causes of quality deterioration in natural and processed foods and thus a large economic concern in the food industry. Phospholipids, especially lecithins, are already widely used as natural emulsifiers and have been gaining increasing interest as natural antioxidants to control lipid oxidation. This review summarizes the fatty acid composition and content of phospholipids naturally occurring in several foods. The role of phospholipids as substrates for lipid oxidation is discussed, with a focus on meats and dairy products. Prooxidant and antioxidant mechanisms of phospholipids are also discussed to get a better understanding of the possible opportunities for using phospholipids as food antioxidants.

  15. Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment.

    Science.gov (United States)

    Sarker, Muzaddid; Jackman, Donna; Booth, Valerie

    2011-06-07

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A's interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B's own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A-Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding.

  16. Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

    Directory of Open Access Journals (Sweden)

    Nik J. Walch

    2016-02-01

    Full Text Available In this paper we detail a novel semi-automated method for the production of graphene by sonochemical exfoliation of graphite in the presence of ionic surfactants, e.g., sodium dodecyl sulfate (SDS and cetyltrimethylammonium bromide (CTAB. The formation of individual graphene flakes was confirmed by Raman spectroscopy, while the interaction of graphene with surfactants was proven by NMR spectroscopy. The resulting graphene–surfactant composite material formed a stable suspension in water and some organic solvents, such as chloroform. Graphene thin films were then produced using Langmuir–Blodgett (LB or electrostatic layer-by-layer (LbL deposition techniques. The composition and morphology of the films produced was studied with SEM/EDX and AFM. The best results in terms of adhesion and surface coverage were achieved using LbL deposition of graphene(−SDS alternated with polyethyleneimine (PEI. The optical study of graphene thin films deposited on different substrates was carried out using UV–vis absorption spectroscopy and spectroscopic ellipsometry. A particular focus was on studying graphene layers deposited on gold-coated glass using a method of total internal reflection ellipsometry (TIRE which revealed the enhancement of the surface plasmon resonance in thin gold films by depositing graphene layers.

  17. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films

    DEFF Research Database (Denmark)

    Ortiz, Elisa Parra; Perez-Gil, Jesús

    2015-01-01

    The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breath......The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics...... of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant...... biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension...

  18. Control of the composition of Pt-Ni electrocatalysts in surfactant-free synthesis using neat N-formylpiperidine

    Science.gov (United States)

    Zhang, Na; Tsao, Kai-Chieh; Pan, Yung-Tin; Yang, Hong

    2016-01-01

    This paper describes the facile and surfactant-free synthesis of faceted Pt-Ni alloy nanoparticle electrocatalysts using neat N-formylpiperidine as a new type of solvent. Unlike the widely-used colloidal synthesis based on long-carbon chain surfactants, nanoparticles made in neat N-formylpiperidine possess a directly accessible surface for electrocatalytic reactions, making it a very attractive alternative solvent. The area-specific oxygen reduction reaction (ORR) activity is much higher than the commercial Pt/C catalyst reference and reaches a maximum of 1.12 mA cm-2 for the Pt-Ni alloy nanoparticles. We observed that the freshly formed Pt-Ni alloy could have controllable bulk and near surface compositions under the same initial reaction conditions and precursor ratio. The change in the composition could be attributed to the effect of CO on the formation of uniform nuclei at the initial stage, and a different deposition rate between Pt and Ni metals during the growth. The well-defined Pt-Ni nanoparticle catalysts show strong composition-dependent catalytic behavior in ORR, highlighting the important role of controlling the growth kinetics in the preparation of active Pt-Ni ORR catalysts.This paper describes the facile and surfactant-free synthesis of faceted Pt-Ni alloy nanoparticle electrocatalysts using neat N-formylpiperidine as a new type of solvent. Unlike the widely-used colloidal synthesis based on long-carbon chain surfactants, nanoparticles made in neat N-formylpiperidine possess a directly accessible surface for electrocatalytic reactions, making it a very attractive alternative solvent. The area-specific oxygen reduction reaction (ORR) activity is much higher than the commercial Pt/C catalyst reference and reaches a maximum of 1.12 mA cm-2 for the Pt-Ni alloy nanoparticles. We observed that the freshly formed Pt-Ni alloy could have controllable bulk and near surface compositions under the same initial reaction conditions and precursor ratio. The change

  19. Enhanced removal of soluble Cr(VI) by using zero-valent iron composite supported by surfactant-modified zeolites.

    Science.gov (United States)

    Dang, Hongyu; Zhang, Yongxiang; Du, Peiwen

    2014-01-01

    Zero-valent iron (ZVI) was immobilized onto surfactant-modified zeolites (SMZ) using calcium alginate. Scanning electron microscopy showed that ZVI powder was uniformly immobilized on the surface of the SMZ. The added ZVI powder resulted in enhanced dichromate removal efficiency and the heterogeneous surface of the composite. The adsorption of dichromate onto the ZVI-SMZ composites fitted well to a pseudo-second-order model and the Langmuir adsorption isotherm. The maximum dichromate adsorption capacity of the composite was 2.49 mg/g at the temperature of 293 K. Higher removal efficiency was obtained at pH lower than 7. X-ray photoelectron spectrometry revealed that the composites combined the strong reductive quality of ZVI and superior adsorption of SMZ.

  20. Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants.

    Science.gov (United States)

    Qu, Ailan; Wen, Xiufang; Pi, Pihui; Cheng, Jiang; Yang, Zhuoru

    2008-01-01

    The composite particles with core/shell structure resulting from the combination of silica seed and hydrophobic copolymer (dodecafluoroheptyl methacrylate (DFMA), gamma-methacryloxypropyltriisopropoxidesilane (MAPTIPS), methyl methacrylate, butyl acrylate) were synthesized by emulsion polymerization. The amount of the silica seeds, concentration of reactive surfactant, as well as the addition of DFMA and MAPTIPS, have strong influences on the morphology of composite particles. It has been shown that it would be possible to produce stable organic/inorganic composite particles with inhomogeneous core/shell structure encapsulated by hydrophobic fluorinated acrylate even though using unmodified silica particles and admixture of anionic and nonionic surfactants. However, there was an obvious difference on the morphologies of core-shell structure whether the DFMA and MAPTIPS were added or not. It was concluded that two kinds of polymerization approaches might coexist in the presence of DFMA and MAPTIPS for raw silica. One clear advantage of this process is that there is only one silica bead for each composite particle. This kind of stable core-shell structural hybrid latex is useful for preparing high performance hydrophobic coating.

  1. Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: a surfactant free laser ablation approach.

    Science.gov (United States)

    Sai Siddhardha, R S; Lakshman Kumar, V; Kaniyoor, Adarsh; Sai Muthukumar, V; Ramaprabhu, S; Podila, Ramakrishna; Rao, A M; Ramamurthy, Sai Sathish

    2014-12-10

    A facile surfactant free laser ablation mediated synthesis (LAMS) of gold-graphene composite is reported here. The material was characterized using transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powdered X-ray diffraction, Raman spectroscopy, Zeta potential measurements and UV-Visible spectroscopic techniques. The as-synthesized gold-graphene composite was effectively utilized as catalyst for decolorization of 4 important textile and laser dyes. The integration of gold nanoparticles (AuNPs) with high surface area graphene has enhanced the catalytic activity of AuNPs. This enhanced activity is attributed to the synergistic interplay of pristine gold's electronic relay and π-π stacking of graphene with the dyes. This is evident when the Rhodamine B (RB) reduction rate of the composite is nearly twice faster than that of commercial citrate capped AuNPs of similar size. In case of Methylene blue (MB) the rate of reduction is 17,000 times faster than uncatalyzed reaction. This synthetic method opens door to laser ablation based fabrication of metal catalysts on graphene for improved performance without the aid of linkers and surfactants.

  2. Surfactant dysfunction in lung contusion with and without superimposed gastric aspiration in a rat model.

    Science.gov (United States)

    Raghavendran, Krishnan; Davidson, Bruce A; Knight, Paul R; Wang, Zhengdong; Helinski, Jadwiga; Chess, Patricia R; Notter, Robert H

    2008-11-01

    This study investigates surfactant dysfunction in rats with lung contusion (LC) induced by blunt chest trauma. Rats at 24 h postcontusion had a decreased percent content of large surfactant aggregates in cell-free bronchoalveolar lavage (BAL) and altered large-aggregate composition with decreased phosphatidylcholine (PC), increased lyso-PC, and increased protein compared with uninjured controls. The surface activity of large aggregates on a pulsating bubble surfactometer was also severely impaired at 24 h postcontusion. Decreases in large surfactant aggregate content and surface activity were improved, but still apparent, at 48 and 72 h postcontusion compared with uninjured control rats and returned to normal by 96 h postcontusion. The functional importance of surfactant abnormalities in LC injury was documented in pilot studies showing that exogenous surfactant replacement at 24 h postcontusion improved inflation/deflation lung volumes. Additional experiments investigated a clinically relevant combination of LC plus gastric aspiration (combined acid and small gastric food particles) and found reductions in large surfactant aggregates in BAL similar to those for LC. However, rats given LC + combined acid and small gastric food particles versus LC had more severe surfactant dysfunction based on decreases in surface activity and alterations in large aggregate composition. Combined data for all animal groups had strong statistical correlations between surfactant dysfunction (increased minimum surface tension, decreased large aggregates in BAL, decreased aggregate PC, and increased aggregate lyso-PC) and the severity of inflammatory lung injury (increased total protein, albumin, protein/phospholipid ratio, neutrophils, and erythrocytes in BAL plus increased whole lung myeloperoxidase activity). These results show that surfactant dysfunction is important in the pathophysiology of LC with or without concurrent gastric aspiration and provides a rationale for surfactant

  3. Electrochemistry and Electrocatalysis with Hemoglobin in DHP- PDDA Surfactant-Polymer Multibilayer Composite Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Polyionic complex DHP-PDDA was prepared by reacting anionic surfactant dihexadecyl phosphate (DHP) with polycationic poly(diallyldimethyl ammonium) (PDDA). Thin films made from DHP-PDDA with incorporated hemoglobin (Hb) on pyrolytic graphite (PG) electrodes were characterized by electrochemistry and other techniques.

  4. Endogenous synthesis of n-3 PUFA modifies fatty acid composition of kidney phospholipids and eicosanoid levels in the fat-1 mouse.

    Science.gov (United States)

    Kelton, D; Lysecki, C; Aukema, H; Anderson, B; Kang, J X; Ma, D W L

    2013-09-01

    The goal of the present study was to determine whether endogenous synthesis of n-3 polyunsaturated fatty acids (PUFA) in the fat-1 mouse is comparable to fish oil feeding with respect to kidney n-3 PUFA composition and eicosanoid levels. Wild-type and heterozygous fat-1 mice, capable of synthesizing n-3 PUFA endogenously, were given diets enriched in either n-3 or n-6 PUFA in a 2×2 factorial design and terminated after 12 weeks. Kidney phospholipid fatty acids were analysed by gas chromatography. Kidney eicosanoids were analysed by liquid chromatography tandem mass spectrometry. Relative to control mice fed n-6 PUFA, n-3 PUFA fed and fat-1 mice had higher levels of kidney phospholipid n-3 PUFA, and lower levels of n-6 PUFA and eicosanoids. However, mice fed n-3 PUFA mice had higher levels of n-3 PUFA and lower levels of eicosanoids as compared to fat-1 mice. In conclusion, diet feeding had a greater impact on kidney fatty acid composition and eicosanoid levels than the genetic effect of the fat-1 gene. However, the fat-1 mouse remains a close approximation that can be used as a complementary model to study the role of n-3 PUFA in the kidney.

  5. Shape controlled synthesis and characterization of Cu{sub 2}O nanostructures assisted by composite surfactants system

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Asar [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (India); Gajbhiye, Namdeo S., E-mail: nsg@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (India); Joshi, Amish G. [Physics of Energy Harvesting Division, National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2011-10-03

    Highlights: {yields} Simple and inexpensive one pot synthesis of various Cu{sub 2}O nanostructures is demonstrated by manipulating the composite surfactant system. {yields} Surface properties are studied by the X-ray photoelectron spectroscopy. {yields} The prepared materials were also used for photocatalysis has in the degradation of organic dye Rhodamine B. - Abstract: A simple methodology has been demonstrated to synthesize various nanocrystalline Cu{sub 2}O materials assisted by composite surfactant system, SDS and Tween 80 using the polyol method. Glycolaldehyde prepared in situ by heating ethylene glycol solvent at 160 deg. C for 2 h, was utilized as the reducing agent. The relative ratio of the two surfactants was manipulated to achieve different Cu{sub 2}O morphologies, e.g. nanocrystalline Cu{sub 2}O flowers, hollow spheres consisting of holes and ring type structure. The FT-IR spectroscopy confirmed that the SDS and Tween 80 moieties were indeed present on the surface as capping agents in order to stabilize the surface nanocrystallites by the co-ordinative interactions between the oxygen atoms of Tween 80 and SDS and the Cu atoms at the surface of the synthesized Cu{sub 2}O particles. These oxygen atoms eventually encourage the oxidation of the surface Cu atoms to form a thin CuO layer, presence of which on the surface was corroborated by the XPS measurements. Sputtering of the samples was also carried out to remove the surface CuO thin layer and expose the inner Cu{sub 2}O. These nanomaterials were then investigated for their potential applications in photocatalytic degradation of Rhodamine B dye.

  6. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Simonsen, Adam C

    2004-01-01

    Pulmonary surfactant, the lipid-protein material that stabilizes the respiratory surface of the lungs, contains approximately equimolar amounts of saturated and unsaturated phospholipid species and significant proportions of cholesterol. Such lipid composition suggests that the membranes taking...... part in the surfactant structures could be organized heterogeneously in the form of inplane domains, originating from particular distributions of specific proteins and lipids. Here we report novel results concerning the lateral organization of bilayer membranes made of native pulmonary surfactant where...... of this material is naturally designed to be at the "edge" of a lateral structure transition under physiological conditions, likely providing particular structural and dynamic properties for its mechanical function. The observed lateral structure in native pulmonary surfactant membranes is dramatically affected...

  7. Biobased surfactant-like molecules from organic wastes: the effect of waste composition and composting process on surfactant properties and on the ability to solubilize Tetrachloroethene (PCE).

    Science.gov (United States)

    Quadri, Giorgia; Chen, Xiaosong; Jawitz, James W; Tambone, Fulvia; Genevini, Pierluigi; Faoro, Franco; Adani, Fabrizio

    2008-04-01

    In this work, four surfactant-like humic acids (HAs) obtained from garden lignocellulose wastes and kitchen food wastes mixed with garden-lignocellulose wastes, both before and after composting, were tested for surfactant properties and the ability to solubilize tetrachloroethene (PCE). The waste-derived HAs showed good surfactant properties, lowering the water surface tension from 74 mN m(-1) to 45.4 +/- 4.4 mN m(-1), with a critical micelle concentration (CMC) of 1.54 +/- 1.68 g L(-1), which is lower than many synthetic ionic surfactants. CMC was affected by both waste origin and composting processes. The addition of food waste and composting reduced CMC by adding alkyl-C (measured by CP MAS 13C NMR) and N- and S-HA contents (amide molecules), so that a multistep regression was found [CMC = 24.6 - 0.189 alkyl C - 2.64 (N + S); R2 = 0.77, P < 0.10, n = 6]. The four HAs solubilized PCE at the rate of 0.18-0.47 g PCE/g aqueous biosurfactant. These results were much higher than those reported in the literature for a commercial HA (0.026 g/g), but they were in line with those measured in this work for nonionic surfactants such as Tween-80 (0.69 g/g) and Triton X-100 (1.08 g/g).

  8. Measurement of binding of basic drugs to acidic phospholipids using surface plasmon resonance and incorporation of the data into mechanistic tissue composition equations to predict steady-state volume of distribution.

    Science.gov (United States)

    Small, Helen; Gardner, Iain; Jones, Hannah M; Davis, John; Rowland, Malcolm

    2011-10-01

    Acidic phospholipid binding plays an important role in determining the tissue distribution of basic drugs. This article describes the use of surface plasmon resonance to measure binding affinity (K(D)) of three basic drugs to phosphatidylserine, a major tissue acidic phospholipid. The data are incorporated into mechanistic tissue composition equations to allow prediction of the steady-state volume of distribution (V(ss)). The prediction accuracy of V(ss) using this approach is compared with the original methodology described by Rodgers et al. (J Pharm Sci 94:1259-1276), in which the binding to acidic phospholipids is calculated from the blood/plasma concentration ratio (BPR). The compounds used in this study [amlodipine, propranolol, and 3-dimethylaminomethyl-4-(4-methylsulfanyl-phenoxy)-benzenesulfonamide (UK-390957)] showed higher affinity binding to phosphatidylserine than to phosphatidylcholine. When the binding affinity to phosphatidylserine was incorporated into mechanistic tissue composition equations, the V(ss) was more accurately predicted for all three compounds by using the surface plasmon resonance measurement than by using the BPR to estimate acidic phospholipid binding affinity. The difference was particularly marked for UK-390957, a sulfonamide that has a high BPR due to binding to carbonic anhydrase. The novel approach described in this article allows the binding affinity of drugs to an acidic phospholipid (phosphatidylserine) to be measured directly and demonstrates the utility of the binding data in the prediction of V(ss).

  9. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  10. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath)

    Science.gov (United States)

    Jahnke, L. L.

    1992-01-01

    Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 degrees C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the delta 9, delta 10 and delta 11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 degrees C cells and the lowest in 50 degrees C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.

  11. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath)

    Science.gov (United States)

    Jahnke, Linda L.

    1992-01-01

    Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the Delta9, Delta10, and Delta11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 C cells and the lowest in 50 C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.

  12. Rhodopseudomonas acidophila strain 10050 contains photosynthetic LH2 antenna complexes that are not enriched with phosphatidylglycerol, and the phospholipids have a fatty acyl composition that is unusual for purple non-sulfur bacteria.

    Science.gov (United States)

    Russell, Nicholas J; Coleman, Julie K; Howard, Tina D; Johnston, Evelyn; Cogdell, Richard J

    2002-12-01

    The phospholipid composition of Rhodopseudomonas acidophila strain 10050 grown aerobically or anaerobically in the light was determined. The major phospholipids present in the aerobic cells were phosphatidylethanolamine (PE; 54%), phosphatidylglycerol (PG; 24%) and cardiolipin (diphosphatidylglycerol, DPG) (14%), together with phosphatidylcholine (PC; 5%). On moving the cells to anaerobic photosynthetic growth in the light PE remained the major phospholipid (37-49%), but there was a major change in the proportion of PC, which increased to 31-33%, and corresponding reductions in the contents of PG to 11-16% and DPG to 4-5%. The fatty acid composition of the phospholipids was unusual, compared with other purple non-sulfur photosynthetic bacteria, in that it contained 16:0 (29%), 17:1 (20%) and 19:1 (9%) plus several mainly unsaturated 2-OH fatty acids (9% total) as major components, when grown aerobically in the dark. In contrast when grown photosynthetically under anaerobic conditions there was <2% 17:1 or 19:1 present, while the amounts of 16:1 and 18:1 increased, and 16:0 decreased. The phospholipid composition of the purified light-harvesting complex 2 (LH2) complex was PE (43%), PC (42%) and DPG (15%). Unexpectedly, there was no PG associated with the purified LH2. These findings contrast with previous studies on several other photosynthetic bacteria, which had shown an increase in PG upon photosynthetic growth [Biochem. J. 181 (1979) 339]. The prior hypothesis that phosphatidylglycerol has some specific role to play in the function of light-harvesting complexes cannot be true for Rps. acidophila. It is suggested that specific integral membrane proteins may strongly influence the phospholipid content of the host membranes into which they are inserted.

  13. Synthesis and function of phospholipids in Staphylococcus aureus.

    Science.gov (United States)

    Kuhn, Sebastian; Slavetinsky, Christoph J; Peschel, Andreas

    2015-02-01

    Phospholipids are the major components of bacterial membranes, and changes in phospholipid composition affect important cellular processes such as metabolism, stress response, antimicrobial resistance, and virulence. The most prominent phospholipids in Staphylococcus aureus are phosphatidylglycerol, lysyl-phosphatidylglycerol, and cardiolipin, whose biosynthesis is mediated by a complex protein machinery. Phospholipid composition of the staphylococcal membrane has to be continuously adjusted to changing external conditions, which is achieved by a series of transcriptional and biochemical regulatory mechanisms. This mini-review outlines the current state of knowledge concerning synthesis, regulation, and function of the major staphylococcal phospholipids.

  14. Correlation of mineral dust-induced changes in the composition of a fraction enriched in lung surfactant with pulmonary histologic lesions in rats

    Energy Technology Data Exchange (ETDEWEB)

    Schengrund, C.-L.; Griffith, J.W.; Wilson, R.P.; Xiaoli Chi [Pennsylvania State University, Hershey, PA (United States). Dept. of Biochemistry and Molecular Biology

    1996-07-01

    In previous work the composition of surfactant isolated from cell-free bronchoalveolar lavage (CF-BAL) from the right lungs of monkeys instilled with 500 mg of either generic bituminous, anthracite, quartz, or titanium dioxide dust was compared with that of surfactant isolated from CF-BAL from control left lungs. Exposure to quartz, anthracite, or titanium dioxide induced a significant increase in the amount of protein recovered, which was evident throughout most of the time period (1 year) studied. Exposure to quartz also induced a significant decrease in the total amount of lipid-associated phosphorus. To determine whether dust-induced changes in surfactant composition paralleled changes in lung morphology, consecutive studies were carried out in rats. Rats were instilled with 50 mg of either quartz or anthracite dust/kilogram body weight. One milligram of bituminous dust was intilled with every 5 mg of quartz dust as a marker to indicate dust location. Histologic evaluation of quartz dust-exposed lungs showed alveolitis, including microgranulomas, which were associated with clusters of dust-containing macrophages and polymorphonuclear cells which were localized within alveoli and interstitium surrounding small bronchioles. The anthracite dust-exposed lungs contained similar cell types localized around small bronchioles, which did not form microgranulomas. Surfactant protein A was found within alveolar type II cells and macrophages of both rat and primate lungs, but not within macrophages markedly distended with dust particles. The number of alveolar type II cells appeared to increase in response to the length of time of exposure to dust, as did the total amount of protein recovered in the surfactant-enriched fractions prepared from CF-BAL from dust-instilled lungs relative to that in surfactant-enriched fractions isolated from CF-BAL from control lungs. 26 refs., 2 figs., 2 tabs.

  15. Hematite and hematite-akageneite composites. XRD and electrokinetic study and interaction with ionic surfactants.

    Science.gov (United States)

    Mączka, Edward; Kosmulski, Marek

    2015-11-15

    Hematite and hematite-akageneite composites were obtained by hydrolysis of FeCl3 in acidic medium. The IEP of hematite and of hematite-akageneite composites was at pH about 9. The particle radius of primary hematite particles was about 50nm and the primary particles of hematite-akageneite composites were larger and porous. Addition of SDS to dispersions containing hematite or hematite-akageneite composites resulted in substantial increase in the particle size. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Low density polyethylene/layered double hydroxide (LDH composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20. It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain intercalation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermodynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant.

  17. Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice

    DEFF Research Database (Denmark)

    Bennike, Rikke Mette Guldhammer; Licht, Tine Rask; Hellgren, Lars

    2017-01-01

    Human milk fat contains high concentrations of medium-chained fatty acids (MCFA) and triacylglycerols emulsified by a sphingomyelin-rich phospholipid membrane (milk phospholipids, MPL). Infant formula comprises mainly long-chained fatty acids (LCFA) emulsified with dairy proteins and soy lecithin...

  18. Facile surfactant- and template-free synthesis and electrochemical properties of SnO{sub 2}/graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing, E-mail: xy13787103391@126.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Xia, E-mail: zyx02090229@163.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Guo, Jianqiang; Peng, Rufang [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Xie, Ruishi [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); Huang, Yeju; Qi, Yongcheng [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-07-25

    In this work, we demonstrate a facile and green hydrothermal process without using any surfactant or template to synthesize SnO{sub 2} nanoflowers (NFs)/graphene nanosheets (GNSs) composites as a high-performance electrode material for electric double layer capacitors (EDLCs). The crystal structure and morphology of the products were characterized by X-ray diffraction, scanning electron microscopy, and transition electron microscopy. The electrochemical properties were investigated by galvanostatic charge/discharge cycling and cycling voltammetry in a voltage range of −0.2–0.8 V. The results exhibit that the addition of GNSs did not change the tetragonal crystal structure of SnO{sub 2}, and the GNSs were successfully coated on the flower-like surface of SnO{sub 2}. The grain morphology of SnO{sub 2}@GNSs composites has a flower-like appearance suggesting excellent electrochemical properties which were confirmed by electrochemical techniques. Compared with the GNSs, the SnO{sub 2}@GNSs composites exhibit a high specific discharge capacitance of 126 F g{sup −1} at 0.2 A g{sup −1} and remains 98.2% after 2000 charge–discharge cycles. The combination of GNSs and SnO{sub 2} could significantly improve the electrical conductivity, enhance the interactions between GNSs and SnO{sub 2} NFs and provide more reaction sites, thereby resulting in improved electrochemical properties for the SnO{sub 2}@GNSs composites in contrast with the pristine GNSs sample. The high specific capacity and long stability make the SnO{sub 2}@GNSs nanocomposite as a electrode material for high-performance supercapacitors. - Highlights: • SnO{sub 2} nanoflowers (NFs)/Graphene nanosheets(GNSs) composites were prepared by a simple and rapid hydrothermal process. • The results show that the GNSs were homogeneously and tightly attached on the surface of SnO{sub 2} NFs. • The SnO{sub 2} NFs/GNSs composites electrode exhibited the enhanced capacitive performances than those of pure GNSs.

  19. Effects of dam and/or seqA mutations on the fatty acid and phospholipid membrane composition of Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Aloui, Amine; Mihoub, Mouadh; Sethom, Mohamed Marwan; Chatti, Abdelwaheb; Feki, Moncef; Kaabachi, Naziha; Landoulsi, Ahmed

    2010-05-01

    We examined the phospholipids (Phls) and the membrane fatty acid (FA) composition in Salmonella enterica serovar Typhimurium dam and/or seqA mutants. Phosphatidylglycerol, phosphatidylethanolamine (PE), and cardiolipin (CL) are the major Phls present in all the strains and accounted for greater than 95% of the total lipid phosphorus. Phosphatidic acid and phosphatidylserine are the minor ones. The seqA mutant showed a decrease in PE and an increase in CL and phosphatidylglycerol proportion compared with the wild-type strain. The same changes were observed with the seqA dam double mutant. However, the dam mutation caused an unusual accumulation of CL with a significant decrease in the PE content, compared with the isogenic wild-type strain. FA composition of the total lipids and the different fractions containing Phls have been determined. The major saturated FAs (SFAs) and unsaturated FAs (UFAs) found were C(14:0), C(16:0) and C(16:1w7), C(18:1w9), respectively. Cyclic FAs, cyc(17:0) and cyc(19:0), were also present in appreciable amounts. Moreover, dam and/or seqA mutations caused a decrease in UFA/SFA ratio and there was a progressive reduction in the content of C(16:1w7) and C(18:1w9), going through the order seqA, dam/seqA, and dam mutants. This decrease in UFA content was compensated for in all strains by an increase in the corresponding C(17-) and C(19-) cyclic FAs. So these UFAs were converted to their cyclopropane derivatives, which resulted in a low UFA/SFA ratio. SeqA and Dam proteins might regulate FA biosynthesis and Phls composition of Salmonella enterica serovar Typhimurium.

  20. Connexin channels and phospholipids: association and modulation

    Directory of Open Access Journals (Sweden)

    Harris Andrew L

    2009-08-01

    Full Text Available Abstract Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion

  1. Preparation of graphene/TiO{sub 2} composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kexin; Xiong, Jingjing; Chen, Tong [Provincial Key Laboratory of Ecological Diagnosis-Remediation and Pollution Blocking Technology, Department of Environment and Chemical Engineering, Nanchang Hangkong Uuniversity, Nanchang 330063 (China); Yan, Liushui, E-mail: yanliushui1964@yahoo.cn [Provincial Key Laboratory of Ecological Diagnosis-Remediation and Pollution Blocking Technology, Department of Environment and Chemical Engineering, Nanchang Hangkong Uuniversity, Nanchang 330063 (China); Dai, Yuhua; Song, Dongyang; Lv, Ying; Zeng, Zhenxing [Provincial Key Laboratory of Ecological Diagnosis-Remediation and Pollution Blocking Technology, Department of Environment and Chemical Engineering, Nanchang Hangkong Uuniversity, Nanchang 330063 (China)

    2013-04-15

    Highlights: ► A series of graphene/TiO{sub 2} composites were developed by nonionic surfactant strategy. ► The textural property, optical property, and composition were well characterized. ► Aqueous POPs were degraded under simulated sunlight and visible light irradiation. ► The degradation mechanism and kinetics of aqueous POPs were studied in detail. ► Mineralization of aqueous POPs and recyclability of the composites were also tested. -- Abstract: A series of graphene/TiO{sub 2} composites were fabricated using a single-step nonionic surfactant strategy combined with the solvothermal treatment technique. Their phase structure, morphology, porosity, optical absorption property, as well as composition and structure, were characterized. The as-prepared composites were successfully applied to degrade aqueous persistent organic pollutants (POPs) such as rhodamine B, aldicarb, and norfloxacin in simulated sunlight (λ > 320 nm) and visible light (λ > 400 nm) irradiation. The degradation mechanism and kinetics of aqueous POPs were studied in detail. The mineralization of aqueous POPs and the recyclability of the composites were also tested in the same condition.

  2. Fabrication and evaluation of valsartan–polymer–surfactant composite nanoparticles by using the supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2014-11-01

    Full Text Available Min-Soo Kim,1 In-hwan Baek21College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, Republic of Korea; 2College of Pharmacy, Kyungsung University, Daeyeon-dong, Nam-gu, Busan, Republic of KoreaAbstract: The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability.Keywords: supersaturation, bioavailability, solid dispersion, dissolution, supercritical fluid

  3. Mitochondrial phospholipids: role in mitochondrial function.

    Science.gov (United States)

    Mejia, Edgard M; Hatch, Grant M

    2016-04-01

    Mitochondria are essential components of eukaryotic cells and are involved in a diverse set of cellular processes that include ATP production, cellular signalling, apoptosis and cell growth. These organelles are thought to have originated from a symbiotic relationship between prokaryotic cells in an effort to provide a bioenergetic jump and thus, the greater complexity observed in eukaryotes (Lane and Martin 2010). Mitochondrial processes are required not only for the maintenance of cellular homeostasis, but also allow cell to cell and tissue to tissue communication (Nunnari and Suomalainen 2012). Mitochondrial phospholipids are important components of this system. Phospholipids make up the characteristic outer and inner membranes that give mitochondria their shape. In addition, these membranes house sterols, sphingolipids and a wide variety of proteins. It is the phospholipids that also give rise to other characteristic mitochondrial structures such as cristae (formed from the invaginations of the inner mitochondrial membrane), the matrix (area within cristae) and the intermembrane space (IMS) which separates the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM). Phospholipids are the building blocks that make up these structures. However, the phospholipid composition of the OMM and IMM is unique in each membrane. Mitochondria are able to synthesize some of the phospholipids it requires, but the majority of cellular lipid biosynthesis takes place in the endoplasmic reticulum (ER) in conjunction with the Golgi apparatus (Fagone and Jackowski 2009). In this review, we will focus on the role that mitochondrial phospholipids play in specific cellular functions and discuss their biosynthesis, metabolism and transport as well as the differences between the OMM and IMM phospholipid composition. Finally, we will focus on the human diseases that result from disturbances to mitochondrial phospholipids and the current research being performed to help

  4. TiO₂/SiO₂ core-shell composite-based sample preparation method for selective extraction of phospholipids from shrimp waste followed by hydrophilic interaction chromatography coupled with quadrupole time-of-flight/mass spectrometry analysis.

    Science.gov (United States)

    Shen, Qing; Cheung, Hon-Yeung

    2014-09-10

    A solid-phase extraction (SPE) procedure, using titania-coated silica (TiO2/SiO2) core-shell composites as the sorbent, combined with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for extraction, visualization, and quantification of phospholipids in shrimp waste (Litopenaeus vannamei). The SPE protocol was optimized, and the best conditions were pH 5 of the loading solvent, 10% aqueous methanol as the washing solvent, and 1.0 mL of chloroform/methanol (1:2, v/v) as eluting solvents. Afterward, the eluate was separated on a diol hydrophilic interaction chromatography (HILIC) column. A total of 69 phospholipid species were identified and determined. The results indicated that, in comparison to previously published methods, this strategy was cost-effective and efficient in extraction, characterization, and determination of phospholipids. Meanwhile, phospholipids were abundant in shrimp waste, most of which contained unsaturated fatty acyl chains, such as 18:3 [α-linolenic acid (ALA)], 20:5 [eicosapentaenoic acid (EPA)], and 22:6 [docosahexaenoic acid (DHA)]. The successful application of this strategy paves the way for full use of traditionally discarded shrimp wastes.

  5. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Madsen, Jens; Kejling, Karin

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd...

  6. Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume

    2013-04-14

    The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA.

  7. Phospholipid containing mixed micelles. Characterization of diheptanoyl phosphatidylcholine (DHPC) and sodium dodecyl sulfate and DHPC and dodecyl trimethylammonium bromide.

    Science.gov (United States)

    Ranganathan, Radha; Vautier-Giongo, Carolina; Bakshi, Mandeep Singh; Bales, Barney L; Hajdu, Joseph

    2005-05-01

    Mixed micelles of l,2-diheptanoyl-sn-grycero-3-phosphocholine (DHPC) with ionic detergents were prepared to develop well characterized substrates for the study of lipolytic enzymes. The aggregates that formed on mixing DHPC with the anionic surfactant sodium dodecyl sulfate (SDS) and with the positively charged dodecyl trimethylammonium bromide (DTAB) were investigated using time-resolved fluorescence quenching (TRFQ) to determine the aggregation numbers and bimolecular collision rates, and electron spin resonance (ESR) to measure the hydration index and microviscosity of the micelles at the micelle-water interface. Mixed micelles between the phospholipid and each of the detergents formed in all compositions, yielding interfaces with varying charge, hydration, and microviscosity. Both series of micelles were found to be globular up to 0.7 mole fraction of DHPC, while the aggregation numbers varied within the same concentration range of the components less than 15%. Addition of the zwitterionic phospholipid component increased the degree of counterion dissociation as measured by the quenching of the fluorescence of pyrene by the bromide ions bound to DHPC/DTAB micelles, showing that at 0.6 mole fraction of DHPC 80% of the bromide ions are dissociated from the micelles. The interface water concentration decreased significantly on addition of DHPC to each detergent. For combined phospholipid and detergent concentration of 50 mM the interface water concentration decreased, as measured by ESR of the spin-probes, from 38.5 M/L of interface volume in SDS alone to 9 M/L when the phospholipid was present at 0.7 mole fraction. Similar addition of DHPC to DTAB decreased the interfacial water concentration from 27 M/L to 11 M/L. Determination of the physicochemical parameters of the phospholipid containing mixed micelles here presented are likely to provide important insight into the design of assay systems for kinetic studies of phospholipid metabolizing enzymes.

  8. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction.

    Science.gov (United States)

    Goetzman, Eric S; Alcorn, John F; Bharathi, Sivakama S; Uppala, Radha; McHugh, Kevin J; Kosmider, Beata; Chen, Rimei; Zuo, Yi Y; Beck, Megan E; McKinney, Richard W; Skilling, Helen; Suhrie, Kristen R; Karunanidhi, Anuradha; Yeasted, Renita; Otsubo, Chikara; Ellis, Bryon; Tyurina, Yulia Y; Kagan, Valerian E; Mallampalli, Rama K; Vockley, Jerry

    2014-04-11

    Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.

  9. MICROBIAL SURFACTANTS. II. LIPOPEPTIDES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2014-04-01

    Full Text Available The classification and the chemical structure of the lipopeptides and their producers (bacteria of the genera Bacillus and Pseudomonas are given. The role of the lipopeptides in cells motility, biofilm formation, metal binding and xenobiotics degradation and their action on the cells of pro- and eukaryotes is summarized. The stages of the nonribosomal lipopeptides synthesis and the role of two-component (GacA/GacS, ComA/ComP and the quorum system regulation of this process are shown. The potential of lactic acid bacteria and marine microorganisms as alternative surfactants producers (glycolipids, lipopeptides, phospholipids and fatty acids, glycolipopeptides are discussed. Their productivity and advantages over traditional producers are given as well. The properties of surfactants synthesized by lactic acid bacteria (the reduction of the surface tension, the critical micelle concentration, the stability in a wide range of pH, the temperature, the biological activity are summarized. Surfactants of nonpathogenic probiotic bacteria could be used as effective antimicrobial agents and antiadhesive and marine producers which able to synthesize unique metabolites that are not produced by other microorganisms.

