Sample records for surfactant molecule cetyltrimethyl-ammonium

  1. Thermodynamic and Spectroscopic Investigation of Interactions between Reactive Red 223 and Reactive Orange 122 Anionic Dyes and Cetyltrimethyl Ammonium Bromide (CTAB Cationic Surfactant in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan


    Full Text Available The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB. In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG, enthalpy (ΔH, and the entropy (ΔS of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔGp and ΔGb.

  2. Thermodynamic and spectroscopic investigation of interactions between reactive red 223 and reactive orange 122 anionic dyes and cetyltrimethyl ammonium bromide (CTAB) cationic surfactant in aqueous solution. (United States)

    Irfan, Muhammad; Usman, Muhammad; Mansha, Asim; Rasool, Nasir; Ibrahim, Muhammad; Rana, Usman Ali; Siddiq, Mohammad; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E; Khan, Salah Ud-Din


    The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB). In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG), enthalpy (ΔH), and the entropy (ΔS) of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔG p and ΔG b).


    Institute of Scientific and Technical Information of China (English)

    Cong-hua Lu; Chuan-qiou Luo; Wei-xiao Cao


    The interaction of poly(sodium sulfodecyl methacrylate) (PSSM) with cetyltrimethyl ammonium bromide (CTAB)was studied. It was found that the precipitate formed from PSSM and CTAB will be dissolved by excessive CTAB, resultingin the appearance of two maxima of the solution viscosity at the molar ratio (CTAB/-SO3-) of ≈ 0.68 and ≈ 1.30,respectively. The first one is related closely to the aggregation of polymer chains via CTAB molecules and the second oneshould be ascribed to the formation of the mixed micelles comprising surfactant and the polymer's hydrophobic chains. Theeffect of NaCl on the viscosity, the transmittance of the aqueous solution and the solubility of oil-soluble dye (dimethylyellow) in the mixed system were also investigated.

  4. Use of liquid crystals for imaging different inclusion abilities of α-cyclodextrin and β-cyclodextrin toward cetyltrimethyl ammonium bromide (United States)

    Liao, Zhijian; Du, Sinan; Qin, Zhenli; Wang, Jinyan; Zuo, Fang; Luo, Jianbin


    We herein report a method for the imaging of different inclusion abilities of α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) toward cetyltrimethyl ammonium bromide (CTAB) using liquid crystals (LCs). The optical transition from the dark to the bright state was caused by the inclusion interaction between CTAB and CDs. It was confirmed that α-CD formed more stable CTAB complexes than β-CD, leading to different optical responses of the LCs from the α-CD/CTAB and β-CD/CTAB systems. This method could be used to provide a visual method for selection of the correct CD molecules for interaction with surfactant molecules in recognition systems.

  5. Synthesis, Characterization and Thermal Decomposition Mechanism of Cetyltrimethyl Ammonium Tetrathiotungstate

    Institute of Scientific and Technical Information of China (English)

    Gaojun An; Yunqi Liu; Yongming Chai; Hongyan Shang; Chenguang Liu


    The synthesis, characterization and thermal decomposition mechanism of cetyltrimethyl ammonium tetrathiotungstate (CTriMATT) were studied herein. The as-synthesized CTriMATT was characterized by Elemental analysis, X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Ultraviolet visible (UV-Vis) spectra. The results showed that the as-synthesized CTriMATT had high purity and good crystallinity. The introduction of alkyl groups induced a shift of the stretching vibration band of W-S bond to lower wavenumber, while it had no influence on the position of WS2-4. Thermogravimetric analysis (TG), differential thermal analysis (DTA) and in situ XRD characterizations revealed that CTriMATT began to decompose at 423 K in nitrogen and was converted to WS2 eventually. In addition,the decomposition product of CTriMATT at 673 K in nitrogen was characterized by N2 adsorption (BET)and scanning electron microscopy (SEM). The results demonstrated that WS2 with higher specific surface area, and pore volume could be obtained from the thermal decomposition of CTriMATT in nitrogen.

  6. Nutrient removal by Chlorella vulgaris F1068 under cetyltrimethyl ammonium bromide induced hormesis. (United States)

    Zhou, Qiongzhi; Li, Feng; Ge, Fei; Liu, Na; Kuang, Yangduo


    Toxicants are generally harmful to biotechnology in wastewater treatment. However, trace toxicant can induce microbial hormesis, but to date, it is still unknown how this phenomenon affects nutrient removal during municipal wastewater treatment process. Therefore, this study focused on the effects of hormesis induced by cetyltrimethyl ammonium bromide (CTAB), a representative quaternary ammonium cationic surfactant, on nutrient removal by Chlorella vulgaris F1068. Results showed that when the concentration of CTAB was less than 10 ng/L, the cellular components chlorophyll a, proteins, polysaccharides, and total lipids increased by 10.11, 58.17, 38.78, and 11.87 %, respectively, and some enzymes in nutrient metabolism of algal cells, such as glutamine synthetase (GS), acid phosphatase (ACP), H(+)-ATPase, and esterase, were also enhanced. As a result, the removal efficiencies of ammonia nitrogen (NH4 (+)) and total phosphorus (TP) increased by 14.66 and 8.51 %, respectively, compared to the control during a 7-day test period. The underlying mechanism was mainly due to an enhanced photosynthetic activity of C. vulgaris F1068 indicated by the increase in chlorophyll fluorescence parameters (the value of Fv/Fm, ΦII, Fv/Fo, and rETR increased by 12.99, 7.56, 25.59, and 8.11 %, respectively) and adenylate energy charge (AEC) (from 0.68 to 0.72). These results suggest that hormesis induced by trace toxicants could enhance the nutrient removal, which would be further considered in the design of municipal wastewater treatment processes. Graphical abstract The schematic mechanism of C. vulgaris F1068 under CTAB induced hormesis. Green arrows ( ) represent the increase and the red arrow ( ) represents the decrease.

  7. Eco-friendly synthesis of 2-substituted benzothiazoles catalyzed by cetyltrimethyl ammonium bromide (CTAB) in water


    Yang, Xiao-Liang; Xu, Chun-Mei; Lin,Shao-Miao; Chen,Jiu-Xi; Ding,Jin-Chang; Wu,Hua-Yue; Su,Wei-Ke


    A series of 2-substituted benzothiazoles have been synthesized by the condensation of 2-aminothiophenol with aldehydes (RCHO: R = Alkyl, Aryl, Heteroaryl, 2-Arylformyl) in the presence of a catalytic amount of cetyltrimethyl ammonium bromide (CTAB) "on water" by a one-pot procedure without additional organic solvents and oxidants. Thereinto, 2-alkylbenzothiazoles were synthesized in high yields and 2-arylformylbenzothiazoles were obtained from the condensation of 2-aminothiophenol with arylfo...

  8. Cetyltrimethyl ammonium bromide-Mg/Al hydrotalcite for removal phenol in water (United States)

    Kurniawati, Puji; Wiyantoko, Bayu; Purbaningtias, Tri Esti; Muzdalifah


    Hydrotalcite materials was synthesized by using Cetyltrimethyl Ammonium Bromide (CTAB) and Mg/Al layered double hydroxide with ratio molar 3:1. Synthesis of CTAB-Mg/Al hydrotalcite was carried out using ex situ co-precipitation method at pH 10±0.5. Removal of phenol was optimum at medium pH 6 and it had optimum contact time in 300 min. It followed pseudo second order with adsorption rate constant was 1.15.10-4 mM-1.min-1. The maximum adsorption capacities obtained from the Langmuir model was 35.71 mg.g-1 at room temperature.

  9. Eco-friendly synthesis of 2-substituted benzothiazoles catalyzed by cetyltrimethyl ammonium bromide (CTAB) in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao-Liang; Xu, Chun-Mei; Lin, Shao-Miao; Chen, Jiu-Xi; Ding, Jin-Chang; Wu, Hua-Yue [Wenzhou University (China). College of Chemistry and Materials Engineering; Su, Wei-Ke [Zhejiang University of Technology, Hangzhou (China). College of Pharmaceutical Sciences. Zhejiang Key Laboratory of Pharmaceutical Engineering


    A series of 2-substituted benzothiazoles have been synthesized by the condensation of 2-aminothiophenol with aldehydes (RCHO: R = Alkyl, Aryl, Heteroaryl, 2-Arylformyl) in the presence of a catalytic amount of cetyltrimethyl ammonium bromide (CTAB) 'on water' by a one-pot procedure without additional organic solvents and oxidants. Thereinto, 2-alkylbenzothiazoles were synthesized in high yields and 2-arylformylbenzothiazoles were obtained from the condensation of 2-aminothiophenol with arylformyl aldehydes for the first time using the present protocol. (author)

  10. Methyl-β-Cyclodextrin /Cetyltrimethyl Ammonium Bromide Synergistic Sensitized Fluorescence Method for the Determination of Levofloxacin. (United States)

    Ren, Qiuyi; Zhu, Xiashi


    A novel method of methyl-β-cyclodextrin (methyl-β-CD) and cetyltrimethyl ammonium bromide (CTAB) synergistic sensitized fluorescence analysis to determine levofloxacin (LVFX) was developed. The results were shown that the fluorescence intensity of LVFX was increased a lot in the system of methyl-β-cyclodextrin-CTAB medium. Under the conditions of λ(ex/em )= 330/507 nm and pH 4.5, the linear range and the detection limit for LVFX were found to be 0.040 ~ 4.0 μg/mL and 0.3 ng/mL, respectively. The mechanism of sensitized fluorescence method was discussed by the solubilization capacity and the microenvironment of medium. The proposed method has been applied for the determination of LVFX in eye drops real samples and human serum with satisfactory recovery.