  10. Alteration of viral lipid composition by expression of the phospholipid floppase ABCB4 reduces HIV vector infectivity

    Directory of Open Access Journals (Sweden)

    van Til Niek P

    2008-02-01

    Full Text Available Abstract Background The presence of cholesterol in the Human Immunodeficiency Virus (HIV lipid envelop is important for viral function as cholesterol depleted viral particles show reduced infectivity. However, it is less well established whether other viral membrane lipids are also important for HIV infection. The ABCB4 protein is a phosphatidyl choline (PC floppase that mediates transport of PC from the inner to the outer membrane leaflet. This property enabled us to modulate the lipid composition of HIV vectors and study the effects on membrane composition and infection efficiency. Results Virus generated in the presence of ABCB4 was enriched in PC and cholesterol but contained less sphingomyelin (SM. Viral titers were reduced 5.9 fold. These effects were not observed with an inactive ABCB4 mutant. The presence of the ABC transport inhibitor verapamil abolished the effect of ABCB4 expression on viral titers. The ABCB4 mediated reduction in infectivity was caused by changes in the viral particles and not by components co purified with the virus because virus made in the presence of ABCB4 did not inhibit virus made without ABCB4 in a competition assay. Incorporation of the envelope protein was not affected by the expression of ABCB4. The inhibitory effect of ABCB4 was independent of the viral envelope as the effect was observed with two different envelope proteins. Conclusion Our data indicate that increasing the PC content of HIV particles reduces infectivity.

  11. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  12. Measurement of the glucose permeation rate across phospholipid bilayers using small unilamellar vesicles. Effect of membrane composition and temperature.

    Science.gov (United States)

    Bresseleers, G J; Goderis, H L; Tobback, P P

    1984-05-30

    Small unilamellar vesicles were used to measure the permeability of saturated phosphatidylcholine bilayers to glucose. The presented method circumvents most of the common restriction of classical permeability experiments. Increasing the fatty acid chain length of the lipids reduced the permeation rate significantly. Raising the temperature above that of the lipid phase transition drastically increased membrane permeability. Arrhenius plots demonstrated the activation energy to be independent of membrane composition and the phase-state of the lipids. The permeation process is discussed in terms of a constant energy to disrupt all hydrogen bonds between permeant and aqueous solvent prior to penetrating the membrane. The magnitude of the permeability coefficient is partly determined by a unfavourable change in entropy of activation on crossing the water/lipid interface. All results indicate that the penetration of the dehydrated permeant into the hydrophobic barrier is the rate-limiting step in the permeation of glucose.

  13. Changes in the Fatty Acid Composition of Brain and Liver Phospholipids from Rats Fed Fat-Free Diet

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2008-01-01

    Full Text Available This study has been undertaken with the aim of elucidating the effect of a fat-free diet (FFD, which is known to be deficient in essential fatty acids (EFA, on the composition of fatty acids in the brain and liver glycerophospholipids of rats. Changes in the stereochemical distribution of fatty acids linked to the sn-1 or sn-2 position were of special interest. Two groups of animals were fed either the control diet (CD or the FFD for two weeks. From the total lipid extracts of the brain and liver tissues, phosphatidylcholine (PC, phosphatidylethanolamine (PE and phosphatidylinositol+phosphatidylserine (PI+PS fractions were separated by column and thin layer chromatography (TLC. After digestion with phospholipase A2 (PLA2, fatty acids from the sn-1 and sn-2 positions were separately converted into methyl esters and analyzed by gas chromatography. In animals fed FFD, the relative levels of unsaturated fatty acids increased in the sn-1 position of the PI+PS fraction in both liver and brain tissues, as well as in the PE fraction from the brain tissue. In other fractions no statistically significant differences were found. When the levels of particular fatty acids were evaluated, significant decreases in the amounts of palmitic (PA, 16:0, stearic (SA, 18:0, and nervonic (NA, 24:1n-9 acids, and/or significant increases of eicosenoic (ENA, 20:1n-9, arachidonic (AA, 20:4n-6 and docosahexaenoic (DHA, 22:6n-3 acids were detected in some fractions. It can be concluded that in the brain and liver glycerophospholipids of rats fed FFD, the EFAs lacking in the diet were moderately substituted by endogenously synthesized unsaturated fatty acids.

  14. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    Science.gov (United States)

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  15. Surfactant-controlled composition and crystal structure of manganese(II sulfide nanocrystals prepared by solvothermal synthesis

    Directory of Open Access Journals (Sweden)

    Elena Capetti

    2015-12-01

    Full Text Available We investigated how the outcome of the solvothermal synthesis of manganese(II sulfide (MnS nanocrystals (NCs is affected by the type and amount of long chain surfactant present in the reaction mixture. Prompted by a previous observation that a larger than stoichiometric amount of sulfur is required [Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti A. Chem. Mater. 2010, 22, 2804–2813], we carried out a wide set of reactions using Mn(II carboxylates and Mn2(CO10 as precursors with varying amounts of sulfur and carboxylic acid. MnS NCs were obtained provided that the S/Mn ratio was larger than the L/Mn ratio, otherwise MnO NCs were produced. Since MnS can crystallize in three distinct phases (rock salt α-MnS, zincblende β-MnS, and wurtzite γ-MnS, we also investigated whether the surfactant affected the NC polymorphism. We found that MnS polymorphism can be controlled by appropriate selection of the surfactant. γ-MnS nanocrystals formed when a 1:2 mixture of long chain carboxylic acid and amine was used, irrespective of the presence of carboxylic acid as a free surfactant or ligand in the metal precursor. When we used a single surfactant (carboxylic acid, alcohol, thiol, amine, α-MnS nanocrystals were obtained. The peculiar role of the amine seems to be related to its basicity. The nanocrystals were characterized by TEM and electron diffraction; ATR-FTIR spectroscopy provided information about the surfactants adsorbed on the NCs.

  16. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. (Tufs Univ., Boston, MA (USA))

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  17. Fatty acid composition in major depression: decreased omega 3 fractions in cholesteryl esters and increased C20: 4 omega 6/C20:5 omega 3 ratio in cholesteryl esters and phospholipids.

    Science.gov (United States)

    Maes, M; Smith, R; Christophe, A; Cosyns, P; Desnyder, R; Meltzer, H

    1996-04-26

    Recently, there were some reports that major depression may be accompanied by alterations in serum total cholesterol, cholesterol ester and omega 3 essential fatty acid levels and by an increased C20: 4 omega 6/C20: 5 omega 3, i.e., arachidonic acid/eicosapentaenoic, ratio. The present study aimed to examine fatty acid composition of serum cholesteryl esters and phospholipids in 36 major depressed, 14 minor depressed and 24 normal subjects. Individual saturated (e.g., C14:0; C16:0, C18:0) and unsaturated (e.g., C18:1, C18:2, C20:4) fatty acids in phospholipid and cholesteryl ester fractions were assayed and the sums of the percentages of omega 6 and omega 3, saturated, branched chain and odd chain fatty acids, monoenes as well as the ratios omega 6/omega 3 and C20:4 omega 6/C20:5 omega 3 were calculated. Major depressed subjects had significantly higher C20:4 omega 6/C20:5 omega 3 ratio in both serum cholesteryl esters and phospholipids and a significantly increased omega 6/omega 3 ratio in cholesteryl ester fraction than healthy volunteers and minor depressed subjects. Major depressed subjects had significantly lower C18:3 omega 3 in cholesteryl esters than normal controls. Major depressed subjects showed significantly lower total omega 3 polyunsaturated fatty acids in cholesteryl esters and significantly lower C20:5 omega 3 in serum cholesteryl esters and phospholipids than minor depressed subjects and healthy controls. These findings suggest an abnormal intake or metabolism of essential fatty acids in conjunction with decreased formation of cholesteryl esters in major depression.

  18. Switchable Surfactants

    National Research Council Canada - National Science Library

    Yingxin Liu; Philip G. Jessop; Michael Cunningham; Charles A. Eckert; Charles L. Liotta

    2006-01-01

    .... We report that long-chain alkyl amidine compounds can be reversibly transformed into charged surfactants by exposure to an atmosphere of carbon dioxide, thereby stabilizing water/alkane emulsions...

  19. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  20. Exogenous surfactant suppresses inflammation in experimental endotoxin-induced lung injury.

    Science.gov (United States)

    Mittal, Neha; Sanyal, Sankar Nath

    2009-01-01

    Our objective was to evaluate the anti-inflammatory effects of exogenous surfactant and surfactant phospholipids on the lipopolysaccharide (LPS)-induced lung injury. Exogenous surfactant (porcine surfactant) and surfactant phospholipid (dipalmitoyl phospholipid DPPC, hexadecanol, tylaxopol) were instilled intratracheally with LPS in rats. Expression of surfactant apoproteins (SP-A) and the cyclooxygenase enzymes (COX-1 and -2) was studied by immunohistochemistry, and apoptosis was analyzed by in situ terminal dUTP nick end labeling TUNEL assay. The intracellular reactive oxygen species (ROS) was measured in the isolated macrophages by fluorescence measurement with dichlorofluorescein diacetate (DCFH-DA). LPS-induced oxidative burst and apoptosis at 72 hours were reduced by both porcine and synthetic surfactant. SP-A as well as COX-1 and -2 expressions were suppressed with synthetic surfactant treatment, whereas with porcine surfactant (P-SF) the SP-A expression was enhanced in response to LPS administration. These results indicate that exogenous surfactant inhibits LPS-induced inflammation. This anti-inflammatory activity may be an important outcome of surfactant therapy in endotoxin-induced respiratory distress.

  1. Role of lung surfactant in respiratory disease: current knowledge in large animal medicine.

    Science.gov (United States)

    Christmann, U; Buechner-Maxwell, V A; Witonsky, S G; Hite, R D

    2009-01-01

    Lung surfactant is produced by type II alveolar cells as a mixture of phospholipids, surfactant proteins, and neutral lipids. Surfactant lowers alveolar surface tension and is crucial for the prevention of alveolar collapse. In addition, surfactant contributes to smaller airway patency and improves mucociliary clearance. Surfactant-specific proteins are part of the innate immune defense mechanisms of the lung. Lung surfactant alterations have been described in a number of respiratory diseases. Surfactant deficiency (quantitative deficit of surfactant) in premature animals causes neonatal respiratory distress syndrome. Surfactant dysfunction (qualitative changes in surfactant) has been implicated in the pathophysiology of acute respiratory distress syndrome and asthma. Analysis of surfactant from amniotic fluid allows assessment of fetal lung maturity (FLM) in the human fetus and exogenous surfactant replacement therapy is part of the standard care in premature human infants. In contrast to human medicine, use and success of FLM testing or surfactant replacement therapy remain limited in veterinary medicine. Lung surfactant has been studied in large animal models of human disease. However, only a few reports exist on lung surfactant alterations in naturally occurring respiratory disease in large animals. This article gives a general review on the role of lung surfactant in respiratory disease followed by an overview of our current knowledge on surfactant in large animal veterinary medicine.

  2. Biomimicry of surfactant protein C.

    Science.gov (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  3. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    Science.gov (United States)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  4. Influence of phospholipid composition on self-assembly and energy-transfer efficiency in networks of light-harvesting 2 complexes.

    Science.gov (United States)

    Sumino, Ayumi; Dewa, Takehisa; Noji, Tomoyasu; Nakano, Yuki; Watanabe, Natsuko; Hildner, Richard; Bösch, Nils; Köhler, Jürgen; Nango, Mamoru

    2013-09-12

    In the photosynthetic membrane of purple bacteria networks of light-harvesting 2 (LH2) complexes capture the sunlight and transfer the excitation energy. In order to investigate the mutual relationship between the supramolecular organization of the pigment-protein complexes and their biological function, the LH2 complexes were reconstituted into three types of phospholipid membranes, consisting of L-α-phosphatidylglycerol (PG), L-α-phosphatidylcholine (PC), and L-α-phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Atomic force microscopy (AFM) revealed that the type of phospholipids had a crucial influence on the clustering tendency of the LH2 complexes increased from PG over PC to PE/PG/CL, where the LH2 complexes formed large, densely packed clusters. Time-resolved spectroscopy uncovered a strong quenching of the LH2 fluorescence that is ascribed to singlet-singlet and singlet-triplet annihilation by an efficient energy transfer between the LH2 complexes in the artificial membrane systems. Quantitative analysis reveals that the intercomplex energy transfer efficiency varies strongly as a function of the morphology of the nanostructure, namely in the order PE/PG/CL > PC > PG, which is in line with the clustering tendency of LH2 observed by AFM. These results suggest a strong influence of the phospholipids on the self-assembly of LH2 complexes into networks and concomitantly on the intercomplex energy transfer efficiency.

  5. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  6. Degradation of cholesterol crystals in phospholipids

    Science.gov (United States)

    Koren, Eugen; Koscec, Mirna; Fugate, Robert D.

    1993-02-01

    Based on previous studies from the laboratory that demonstrated degradation of cholesterol crystals ingested by macrophages in a cell culture system and indicated that intracellular phospholipids could play an important role in mobilization of crystalline cholesterol, the role of each of the three major intracellular phospholipid species in degradation of crystals is further explored. Fluorescently labeled cholesterol crystals are incubated with phospholipids over a period of 5 d. Morphological changes in crystals are monitored using digital imaging fluorescence microscopy, fluorescence redistribution after photobleaching, confocal microscopy, and epifluorescent and phase contrast microscopy. Results clearly demonstrate that all three phospholipids are able to mobilize crystalline cholesterol. However, the mechanisms by which they exert mobilization are different. Sphingomyelin and phosphatidylchloline are found to cause gradual and uniform dissolution of crystals, more or less preserving their original shape. Phosphatidylethanolamine appear to penetrate into the crystal, causing its fragmentation and solubilization. In the mixture of all three phospholipids representing the composition found in macrophages, both of the described mechanisms are working simultaneously.

  7. Efficient separation of semiconducting single-wall carbon nanotubes by surfactant-composition gradient in gel filtration

    Science.gov (United States)

    Thendie, Boanerges; Omachi, Haruka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-01-01

    Gel filtration is a powerful method of separating and purifying semiconducting single-wall carbon nanotubes (s-SWCNTs) from their metallic (m-) counterpart. However, a small amount of m-SWCNTs usually remains, thus reducing the purity of the s-SWCNTs obtained. We have investigated the effect of elution with a gradient concentration of the surfactant on the separation and purity of s-SWCNTs. By utilizing the controlled low-gradient elution (CLGE) that we have developed, the purity of s-SWCNTs is improved to 94% from the 90% obtained with the conventional separation. Furthermore, CLGE simultaneously allows diameter-based separation of small-diameter s-SWCNTs, which indicates a promising utilization of CLGE for s-SWCNT separation.

  8. Blood clotting reactions on nanoscale phospholipid bilayers.

    Science.gov (United States)

    Morrissey, James H; Pureza, Vincent; Davis-Harrison, Rebecca L; Sligar, Stephen G; Ohkubo, Y Zenmei; Tajkhorshid, Emad

    2008-01-01

    Blood clotting reactions, such as those catalyzed by the tissue factor:factor VIIa complex (TF:FVIIa), assemble on membrane surfaces containing anionic phospholipids such as phosphatidylserine (PS). In fact, membrane binding is critical for the function of most of the steps in the blood clotting cascade. In spite of this, our understanding of how the membrane contributes to catalysis, or even how these proteins interact with phospholipids, is incomplete. Making matters more complicated, membranes containing mixtures of PS and neutral phospholipids are known to spontaneously form PS-rich membrane microdomains in the presence of plasma concentrations of calcium ions, and it is likely that blood-clotting proteases such as TF:FVIIa partition into these PS-rich microdomains. Unfortunately, little is known about how membrane microdomain composition influences the activity of blood-clotting proteases, which is typically not under experimental control even in "simple" model membranes. Our laboratories have developed and applied new technologies for studying membrane proteins to gain insights into how blood-clotting protease-cofactor pairs assemble and function on membrane surfaces. This includes using a novel, nanoscale bilayer system (Nanodiscs) that permits assembling blood-clotting protease-cofactor pairs on stable bilayers containing from 65 to 250 phospholipid molecules per leaflet. We have used this system to investigate how local (nanometer-scale) changes in phospholipid bilayer composition modulate TF:FVIIa activity. We have also used detailed molecular-dynamics simulations of nanoscale bilayers to provide atomic-scale predictions of how the membrane-binding domain of factor VIIa interacts with PS in membranes.

  9. Phospholipids and sports performance

    Directory of Open Access Journals (Sweden)

    Purpura Martin

    2007-07-01

    Full Text Available Abstract Phospholipids are essential components of all biological membranes. Phosphatidylcholine (PC and Phosphatidylserine (PS are Phosphatidyl-phospholipids that are required for normal cellular structure and function. The participation in physical activity often challenges a variety of physiological systems; consequently, the ability to maintain normal cellular function during activity can determine sporting performance. The participation in prolonged intense exercise has been shown to reduce circulatory choline concentrations in some individuals. As choline is a pre-cursor to the neurotransmitter Acetylcholine, this finding has encouraged researchers to investigate the hypothesis that supplementation with PC (or choline salts could enhance sporting performance. Although the available data that evaluates the effects of PC supplementation on performance are equivocal, acute oral supplementation with PC (~0.2 g PC per kg body mass has been demonstrated to improve performance in a variety of sporting activities where exercise has depleted circulatory choline concentrations. Short term oral supplementation with soy-derived PS (S-PS has been reported to attenuate circulating cortisol concentrations, improve perceived well-being, and reduce perceived muscle soreness after exercise. More recently, short term oral supplementation (750 mg per day of S-PS for 10 days has been demonstrated to improve exercise capacity during high intensity cycling and tended to increase performance during intermittent running. Although more research is warranted to determine minimum dietary Phospholipid requirements for optimal sporting performance, these findings suggest that some participants might benefit from dietary interventions that increase the intakes of PC and PS.

  10. Effect of Nanoadditives with Surfactant on the Surface Characteristics of Electroless Nickel Coating on Magnesium-Based Composites Reinforced with MWCNT

    Directory of Open Access Journals (Sweden)

    Ranganathan Dhinakaran

    2013-01-01

    Full Text Available An experimental investigation has been carried out on optimizing process parameters of electroless nickel-phosphorous coatings on magnesium composite reinforced with carbon nanotube. A comprehensive experimental study of electroless Ni–P coatings on magnesium composite reinforced with multiwalled carbon nanotube under specific coating conditions was performed. The electroless coating bath consists of nickel sulphate (26 g/L, sodium hypo-phosphite (30 g/L as reducing agent, sodium acetate (16 g/L as stabilizer, and ammonium hydrogen difluoride (8 g/L as the complexing agent. The surfactant SLS was added in the solution for better wetting and spreading of coating on substrate. The stabilizer thiourea (1 ppm was added in the bath to prevent decomposition of bath. Different nanoadditives such as ZnO, Al2O3, SiO with various concentrations were used in the bath and their influence on coating process characteristics were studied The nano additives such as ZnO, Al2O3, SiO were added at concentrations of 0.1%, 0.5%, 1%, and 2% in the EN bath. The output parameters such as surface roughness, microhardness, specific wear rate, and surface morphology were measured. Surface morphology was studied using scanning electron microscope. The results showed that the proposed method resulted in significant improvement on the quality of the coatings produced.

  11. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc.

    Science.gov (United States)

    Iwanyshyn, Wendy M; Han, Gil-Soo; Carman, George M

    2004-05-21

    Zinc is an essential nutrient required for the growth and metabolism of eukaryotic cells. In this work, we examined the effects of zinc depletion on the regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Zinc depletion resulted in a decrease in the activity levels of the CDP-diacylglycerol pathway enzymes phosphatidylserine synthase, phosphatidylserine decarboxylase, phosphatidylethanolamine methyltransferase, and phospholipid methyltransferase. In contrast, the activity of phosphatidylinositol synthase was elevated in response to zinc depletion. The level of Aut7p, a marker for the induction of autophagy, was also elevated in zinc-depleted cells. For the CHO1-encoded phosphatidylserine synthase, the reduction in activity in response to zinc depletion was controlled at the level of transcription. This regulation was mediated through the UAS(INO) element and by the transcription factors Ino2p, Ino4p, and Opi1p that are responsible for the inositol-mediated regulation of UAS(INO)-containing genes involved in phospholipid synthesis. Analysis of the cellular composition of the major membrane phospholipids showed that zinc depletion resulted in a 66% decrease in phosphatidylethanolamine and a 29% increase in phosphatidylinositol. A zrt1Delta zrt2Delta mutant (defective in the plasma membrane zinc transporters Zrt1p and Zrt2p) grown in the presence of zinc exhibited a phospholipid composition similar to that of wild type cells depleted for zinc. These results indicated that a decrease in the cytoplasmic levels of zinc was responsible for the alterations in phospholipid composition.

  12. Is surfactant a promising additive drug in ALI/ARDS-patients?

    NARCIS (Netherlands)

    Schultz, MJ; Kesecioglu, J

    2004-01-01

    The rationale for surfactant replacement therapy in patients with acute respiratory distress syndrome (ARDS) is to restore the normal composition of the surfactant system, as well as to overcome ongoing inactivation of present surfactant. Indeed, surfactant replacement therapy call normalize the com

  13. Influence of dietary docosahexaenoic acid in combination with other long-chain polyunsaturated fatty acids on expression of biosynthesis genes and phospholipid fatty acid compositions in tissues of post-smolt Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Betancor, Mónica B; Howarth, Fraser J E; Glencross, Brett D; Tocher, Douglas R

    2014-01-01

    To investigate interactions of dietary LC-PUFA, a dose-response study with a range of docosahexaenoic acid (DHA; 22:6n-3) levels (1 g kg(-1), 5 g kg(-1), 10 g kg(-1), 15 g kg(-1) and 20 g kg(-1)) was performed with post-smolts (111 ± 2.6g; mean ± S.D.) over a nine-week feeding period. Additional diets included 10 g kg(-1) DHA in combination with 10 g kg(-1) of either eicosapentaenoic acid (EPA; 20:5n-3) or arachidonic acid (ARA; 20:4n-6), and a diet containing 5 g kg(-1) each of DHA and EPA. The liver, brain, head kidney and gill were collected at the conclusion of the trial, and lipid and fatty acid compositions were determined as well as expression of genes of LC-PUFA biosynthesis. Total lipid content and class composition were largely unaffected by changes in dietary LC-PUFA. However, phospholipid (PL) fatty acid compositions generally reflected that of the diet, although the response varied between tissues. The liver most strongly reflected diet, followed by the head kidney. In both tissues increasing dietary DHA led to significantly increased DHA in PL and inclusion of EPA or ARA led to higher levels of these fatty acids. The brain showed the most conserved composition and gene expression profile, with increased dietary LC-PUFA resulting in only minor changes in PL fatty acids. Dietary LC-PUFA significantly affected the expression of Δ6 and Δ5 desaturases, Elovl 2, 4 and 5, and SREBPs although this varied between tissues with greatest effects observed in the liver followed by the head kidney, similar to PL fatty acid compositions.

  14. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water.

    Science.gov (United States)

    Stathatos, E; Papoulis, D; Aggelopoulos, C A; Panagiotaras, D; Nikolopoulou, A

    2012-04-15

    Microfibrous palygorskite clay mineral and nanocrystalline TiO(2) are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 500°C. The synthesis involves a simple chemical method employing nonionic surfactant molecule as pore directing agent along with the acetic acid-based sol-gel route without direct addition of water molecules. Drying and thermal treatment of composite films lead to the elimination of organic material while ensure the formation of TiO(2) nanoparticles homogeneously distributed on the surface of the palygorskite microfibers. TiO(2) nanocomposite films without cracks consisted of small crystallites in size (12-16 nm) and anatase crystal phase was found to cover palygorskite microfibers. The composite films were characterized by microscopy techniques, UV-vis, IR spectroscopy, and porosimetry methods in order to examine their structural properties. Palygorskite/TiO(2) composite films with variable quantities of palygorskite (0-2 w/w ratio) were tested as new photocatalysts in the photo-discoloration of Basic Blue 41 azo-dye in water. These nanocomposite films proved to be very promising photocatalysts and highly effective to dye's discoloration in spite of the small amount of immobilized palygorskite/TiO(2) catalyst onto glass substrates. 3:2 palygorskite/TiO(2) weight ratio was finally the most efficient photocatalyst while reproducible discoloration results of the dye were obtained after three cycles with same catalyst. It was also found that palygorskite showed a positive synergistic effect to the TiO(2) photocatalysis.

  15. Regional distribution of phospholipids in porcine vitreous humor.

    Science.gov (United States)

    Schnepf, Abigail; Yappert, Marta Cecilia; Borchman, Douglas

    2017-07-01

    This project explores the regional phospholipid distribution in porcine vitreous humor, retina, and lens. Matrix-assisted laser desorption mass spectrometry has been used previously to image lipids, proteins, and other metabolites in retinas and lenses. However, the regional composition of phospholipids in vitreous humors is not known. To address this issue, we have applied this mass spectral method to explore the regional phospholipid distribution in porcine vitreous humor both ex-situ and in-vitro. To establish the possible source(s) of phospholipids in the vitreous humor, compositional studies of the lens and retina were also pursued. Due to the overall low levels of phospholipids in vitreous humor, it was necessary to optimize the experimental approaches for ex-situ and in-vitro studies. The sensitivity observed in the spectra of methanol extracts from the lens and retina was higher than that for methanol:chloroform extracts, but the compositional trends were the same. A fourfold improvement in sensitivity was observed in the analysis of vitreous humor extracts obtained with the Bligh and Dyer protocol relative to the other two extraction methods. For ex-situ studies, the 'stamp method' with para-nitroaniline as the matrix was chosen. Throughout the vitreous humor, phosphatidylcholines were the most abundant phospholipids. In-vitro results showed higher relative levels of phospholipids compared to the 'stamp' method. However, more details in the regional phospholipid distribution were provided by the ex-situ approach. Both in-vitro and ex-situ results indicated higher levels of phospholipids in the posterior vitreous region, followed by the anterior and central regions. The posterior region contained more unsaturated species whereas more saturated phospholipids were detected in the anterior region. The observed trends suggest that the phospholipids detected in the posterior vitreous humor migrate from the retina and associated vasculature while those present in

  16. Looking Beyond Structure: Membrane Phospholipids of Skeletal Muscle Mitochondria.

    Science.gov (United States)

    Heden, Timothy D; Neufer, P Darrell; Funai, Katsuhiko

    2016-08-01

    Skeletal muscle mitochondria are highly dynamic and are capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Phospholipidic Monolayers on Formamide

    Science.gov (United States)

    Graner, François; Perez-Oyarzun, Santiago; Saint-Jalmes, Arnaud; Flament, Cyrille; Gallet, François

    1995-02-01

    We report the first phase diagram of a Langmuir film at the air-formamide interface. Stable films of phospholipids such as DPPC or DSPC undergo phase transitions observed on isotherms or by fluorescence microscopy. They display bidimensional gas, liquid and solid phases, as well as two mesophases; the latter coexist with liquid on a sharp first-order transition plateau. We compare these observations with known results on films on water. Nous présentons le premier diagramme de phase d'un film de Langmuir à l'interface air-formamide. On observe, sur des isothermes et par microscopie de fluorescence, des transitions de phase dans des films stables de phospholipides comme le DPPC ou le DSPC. Cinq phases bidimensionnelles sont mises en évidence : gaz, liquide, solide, ainsi que deux mésophases ; ces deux dernières coexistent avec le liquide sur un plateau très marqué de transition du premier ordre. Nous comparons ces observations avec les résultats connus pour les films sur l'eau.

  18. The use of surfactant in lung transplantation.

    Science.gov (United States)

    Amital, Anat; Shitrit, David; Raviv, Yael; Saute, Milton; Medalion, Benjamin; Bakal, Llana; Kramer, Mordechai R

    2008-12-15

    Lung transplantation impairs surfactant activity, which may contribute to primary graft dysfunction (PGD). Prompted by studies in animals and a few reports in humans, this study sought to determine if the administration of surfactant during transplantation serves as an effective preventive measure. An open, randomized, controlled prospective design was used. Forty-two patients scheduled for single (n=38) or double (n=4) lung transplantation at a major tertiary medical center were randomly assigned to receive, or not, intraoperative surfactant treatment. In the treated group, bovine surfactant was administered at a dose of 20 mg phospholipids/kg through bronchoscope after the establishment of bronchial anastomosis. The groups were compared for oxygenation (PaO2/FiO2), chest X-ray findings, PGD grade, and outcome. Compared with the untreated group, the patients who received surfactant were characterized by better postoperative oxygenation mean PaO2/FiO2 (418.8+/-123.8 vs. 277.9+/-165 mm Hg, P=0.004), better chest radiograph score, a lower PGD grade (0.66 vs. 1.86, P=0.005), fewer cases of severe PGD (1 patient vs. 12, P<0.05), earlier extubation (by 2.2 hr; 95% CI 1.1-4.3 hr, P=0.027), shorter intensive care unit stay (by 2.3 days; 95% CI 1.47-3.74 days, P=0.001), and better vital capacity at 1 month (61% vs. 50%, P=0.022). One treated and 2 untreated patients died during the first postoperative month. Surfactant instillation during lung transplantation improves oxygenation, prevents PGD, shortens intubation time, and enhances early posttransplantation recovery. Further, larger studies are needed to assess whether surfactant should be used routinely in lung transplantation.

  19. Surfactants and the Mechanics of Respiration

    Science.gov (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  20. Synthesis of Photoactivatable Phospholipidic Probes

    Institute of Scientific and Technical Information of China (English)

    Qing PENG; Fan Qi QU; Yi XIA; Jie Hua ZHOU; Qiong You WU; Ling PENG

    2005-01-01

    We synthesized and characterized photoactivatable phospholipidic probes 1-3. These probes have the perfluorinated aryl azide function at the polar head of phospholipid. They are stable in dark and become highly reactive upon photoirradiation. The preliminary results suggest that they are promising tools to study the topology of membrane proteins and protein-lipid interactions using photolabeling approach.

  1. Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

    Directory of Open Access Journals (Sweden)

    Alexei Birkun

    2014-01-01

    Full Text Available Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium in vitro and to identify appropriate combination(s for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa. Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia.

  2. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes.

    Science.gov (United States)

    Kadoya, Chikara; Lee, Byeong-Woo; Ogami, Akira; Oyabu, Takako; Nishi, Ken-ichiro; Yamamoto, Makoto; Todoroki, Motoi; Morimoto, Yasuo; Tanaka, Isamu; Myojo, Toshihiko

    2016-01-01

    The health risks of inhalation exposure to engineered nanomaterials in the workplace are a major concern in recent years, and hazard assessments of these materials are being conducted. The pulmonary surfactant of lung alveoli is the first biological entity to have contact with airborne nanomaterials in inhaled air. In this study, we retrospectively evaluated the pulmonary surfactant components of rat lungs after a 4-week inhalation exposure to three different nanomaterials: fullerenes, nickel oxide (NiO) nanoparticles and multi-walled carbon nanotubes (MWCNT), with similar levels of average aerosol concentration (0.13-0.37 mg/m(3)). Bronchoalveolar lavage fluid (BALF) of the rat lungs stored after previous inhalation studies was analyzed, focusing on total protein and the surfactant components, such as phospholipids and surfactant-specific SP-D (surfactant protein D) and the BALF surface tension, which is affected by SP-B and SP-C. Compared with a control group, significant changes in the BALF surface tension and the concentrations of phospholipids, total protein and SP-D were observed in rats exposed to NiO nanoparticles, but not in those exposed to fullerenes. Surface tension and the levels of surfactant phospholipids and proteins were also significantly different in rats exposed to MWCNTs. The concentrations of phospholipids, total protein and SP-D and BALF surface tension were correlated significantly with the polymorphonuclear neutrophil counts in the BALF. These results suggest that pulmonary surfactant components can be used as measures of lung inflammation.

  3. Thermally cleavable surfactants

    Science.gov (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  4. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  5. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  6. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.

    Science.gov (United States)

    Tan, Dongsheng; Liu, Liuxu; Li, Zhen; Fu, Qiang

    2015-08-01

    To improve blood compatibility of polyurethane (PU), phospholipids grafted carbon nanotubes (CNTs) were prepared through zwitterion-mediated cycloaddition reaction and amide condensation, and then were added to the PU as fillers via solution mixing to form biomimetic surface. The properties of phospholipids grafted CNTs (CNT-PC) were investigated by thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance ((1) H NMR). The results indicated that the phospholipids were grafted onto CNTs in high efficiency, and the hydrophilicity and dispersibility of the modified CNTs were improved effectively. The structures and properties of composites containing CNT-PC were investigated by optical microscope, XPS, and water contact angles. The results indicated that phospholipids were enriched on the surface with addition of 0.1 wt % of CNT-PC, which significantly reduced protein adsorption and platelet adhesion. The method of carrying phospholipids on the nanofiller to modify polymers has provided a promising way of constructing biomimetic phospholipid membrane on the surface to improve blood compatibility.

  7. Biophysicochemical Interaction of a Clinical Pulmonary Surfactant with Nanoalumina.

    Science.gov (United States)

    Mousseau, F; Le Borgne, R; Seyrek, E; Berret, J-F

    2015-07-01

    We report on the interaction of pulmonary surfactant composed of phospholipids and proteins with nanometric alumina (Al2O3) in the context of lung exposure and nanotoxicity. We study the bulk properties of phospholipid/nanoparticle dispersions and determine the nature of their interactions. The clinical surfactant Curosurf, both native and extruded, and a protein-free surfactant are investigated. The phase behavior of mixed surfactant/particle dispersions was determined by optical and electron microscopy, light scattering, and zeta potential measurements. It exhibits broad similarities with that of strongly interacting nanosystems such as polymers, proteins or particles, and supports the hypothesis of electrostatic complexation. At a critical stoichiometry, micron-sized aggregates arising from the association between oppositely charged vesicles and nanoparticles are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their structural integrity and trap the particles at their surfaces. The agglomeration of particles in surfactant phase is a phenomenon of importance that could change the interactions of the particles with lung cells.

  8. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.

    Science.gov (United States)

    Goldsipe, Arthur; Blankschtein, Daniel

    2007-05-22

    In article 1 of this series, we developed a molecular-thermodynamic (MT) theory to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. In this article, we extend the MT theory to model mixtures containing a pH-sensitive surfactant. The MT theory was validated by examining mixtures containing both a pH-sensitive surfactant and a conventional surfactant, which effectively behave like ternary surfactant mixtures. We first compared the predicted micellar titration data to experimental micellar titration data that we obtained for varying compositions of mixed micelles containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) mixed with either a cationic surfactant (dodecyltrimethylammonium bromide, C12TAB), a nonionic surfactant (dodecyl octa(ethylene oxide), C12E8), or an anionic surfactant (sodium dodecyl sulfate, SDS) surfactant. The MT theory accurately modeled the titration behavior of C12DAO mixed with C12E8. However, C12DAO was observed to interact more favorably with SDS and with C12TAB than was predicted by the MT theory. We also compared predictions to data from the literature for mixtures of C12DAO and SDS. Although the pH values of solutions with no added acid were modeled with only qualitative accuracy, the MT theory resulted in quantitatively accurate predictions of solution pH for mixtures containing added acid. In addition, the predicted degree of counterion binding yielded a lower bound to the experimentally measured value. Finally, we predicted the critical micelle concentration (cmc) of solutions of two pH-sensitive surfactants, tetradecyldimethylamine oxide (C14DAO) and hexadecyldimethyl betaine (C16Bet), at varying solution pH and surfactant composition. However, at the pH values considered, the pH sensitivity of C16Bet could be neglected, and it was equivalently modeled as a zwitterionic surfactant. The cmc's predicted using the MT theory agreed well with the experimental

  9. Biophysicochemical interaction of a clinical pulmonary surfactant with nano-alumina

    CERN Document Server

    Mousseau, F; Seyrek, E; Berret, J -F

    2015-01-01

    We report on the interaction of pulmonary surfactant composed of phospholipids and proteins with nanometric alumina (Al2O3) in the context of lung exposure and nanotoxicity. We study the bulk properties of phospholipid/nanoparticle dispersions and determine the nature of their interactions. The clinical surfactant Curosurf, both native and extruded, and a protein-free surfactant are investigated. The phase behavior of mixed surfactant/particle dispersions was determined by optical and electron microscopy, light scattering and zeta potential measurements. It exhibits broad similarities with that of strongly interacting nanosystems such as polymers, proteins or particles, and supports the hypothesis of electrostatic complexation. At a critical stoichiometry, micron sized aggregates arising from the association between oppositely charged vesicles and nanoparticles are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their structural integrity and...