  11. Synergistic effect of sodium dodecyl sulfate and cetyltrimethyl ammonium bromide on the corrosion inhibition behavior of l-methionine on mild steel in acidic medium

    Directory of Open Access Journals (Sweden)

    M. Mobin


    Full Text Available The corrosion inhibition behavior of amino acid l-methionine (LMT separately and in combination with very low concentration of surfactants sodium dodecyl sulfate (SDS and cetyltrimethyl ammonium bromide (CTAB on mild steel in 0.1 M H2SO4 solution was studied, using weight loss and potentiodynamic polarization measurement techniques. The studies were carried out in the temperature range of 30–60 °C. The surface morphology of the corroded steel samples was studied by scanning electron microscopy (SEM and atomic force microscopy (AFM.The results show that LMT is an effective inhibitor for mild steel corrosion in 0.1 M H2SO4 which is synergistically improved in the presence of SDS and CTAB. The mixed LMT and CTAB is more effective as an inhibitor than mixture of LMT and SDS. The SEM and AFM photographs show a clearly different surface morphology in the presence of additives. LMT alone and in combination with surfactants obeys Langmuir adsorption isotherm from the fit of the experimental data of all concentrations and temperatures studied. Phenomenon of physical adsorption is proposed from the trend of the IE with temperature and also the values of activation energy (Ea, standard enthalpy of adsorption (ΔHads, and standard free energy of adsorption (ΔGads obtained. The results obtained by potentiodynamic polarization measurements are consistent with the results of the weight loss measurements. LMT acts as a mixed type inhibitor.

  12. Synthesis and Surface Activity of Novel Triazole-based Cationic Gemini Surfactants

    Institute of Scientific and Technical Information of China (English)


    The synthesis and surfactant activities of two new cationic gemini surfactants containingtriazole compound as spacer were described. Their critical micelle concentrations (CMC), whichare 1.8 × l0-4 mol/L and 3.9× 10-4 mol/L respectively, are much lower than that of conventionalsurfactant cetyltrimethyl ammonium chloride (CTAC). In addition, compared with some geminisurfactants containing phenylene, xylylene and stilbenyl as spacer, this new kind of surfactants hasgood solubility in water at room temperature because of containing more hydrophilic groups oratoms in molecules.

  13. Effect of alkyl chain asymmetry on catanionic mixtures of hydrogenated and fluorinated surfactants. (United States)

    Blanco, Elena; Rodriguez-Abreu, Carlos; Schulz, Pablo; Ruso, Juan M


    In this work we studied and compared the physicochemical properties of the catanionic mixtures cetyltrimethyl-ammonium bromide-sodium dodecanoate, cetyltrimethyl-ammonium bromide-sodium perfluorodacanoate, octyltrimethylammonium bromide-sodium perfluorodacanoate and cetyltrimethyl-ammonium bromide-sodium octanoate by a combination of rheological, transmission electron microscopy (TEM) and polarized optical microscopy measurements. The binary mixtures of the surfactants have been analyzed at different mixed ratios and total concentration of the mixture. Mixtures containing a perfluorinated surfactant are able to form lamellar liquid crystals and stable spontaneous vesicles. Meanwhile, system containing just hydrogenated surfactants form hexagonal phases or they are arranged in elongated aggregates.

  14. Catalytic Pyrolysis of Low Density Polyethylene Using Cetyltrimethyl Ammonium Encapsulated Monovacant Keggin Units C19H42N4H3(PW11O39 and ZSM-5

    Directory of Open Access Journals (Sweden)

    Madeeha Batool


    Full Text Available The effect of the catalysts on the pyrolysis of commercial low density polyethylene (LDPE has been studied in a batch reactor. The thermal catalytic cracking of the LDPE has been done using cetyltrimethyl ammonium encapsulated monovacant keggin units (C19H42N4H3(PW11O39, labeled as CTA-POM and compared with the ZSM-5 catalyst. GC-MS results showed that catalytic cracking of LDPE beads generated oilier fraction over CTA-POM as compared to ZSM-5. Thus, the use of CTA-POM is more significant because it yields more useful fraction. It was also found that the temperature required for the thermal degradation of LDPE was lower when CTA-POM was used as a catalyst while high temperature was required for degradation over ZSM-5 catalyst. Better activity of CTA-POM was due to hydrophobic nature of CTA moiety which helps in catalyst mobility and increases its interaction with hydrocarbons.

  15. Cytotoxicity effect assessment of acid purified carbon nanotubes modified with cetyltrimethyl ammonium bromide%十六烷基三甲基溴化铵修饰的羧基化单壁碳纳米管的细胞毒性

    Institute of Scientific and Technical Information of China (English)

    甘丽; 阎雪彬; 杨金凤; 谷永红; 黄东; 章饶香; 黄利华


    The cytotoxicities of single-walled carbon nanotubes (SWNTs) and acid purified single-walled carbon nanotubes (SWNT-COOH) were investigated by spectroscopic analysis. Cell viability and cell apoptosis were applied to assessing the cytotoxicity of SWNT-COOH, cetyltrimethyl ammonium bromide (CTAB) and acid purified carbon nanotubes modified with cetyltrimethyl ammonium bromide (SWNT-COOH/CTAB). The results indicate that SWNTs are more toxic than SWNT-COOH. Concentration and time-curve analyses indicate that cytotoxicity of SWNT-COOH/CTAB is more related to the toxicity of the surfactant CTAB. The cytotoxicity effect of CTAB and SWNT-COOH/CTAB is acceptable at low concentrations (0.5-25μg/mL). The cytotoxicity observation suggests that SWNT-COOH/CTAB can safely applied to biomedical field at low concentrations (0.5-25μg/mL).%采用十六烷基三甲基溴化铵(CTAB)作为表面活性剂修饰羧基化的单壁碳纳米管(SWNT-COOH/CTAB),并对原始单壁碳纳米管(SWNTs)与羧基化修饰的单壁碳纳米管(SWNT-COOH)进行材料学特征比较。通过细胞活力和细胞凋亡实验对SWNTs、SWNT-COOH和SWNT-COOH/CTAB的细胞毒性进行比较。结果表明,羧基化修饰的单壁碳纳米管比原始单壁碳纳米管的毒性小,单壁碳纳米管经羧基化后其毒性降低;浓度及时间曲线显示SWNT-COOH/CTAB的毒性与表面活性剂CTAB相关,CTAB和 SWNT-COOH/CTAB的细胞毒性在低浓度范围内(0.5~25μg/mL)是可接受的。十六烷基三甲基溴化铵修饰的羧基化单壁碳纳米管在低浓度范围(0.5~25μg/mL)内可以较安全地用于生物医学领域。

  16. Study on aqueous two-phase systems of the mixture SDS/CTAB surfactants

    Institute of Scientific and Technical Information of China (English)

    LI Ying; CHEN Yah-ming; ZHAO Kong-shuang; Takumi HIKIDA


    The phenomenon of two dilute aqueous phases composed of sodium dodecylsulfate (SDS) and cetyltrimethyl ammonium bromide(CTAB) was investigated under various conditions such as concentrations and molarratios of the two surfactants, the addition of sodium chloride and temperature. Vesicles formation was found in theboth phases by TEM image.

  17. Synthesis and Behavior of Cetyltrimethyl Ammonium Bromide Stabilized Zn1+xSnO3+x (0 ≤ x ≤1 Nano-Crystallites.

    Directory of Open Access Journals (Sweden)

    Astrid Placke

    Full Text Available We report synthesis of cetyltrimethyl ammonium bromide (CTAB stabilized Zn1+xSnO3+x (0 ≤ x ≤1 nano-crystallites by facile cost-effective wet chemistry route. The X-ray diffraction patterns of as-synthesized powders at the Zn/Sn ratio of 1 exhibited formation of ZnSn(OH6. Increasing the Zn/Sn ratio further resulted in the precipitation of an additional phase corresponding to Zn(OH2. The decomposition of these powders at 650°C for 3h led to the formation of the orthorhombic phase of ZnSnO3 and tetragonal SnO2-type phase of Zn2SnO4 at the Zn/Sn ratio of 1 and 2, respectively, with the formation of their mixed phases at intermediate compositions, i.e., at Zn/Sn ratio of 1.25, 1.50 and 1.75, respectively. The lattice parameters of orthorhombic and tetragonal phases were a ~ 3.6203 Å, b ~ 4.2646 Å and c ~ 12.8291Å (for ZnSnO3 and a = b ~ 5.0136 Å and c ~ 3.3055Å (for Zn2SnO4. The transmission electron micrographs revealed the formation of nano-crystallites with aspect ratio ~ 2; the length and thickness being 24, 13 nm (for ZnSnO3 and 47, 22 nm (for Zn2SnO4, respectively. The estimated direct bandgap values for the ZnSnO3 and Zn2SnO4 were found to be 4.21 eV and 4.12 eV, respectively. The ac conductivity values at room temperature (at 10 kHz for the ZnSnO3 and Zn2SnO4 samples were 8.02 × 10-8 Ω-1 cm-1 and 6.77 × 10-8 Ω-1 cm-1, respectively. The relative permittivity was found to increase with increase in temperature, the room temperature values being 14.24 and 25.22 for the samples ZnSnO3 and Zn2SnO4, respectively. Both the samples, i.e., ZnSnO3 and Zn2SnO4, exhibited low values of loss tangent up to 300 K, the room temperature values being 0.89 and 0.72, respectively. A dye-sensitized solar cell has been fabricated using the optimized sample of zinc stannate photo-anode, i.e., Zn2SnO4. The cyclic voltammetry revealed oxidation and reduction around 0.40 V (current density ~ 11.1 mA/cm2 and 0.57 V (current density- 11.7 mA/cm2 for Zn2Sn