  10. 原油组成对碱-表面活性剂-聚合物三元复合驱的影响%Effect of crude oil composition on ternary composite alkali-surfactant-polymer flooding

    Institute of Scientific and Technical Information of China (English)

    孙哲; 孙学法; 卢祥国; 陈欣; 喻琴; 田春雨

    2016-01-01

    The interactions between oil/water samples from different districts in Daqing oilfield with ternary composite alkali-surfactant-polymer(ASP) system were studied. The effects of the crude oil compositions on the crude oil production increment with the ASP system and the properties of the produced fluid were studied. The oil/water samples,extracted active ingredients,raffinate oil and sulfur content in the oil phase were analyzed by means of FTIR,GC-MS and XRF. It was showed that,the characteristic peaks of the active ingredients in the oil/water samples accorded with the features of typical saturated monocarboxylic acids(fatty acids and naphthenic acids). The concentration ofn-alkanes with heavy component in the raffinate oil from the Lamadian oil/water sample was higher,and its composition was closer to that of the surfactant(heavy alkylbenzene sulfonates). It was indicated that,the interfacial tensions between the ASP system and the active ingredients in the oil/water samples or the raffinate oil were high, but there were ultra-low interfacial tensions between the ASP system and the crude oils.%采用大庆油田不同区域油水样与碱-表面活性剂-聚合物(ASP)三元复合体系相互作用,研究了原油组成对三元复合驱增油效果及采出液性质的影响;采用FTIR,GC-MS,XRF等方法对原油油水样、萃取活性组分、萃余油组分及油相中硫元素含量进行表征。表征结果显示,各油水样中的萃取活性组分均具有典型一元饱和羧酸(脂肪酸和环烷酸)峰值特征,喇嘛甸油水样萃余油正构烷烃中的重质组分含量较高,其组成与表面活性剂重烷基苯磺酸盐的组分更接近。实验结果表明,油水样中萃取活性组分及萃余油与三元复合体系间界面张力虽较高,但原油与三元复合体系间却可实现超低界面张力。

  11. Health effects of dietary phospholipids

    Directory of Open Access Journals (Sweden)

    Küllenberg Daniela

    2012-01-01

    Full Text Available Abstract Beneficial effects of dietary phospholipids (PLs have been mentioned since the early 1900's in relation to different illnesses and symptoms, e.g. coronary heart disease, inflammation or cancer. This article gives a summary of the most common therapeutic uses of dietary PLs to provide an overview of their approved and proposed benefits; and to identify further investigational needs. From the majority of the studies it became evident that dietary PLs have a positive impact in several diseases, apparently without severe side effects. Furthermore, they were shown to reduce side effects of some drugs. Both effects can partially be explained by the fact that PL are highly effective in delivering their fatty acid (FA residues for incorporation into the membranes of cells involved in different diseases, e.g. immune or cancer cells. The altered membrane composition is assumed to have effects on the activity of membrane proteins (e.g. receptors by affecting the microstructure of membranes and, therefore, the characteristics of the cellular membrane, e.g. of lipid rafts, or by influencing the biosynthesis of FA derived lipid second messengers. However, since the FAs originally bound to the applied PLs are increased in the cellular membrane after their consumption or supplementation, the FA composition of the PL and thus the type of PL is crucial for its effect. Here, we have reviewed the effects of PL from soy, egg yolk, milk and marine sources. Most studies have been performed in vitro or in animals and only limited evidence is available for the benefit of PL supplementation in humans. More research is needed to understand the impact of PL supplementation and confirm its health benefits.

  12. Innovation in surfactant therapy I: surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques.

    Science.gov (United States)

    Dargaville, Peter A

    2012-01-01

    Innovation in the field of exogenous surfactant therapy continues more than two decades after the drug became commercially available. One such innovation, lung lavage using dilute surfactant, has been investigated in both laboratory and clinical settings as a treatment for meconium aspiration syndrome (MAS). Studies in animal models of MAS have affirmed that dilute surfactant lavage can remove meconium from the lung, with resultant improvement in lung function. In human infants both non-randomised studies and two randomised controlled trials have demonstrated a potential benefit of dilute surfactant lavage over standard care. The largest clinical trial, performed by our research group in infants with severe MAS, found that lung lavage using two 15-ml/kg aliquots of dilute surfactant did not reduce the duration of respiratory support, but did appear to reduce the composite outcome of death or need for extracorporeal membrane oxygenation. A further trial of lavage therapy is planned to more precisely define the effect on survival. Innovative approaches to surfactant therapy have also extended to the preterm infant, for whom the more widespread use of continuous positive airway pressure (CPAP) has meant delaying or avoiding administration of surfactant. In an effort to circumvent this problem, less invasive techniques of bolus surfactant therapy have been trialled, including instillation directly into the pharynx, via laryngeal mask and via brief tracheal catheterisation. In a recent clinical trial, instillation of surfactant into the trachea using a flexible feeding tube was found to reduce the need for subsequent intubation. We have developed an alternative method of brief tracheal catheterisation in which surfactant is delivered via a semi-rigid vascular catheter inserted through the vocal cords under direct vision. In studies to date, this technique has been relatively easy to perform, and resulted in rapid improvement in lung function and reduced need for

  13. Vesicle formation and stability in the surfactant sodium 4-(1'-heptylnonyl) benzenesulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I.; Talmon, Y.; Scriven, L.E.; Davis, H.T.; Miller, W.G.

    1982-04-01

    Surfactants composed of a hydrophilic moiety covalently attached to the end of a hydrocarbon chain (e.g., sodium dodecyl sulfate), spontaneously form micelles, equilibrium aggregates, in solution if the surfactant concentration exceeds a critical value called the CMC. Naturally occurring double-tail surfactants (e.g., phospholipids) are not known to form micelles. Over a considerable range in surfactant concentration, 2 phases coexist in equilibrium: a hydrated, multilamellar (smectic) surfactant phase and an aqueous phase saturated with surfactant. In this report the preparation of vesicles, their direct, unstained visualization by electron microscopy, and investigation of their stability and structure by turbidimetry, conductimetry, light microscopy, densitometry, scanning calorimetry, and nuclear magnetic resonance spectroscopy are discussed. Dispersed liquid crystal was studied by the same means. For comparison, parallel studies on bovine lecithin are presented. From the results, it is concluded that these vesicles may be stable for many months, but eventually revert to multilamellar liquid crystals.

  14. NMR analyses of deuterated phospholipids isolated from Pichia angusta

    Science.gov (United States)

    Massou, S.; Augé, S.; Tropis, M.; Lindley, N. D.; Milon, A.

    1998-02-01

    The phospholipid composition of methylotrophic yeasts grown on deuterated and hydrogenated media has been determined by proton and phosphorus NMR. By using a line narrowing solvent, we could obtain linewidth lower than 2 Hz, and all the resonances could be resolved. Phospholipids were identified on the basis of their chemical shift and by 31P - H correlations (HMQC - HOHAHA gradient enhanced experiments). We have thus analysed qualitatively and quantitatively lipids mixtures directly after chloroform-methanol extraction. The lipid composition is deeply modified after growth in deuterated medium were phosphatidyl Inositol (PI) becomes the major lipid, instead of a PC, PS, PI mixture in hydrogenated conditions. La composition en phospholipides de levures méthylotrophes ayant poussé sur des milieux de cultures hydrogénés et deutériés a été déterminée par RMN du proton et du phosphore31. L'utilisation d'un solvant d'affinement a permis d'obtenir des largeurs de raies inférieures à 2Hz et de résoudre toutes les classes de phospholipides. Ils sont ensuite identifiés par leur déplacement chimique et par des corrélations phosphore - proton spécifiques (expériences HMQC-HOHAHA gradients). Cette approche a permis une analyse qualitative et quantitative de mélanges de phospholipides directement après extraction au chloroforme-méthanol. La composition en phospholipides est profondément modifiée lors de la croissance en milieu perdeutérié où l'on observe un lipide majoritaire, le phosphatidyl Inositol (PI), au lieu d'un mélange PC, PS PI en milieu hydrogéné.

  15. Determination of some solubilization parameters with surfactants of egg-yolk lecithin multilamellar vesicles by static light-scattering measurements

    CERN Document Server

    Hobai, S; Hobai, St.; Fazakas, Zita

    2001-01-01

    Effective surfactant:phospholipid ratios (i.e. molar ratios in the mixed aggregates, vesicles or micelles) have been determined by static light-scattering for the interaction of egg-yolk lecithin (EYL) multilamellar vesicles (MLV) with Triton X-100 (TX-100), sodium deoxycholate (DOCNa) and cetyltrimethylammonium bromide (CTMB). The suspension of MLV-EYL was mixed with appropriate volumes of surfactant solution and was left overnight to reaches thermodynamic equilibrium. Rectan-gular optic diffusion data were used to compute the solubilization parameters: total surfactant concentrations, at saturation and solubilization Dtsat and Dtsol respectively, and effective molar ratios, Resat and Resol respectively. From the Resat value ob-tained graphically for interaction of vesicles with TX-100 resulted that in vesicle bilayers a surfactant molecule is surrounded with seven phospholipid molecules and the Resol value suggests that in mixed micelles ten lipid molecules with about fifteen surfactant molecules coexist. T...

  16. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  17. Decrease in membrane phospholipid unsaturation induces unfolded protein response.

    Science.gov (United States)

    Ariyama, Hiroyuki; Kono, Nozomu; Matsuda, Shinji; Inoue, Takao; Arai, Hiroyuki

    2010-07-16

    Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR.

  18. [The effect of vaporization with thermal sulfurous water on phospholipids in the broncho-alveolar lavage solution following hypobaric hypoxia in the rat].

    Science.gov (United States)

    Prévost, M C; Montastruc, P; Douste-Blazy, L

    1983-09-01

    We have studied, in the rat, the action of a vaporization with sulphurous water from Bagnères de Luchon on the surfactant modifications caused by hypoxia. The phospholipase activity, subordinate to hypoxia, decreased by 1/5 compared to its value without treatment and the phospholipid composition of the broncho-alveolar lung lavage remained unchanged whereas after hypoxia without treatment the phosphatidylcholines level decreases by 26%. We demonstrated by a dose-response study that this protective action decreased with the thermal water dilution. We also showed that this effect could not be due to the only action of reduced sulphur: different concentrations of sulphur solutions had no action on the phospholipase A activity subordinate to hypoxia. So we can conclude that a vaporization with sulphurous water had a protective action against hypoxia on the broncho-alveolar lavage of rat lung.

  19. Analysis of pulmonary surfactant by Fourier transform infrared spectroscopy after exposure to sevoflurane and isoflurane.

    Science.gov (United States)

    Vrbanović Mijatović, Vilena; Šerman, Ljiljana; Gamulin, Ozren

    2017-02-21

    Pulmonary surfactant, consisting primarily of phospholipids and four surfactant-specific proteins, is among the first structures that is exposed to inhalation anesthetics. Consequently, changes of pulmonary surfactant due to this exposure could cause respiratory complications after long anesthetic procedures. Fourier transform infrared (FTIR) spectroscopy was used to explore the effects of two inhalation anesthetics, sevoflurane and isoflurane, on a commercially available pulmonary surfactant. The research was primarily focused on the effect of anesthetics on the lipid component of the surfactant. Four different concentrations of anesthetics were added, and the doses were higher from the low clinical doses typically used. Recorded spectra were analyzed using principal component analysis, and the Student's t-test was performed to confirm the results. The exposure to both anesthetics induced similar changes, consistent with the increase of the anesthetic concentration. The most pronounced effect was on the hydrophilic head group of phospholipids, which is in agreement with the disruption of the hydrogen bond, caused by the anesthetics. A change in the band intensities of CH2 stretching vibrations, indicative of a disordering effect of anesthetics on the hydrophobic tails of phospholipids, was also observed. Changes induced by isoflurane appear to be more pronounced than those induced by sevoflurane. Furthermore, our results suggest that FTIR spectroscopy is a promising tool in studying anesthetic effects on pulmonary surfactant.

  20. Physical properties of botanical surfactants.

    Science.gov (United States)

    Müller, Lillian Espíndola; Schiedeck, Gustavo

    2017-08-24

    Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or used fresh and chopped. The neutral bar soap was used as a positive control. The drying and grinding of samples were the preparation method that resulted in higher foam column height in both species but Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756 and 1017 respectively. Critical micelle concentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40mNm(-1) while neutral bar soap was 0.15% with 34.96mNm(-1). Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS.

    Science.gov (United States)

    Kim, Junhwan; Hoppel, Charles L

    2013-01-01

    A normal-phase HPLC-MS method was established to analyze mitochondrial phospholipids quantitatively as well as qualitatively. An efficient extraction procedure and chromatographic conditions were developed using twelve standardized phospholipids and lysophospholipids. The chromatographic conditions provided physical separation of phospholipids by class, and efficient ionization allowed detection of low abundance phospholipids such as phosphatidylglycerol and monolysocardiolipin. The chromatographic separation of each class of phospholipid permitted qualitative identification of molecular species without interference from other classes. This is advantageous for mitochondrial lipidomics because the composition of mitochondrial phospholipids varies depending on tissue source, pathological condition, and nutrition. Using the method, seven classes of phospholipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, phosphatidylserine, cardiolipin, and monolysocardiolipin) were detected in rat heart and skeletal muscle mitochondria and all but phosphatidylserine were quantified. The concentration was calculated using standard curves with an internal standard generated for each class of phospholipid. The method was validated for intraday and interday variation and showed excellent reproducibility and accuracy. This new method, with each step documented, provides a powerful tool for accurate quantitation of phospholipids, a basic structural component of mitochondrial membranes.

  2. Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Albrechtsen, Hans-Jørgen; Rootzén, Helle

    1997-01-01

    Different multivariate statistical analyses were applied to phospholipid fatty acids representing the biomass composition and to different biogeochemical parameters measured in 37 samples from a landfill contaminated aquifer at Grindsted Landfill (Denmark). Principal component analysis and corres......Different multivariate statistical analyses were applied to phospholipid fatty acids representing the biomass composition and to different biogeochemical parameters measured in 37 samples from a landfill contaminated aquifer at Grindsted Landfill (Denmark). Principal component analysis....... Partial least square analysis related the phospholipid fatty acids data to the biogeochemical parameters assuming linear relationships. After selection of the optimal phospholipid fatty acid combination by genetic algorithms, good partial least squares models with low prediction errors were gained...

  3. Effects of phospholipids with different fatty acid compositions on the digestive absorption of rats%不同脂肪酸组成磷脂对大鼠消化吸收的影响

    Institute of Scientific and Technical Information of China (English)

    王佳慧; 刘春花; 任兵兴; 王玉明; 薛长湖

    2013-01-01

    首先通过在饲料中添加胆固醇和卵黄磷脂,研究了卵黄磷脂对大鼠血清和肝脏脂质水平的影响;其次通过配制含有不同磷脂的高脂乳剂灌胃大鼠,考察了不同磷脂的高脂乳剂对大鼠血清总胆固醇、甘油三酯的影响.结果表明:大豆磷脂、卵黄磷脂和鱿鱼磷脂对甘油三酯的消化吸收具有一定的抑制作用,且鱿鱼磷脂的抑制作用最明显;大豆磷脂和卵黄磷脂可以显著促进胆固醇的消化吸收,而鱿鱼磷脂显著抑制了胆固醇的消化吸收.%The effects of yolk phospholipid on the lipid levels in serum and liver of rats were investigated by adding cholesterol and yolk phospholipid in feed.Then the effects of different types of phospholipids on serum total cholesterol and triglyceride were investigated by feeding rats with high fat emulsion.The results showed that soybean,yolk and squid phospholipids had certain inhibition in triglyceride digestive absorption,and the inhibition of squid phospholipid was the most obvious; soybean and yolk phospholipids could significantly promote the digestive absorption of cholesterol,while squid phospholipid markedly inhibited cholesterol digestive absorption.

  4. Interactions of amelogenin with phospholipids.

    Science.gov (United States)

    Lokappa, Sowmya Bekshe; Chandrababu, Karthik Balakrishna; Dutta, Kaushik; Perovic, Iva; Evans, John Spencer; Moradian-Oldak, Janet

    2015-02-01

    Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. We investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin-cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (∼334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexation of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder-order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS-bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities.

  5. A Review of the Current Knowledge of Fatty Acid Contents, Composition and Physiological Functions of Animal-Derived Intramuscular Phospholipids%动物源肌内磷脂及其脂肪酸含量、组成与生理功效研究进展

    Institute of Scientific and Technical Information of China (English)

    薛山

    2016-01-01

    Intramuscular phospholipids represent an important component of edible animal fats. The fatty acid contents and composition of meat products are the key factors that affect their processing characteristics, nutritional quality and flavor composition and have a great practical significance to improve their food value. However, a review of the current literature shows that very few studies have been conducted concerning animal-derived intramuscular phospholipids. This article provides a systematic review of the influencing factors and physiological properties of the general properties of intramuscular phospholipids and their constituent fatty acids, aiming to provide evidence for innovative studies on intramuscular phospholipids and provide a theoretical basis for the development of the meat industry.%动物源肌内磷脂是肉品脂肪的重要组成之一,其含量及脂肪酸组成是影响肉品加工特性、营养品质及风味组成的关键因素,对于改善肉品的食用价值有着重要的实际意义。然而,从目前的文献来看,动物源肌内磷脂的相关研究仍非常稀缺。本文系统地综述了肌内磷脂及其脂肪酸的基本特性、影响因素与生理功效,以期为动物源肌内磷脂的研究提供创新依据,为肉类工业的发展提供理论基础。

  6. Degradation of cholesterol crystals in macrophages: the role of phospholipids

    Science.gov (United States)

    Koren, Eugen; Koscec, Mirna; Fugate, Robert D.

    1991-05-01

    Previous studies from this laboratory demonstrated degradation of cholesterol crystals ingested by macrophages in a cell culture system. Those studies also indicated that intracellular phospholipids could play an important role in mobilization of crystalline cholesterol. The purpose of this study was to further explore the role of each of the three major intracellular phospholipid species in degradation of crystals. Fluorescently labeled cholesterol crystals were incubated with phospholipids over a period of 5 days. Morphological changes in crystals were monitored by the use of digital imaging fluorescence microscopy, fluorescence redistribution after photobleaching, confocal microscopy, as well as epifluorescent and phase contrast microscopy. Results clearly demonstrated that all three phospholipids were able to mobilize crystalline cholesterol; however, mechanisms by which they exerted mobilization were different. Sphingomyelin and phosphatidylcholine were found to cause gradual and uniform dissolution of crystals, more or less preserving their original shape. Phosphatidylethanolamine appeared to penetrate into the crystal, causing its fragmentation and solubilization. In the mixture of all three phospholipids representing the composition found in macrophages, both of the described mechanisms were working simultaneously.

  7. Glycerides and phospholipids of the cambial zone of the Siberian larch

    Energy Technology Data Exchange (ETDEWEB)

    Levin, E.D.; Rubchevskaya, L.P.; Vol, Ye.V.

    1983-01-01

    The composition is studied of glycerides and phospholipids of cambial zone of the Siberian larch and its annual dynamics. It is shown that monoglycerides, diglycerides and triglycerides are in the composition of the glycerides. The fatty acids of the glycerides are represented by a C12 to C24 series. The basic component of these compounds are unsaturated C18 acids. In the cambial zone there are phospholipids whose basic components are phosphatidylcholine and phosphatidylethanolamines. Their share of the weight in March exceeds 80 percent and in August is 69 percent of the weight of the phospholipids.

  8. Physical principles for developing a synthetic lung surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Jaehnig, F. (Max-Planck-Institut fuer Biologie, Tuebingen (Germany, F.R.)); Obladen, M. (Tuebingen Univ. (Germany, F.R.). Kinderklinik)

    1984-01-01

    The physical principles for developing a synthetic lung surfactant to treat the respiratory distress syndrome are discussed. Requirements for the lipid composition and preparation of the synthetic surfactant are detailed, leading to the conclusion that a suspension of large unilamellar vesicles consisting of dipalmitoylphosphatidylcholine and a small amount of unsaturated lipid is a promising choice.

  9. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  10. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  11. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products

    Directory of Open Access Journals (Sweden)

    Vito Verardo

    2017-01-01

    Full Text Available Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed.

  12. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products

    Science.gov (United States)

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Arráez-Román, David; Hettinga, Kasper

    2017-01-01

    Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed. PMID:28106745

  13. Effect of long-term aluminum feeding on lipid/phospholipid profiles of rat brain myelin

    Directory of Open Access Journals (Sweden)

    Dave Kunjan R

    2004-06-01

    Full Text Available Abstract Effect of long-term (90–100 days exposure of rats to soluble salt of aluminum (AlCl3 on myelin lipid profile was examined. The long-term exposure to AlCl3 resulted in a 60 % decrease in the total phospholipid (TPL content while the cholesterol (CHL content increased by 55 %. Consequently the TPL / CHL molar ratio decreased significantly by 62 %. The phospholipid composition of the myelin membrane changed drastically; the proportion of practically all the phospholipid classes decreased by 32 to 60 % except for phosphatidylcholine (PC and phosphatidylethanolamine (PE. Of the latter two, proportion of PC was unchanged while PE increased in proportion by 47 %. Quantitatively, all phospholipid classes decreased by from 42 to 76% with no change in the PE content. However the membrane fluidity was not altered in Al-treated rats. Many of the changes we observe here show striking similarities with the reported phospholipid profiles of Alzheimer brains.

  14. Surfactant Sector Needs Urgent Readjustment

    Institute of Scientific and Technical Information of China (English)

    Huang Hongzhou

    2007-01-01

    @@ Surfactant industrial system has been basically established After 50 years' development, China has already established a surfactant industrial system with a relatively complete product portfolio and can produce 4714 varieties of surfactants in cationic,anionic, nonionic and amphoteric categories.

  15. Influence of metacide - surfactant complexes on agricultural crops

    Directory of Open Access Journals (Sweden)

    Orynkul Esimova

    2014-12-01

    Full Text Available The complexes based on surfactants and polyhexamethyleneguanidine hydrochloride (metacide are important for agriculture. This paper considers compositions of known bactericidal metacide with different surfactants: anionic surfactant sodium dodecylsulphate (DDSNa and nonionic surfactant Tween 80 (monooleate of oxyethylenated anhydrosorbitols. The effect of individual components and associates of metacide and surfactants on productivity and infection of cereals was studied. According to the study, the highest productivity and infection rate were shown by the associate of metacide and Tween-80. At concentration of Tween-80 in aqueous solution equal to 0.001% in combination with metacide, efficiency was 98% at 0% infection. The surface tension and the wetting of metacide, DDSNa, Tween-80, and associates of metacide with surfactants were studied. In comparison with individual components, metacide-DDSNa and metacide-Tween-80 associates have higher surface activity.

  16. Oxidative stability of marine phospholipids

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale

    prepared in the form of emulsions by high pressure homogenizer. Then, the oxidative and hydrolytic stability of phospholipids was investigated by measurement of simple chemical analyses such as Peroxide Value and Free Fatty Acids, and 31PNMR after 32 days storage at 2ºC. The oxidative stability of MPL...

  17. Evaluation of surfactants as steam diverters/mobility control agents in light oil steamfloods: Effect of oil composition, rates and experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, S.M.; Olsen, D.K.; Ramzel, E.B.

    1991-12-01

    A series of experiments was performed to evaluate the effectiveness of commercially available surfactants for steam-foam EOR applications in light oil reservoirs. The experiments were performed in a 3-ft long, 1-1/2 in.-diameter cylindrical sandpack of about 1 darcy permeability. The sandpack and injected fluids were preheated to 430{degree}F at 155 psi. The main objective of these tests was to investigate the effectiveness of several surfactants in providing mobility control under a variety of conditions expected in light-oil steamfloods. Thus, maximum pressure-rise and foam-bank buildup/decay were noted as operating conditions were changed in a test or in various tests. Tests were performed with various oil types, sacrificial salts, injection rates, injection strategies, vapor-to-liquid fractions (VLF), and steam/N{sub 2} ratios (SNR).

  18. Bending elasticity of charged surfactant layers: the effect of mixing.

    Science.gov (United States)

    Bergström, L Magnus

    2006-08-01

    Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged

  19. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  20. Animal-derived surfactants: where are we? The evidence from randomized, controlled clinical trials.

    Science.gov (United States)

    Ramanathan, R

    2009-05-01

    Animal-derived surfactants, as well as synthetic surfactants, have been extensively evaluated in the treatment of respiratory distress syndrome (RDS) in preterm infants. Three commonly available animal-derived surfactants in the United States include beractant (BE), calfactant (CA) and poractant alfa (PA). Multiple comparative studies have been performed using these three surfactants. Prospective as well as retrospective studies comparing BE and CA have shown no significant differences in clinical or economic outcomes. Randomized, controlled clinical trials have shown that treatment with PA is associated with rapid weaning of oxygen and ventilatory pressures, fewer additional doses, cost benefits and survival advantage when compared with BE or CA. Recently, a study using an administrative database that included over 20,000 preterm infants has shown a significant decrease in mortality and cost benefits in favor of PA, when compared with BE or CA. Differences in outcomes between these animal-derived surfactants may be related to a higher amount of phospholipids and plasmalogens in PA. To date, animal-derived surfactants seem to be better than synthetic surfactants during the acute phase of RDS and in decreasing neonatal mortality. Further studies are needed comparing animal-derived surfactants with the newer generation of synthetic surfactants.

  1. Bacterial phospholipide antigens and their taxonomic significance.

    Science.gov (United States)

    Karalnik, B V; Razbash, M P; Akhmetova, E A

    1981-01-01

    The investigation of interrelationships between the phospholipides of various microorganisms (33 strains of corynebacteria, mycobacteria and staphylococci) using crossed antibody neutralization reactions with phospholipide antigenic erythrocyte diagnostic was used for the assessment of the degree of antigenic propinquity and antigenic differences between the phospholipides of bacteria of the same species, genus, and of different genera. The role of the determinants of the corresponding (their own) and "foreign" genera in the antigenic differences between the phospholipides of the microorganisms investigated was established. On the basis of the results obtained the conclusion has been drawn that the method of assessment of antigenic interrelationships between phospholipides can be used for the study of some taxonomic problems.

  2. SURFACTANTS IN LUBRICATION

    Science.gov (United States)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  3. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo. Re

  4. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease.

    Science.gov (United States)

    Norris, Sarah E; Friedrich, Michael G; Mitchell, Todd W; Truscott, Roger J W; Else, Paul L

    2015-04-01

    Membrane phospholipids make up a substantial portion of the human brain, and changes in their amount and composition are thought to play a role in the pathogenesis of age-related neurodegenerative disease. Nevertheless, little is known about the changes that phospholipids undergo during normal adult aging. This study examined changes in phospholipid composition in the mitochondrial and microsomal membranes of human dorsolateral prefrontal cortex over the adult life span. The largest age-related changes were an increase in the abundance of both mitochondrial and microsomal phosphatidylserine 18:0_22:6 by approximately one-third from age 20 to 100 years and a 25% decrease in mitochondrial phosphatidylethanolamine 18:0_20:4. Generally, increases were seen with age in phospholipids containing docosahexaenoic acid across both membrane fractions, whereas phospholipids containing either arachidonic or adrenic acid decreased with age. These findings suggest a gradual change in membrane lipid composition over the adult life span.

  5. Food enrichment with marine phospholipid emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    Many studies have shown that marine phospholipids (PL) provide more advantages than fish oil. They seem to have better bioavailability, better resistance towards oxidation and higher content of eicosapentaenoic acids and docosahexaenoic acids than fish oil, which essentially contains triglycerides...... marine PL emulsions with and without addition of fish oil. The oxidative stability of marine PL emulsions was significantly influenced by the chemical composition of marine PL used for emulsions preparation. For instance, emulsions with good oxidative stability could be obtained when using raw materials...... with high purity, low fish oil content and high PL, cholesterol and α-tocopherol content. In addition, non-enzymatic browning reactions may also affect the oxidative stability of the marine PL emulsion. These reactions included Strecker degradation and pyrrolization, and their occurrence were due...

  6. The local phospholipid environment modulates the activation of blood clotting.

    Science.gov (United States)

    Shaw, Andrew W; Pureza, Vincent S; Sligar, Stephen G; Morrissey, James H

    2007-03-02

    Examples abound of membrane-bound enzymes for which the local membrane environment plays an important role, including the ectoenzyme that triggers blood clotting, the plasma serine protease, factor VIIa, bound to the integral membrane protein, tissue factor. The activity of this enzyme complex is markedly influenced by lipid bilayer composition and further by tissue factor partitioning into membrane microdomains on some cell surfaces. Unfortunately, little is known about how membrane microdomain composition controls factor VIIa-tissue factor activity, as reactions catalyzed by membrane-tethered enzymes are typically studied under conditions in which the experimenter cannot control the composition of the membrane in the immediate vicinity of the enzyme. To overcome this problem, we used a nanoscale approach that afforded complete control over the membrane environment surrounding tissue factor by assembling the factor VIIa.tissue factor complex on stable bilayers containing 67 +/- 1 phospholipid molecules/leaflet (Nanodiscs). We investigated how local changes in phospholipid bilayer composition modulate the activity of the factor VIIa.tissue factor complex. We also addressed whether this enzyme requires a pool of membrane-bound protein substrate (factor X) for efficient catalysis, or alternatively if it could efficiently activate factor X, which binds directly to the membrane nanodomain adjacent to tissue factor. We have shown that full proteolytic activity of the factor VIIa.tissue factor complex requires extremely high local concentrations of anionic phospholipids and further that a large pool of membrane-bound factor X is not required to support sustained catalysis.

  7. An antioxidant-like action for non-peroxidisable phospholipids using ferrous iron as a peroxidation initiator.

    Science.gov (United States)

    Cortie, Colin H; Else, Paul L

    2015-06-01

    The degradation of phospholipids containing polyunsaturated fatty acids, termed peroxidation, poses a constant challenge to membranes lipid composition and function. Phospholipids with saturated (e.g. PC 16:0/16:0) and monounsaturated fatty acids (e.g. PC 16:0/18:1) are some of the most common phospholipids found in membranes and are generally not peroxidisable. The present experiments show that these non-peroxidisable phospholipids, when present in liposomes with peroxidisable phospholipids (i.e. those containing polyunsaturated fatty acids) such as PC 16:0/18:2 and Soy PC, produce an inhibitory effect on rates of peroxidation induced by ferrous-iron. This inhibitory effect acts to extend the duration of the lag phase by several-fold. If present in natural systems, this action could enhance the capacity of conventional antioxidant mechanisms in membranes. The results of this preliminary work suggest that non-peroxidisable phospholipids may exert an antioxidant-like action in membranes.

  8. Composition and structural transitions of polyelectrolyte-surfactant complexes in the presence of fatty acid studied by NMR and cryo-SEM.

    Science.gov (United States)

    Totland, Christian; Martinez-Santiago, Jose; Ananthapadmanabhan, Kavssery P; Somasundaran, Ponisseril

    2015-02-10

    Insoluble complexes formed when a cationic polyelectrolyte is neutralized by the oppositely charged surfactant sodium dodecylethersulfate (SDES) in the presence and absence of lauric acid (LA) have been examined directly using NMR spectroscopy and cryo-SEM. Below the SDES critical micelle concentration (CMC') the insoluble complex contains about 10 times more water than just above CMC'. This is related to a structural transition of the complex, where water is contained mainly in larger compartments below CMC' and then mainly in narrower compartments above CMC'. The structure of the complex's solid matrix was monitored by recording two-dimensional T2-diffusion correlation spectra of the water proton resonance, which reveal the presence of several different water environments which correspond to different complex structures. Structural features in the micrometer range were confirmed using cryo-SEM. When LA is present, the larger water compartments seen below CMC' are to some extent present in the entire SDES concentration range, which is not the case in the absence of LA. Furthermore, the inclusion of LA into the SDES aggregates above CMC' leads to a lamellar sheetlike organization of the polyelectrolyte-stabilized surfactant phase. In the absence of LA, a stringy network of fibers is seen in cryo-SEM images, indicating a spherical or rodlike SDES phase. Consequently, the complex without LA holds about 1.7-1.9 times more water than the complex with LA above the SDES CMC'. T1 relaxation, (13)C chemical shifts, and (1)H resonance line widths of SDES in the system support the above observations. The combination of MAS NMR, T2-diffusion correlation, and cryo-SEM proved to be an effective method for studying structural transitions in the surfactant-polyelectrolyte(-LA) insoluble complexes.

  9. Nanomechanics of electrospun phospholipid fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana C., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk [Technical University of Denmark, DTU-Food, Søltofts Plads B227, DK-2800, Kgs. Lyngby (Denmark); Nikogeorgos, Nikolaos; Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  10. EKSTRAKSI DAN FRAKSINASI FOSFOLIPID DARI LIMBAH PENGOLAHAN MINYAK SAWIT [Extraction and Fractionation of Phospholipids from the Waste of Palm Oil Processing

    Directory of Open Access Journals (Sweden)

    Teti Estiasih1*

    2010-12-01

    Full Text Available This research aimed to extract and fractionate phospholipids from the most potential source of phospholipids of the waste of palm oil processing i.e. palm pressed fiber, sludge, and spent bleaching earth (adsorbent. The extraction process was performed by using chloroform-methanol, followed by polar lipid separation by solubilization in choloroform (to eliminate neutral lipid and methanol (to extract phospholipids. Fractionation was performed based on the solubility in ethanol and acetone. There were 5 phospholipd fractions obtained, i.e. crude phospholipids (without fractionation, ethanol soluble, ethanol insloluble, ethanol soluble-acetone soluble, and ethanol soluble-acetone insoluble fractions. Each fraction was characterized for phospholipid composition and fatty acid profile. The result showed that palm pressed fiber had the highest content of phospholipids of 10,222.19 ppm. Extraction and separation of phospholipids from palm pressed fiber produced phospholipids with a purity of 61.67%. Phospholipids found in palm pressed fiber were phosphatidylinositol (PI, phosphatidylcholine (PC, phosphatidyletanolamin (PE, phosphatidylglycerol (PG, diphosphatidylglyerol (DPG, and phosphatidic acid (PA, while the impurities consisted of fatty acids and neutral lipids. Oleic acid is the most dominant fatty acid ini crude palm pressed fiber phospholipids. Fractionation increased the purity of phospholipids. Different phospholipids fractions showed different phospholipid composition and fatty acid profile. Ethanol soluble fraction had more PI, PC, PG, and PA, but less PE and DPG as compared to crude phospholipids. The ratio of PC to PE also increased after ethanol fractionation. The amount of more non polar phospholipids (PG, DPG, PA were less in ethanol soluble-acetone insoluble fractions compared to ethanol soluble-acetone soluble fraction. The solubilization in ethanol increased total unsaturated fatty acids in ethanol soluble fractions, meanwhile the

  11. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    Science.gov (United States)

    Lu, Le T.; Dung, Ngo T.; Tung, Le D.; Thanh, Cao T.; Quy, Ong K.; Chuc, Nguyen V.; Maenosono, Shinya; Thanh, Nguyen T. K.

    2015-11-01

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications.In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications. Electronic

  12. [Bile phospholipids; function and significance].

    Science.gov (United States)

    Salvioli, G; Salati, R

    1977-09-19

    The part played by phospholipides in the genesis of cholesterol gallstone considered. This is present in patients who frequently present a lecithin synthesis defect at hepatic level since precursors are used for forming triglycerides. Nevertheless polyunsaturated phosphatidicholine has a negative influence on the SB + PL/C ratio in the bile of T-tube subjects receiving 2 g of substance i.v. for 5 days.

  13. Surfactants in the environment.

    Science.gov (United States)

    Ivanković, Tomislav; Hrenović, Jasna

    2010-03-01

    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  14. Mixed micelle formation with phosphatidylcholines: the influence of surfactants with different molecule structures.