  18. Processo de organofilização de vermiculia brasileira com cloreto de cetiltrimetilamônio Organophilization process of Brazilian vermiculite with cetyltrimethyl ammonium chloride

    Directory of Open Access Journals (Sweden)

    E. V. D Gomes


    Full Text Available A vermiculita, argila da família dos aluminossilicatos 2:1 proveniente do estado de Goiás, Brasil, foi utilizada para a produção de uma argila organofílica. A vermiculita foi primeiramente submetida ao tratamento com cloreto de sódio para a obtenção de uma argila homoiônica sódica. A argila organofílica foi, então, obtida a partir da síntese com o sal de amônio quaternário, cloreto de cetiltrimetil amônio. As argilas, tratada com o sal orgânico e a não tratada, foram caracterizadas por espectrometria de fluorescência de raios X, espectroscopia de absorção na região do infravermelho, difração de raios X e análise termogravimétrica. Os resultados de fluorescência de raios X evidenciaram a mudança na composição química da vermiculita após as reações de troca com NaCl e sal orgânico. Os resultados obtidos por espectroscopia de absorção na região do infravermelho mostraram a presença dos grupos característicos do sal na argila e os de difração de raios X confirmaram sua intercalação entre as camadas da argila. Os resultados de análise termogravimétrica mostraram que a argila organofílica apresentou outras faixas de decomposição, além daquelas apresentadas pela vermiculita natural, correspondentes à decomposição do sal de amônio quaternário.The vermiculite (VMT, 2:1 aluminosilicate family clay from the state of Goiás, Brazil, was used for the production of an organophilic clay. First, the VMT was treated with sodium chloride to obtain the homo-ionic sodium clay. The organophilic clay was, then, obtained from the reaction with the quaternary ammonium salt, cetyltrimethyl ammonium chloride. The clay treated with organic salt and the untreated one were characterized by X-ray fluorescence spectrometry (XRF, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and thermogravimetric analysis (TGA. The results of XRF evidenced the change in the chemical composition of the VMT after the

  19. STM investigation of surfactant molecules

    Institute of Scientific and Technical Information of China (English)


    Adsorption and self-organization of sodium alkyl sulfonates (STS and SHS) have been studied on HOPG by using the in situ scanning tunneling microscopy (STM). Both SHS and STS molecules adsorb on the HOPG surface and form long-range well-ordered monolayers. The neighboring molecules in different rows form a "head to head" configuration. In the high-resolution images of STS and SHS molecules, one end of the molecules shows bright spots which are attributed to the SO3- groups.

  20. Surface atomic structures of Fe2O3 nanoparticles coated with cetyltrimethyl ammonium bromide and sodium dodecyl benzene sulphonate:an extended x-ray absorption fine-structure study

    Institute of Scientific and Technical Information of China (English)


    Fe2O3 nanoparticles coated with sodium dodecyl benzene sulphonate(DBS)or cetyltrimethyl ammonium bromide(CTAB) were prepared by using a microemulsion method in the system water/toluene.The nanoparticles were characterized by means of transmission electron microscopy and average particle sizes of 5.0nm and 6.0nm were found for DBS-modified and CTAB-modified nanoparticles respectively.The local atomic structures of these iron(Ⅲ) oxide nanoparticles were probed by using the extended x-ray absorption fine-structure technique.Fe K absorption spectra were collected at beam line 4W1B of Beijing Synchrotron Radiation Facility.A structureal model was proposed for describing their atomic structures.The Fe-O bond length at the surface of DBS-coated Fe2O3 nanoparticles was found to be similar to that in bulk Fe2O3.but there was about 0.04A expansion for the CTAB-coated Fe2O3 nanoparticles.On the basis of the model proposed in this paper,the thicknesses of the surface layers were estimated to be 0.5nm and 0.7nm.respectively,for the DBS-coated and CTAB-coated Fe2O3 nanoparticles.The anharmonicity of the atomic vibration and the asymmetry of atom-pair distribution were found to be larger at the surface of the nanoparticles than in the bulk material,while the Debye-Waller factors are almost the same for the surface and the core parts of the nanoparticles.It can be concluded that the atomic structure of the nanoparticle surface is ordered.but the atom-pari distribution is asymmetric.

  1. Influence of surfactant on dynamics of photoinduced motions in a dye-doped deoxyribonucleic acid (United States)

    Mysliwiec, Jaroslaw; Parafiniuk, Kacper; Miniewicz, Andrzej; Rau, Ileana; Kajzar, Francois; Niziol, Jacek; Hebda, Edyta; Pielichowski, Jan; Sahraoui, Bouchta


    Pure deoxyribonucleic acid (DNA) is known to be soluble in water only and exhibits poor temperature stability. In contrary, it is well known that the complex of DNA - with cetyltrimethyl ammonium (CTMA) is soluble in alcohols and can be processed into very good optical quality thin films by solution casting and spin deposition. Despite the success of DNA-CTMA, there is still need for new cationic surfactants which would extend the range of available solvents for DNA complex. We test and present experimental results of influence of new surfactants based on benzalkonium chloride (BA), and didecyldimethylammonium chloride (DDCA) for applications in all optical switching.

  2. Surfactant-assisted sol-gel synthesis of forsterite nanoparticles as a novel drug delivery system. (United States)

    Hassanzadeh-Tabrizi, S A; Bigham, Ashkan; Rafienia, Mohammad


    In the present study, forsterite nanoparticles were synthesized via surfactant-assisted sol-gel method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB contents and heat treatment on the textural properties and drug release from nanoparticles were investigated. The synthesized powders were studied by X-ray diffraction, Fourier transform infrared spectra, Brunauer-Emmett-Teller surface area analysis and transmission electron microscope images. Mg2SiO4 materials demonstrated mesoporous characteristics and large specific surface area ranging from 159 to 30 m(2)/g. The TEM results showed that forsterite nanorods had diameters about 4 nm and lengths ranging from 10 to 60 nm. It was found that the samples with 6g CTAB show slower drug release rate than the other specimens, which is due to smaller pore size. This study revealed that the drug delivery of forsterite can be tailored by changing the amount of surfactant.

  3. Removal of Hg (II and Mn (II from aqueous solution using nanoporous carbon impregnated with surfactants

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia


    Full Text Available Mesoporous carbons were impregnated with the anionic and cationic surfactants to increase adsorbing capacity for heavy metal ions. Prepared samples were characterized by X-ray diffraction (XRD and nitrogen adsorption–desorption isotherms. Batch adsorption studies were carried out to study the effect of various parameters like contact time, pH, metal ion concentration and agitation speed. The mercury removal by cationic surfactant cetyltrimethyl ammonium bromide (CTAB, anionic surfactant sodium dodecyl sulfate (SDS modified mesoporous carbon and unmodified mesoporous carbon were found to be 94%, 81.6% and 54.5%, respectively while the manganese removal for these adsorbents were found to be 82.2%, 70.5% and 56.8%, respectively. The sorption data were fit better with the Langmuir adsorption isotherm than Freundlich isotherm.

  4. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules. (United States)

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija


    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  5. Surfactant-assisted sacrificial template-mediated synthesis, characterization and photoluminescent properties of LaPO₄ : Eu³⁺ phosphor

    Indian Academy of Sciences (India)



    In this paper, we report a surfactant-assisted self-sacrificing route for synthesis of Eu³⁺ doped LaPO4 nanostructures under hydrothermal conditions using the La(OH)CO₃ : Eu³⁺ precursor as a template andNH₄H₂PO₄ as the phosphate source. The synthesis was carried out in the absence and presence of surfactant [cetyltrimethyl ammonium bromide (CTAB)] and two different solvents (water and ethylene glycol). The precursor and products were characterized by powder X-ray diffraction, fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopyand photoluminescence studies. Influence of surfactant and solvents on morphology and luminescence of the final product in sacrificial template-assisted method has been investigated in detail.

  6. Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid (United States)

    Sznitko, Lech; Parafiniuk, Kacper; Miniewicz, Andrzej; Rau, Ileana; Kajzar, Francois; Niziol, Jacek; Hebda, Edyta; Pielichowski, Jan; Sahraoui, Bouchta; Mysliwiec, Jaroslaw


    Pure deoxyribonucleic acid (DNA) is known to be soluble in water only and exhibits poor temperature stability. In contrary, it is well known that the complex of DNA - with cetyltrimethyl ammonium (CTMA) is insoluble in water but soluble in alcohols and can be processed into very good optical quality thin films by solution casting or spin deposition. Despite the success of DNA-CTMA, there is still need for new cationic surfactants which would extend the range of available solvents for DNA complex. We test and present experimental results of influence of new surfactants replacing CTMA in the DNA complex and based on benzalkonium chloride (BA) and didecyldimethylammonium chloride (DDCA) on their optical properties. Particularly, we were interested in all optical switching and light generation in amplified spontaneous emission process in these materials.