    Science.gov (United States)

    Rupp, Christopher; Steckel, Hartwig; Müller, Bernd W

    2010-03-15

    The number of mixed micellar (MM) drug products being introduced into the commercial pharmaceutical market is very limited although there is need for alternative dosage forms for poorly soluble active drug substances. While known systems are composed of phosphatidylcholine and bile salts, it was the aim of this study to investigate if alternative surfactants are able to form isotropically clear solutions over a broad range of concentrations and at higher ratios of phosphatidylcholine (PC). It was a particular challenge of this work to find a MM system with a unimodal particle size distribution since it is known that surfactants often form vesicles with phospholipids instead of MM. The theoretical approach behind this work was the transfer of the packing parameter concept, which describes the molecular association of one amphiphilic species, to the organisation behaviour of two different amphiphilic species (water-insoluble phospholipid+surfactant leading to MM). Therefore the influence of the surfactant molecular geometry on the ability to form MM with phospholipids was investigated. A homologous series of two different surfactant classes, namely polyglycerol esters and sucrose esters, with a large hydrophilic head region leading to a smaller packing parameter were analysed regarding their ability to form clear MM solutions with PC. For comparison, surfactants with no strictly defined partition between a polar head and a non-polar tail (e.g. Poloxamer 188) were tested. Decaglycerol laurate and especially sucrose laurate (SL) were superior compared to all other tested surfactants with respect to their ability to form clear solutions with hydrogenated PC (hPC) at a higher ratio and over a broad range of concentrations while unsaturated PC showed an inferior performance to form MM. The favourite MM system composed of SL with 0.5 weight fractions of hPC formed about 20 nm sized MM in a concentration range of 1.0-80 mg/mL and showing a unimodal particle size

  15. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  16. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd......-/-) mice. Atherogenesis involves both inflammation and lipid deposition, and we investigated the role of SP-D in the development of atherosclerosis. SP-D synthesis was localized to vascular endothelial cells. Atherosclerotic lesion areas were 5.6-fold smaller in the aortic roots in Spd-/- mice compared...... with wild-type C57BL/6N mice on an atherogenic diet. HDL cholesterol (HDL-C) was significantly elevated in Spd-/- mice. Treatment of Spd-/- mice with a recombinant fragment of human SP-D resulted in decreases of HDL-C (21%) as well as total cholesterol (26%), and LDL cholesterol (28%). Plasma TNF...

  17. Dietary Polyunsaturated Fatty Acids and Inflammation: The Role of Phospholipid Biosynthesis

    OpenAIRE

    Sordillo, Lorraine M.; William Raphael

    2013-01-01

    The composition of fatty acids in the diets of both human and domestic animal species can regulate inflammation through the biosynthesis of potent lipid mediators. The substrates for lipid mediator biosynthesis are derived primarily from membrane phospholipids and reflect dietary fatty acid intake. Inflammation can be exacerbated with intake of certain dietary fatty acids, such as some ω-6 polyunsaturated fatty acids (PUFA), and subsequent incorporation into membrane phospholipids. Inflammati...

  18. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  19. Dietary Polyunsaturated Fatty Acids and Inflammation: The Role of Phospholipid Biosynthesis

    Science.gov (United States)

    Raphael, William; Sordillo, Lorraine M.

    2013-01-01

    The composition of fatty acids in the diets of both human and domestic animal species can regulate inflammation through the biosynthesis of potent lipid mediators. The substrates for lipid mediator biosynthesis are derived primarily from membrane phospholipids and reflect dietary fatty acid intake. Inflammation can be exacerbated with intake of certain dietary fatty acids, such as some ω-6 polyunsaturated fatty acids (PUFA), and subsequent incorporation into membrane phospholipids. Inflammation, however, can be resolved with ingestion of other fatty acids, such as ω-3 PUFA. The influence of dietary PUFA on phospholipid composition is influenced by factors that control phospholipid biosynthesis within cellular membranes, such as preferential incorporation of some fatty acids, competition between newly ingested PUFA and fatty acids released from stores such as adipose, and the impacts of carbohydrate metabolism and physiological state. The objective of this review is to explain these factors as potential obstacles to manipulating PUFA composition of tissue phospholipids by specific dietary fatty acids. A better understanding of the factors that influence how dietary fatty acids can be incorporated into phospholipids may lead to nutritional intervention strategies that optimize health. PMID:24152446

  20. Dietary Polyunsaturated Fatty Acids and Inflammation: The Role of Phospholipid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Lorraine M. Sordillo

    2013-10-01

    Full Text Available The composition of fatty acids in the diets of both human and domestic animal species can regulate inflammation through the biosynthesis of potent lipid mediators. The substrates for lipid mediator biosynthesis are derived primarily from membrane phospholipids and reflect dietary fatty acid intake. Inflammation can be exacerbated with intake of certain dietary fatty acids, such as some ω-6 polyunsaturated fatty acids (PUFA, and subsequent incorporation into membrane phospholipids. Inflammation, however, can be resolved with ingestion of other fatty acids, such as ω-3 PUFA. The influence of dietary PUFA on phospholipid composition is influenced by factors that control phospholipid biosynthesis within cellular membranes, such as preferential incorporation of some fatty acids, competition between newly ingested PUFA and fatty acids released from stores such as adipose, and the impacts of carbohydrate metabolism and physiological state. The objective of this review is to explain these factors as potential obstacles to manipulating PUFA composition of tissue phospholipids by specific dietary fatty acids. A better understanding of the factors that influence how dietary fatty acids can be incorporated into phospholipids may lead to nutritional intervention strategies that optimize health.

  1. Control of pulmonary surfactant secretion from type II pneumocytes isolated from the lizard Pogona vitticeps.

    Science.gov (United States)

    Wood, P G; Lopatko, O V; Orgeig, S; Codd, J R; Daniels, C B

    1999-12-01

    Pulmonary surfactant, a mixture consisting of lipids and proteins and secreted by type II cells, functions to reduce the surface tension of the fluid lining of the lung, and thereby decreases the work of breathing. In mammals, surfactant secretion appears to be influenced primarily by the sympathetic nervous system and changes in ventilatory pattern. The parasympathetic nervous system is not believed to affect surfactant secretion in mammals. Very little is known about the factors that control surfactant secretion in nonmammalian vertebrates. Here, a new methodology for the isolation and culture of type II pneumocytes from the lizard Pogona vitticeps is presented. We examined the effects of the major autonomic neurotransmitters, epinephrine (Epi) and ACh, on total phospholipid (PL), disaturated PL (DSP), and cholesterol (Chol) secretion. At 37 degrees C, only Epi stimulated secretion of total PL and DSP from primary cultures of lizard type II cells, and secretion was blocked by the beta-adrenoreceptor antagonist propranolol. Neither of the agonists affected Chol secretion. At 18 degrees C, Epi and ACh both stimulated DSP and PL secretion but not Chol secretion. The secretion of surfactant Chol does not appear to be under autonomic control. It appears that the secretion of surfactant PL is predominantly controlled by the autonomic nervous system in lizards. The sympathetic nervous system may control surfactant secretion at high temperatures, whereas the parasympathetic nervous system may predominate at lower body temperatures, stimulating surfactant secretion without elevating metabolic rate.

  2. Phosphine oxide surfactants revisited.

    Science.gov (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  3. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains.

    Science.gov (United States)

    Lee, Hwankyu

    2015-07-01

    Imidazolium-based ionic surfactants of different sizes were simulated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Regardless of the phospholipid type, larger surfactants at higher concentrations more significantly insert into the bilayer and increase the bilayer-surface size, in agreement with experiments and previous simulations. Insertion of surfactants only slightly decreases the bilayer thickness, as also observed in experiments. Although the surfactant insertion and its effect on the bilayer size and thickness are similar in different types of bilayers, the volume fractions of surfactants in the bilayer are higher for DMPC bilayers than for POPC and DOPC bilayers. In particular, ionic surfactants with four hydrocarbons yield their volume fractions of 4.6% and 8.7%, respectively, in POPC and DMPC bilayers, in quantitative agreement with experimental values of ∼5% and ∼10%. Also, the inserted surfactants increase the lateral diffusivity of the bilayer, which depends on the bilayer type. These findings indicate that although the surfactant insertion does not depend on the bilayer type, the effects of surfactants on the volume fraction and bilayer dynamics occur more significantly in the DMPC bilayer because of the smaller area per lipid and shorter saturated tails, which helps explain the experimental observations regarding different volume fractions of surfactants in POPC and DMPC bilayers.

  4. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids.

    Science.gov (United States)

    Komaiko, Jennifer; Sastrosubroto, Ashtri; McClements, David Julian

    2016-07-15

    Nanoemulsions have considerable potential for encapsulating and delivering ω-3 fatty acids, but they are typically fabricated from synthetic surfactants. This study shows that fish oil-in-water nanoemulsions can be formed from sunflower phospholipids, which have advantages for food applications because they have low allergenicity and do not come from genetically modified organisms. Nanoemulsions containing small droplets (dphospholipid type and concentration, with the smallest droplets being formed at high phosphatidylcholine levels and at surfactant-to-oil ratios exceeding unity. The physical stability of the nanoemulsions was mainly attributed to electrostatic repulsion, with droplet aggregation occurring at low pH values (low charge magnitude) and at high ionic strengths (electrostatic screening). These results suggest that sunflower phospholipids may be a viable natural emulsifier to deliver ω-3 fatty acids into food and beverage products.

  5. Decreases in Phospholipids Containing Adrenic and Arachidonic Acids Occur in the Human Hippocampus over the Adult Lifespan.

    Science.gov (United States)

    Hancock, Sarah E; Friedrich, Michael G; Mitchell, Todd W; Truscott, Roger J W; Else, Paul L

    2015-09-01

    One of the biggest risk factors for developing Alzheimer's disease is advanced age. Despite several studies examining changes to phospholipids in the hippocampus during the pathogenesis of Alzheimer's disease, little is known regarding changes to phospholipids in this region during normal adult aging. This study examined the phospholipid composition of the mitochondrial and microsomal membranes of the human hippocampus from post-mortem tissue of neurologically normal subjects aged between 18 and 104 years. Many of the age-related changes found were in low-to-moderately abundant phospholipids in both membrane fractions, with decreases with age being seen in many phospholipids containing either adrenic or arachidonic acid. The most abundant phospholipid of this type was phosphatidylethanolamine 18:0_22:4, which decreased in both the mitochondrial and microsomal membranes by approximately 20% from ages 20 to 100. Subsequent decreases with age were seen in total adrenic and arachidonic acid in the phospholipids of both membrane fractions, but not in either fatty acid specifically within the phosphatidylethanolamine class. Increases with age were seen in the hippocampus for mitochondrial phosphatidylserine 18:0_22:6. This is the first report of changes to molecular phospholipids of the human hippocampus over the adult lifespan, with this study also providing a comprehensive profile of the phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine phospholipids of the human hippocampus.

  6. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    Science.gov (United States)

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis.

  7. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy

    DEFF Research Database (Denmark)

    Cruz, A; Casals, C; Plasencia, I

    1998-01-01

    . These differences in the extent of insertion lead to qualitative and quantitative differences in the effect of the protein on the mobility of the phospholipid acyl chains, as studied by spin-label electron spin resonance (ESR) spectroscopy, and could represent different functional stages in the surfactant cycle......Pulmonary surfactant-associated protein B (SP-B) has been isolated from porcine lungs and reconstituted in bilayers of dipalmitoylphosphatidylcholine (DPPC) or egg yolk phosphatidylcholine (PC) to characterize the extent of insertion of the protein into phospholipid bilayers. The parameters...... for the interaction of SP-B with DPPC or PC using different reconstitution protocols have been estimated from the changes induced in the fluorescence emission spectrum of the single protein tryptophan. All the different reconstituted SP-B-phospholipid preparations studied had similar Kd values for the binding...

  8. Phospholipid and Respiratory Quinone Analyses From Extreme Environments

    Science.gov (United States)

    Pfiffner, S. M.

    2008-12-01

    Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.

  9. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  10. The Lantibiotic Nisin Induces Transmembrane Movement of a Fluorescent Phospholipid

    NARCIS (Netherlands)

    Moll, Gert N.; Konings, Wil N.; Driessen, Arnold J.M.

    1998-01-01

    Nisin is a pore-forming antimicrobial peptide. The capacity of nisin to induce transmembrane movement of a fluorescent phospholipid in lipid vesicles was investigated. Unilamellar phospholipid vesicles that contained a fluorescent phospholipid

  11. Phospholipid liposomes functionalized by protein

    Science.gov (United States)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  12. Surfactants in atmospheric aerosols and rainwater around lake ecosystem.

    Science.gov (United States)

    Razak, Intan Suraya; Latif, Mohd Talib; Jaafar, Shoffian Amin; Khan, Md Firoz; Mushrifah, Idris

    2015-04-01

    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).

  13. The effect of selected surfactants on the structure of a bicellar system (DMPC/DHPC) studied by SAXS

    Science.gov (United States)

    Kozak, Maciej; Domka, Ludwik; Jurga, Stefan

    2007-11-01

    The stabilizing or disturbing effect of different surfactants on the bicellar phase of phospholipids significantly depends on their type. The effect of different surfactants on the bicellar structure made of a mixture of phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dihexanoyl-sn-glycero-3-phospho-choline (DMPC/DHPC) has been studied by the small angle scattering of synchrotron radiation. The study has been performed for three surfactants: dodecyldimethyl-(hexyloxymethyl)ammonium chloride, n-undecylammonium chloride and t-octylphenoxypolyethoxyethanol (Triton X-100) introduced into a bicellar solution of DMPC/DHPC (2.8:1). The bicellar phase has been disturbed in the shortest time in the presence of dodecyldimethyl-(hexyloxymethyl)ammonium chloride in this system a transition from the bicellar to lamellar structure has been directly visible. The changes have been less pronounced in the presence of undecylammonium chloride and practically not noted in the presence of Triton X-100.

  14. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2015-08-01

    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  15. Biophysical activity of animal-derived exogenous surfactants mixed with rifampicin.

    Science.gov (United States)

    Kolomaznik, M; Calkovska, A; Herting, E; Stichtenoth, G

    2015-01-01

    Exogenous pulmonary surfactant is a potential delivery system for topical medications via the conducting airways. Due to the sensitivity to inactivation of surfactant, mutual interaction with the shipped drug should be evaluated. Little is known about the interactions between surfactant and antimicrobial drugs. The aim of the present study was to evaluate whether biophysical properties of animal-derived surfactants are modified by the bactericidal antibiotic rifampicin. An intracellular activity and a broad antimicrobiotic spectrum toward Gram-negative and Gram-positive bacteria make rifampicin an interesting substance against pulmonary infections. Curosurf® (porcine surfactant from minced lungs) and Survanta® (bovine surfactant extract) were diluted to 2.5-5.0 mg/ml of phospholipids in 0.9 % NaCl and rifampicin (RIF) was added at 1, 5, and 10 % (w/w). Minimum (γ(min)) and maximum (γ(max)) surface tension of a cyclically compressed bubble in the mixture was assessed with a pulsating bubble surfactometer. After 5 min, γ(min) of Survanta at a concentration of 3 mg/ml was significantly increased after addition of 5 and 10 % RIF (both p surfactant is able to retain good surface activity when mixed with antibiotics.

  16. 饲料磷脂水平对巴丁鱼(Pangasius sutchi)鳃Na+-K+-ATPase 活性及细胞膜脂肪酸组成的影响%Effects of dietary phospholipid on Na+-K+-ATPase activities and cell membrane fatty acid composition in gill of catfish (Pangasius sutchi)

    Institute of Scientific and Technical Information of China (English)

    麻艳群; 黄凯; 于丹; 陈涛; 卢克焕

    2011-01-01

    试验旨在研究饲料磷脂水平对巴丁鱼(Pangasius sutchi)鳃中的Na+-K+-ATPase活性及细胞膜脂肪酸组成的影响.对巴丁鱼(初始体重约1.45土0.08 g尾-1)分别投喂5组饲料,各组饲料磷脂添加水平为0%(PL0组)、1%(PL1组)、2%(PL2组)、3%(PL3组)和4%(PL4组),饲养56d.结果显示,鱼鳃中的Na+-K+-ATPase活性随着饲料磷脂水平的升高而下降(p<0.05);鳃膜脂肪酸组成发生显著变化:饱和脂肪酸(saturated fatty acids,SFA)含量以对照组(PL0组)的最高,与PL2、PL3组差异显著(p<0.05);PL0组的单不饱和脂肪酸(monounsaturated fatty acids,MUFA)含量显著高于其余4组(P<0.05);PL3组的多不饱和脂肪酸(polyunsaturatedfatty acids,PUFA)含量最高,与PL0、PL1组有显著差异(P<0.05);PL0组的高不饱和脂肪酸(highly unsaturated fatty acids,HUFA).含量显著低于其他添加了磷脂的各试验组(P<0.05).结果表明,饲料磷脂水平对巴丁鱼鳃Na+-K+-ATPase活性有一定影响,未添加磷脂的饲养条件下鳃Na+-K+-ATPase表现出较强的补偿能力,以维持稳定的生理水平及正常的基础代谢;巴丁鱼鳃细胞膜中的∑HUFA和∑PUFA含量显著高于对照组,有助于细胞膜更好地执行和完成正常生理功能.%The aim of this study was to determine the effects of dietary phospholipid on Na+-K+-ATPase activities and cell membrane fatty acid composition in the gill of catfish (Pangasius sutchi). 900 healthy catfish (1.4±0.08g of average weight) were randomly divided into five groups. Dietary phospholipid level of group PLO was 0%, and 1%, 2%, 3%, 4% for group PL1, group PL2, group PL3, group PL4, respectively. The experiment lasted for 56 days. The results showed that the Na+-K+-ATPase activities in gill decreased gradually with the increase of the dietary phospholipid level (P<0.05). Cell membrane fatty acid composition was affected significantly by dietary phospholipids. The content of saturated fatty acids and

  17. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  18. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    National Research Council Canada - National Science Library

    Muksing, N; Magaraphan, R; Coiai, S; Passaglia, E

    2011-01-01

    Low density polyethylene/layered double hydroxide (LDH) composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer...

  19. Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes.

    Science.gov (United States)

    Brea, Roberto J; Rudd, Andrew K; Devaraj, Neal K

    2016-08-02

    Cell membranes have a vast repertoire of phospholipid species whose structures can be dynamically modified by enzymatic remodeling of acyl chains and polar head groups. Lipid remodeling plays important roles in membrane biology and dysregulation can lead to disease. Although there have been tremendous advances in creating artificial membranes to model the properties of native membranes, a major obstacle has been developing straightforward methods to mimic lipid membrane remodeling. Stable liposomes are typically kinetically trapped and are not prone to exchanging diacylphospholipids. Here, we show that reversible chemoselective reactions can be harnessed to achieve nonenzymatic spontaneous remodeling of phospholipids in synthetic membranes. Our approach relies on transthioesterification/acyl shift reactions that occur spontaneously and reversibly between tertiary amides and thioesters. We demonstrate exchange and remodeling of both lipid acyl chains and head groups. Using our synthetic model system we demonstrate the ability of spontaneous phospholipid remodeling to trigger changes in vesicle spatial organization, composition, and morphology as well as recruit proteins that can affect vesicle curvature. Membranes capable of chemically exchanging lipid fragments could be used to help further understand the specific roles of lipid structure remodeling in biological membranes.

  20. Pre- and early-postnatal nutrition modify gene and protein expressions of muscle energy metabolism markers and phospholipid fatty acid composition in a muscle type specific manner in sheep

    DEFF Research Database (Denmark)

    Hou, Lei; Kongsted, Alice; Ghoreishi, S. M.

    2013-01-01

    , these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1 1/2 years. In conclusion, early postnatal, but not late gestation......We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle...... determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD) and biceps femoris (BF)) and in the cardiac muscle (ventriculus sinister cordis (VSC)) of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM) or 50% (LOW) of their energy and protein...

  1. Sizing up surfactant synthesis.

    Science.gov (United States)

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  2. Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids.

    Science.gov (United States)

    Davies, Sean S; Guo, Lilu

    2014-07-01

    Peroxidation of membranes and lipoproteins converts "inert" phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease.

  3. Perfluorinated Alcohols Induce Complex Coacervation in Mixed Surfactants.

    Science.gov (United States)

    Jenkins, Samuel I; Collins, Christopher M; Khaledi, Morteza G

    2016-03-15

    Recently, we reported a unique and nearly ubiquitous phenomenon of inducing simple and complex coacervation in solutions of a broad variety of individual and mixed amphiphiles and over a wide range of concentrations and mole fractions. This paper describes a novel type of biphasic separation in aqueous solutions of mixed cationic-anionic (catanionic) surfactants induced by hexafluoroisopropanol (HFIP). The test cases included mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) (surfactants with different carbon chain lengths) as well as dodecyltrimethylammonium bromide (DTAB) with SDS (surfactants with the same carbon chain lengths). The CTAB-SDS-HFIP coacervate systems can be produced at many different mole ratios of surfactant, but DTAB-SDS-HFIP formed only coacervates at equimolar (1:1) mole ratios of DTAB and SDS. The phase-transition behavior of both systems was studied over a wide range of surfactant and HFIP concentrations at the stoichiometric (1:1) mole ratio of cationic/anionic surfactants. The chemical compositions of each of the two phases (aqueous-rich and coacervate phases) were studied with regard to the concentrations of HFIP, water, and individual surfactants. It is revealed that the surfactant-rich phase (coacervate phase) contains a large percentage of fluoroalcohol relative to the aqueous phase and is enriched in both surfactants but contains a small percentage of water. Surprisingly, the concentration of water in the coacervate phase increases as the total HFIP concentration is increased while the concentration of HFIP in the coacervate phase remains relatively constant, which means a larger amount of water associated with HFIP molecules is extracted into the coacervate phase, which results in the growth of the phase. The volume of the coacervate phase increases with an increase in surfactant concentration and total HFIP %. The coacervate phase is highly enriched in the two amphiphilic ions (DTA(+) and DS

  4. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  5. Phospholipids as Biomarkers for Excessive Alcohol Use

    Science.gov (United States)

    2013-10-01

    S.T., Bauman, K.E., & Foshee, V. A. (2005). Neighborhood Influences on Adolescent Cigarette and Alcohol Use: Mediating Effects through Parent and...AWARD NUMBER: W81XWH-12-1-0497 TITLE: Phospholipids as Biomarkers for Excessive Alcohol Use...NUMBER Phospholipids as Biomarkers for Excessive Alcohol Use 5b. GRANT NUMBER W81XWH-12-1-0497 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  6. Enzymatic modification of phospholipids forfunctional applications and human nutrition

    DEFF Research Database (Denmark)

    Guo, Zheng; Vikbjerg, Anders / Falk; Xu, Xuebing

    2005-01-01

    Rapid progress in biochemistry of phospholipids and evolution of modern bioengineering has brought forth a number of novel concepts and technical advancements in the modification of phospholipids for industrial applications and human nutrition. Highlights cover preparation of novel phospholipid...... analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification...

  7. Gravimetric determination of phospholipid concentration.

    Science.gov (United States)

    Tejera-Garcia, Roberto; Connell, Lisa; Shaw, Walter A; Kinnunen, Paavo K J

    2012-09-01

    Accurate determination of lipid concentrations is an obligatory routine in a research laboratory engaged in studies using this class of biomaterials. For phospholipids, this is frequently accomplished using the phosphate assay (Bartlett, G.R. Phosphorus Assay in Column Chromatography. J. Biol. Chem. 234, 466-468, 1959). Given the purity of the currently commercially available synthetic and isolated natural lipids, we have observed that determination of the dry weight of lipid stock solutions provides the fastest, most accurate, and generic method to assay their concentrations. The protocol described here takes advantage of the high resolution and accuracy obtained by modern weighing technology. We assayed by this technique the concentrations of a number of phosphatidylcholine samples, with different degrees of acyl chain saturation and length, and in different organic solvents. The results were compared with those from Bartlett assay, (31)P NMR, and Langmuir compression isotherms. The data obtained show that the gravimetric assay yields lipid concentrations with a resolution similar or better than obtained by the other techniques.

  8. Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size.

    Science.gov (United States)

    Bridges, James P; Ludwig, Marie-Gabrielle; Mueller, Matthias; Kinzel, Bernd; Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A; Ikegami, Machiko

    2013-09-01

    Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(Δexon17), were generated. Gpr116(Δexon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(Δexon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(Δexon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion.

  9. Orphan G Protein–Coupled Receptor GPR116 Regulates Pulmonary Surfactant Pool Size

    Science.gov (United States)

    Ludwig, Marie-Gabrielle; Mueller, Matthias; Kinzel, Bernd; Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A.; Ikegami, Machiko

    2013-01-01

    Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein–coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116Δexon17, were generated. Gpr116Δexon17 mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116Δexon17 mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116Δexon17 type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion. PMID:23590306

  10. "SP-G", a putative new surfactant protein--tissue localization and 3D structure.

    Directory of Open Access Journals (Sweden)

    Felix Rausch

    Full Text Available Surfactant proteins (SP are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.

  11. MICROBIAL SURFACTANTS. I. GLYCOLIPIDS

    Directory of Open Access Journals (Sweden)

    Pirog T. Р.

    2014-02-01

    Full Text Available The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates are summarized. It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.

  12. Analyzing Plant Signaling Phospholipids Through (32)P i-Labeling and TLC

    NARCIS (Netherlands)

    Munnik, T.; Zarza, X.

    2013-01-01

    Lipidomic analyses through LC-, GC-, and ESI-MS/MS can detect numerous lipid species based on headgroup and fatty acid compositions but usually miss the minor phospholipids involved in cell signaling because of their low chemical abundancy. Due to their high turnover, these signaling lipids are,

  13. Interactions of hemin, antimalarial drugs and hemin-antimalarial complexes with phospholipid monolayers

    NARCIS (Netherlands)

    Ginsburg, H.; Demel, R.A.

    1984-01-01

    Hemin, antimalarial drugs and complexes formed between them, have demonstrable effects on biological membranes. Using the phospholipid monolayer model, we show that hemin intercalates into the membrane and increases its surface pressure, depending on the lipid composition and the initial surface pre

  14. Surfactants at the Design Limit.

    Science.gov (United States)

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  15. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives.

    Science.gov (United States)

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease.

  16. Quantification of phospholipids classes in human milk.

    Science.gov (United States)

    Giuffrida, Francesca; Cruz-Hernandez, Cristina; Flück, Brigitte; Tavazzi, Isabelle; Thakkar, Sagar K; Destaillats, Frédéric; Braun, Marcel

    2013-10-01

    Phospholipids are integral constituents of the milk fat globule membranes and they play a central role in infants' immune and inflammatory responses. A methodology employing liquid chromatography coupled with evaporative light scattering detector has been optimized and validated to quantify the major phospholipids classes in human milk. Phospholipids were extracted using chloroform and methanol and separated on C18 column. Repeatability, intermediate reproducibility, and recovery values were calculated and a large sample set of human milk analyzed. In human milk, phospholipid classes were quantified at concentrations of 0.6 mg/100 g for phosphatidylinositol; 4.2 mg/100 g for phosphatidylethanolamine, 0.4 mg/100 g for phosphatidylserine, 2.8 mg/100 g for phosphatidylcholine, and 4.6 mg/100 g for sphingomyelin. Their relative standard deviation of repeatability and intermediate reproducibility values ranging between 0.8 and 13.4 % and between 2.4 and 25.7 %, respectively. The recovery values ranged between 67 and 112 %. Finally, the validated method was used to quantify phospholipid classes in human milk collected from 50 volunteers 4 weeks postpartum providing absolute content of these lipids in a relatively large cohort. The average content of total phospholipids was 23.8 mg/100 g that corresponds to an estimated mean intake of 140 mg phospholipids/day in a 4-week old infant when exclusively breast-fed.

  17. BINDING ISOTHERMS SURFACTANT-PROTEINS

    Directory of Open Access Journals (Sweden)

    Elena Irina Moater

    2011-12-01

    Full Text Available The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ion-selective electrode method and surface tension. High affinity isotherms which are typical of an anionic surfactant - protein bonding, exhibit an initial increase steep followed by a slow growth region and then a vertical growth above a certain concentration. This isotherm is typical of ionic surfactant to protein binding. Often the high affinity initial bond appears at very low concentrations of surfactant and therefore in some protein-surfactant systems, the exact shape of the isotherm in this region may be missing. The surfactant - protein binding is influenced by a number of variables such as the nature and chain length of surfactant, pH, ionic strength, temperature, nature of this protein and additives.

  18. Inorganic Salts Effect on Adsorption Behavior of Surfactant AEC at Liquid/Liquid Interface

    Directory of Open Access Journals (Sweden)

    Changhua Yang

    2013-07-01

    Full Text Available Behaviors of nonionic-anionic surfactant sodium fatty Alcohol polyoxyethylene Ether Carboxylate (AEC at dodecane/water interface influenced by inorganic salts NaCl, CaCl2 and MgCl2 were investigated by interfacial tension methods and molecular dynamics simulation. Contrasted distributions of various salts at interface and in aqueous solutions and resulting lowering the interfacial tension have been observed. Composition of surfactants-salts complex at interface surrounding different cations within 2.5 Å were found to be in two categories: (i the octahedral complexation of divalent cation was generated by the participation of surfactant head group and water molecule, (ii only water molecules were involved in the complexation. According to the simulation results, all the Na+ involved in type ii, without any direct interaction with surfactant head group, while Ca2+ and Mg2+ involved in type I, following the formula: Ca2++4 (surfactant +2(H2 O⇄ [Ca (surfactant4 [(H2 O]2]2+ M2+g+(surfactant+5 (H2 O⇄[Mg (surfactant [(H2 O]5 ]2+ This strongly chelate interaction between Ca2+ and surfactants makes surfactants more stretched at interface, thus more effective in oil/water interface.

  19. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants.

    Science.gov (United States)

    Yamagami, Kanako; Yamamoto, Takaharu; Sakai, Shota; Mioka, Tetsuo; Sano, Takamitsu; Igarashi, Yasuyuki; Tanaka, Kazuma

    2015-01-01

    In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.

  20. EFFECT OF SURFACTANTS ON Ni-TiN NANOCOMPOSITE COATINGS PREPARED BY ULTRASONIC ELECTRODEPOSITION

    Institute of Scientific and Technical Information of China (English)

    XIA Fafeng; JIA Zhenyuan; WU Menghua; LI Zhi

    2008-01-01

    Ni-TiN nanocomposite coatings were prepared by ultrasonic electrodeposition, and the effects of the surfactants on the coatings were investigated and the microstructure and micro rigidity of the coatings were characterized. Samples were also submitted to corrosion tests in 3% NaCl solution. The results showed that the surfactants had great effects on Ni-TiN nanocomposite coatings. The composite coatings prepared by ultrasonic electrodeposition with the surfactants were better than that of the coatings prepared without surfactants. The favorable properties of Ni-TiN nanocomposite coatings were prepared with the mixing of the non-ion and positive ion surfactants. The concentration of the mixing was 80 mg/L, and the ratio of the non-ion and positive ion surfactants was 1: 2.

  1. Pre- and early-postnatal nutrition modify gene and protein expressions of muscle energy metabolism markers and phospholipid Fatty Acid composition in a muscle type specific manner in sheep.

    Directory of Open Access Journals (Sweden)

    Lei Hou

    Full Text Available We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD and biceps femoris (BF and in the cardiac muscle (ventriculus sinister cordis (VSC of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM or 50% (LOW of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty, twin offspring received a high-carbohydrate-high-fat (HCHF or a moderate-conventional (CONV diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults. The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4 protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced

  2. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    Science.gov (United States)

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  3. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    Science.gov (United States)

    Smith, Douglas D.; Hiller, John M.

    1998-01-01

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  4. Interaction of fluorescent phospholipids with cyclodextrins.

    Science.gov (United States)

    Denz, Manuela; Haralampiev, Ivan; Schiller, Sabine; Szente, Lajos; Herrmann, Andreas; Huster, Daniel; Müller, Peter

    2016-01-01

    Fluorescent analogs of phospholipids are often employed to investigate the structure and dynamics of lipids in membranes. Some of those studies have used cyclodextrins e.g., to modulate the lipid phase. However, the role of the fluorescence moiety of analogs for the interaction between cyclodextrins and fluorescent lipids has not been investigated so far in detail. Therefore, in the present study the interaction of various fluorescent phospholipid analogs with methylated α-, β- and γ- cyclodextrins was investigated. The analogs differed in their structure, in the length of the fatty acyl chain, in the position of the fluorescence group, and in the attached fluorescence moiety (7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) or dipyrrometheneboron difluoride (BODIPY)). In aqueous buffer, cyclodextrins bind fluorescent lipids disturbing the organization of the analogs. When incorporated into lipid vesicles, analogs are selectively extracted from the membrane upon addition of cyclodextrins. The results show that the interaction of cyclodextrins with fluorescent phospholipids depends on the cyclodextrin species, the fluorescence moiety and the phospholipid structure. The presented data should be of interest for studies using fluorescent phospholipids and cyclodextrins, since the interaction between the fluorescence group and the cyclodextrin may interfere with the process(es) under study.

  5. Protein-Phospholipid Interactions in Nonclassical Protein Secretion: Problem and Methods of Study

    Directory of Open Access Journals (Sweden)

    David Neivandt

    2013-02-01

    Full Text Available Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i Phenomenon of nonclassical protein release and its biological significance; (ii Composition of the FGF1 multiprotein release complex (MRC; (iii The relationship between FGF1 export and acidic phospholipid externalization; (iv Interactions of FGF1 MRC components with acidic phospholipids; (v Methods to study the transmembrane translocation of proteins; (vi Membrane models to study nonclassical protein release.

  6. Interaction of nonionic surfactant AEO9 with ionic surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo; YIN Hong

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, αAEO9 =0.5. The surface properties of the surfactants, critical micelle concentration (CMC),effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Гmax) and minimum area per molecule at the air/solution interface (Amin) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.

  7. Distinctive interactions of oleic acid covered magnetic nanoparticles with saturated and unsaturated phospholipids in Langmuir monolayers.

    Science.gov (United States)

    Matshaya, Thabo J; Lanterna, Anabel E; Granados, Alejandro M; Krause, Rui W M; Maggio, Bruno; Vico, Raquel V

    2014-05-27

    The growing number of innovations in nanomedicine and nanobiotechnology are posing new challenges in understanding the full spectrum of interactions between nanomateriales and biomolecules at nano-biointerfaces. Although considerable achievements have been accomplished by in vivo applications, many issues regarding the molecular nature of these interactions are far from being well-understood. In this work, we evaluate the interaction of hydrophobic magnetic nanoparticles (MNP) covered with a single layer of oleic acid with saturated and unsaturated phospholipids found in biomembranes through the use of Langmuir monolayers. We find distinctive interactions among the MNP with saturated and unsaturated phospholipids that are reflected by both, the compression isotherms and the surface topography of the films. The interaction between MNP and saturated lipids causes a noticeable reduction of the mean molecular area in the interfacial plane, while the interaction with unsaturated lipids promotes area expansion compared to the ideally mixed films. Moreover, when liquid expanded and liquid condensed phases of the phospholipid(s) coexist, the MNP preferably partition to the liquid-expanded phase, thus hindering the coalescence of the condensed domains with increasing surface pressure. In consequence organizational information on long-range order is attained. These results evidence the existence of a sensitive composition-dependent surface regulation given by phospholipid-nanoparticle interactions which enhance the biophysical relevance of understanding nanoparticle surface functionalization in relation to its interactions in biointerfaces constituted by defined types of biomolecules.

  8. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    Science.gov (United States)

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  9. Cost effective, robust, and reliable coupled separation techniques for the identification and quantification of phospholipids in complex biological matrices: application to insects.

    Science.gov (United States)

    Zahradníčková, Helena; Tomčala, Aleš; Berková, Petra; Schneedorferová, Ivana; Okrouhlík, Jan; Simek, Petr; Hodková, Magdalena

    2014-08-01

    The quantification of phospholipid classes and the determination of their molecular structures are crucial in physiological and medical studies. This paper's target analytes are cell membrane phospholipids, which play an important role in the seasonal acclimation processes of poikilothermic organisms. We introduce a set of simple and cost-effective analytical methods that enable efficient characterization and quantification of particular phospholipid classes and the identification and relative distribution of the individual phospholipid species. The analytical approach involves solid-phase extraction and high-performance thin-layer chromatography, which facilitate the separation of particular lipid classes. The obtained fractions are further transesterified to fatty acid methyl esters and subjected to gas chromatography coupled to flame ionization detection, which enables the determination of the position of double bonds. Phospholipid species separation is achieved by high-performance liquid chromatography with mass spectrometry, which gives information about the headgroup moiety and attached fatty acids. The total content of each phospholipids class is assessed by phosphorus determination by UV spectrophotometry. The simultaneous analysis of phosphorus, fatty acid residues, and phospholipid species provides detailed information about phospholipid composition. Evaluation of these coupled methods was achieved by application to an insect model, Pyrrhocoris apterus. High correlation was observed between fatty acid compositions as determined by gas chromatography and high-performance liquid chromatography analysis.

  10. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    Science.gov (United States)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  11. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-04-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.

  12. Storage stability of marine phospholipids emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale

    Marine phospholipids (MPL) are believed to provide more advantages than fish oil from the same source. They are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic...... of secondary volatile compounds by Solid Phase Microextraction at several time intervals at 2°C storage. Preliminary results showed that marine phospholipids emulsion has a good oxidative stability....... acids (DHA) than oily triglycerides (fish oil). Therefore, the objective of this study is to explore the feasibility of using marine phospholipids emulsions as delivery system through investigation of the physical, oxidative and hydrolytic stability of MPL emulsions with or without addition of fish oil...

  13. Effects of alkyl polyglycoside, a nonionic surfactant, and forage-to-concentrate ratio on rumen fermentation, amino acid composition of rumen content, bacteria and plasma in goats.

    Science.gov (United States)

    Zeng, Bo; Tan, Zhiliang; Tang, Shaoxun; Han, Xuefeng; Tan, Chuanyan; Zhong, Rongzhen; Hea, Zhixiong; Arigbede, Oluwasanmi Moses

    2011-06-01

    In the present study, the effects of different forage-to-concentrate ratios (F:C) and an alkyl polyglycoside (APG) supplementation on parameters of rumen and blood metabolism were investigated in goats. A 2 x 2 factorial experiment was arranged within a 4 x 4 Latin square design (four 22-day periods), using four wether goats equipped with permanent ruminal cannulas. The experimental diets included two F:C levels (40:60 vs. 60:40), and two APG supplementation levels (None or 13 ml APG daily per animal). Rumen contents and blood samples were collected at the end of each period. Dietary F:C alteration affected plasma urea and influenced the proportions of leucine, histidine, arginine, glycine, proline, alanine, valine, phenylalanine, cysteine and tyrosine in rumen content, and the proportions of methionine, threonine and proline in solid-associated bacteria (SAB) significantly. Dietary APG decreased the proportions of valine and phenylalanine in rumen content, and the histidine content of liquid-associated bacteria. The interaction between dietary F:C and APG was significant for the proportions of glycine and alanine in rumen content, and the proportions of lysine and threonine in SAB. The proportion of lysine was greater, but the proportion of threonine was less in SAB for goats fed high F:C diet without APG supplementation. The proportions of plasma free amino acids and glucose concentration were not affected by experimental treatments. These results indicated that dietary APG addition affected the amino acid composition of the rumen content and ruminal bacteria, but this depended on the dietary F:C ratio. It is necessary to validate the effectiveness of dietary APG supplementation in further studies with more animals.

  14. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  15. Surfactant monitoring by foam generation

    Science.gov (United States)

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  16. Surfactant adsorption kinetics in microfluidics

    Science.gov (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  17. Sphingophosphonolipids, phospholipids, and fatty acids from Aegean jellyfish Aurelia aurita.

    Science.gov (United States)

    Kariotoglou, D M; Mastronicolis, S K

    2001-11-01

    The goal of this study is to elucidate and identify several sphingophosphonolipids from Aurelia aurita, an abundant but harmless Aegean jellyfish, in which they have not previously been described. Total lipids of A. aurita were 0.031-0.036% of fresh tissue, and the lipid phosphorus content was 1.3-1.7% of total lipids. Phosphonolipids were 21.7% of phospholipids and consisted of a major ceramide aminoethylphosphonate (CAEP-I; 18.3%), as well as three minor CAEP (II, III, IV) methyl analogs at 1.3, 1.1, and 1.0%, respectively. The remaining phospholipid composition was: phosphatidylcholine, 44.5%, including 36.2% glycerylethers; phosphatidylethanolamine, 18.6%, including 4.5% glycerylethers; cardiolipin, 5.6%; phosphatidylinositol, 2.6%; and lysophosphatidylcholine, 5.0%. In CAEP-I, saturated fatty acids of 14-18 carbon chain length were 70.8% and were combined with 57.3% dihydroxy bases and 23.4% trihydroxy bases. The suite of the three minor CAEP methyl analogs were of the same lipid class based on the head group, but they separated into three different components because of their polarity as follows: CAEP-II and CAEP-III differentiation from the major CAEP-I was mainly due to the increased fatty acid unsaturation and not to a different long-chain base, but the CAEP-IV differentiation from CAEP-I, apart from fatty acid unsaturation, was due to the increased content of hydroxyl groups originated from both hydroxy fatty acids and trihydroxy long-chain bases. Saturated fatty acids were predominant in total (76.7%), polar (83.0%), and neutral lipids (67.6%) of A. aurita. The major phospholipid components of A. aurita were comparable to those previously found in a related organism (Pelagia noctiluca), which can injure humans.

  18. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    the CSC have been determined for mixtures of cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to {approx}10's {mu}m in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)

  19. Innovation in surfactant therapy II: surfactant administration by aerosolization.

    Science.gov (United States)

    Pillow, J Jane; Minocchieri, S

    2012-01-01

    Instilled bolus surfactant is the only approved surfactant treatment for neonatal respiratory distress syndrome. However, recent trends towards increased utilization of noninvasive respiratory support for preterm infants with surfactant deficiency have created a demand for a similarly noninvasive means of administering exogenous surfactant. Past approaches to surfactant nebulization met with varying success due to inefficient aerosol devices resulting in low intrapulmonary delivery doses of surfactant with variable clinical effectiveness. The recent development of vibrating membrane nebulizers, coupled with appropriate positioning of the interface device, indicates that efficient delivery of aerosolized surfactant is now a realistic goal in infants. Evidence of clinical effect despite low total administered dose in pilot studies, together with suggestions of enhanced homogeneity of pulmonary distribution indicate that this therapy may be applied in a cost-effective manner, with minimal patient handling and disruption. These studies need to be subjected to appropriately designed randomized controlled trials. Further work is also required to determine the optimum delivery route (mask, intranasal prong, nasopharyngeal or laryngeal), dosing amount and redosing interval.

  20. Interaction of nonionic surfactant AEO9 with ionic surfactants*

    OpenAIRE

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, α AEO9=0.5. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γ CMC), maximum surface excess concentration (Γ max) and minimum area per...

  1. Influence of the surfactant in the shear-induced crystallization kinetics of HDPE/MMT nano composites; Influencia do tratamento superficial da montmorilonita na cinetica de cristalizacao induzida por fluxo de nanocompositos de HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, A.B. [Universidade Federal de Sao Carlos (DEMA/UFSCAR), SP (Brazil). Dept. de Engenharia de Materiais; Beatrice, C.A.G.; Marini, J.; Bretas, R.E.S., E-mail: bretas@ufscar.b [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    High-density polyethylene (HDPE) compatibilized with ethylene vinyl-acetate copolymer (EVA)r, with 5 wt% of two different organically modified montmorillonite (with polar and non-polar surfactant) were prepared by melt blending in a corrotational twin-screw extruder at 225 deg C, 100rpm and 3kg/h. Both nanocomposites were characterized by wide-angle x-ray scattering (WAXS), transmission electron microscopy (TEM) and rheological measurements. The nanoclay's lamellas were intercalated in both samples. The storage and the loss moduli of the nanocomposites, at low frequencies, showed that the particles of the nanoclay modified with a polar surfactant were well dispersed thru the HDPE matrix, while the particles of the other nanoclay were well distributed thru the matrix. The presence of a nanoclay modified with a non-polar surfactant reduced the induction times for the crystals growth, due to the strong interactions with the HDPE chains. (author)

  2. Pulmonary surfactant function studied with the pulsating bubble surfactometer (PBS) and the capillary surfactometer (CS).

    Science.gov (United States)

    Enhorning, G

    2001-05-01

    Two instruments, the pulsating bubble surfactometer (PBS) and the capillary surfactometer (CS), were constructed for a study of pulmonary surfactant's physical properties. The instruments study spherical surfaces as in alveoli (PBS) and cylindrical surfaces as in terminal conducting airways (CS). Phospholipids, pulmonary surfactant's main components, are amphiphilic and, therefore, spontaneously form a film at air-liquid interfaces. When the film in the PBS is compressed to a reduced area during 'expiration', the molecules come closer together. Thereby, a high surface pressure develops, causing surface tension to be reduced more than bubble radius. If these conditions, observed with the PBS are analogous in lungs, alveolar stability would be promoted. The CS was developed for a study of how surfactant has ability to maintain patency of narrow conducting airways. Provided adsorption is extremely fast, a surfactant film will line the terminal conducting airway as soon as liquid blocking the airway has been extruded. During expiration that film will develop high surface pressure (=low surface tension). This will counteract the tendency for liquid to accumulate in the airway's most narrow section. If surfactant is dysfunctioning, liquid is likely to accumulate and block terminal airways. Airway resistance would then increase, causing FEV(1) to be reduced.

  3. The Lantibiotic Nisin Induces Transmembrane Movement of a Fluorescent Phospholipid

    NARCIS (Netherlands)

    Moll, Gert N.; Konings, Wil N.; Driessen, Arnold J.M.

    1998-01-01

    Nisin is a pore-forming antimicrobial peptide. The capacity of nisin to induce transmembrane movement of a fluorescent phospholipid in lipid vesicles was investigated. Unilamellar phospholipid vesicles that contained a fluorescent phospholipid (1-acyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]ca

  4. Effects of simulated microgravity on surfactant and water balance of lung in animals with different resistance to stress

    Science.gov (United States)

    Bryndina, Irina; Vasilieva, Natalia

    Weightlessness is accompanied by redistribution of blood flow in lung, changes of lung volumes and gas exchange (Prisk et al., 2002; Grigoriev, Baranov, 2003). On the other hand, it is known that microgravity is considered as a kind of moderate stress (Grigoriev et al., 2004). Stress response may differ in animals resistant or vulnerable to stress (Sudakov, 2007). To study the effects of simulated microgravity upon lung, we used 20 male albino rats tested for behavior in the "open field" and than divided into active (stress resistant - SR ) and passive (stress vulnerable - CV) groups. Two mouse lines were used with similar goal - C57Bl/6 and BALB/c mice (n=16). According to data obtained earlier, BALB/c mice referred as more stress vulnerable, in contrast to C57BL/6 mice, which are considered to be relatively stress resistant (Flint et al., 2007). We have previously shown that changes in lung surfactant system after psychosocial stress or long-term immobilization are less pronounced in stress resistant rats (Vasilieva, Bryndina, 2012). The aim of this work is to study the properties and biochemical composition of pulmonary surfactant and lung water balance in rats and mice with different stress resistance in antiorthostatic suspension (AOS) of short and long duration. Simulated microgravity was reproduced according to procedure of Ilyin-Novikov in modification of Morey-Holton. The duration of exposure was 10 days for rats and 30 days for mice. The properties of pulmonary surfactant were assessed by the evaluation of surface activity (surface tension - ST), the content of total phospholipids (PL) and their fractions. Simultaneously we calculated the gravimetric water balance indices: lung coefficient, "dry residue" and wet-to-dry ratio. Total and extravascular lung fluid and pulmonary blood supply were estimated as well. The experiments demonstrated that there was a decrease of surface tension of surfactant films after 10-day AOS in both groups of rats (to a greater

  5. Separation and identification of phospholipid peroxidation products.

    Science.gov (United States)

    Milne, G L; Porter, N A

    2001-11-01

    The molecular species in mixtures of phospholipid hydroperoxides are difficult to separate and identify by typical chromatographic and mass spectrometric techniques. As reported by Havrilla and coworkers, silver ion coordination ion-spray mass spectrometry (CIS-MS) has proven to be a powerful technique for the identification of mixtures of hydroperoxides. This ionization technique, which involves the formation of Ag+ adducts of the hydroperoxides, provides valuable, unambiguous structural information about the hydroperoxides. Herein, we report a method for the analysis and identification of phospholipid hydroperoxides using CIS-MS. We also report an improved method for the separation of phospholipid hydroperoxides by reversed-phase high-performance liquid chromatography (RP-HPLC), which, for the first time, separates some of the hydroperoxide isomers. CIS-MS can be coupled with this RP-HPLC method by the addition of AgBF4 to the mobile phase or to the HPLC effluent postcolumn, thus allowing powerful HPLC-MS techniques to be used to identify complex mixtures of phospholipid hydroperoxides.

  6. Pseudocritical Behavior and Unbinding of Phospholipid Bilayers

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth;

    1995-01-01

    The temperature dependence of the small-angle neutron scattering from fully hydrated multilamellar phospholipid bilayers near the main phase transition is analyzed by means of a simple geometric model which yields both the lamellar repeat distance as well as the hydrophobic thickness of the bilayer...

  7. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...

  8. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  9. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  10. Electrokinetic investigation of surfactant adsorption.

    Science.gov (United States)

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  11. Lung Surfactant and Its Use in Lung Diseases

    Directory of Open Access Journals (Sweden)

    O. A. Rosenberg

    2007-01-01

    Full Text Available The review considers the present views of lung surfactant (LS functions with emphasis on its protective and barrier properties and ability to maintain local and adaptive immunity. The composition of commercial LS formulations is analyzed. Data on qualitative and quantitative LS abnormalities are presented in various diseases in neonates and adults. The results of clinical trials of different LS formulations in the treatment of acute respiratory distress syndrome in adults are analyzed in detail. Recent data on the results of and prospects for surfactant therapy for bronchial asthma, chronic obstructive pulmonary disease and pulmonary tuberculosis are given. 

  12. Developmental changes in polyunsaturated fetal plasma phospholipids and feto-maternal plasma phospholipid ratios and their association with bronchopulmonary dysplasia.

    Science.gov (United States)

    Bernhard, Wolfgang; Raith, Marco; Koch, Vera; Maas, Christoph; Abele, Harald; Poets, Christian F; Franz, Axel R

    2016-10-01

    Docosahexaenoic (C22:6) and arachidonic acid (C20:4) are long-chain polyunsaturated fatty acids (LC-PUFA), essential to fetal development, and preferentially transported by plasma phospholipids. To characterize fetal and maternal plasma phospholipid changes during gestation, and to investigate whether LC-PUFA phospholipid profiles are associated with bronchopulmonary dysplasia (BPD). Cord plasma and parturient serum from N = 108 pregnancies [24-42 week postmenstrual age (PMA)] were collected. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were analyzed with tandem mass spectrometry. PMA-associated changes were quantified, and break point analyses served to describe nonlinear changes during gestation. PC and PE were lower in cord than in parturient samples. In parturients, PC decreased until 33 week PMA, but then re-increased, whereas in cord plasma, concentrations linearly decreased. Fetal PC and PC sub-group values correlated with maternal values. C20:4-PC was twofold higher in cord than in maternal samples throughout gestation. C22:6-PC values, however, exceeded maternal values only beyond 33 week PMA. Consequently, early preterm C20:4-PC-to-C22:6-PC ratio largely exceeded term infant values. In infants born before 28 week PMA, a low C20:4-PC-to-C22:6-PC ratio was associated with BPD severity. Fetal plasma LC-PUFA-PC composition correlates with maternal values. Fetal C20:4-PC exceeds maternal values throughout gestation, whereas C22:6-PC exceeds maternal values only beyond 33 week PMA, resulting in a low fetal C20:4-PC/C22:6-PC ratio only toward end gestation. A low C20:4-PC/C22:6-PC ratio before 28 week PMA is associated with BPD severity. These data point to a concept of PMA-adjusted ARA and DHA supplementation and, potentially, cord plasma phospholipid analysis for BPD prediction.

  13. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen

    2009-03-01

    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  14. The application of P-gp inhibiting phospholipids as novel oral bioavailability enhancers - An in vitro and in vivo comparison.

    Science.gov (United States)

    Weinheimer, Manuel; Fricker, Gert; Burhenne, Jürgen; Mylius, Patricia; Schubert, Rolf

    2017-10-15

    The efflux transporter P-glycoprotein (P-gp) significantly modulates drug transport across the intestinal mucosa, strongly reducing the systemic absorption of various active pharmaceutical ingredients. P-gp inhibitors could serve as helpful tools to enhance the oral bioavailability of those substances. As a membrane-associated protein P-gp is surrounded and influenced by phospholipids. Some synthetic phospholipids have been found to strongly reduce P-gp's activity. In this study two representative phospholipids, 1,2-dioctanoyl-sn-glycero-3-phosphocholine (8:0 PC) and 1,2-didecanoyl-sn-glycero-3-phosphocholine (10:0 PC), were compared with Tween® 80 and Cremophor® EL, both commonly used surfactants with P-gp inhibitory properties. Their influence on the cellular transport of the P-gp substrate rhodamine 123 (RH123) was examined using Caco-2 cell layers. In addition, fluorescence anisotropy measurements were performed in order to investigate their effect on membrane fluidity. Finally, we compared the phospholipids with Tween® 80 and the competitive P-gp inhibitor verapamil in an in vivo study, testing their effects on the oral bioavailability of the P-gp substrate drug ritonavir. Both phospholipids not only led to the strongest absorption of RH123, but a permeability enhancing effect was detected in addition to the P-gp inhibition. Their effects on membrane fluidity were not consistent with their P-gp inhibiting effects, and therefore suggested a more complex mode of action. Both phospholipids significantly increased the area under the ritonavir plasma level curve (AUC) within 150min by more than tenfold, but were inferior to Tween® 80, which showed superior solubilizing effects. Finally, these phospholipids represent a novel substance class showing a high permeabilization potential for P-gp substrates. Because of their physiological structure and intestinal degradability, good tolerability without systemic absorption is expected. Formulating P-gp substrates with

  15. Stability of an amphipathic helix-hairpin surfactant peptide in liposomes.

    Science.gov (United States)

    Waring, Alan J; Gupta, Monik; Gordon, Larry M; Fujii, Gary; Walther, Frans J

    2016-12-01

    Surfactant protein B (SP-B; 79 residues) is a member of the saposin superfamily and plays a pivotal role in lung function. The N- and C-terminal regions of SP-B, cross-linked by two disulfides, were theoretically predicted to fold as charged amphipathic helices, suggesting participation in surfactant activities. Previous studies with oxidized Super Mini-B (SMB), a construct based on the N- and C-regions of SP-B (i.e., residues 1-25 and 63-78) joined with a designer turn (-PKGG-) and two disulfides, indicated that freshly prepared SMB in lipids folded as a surface active, α-helix-hairpin. Because other peptides modeled on α-helical SP domains lost helicity and surfactant activity on storage, experiments were here performed on oxidized SMB in surfactant liposomes stored at ~2-8°C for ≤5.5years. Captive bubble surfactometry confirmed low minimum surface tensions for fresh and stored SMB preparations. FTIR spectroscopy of fresh and stored SMB formulations showed secondary structures compatible with the peptide folding as α-helix-hairpin. A homology (I-TASSER) model of oxidized SMB demonstrated a globular protein, exhibiting a core of hydrophobic residues and a surface of polar residues. Since mass spectroscopy indicated that the disulfides were maintained on storage, the stability of SMB may be partly due to the disulfides bringing the N- and C-α-helices closer. Mass spectroscopy of stored SMB preparations showed some methionine oxidation, and also partial deacylation of surfactant phospholipids to form lyso-derivatives. However, the stable conformation and activity of stored SMB surfactant suggest that the active helix-hairpin resists these chemical changes which otherwise may lead to surfactant inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. In vivo Stability of Ester- and Ether-Linked Phospholipid-Containing Liposomes as Measured by Perturbed Angular Correlation Spectroscopy

    Science.gov (United States)

    Derksen, Johannes T.; Baldeschwieler, John D.; Scherphof, Gerrit L.

    1988-12-01

    To evaluate liposome formulations for use as intracellular sustained-release drug depots, we have compared the uptake and degradation in rat liver and spleen of liposomes of various compositions, containing as their bulk phospholipid an ether-linked phospholipid or one of several ester-linked phospholipids, by perturbed angular correlation spectroscopy. Multilamellar and small unilamellar vesicles (MLVs and SUVs), composed of egg phosphatidylcholine, sphingomyelin, distearoyl phosphatidylcholine (DSPC), dipalmitoyl phosphatidylcholine (DPPC) or its analog dihexadecylglycerophosphorylcholine (DHPC), and cholesterol plus phosphatidylserine, and containing 111In complexed to nitrilotriacetic acid, were injected intravenously in rats. Recovery of 111In-labeled liposomes in blood, liver, and spleen was assessed at specific time points after injection and the percentage of liposomes still intact in liver and spleen was determined by measurement of the time-integrated angular perturbation factor 111In of the [G22(∞ )] label. We found that MLVs but not SUVs, having DHPC as their bulk phospholipid, showed an increased resistance against lysosomal degradation as compared to other phospholipid-containing liposomes. The use of diacyl phospholipids with a high gel/liquid-crystalline phase-transition temperature, such as DPPC and DSPC, also retarded degradation of MLV, but not of SUV in the dose range tested, while the rate of uptake of these liposomes by the liver was lower.

  17. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant metabol

  18. Surfactant treatment before first breath for respiratory distress syndrome in preterm lambs: comparison of a peptide-containing synthetic lung surfactant with porcine-derived surfactant

    Directory of Open Access Journals (Sweden)

    van Zyl JM

    2013-08-01

    Full Text Available Johann M van Zyl,1 Johan Smith2 1Division of Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; 2Department of Paediatrics and Child Health, Tygerberg Children's Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa Background: In a recent study utilizing a saline-lavaged adult rabbit model, we described a significant improvement in systemic oxygenation and pulmonary shunt after the instillation of a novel synthetic peptide-containing surfactant, Synsurf. Respiratory distress syndrome in the preterm lamb more closely resembles that of the human infant, as their blood gas, pH values, and lung mechanics deteriorate dramatically from birth despite ventilator support. Moreover, premature lambs have lungs which are mechanically unstable, with the advantage of being able to measure multiple variables over extended periods. Our objective in this study was to investigate if Synsurf leads to improved systemic oxygenation, lung mechanics, and histology in comparison to the commercially available porcine-derived lung surfactant Curosurf® when administered before first breath in a preterm lamb model. Materials and methods: A Cesarean section was performed under general anesthesia on 18 time-dated pregnant Dohne Merino ewes at 129–130 days gestation. The premature lambs were delivered and ventilated with an expiratory tidal volume of 6–8 mL/kg for the first 30 minutes and thereafter at 8–10 mL/kg. In a randomized controlled trial, the two surfactants tested were Synsurf and Curosurf®, both at a dose of 100 mg/kg phospholipids (1,2-dipalmitoyl-L-α-phosphatidylcholine; 90% in Synsurf, 40% in Curosurf®. A control group of animals was treated with normal saline. Measurements of physiological variables, blood gases, and lung mechanics were made before and after surfactant and saline replacement and at 15, 30, 45, 60, 90, 120, 180

  19. Electrochemical Oscillations Induced by Surfactants

    Institute of Scientific and Technical Information of China (English)

    翟俊红; 贺占博

    2003-01-01

    A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO4 aqueous and an aluminum rod in Al(NO3)3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg2SO4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.

  20. Evaluation of the Mechanisms of Mayonnaise Phospholipid Oxidation.

    Science.gov (United States)

    Kato, Shunji; Iseki, Tatsuya; Hanzawa, Yasuhiko; Otoki, Yurika; Ito, Junya; Kimura, Fumiko; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2017-04-03

    Mayonnaise, which is widely used in foods, is rich in lipids and therefore susceptible to oxidation during the manufacturing process, which can result in loss of quality. Herein, we detected and analyzed phosphatidylcholine hydroperoxide (PCOOH) isomers present in fresh mayonnaise using LC-MS/MS. The PCOOH isomer composition suggests that mayonnaise phospholipid peroxidation is predominantly initiated by radical-oxidation (i.e. upon autoxidation), rather than singlet oxygen-oxidation (e.g. upon light exposure), during manufacturing, packaging and/or storage. This LC-MS/MS method will be useful for elucidating the cause of lipid peroxidation in mayonnaise and related foods. Such information will be valuable to ensure maintenance of product quality.

  1. Persurf, a New Method to Improve Surfactant Delivery: A Study in Surfactant Depleted Rats

    OpenAIRE

    2012-01-01

    PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary di...

  2. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.

    Science.gov (United States)

    Wagner, Olaf; Thiele, Julian; Weinhart, Marie; Mazutis, Linas; Weitz, David A; Huck, Wilhelm T S; Haag, Rainer

    2016-01-07

    In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.

  3. Slow dynamics of phospholipid monolayers at the air/water interface

    CERN Document Server

    Choi, Siyoung Q

    2009-01-01

    Phospholipid monolayers at the air-water interface serve as model systems for various biological interfaces, e.g. lung surfactant layers and outer leaflets of cell membranes. Although the dynamical (viscoelastic) properties of these interfaces may play a key role in stability, dynamics and function, the relatively weak rheological properties of most such monolayers have rendered their study difficult or impossible. A novel technique to measure the dynamical properties of fluid-fluid interfaces have developed accordingly. We microfabricate micron-scale ferromagnetic disks, place them on fluid-fluid interfaces, and use external electromagnets to exert torques upon them. By measuring the rotation that results from a known external torque, we compute the rotational drag, from which we deduce the rheological properties of the interface. Notably, our apparatus enable direct interfacial visualization while the probes are torqued. In this fluid dynamics video, we directly visualize dipalmitoylphosphatidylcholine(DPPC...

  4. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles Brominated Phospholipids as Tools to Follow Its Kinetics

    DEFF Research Database (Denmark)

    Montigny, Cédric; Dieudonné, Thibaud; Orlowski, Stéphane

    2017-01-01

    Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an ...

  5. Interaction of isopropylthioxanthone with phospholipid liposomes.

    Science.gov (United States)

    Momo, Federico; Fabris, Sabrina; Stevanato, Roberto

    2007-04-01

    Isopropylthioxanthone (ITX) is a highly lipophilic molecule which can be released in foods and beverages from the packages, where it is present as photoinitiator of inks in printing processes. Recently it was found in babies milk, and its toxicity cannot be excluded. The structure of the molecule suggests a possible strong interaction with the lipid moiety of biological membranes, and this is the first study of its effects on phospholipid organization, using differential scanning calorimetry (DSC) and spin labelling techniques. The data obtained with multilamellar liposomes of saturated phospholipids of different length, with and without cholesterol, point out that the molecule changes the lipid structure; in particular, in the gel state, behaving like a disordering agent it increases the mobility of the bilayer, while, in the fluid state, tends to rigidify the membrane, in a cholesterol like way. This behavior supports the hypothesis that ITX experiences a relocation process when the lipid matrix passes from the gel to the fluid state.

  6. Planar bilayer membranes from photoactivable phospholipids.

    Science.gov (United States)

    Borle, F; Sänger, M; Sigrist, H

    1991-07-22

    Planar bilayer membranes formed from photoactivable phospholipids have been characterized by low frequency voltametry. Cyclic voltametric measurements were applied for simultaneous registration of planar membrane conductivity and capacitance. The procedure has been utilized to characterize the formation and stability of planar bilayer membranes. Bilayer membranes were formed from N'-(1,2-dimyristoyl-sn-glycero-3-phosphoethyl)-N-((m-3- trifluoromethyldiazirine)phenyl)thiourea (C14-PED), a head-group photosensitive phospholipid. In situ photoactivation of C14-PED at wavelengths greater than or equal to 320 nm altered neither the mean conductivity nor the capacitance of the bilayer. Ionophore (valinomycin) and ion channel (gramicidin) activities were not impaired upon photoactivation. In contrast, bilayer membranes formed from 1,2-bis(hexadeca-2,4-dienoyl)-sn- glycero-3-phosphocholine (C16-DENPC) revealed short life times. In situ photopolymerization of the diene fatty acids significantly increased the membrane conductivity or led to membrane rupture.

  7. Non-rotator phases in phospholipid monolayers?

    DEFF Research Database (Denmark)

    Kenn, R.M.; Kjær, K.; Möhwald, H.

    1996-01-01

    Monolayers of diacylphosphatidylethanolamines at the air/water interface are studied by grazing incidence X-ray diffraction. The results prove the existence of phases which show analogies with the rotator phases of single-chain surfactants: hexagonal tail lattice with no tilt; rectangular lattice...

  8. Molecular phospholipid films on solid supports

    DEFF Research Database (Denmark)

    Czolkos, Ilja; Jesorka, Aldo; Orwar, Owe

    2011-01-01

    Phospholipid membranes are versatile structures for mimicking biological surfaces. Bilayer and monolayer membranes can be formed on solid supports, leading to enhanced stability and accessibility of the biomimetic molecular film. This has facilitated functional studies of membrane proteins...... stable lipid membranes. In this review, the current state of the art of molecularly thin lipid layer fabrication is presented with an emphasis on support materials, film formation mechanisms, characterisation methods, and applications....

  9. Phospholipids as Biomarkers for Excessive Alcohol Use

    Science.gov (United States)

    2016-10-01

    is designed to evaluate the utility of levels of two phospholipids in serum as a marker of past drinking behavior across month- level time horizons...in an attempt to improve ability to measure alcohol quantity consumed and associated damage better than can be done with ethyl alcohol level measures...and other existing tests that only measure very recent exposure and poorly reflect quantity consumed . This will be achieved by correlating detailed

  10. Development of novel docetaxel phospholipid nanoparticles for intravenous administration: quality by design approach.

    Science.gov (United States)

    Yadav, Dharmendra K; Pawar, Harish; Wankhade, Shrikant; Suresh, Sarasija

    2015-08-01

    The objective of this study was to develop novel docetaxel phospholipid nanoparticles (NDPNs) for intravenous administration. Modified solvent diffusion-evaporation method was adopted in the NDPN preparation. Central composite design (CCD) was employed in the optimization of the critical formulation factor (drug content) and process variable (stirring rate) to obtain NDPNs with 215.53 ± 1.9-nm particle size, 0.329 ± 0.02 polydispersity index (PDI), and 75.41 ± 4.81% entrapment efficiency. The morphological examination by transmission electron microscopy revealed spherical structure composed of a drug core stabilized within the phospholipid shell. Enhanced cell uptake of coumarin-6-loaded phospholipid nanoparticles by MCF-7 cell line indicated NDPN-efficient cell uptake. In vitro hemolysis test confirmed the safety of the phospholipid nanoparticles. NDPNs exhibited increased area under the curve (AUC) and mean residence time (MRT) by 3.0- and 3.3-fold, respectively, in comparison with the existing docetaxel parenteral formulation (Taxotere®), indicating a potential for sustained action. Thus, the novel NDPNs exhibit an ability to be an intravenous docetaxel formulation with enhanced uptake, decreased toxicity, and prolonged activity.

  11. IR-MALDI-MS analysis of HPTLC-separated phospholipid mixtures directly from the TLC plate.

    Science.gov (United States)

    Rohlfing, Andreas; Müthing, Johannes; Pohlentz, Gottfried; Distler, Ute; Peter-Katalinić, Jasna; Berkenkamp, Stefan; Dreisewerd, Klaus

    2007-08-01

    The application of a recently developed direct coupling of high-performance thin-layer chromatography (HPTLC) and infrared matrix-assisted laser desorption/ionization orthogonal extracting time-of-flight mass spectrometry (Dreisewerd, K.; Müthing, J.; Rohlfing, A.; Meisen, I.; Vukelic, Z.; Peter-Katalinic, J.; Hillenkamp, F.; Berkenkamp, S. Anal. Chem. 2005, 77, 4098-4107) to the analysis of phospholipid mixtures is demonstrated. Mixtures of six phospholipid types were exemplarily analyzed. The sensitivity was found to be in the range between about 10 and 150 pmol of material spotted for HPTLC, depending on phospholipid acidity, Rf value, and ion polarity. The lateral resolution of the analysis is on the order of the laser focus diameter of about 220 x 300 microm2, allowing differentiation between phospholipid species of different acyl chain composition within one single HPTLC band, which were undistiguishable by a mere visual assessment. Analyte diffusion due to the addition of glycerol to the HPTLC plate was found to be-if at all notable-of only minor importance.

  12. Low phospholipid associated cholelithiasis: association with mutation in the MDR3/ABCB4 gene

    Science.gov (United States)

    Rosmorduc, Olivier; Poupon, Raoul

    2007-01-01

    Low phospholipid-associated cholelithiasis (LPAC) is characterized by the association of ABCB4 mutations and low biliary phospholipid concentration with symptomatic and recurring cholelithiasis. This syndrome is infrequent and corresponds to a peculiar small subgroup of patients with symptomatic gallstone disease. The patients with the LPAC syndrome present typically with the following main features: age less than 40 years at onset of symptoms, recurrence of biliary symptoms after cholecystectomy, intrahepatic hyperechoic foci or sludge or microlithiasis along the biliary tree. Defect in ABCB4 function causes the production of bile with low phospholipid content, increased lithogenicity and high detergent properties leading to bile duct luminal membrane injuries and resulting in cholestasis with increased serum gamma-glutamyltransferase (GGT) activity. Intrahepatic gallstones may be evidenced by ultrasonography (US), computing tomography (CT) abdominal scan or magnetic resonance cholangiopancreatography, intrahepatic hyperechogenic foci along the biliary tree may be evidenced by US, and hepatic bile composition (phospholipids) may be determined by duodenoscopy. In all cases where the ABCB4 genotyping confirms the diagnosis of LPAC syndrome in young adults, long-term curative or prophylactic therapy with ursodeoxycholic acid (UDCA) should be initiated early to prevent the occurrence or recurrence of the syndrome and its complications. Cholecystectomy is indicated in the case of symptomatic gallstones. Biliary drainage or partial hepatectomy may be indicated in the case of symptomatic intrahepatic bile duct dilatations filled with gallstones. Patients with end-stage liver disease may be candidates for liver transplantation. PMID:17562004

  13. Annexin-Phospholipid Interactions. Functional Implications

    Directory of Open Access Journals (Sweden)

    Javier Turnay

    2013-01-01

    Full Text Available Annexins constitute an evolutionary conserved multigene protein superfamily characterized by their ability to interact with biological membranes in a calcium dependent manner. They are expressed by all living organisms with the exception of certain unicellular organisms. The vertebrate annexin core is composed of four (eight in annexin A6 homologous domains of around 70 amino acids, with the overall shape of a slightly bent ring surrounding a central hydrophilic pore. Calcium- and phospholipid-binding sites are located on the convex side while the N-terminus links domains I and IV on the concave side. The N-terminus region shows great variability in length and amino acid sequence and it greatly influences protein stability and specific functions of annexins. These proteins interact mainly with acidic phospholipids, such as phosphatidylserine, but differences are found regarding their affinity for lipids and calcium requirements for the interaction. Annexins are involved in a wide range of intra- and extracellular biological processes in vitro, most of them directly related with the conserved ability to bind to phospholipid bilayers: membrane trafficking, membrane-cytoskeleton anchorage, ion channel activity and regulation, as well as antiinflammatory and anticoagulant activities. However, the in vivo physiological functions of annexins are just beginning to be established.

  14. Distribution of Coexisting Solid and Fluid Phases Alters the Kinetics of Collapse from Phospholipid Monolayers†

    OpenAIRE

    Yan, Wenfei; Hall, Stephen B.

    2006-01-01

    To determine how coexistence of liquid-expanded (LE) and tilted-condensed (TC) phases in phospholipid monolayers affects collapse from the air/water interface, we studied binary films containing dioleoyl phosphatidylcholine–dipalmitoyl phosphatidylcholine (DPPC) mixtures between 10 and 100% DPPC. Previously published results established that this range of compositions represents the LE–TC coexistence region at the equilibrium spreading pressure of 47 mN/m. When held at 49.5 mN/m on a captive ...