  7. First-order phase transition during displacement of amphiphilic biomacromolecules from interfaces by surfactant molecules. (United States)

    Ettelaie, Rammile; Dickinson, Eric; Pugnaloni, Luis


    The adsorption of surfactants onto a hydrophobic interface, already laden with a fixed number of amphiphilic macromolecules, is studied using the self consistent field calculation method of Scheutjens and Fleer. For biopolymers having unfavourable interactions with the surfactant molecules, the adsorption isotherms show an abrupt jump at a certain value of surfactant bulk concentration. Alternatively, the same behaviour is exhibited when the number of amphiphilic chains on the interface is decreased. We show that this sudden jump is associated with a first-order phase transition, by calculating the free energy values for the stable and the metastable states at both sides of the transition point. We also observe that the transition can occur for two approaching surfaces, from a high surfactant coverage phase to a low surfactant coverage one, at sufficiently close separation distances. The consequence of this finding for the steric colloidal interactions, induced by the overlap of two biopolymer + surfactant films, is explored. In particular, a significantly different interaction, in terms of its magnitude and range, is predicted for these two phases. We also consider the relevance of the current study to problems involving the competitive displacement of proteins by surfactants in food colloid systems.

  8. Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Javadian, Soheila, E-mail: [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yousefi, Ali [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Neshati, Jaber [Corrosion Department, Coating Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of)


    The corrosion inhibition characteristics of cation-rich and anion-rich catanionic mixtures of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), as corrosion inhibitor of mild steel (MS), in aqueous solution of 3.5% NaCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and scanning electron microscopy (SEM). Solutions of CTAB/SDS mixtures showed more appropriate inhibition properties compared to the solutions of the individual surfactants, due to strong adsorption on the metal surface and formation of a protective film. Potentiodynamic polarization investigations indicated that the inhibitors studied were mixed type inhibitors. Adsorption of the inhibitors on the mild steel surface obeyed the Flory–Huggins adsorption isotherm. Furthermore, the values of the adsorption free energy (ΔG°{sub ads}) in both mixtures decreased compared with a single surfactant which is attributed to stronger interactions in mixtures.

  9. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells (United States)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.


    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  10. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Directory of Open Access Journals (Sweden)

    Witkowski Colette


    Full Text Available Abstract Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS and sodium dodecylbenzene sulfonate (SDBS are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood–brain barrier to the brain and the central nervous system.

  11. Extraction of ultrashort DNA molecules from herbarium specimens. (United States)

    Gutaker, Rafal M; Reiter, Ella; Furtwängler, Anja; Schuenemann, Verena J; Burbano, Hernán A


    DNA extracted from herbarium specimens is highly fragmented; therefore, it is crucial to use extraction protocols that retrieve short DNA molecules. Improvements in extraction and DNA library preparation protocols for animal remains have allowed efficient retrieval of molecules shorter than 50 bp. Here, we applied these improvements to DNA extraction protocols for herbarium specimens and evaluated extraction performance by shotgun sequencing, which allows an accurate estimation of the distribution of DNA fragment lengths. Extraction with N-phenacylthiazolium bromide (PTB) buffer decreased median fragment length by 35% when compared with cetyl-trimethyl ammonium bromide (CTAB); modifying the binding conditions of DNA to silica allowed for an additional decrease of 10%. We did not observe a further decrease in length for single-stranded DNA (ssDNA) versus double-stranded DNA (dsDNA) library preparation methods. Our protocol enables the retrieval of ultrashort molecules from herbarium specimens, which will help to unlock the genetic information stored in herbaria.

  12. Fabrication of novel microstructures based on orientation-dependent adsorption of surfactant molecules in a TMAH solution (United States)

    Pal, Prem; Sato, K.; Gosalvez, M. A.; Tang, B.; Hida, H.; Shikida, M.


    In this work, the orientation-dependent adsorption of surfactant molecules on the silicon surface during etching in surfactant-added tetramethylammonium hydroxide (TMAH) is investigated. Triton X-100 (C14H22O(C2H4O)n, n = 9-10) and 25 wt% TMAH are used as surfactant and main etchant, respectively. The crystallographic planes affected by the surfactant molecules are determined by analyzing the etching behavior of different mask patterns on Si{1 0 0} wafers and silicon hemispheres in pure and surfactant-added TMAH. Taken together, the shapes of the etched profiles and the analysis of the hemispherical etch rates confirm that thick and dense adsorbed surfactant layers are typically formed on both the exact and vicinal Si{1 1 0} surfaces. In addition, the results indicate that the adsorbed surfactant layer behaves as a permeable mask, partially slowing down the etch rate of the affected surface orientation/s and thus enforcing their appearance on the etching front. The peculiar etching properties of surfactant-added and surfactant-free TMAH are then utilized for the fabrication of advanced micromechanical structures with new shapes on Si{1 0 0} wafers and polydimethylsiloxane based on complex Si{1 0 0} molds.

  13. Synthesis of organic rectorite with novel Gemini surfactants for copper removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guocheng; Han, Yang [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Xiaoying, E-mail: [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Shijie, E-mail: [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Department of Paper and Bioprocess Engineering, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 (United States); Sun, Runcang [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); China Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)


    Graphical abstract: Three Gemini surfactants showed stronger rapid intercalation capacity into rectorite and behaved better on Cu{sup 2+} removal than two single-chain surfactants, which were positive to their increasing amount and chain length. - Highlights: • Modification of rectorite (REC) with several surfactants was performed in 1 h. • The arrangement of Gemini surfactants in REC layers was discussed. • All ORECs displayed better adsorption capacities on Cu{sup 2+} than pure REC. • Gemini-REC behaved better than single-chain surfactant modified REC on Cu{sup 2+} removal. • The adsorption capacity was positive to the amount and chain length of surfactant. - Abstract: Three novel Gemini surfactants were used to prepare organic rectorite (OREC) under microwave irradiation, in comparison with single-chain surfactant ester quaternary ammonium salt (EQAS) and cetyltrimethyl ammonium bromide (CTAB). The structure and morphology of OREC were characterized by XRD, BET, FT-IR, TEM and TGA. The removal of Cu{sup 2+} on OREC from aqueous solution was performed. The results reveal that Gemini surfactants modified REC had larger interlayer distance and higher surface area than single-chain surfactants EQAS and CTAB, and the increasing amount or chain length of Gemini surfactants led to larger layer spacing and higher adsorption capacities. The adsorption behavior of Gemini surfactant modified REC can be better described by Freundlich adsorption isotherm model, with a maximum adsorption capacity of 15.16 mg g{sup −1}. The desorption and regeneration experiments indicate good reuse property of Gemini modified REC adsorbent. Therefore, this study may widen the utilization of Gemini surfactants modified layered silicates.

  14. Surfactant molecules to promote removal of cadmium ions from solid surfaces: A complementary experimental-simulational study (United States)

    Pacheco-Blas, María del Alba; Dominguez, Hector; Rivera, Margarita


    Sodium dodecyl sulfate (SDS) was used to interact with metallic ions to demonstrate the efficiency of surfactant molecules to promote desorption of metals from solid surfaces. Scanning electron and atomic force microscopy were employed to study desorption of cadmium ions from highly oriented pyrolytic graphite (HOPG), as a model to understand the removal of metallic ions from carbon substrates. Contact angle measurements were carried out to investigate the wettability behavior of the surfactant on the contaminated surface. The desorption mechanism from a microscopic level was studied by using molecular dynamic simulations. Density profiles and pair correlation functions were analyzed to determine the cadmium-surface interaction in the presence of surfactant molecules to improve ion detachment. Simulations showed that surfactant molecules moved in between the adsorbed cadmium ions and the graphite surface pushing up the metallic groups to improve metal desorption. The experimental and theoretical results agree with atomic absorption spectroscopy results.


    Institute of Scientific and Technical Information of China (English)

    GU Wei-guo; WANG De-zhong


    Turbulence transport of surfactant solution flow during drag reduction degeneration is investigated experimentally in a two-dimensional channel.Particle Image Velocimetry (P1V) system is used to take two-dimensional velocity frames in the streamwise and wall-normal plane.The additive of surfactant is cetyltrimethyl ammonium chloride (CTAC) with the mass concentration of 25 ppm.Drag reduction degeneration happens in the CTAC solution flow,exhibiting the maximal drag reduction at Re =25000and losing drag reduction completely at Re =40 000.The velocity frames are statistically analyzed in four quadrants which are divided by the u -axis and v-axis.It is found that the phenomenon of“Zero Reynolds shear stress” is caused by the decrease of wallnormal fluctuations and its symmetrical distribution in quadrants.The increase of Reynolds number leads to the enhancement of turbulence burst phenomenon.During thc drag reduction degeneration,the CTAC solution flow contains both high turbulence intensity and drag reduction states.

  16. Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh-Tabrizi, S.A., E-mail: [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Bigham, Ashkan [Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Rafienia, Mohammad [Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)


    In the present study, forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB contents and heat treatment on the textural properties and drug release from nanoparticles were investigated. The synthesized powders were studied by X-ray diffraction, Fourier transform infrared spectra, Brunauer–Emmett–Teller surface area analysis and transmission electron microscope images. Mg{sub 2}SiO{sub 4} materials demonstrated mesoporous characteristics and large specific surface area ranging from 159 to 30 m{sup 2}/g. The TEM results showed that forsterite nanorods had diameters about 4 nm and lengths ranging from 10 to 60 nm. It was found that the samples with 6 g CTAB show slower drug release rate than the other specimens, which is due to smaller pore size. This study revealed that the drug delivery of forsterite can be tailored by changing the amount of surfactant. - Highlights: • Forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method. • Nanoparticles were loaded with ibuprofen as a novel drug delivery system. • Synthesized nanoparticles had a rod-like morphology. • CTAB concentration strongly affected the textural properties and drug release of the nanoparticles.