  15. MEAN PLATELET VOLUME, PLASMA PHOSPHOLIPID FATTY ACID COMPOSITIONS AND VITAMIN B12 IN HANGZHOU MALE LACTO-VEGETARIANS AND OMNIVORES%杭州地区男性素食者平均血小板体积与血浆磷脂脂肪酸构成及维生素B12等生化指标的相关研究

    Institute of Scientific and Technical Information of China (English)

    马小红; 王强; 沈月爽; 于小妹

    2012-01-01

    目的 研究杭州地区男性素食者平均血小板体积(meam platelet volume,MPV)与血浆磷脂脂肪酸构成、血清维生素B12 (vitamin B12,VB12)及同型半胱氨酸(homocysteine,Hey)等指标的相关性.方法 采用气相色谱法测定89例男性素食者和103例对照组的血浆磷脂脂肪酸的构成,采用常规方法测定MPV和血清生化指标.结果 与对照组相比,素食组血浆多不饱和脂肪酸(n-3 PUFA)水平降低,而n-6 PUFA水平升高;素食组血清VB12水平显著降低(160.7±64.3 vs 373.9±160.9,P<0.01),Hcy水平显著增高,约为对照组的1.74倍(23.74±12.66 vs 13.62±9.17,P<0.01);素食组MPV高于对照组(9.14±1.04 vs 8.82±1.00,P<0.05).相关性分析显示,MPV与22:5n-6(DPA n-6)呈正相关,与血清VB12水平呈负相关.结论 杭州地区男性素食者MPV增高,血清Hcy升高,VB12与n-3 PUFA摄入不足,补充VB12与n-3 PUFA可能对降低素食者的MPV和Hcy有益.%Objective To assess relationship between meatn platelet volume (MPV) and plasma phospholipid fatty acid compositions and analyze routine item such as serum vitamin B12 (VB12) and homocysteine (Hcy) in Hangzhou male lacto-vegetarians and omnivores. Method Eighty-three lacto-vegetarians and 103 omnivores were recruited. Plasma phospholipid fatty acid compositions were analyzed by gas chromatography. MPV and serum index were tested by routine method. Results Plasma n-3 poly-unsaturated fatty acids (PUFA) of vegetarians were significantly lower and n-6 PUFA were significantly higher than those of controls, serum vitamin B12 level of vegetarian was only about half of omnivores (160.7±64.3 vs 373.9±160.9, P<0.01) while serum Hcy was about twice of the controls (23.74±12.66 vs 13.62±9.17, P<0.01), MPV of vegetarians was significantly higher than controls (9.14±1.04 vs 8.82±1.00, ,P<0.05), MPV was significantly positively correlated with n-6 PUFA docosapentaenoic acid (22:5n-6; DPA) and negatively correlated with serum VB12. Conclusion

  16. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  17. Surfactant for pediatric acute lung injury.

    Science.gov (United States)

    Willson, Douglas F; Chess, Patricia R; Notter, Robert H

    2008-06-01

    This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.

  18. Monsoon influences distribution of surfactants at different coastal areas into atmospheric aerosol

    Science.gov (United States)

    Shaharom, Suhana; Latif, Mohd Talib; Khan, Md Firoz

    2016-11-01

    Global climate change can be influenced by surfactants because of its characteristics due to reduce surface tension. The aim of this study was to determine the composition of surfactants in atmospheric aerosol. Fine aerosol sample diameter size (<1.5 µM) were collected using High Volume Air Sampler (HVAS) for 24 hrs with flow rate of 1.13m3min-1 at different coastal areas. Colorimetric method was undertaken to determine the concentrations of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as dimethyl blue active substances (DBAS) using a UV spectrometer. The results indicated that the concentration of anionic surfactants was higher than concentration of cationic surfactants. Therefore, the concentrations of surfactants in Port Dickson was 103.97 pmolm-3 for MBAS and 62.57 pmolm-3 for DBAS and was higher than Bachok during southwest monsoon and meanwhile concentrations of surfactants was higher in Bachok 102.74 pmolm-3 for MBAS and DBAS 68.56 pmolm-3 during northeast monsoon.

  19. Physicochemical Properties of Solid Phospholipid Particles as a Drug Delivery Platform for Improving Oral Absorption of Poorly Soluble Drugs.

    Science.gov (United States)

    Kawakami, Kohsaku; Miyazaki, Aoi; Fukushima, Mayuko; Sato, Keiko; Yamamura, Yuko; Mohri, Kohta; Sakuma, Shinji

    2017-01-01

    A novel drug delivery platform, mesoporous phospholipid particle (MPP), is introduced. Its physicochemical properties and ability as a carrier for enhancing oral absorption of poorly soluble drugs are discussed. MPP was prepared through freeze-drying a cyclohexane/t-butyl alcohol solution of phosphatidylcholine. Its basic properties were revealed using scanning electron microscopy, x-ray diffraction, thermal analysis, hygroscopicity measurement, and so on. Fenofibrate was loaded to MPP as a poorly soluble model drug, and effect of MPP on the oral absorption behavior was observed. MPP is spherical in shape with a diameter typically in the range of 10-15 μm and a wide surface area that exceeds 10 m(2)/g. It has a bilayer structure that may accommodate hydrophobic drugs in the acyl chain region. When fenofibrate was loaded in MPP as a model drug, it existed partially in a crystalline state and improvement in the dissolution behavior was achieved in the presence of a surfactant, because of the formation of mixed micelles composed of phospholipids and surfactants in the dissolution media. MPP greatly improved the oral absorption of fenofibrate compared to that of the crystalline drug and its efficacy was almost equivalent to that of an amorphous drug dispersion. MPP is a promising option for improving the oral absorption of poorly soluble drugs based on the novel mechanism of dissolution improvement.

  20. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.

    Science.gov (United States)

    McClements, David Julian; Gumus, Cansu Ekin

    2016-08-01

    There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products.

  1. The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngwoo; Lee, Woo-Hyung; Sorial, George [Department of Civil and Environmental Engineering, University of Cincinnati, 765 Baldwin Hall, PO Box 210071, Cincinnati, OH 45221-0071 (United States); Bishop, Paul L. [Department of Civil and Environmental Engineering, University of Cincinnati, 765 Baldwin Hall, PO Box 210071, Cincinnati, OH 45221-0071 (United States)], E-mail: Paul.Bishop@UC.edu

    2009-01-15

    Lab scale mulch biofilm barriers were constructed and tested to evaluate their performance for preventing the migration of aqueous and surfactant solubilized PAHs. The spatial distribution of viable PAH degrader populations and resultant biofilm formation were also monitored to evaluate the performance of the biobarrier and the prolonged surfactant effect on the PAH degrading microorganism consortia in the biobarrier. Sorption and biodegradation of PAHs resulted in stable operation of the system for dissolved phenanthrene and pyrene during 150 days of experimentation. The nonionic surfactant could increase the solubility of phenanthrene and pyrene significantly. However, the biobarrier itself couldn't totally prevent the migration of micellar solubilized phenanthrene and pyrene. The presence of surfactant and the resultant highly increased phenanthrene or pyrene concentration didn't appear to cause toxic effects on the attached biofilm in the biobarrier. However, the presence of surfactant did change the structural composition of the biofilm. - Mulch biofilm barrier showed potential for surfactant enhanced bioremediation, and the presence of surfactant changed the structural composition of the biofilm.

  2. INTERACTION OF CLATHRIN WITH LARGE UNILAMELLAR PHOSPHOLIPID-VESICLES AT NEUTRAL PH - LIPID DEPENDENCE AND PROTEIN PENETRATION

    NARCIS (Netherlands)

    SEPPEN, J; RAMALHOSANTOS, J; DECARVALHO, AP; TERBEEST, M; KOK, JW; DELIMA, MCP; HOEKSTRA, D

    1992-01-01

    The interaction of clathrin with large unilamellar vesicles of various lipid compositions has been examined at neutral pH. Clathrin induces leakage of contents of vesicles that contain the acidic phospholipid phosphatidylserine. Leakage is greatly enhanced by the presence of a relatively minor

  3. Alkyl propoxy ethoxylate "graded" surfactants: micelle formation and structure in aqueous solutions.

    Science.gov (United States)

    Sarkar, Biswajit; Alexandridis, Paschalis

    2010-04-08

    The self-assembly of alkyl propoxy ethoxylate surfactants in aqueous solutions has been investigated with a focus on the (i) thermodynamics of micellization (critical micellization concentration; free energy, enthalpy, and entropy of micellization) and (ii) structure of the micelles (overall shape and size; local environment in the micelle core and corona) as affected by the surfactant composition (variation of degree of ethoxylation). The various results are compared to those for alkyl ethoxylate and poly(ethylene oxide)-b-poly(propylene oxide) amphiphiles with the aim to elucidate the role of the middle, propoxy, block in the novel alkyl propoxy ethoxylate surfactants which exhibit a "graded" hydrophobic-hydrophilic character.

  4. Heat-regulated foaming in surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, M.Y.; Eremina, L.D.; Vlasenko, I.G.

    1984-01-01

    This article examines the mechanism of the foam-inhibiting action resulting from the use of propylene oxide derivatives in solutions both of anionic and of nonionic surfactants. The objective is the creation of a detergent composition with heat-regulated foaming, which would foam well at 30-50/sup 0/ and poorly at 80-90/sup 0/, which is the usual temperature of washing machines. It is demonstrated that foaming can be regulated by the variation of the cloud points of solutions with the aid of additions of polypropylene glycols and their alkyl derivatives or block copolymers in solutions of surfactants. Foaming and foam stability decrease sharply above the cloud points of the solutions due to the foam-inhibiting action of the coacervate phase on the coexisting foam-forming solution. The foam inhibition of polypropylene glycols increases and becomes apparent at lower concentrations with the increase of the average molecular weight of the hydrophobic blocks, the increase of their relative content (in block copolymers with oxyethylene groups), and upon the introduction of alkyl groups.

  5. Palmitoylation as a key factor to modulate SP-C-lipid interactions in lung surfactant membrane multilayers.

    Science.gov (United States)

    Roldan, Nuria; Goormaghtigh, Erik; Pérez-Gil, Jesús; Garcia-Alvarez, Begoña

    2015-01-01

    Surfactant protein C (SP-C) has been regarded as the most specific protein linked to development of mammalian lungs, and great efforts have been done to understand its structure-function relationships. Previous evidence has outlined the importance of SP-C palmitoylation to sustain the proper dynamics of lung surfactant, but the mechanism by which this posttranslational modification aids SP-C to stabilize the interfacial surfactant film along the compression-expansion breathing cycles, is still unrevealed. In this work we have compared the structure, orientation and lipid-protein interactions of a native palmitoylated SP-C with those of a non-palmitoylated recombinant SP-C (rSP-C) form in air-exposed multilayer membrane environments, by means of ATR-FTIR spectroscopy. Palmitoylation does not affect the secondary structure of the protein, which exhibits a full α-helical conformation in partly dehydrated phospholipid multilayer films. However, differences between the Amide I band of the IR spectrum of palmitoylated and non-palmitoylated proteins suggest subtle differences affecting the environment of their helical component. These differences are accompanied by differential effects on the IR bands from phospholipid phosphates, indicating that palmitoylation modulates lipid-protein interactions at the headgroup region of phospholipid layers. On the other hand, the relative dichroic absorption of polarized IR has allowed calculating that the palmitoylated protein adopts a more tilted transmembrane orientation than the non-palmitoylated SP-C, likely contributing to more compact, dehydrated and possibly stable multilayer lipid-protein films. As a whole, the behavior of multilayer films containing palmitoylated SP-C may reflect favorable structural properties for surfactant reservoirs at the air-liquid respiratory interface.

  6. Surfactant recovery from water using foam fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Tharapiwattananon, N.; Osuwan, S. [Chulalongkorn Univ., Bangkok (Thailand); Scamehorn, J.F. [Inst. of Oklahoma, Norman, OK (United States)] [and others

    1996-05-01

    The purpose of this study was to investigate the use of foam fractionation to recover surfactant from water. A simple continuous mode foam fractionation was used and three surfactants were studied (two anionic and one cationic). The effects of air flow rate, foam height, liquid height, liquid feed surfactant concentration, and sparger porosity were studied. This technique was shown to be effective in either surfactant recovery or the reduction of surfactant concentration in water to acceptable levels. As an example of the effectiveness of this technique, the cetylpyridinium chloride concentration in water can be reduced by 90% in one stage with a liquid residence time of 375 minutes. The surfactant concentration in the collapsed foam is 21.5 times the feed concentration. This cationic surfactant was easier to remove from water by foam fractionation than the anionic surfactants studied.

  7. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  8. Essential phospholipids in fatty liver: a scientific update

    Directory of Open Access Journals (Sweden)

    Gundermann KJ

    2016-05-01

    Full Text Available Karl-Josef Gundermann,1 Simon Gundermann,2 Marek Drozdzik,1 VG Mohan Prasad3 1Department of Pharmacology, Pomeranian Medical University, Szczecin, Poland; 2Department of Radiology, Hospital Hohenlind, Cologne, Germany; 3VGM Hospital Institute of Gastroenterology, Coimbatore, India Aim: Although essential phospholipids (EPL from soybean are often used in membrane-associated disorders and diseases, their high quality of purification and effects on prevalent liver diseases, especially on fatty liver diseases (FLDs of different origin, are still widely unknown and a matter of continuous active research. The aim of this article is to review, discuss, and summarize the available results of EPL in the treatment of FLD. Methods: Database research was carried out on Medline, Embase, Cochrane Library, country-specific journals, and follow-up literature citations for relevant hepatogastroenterological articles published between 1988 and 2014. We searched for and reviewed only those papers that indicated minimum extraction amount of 72% (3-sn-phosphatidylcholine from soybean as being necessary to treat patients with a considerable amount of 1,2-dilinoleoylphosphatidylcholine as a key component in EPL. Results: EPL has a well-established mode of action, therapeutic effectiveness, and lack of toxicity, which ensures clinically relevant efficacy-to-safety ratio. It influences membrane-dependent cellular functions and shows anti-inflammatory, antioxidant, antifibrogenic, antiapoptotic, membrane-protective, and lipid-regulating effects. Due to its positive effects on membrane composition and functions, it accelerates the improvement or normalization of subjective symptoms; pathological, clinical, and biochemical findings; hepatic imaging; and liver histology. It is justified to administer EPL together with other therapeutic measurements in the liver. Conclusion: Pharmacological and clinical results confirm the efficacy of EPL in the treatment of FLD. Keywords

  9. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  10. Non-surfactant synthesis of mesoporous silica with dye as template

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel non-surfactant method was described to synthesize mesoporous silica using dye basic fuchsin as template. Chemical reactions were introduced into the formation of mesopores rather than the weak electrostatic or hydrogen-bonding interactions in the traditional surfactant routes. The reactant composition was found to be crucial to the pore structure of objective product. The formation mechanism of mesopore was also proved.

  11. A study of inter-species ion suppression in electrospray ionization-mass spectrometry of some phospholipid classes.

    Science.gov (United States)

    Khoury, Spiro; El Banna, Nadine; Tfaili, Sana; Chaminade, Pierre

    2016-02-01

    Phospholipid quantification in biological samples is crucial and is increasingly studied in lipidomics. Quantitative studies are often performed using commercially available standards of phospholipid classes in order to mimic the composition of biological samples. For this, studies are conducted by liquid chromatography coupled to electrospray ionization-mass spectrometry. In liquid chromatography coupled to mass spectrometry (LC-MS) analysis, the matrix components and the co-elution of several phospholipid species lead to the phenomenon of ion suppression. As a result, a decrease in the response of phospholipid species in mass spectrometry MS is observed. In fact, inter-species ion suppression affects the efficiency of phospholipid (PL) ionization and might also influence the quantitative results. The aim of this work is to study the PL inter-species ion suppression phenomenon in electrospray ionization (ESI)-mass spectrometry on a triple quadrupole TQ and an LTQ-Orbitrap in order to improve quantification in natural and biological samples. Thus, the phospholipid MS response was evaluated to study the effect of acyl chain length, the degree, and the position of unsaturation on acyl chain and the effect of the polar head group structure. A number of saturated and unsaturated phospholipid species and mixtures were analyzed in different ionization modes to a better understanding of inter-species ion suppression phenomenon. PL molecular species responded differently according to the length of fatty acid chains, the number of unsaturation, and the nature of the polar head group. Fatty acid chain length showed to have the most marked effect on MS response.

  12. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳

    2004-01-01

    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  13. Complex Formation Between Polyelectrolytes and Ionic Surfactants

    OpenAIRE

    1998-01-01

    The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and biology. In this paper we present a theory of polyelectrolyte ionic-surfactant solutions. The new theory successfully explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic-surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic polymer-sur...

  14. Huntingtin interactions with membrane phospholipids: strategic targets for therapeutic intervention?

    Science.gov (United States)

    Kegel-Gleason, Kimberly B

    2013-01-01

    The Huntington's disease gene encodes the protein huntingtin (Htt), a soluble protein that largely distributes to the cytoplasm where about half the protein is found in association with membranes. Early studies on Huntington's disease patients suggested changes in membrane phospholipids. Furthermore, changes in phospholipid biosynthetic enzymes have been found in HD cell models using genetic methods. Recent investigations prove that Htt associates with membranes by direct interactions with phospholipids in membranes. Htt contains at least two membrane binding domains, which may work in concert with each other, to target to the appropriate intracellular membranes for diverse functions. Htt has a particular affinity for a specific class of phospholipids called phosphatidylinositol phosphates; individual species of these phospholipids propagate signals promoting cell survival and regulating changes in morphology. Mutant Htt fragments can disrupt synthetic phospholipid bilayers and full-length mutant Htt shows increased binding to numerous phospholipids, supporting the idea that mutant Htt can introduce pathology at the level of phospholipid interactions. There is a great potential to develop therapeutic agents since numerous enzymes regulate the both the biosynthesis/metabolism of lipids and the post-translational modifications of Htt that direct membrane interactions. Understanding the relationship of Htt with membrane phospholipids, and the impact of mutant Htt on membrane-related functions and lipid metabolism, may help identify new modes of therapeutic intervention for Huntington's disease.

  15. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Science.gov (United States)

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  16. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Directory of Open Access Journals (Sweden)

    Alejandro Cerrada

    Full Text Available Lung alveolar type II (ATII cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs have been differentiated into Alveolar Type II- Like Cells (ATII-LCs, which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  17. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the cati

  18. Surfactant analysis in oil-containing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gronsveld, J.; Faber, M.J. (Koninklijke Shell Exploratie en Produktie Laboratorium, Rijswijk (Netherlands))

    The total surfactant concentration in aqueous phase samples can be analysed with a potentiometric titration. In enhanced oil recovery research, however, the surfactant is produced not only in aqueous phase samples but also in oleic phase samples. The oleic constituents in the oliec phase samples interfere in the surfactant analysis and, therefore, the titration method has been adapted. (orig.).

  19. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  20. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  1. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  2. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  3. Protein-phospholipid interactions in blood clotting.

    Science.gov (United States)

    Morrissey, James H; Davis-Harrison, Rebecca L; Tavoosi, Narjes; Ke, Ke; Pureza, Vincent; Boettcher, John M; Clay, Mary C; Rienstra, Chad M; Ohkubo, Y Zenmei; Pogorelov, Taras V; Tajkhorshid, Emad

    2010-04-01

    Most steps of the blood clotting cascade require the assembly of a serine protease with its specific regulatory protein on a suitable phospholipid bilayer. Unfortunately, the molecular details of how blood clotting proteins bind to membrane surfaces remain poorly understood, owing to a dearth of techniques for studying protein-membrane interactions at high resolution. Our laboratories are tackling this question using a combination of approaches, including nanoscale membrane bilayers, solid-state NMR, and large-scale molecular dynamics simulations. These studies are now providing structural insights at atomic resolution into clotting protein-membrane interactions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Drug induced `softening' in phospholipid monolayers

    Science.gov (United States)

    Basak, Uttam Kumar; Datta, Alokmay; Bhattacharya, Dhananjay

    2015-06-01

    Compressibility measurements on Langmuir monolayers of the phospholipid Dimystoryl Phospatidylcholine (DMPC) in pristine form and in the presence of the Non-steroidal Anti-inflammatory Drug (NSAID) Piroxicam at 0.025 drug/lipid (D/L) molecular ratio at different temperatures, show that the monolayer exhibits large increase (and subsequent decrease) in compressibility due to the drug in the vicinity of the Liquid Expanded - Liquid Condensed (LE-LC) phase transition. Molecular dynamics simulations of the lipid monolayer in presence of drug molecules show a disordering of the tail tilt, which is consistent with the above result.

  5. Motional Coherence in Fluid Phospholipid Membranes

    CERN Document Server

    Rheinstadter, Maikel C; Flenner, Elijah J; Bruening, Beate; Seydel, Tilo; Kosztin, Ioan

    2008-01-01

    We report a high energy-resolution neutron backscattering study, combined with in-situ diffraction, to investigate slow molecular motions on nanosecond time scales in the fluid phase of phospholipid bilayers of 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine (DMPC) and DMPC/40% cholesterol (wt/wt). A cooperative structural relaxation process was observed. From the in-plane scattering vector dependence of the relaxation rates in hydrogenated and deuterated samples, combined with results from a 0.1 microsecond long all atom molecular dynamics simulation, it is concluded that correlated dynamics in lipid membranes occurs over several lipid distances, spanning a time interval from pico- to nanoseconds.

  6. Hyaluronan and phospholipid association in biolubrication

    DEFF Research Database (Denmark)

    Wang, Min; Liu, Chao; Thormann, Esben

    2013-01-01

    load bearing capacity. With DPPC as the last adsorbed component, a friction coefficient of 0.01 was found up to pressures significantly above what is encountered in healthy synovial joints. Hyaluronan as the last added component increases the friction coefficient to 0.03 and decreases the load bearing...... capacity somewhat (but still above what is needed in the synovial joint). Our data demonstrate that self-assembly structures formed by hyaluronan and phospholipids at interfaces are efficient aqueous lubricants, and it seems plausible that such self-assembly structures contribute to the exceptional...

  7. Surfactant-based critical phenomena in microgravity

    Science.gov (United States)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  8. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides

    Science.gov (United States)

    Samarajeewa, Dinushi R.; Dieckmann, Gregg R.; Nielsen, Steven O.; Musselman, Inga H.

    2012-07-01

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)5(Lysine)2, where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino

  9. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles.

    Science.gov (United States)

    Selinsky, B S; Zhou, Z; Fojtik, K G; Jones, S R; Dollahon, N R; Shinnar, A E

    1998-03-13

    The ability of the shark antimicrobial aminosterol squalamine to induce the leakage of polar fluorescent dyes from large unilamellar phospholipid vesicles (LUVs) has been measured. Micromolar squalamine causes leakage of carboxyfluorescein (CF) from vesicles prepared from the anionic phospholipids phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin. Binding analyses based on the leakage data show that squalamine has its highest affinity to phosphatidylglycerol membranes, followed by phosphatidylserine and cardiolipin membranes. Squalamine will also induce the leakage of CF from phosphatidylcholine (PC) LUVs at low phospholipid concentrations. At high phospholipid concentrations, the leakage of CF from PC LUVs deviates from a simple dose-response relationship, and it appears that some of the squalamine can no longer cause leakage. Fluorescent dye leakage generated by squalamine is graded, suggesting the formation of a discrete membrane pore rather than a generalized disruption of vesicular membranes. By using fluorescently labeled dextrans of different molecular weight, material with molecular weight squalamine, but material with molecular weight >/=10,000 is retained. Negative stain electron microscopy of squalamine-treated LUVs shows that squalamine decreases the average vesicular size in a concentration-dependent manner. Squalamine decreases the size of vesicles containing anionic phospholipid at a lower squalamine/lipid molar ratio than pure PC LUVs. In a centrifugation assay, squalamine solubilizes phospholipid, but only at significantly higher squalamine/phospholipid ratios than required for either dye leakage or vesicle size reduction. Squalamine solubilizes PC at lower squalamine/phospholipid ratios than PG. We suggest that squalamine complexes with phospholipid to form a discrete structure within the bilayers of LUVs, resulting in the transient leakage of small encapsulated molecules. At higher squalamine/phospholipid ratios, these

  10. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients.

    Science.gov (United States)

    Maes, M; Christophe, A; Delanghe, J; Altamura, C; Neels, H; Meltzer, H Y

    1999-03-22

    Depression is associated with a lowered degree of esterification of serum cholesterol, an increased C20:4omega6/C20:5omega3 ratio and decreases in omega3 fractions in fatty acids (FAs) or in the red blood cell membrane. The aims of the present study were to examine: (i) serum phospholipid and cholesteryl ester compositions of individual saturated fatty acids (SFAs), monounsaturated FAs (MUFAs) and polyunsaturated FAs (PUFAs) in major depressed patients vs. healthy volunteers; (ii) the relationships between the above FAs and lowered serum zinc (Zn), a marker of the inflammatory response in depression; and (iii) the effects of subchronic treatment with antidepressants on FAs in depression. The composition of the FAs was determined by means of thin layer chromatography in conjunction with gas chromatography. Lipid concentrations were assayed by enzymatic colorimetric methods. The oxidative potential index (OPI) of FAs was computed in 34 major depressed inpatients and 14 normal volunteers. Major depression was associated with: increased MUFA and C22:5omega3 proportions and increased C20:4omega6/C20:5omega3 and C22:5omega6/C22:6omega3 ratios; lower C22:4omega6, C20:5omega3 and C22:5omega3 fractions in phospholipids; lower C18:3omega3, C20:5omega3 and total (sigma)omega3 FAs, and higher C20:4omega6/C20:5omega3 and sigmaomega6/sigmaomega3 ratios in cholesteryl esters; lower serum concentrations of phospholipids and cholesteryl esters; and a decreased OPI. In depression, there were significant and positive correlations between serum Zn and C20:5omega3 and C22:6omega3 fractions in phospholipids; and significant inverse correlations between serum Zn and the sigmaomega6/sigmaomega3, C20:4omega6/C20:5omega3, and C22:5omega6/C22:6omega3 ratios in phospholipids. There was no significant effect of antidepressive treatment on any of the FAs. The results show that, in major depression, there is a deficiency of omega3 PUFAs and a compensatory increase in MUFAs and C22:5omega6 in

  11. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Thomas Raymond H

    2012-07-01

    Full Text Available Abstract Gastrointestinal symptoms and altered blood phospholipid profiles have been reported in patients with autism spectrum disorders (ASD. Most of the phospholipid analyses have been conducted on the fatty acid composition of isolated phospholipid classes following hydrolysis. A paucity of information exists on how the intact phospholipid molecular species are altered in ASD. We applied ESI/MS to determine how brain and blood intact phospholipid species were altered during the induction of ASD-like behaviors in rats following intraventricular infusions with the enteric bacterial metabolite propionic acid. Animals were infused daily for 8 days, locomotor activity assessed, and animals killed during the induced behaviors. Propionic acid infusions increased locomotor activity. Lipid analysis revealed treatment altered 21 brain and 30 blood phospholipid molecular species. Notable alterations were observed in the composition of brain SM, diacyl mono and polyunsaturated PC, PI, PS, PE, and plasmalogen PC and PE molecular species. These alterations suggest that the propionic acid rat model is a useful tool to study aberrations in lipid metabolism known to affect membrane fluidity, peroxisomal function, gap junction coupling capacity, signaling, and neuroinflammation, all of which may be associated with the pathogenesis of ASD.

  12. Cholesterol:phospholipid ratio is elevated in platelet plasma membrane in patients with hypertension.

    Science.gov (United States)

    Benjamin, N; Robinson, B F; Graham, J G; Wilson, R B

    1990-06-01

    The cholesterol:phospholipid ratio was measured in platelet plasma membrane, red blood cell (RBC) membranes, low density lipoprotein (LDL) and whole plasma in patients with primary hypertension and in matched normal controls. The cholesterol:phospholipid ratio was raised in the platelet membrane from hypertensive patients compared with that from normal controls (0.65 +/- 0.03 vs 0.53 +/- 0.02: mean +/- SEM; P less than 0.01). The ratio observed in RBC membranes, LDL and whole blood was similar in the two groups. If this abnormality in the lipid composition of platelet plasma membrane is present in other cells it could account for some of the changes in cell membrane function that have been described in hypertension.

  13. Allosteric Activation of the Phosphoinositide Phosphatase Sac1 by Anionic Phospholipids

    Science.gov (United States)

    2012-01-01

    Sac family phosphoinositide phosphatases comprise an evolutionarily conserved family of enzymes in eukaryotes. Our recently determined crystal structure of the Sac phosphatase domain of yeast Sac1, the founding member of the Sac family proteins, revealed a unique conformation of the catalytic P-loop and a large positively charged groove at the catalytic site. We now report a unique mechanism for the regulation of its phosphatase activity. Sac1 is an allosteric enzyme that can be activated by its product phosphatidylinositol or anionic phospholipid phosphatidylserine. The activation of Sac1 may involve conformational changes of the catalytic P-loop induced by direct binding with the regulatory anionic phospholipids in the large cationic catalytic groove. These findings highlight the fact that lipid composition of the substrate membrane plays an important role in the control of Sac1 function. PMID:22452743

  14. Imaging phospholipid conformational disorder and packing in giant multilamellar liposome by confocal Raman microspectroscopy.

    Science.gov (United States)

    Noothalapati, Hemanth; Iwasaki, Keita; Yoshimoto, Chikako; Yoshikiyo, Keisuke; Nishikawa, Tomoe; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Tatsuyuki

    2017-12-05

    Liposomes are closed phospholipid bilayer systems that have profound applications in fundamental cell biology, pharmaceutics and medicine. Depending on the composition (pure or mixture of phospholipids, presence of cholesterol) and preparation protocol, intra- and inter-chain molecular interactions vary leading to changes in the quality (order and packing) of liposomes. So far it is not possible to image conformational disorders and packing densities within a liposome in a straightforward manner. In this study, we utilized confocal Raman microspectroscopy to visualize structural disorders and packing efficiency within a giant multilamellar liposome model by focusing mainly on three regions in the vibrational spectrum (CC stretching, CH deformation and CH stretching). We estimated properties such as trans/gauche isomers and lateral packing probability. Interestingly, our Raman imaging studies revealed gel phase rich domains and heterogeneous lateral packing within the giant multilamellar liposome. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Interactions of Ovalbumin with Ionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; YAN Hui; GUO Rong

    2008-01-01

    The interactions of ovalbumin (OVA) with one anionic surfactant,sodium dodecyl sulfate (SDS),and two cationic surfactants,dodecyl trimethylammonium bromide (DTAB) and cetyl trimethylammonium bromide (CTAB),in water have been studied through fluorescence and UV-Vis spectroscopies and transmission electronic microscopy,combined with the measurement of conductivity.OVA can increase the critical micelle concentrations (cmc) of SDS and CTAB but has little effect on that of DTAB.The interaction between surfactant monomer and OVA is greater than that between surfactant micelles and OVA.Moreover,SDS can make OVA unfolded while cationic surfactants cannot.

  16. Phospholipid imprinted polymers as selective endotoxin scavengers

    Science.gov (United States)

    Sulc, Robert; Szekely, Gyorgy; Shinde, Sudhirkumar; Wierzbicka, Celina; Vilela, Filipe; Bauer, David; Sellergren, Börje

    2017-03-01

    Herein we explore phospholipid imprinting as a means to design receptors for complex glycolipids comprising the toxic lipopolysaccharide endotoxin. A series of polymerizable bis-imidazolium and urea hosts were evaluated as cationic and neutral hosts for phosphates and phosphonates, the latter used as mimics of the phospholipid head groups. The bis-imidazolium hosts interacted with the guests in a cooperative manner leading to the presence of tight and well defined 1:2 ternary complexes. Optimized monomer combinations were subsequently used for imprinting of phosphatidic acid as an endotoxin dummy template. Presence of the aforementioned ternary complexes during polymerization resulted in imprinting of lipid dimers - the latter believed to crudely mimic the endotoxin Lipid A motif. The polymers were characterized with respect to template rebinding, binding affinity, capacity and common structural properties, leading to the identification of polymers which were thereafter subjected to an industrially validated endotoxin removal test. Two of the polymers were capable of removing endotoxin down to levels well below the accepted threshold (0.005 EU/mg API) in pharmaceutical production.

  17. Low phospholipid-associated cholestasis and cholelithiasis.

    Science.gov (United States)

    Erlinger, Serge

    2012-09-01

    Low phospholipid-associated cholestasis and cholelithiasis (LPAC) is a genetic disorder characterized by cholesterol gallbladder and intrahepatic stones. It is caused by a mutation of the gene ABCB4, which encodes the canalicular protein ABCB4/MDR3, a flippase that plays an essential role in the secretion of phosphatidylcholine into bile. Failure of this protein leads to secretion of bile that is poor in phospholipids and, hence, highly lithogenic, with potent detergent properties. This, in turn, leads to cholangiocyte luminal membrane injury and biliary lesions causing cholestasis. The diagnosis should be suspected when at least two of the following criteria are present: onset of symptoms before the age of 40 years; recurrence of biliary symptoms (biliary colic, jaundice, cholangitis, acute pancreatitis) after cholecystectomy; presence of echogenic foci within the liver indicative of intrahepatic stones or biliary sludge; previous episode(s) of intrahepatic cholestasis of pregnancy; and family history of gallstones in first-degree relatives. Intrahepatic stones can be demonstrated by ultrasonography with color Doppler examination, computed tomography and magnetic resonance imaging with magnetic resonance cholangiography, and the diagnosis confirmed by ABCB4 genotyping. Therapy with ursodeoxycholic acid offers prompt relief of symptoms and usually prevents complications. In some cases, however, surgery may be necessary. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Phospholipid imprinted polymers as selective endotoxin scavengers

    Science.gov (United States)

    Sulc, Robert; Szekely, Gyorgy; Shinde, Sudhirkumar; Wierzbicka, Celina; Vilela, Filipe; Bauer, David; Sellergren, Börje

    2017-01-01

    Herein we explore phospholipid imprinting as a means to design receptors for complex glycolipids comprising the toxic lipopolysaccharide endotoxin. A series of polymerizable bis-imidazolium and urea hosts were evaluated as cationic and neutral hosts for phosphates and phosphonates, the latter used as mimics of the phospholipid head groups. The bis-imidazolium hosts interacted with the guests in a cooperative manner leading to the presence of tight and well defined 1:2 ternary complexes. Optimized monomer combinations were subsequently used for imprinting of phosphatidic acid as an endotoxin dummy template. Presence of the aforementioned ternary complexes during polymerization resulted in imprinting of lipid dimers – the latter believed to crudely mimic the endotoxin Lipid A motif. The polymers were characterized with respect to template rebinding, binding affinity, capacity and common structural properties, leading to the identification of polymers which were thereafter subjected to an industrially validated endotoxin removal test. Two of the polymers were capable of removing endotoxin down to levels well below the accepted threshold (0.005 EU/mg API) in pharmaceutical production. PMID:28303896

  19. Phospholipids as inhibitors of amyloid fibril formation

    Directory of Open Access Journals (Sweden)

    K. O. Vus

    2016-11-01

    Full Text Available Amyloid fibrils are the protein aggregates, whose formation is involved in the pathogenesis of Alzheimer’s disease, systemic amyloidosis, etc. Since there is no effective ways to treat these diseases, developing the new anti-amyloid drugs is of great importance. In this study a series of phospholipids have been tested for their ability to inhibit lysozyme and insulin amyloid fibril formation at acidic or neutral pH and elevated temperature.  The lag time, elongation rate and fibrillization extent were estimated using Thioflavin T fluorescence assay. It is found that the oxidized and charged phospholipids, included into the liposomes, were the most effective inhibitors of the protein fibrillization. By comparing the magnitude and direction of the lipid effect in different lipid-protein systems it was concluded that the reduction of the amyloid fibril formation is governed by hydrophobic and specific liposome-protein interactions. It is hypothesized that the presence of the surface formed by the lipid polar heads is critical for reducing the protein fibrillization extent.

  20. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  1. Optimizing alveolar expansion prolongs the effectiveness of exogenous surfactant therapy in the adult rabbit.

    Science.gov (United States)

    Froese, A B; McCulloch, P R; Sugiura, M; Vaclavik, S; Possmayer, F; Moller, F

    1993-09-01

    We evaluated four ventilator patterns after the administration of 80 mg/kg bovine lipid extract surfactant (LES) to anesthetized, paralyzed, saline-lavaged New Zealand white rabbits. Two ventilator types were compared: high frequency oscillatory ventilation (HFO) versus conventional mechanical ventilation (CMV), each at high (HI) and low (LO) end-expiratory lung volumes (EELV); n = 6, each group; treatment duration = 4 h. Target PaO2 ranges were > 350 mm Hg for groups with high EELV (i.e., HFO-HI and CMV-HI) and 70 to 100 mm Hg for those with low EELV (i.e., HFO-LO and CMV-LO). Ventilator pressures were limited to fluid (p = 0.003) phospholipid quantities than did CMV-treated animals. The deflation P-V curve (p = 0.0004), lamellar body (p fluid (p = 0.0002) phospholipid levels were superior after the high EELV strategy. We conclude that ventilator pattern strongly influences exogenous surfactant efficacy. Benefits arise from keeping EELV high enough to prevent atelectasis and using small (approximately 2 ml/kg) tidal volumes to prevent overdistension.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. An anionic surfactant for EOR applications

    Science.gov (United States)

    Sagir, Muhammad; Tan, Isa M.; Mushtaq, Muhammad

    2014-10-01

    This work is to investigate the new anionic surfactants for the Enhanced Oil Recovery (EOR) application. Sulfonated anionic surfactant was produced by attaching SO3 to an ethoxylated alcohol to increase the performance of the surfactant. Methallyl chloride and ethoxylated alcohol was reacted followed by the reaction with sodium bisulfite to produce anionic sulfonated surfactant in 80.3 % yield. The sulfonation reaction parameters such as reactants mole ratio, reaction temperature and catalyst amount were optimized. The generation and stability of foam from the synthesized surfactant is also tested and results are reported. The synthesized novel surfactant was further investigated for the effect on the CO2 mobility in porous media and the findings are presented here. This in house developed surfactant has a great potential for CO2- EOR applications.

  3. Co-assembly of chitosan and phospholipids into hybrid hydrogels

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Shekarforoush, Elhamalsadat; Engwer, Christoph

    2016-01-01

    Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties...

  4. Depletion of acidic phospholipids influences chromosomal replication in Escherichia coli.

    Science.gov (United States)

    Fingland, Nicholas; Flåtten, Ingvild; Downey, Christopher D; Fossum-Raunehaug, Solveig; Skarstad, Kirsten; Crooke, Elliott

    2012-12-01

    In Escherichia coli, coordinated activation and deactivation of DnaA allows for proper timing of the initiation of chromosomal synthesis at the origin of replication (oriC) and assures initiation occurs once per cell cycle. In vitro, acidic phospholipids reactivate DnaA, and in vivo depletion of acidic phospholipids, results in growth arrest. Growth can be restored by the expression of a mutant form of DnaA, DnaA(L366K), or by oriC-independent DNA synthesis, suggesting acidic phospholipids are required for DnaA- and oriC-dependent replication. We observe here that when acidic phospholipids were depleted, replication was inhibited with a concomitant reduction of chromosomal content and cell mass prior to growth arrest. This global shutdown of biosynthetic activity was independent of the stringent response. Restoration of acidic phospholipid synthesis resulted in a resumption of DNA replication prior to restored growth, indicating a possible cell-cycle-specific growth arrest had occurred with the earlier loss of acidic phospholipids. Flow cytometry, thymidine uptake, and quantitative polymerase chain reaction data suggest that a deficiency in acidic phospholipids prolonged the time required to replicate the chromosome. We also observed that regardless of the cellular content of acidic phospholipids, expression of mutant DnaA(L366K) altered the DNA content-to-cell mass ratio.

  5. Different oxidized phospholipid molecules unequally affect bilayer packing.

    Science.gov (United States)

    Megli, Francesco M; Russo, Luciana

    2008-01-01

    The aim of this study was to gain more detailed knowledge about the effect of the presence of defined oxidized phospholipid molecules in phospholipid bilayers. After chromatographic and mass spectrometry analysis, the previously used product of the Fenton reaction with unsaturated lecithins proved to consist of a plethora of oxidatively modified lecithins, useless either for the detailed study of the effects brought about in the bilayer or as the source of defined oxidized phospholipid molecules. The latter, particularly 2-(omega-carboxyacyl)- and 2-(n-hydroperoxyacyl)-lecithins, can be more conveniently prepared by chemical or enzymatic synthesis rather than by chemical or physical oxidation. The effect of those molecules and of commercially available 12-hydroxy-stearic and dodecanedioic acid was studied in planar supported phospholipid bilayers (SPBs) by use of EPR spectrometry. The SPBs also contained 2-(5-doxylstearoyl)-lecithin as the spin probe, and the EPR spectral anisotropy loss, indicative of bilayer disordering, was measured as a function of the molar percentage of oxidized lipid. Most oxidized lipid molecules examined in this study were able to induce bilayer disordering, while hydroperoxyl group-bearing acyl chains appeared to be much less effective. It is concluded that the effects of different oxidized phospholipids on phospholipid bilayer structure cannot be generalized, as happens with batch-oxidized phospholipids, and that the use of defined oxidized phospholipid molecular species for membrane oxidative stress guarantees a more reliable and detailed response.

  6. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis.

    Science.gov (United States)

    Bohdanowicz, Michal; Grinstein, Sergio

    2013-01-01

    Endocytosis, phagocytosis, and macropinocytosis are fundamental processes that enable cells to sample their environment, eliminate pathogens and apoptotic bodies, and regulate the expression of surface components. While a great deal of effort has been devoted over many years to understanding the proteins involved in these processes, the important contribution of phospholipids has only recently been appreciated. This review is an attempt to collate and analyze the rapidly emerging evidence documenting the role of phospholipids in clathrin-mediated endocytosis, phagocytosis, and macropinocytosis. A primer on phospholipid biosynthesis, catabolism, subcellular distribution, and transport is presented initially, for reference, together with general considerations of the effects of phospholipids on membrane curvature and charge. This is followed by a detailed analysis of the critical functions of phospholipids in the internalization processes and in the maturation of the resulting vesicles and vacuoles as they progress along the endo-lysosomal pathway.

  7. Alterations of erythrocyte morphology and lipid composition by hyperbilirubinemia.

    Science.gov (United States)

    Brito, M A; Silva, R M; Matos, D C; da Silva, A T; Brites, D T

    1996-05-30

    Morphology and membrane lipid composition of erythrocytes from neonates (jaundiced and healthy) and adults (before and after incubation with bilirubin) were studied. The morphological index, expressing the relative proportions of the different stages of cell distortion, and the membrane cholesterol, phospholipids and cholesterol/phospholipids molar ratio, were determined. In jaundiced neonates a significant increase in the morphological index (P jaundiced neonates compared with healthy babies (P lipid bilayer with loss of phospholipids from the membrane.

  8. Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipd biosurfactants.

    Science.gov (United States)

    Liley, J R; Penfold, J; Thomas, R K; Tucker, I M; Petkov, J T; Stevenson, P S; Banat, I M; Marchant, R; Rudden, M; Terry, A; Grillo, I

    2017-02-01

    The self-assembly of dilute aqueous solutions of a ternary surfactant mixture and rhamnolipid biosurfactant/surfactant mixtures has been studied by small angle neutron scattering. In the ternary surfactant mixture of octaethylene glycol monododecyl ether, C12E8, sodium dodecyl 6-benzene sulfonate, LAS, and sodium dioxyethylene monododecyl sulfate, SLES, small globular interacting micelles are observed over the entire composition and concentration range studied. The modelling of the scattering data strongly supports the assumption that the micelle compositions are close to the solution compositions. In the 5-component rhamnolipid/surfactant mixture of the mono-rhamnose, R1, di-rhamnose, R2, rhamnolipids with C12E8/LAS/SLES, globular micelles are observed over much of the concentration and composition range studied. However, for solutions relatively rich in rhamnolipid and LAS, lamellar/micellar coexistence is observed. The transition from globular to more planar structures arises from a synergistic packing in the 5 component mixture. It is not observed in the individual components nor in the ternary C12E8/LAS/SLES mixture at these relatively low concentrations. The results provide an insight into how synergistic packing effects can occur in the solution self-assembly of complex multi-component surfactant mixtures, and give rise to an unexpected evolution in the phase behaviour.

  9. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    Science.gov (United States)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  10. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  11. The impact of phospholipids and phospholipid removal on bioanalytical method performance.

    Science.gov (United States)

    Carmical, Jennifer; Brown, Stacy

    2016-05-01

    Phospholipids (PLs) are a component of cellmembranes, biological fluids and tissues. These compounds are problematic for the bioanalytical chemist, especially when PLs are not the analytes of interest. PL interference with bioanalysis highly impacts reverse-phase chromatographic methods coupled with mass spectrometric detection. Phospholipids are strongly retained on hydrophobic columns, and can cause significant ionization suppression in the mass spectrometer, as they outcompete analyte molecules for ionization. Strategies for improving analyte detection in the presence of PLs are reviewed, including in-analysis modifications and sample preparation strategies. Removal of interfering PLs prior to analysis seems to be most effective atmoderating thematrix effects fromthese endogenous cellular components, and has the potential to simplify chromatography and improve column lifetime. Products targeted at PL removal for sample pre-treatment, as well as products that combine multiplemodes of sample preparation (i.e. Hybrid SPE), show significant promise inmediating the effect on PL interference in bioanalysis.

  12. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of

  13. Effects of continuous tracheal gas insufflation during pressure limited ventilation on pulmonary surfactant in rabbits with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    ZHU Guang-fa; ZHANG Wei; ZONG Hua; LIANG Ying

    2006-01-01

    Background Pulmonary surfactant dysfunction may contribute to the development of ventilator induced lung injury (VILI). Tracheal gas insufflation (TGI) is a technique in which fresh gas is introduced into the trachea and augment ventilation by reducing the dead space of ventilatory system, reducing ventilatory pressures and tidal volume (VT) while maintaining constant partial arterial CO2 pressure (PaCO2). We hypothesised that TGI limited peak inspiratory pressure (PIP) and VT and would minimize conventional mechanical ventilation (CMV) induced pulmonary surfactant dysfunction and thereby attenuate VILI in rabbits with acute lung injury (ALI).Methods ALI was induced by intratracheal administration of lipopolysaccharide in anaesthetized, ventilated healthy adult rabbits randomly assigned to continuous TGI at 0.5 L/min (TGI group) or CMV group (n=8 for each group), and subsequently ventilated with limited PIP and VT to maintain PaCO2 within 35 to 45 mmHg for 4 hours. Physiological dead space to VT ratio (VD/VT), dynamic respiratory compliance (Cdyn) and partial arterial O2 pressure (PaO2) were monitored. After ventilation, lungs were analysed for total phospholipids (TPL), total proteins (TP), pulmonary surfactant small to large aggregates ratio (SA/LA) in bronchoalveolar lavage fluid (BALF) and for determination of alveolar volume density (Vv), myeloperoxidase and interleukin (IL)-8.Results TGI resulted in significant (P<0.05 or P<0.01) decrease in PIP [(22.4±1.8) cmH2O vs (29.5±1.1) cmH2O], VT [(6.9±1.3) ml/kg vs (9.8±1.11) ml/kg], VD/VT [(32±5)% vs (46±2)%], TP [(109±22) mg/kg vs (187±25) mg/kg], SA/LA (2.5±0.4 vs 5.4±0.7), myeloperoxidase [(6.2±0.5) U/g tissue vs (12.3±0.8) U/g tissue] and IL-8 [(987±106) ng/g tissue vs (24±3) mN/m] of BALF, and significant (P<0.05) increase in Cdyn [(0.47±0.02) ml ·cmH2O-1 ·kg-1 vs (0.31±0.02) ml ·cmH2O-1 ·kg-1], PaO2 [(175±24) mmHg vs (135±26) mmHg],TPL/TP (52±8 vs 33±11) and Vv (0.65±0.05 vs 0

  14. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  15. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....

  16. Lessons from the "Euro-Phospholipid" project.

    Science.gov (United States)

    Cervera, Ricard

    2008-01-01

    The "Euro-Phospholipid" project started in 1999 with a multicentre, consecutive and prospective design. A total cohort of 1000 patients with antiphospholipid syndrome (APS), derived from 13 countries (Belgium, Bulgaria, Denmark, France, Germany, Greece, Hungary, Israel, Italy, the Netherlands, Portugal, Spain and United Kingdom), has been followed since then by a European consortium that was created as part of the network promoted by the "European Forum on Antiphospholipid Antibodies", a study group devoted to the development of multicentre projects with large populations of APS patients. This project allowed the identification of the prevalence and characteristics of the main clinical and immunological manifestations at the onset and during the evolution of APS and demonstrated that it is possible to recognize more homogeneous subsets of clinical significance.

  17. Guangzhou Chemical Industry%Preparation and Evaluation of Salvianolic Acid B Phospholipid Complex

    Institute of Scientific and Technical Information of China (English)

    李瑾; 朱美娟; 周凯; 王倩倩; 杨曼; 潘梓衡

    2016-01-01

    探讨了丹酚酸B磷脂复合物的制备最佳工艺条件。以丹酚酸B与磷脂的复合率为评价指标,考察反应溶剂、反应温度、反应时间、初始浓度和投料比对复合率的影响,采用正交实验筛选出最佳制备工艺,并通过差示扫描量热法、红外光谱、透射电镜以及泡沫细胞渗透性实验验证磷脂复合物形态及性质。确定丹酚酸B磷脂复合物制备的最佳工艺为:反应溶剂为四氢呋喃,反应温度40℃,反应时间3 h,丹酚酸B反应浓度为25 mg·mL-1,丹酚酸B与磷脂投料比为1:1,差示扫描量热法、红外光谱、透射电镜以及泡沫细胞渗透性等实验均证实了磷脂复合物的形成和优良特性。成功制备了丹酚酸B磷脂复合物,复合率可达99.5%。%To research the optimal conditions for preparing the SalB phospholipid complex, the formulation factors such as solvent, reactive temperature, reactive time, concentration of reactants and the ratio of reactants on this reaction were investigated and the prescription composition was screened out by orthogonal design. The morphologyand property of the phospholipid complex were verified by DSC, IR, TEMand form cell permeability experiment. The best conditions for preparing the SalB phospholipid complex were obtained as follows: the solvent was THF, the reactive temperature was 40 ℃, the reactive time was 3 h, the concentration of SalB was 25 mg·mL-1 and the ratio of SalB to phospholipid was 1:1. The recombination rate of SalB phospholipid complex were more than 99. 5%, and the quality of the SalB phospholipid complex was well.

  18. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  19. Anionic phospholipids modulate peptide insertion into membranes.

    Science.gov (United States)

    Liu, L P; Deber, C M

    1997-05-06

    While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which

  20. Effect of anionic-nonionic mixed surfactant on ryegrass uptake of phenanthrene and pyrene from water

    Institute of Scientific and Technical Information of China (English)

    SUN Lu; ZHU LiZhong

    2009-01-01

    The effect of anionic-nonionic mixed surfactant (SDBS-TX100) on the uptake of phenanthrene and pyrene by ryegrass in a hydroponic system was studied, and the influence factors including the com-positions and concentrations of mixed surfactants and the compounds properties were also discussed. The results showed that SDBS-TX100 mixtures with certain compositions and concentrations could enhance the uptake of phenanthrene and pyrene by ryegrass, which could be attributed to the im-proved uptake capacity of ryegrass roots for phenanthrene and pyrene. SDBS-TX100 can enhance the uptake of phenanthrene and pyrene by ryegrass in a wider range of surfactant concentrations (0-0.8 mmol/L) in comparison with corresponding single surfactants, and the maximal contents of phenan-threne and pyrene in ryegrass roots were obtained with the concentrations of SDBS-TX100 around the corresponding critical micelle concentrations. The uptake of phenanthrene and pyrene by ryegrass increased with the increasing mole fraction of SDBS in mixed surfactant solutions, and SDBS-TX100 mixture with a mole ratio of SDBS to TX100 at 9:1 had the greatest capacity in enhancing the uptake of phenanthrene and pyrene, at which the corresponding maximal concentrations of phenanthrene and pyrene in ryegrass roots were 216 and 8.16 times those without surfactants, respectively. Results from this study indicate that the anionic-nonionic mixed surfactants (SDBS-TX100) would be a preferred selection for the application of surfactant-enhanced phytoremediation technology to contaminated soils.

  1. Conformation and Orientation of Phospholipid Molecule in Pure Phospholipid Monolayer During Compressing

    Institute of Scientific and Technical Information of China (English)

    XUE Weilan; WANG Dan; ZENG Zuoxiang; GAO Xuechao

    2013-01-01

    On the basis of energy conservation law and surface pressure isotherm,the conformation energy changes of dipalmitoylphosphatidylcholine(DPPC)and dipalmitoylphosphatidylglycerol(DPPG)in pure phospholipid monolayer at the air/water interface during compression are derived.The optimized conformations of phospholipids at absolute freedom state are simulated by Gaussian 98 software.Based on following assumptions:(1)the conformation energy change is mainly caused by the rotation of one special bond;(2)the atoms of glycerol near the water surface are active;(3)the rotation is motivated by hydrogen-bond action;(4)the rotation of bond is inertial,one simplified track of conformational change is suggested and the conformations of DPPC and DPPG at different states are determined by the plots of conformation energy change vs.dihedral angle.The thickness of the simulated phospholipid monolayer is consistent with published experimental result.According to molecular areas at different states,the molecular orientations in the compressing process are also developed.

  2. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.

    2011-01-01

    In this article, we discuss the structure and composition of mixed DNA-cationic surfactant adsorption layers on both hydrophobic and hydrophilic solid surfaces. We have focused on the effects of the bulk concentrations, the surfactant chain length, and the type solid surface on the interfacial...... layer structure (the location, coverage, and conformation the e DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA...... with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant DNA ratio determined by the surface coverage of the underlying...

  3. Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Orädd, Greger; Bagatolli, Luis

    2009-01-01

    The composition of pulmonary surfactant membranes and films has evolved to support a complex lateral structure, including segregation of ordered/disordered phases maintained up to physiological temperatures. In this study, we have analyzed the temperature-dependent dynamic properties of native...... surfactant membranes and membranes reconstituted from two surfactant hydrophobic fractions (i.e., all the lipids plus the hydrophobic proteins SP-B and SP-C, or only the total lipid fraction). These preparations show micrometer-sized fluid ordered/disordered phase coexistence, associated with a broad...... from the two types of surfactant hydrophobic extract. These latter results suggest that lipid dynamics are similar in the coexisting fluid phases observed by fluorescence microscopy. Additionally, it is found that surfactant proteins significantly reduce the average intramolecular lipid mobility...

  4. Surfactants in tribology, v.3

    CERN Document Server

    Biresaw, Girma

    2013-01-01

    The manufacture and use of almost every consumer and industrial product rely on application of advanced knowledge in surface science and tribology. These two disciplines are of critical importance in major economic sectors, such as mining, agriculture, manufacturing (including metals, plastics, wood, computers, MEMS, NEMS, appliances), construction, transportation, and medical instruments, transplants, and diagnostic devices. An up-to-date reference with contributions by experts in surface science and tribology, Surfactants in Tribology, Volume 3 discusses some of the underlying tribological a

  5. Anaerobic Biodegradation of Detergent Surfactants

    OpenAIRE

    Erich Jelen; Ute Merrettig-Bruns

    2009-01-01

    Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have str...

  6. Phospholipid biosynthesis genes and susceptibility to obesity: analysis of expression and polymorphisms.

    Directory of Open Access Journals (Sweden)

    Neeraj K Sharma

    Full Text Available Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI. Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06 with waist-to-hip ratio (WHR adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele "C" of this SNP was associated with higher WHR (p = 2.47E-05 and with higher expression (p = 4.10E-04. Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression.

  7. Phospholipid Biosynthesis Genes and Susceptibility to Obesity: Analysis of Expression and Polymorphisms

    Science.gov (United States)

    Sharma, Neeraj K.; Langberg, Kurt A.; Mondal, Ashis K.; Das, Swapan K.

    2013-01-01

    Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI). Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06) with waist-to-hip ratio (WHR) adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele “C” of this SNP was associated with higher WHR (p = 2.47E-05) and with higher expression (p = 4.10E-04). Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression. PMID:23724137

  8. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    Science.gov (United States)

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals.

  9. Self-assembled biomimetic monolayers using phospholipid-containing disulfides.

    Science.gov (United States)

    Chung, Yi Chang; Chiu, Yi Hong; Wu, Yin Wei; Tao, Yu Tai

    2005-05-01

    Several phospholipid-based disulfide molecules were synthesized and attached onto the gold-coated silicon wafer using the self-assembling method. The syntheses of these surface-modifying agents were conducted by introducing bromoethylphosphorate (PBr), phosphorylcholine (PC) or phosphorylethanolamine (PE) groups on the terminals of a dialkyl disulfide. After disulfides adsorption onto gold substrate surfaces, the composition, the film thickness, and the conformational order of self-assembled monolayer surfaces were explored and discussed in detail based on reflection-absorption infrared spectroscopy, contact angle measurement, Auger electron spectroscopy, X-ray photoelectron spectroscopy, and so on. The monolayer having the PBr end group could also be converted to a PC surface by treating with trimethylamine. The model functional surfaces of Au-SC11-PC, -PE, -PBr, -OH or corresponding mixed layers were used to mimic biomembrane surfaces. The monolayer having PC groups was found to reduce fibrinogen adsorption as evaluated from protein adsorption experiments using quartz crystal microbalance. It also showed relatively low platelet adherence compare to the glass, PBr and PE surfaces. The cell viability test also revealed that the PC surface displayed lower cytotoxicity than other surfaces.

  10. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease.

    Science.gov (United States)

    Bascoul-Colombo, Cécile; Guschina, Irina A; Maskrey, Benjamin H; Good, Mark; O'Donnell, Valerie B; Harwood, John L

    2016-06-01

    Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes.

  11. Surfactant inhibition in acute respiratory failure : consequences for exogenous surfactant therapy

    NARCIS (Netherlands)

    E.P. Eijking (Eric)

    1993-01-01

    textabstractThe neonatal respiratory distress syndrome (RDS) is characterized by immaturity of the lung, resulting in relative or absolute absence of pulmonary surfactant. Worldwide, neonates suffering from RDS have been treated successfully with exogenous surfactant preparations. Currently, exogeno

  12. Lung preservation in experimental ischemia/reperfusion injury and lung transplantation: a comparison of natural and synthetic surfactants.

    Science.gov (United States)

    Knudsen, Lars; Boxler, Laura; Mühlfeld, Christian; Schaefer, Inga-Marie; Becker, Laura; Bussinger, Christine; von Stietencron, Immanuel; Madershahian, Navid; Richter, Joachim; Wahlers, Thorsten; Wittwer, Thorsten; Ochs, Matthias

    2012-01-01

    Surfactant inactivation results from ischemia/reperfusion injury and plays a major role in the pathogenesis of primary graft dysfunction after clinical lung transplantation. Thus, prophylactic administration of exogenous surfactant preparations before the onset of ischemia/reperfusion has proven to be effective in preserving pulmonary structure and function. Various natural and synthetic surfactant preparations exhibit differences regarding the biochemical composition and biophysical properties. In this study we compared the efficacy of preservation of pulmonary structure and function of the natural surfactant preparations Curosurf and Survanta to that of a synthetic surfactant containing an analog of surfactant protein C (SPC-33) in a rat model of ischemia/reperfusion injury. The oxygenation capacity and peak inspiratory pressure during the reperfusion period were recorded. By applying design-based stereology at the light- and electron-microscopic level, pathologic alterations, including alveolar edema, injury of the blood-air barrier and the intra-alveolar as well as intracellular surfactant pools, were quantified. The best oxygenation and preservation of lung structure was achieved with Curosurf. Survanta treatment was associated with the most severe injury of the blood-air barrier, and SPC-33 demonstrated signs of microatelectasis. The intra-alveolar surfactant pool after Curosurf and SPC-33 was dominated by active surfactant subtypes, whereas Survanta was associated with the highest fraction of inactive surfactant. The intracellular surfactant pool did not show any differences between the treatment groups. Taken together, Curosurf achieved the best structural and functional lung preservation, whereas Survanta was inferior to both Curosurf and SPC-33. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Tuning Polyelectrolyte-Surfactant Interactions: Modification of Poly(ethylenimine) with Propylene Oxide and Blocks of Ethylene Oxide.

    Science.gov (United States)

    Penfold, J; Thomas, R K; Li, P; Batchelor, S N; Tucker, I M; Burley, A W

    2016-02-02

    Significantly enhanced adsorption at the air-water interface arises in polyelectrolyte/ionic surfactant mixtures, such as poly(ethylenimine)/sodium dodecyl sulfate (PEI/SDS), down to relatively low surfactant concentrations due to a strong surface interaction between the polyelectrolyte and surfactant. In the region of charge neutralization this can result in precipitation or coacervation and give rise to undesirable properties in many applications. Ethoxylation of the PEI can avoid precipitation, but can also considerably weaken the interaction. Localization of the ethoxylation can overcome these shortcomings. Further manipulation of the polyelectrolyte-surfactant interaction can be achieved by selective ethoxylation and propoxylation of the PEI amine groups. Neutron reflectivity and surface tension data are presented here which show how the polyelectrolyte-surfactant interaction can be manipulated by tuning the PEI structure. Using deuterium labeled surfactant and polymer the neutron reflectivity measurements provide details of the surface composition and structure of the adsorbed layer. The general pattern of behavior is that at low surfactant concentrations there is enhanced surfactant adsorption due to the strong surface interaction; whereas around the region of the SDS critical micellar concentration, cmc, the surface is partially depleted of surfactant in favor bulk aggregate structures. The results presented here show how these characteristic features of the adsorption are affected by the degree of ethoxylation and propoxylation. Increasing the degree of propoxylation enhances the surfactant adsorption, whereas varying the degree of ethoxylation has a less pronounced effect. In the region of surfactant surface depletion increasing both the degree of ethoxylation and propoxylation result in an increased surface depletion.

  14. Using neurolipidomics to identify phospholipid mediators of synaptic (dysfunction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Steffany A L Bennett

    2013-07-01

    Full Text Available Not all of the mysteries of life lie in our genetic code. Some can be found buried in our membranes. These shells of fat, sculpted in the central nervous system into the cellular (and subcellular boundaries of neurons and glia, are themselves complex systems of information. The diversity of neural phospholipids, coupled with their chameleon-like capacity to transmute into bioactive molecules, provides a vast repertoire of immediate response second messengers. The effects of compositional changes on synaptic function have only begun to be appreciated. Here, we mined 29 different neurolipidomic datasets for changes in neuronal membrane phospholipid metabolism in Alzheimer’s Disease. Three overarching metabolic disturbances were detected. We found that an increase in the hydrolysis of platelet activating factor precursors and ethanolamine-containing plasmalogens, coupled with a failure to regenerate relatively rare alkyl-acyl and alkenyl-acyl structural phospholipids, correlated with disease severity. Accumulation of specific bioactive metabolites (i.e., PC(O-16:0/2:0 and PE(P-16:0/0:0 was associated with aggravating tau pathology, enhancing vesicular release, and signaling neuronal loss. Finally, depletion of PI(16:0/20:4, PI(16:0/22:6, and PI(18:0/22:6 was implicated in accelerating Aβ42 biogenesis. Our analysis further suggested that converging disruptions in platelet activating factor, plasmalogen, phosphoinositol and phosphoethanolamine, and docosahexaenoic acid metabolism may contribute mechanistically to catastrophic vesicular depletion, impaired receptor trafficking, and morphological dendritic deformation. Together, this analysis supports an emerging hypothesis that aberrant phospholipid metabolism may be one of multiple critical determinants required for Alzheimer disease conversion.

  15. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...

  16. Nanoporous Silicified Phospholipids and Application to Controlled Glycolic Acid Release

    Directory of Open Access Journals (Sweden)

    Kang SangHwa

    2008-01-01

    Full Text Available Abstract This work demonstrates the synthesis and characterization of novel nanoporous silicified phospholipid bilayers assembled inorganic powders. The materials are obtained by silicification process with silica precursor at the hydrophilic region of phospholipid bilayers. This process involves the co-assembly of a chemically active phospholipids bilayer within the ordered porosity of a silica matrix and holds promise as a novel application for controlled drug release or drug containers with a high level of specificity and throughput. The controlled release application of the synthesized materials was achieved to glycolic acid, and obtained a zero-order release pattern due to the nanoporosity.

  17. Phospholipid remodeling and eicosanoid signaling in colon cancer cells.

    Science.gov (United States)

    Das, Siddhartha; Martinez, Leobarda Robles; Ray, Suparna

    2014-12-01

    Phospholipid remodeling and eicosanoid synthesis are central to lipid-based inflammatory reactions. Studies have revealed that membrane phospholipid remodeling by fatty acids through deacylation/reacylation reactions increases the risk of colorectal cancers (CRC) by allowing the cells to produce excess inflammatory eicosanoids, such as prostaglandins, thromboxanes and leukotrienes. Over the years, efforts have been made to understand the lipid remodeling pathways and to design anti-cancer drugs targeting the enzymes of eicosanoid biosynthesis. Here, we discuss the recent progress in phospholipid remodeling and eicosanoid biosynthesis in CRC.

  18. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  19. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2005-04-30

    solutions and at mineral/solution interfaces were investigated by monitoring micropolarity of the aggregates using fluorescence technique. Compositional changes of the aggregates in solution were observed with the increase in surfactant concentration. The importance of this lies in that the resulting polarity/hydrophobicity change of the mixed micelles will affect the adsorption of surfactant mixtures on reservoir minerals, surfactant/oil emulsion formation and wettability, as a result, the oil release efficiency of the chemical flooding processes in EOR.

  20. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    Science.gov (United States)

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  1. Role of the N-terminal seven residues of surfactant protein B (SP-B.

    Directory of Open Access Journals (Sweden)

    Mahzad Sharifahmadian

    Full Text Available Breathing is enabled by lung surfactant, a mixture of proteins and lipids that forms a surface-active layer and reduces surface tension at the air-water interface in lungs. Surfactant protein B (SP-B is an essential component of lung surfactant. In this study we probe the mechanism underlying the important functional contributions made by the N-terminal 7 residues of SP-B, a region sometimes called the "insertion sequence". These studies employed a construct of SP-B, SP-B (1-25,63-78, also called Super Mini-B, which is a 41-residue peptide with internal disulfide bonds comprising the N-terminal 7-residue insertion sequence and the N- and C-terminal helices of SP-B. Circular dichroism, solution NMR, and solid state (2H NMR were used to study the structure of SP-B (1-25,63-78 and its interactions with phospholipid bilayers. Comparison of results for SP-B (8-25,63-78 and SP-B (1-25,63-78 demonstrates that the presence of the 7-residue insertion sequence induces substantial disorder near the centre of the lipid bilayer, but without a major disruption of the overall mechanical orientation of the bilayers. This observation suggests the insertion sequence is unlikely to penetrate deeply into the bilayer. The 7-residue insertion sequence substantially increases the solution NMR linewidths, most likely due to an increase in global dynamics.

  2. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  3. Using biologically soft surfactants for dust suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Kolodiichak, V.K.; Motrii, A.E.; Severin, V.D.

    1982-07-01

    This article discusses environmental aspects of using surfactants in coal mines for dust suppression. Surfactants for underground black coal mines in the USSR are divided into three classes: so-called soft surfactants with a decomposition period from 1 to 3 days, hard surfactants with decomposition exceeding a month and an intermediary group. The decomposition process is analyzed; the role played by fermentation is stressed. Environmental effects of surfactant decomposition are evaluated. Selected surfactants tested in Soviet laboratories are described. The results of experimental use of diethanolamide as a surfactant for water injection in coal seams are evaluated. Wetting time amounts to 1 s when a 0.2% concentration is used. When surfactant concentration in water is reduced to 0.05% wetting time does not change; when concentration decreases to 0.025% wetting time increases to 3 s. Surfactant efficiency is investigated under operational conditions in a Donbass mine. Specifications of the working face, mining system and air pollution caused by a shearer loader are discussed. When diethanolamide is used dust suppression efficiency ranges from 86.4 to 90.4%. During the tests diethanolamide concentration in water was 0.05%.

  4. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  5. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  6. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further......, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic...

  7. Herpes simplex virus 1 induces de novo phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Esther [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Oliveira, Anna Paula de; Tobler, Kurt [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Sonda, Sabrina [Institute of Parasitology, University of Zuerich (Switzerland); Kaech, Andres [Center for Microscopy and Image Analysis, University of Zuerich (Switzerland); Lucas, Miriam S. [Electron Microscopy ETH Zuerich (EMEZ), Swiss Federal Institute of Technology, Zuerich (Switzerland); Ackermann, Mathias [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Wild, Peter, E-mail: pewild@access.uzh.ch [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland)

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  8. Solid mesostructured polymer-surfactant films at the air-liquid interface.

    Science.gov (United States)

    Pegg, Jonathan C; Eastoe, Julian

    2015-08-01

    Pioneering work by Edler et al. has spawned a new sub-set of mesostructured materials. These are solid, self-supporting films comprising surfactant micelles encased within polymer hydrogel; composite polymer-surfactant films can be grown spontaneously at the air-liquid interface and have defined and controllable mesostructures. Addition of siliconalkoxide to polymer-surfactant mixtures allows for the growth of mesostructured hybrid polymer-surfactant silica films that retain film geometry after calcinations and exhibit superior mechanical properties to typically brittle inorganic films. Growing films at the air-liquid interface provides a rapid and simple means to prepare ordered solid inorganic films, and to date the only method for generating mesostructured films thick enough (up to several hundred microns) to be removed from the interface. Applications of these films could range from catalysis to encapsulation of hydrophobic species and drug delivery. Film properties and mesostructures are sensitive to surfactant structure, polymer properties and polymer-surfactant phase behaviour: herein it will be shown how film mesostructure can be tailored by directing these parameters, and some interesting analogies will be drawn with more familiar mesostructured silica materials.

  9. Surfactants and Sterols Concentrations in the Surface Microlayer of the Estuarine Areas of Selangor River, Malaysia

    Science.gov (United States)

    Latif, M. T.; Alsalahi, M. A.; Ali, M. M.; Dominick, D.; Khan, M. F.; Wahid, N. B. A.; Mustaffa, N. I. H.

    2016-02-01

    This study aims to determine the concentration of surfactant and sterols as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. SML samples were collected during different seasons using a rotation drum method. The compositions of surfactants were determined as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS) as anionic and cationic surfactants respectively. The concentration of sterols was determined using a gas chromatography equipped with a flame ionization detector (GC-FID). The results show that the concentrations of surfactants around the estuarine area were dominated by anionic surfactants (MBAS) with average concentrations of 0.39 µmol L-1. .The concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L-1. The surfactants and total sterol concentrations were found to be higher in the wet season compare to dry season. Cholesterol was found to be the most abundant sterols component in the SML of the Selangor River. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).

  10. Influence of phase separation for surfactant driven pattern formation during ion beam erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, Hans; Zhang, Kun; Vetter, Ulrich; Bobes, Omar; Pape, Andre; Gehrke, Hans-Gregor; Broetzmann, Marc [II. Physikalisches Institut, Goettingen Univ. (Germany)

    2012-07-01

    We will present results on metal surfactant driven self-organized pattern formation on surfaces by ion beam erosion, with a focus on the role of phase separation for the initial steps of pattern formation. Si substrates were irradiated with 5 keV Xe ions at normal incidence and ion fluences up to 5.10{sup 17} Xe/cm{sup 2} under continuous deposition of surfactant atoms. In the absence of such surfactants uniform flat surfaces are obtained, while in the presence of Fe and Mo surfactants pronounced patterns like dots, combinations of dots and ripples with wavelengths around 100 nm are generated. The surfactant coverage and deposition direction determine the pattern type and the pattern orientation, respectively. A critical steady-state coverage for onset of dot formation and onset of ripple formation is in the range of 10{sup 15} and 5.10{sup 15} Xe/cm{sup 2}. The steady-state surface region consists of a thin amorphous metal silicide layer with high metal concentration in the ripple and dot regions. Pattern formation is explained by ion induced diffusion and phase separation of the initially flat amorphous silicide layer and subsequent ion beam erosion with composition dependent sputter yield. To investigate the role of initial phase separation we additionally compare the pattern formation for different other metal surfactants.

  11. A Computational Study of the Rheology and Structure of Surfactant Covered Droplets

    Science.gov (United States)

    Maia, Joao; Boromand, Arman

    Using different types of surface-active agents are ubiquitous in different industrial applications ranging from cosmetic and food industries to polymeric nano-composite and blends. This allows to produce stable multiphasic systems like foams and emulsions whose stability and shelf-life are directly determined by the efficiency and the type of the surfactant molecules. Moreover, presence and self-assembly of these species on an interface will display complex dynamics and structural evolution under different processing conditions. Analogous to bulk rheology of complex systems, surfactant covered interfaces will response to an external mechanical forces or deformation differently depends on the molecular configuration and topology of the system constituents. Although the effect of molecular configuration of the surface-active molecules on the planar interfaces has been studied both experimentally and computationally, it remains challenging from both experimental and computational aspects to track efficiency and effectiveness of different surfactant molecules with different molecular geometries on curved interfaces. Using Dissipative Particle Dynamics, we have studies effectiveness and efficiency of different surfactant molecules on a curved interface in equilibrium and far from equilibrium. Interfacial tension is calculated for linear and branched surfactant with different hydrophobic and hydrophilic tail and head groups with different branching densities. Deformation parameter and Taylor plots are obtained for individual surfactant molecules under shear flow.