  17. Vapour-liquid equilibrium relationship between toluene and mixed surfactants. (United States)

    Tian, Senlin; Li, Yingjie; Mo, Hong; Ning, Ping


    Micellar partitioning of volatile organic compounds (VOCs) in surfactant solutions and its effects on vapour-liquid equilibrium is fundamental to the overall design and implementation ofsurfactant-enhanced remediation. Knowledge of the vapour-liquid equilibrium partitioning coefficients for VOCs, especially in contaminated soils and groundwater in which they exist, is required. Headspace experiments were performed to quantify the effect of three mixed surfactants, cetyltrimethyl ammonium bromide (CTMAB) with tetrabutylammonium bromide (TBAB), sodium dodecyl sulphate (SDS) with Triton X-405 (TX405), and CTMAB with Triton X-100 (TX100), on the apparent Henry's constants (Hc) of toluene at temperatures ranging from 25 degrees C to 40 degrees C. The Hc values were significantly reduced in the presence of all three mixed surfactants at concentrations above their critical micelle concentrations (CMC). Mixed micellar partitioning, showing effects on the vapour-liquid equilibrium of toluene, was primarily responsible for the significant reduction of Hc in their mixed systems. The mixed surfactants CTMAB-TX100 had the greatest effect on Hc above the CMC, followed by SDS-TX405, then CTMAB-TBAB. Mixed systems of CTMAB-TX100 decreased Hc at concentrations significantly lower than the SDS-TX405 and CTMAB-TBAB concentrations, because of to the lower CMC of CTMAB-TX100. Vapour-liquid equilibrium data were also tested against the model (Hc = H/(1 + K(X - CMC)) that described the partitioning of VOCs in vapour-water-micelle phases. The correlation of Hc with mixed surfactant concentrations (X) and CMC can be utilized as an effective tool to predict the Hc by mixed surfactants.

  18. Biobased surfactant-like molecules from organic wastes: the effect of waste composition and composting process on surfactant properties and on the ability to solubilize Tetrachloroethene (PCE). (United States)

    Quadri, Giorgia; Chen, Xiaosong; Jawitz, James W; Tambone, Fulvia; Genevini, Pierluigi; Faoro, Franco; Adani, Fabrizio


    In this work, four surfactant-like humic acids (HAs) obtained from garden lignocellulose wastes and kitchen food wastes mixed with garden-lignocellulose wastes, both before and after composting, were tested for surfactant properties and the ability to solubilize tetrachloroethene (PCE). The waste-derived HAs showed good surfactant properties, lowering the water surface tension from 74 mN m(-1) to 45.4 +/- 4.4 mN m(-1), with a critical micelle concentration (CMC) of 1.54 +/- 1.68 g L(-1), which is lower than many synthetic ionic surfactants. CMC was affected by both waste origin and composting processes. The addition of food waste and composting reduced CMC by adding alkyl-C (measured by CP MAS 13C NMR) and N- and S-HA contents (amide molecules), so that a multistep regression was found [CMC = 24.6 - 0.189 alkyl C - 2.64 (N + S); R2 = 0.77, P < 0.10, n = 6]. The four HAs solubilized PCE at the rate of 0.18-0.47 g PCE/g aqueous biosurfactant. These results were much higher than those reported in the literature for a commercial HA (0.026 g/g), but they were in line with those measured in this work for nonionic surfactants such as Tween-80 (0.69 g/g) and Triton X-100 (1.08 g/g).

  19. InP nanowires from surfactant-free thermolysis of single molecule precursors. (United States)

    Banerjee, Chiranjib; Hughes, David L; Bochmann, Manfred; Nann, Thomas


    Indium phosphide nanofibres were grown from a single-molecule precursor, [(PhCH(2))(2)InP(SiMe(3))(2)](2), using hot injection techniques by a solution-liquid-solid (SLS) process, under "surfactant-free" conditions and without the use of protic additives. The fibres are 85-95 nm in diameter and grow from In metal droplets of 100 nm diameter. The length of the nanofibres is a function of the precursor injection temperature (rather than the growth temperature) and can be varied from 6000 nm at 210 °C to 1000 nm at 310 °C. The indium metal tip can be readily removed under mild, non-etching conditions by treatment with thiophenol-P(SiMe(3))(3) mixtures.

  20. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate. (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle


    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  1. Fluorophotometric determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants with carbon dots via Stokes shift. (United States)

    Lavkush Bhaisare, Mukesh; Pandey, Sunil; Shahnawaz Khan, M; Talib, Abou; Wu, Hui-Fen


    A new and facile method for the determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants is proposed in this article. Carbon dots exhibited substantial fluorescence and therefore enhanced the sensitivity of this evaluation. Understanding the formation of surfactant micelles is vital for the applications of biomedicine such as drug fabrication and smart molecular vehicles in delivering therapeutic dosage to various molecular sites. The fluorescence property of carbon dots was utilized for the first time to estimate the critical micelle concentration of surfactants. The central concept of the approach is based on the Stokes shift determination of a system composed of constant amount of carbon dots with varying concentrations of ionic and non-ionic surfactants. The synthesized carbon dots were characterized by FTIR, TEM, XRD, Raman, UV, and fluorescence spectroscope. The carbon dots were excited at 280 nm so as to obtain maximum emission for the Stokes shift measurement. The CMC value of cetyltrimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS), Triton X-100, dodecyldimethyl(3-sulfopropyl)ammonium hydroxide (SB-12) evaluated by this approach was found to be 0.98, 7.3, 0.19, and 3.5mM, respectively. The signals of spectra were assigned and explained in terms of both electron transitions between specific molecular orbital and the interaction with solvent.

  2. Effect of surfactants on Ra-sHSPI - A small heat shock protein from the cattle tick Rhipicephalus annulatus (United States)

    Siddiqi, Mohammad Khursheed; Shahein, Yasser E.; Hussein, Nahla; Khan, Rizwan H.


    Electrostatic interaction plays an important role in protein aggregation phenomenon. In this study, we have checked the effect of anionic - Sodium Dodecyl Sulfate (SDS) and cationic-Cetyltrimethyl Ammonium Bromide (CTAB) surfactant on aggregation behavior of Ra-sHSPI, a small heat shock protein purified from Rhipicephalus annulatus tick. To monitor the effect of these surfactants, we have employed several spectroscopic methods such as Rayleigh light scattering measurements, ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence measurements, ThT (Thioflavin T) binding assays, Far-UV CD (Circular Dichroism) and dynamic light scattering measurements. In the presence of anionic surfactant-SDS, Ra-sHSPI forms amyloid fibrils, in contrast, no amyloid formation was observed in presence of cationic surfactant at low pH. Enhancement of ANS fluorescence intensity confirms the exposition of more hydrophobic patches during aggregation. ThT binding assay confirms the amyloid fibrillar nature of the SDS induced Ra-sHSPI aggregates and supported by PASTA 2.0 (prediction of amyloid structural aggregation) software. This study demonstrates the crucial role of charge during amyloid fibril formation at low pH in Ra-sHSPI.

  3. Surfactant effect on the conductivity behavior of CsH{sub 2}PO{sub 4}: Characterization by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S., E-mail: Soraya@eng.ukm.m [Department of Chemical and Environmental Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Homaiee, M. [Department of Physics, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Mohamad, A.B. [Institute of Fuel Cell, University Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Malekbala, M.R. [Department of Chemical and Environmental Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Khadum, A.A.H. [Institute of Fuel Cell, University Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)


    Cesium dihydrogen phosphate (CDP) nanoparticles were synthesized using the surfactants cetyltrimethyl ammonium bromide (CTAB), polyoxyethylene-polyoxypropylene (F-68) and (F-68:CTAB) with molar ratio 0.06. The samples conductivity such as CDP{sub CTAB}, CDP{sub F-68} and CDP{sub (F-68:CTAB)0.06} was studied by impedance spectroscopy in the frequency range 0.01 Hz to 1 MHz. The Nyquist plots were drawn at different temperatures of 210, 230 and 260 {sup o}C, which are defined below transition, phase transition and above transition, respectively. The measured conductivities obey the Arrhenius relation. The influence of surfactants on conductivity are more significant at higher temperature due to grain boundary. The conductivity of CDP{sub CTAB} increased slightly with increasing temperature to 260 {sup o}C, whereas the conductivity of other samples decreased with increasing temperature over 230 {sup o}C. The results indicated that the conductivities increase in the order of CDP{sub CTAB}>CDP{sub (F-68:CTAB)0.06}>CDP{sub F-68}. These are in accordance to the ion exchange capacities of the samples that the surfactant shows a direct influence on the samples proton mobility. It is found that the conductivity of CsH{sub 2}PO{sub 4} is influenced by surfactant type.

  4. Mixed micelle formation with phosphatidylcholines: the influence of surfactants with different molecule structures. (United States)

    Rupp, Christopher; Steckel, Hartwig; Müller, Bernd W


    The number of mixed micellar (MM) drug products being introduced into the commercial pharmaceutical market is very limited although there is need for alternative dosage forms for poorly soluble active drug substances. While known systems are composed of phosphatidylcholine and bile salts, it was the aim of this study to investigate if alternative surfactants are able to form isotropically clear solutions over a broad range of concentrations and at higher ratios of phosphatidylcholine (PC). It was a particular challenge of this work to find a MM system with a unimodal particle size distribution since it is known that surfactants often form vesicles with phospholipids instead of MM. The theoretical approach behind this work was the transfer of the packing parameter concept, which describes the molecular association of one amphiphilic species, to the organisation behaviour of two different amphiphilic species (water-insoluble phospholipid+surfactant leading to MM). Therefore the influence of the surfactant molecular geometry on the ability to form MM with phospholipids was investigated. A homologous series of two different surfactant classes, namely polyglycerol esters and sucrose esters, with a large hydrophilic head region leading to a smaller packing parameter were analysed regarding their ability to form clear MM solutions with PC. For comparison, surfactants with no strictly defined partition between a polar head and a non-polar tail (e.g. Poloxamer 188) were tested. Decaglycerol laurate and especially sucrose laurate (SL) were superior compared to all other tested surfactants with respect to their ability to form clear solutions with hydrogenated PC (hPC) at a higher ratio and over a broad range of concentrations while unsaturated PC showed an inferior performance to form MM. The favourite MM system composed of SL with 0.5 weight fractions of hPC formed about 20 nm sized MM in a concentration range of 1.0-80 mg/mL and showing a unimodal particle size

  5. Solubilization of Phenanthrene and Fluorene in Equimolar Binary Mixtures of Gemini/Conventional Surfactants

    Institute of Scientific and Technical Information of China (English)

    Huma Siddiqui; Mohammad Kamil; Manorama Panda; Kabir-ud-Din


    abstract This study deals with the enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) such as phenan-threne (PHE) and fluorene (FLR) in a pure cationic gemini (G6) and three conventional surfactants [polyethylene glycol dodecyl ether (Brij35), cetyltrimethyl ammonium bromide (CTAB) and sodium lauryl sulfate (SDS)] as well as in their equimolar binary combinations (G6-Brij35, G6-CTAB and G6-SDS). Their solubilization efficiency toward PHE and FLR has been quantified in terms of the molar solubilization ratio (MSR) and the micelle-water partition coefficient (Km). The ideality/nonideality of the mixed micelles is discussed with the help of Clint, Rubingh and Rosen's approaches. These theories determine the deviation of experimental critical micelle concen-tration (CMC) values from ideal critical micelle concentration, which was measured by evaluating the interaction parameters (βm andβσ). Negative values ofβm were observed in all the equimolar binary systems, which show synergism in the mixed micelles. Whereas at air/liquid interface synergism was observed in the systems G6-CTAB and G6-Brij35; G6-SDS exhibited an antagonistic effect. The order of MSR and Km was G6-CTAB N G6-Brij35 N G6-SDS for phenanthrene as well as for fluorene.

  6. Mesoporous Silica Materials Synthesized via Sol-Gel Methods Modified with Ionic Liquid and Surfactant Molecules

    Institute of Scientific and Technical Information of China (English)

    Cun-ying Xu; Ru-lan Tang; Yi-xin Hu; Peng-xiang Zhang


    Mesoporous silica materials were synthesized via a sol-gel method employing a room temperature ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4]) as a new solvent medium and further modified with surfactant (hexadecyl-trimethyl-ammonium bromide, CTAB) as a pore templating material. The synthesized samples were characterized by the transmission electron microscopy, X-ray diffraction, and N2 adsorption-desorption techniques. The results indicated that the mesoporous silica synthesized by using [bmim][BF4] and CTAB as mixed templates showed better mesostructural order and smaller pore size, compared with mesoporous silica materials synthesized by using single [bmim][BF4]as template under the same conditions. This indicates that the presence of surfactant can affect the microstructures of silica prepared by the present synthesis method.

  7. Improved mesostructure by incorporating surfactant on thin film to develop an advanced optical fiber pH sensor with a temperature cross sensitivity feature (United States)

    Dhara, Papiya; Singh, Vinod Kumar


    A new optical fiber pH sensor based on bromothymol blue (BTB) thin film with temperature cross-sensitivity has been proposed in this paper. The BTB thin film was prepared by depositing a thin layer of a solution containing tetraethyl orthosilicate (TEOS) and a BTB pH indicator in the presence of surfactants, namely cetyltrimethyl ammonium bromide (C19H42BrN, CTAB), by sol–gel technology on an unclad multimode fiber (MMF) surface. The number of layers and the deposition length of the thin film were varied, and the power transmission versus pH variation was studied. The concentration of the surfactant was increased to understand the effect of increasing porosity in the sol–gel matrix to achieve improved pH sensitivity. A straightforward way to utilize the temperature cross-sensitivity feature of the optical fiber pH-sensitive device has been introduced to develop a high sensitivity temperature sensor. A sensitivity of 79.96 nW pH‑1 was obtained by a 20-layer thin-film coated sensor in the pH range of 3–12.

  8. A New Nanocatalytic Spectrophotometric Assay for Cationic Surfactant Using Phosphomolybdic Acid-Formic Acid-Nanogold as Indicator Reaction%A New Nanocatalytic Spectrophotometric Assay for Cationic Surfactant Using Phosphomolybdic Acid-Formic Acid-Nanogold as Indicator Reaction

    Institute of Scientific and Technical Information of China (English)

    蒋治良; 覃惠敏; 梁爱惠


    In the pH 7.4 Na2HPO4-NaH2PO4 buffer solution, the cationic surfactant (CS) interacted with nanogold particles (NG) to form NG aggregations (NGA) that resulted in its color changing from wine red to blue-violet. NG has a strong catalysis on the formic acid-phosphomolybdic acid (PMo) colored reaction, but that of the NGA catalysis is weak. With the increase of CS concentration, the NGA increased and the NG decreased, the catalysis decreased and the absorption value at 700 nm decreased linearly. The concentrations of 6.25-250 nmol/L tetradecyl dimethyl benzyl ammonium chloride (TDBAC), 0.625-250 nmol/L cetyltrimethyl ammonium bromide (CTMAB) and 12.5 -500 nmol-L 1 dodecyldimethylbenzyl ammonium chloride (DDBAC) had good linear responses to the decreased absorption value (AA70o nm), with molar absorption coefficients of 2.2 × 106, 2.1 × 106 and 9 ×105 Lomol 1 respectively. This method was simple, highly sensitive and low-cost.

  9. Thermally cleavable surfactants (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.


    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  10. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)


    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  11. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)


    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  12. Study of conformation and dynamic of surfactant molecules in graphite oxide via NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ai, X.Q. [Jiangsu Second Normal University, College of Physics and Electronic Engineering, Nanjing (China); Ma, L.G. [Nanjing Xiaozhuang University, School of Electronic Engineering, Nanjing (China)


    The conformation and dynamic of surfactant in graphite oxide (GO) was investigated by solid-state {sup 13}C magic-angle-spinning NMR and {sup 1}H-{sup 13}C cross-polarization/magic-angle-spinning NMR spectra. The conformation ordering of the alkyl chains in the confined system shows strong dependence on its orientation. While the alkyl chains parallel to the GO layer in lateral monolayer arrangement are in gauche conformation in addition to a small amount of all-trans conformation, those with orientation radiating away from the GO in paraffin bilayer arrangement is in all-trans conformation in addition to some gauche conformation even though high-order diffraction peaks appears. NMR results suggest that the least mobile segment is located at the GO-surfactant interface corresponding to the N-methylene group. Further from it, the mobility of the alkyl chain increases. The terminal methyl and N-methyl carbon groups have the highest mobile. The chains in all-trans conformational state are characterized as more rigid than chains with gauche conformation; each segment of the confined alkyl chains with the lateral monolayer arrangement exhibits less mobility as compared to that with the paraffin bilayer arrangement. (orig.)

  13. Interaction of 4-aminosalieylic Acid and Surfactants in Aqueous Solutions Using UV-Vis Spectra and Steady-state Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    XU Dongying; REN Jiaoyan; LIAO Zhengfu; WANG Hui; ZHAO Mouming; LI Guangji


    The interactions of 4-aminosalicylic acid (4-ASA) and surfactants in aqueous solutions were investigated by using UV-Vis spectra and steady-state fluorescence spectroscopy.The results showed that the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of cationic surfactant and cetyltrimethyl ammonium bromide (CTAB) appeared at 206 nm and took.a red shift from 206 nm to 221 nm with the increase of 4-ASA concentrations from 0.8× 10-5 to 4.4× 10-4 mol/L.Similarly,the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of nonionic surfactant and polyvinylpyrrolidone (PVP)appeared at 206 nm and took a red shift from 206 nm to 219 nm with the increase of 4-ASA concentrations from 0.8× 10-5 to 4.4x 10-4 mol/L.However,the similar phenomena did not appeared in the presence of anion surfactant,sodium dodecyl sulfate (SDS),the UV-vis spectra of 4-ASA aqueous solution remained the same peak position and the peak value increased with the 4-ASA concentration increase.The results could be attributed to the electrostatic attraction between 4-ASA and CTAB or PVP,as well as the electrostatic repulsion between 4-ASA and SDS.Furthermore,the value of critical micelle concentration (CMC) of surfactants in the presence of 4-ASA was determined with Fluorescence method.The first and second CMC of CTAB was 1.2×10-4 M and 2.4x10-4 M,respectively.The first and second CMC of PVP was 1.2×10 4 M and 2.8x 10 4 M.SDS realized the multiple micellizations to form multiple CMC.