  12. Optimization for preparation technology of baicalin-phospholipid complex in situ nasal gel by central composite design-response surface method%中心复合设计-效应面法优化黄芩苷磷脂复合物鼻用原位凝胶的制备工艺

    Institute of Scientific and Technical Information of China (English)

    许润春; 林彦君; 吴品江

    2012-01-01

    Objective To optimize the preparation technology of baicalin-phospholipids complex (BPC) in situ nasal gel. Methods Key factors affecting the preparation technology of BPC in situ nasal gel, Poloxamer407 (P407), Poloxamcr188 (P188), and polyethylene glycol 6000 (PEG 6000) were studied using central composite design-response surface method (CCD-RSM) with gelation temperature as evaluation index. The correlation between preparation technology parameters and gelation temperature was analyzed to establish relative equation of preparation technology parameters and gelation temperature and the best preparation technology parameters using multivariate mathematical statistical moment model. Results BPC (1.0 g) was dissolved in 0.1% triethylamine solution, then P407 (18 g), P188 (6 g), PEG 6000 (1 g), glucose (5 g), BKC (0.02 g), and deionized water were added to reach 100 g. The mixture was uniformly dispersed in ice bath (4 ℃) under magnetic stirring and then was stored at 4 ℃ in refrigerator for more than 24 h until polymer was fully dissolved and clear solution was obtained. Conclusion The preparation technology of BPC in situ nasal gel by CCD-RSM is stable and suitable for industry.%目的 优化黄芩苷磷脂复合物鼻用原位凝胶的制备工艺.方法 采用中心复合设计-效应面优化法,以胶凝温度为评价指标,对黄芩苷磷脂复合物鼻用原位凝胶的制备工艺关键影响因素Poloxamer407( P407)、Poloxamer188 (P188)、聚乙二醇6000(PEG 6000)进行研究,利用多元数学统计矩模型,对制备工艺参数和胶凝温度的相关性进行研究,建立工艺参数与胶凝温度的相关方程,确立最佳工艺参数.结果 先将黄芩苷磷脂复合物1.0g溶于0.1%三乙醇胺溶液中,再加入18gP407、6 g P188、1g PEG 6000、葡萄糖5g、苯扎氯胺0.02g,加去离子水至100g,于冰浴(4℃)磁力搅拌下使其分散均匀,置4℃冰箱中保存24h以上,直至聚合物完全溶解得到澄明溶液.结论 采

  13. Hemolysis by surfactants--A review.

    Science.gov (United States)

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.

  14. Screening for the drug-phospholipid interaction: correlation to phospholipidosis

    DEFF Research Database (Denmark)

    Alakoskela, Juha-Matti; Vitovic, Pavol; Kinnunen, Paavo K J

    2009-01-01

    Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic pro...... of these interactions in PLD in particular. We also focus on a potential causal connection between drug-induced PLD and steatohepatitis, which is induced by some cationic amphiphilic drugs....

  15. Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    B. A. S. Van Mooy

    2008-02-01

    Full Text Available Membrane lipid molecules are a major component of planktonic organisms and this is particularly true of the microbial picoplankton that dominate the open ocean; with their high surface-area to volume ratios, the synthesis of membrane lipids places a major demand on their overall cell metabolism. Specifically, the synthesis of cell membrane phospholipids creates a demand for the nutrient phosphorus, and we sought to refine our understanding of the role of phospholipids in the upper ocean phosphorus cycle. We measured the rates of phospholipid synthesis in a transect of the eastern subtropical South Pacific from Easter Island to Concepcion, Chile as part of the BIOSOPE program. Our approach combined standard phosphorus radiotracer incubations and lipid extraction methods. We found that phospholipid synthesis rates varied from less than 1 to greater than 200 pmol P L−1 h−1, and that phospholipid synthesis contributed between less than 5% to greater than 22% of the total PO43− incorporation rate. Changes in the percentage that phospholipid synthesis contributed to total PO43− uptake were strongly correlated with the ratio of primary production to bacterial production, which supported our hypothesis that heterotrophic bacteria were the primary agents of phospholipid synthesis. The spatial variation in phospholipid synthesis rates underscored the importance of heterotrophic bacteria in the phosphorus cycle of the eastern subtropical South Pacific, particularly the hyperoligotrophic South Pacific subtropical gyre.

  16. Nanocomposites of PP and bentonite clay modified with different surfactants; Nanocompositos de PP e bentonita organofilizada com diferentes tensoativos

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Andre W.B.; Agrawal, Pankaj; Araujo, Edcleide M.; Melo, Tomas J.A., E-mail: tomas@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Ueki, Marcelo M. [Servico Nacional de Aprendizagem Industrial (SENAI/CIMATEC), Salvador, BA (Brazil). Centro Integrado de Manufatura e Tecnologia

    2009-07-01

    The aim of this work was the development of nano composites of polypropylene (PP) and national bentonite clay modified with different surfactants. The results of X-Ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) showed that the organophilization process was effective. The surfactants led to a significant increase in the basal spacing of Brasgel PA clay. XRD results of the mixture PP/Brasgel PA clay modified with Praepagem WB surfactant indicated that a nanocomposite with intercalated structure was formed. When the Brasgel PA clay was modified with Praepagem HY surfactant, DRX results indicated that a micro composite was formed. Screw speed, clay content and PP viscosity had no influence on the XRD pattern of the obtained materials. (author)

  17. Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification—An Online Bioinformatic Search Engine

    Directory of Open Access Journals (Sweden)

    Graeme S. V. McDowell

    2014-01-01

    Full Text Available The capacity to predict and visualize all theoretically possible glycerophospholipid molecular identities present in lipidomic datasets is currently limited. To address this issue, we expanded the search-engine and compositional databases of the online Visualization and Phospholipid Identification (VaLID bioinformatic tool to include the glycerophosphoinositol superfamily. VaLID v1.0.0 originally allowed exact and average mass libraries of 736,584 individual species from eight phospholipid classes: glycerophosphates, glyceropyrophosphates, glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoglycerols, glycerophosphoglycerophosphates, glycerophosphoserines, and cytidine 5′-diphosphate 1,2-diacyl-sn-glycerols to be searched for any mass to charge value (with adjustable tolerance levels under a variety of mass spectrometry conditions. Here, we describe an update that now includes all possible glycerophosphoinositols, glycerophosphoinositol monophosphates, glycerophosphoinositol bisphosphates, and glycerophosphoinositol trisphosphates. This update expands the total number of lipid species represented in the VaLID v2.0.0 database to 1,473,168 phospholipids. Each phospholipid can be generated in skeletal representation. A subset of species curated by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics (CTPNL team is provided as an array of high-resolution structures. VaLID is freely available and responds to all users through the CTPNL resources web site.

  18. Hydrophobic Mismatch and Phase Transition in a Membrane Composed by a Mixture of Linear and Bola Phospholipids

    Science.gov (United States)

    Longo, Gabriel; Szleifer, Igal

    2006-03-01

    Archeobacteria are microorganisms that can survive and proliferate in extreme habitats, such as high salt concentration environments, anaerobic conditions, and high or low temperatures. A membrane composed of bolaform phospholipids is what gives these unique survival qualities to the bacteria. The nature and composition of this membrane has not yet been elucidated. In this work, a membrane composed by a mixture of linear and bola phospholipids is studied using a molecular theory. The effect of changing the fraction of bolaform phospholipids, as well as the length of the hydrocarbon chain of the linear lipid are studied. A phase separation in the mixture between a thin bola rich membrane and a thick linear rich membrane is found. The thin membrane is mainly composed by ``spanning'' bola molecules whose polar heads are in opposed hydrophilic regions of the membrane. The phase separation is only present when the hydrocarbon chains of both molecular species have comparable sizes. The driving force for the phase separation is the size matching between the hydrophobic chains of the linear phospholipid and the spanning bola lipid.

  19. Predicting glycerophosphoinositol identities in lipidomic datasets using VaLID (Visualization and Phospholipid Identification)--an online bioinformatic search engine.

    Science.gov (United States)

    McDowell, Graeme S V; Blanchard, Alexandre P; Taylor, Graeme P; Figeys, Daniel; Fai, Stephen; Bennett, Steffany A L

    2014-01-01

    The capacity to predict and visualize all theoretically possible glycerophospholipid molecular identities present in lipidomic datasets is currently limited. To address this issue, we expanded the search-engine and compositional databases of the online Visualization and Phospholipid Identification (VaLID) bioinformatic tool to include the glycerophosphoinositol superfamily. VaLID v1.0.0 originally allowed exact and average mass libraries of 736,584 individual species from eight phospholipid classes: glycerophosphates, glyceropyrophosphates, glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoglycerols, glycerophosphoglycerophosphates, glycerophosphoserines, and cytidine 5'-diphosphate 1,2-diacyl-sn-glycerols to be searched for any mass to charge value (with adjustable tolerance levels) under a variety of mass spectrometry conditions. Here, we describe an update that now includes all possible glycerophosphoinositols, glycerophosphoinositol monophosphates, glycerophosphoinositol bisphosphates, and glycerophosphoinositol trisphosphates. This update expands the total number of lipid species represented in the VaLID v2.0.0 database to 1,473,168 phospholipids. Each phospholipid can be generated in skeletal representation. A subset of species curated by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics (CTPNL) team is provided as an array of high-resolution structures. VaLID is freely available and responds to all users through the CTPNL resources web site.

  20. Analysis of phosphate and phosphate containing headgroups enzymatically cleaved from phospholipids of Bacillus subtilis by capillary electrophoresis.

    Science.gov (United States)

    Bierhanzl, Václav Matěj; Riesová, Martina; Taraba, Lukáš; Čabala, Radomír; Seydlová, Gabriela

    2015-09-01

    A new, fast, selective, and reliable capillary electrophoresis method has been developed for analysis of selected phosphoesters (phosphoserine, phosphoethanolamine, phosphoglycerol) and phosphate. The method is based on separation of specific phosphate containing headgroups (phosphoesters) which are cleaved from the glycerol skeleton of a phospholipid by a regioselective enzyme (phospholipase C). Analysis of intact phospholipids with the same polar headgroup but different fatty acids shows that fatty acid composition has a high impact on separation of phospholipids, so analysis of separated polar headgroups, which avoids this influence, represents a much more suitable approach for phospholipid class research. Optimization of method parameters results in running buffers of relatively narrow pH interval (pH about 10) where all phosphoesters are separated. Further method validation has shown that direct UV detection has a sufficient detection limit for all analytes to perform suitable analyses of cell membrane lipids. The optimized method was tested on the lysate of cell membrane of Bacillus subtilis, where all analytes were determined.

  1. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  2. Molecular Insights into Phospholipid -- NSAID Interactions

    Science.gov (United States)

    Babu Boggara, Mohan; Krishnamoorti, Ramanan

    2007-03-01

    Non steroidal anti inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, with chronic usage cause gastro intestinal (GI) toxicity. It has been shown experimentally that NSAIDs pre-associated with phospholipids reduce the GI toxicity and also increase the therapeutic activity of these drugs compared to the unmodified ones. Using all atomistic simulations and two different methodologies, we studied the partitioning behavior of two model NSAIDs (Aspirin and Ibuprofen) as a function of pH and drug loading. The results from two methodologies are consistent in describing the equilibrium drug distribution in the bilayers. Additionally, the heterogeneity in density and polarity of the bilayer in the normal direction along with the fact that NSAIDs are amphiphilic (all of them have a carboxylic acid group and a non-polar part consisting of aromatic moieties), indicate that the diffusion mechanism in the bilayer is far different compared to the same in a bulk medium. This study summarizes the various effects of NSAIDs and their behavior inside the lipid bilayer both as a function of pH and drug concentration.

  3. Enhancement by cytidine of membrane phospholipid synthesis

    Science.gov (United States)

    G-Coviella, I. L.; Wurtman, R. J.

    1992-01-01

    Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.

  4. Phospholipid Synthesis in Sindbis Virus-Infected Cells

    Science.gov (United States)

    Waite, Marilynn R. F.; Pfefferkorn, E. R.

    1970-01-01

    We investigated the metabolic requirements for the decrease in phospholipid synthesis previously observed by Pfefferkorn and Hunter in primary cultures of chick embryo fibroblasts infected with Sindbis virus. The incorporation of 32PO4 into all classes of phospholipids was found to decline at the same rate and to the same extent; thus, incorporation of 14C-choline into acid-precipitable form provided a convenient measure of phospholipid synthesis that was used in subsequent experiments. Experiments with temperature-sensitive mutants suggested that some viral ribonucleic acid (RNA) synthesis was essential for the inhibition of choline incorporation, but that functional viral structural proteins were not required. The reduction in phospholipid synthesis was probably a secondary effect of infection resulting from viral inhibition of the cellular RNA and protein synthesis. All three inhibitory effects required about the same amount of viral RNA synthesis; the inhibition of host RNA and protein synthesis began sooner than the decline in phospholipid synthesis; and both actinomycin D and cycloheximide inhibited 14C-choline incorporation in uninfected cells. In contrast, incorporation of 14C-choline into BHK-21 cells was not decreased by 10 hr of exposure to actinomycin D and declined only slowly after cycloheximide treatment. Growth of Sindbis virus in BHK cells did not cause the marked stimulation of phospholipid synthesis seen in picornavirus infections of other mammalian cells; however, inhibition was seen only late in infection. PMID:5530011

  5. Surfactant therapy for acute respiratory distress in infants

    Directory of Open Access Journals (Sweden)

    Corrado Moretti

    2014-06-01

    clinical conditions of paediatric ARDS. Further studies in the paediatric field are therefore needed to clarify aspects of drug composition, dosage, dilution and timing of delivery and new researches must be carried out on development of more robust pharmaceutical surfactants. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in Neonatology Guest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou 

  6. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  7. Composites

    Science.gov (United States)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  8. Surfactant Adsorption: A Revised Physical Chemistry Lab

    Science.gov (United States)

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  9. Surfactant effects on soil aggregate tensile strength

    Science.gov (United States)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  10. Surfactant-Associated Bacteria in the Sea Surface Microlayer and their Effect on Remote Sensing Technology

    Science.gov (United States)

    Kurata, N.; Vella, K.; Tartar, A.; Matt, S.; Shivji, M.; Perrie, W. A.; Soloviev, A.

    2012-12-01

    Synthetic aperture radar remote sensing captures various fine-scale features on the ocean surface such as coastal discharges, oil pollution, vessel traffic, algal blooms and sea slicks. Although numerous factors potentially affect the synthetic aperture radar imaging process, the influence of biogenic and anthropogenic surfactants has been suggested as one of the primary parameters, especially under relatively low wind conditions. Surfactants have a tendency to dampen the short gravity-capillary ocean waves causing the sea surface to smoothen, thus allowing the radar to detect areas of surfactants. Surfactants are found in sea slicks, which are the accumulation of organic material shaped as elongated bands on the ocean's surface. Sea slicks are often observable with the naked eye due to their glassy appearance and can also be seen on synthetic aperture radar images as dark scars. While the sources of surfactants can vary, some are known to be of marine bacteria origin. Countless numbers of marine bacteria are present in the oceanic environment, and their biogeochemical contributions cannot be overlooked. Not only does marine-bacteria produce surfactants, but they also play an important role in the transformation of surfactants. In this study, we profiled the surfactant-associated bacteria composition within the biogenic thin layer of the ocean surface more commonly referred as the sea surface microlayer. Bacterial samples were collected from the sea surface microlayer for comparative analysis from both within and outside of sea slick areas as well as the underlying subsurface water. The bacterial microlayer sampling coincided with synthetic aperture radar satellite, RADARSAT-2, overpasses to demonstrate the simultaneous in-situ measurements during a satellite image capture. The sea surface microlayer sampling method was designed to enable aseptic bacterial sampling. A 47 mm polycarbonate membrane was utilized at each sampling site to obtain a snapshot of the

  11. Effect of temperature, water content and free fatty acid on reverse micelle formation of phospholipids in vegetable oil.

    Science.gov (United States)

    Lehtinen, Olli-Pekka; Nugroho, Robertus Wahyu N; Lehtimaa, Tuula; Vierros, Sampsa; Hiekkataipale, Panu; Ruokolainen, Janne; Sammalkorpi, Maria; Österberg, Monika

    2017-09-22

    The self-assembly of phospholipids in oil, specifically lecithin in rapeseed oil, was investigated by combining experimental and computational methods The influence of temperature, water, and free fatty acids on the onset of lecithin aggregation in the rapeseed oil was determined using the 7,7,8,8 -tetracyanoquinodimethane dye (TCNQ) solubilization method and the size and shape of the self-assembled lecithin structures were investigated by small-angle X-ray scattering and cryogenic transmission electron microscopy. In the absence of excess water in the system (0.03wt-% water in oil), stable cylindrical lecithin reverse micelles were observed above the critical micelle concentration (CMC). Comparing the aggregation response in room temperature and at 70°C revealed that CMC decreased with increasing temperature. Furthermore, already a modest amount of added water (0.3wt-% water in oil) was sufficient to induce the formation of lamellar lecithin structures, that phase separated from the oil. In low water content, oleic acid suppressed the formation of lecithin reverse micelles whereas in the presence of more water, the oleic acid stabilized the reverse micelles. Consequently, more water was needed to induce phase separation in the presence of oleic acid. Molecular dynamics simulations indicated that the stabilizing effect of oleic acid resulted from oleic acid enhancing phospholipid solubilization in the oil by forming a solvating shell around the phosphate head group. The findings showed that the response of the mixed surfactant system is a delicate interplay of the different components and variables. The significance of the observations is that multiple parameters need to be controlled for desired system response, for example towards vegetable oil purification or phospholipid based microemulsions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Metathesis depolymerization for removable surfactant templates.

    Energy Technology Data Exchange (ETDEWEB)

    Zifer, Thomas (Sandia National Laboratories, Livermore, CA); Wheeler, David Roger; Rahimian, Kamayar; McElhanon, James Ross (Sandia National Laboratories, Livermore, CA); Long, Timothy Michael; Jamison, Gregory Marks; Loy, Douglas Anson (Los Alamos National Laboratories, Los Alamos, NM); Kline, Steven R. (National Institute of Standards and Technology, Gaithersburg, MD); Simmons, Blake Alexander (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

  13. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...... both for complex surfactant systems as well as for oil and brine systems. It is widely accepted that an increase in oil recovery can be obtained through flooding, whether it is simple waterflooding, waterflooding where the salinity has been modified by the addition or removal of specific ions (socalled...... “smart” waterflooding) or surfactant flooding. High pressure experiments have been carried out in this work on a surfactant system (surfactant/ oil/ brine) and on oil/ seawater systems (oil/ brine). The high pressure experiments were carried out on a DBR JEFRI PVT cell, where a glass window allows...

  14. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.

    Science.gov (United States)

    Samarajeewa, Dinushi R; Dieckmann, Gregg R; Nielsen, Steven O; Musselman, Inga H

    2012-08-07

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)(5)(Lysine)(2), where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.

  15. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  16. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  17. Novel Phospholipid-Protein Conjugates Allow Improved Detection of Antibodies in Patients with Autoimmune Diseases.

    Directory of Open Access Journals (Sweden)

    Simone V Samuelsen

    Full Text Available Reliable measurement of clinically relevant autoimmune antibodies toward phospholipid-protein conjugates is highly desirable in research and clinical assays. To date, the development in this field has been limited to the use of natural heterogeneous antigens. However, this approach does not take structural features of biologically active antigens into account and leads to low reliability and poor scientific test value. Here we describe novel phospholipid-protein conjugates for specific detection of human autoimmune antibodies. Our synthetic approach includes mild oxidation of synthetic phospholipid cardiolipin, and as the last step, coupling of the product with azide-containing linker and copper-catalyzed click chemistry with β2-glycoprotein I and prothrombin. To prove utility of the product antigens, we used enzyme-linked immunosorbent assay and three cohorts of samples obtained from patients in Denmark (n = 34 and the USA (n = 27 and n = 14. Afterwards we analyzed correlation of the obtained autoantibody titers with clinical parameters for each patient. Our results prove that using novel antigens clinically relevant autoantibodies can be detected with high repeatability, sensitivity and specificity. Unlike previously used antigens the obtained autoantibody titers strongly correlate with high disease activity and in particular, with arthritis, renal involvement, anti-Smith antibodies and high lymphocyte count. Importantly, chemical composition of antigens has a strong influence on the correlation of detected autoantibodies with disease activity and manifestations. This confirms the crucial importance of antigens' composition on research and diagnostic assays, and opens up exciting perspectives for synthetic antigens in future studies of autoimmunity.

  18. The anatomy, physics, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures?

    Science.gov (United States)

    Orgeig, Sandra; Bernhard, Wolfgang; Biswas, Samares C; Daniels, Christopher B; Hall, Stephen B; Hetz, Stefan K; Lang, Carol J; Maina, John N; Panda, Amiya K; Perez-Gil, Jesus; Possmayer, Fred; Veldhuizen, Ruud A; Yan, Wenfei

    2007-10-01

    (Orgeig and Daniels) This surfactant symposium reflects the integrative and multidisciplinary aims of the 1st ICRB, by encompassing in vitro and in vivo research, studies of vertebrates and invertebrates, and research across multiple disciplines. We explore the physical and structural challenges that face gas exchange surfaces in vertebrates and insects, by focusing on the role of the surfactant system. Pulmonary surfactant is a complex mixture of lipids and proteins that lines the air-liquid interface of the lungs of all air-breathing vertebrates, where it functions to vary surface tension with changing lung volume. We begin with a discussion of the extraordinary conservation of the blood-gas barrier among vertebrate respiratory organs, which has evolved to be extremely thin, thereby maximizing gas exchange, but simultaneously strong enough to withstand significant distension forces. The principal components of pulmonary surfactant are highly conserved, with a mixed phospholipid and neutral lipid interfacial film that is established, maintained and dynamically regulated by surfactant proteins (SP). A wide variation in the concentrations of individual components exists, however, and highlights lipidomic as well as proteomic adaptations to different physiological needs. As SP-B deficiency in mammals is lethal, oxidative stress to SP-B is detrimental to the biophysical function of pulmonary surfactant and SP-B is evolutionarily conserved across the vertebrates. It is likely that SP-B was essential for the evolutionary origin of pulmonary surfactant. We discuss three specific issues of the surfactant system to illustrate the diversity of function in animal respiratory structures. (1) Temperature: In vitro analyses of the behavior of different model surfactant films under dynamic conditions of surface tension and temperature suggest that, contrary to previous beliefs, the alveolar film may not have to be substantially enriched in the disaturated phospholipid

  19. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  20. Surfactant-induced alteration of arachidonic acid metabolism of mammalian cells in culture.

    Science.gov (United States)

    De Leo, V A; Harber, L C; Kong, B M; De Salva, S J

    1987-04-01

    Primary irritancy in human and animal skin is characterized by an inflammatory reaction mediated, in part, by membrane-derived arachidonate metabolites. One of the mechanisms of this reaction was investigated in cultured mammalian cells using three surfactants: linear alkyl benzene sulfonate (LAS), alkyl ethoxylate sulfate (AEOS), and TWEEN 20. These compounds listed in order in vivo irritancy are LAS greater than AEOS greater than TWEEN 20. Each of these compounds was studied in C3H-10T1/2 cells and human keratinocytes which had been prelabeled with 3H-labeled arachidonic acid (AA). After labeling, media were removed, cells were washed, and fresh media with or without surfactant were added. Cells were then incubated for 2 hr, media were removed and centrifuged, and an aliquot was assayed by liquid scintillation for release of label. In C3H-10T1/2 cells LAS and AEOS in 5-50 microM concentration stimulated 2 to 10 times the release of [3H]AA as compared to controls. In contrast, concentrations of 50-100 microM of TWEEN were required to release [3H]AA. With keratinocytes the same rank order of surfactant concentrations necessary for release was obtained as found with C3H-10T1/2 cells. High-performance liquid chromatography of media extracts of both cell systems revealed surfactant stimulation of the production of cyclooxygenase AA metabolites. These results confirm the induction of release by primary irritants of fatty acid groups from membrane phospholipids. Subsequent metabolism of these fatty acid groups are an integral part of the primary irritant response. Data presented with three known irritants in this in vitro model show a direct correlation with in vivo studies.

  1. Fibrinogen stability under surfactant interaction.

    Science.gov (United States)

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Surfactant Assisted Hydrothermal Synthesis of CdSe Nanostructural Materials

    Institute of Scientific and Technical Information of China (English)

    Ganganagappa Nagaraju; Cujjarahalli Thimmanna Chandrappa

    2012-01-01

    CdSe/CTAB composite nanostructural materials were successfully synthesized at 160-200℃ for 2 days through a facile surfactant (cetyl trimethyl ammonium bromide-CTAB) assisted hydrothermal method us- ing cadmium acetate and sodium selenate as precursor. The obtained products were characterized by X-ray diffraction, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and thermo gravimetric analysis. Optical properties were studied by photoluminescence and UV-visible spectroscopy and morphology was investigated by scanning electron microscopy.

  3. Development of cost-effective surfactant flooding technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

  4. Development of cost-effective surfactant flooding technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

  5. Composites

    Science.gov (United States)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-Nędza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  6. Surfactant replacement therapy--economic impact.

    Science.gov (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  7. Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review.

    Science.gov (United States)

    Laha, Shonali; Tansel, Berrin; Ussawarujikulchai, Achara

    2009-01-01

    Surfactants are amphiphilic molecules that reduce aqueous surface tension and increase the solubility of hydrophobic organic compounds (HOCs). Surfactant-amended remediation of HOC-contaminated soils and aquifers has received significant attention as an effective treatment strategy - similar in concept to using soaps and detergents as washing agents to remove grease from soiled fabrics. The proposed mechanisms involved in surfactant-amended remediation include: lowering of interfacial tension, surfactant solubilization of HOCs, and the phase transfer of HOC from soil-sorbed to pseudo-aqueous phase. However, as with any proposed chemical countermeasures, there is a concern regarding the fate of the added surfactant. This review summarizes the current state of knowledge regarding nonionic micelle-forming surfactant sorption onto soil, and serves as an introduction to research on that topic. Surfactant sorption onto soil appears to increase with increasing surfactant concentration until the onset of micellization. Sorbed-phase surfactant may account for the majority of added surfactant in surfactant-amended remediation applications, and this may result in increased HOC partitioning onto soil until HOC solubilization by micellar phase surfactant successfully competes with increased HOC sorption on surfactant-modified soil. This review provides discussion of equilibrium partitioning theory to account for the distribution of HOCs between soil, aqueous phase, sorbed surfactant, and micellar surfactant phases, as well as recently developed models for surfactant sorption onto soil. HOC partitioning is characterized by apparent soil-water distribution coefficients in the presence of surfactant.

  8. MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli.

    Science.gov (United States)

    Renner, Lars D; Weibel, Douglas B

    2012-11-09

    The Min proteins (MinC, MinD, and MinE) form a pole-to-pole oscillator that controls the spatial assembly of the division machinery in Escherichia coli cells. Previous studies identified that interactions of MinD with phospholipids positioned the Min machinery at the membrane. We extend these studies by measuring the affinity, kinetics, and ATPase activity of E. coli MinD, MinE, and MinDE binding to supported lipid bilayers containing varying compositions of anionic phospholipids. Using quartz crystal microbalance measurements, we found that the binding affinity (K(d)) for the interaction of recombinant E. coli MinD and MinE with lipid bilayers increased with increasing concentration of the anionic phospholipids phosphatidylglycerol and cardiolipin. The K(d) for MinD (1.8 μM) in the presence of ATP was smaller than for MinE (12.1 μM) binding to membranes consisting of 95:5 phosphatidylcholine/cardiolipin. The simultaneous binding of MinD and MinE to membranes revealed that increasing the concentration of anionic phospholipid stimulates the initial rate of adsorption (k(on)). The ATPase activity of MinD decreased in the presence of anionic phospholipids. These results indicate that anionic lipids, which are concentrated at the poles, increase the retention of MinD and MinE and explain its dwell time at this region of bacterial cells. These studies provide insight into interactions between MinD and MinE and between these proteins and membranes that are relevant to understanding the process of bacterial cell division, in which the interaction of proteins and membranes is essential.

  9. Improvement of pulmonary surfactant activity by introducing D-amino acids into highly hydrophobic amphiphilic α-peptide Hel 13-5.

    Science.gov (United States)

    Nakamura, Yoshihiro; Yukitake, Ko; Nakahara, Hiromichi; Lee, Sooyoung; Shibata, Osamu; Lee, Sannamu

    2014-08-01

    The high costs of artificial pulmonary surfactants, ranging in hundreds per kilogram of body weight, used for treating the respiratory distress syndrome (RDS) premature babies have limited their applications. We have extensively studied soy lecithins and higher alcohols as lipid alternatives to expensive phospholipids such as DPPC and PG. As a substitute for the proteins, we have synthesized the peptide Hel 13-5D3 by introducing D-amino acids into a highly lipid-soluble, basic amphiphilic peptide, Hel 13-5, composed of 18 amino acid residues. Analysis of the surfactant activities of lipid-amphiphilic artificial peptide mixtures using lung-irrigated rat models revealed that a mixture (Murosurf SLPD3) of dehydrogenated soy lecithin, fractionated soy lecithin, palmitic acid (PA), and peptide Hel 13-5D3 (40:40:17.5:2.5, by weight) superior pulmonary surfactant activity than a commercially available pulmonary surfactant (beractant, Surfacten®). Experiments using ovalbumin-sensitized model animals revealed that the lipid-amphiphilic artificial peptide mixtures provided significant control over an increase in the pulmonary resistance induced by premature allergy reaction and reduced the number of acidocytes and neutrophils in lung-irrigated solution. The newly developed low-cost pulmonary surfactant system may be used for treatment of a wide variety of respiratory diseases.

  10. Fluorescence emission of pyrene in surfactant solutions.

    Science.gov (United States)

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih

    2015-01-01

    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  11. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity.

  12. A study of surfactant-assisted waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  13. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  14. Phospholipid dynamics in graphene of different topologies: predictive modeling

    Science.gov (United States)

    Glukhova, O. E.; Slepchenkov, M. M.

    2017-02-01

    The subject of our scientific interest is the dynamics of the phospholipid molecules into a corrugated graphene sheet. According to our assumption by changing the topology of graphene properly it is possible to find the ways for management of the selective localization of phospholipid molecules to form the desired configuration of these structures. We considered DPPC (dipalmitoylphosphatidylcholine) phospholipids, which are the part of cell membranes and lipoproteins. We investigated the behavior of the phospholipids on the graphene sheet consisting of 1710 atoms with the size of 6.9 nm along the zigzag edge and 6.25 nm along the armchair edge. The numerical experiment was carried out using the original AMBER/AIREBO hybrid method with Lennard-Jones potential to describe the interaction between unbound atoms of different structures. The temperature was maintained at 300 K during the numerical experiment. All numerical experiments were performed using KVAZAR software system. We considered several cases of corrugated graphene with different width and dept of the corrugation. Special attention in our work was paid to the orientation of the phospholipids in the plane of graphene sheet.

  15. Influence of surfactants in forced dynamic dewetting.

    Science.gov (United States)

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s(-1) the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  16. Interaction of polymer-coated silicon nanocrystals with lipid bilayers and surfactant interfaces

    Science.gov (United States)

    Elbaradei, Ahmed; Brown, Samuel L.; Miller, Joseph B.; May, Sylvio; Hobbie, Erik K.

    2016-10-01

    We use photoluminescence (PL) microscopy to measure the interaction between polyethylene-glycol-coated (PEGylated) silicon nanocrystals (SiNCs) and two model surfaces: lipid bilayers and surfactant interfaces. By characterizing the photostability, transport, and size-dependent emission of the PEGylated nanocrystal clusters, we demonstrate the retention of red PL suitable for detection and tracking with minimal blueshift after a year in an aqueous environment. The predominant interaction measured for both interfaces is short-range repulsion, consistent with the ideal behavior anticipated for PEGylated phospholipid coatings. However, we also observe unanticipated attractive behavior in a small number of scenarios for both interfaces. We attribute this anomaly to defective PEG coverage on a subset of the clusters, suggesting a possible strategy for enhancing cellular uptake by controlling the homogeneity of the PEG corona. In both scenarios, the shape of the apparent potential is modeled through the free or bound diffusion of the clusters near the confining interface.

  17. Surfactant-Assisted Coal Liquefaction

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  18. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  19. Influence of the Surfactant Nature on the Occurrence of Self-Assembly between Rubber Particles and Thermally Reduced Graphite Oxide during the Preparation of Natural Rubber Nanocomposites

    Directory of Open Access Journals (Sweden)

    Héctor Aguilar-Bolados

    2015-01-01

    Full Text Available The natural rubber (NR latex consists of polymer particles charged negatively due to the adsorbed phospholipids and proteins molecules. The addition of stable aqueous suspension of thermally reduced graphite oxide (TRGO stabilized by ionic surfactants to NR latex can favor the occurrence of interaction between the stabilized TRGO and NR particles. Herein, the use of two surfactants of different nature, namely, sodium dodecyl sulfate (SDS and dodecyltrimethylammonium bromide (DTAB, for the preparation of (TRGO/NR nanocomposites, is reported. Zeta potential and particle size measurements indicated that the use of DTAB as cationic surfactant results in the flocculation of NR particles and promoted the formation of ion-pair interactions between TRGO and the proteins and/or phospholipids present on the NR surface. This indicates that the use of DTAB can promote a self-assembly phenomenon between TRGO with adsorbed DTAB molecules and NR particles. The occurrence of self-assembly phenomenon allows obtaining homogenous dispersion of TRGO particles in the polymer matrix. The TRGO/NR nanocomposites prepared by the use of DTAB exhibited superior mechanical properties and excellent electrical conductivities reaching values of stress at 500% strain of 3.02 MPa and 10−4 S/cm, respectively.

  20. Gemini surfactants from natural amino acids.

    Science.gov (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  1. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)

    1997-07-01

    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  2. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  3. Studies on the electrocapillary curves of anionic surfactants in presence of non-ionic surfactants.

    Science.gov (United States)

    Bembi, R; Goyal, R N; Malik, W U

    1976-09-01

    Polyoxyethylated non-ionic surfactants such as Tween 20, Tween 40, Nonidet P40 and Nonex 501 have been supposed to be associated with cationic characteristics. Studies on the effect of these surfactants on the electrocapillary curves of the anionic surfactants Aerosol IB, Manaxol OT and sodium lauryl sulphate (SLS), show that the electrocapillary maxima shift towards positive potentials. The order of adsorption of the anionic surfactants is SLS > Manaxol OT > Aerosol IB while the shift in maxima is in the order Aerosol IB ~ Manaxol OT > SLS which confirms association of cationic characteristics with the micelles of these non-ionic surfactants. The magnitude of the shift in electrocapillary maxima is Nonex 501 > Nonidet P40 > Tween 20 > Tween 40 which may be the order of magnitude of the positive charge carried by these non-ionic surfactants.

  4. Mdm31 protein mediates sensitivity to potassium ionophores but does not regulate mitochondrial morphology or phospholipid trafficking in Schizosaccharomyces pombe.

    Science.gov (United States)

    Ivan, Branislav; Lajdova, Dana; Abelovska, Lenka; Balazova, Maria; Nosek, Jozef; Tomaska, Lubomir

    2015-03-01

    Mdm31p is an inner mitochondrial membrane (IMM) protein with unknown function in Saccharomyces cerevisiae. Mutants lacking Mdm31p contain only a few giant spherical mitochondria with disorganized internal structure, altered phospholipid composition and disturbed ion homeostasis, accompanied by increased resistance to the electroneutral K+ /H+ ionophore nigericin. These phenotypes are interpreted as resulting from diverse roles of Mdm31p, presumably in linking mitochondrial DNA (mtDNA) to the machinery involved in segregation of mitochondria, in mediating cation transport across IMM and in phospholipid shuttling between mitochondrial membranes. To investigate which of the roles of Mdm31p are conserved in ascomycetous yeasts, we analysed the Mdm31p orthologue in Schizosaccharomyces pombe. Our results demonstrate that, similarly to its S. cerevisiae counterpart, SpMdm31 is a mitochondrial protein and its absence results in increased resistance to nigericin. However, in contrast to S. cerevisiae, Sz. pombe cells lacking SpMdm31 are also less sensitive to the electrogenic K+ ionophore valinomycin. Moreover, mitochondria of the fission yeast mdm31Δ mutant display no changes in morphology or phospholipid composition. Therefore, in terms of function, the two orthologous proteins appear to have considerably diverged between these two evolutionarily distant yeast species, possibly sharing only their participation in ion homeostasis.

  5. Synthesis of novel quaternary ammonium surfactants containing adamantane

    Institute of Scientific and Technical Information of China (English)

    Jian Wei Guo; Xing Zhong; Hua Zhu; Li Juan Feng; Ying De Cui

    2012-01-01

    A series of novel quaternary ammonium surfactants containing adamantane were designed and synthesized from 1-adamantanecarboxylic acid.The structures of target surfactants were confirmed by 1H NMR,elements analysis and FTIR.Surface properties of these surfactants were investigated.Due to the lipophilicity of adamantane,the critical micelle concentration (CMC) and C20 values of the synthesized quaternary ammonium surfactants are lower than that of conventional quaternary ammonium surfactants.