  14. Investigation of electrokinetic and electrorheological properties of polyindole prepared in the presence of a surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Unal, H. Ibrahim, E-mail: [Gazi University, Chemistry Department, Smart Materials Research Lab., Ankara (Turkey); Sahan, Bekir; Erol, Ozlem [Gazi University, Chemistry Department, Smart Materials Research Lab., Ankara (Turkey)


    Highlights: Black-Right-Pointing-Pointer Aggregated morphology was determined for PIN, spherical and porous hollows and everniae form morphologies were recorded for SPIN. Black-Right-Pointing-Pointer The PIN/SO and SPIN/SO systems showed almost similar electrokinetic attitudes and a typical shear thinning non-Newtonian viscoelastic behavior, vibration damping capability at elevated frequencies, and enhanced storage moduli with increasing temperature. Black-Right-Pointing-Pointer Non-linear recoverable viscoelastic manner was revealed from the creep-recovery experiments under external electric field. - Abstract: In this study, synthesis of polyindole (PIN) was carried out without and with the presence of a sodium dodecyl sulfate (SDS) surfactant (SPIN), using FeCl{sub 3} as an oxidizing agent. The synthesized materials were subjected to various characterizations techniques namely: particle size, magnetic susceptibility, elemental analysis, density, conductivity, dielectric constant, FTIR, {sup 1}H NMR, TGA, XRD, and SEM. Characterization results revealed the successful preparation of the homopolymers of PIN and SPIN. Zeta ({zeta})-potentials of the samples were measured in aqueous and non-aqueous (silicone oil, SO) media. Electrokinetic properties of PIN and SPIN in aqueous media were determined by {zeta}-potential measurements in the presence of various electrolytes (NaCl, BaCl{sub 2}, AlCl{sub 3}, Na{sub 2}SO{sub 4}) and surfactants (cetyltrimethyl ammonium bromide, SDS, and Triton X-100). Besides, the effect of pH onto {zeta}-potentials of the materials was also examined. The suspensions prepared in SO were subjected to external electric field strength and their electrorheological (ER) properties were investigated. Then the effects of shear rate, frequency, and temperature onto ER activities of the suspensions were examined. Further, creep and creep-recovery tests were applied to the PIN/SO and SPIN/SO suspension systems and reversible non-linear viscoelastic

  15. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials (United States)


    magnetic microspheres with multifunctional surfactant cetyltrimethyl ammonium bromide and directly coated mesoporous shell. Powder Technol...poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J Am Chem Soc 2003, 125 (14

  16. Action mechanism of small and large molecule surfactant-based clove oil nanoemulsions against food-borne pathogens and real-time detection of their subpopulations. (United States)

    Majeed, Hamid; Antoniou, John; Shoemaker, Charles F; Fang, Zhong


    Flow cytometry exactly discriminated three subpopulations, i.e., viable, damage and sublethal cells of L. monocytogenes, S. aureus and E. coli when treated at their MIC values. Purity gum ultra (PGU) a large molecule surfactant-based CO nanoemulsion exerted significant impact on cellular subpopulations of L. monocytogenes and S. aureus, with more membrane-damaged cells. On the other hand, when compared with bulk CO the results showed minimum membrane damage and more viable cells, whereas PGU CO nanoemulsion showed minimum effect on cellular subpopulation and represented more viable than damaged cells in case of E. coli. Similarly, Tween 80 a small molecule surfactant-based CO nanoemulsion showed limited overall activity against three tested microorganisms with more viable cells. We conclude that it was due to sequestration of CO constituents in interfaces, less availability in aqueous phase and finally inhibit bactericidal activity. Moreover, both CO and CO nanoemulsions showed membrane damage as primary inactivation mechanism of tested bacterial cells.

  17. Metathesis depolymerizable surfactants (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.


    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  18. Surfactant mediated hydrothermal synthesis, characterization and luminescent properties of GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} @ GdPO{sub 4} core shell nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Khajuria, Heena; Ladol, Jigmet; Khajuria, Sonika; Shah, Mohd Syed; Sheikh, H.N., E-mail:


    Highlights: • Core shell nanorods were synthesised by surfactant assisted hydrothermal method. • Morphology of core shell nanorods resembles those of core nanorods indicating coating of shell on cores. • More uniform and non-aggregated core shell nanorods were prepared in presence of surfactants. • Surfactant assisted prepared core shell nanorods show intense emission as compared to uncoated core nanorods. - Abstract: Core shell GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} @ GdPO{sub 4} nanorods were synthesized via hydrothermal route in the presence of different surfactants [cetyltrimethyl ammonium bromide (CTAB) and Sodium dodecyl sulphate (SDS)]. The nanorods were characterized by powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and photoluminescence (PL) studies. The X-ray diffraction results indicate good crystallinity and effective doping in core and core shell nanorods. SEM and TEM micrographs show that all of the as prepared gadolinium phosphate products have rod like shape. The compositional analysis of GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} core was done by EDS. The emission intensity of the GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} @ GdPO{sub 4} core shell increased significantly with respect to those of GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} core nanorods. The effect of surfactant on the uniformity, thickness and luminescence of the core shell nanorods was investigated.

  19. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry. (United States)

    Svitova, T F; Wetherbee, M J; Radke, C J


    Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with

  20. Study of the amplified spontaneous emission in a dye-doped biopolymer-based material

    Energy Technology Data Exchange (ETDEWEB)

    Mysliwiec, J; Sznitko, L; Miniewicz, A [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wyb.Wyspianskiego 27, 50-370 Wroclaw (Poland); Kajzar, F; Sahraoui, B, E-mail: jaroslaw.mysliwiec@pwr.wroc.p [Laboratoire POMA CNRS FRE 2988, Universite d' Angers, 2 Bd Lavoisier, 49 045 Angers (France)


    In this paper we investigate the amplified spontaneous emission (ASE) phenomenon in the system based on a dye dissolved in a modified deoxyribonucleic acid (DNA). The system consisted of a biopolymeric matrix made of DNA blended with cationic surfactant molecule cetyltrimethyl-ammonium chloride (CTMA) and doped with a well-known rhodamine (Rh 6G) laser dye. Thin films of the DNA-CTMA : Rh6G were excited at {lambda} = 532 nm wavelength with 8 ns laser pulses. We report on ASE intensity as a function of the laser power, dependence of polarization state of the excitation beam, ASE gain and temporal stability of the signal for the investigated system.

  1. Amino acid-bile acid based molecules: extremely narrow surfactant nanotubes formed by a phenylalanine-substituted cholic acid. (United States)

    Travaglini, Leana; D'Annibale, Andrea; Schillén, Karin; Olsson, Ulf; Sennato, Simona; Pavel, Nicolae V; Galantini, Luciano


    An amino acid-substituted bile acid forms tubular aggregates with inner and outer diameters of about 3 and 6 nm. The diameters are unusually small for surfactant self-assembled tubes. The results enhance the spectrum of applications of supramolecular tubules and open up possibilities for investigating a novel class of biological amphiphiles.

  2. Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, M., E-mail: [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Rout, K. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Singh, P. [Murdoch University, Perth, Western Australia (Australia); Anand, S. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Layek, S.; Verma, H.C. [Indian Institute of Technology, Kanpur (India); Mishra, B.K. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India)


    Mixed nano iron oxides powder containing goethite ({alpha}-FeOOH), hematite ({alpha}-Fe{sub 2}O{sub 3}) and ferrihydrite (Fe{sub 5}HO{sub 8}.4H{sub 2}O) was synthesized through surfactant mediation-precipitation route using cetyltrimethyl ammonium bromide (CTAB). The X-ray diffraction, FTIR, TEM, Moessbauer spectroscopy were employed to characterize the sample. These studies confirmed the nano powder contained 77% goethite, 9% hematite and 14% ferrihydrite. Fluoride adsorption onto the synthesized sample was investigated using batch adsorption method. The experimental parameters chosen for adsorption studies were: pH (3.0-10.0), temperature (35-55 deg. C), concentrations of adsorbent (0.5-3.0 g/L), adsorbate (10-100 mg/L) and some anions. Adsorption of fluoride onto mixed iron oxide was initially very fast followed by a slow adsorption phase. By varying the initial pH in the range of 3.0-10.0, maximum adsorption was observed at a pH of 5.75. Presence of either SO{sub 4}{sup 2-} or Cl{sup -} adversely affected the adsorption of fluoride in the order of SO{sub 4}{sup 2-} > Cl{sup -}. The FTIR studies of fluoride loaded adsorbent showed that partly the adsorption on the surface took place at surface hydroxyl sites. Moessbauer studies indicated that the overall absorption had gone down after fluoride adsorption that implies it has reduced the crystalline bond strength. The relative absorption area of ferrihydrite was marginally increased from 14 to 17%.

  3. Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique. (United States)

    Mohapatra, M; Rout, K; Singh, P; Anand, S; Layek, S; Verma, H C; Mishra, B K


    Mixed nano iron oxides powder containing goethite (α-FeOOH), hematite (α-Fe(2)O(3)) and ferrihydrite (Fe(5)HO(8)·4H(2)O) was synthesized through surfactant mediation-precipitation route using cetyltrimethyl ammonium bromide (CTAB). The X-ray diffraction, FTIR, TEM, Mössbauer spectroscopy were employed to characterize the sample. These studies confirmed the nano powder contained 77% goethite, 9% hematite and 14% ferrihydrite. Fluoride adsorption onto the synthesized sample was investigated using batch adsorption method. The experimental parameters chosen for adsorption studies were: pH (3.0-10.0), temperature (35-55°C), concentrations of adsorbent (0.5-3.0 g/L), adsorbate (10-100 mg/L) and some anions. Adsorption of fluoride onto mixed iron oxide was initially very fast followed by a slow adsorption phase. By varying the initial pH in the range of 3.0-10.0, maximum adsorption was observed at a pH of 5.75. Presence of either SO(4)(2-) or Cl(-) adversely affected the adsorption of fluoride in the order of SO(4)(2-)>Cl(-). The FTIR studies of fluoride loaded adsorbent showed that partly the adsorption on the surface took place at surface hydroxyl sites. Mössbauer studies indicated that the overall absorption had gone down after fluoride adsorption that implies it has reduced the crystalline bond strength. The relative absorption area of ferrihydrite was marginally increased from 14 to 17%. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik, E-mail:


    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  5. Temperature-dependent adsorption of surfactant molecules and associated crystallization kinetics of noncentrosymmetric Fe(IO{sub 3}){sub 3} nanorods in microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    El-Kass, Moustafa [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Ladj, Rachid [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Université Lyon1, CNRS, UMR 5007, LAGEP, CPE, 43 bd 11 Novembre 1918, F-69622 Villeurbanne (France); Mugnier, Yannick, E-mail: [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Le Dantec, Ronan [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Hadji, Rachid [Institut Jean Lamour, UMR CNRS n°7198, Université de Lorraine, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Marty, Jean-Christophe [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Rouxel, Didier [Institut Jean Lamour, UMR CNRS n°7198, Université de Lorraine, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Durand, Christiane [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Fontvieille, Dominique [UMR CARRTEL (INRA/Université de Savoie), Laboratoire de Microbiologie Aquatique, BP 511, 74203 Thonon Cedex (France); Rogalska, Ewa [Structure et Réactivité des Systèmes Moléculaires Complexes, UMR 7565, Nancy Université, BP 70239, 54506 Vandoeuvre-lès-Nancy cedex (France); and others


    Graphical abstract: - Highlights: • Crystallization of Fe(IO{sub 3}){sub 3} in microemulsions probed by hyper-Rayleigh scattering. • A faster growth and a better shape control of nanorods are obtained at 80 °C. • Different persistent cell deformations are related to the crystallization kinetics. • A temperature-dependent adsorption of surfactants on nanorods is suggested. - Abstract: Aggregation-induced crystallization of iron iodate nanorods within organic–inorganic aggregates of primary amorphous precursors is probed by time-dependent hyper-Rayleigh scattering measurements in Triton X-100 based-microemulsions. In the context of a growing interest of noncentrosymmetric oxide nanomaterials in multi-photon bioimaging, we demonstrate by a combination of X-ray diffraction and electron microscopy that an increase in the synthesis of temperature results in faster crystallization kinetics and in a better shape-control of the final Fe(IO{sub 3}){sub 3} nanorods. For initial microemulsions of fixed composition, room-temperature synthesis leads to bundles of 1–3 μm long nanorods, whereas shorter individual nanorods are obtained when the temperature is increased. Results are interpreted in terms of kinetically unfavorable mesoscale transformations due to the strong binding interactions with Triton molecules. The interplay between the nanorod crystallization kinetics and their corresponding unit cell deformation, evidenced by lattice parameter refinements, is attributed to a temperature-dependent adsorption of surfactants molecules at the organic–inorganic interface.

  6. Low-density solvent-based vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction combined with gas chromatography-mass spectrometry for the fast determination of phthalate esters in bottled water. (United States)

    Zhang, Yufeng; Lee, Hian Kee


    For the first time, a novel low-density solvent-based vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction (LDS-VSLLME) was developed for the fast, simple and efficient determination of six phthalate esters (PEs) in bottled water samples followed by gas chromatography-mass spectrometry (GC-MS). In the extraction procedure, the aqueous sample solution was injected into a mixture of extraction solvent (toluene) and surfactant (cetyltrimethyl ammonium bromide), which were placed in a glass tube with conical bottom, to form an emulsion by the assistance of vortex agitation. After extraction and phase separation by centrifugation, and removal of the spent sample, the toluene extract was collected and analyzed by GC-MS. The addition of surfactant enhanced the dispersion of extraction solvent in aqueous sample and was also favorable for the mass transfer of the analytes from the aqueous sample to the extraction solvent. Moreover, using a relatively less toxic surfactant as the emulsifier agent overcame the disadvantages of traditional organic dispersive solvents that are usually highly toxic and expensive and might conceivably decrease extraction efficiency to some extent since they are not as effective as surfactants themselves in generating an emulsion. With the aid of surfactant and vortex agitation to achieve good organic extraction solvent dispersion, extraction equilibrium was achieved within 1 min, indicating it was a fast sample preparation technique. Another prominent feature of the method was the simple procedure to collect a less dense than water solvent by a microsyringe. After extraction and phase separation, the aqueous sample was removed using a 5-mL syringe, thus leaving behind the extract, which was retrieved easily. This novel method simplifies the use of low-density solvents in DLLME. Under the optimized conditions, the proposed method provided good linearity in the range of 0.05-25 μg/L, low limits of detection (8-25 ng

  7. Spectroscopic investigation of the binding interactions of a membrane potential molecule in various supramolecular confined environments: contrasting behavior of surfactant molecules in relocation or release of the probe between nanocarriers and DNA surface. (United States)

    Ghosh, Surajit; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Kuchlyan, Jagannath; Sarkar, Nilmoni


    The fluorescence and optical properties of membrane potential probes are widely used to measure cellular transmembrane potentials. Hemicyanine dyes are also able to bind to membranes. The spectral properties of these molecules depend upon the charge shift from the donor moiety to the acceptor moiety. Changes in their spectral properties, i.e. absorption and emission maxima or intensities, are helpful in characterizing model membranes, microheterogeneous media, etc. In this article, we have demonstrated the binding interaction of a membrane potential probe, 1-ethyl-2-(4-(p-dimethylaminophenyl)-1,3-butadienyl)-pyridinium perchlorate (LDS 698), with various supramolecular confined environments. The larger dipole moment in the ground state compared to the excited state is a unique feature of hemicyanine dyes. Due to this unique feature, red shifts in the absorption maxima are observed in hydrophobic environments, compared with bulk solvent. On addition of surfactants and CT DNA to an aqueous solution containing LDS 698, significant increase in the emission intensity along with the quantum yield and lifetime indicate partition of the probe molecules into organized assemblies. In the case of the sodium dodecyl sulfate (SDS)-water system, due to interactions between the cationic LDS 698 and the anionic dodecyl sulfate moiety, the fluorescence intensity at ∼666 nm decreases and an additional peak at ∼590 nm appears at premicellar concentration (∼0.20 mM-4.50 mM). But at ∼5.50 mM SDS concentration, the absorbance in the higher wavelength region increases again, indicating encapsulation of the probe in micellar aggregates. This observation indicates that the premicellar aggregation behavior of SDS can also be judged by observing the changes in the UV-vis and fluorescence spectral patterns. The temperature dependent study also indicates that non-radiative deactivation of the dye molecules is highly restricted in the DNA micro-environment, compared with micelles

  8. Surfactants at the Design Limit. (United States)

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian


    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  9. Interaction of nonionic surfactant AEO9 with ionic surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo; YIN Hong


    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, αAEO9 =0.5. The surface properties of the surfactants, critical micelle concentration (CMC),effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Гmax) and minimum area per molecule at the air/solution interface (Amin) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.

  10. Investigation of various structures of DNA molecules (Ⅲ)——Coil-globe transition of λ-DNA induced by cationic surfactant

    Institute of Scientific and Technical Information of China (English)

    冯喜增; 林璋; 王琛; 白春礼


    The structure transition of λ-DNA induced by cationic surfactant cellar media was investigated by using CD, SEM and AFM. The experimental data of CD revealed that λ-DNA can be induced from B-form to a collapsed structure with the addition of the cationic surfactant CTAB to the system. The condensed process of λ-DNA from coil state to small globular state (diameter about 1.25 μm) and finally big globular state (diameter about 5.4 μm) was observed by using SEM and AFM.

  11. Switchable Surfactants

    National Research Council Canada - National Science Library

    Yingxin Liu; Philip G. Jessop; Michael Cunningham; Charles A. Eckert; Charles L. Liotta


    .... We report that long-chain alkyl amidine compounds can be reversibly transformed into charged surfactants by exposure to an atmosphere of carbon dioxide, thereby stabilizing water/alkane emulsions...

  12. Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. (United States)

    Laha, Shonali; Tansel, Berrin; Ussawarujikulchai, Achara


    Surfactants are amphiphilic molecules that reduce aqueous surface tension and increase the solubility of hydrophobic organic compounds (HOCs). Surfactant-amended remediation of HOC-contaminated soils and aquifers has received significant attention as an effective treatment strategy - similar in concept to using soaps and detergents as washing agents to remove grease from soiled fabrics. The proposed mechanisms involved in surfactant-amended remediation include: lowering of interfacial tension, surfactant solubilization of HOCs, and the phase transfer of HOC from soil-sorbed to pseudo-aqueous phase. However, as with any proposed chemical countermeasures, there is a concern regarding the fate of the added surfactant. This review summarizes the current state of knowledge regarding nonionic micelle-forming surfactant sorption onto soil, and serves as an introduction to research on that topic. Surfactant sorption onto soil appears to increase with increasing surfactant concentration until the onset of micellization. Sorbed-phase surfactant may account for the majority of added surfactant in surfactant-amended remediation applications, and this may result in increased HOC partitioning onto soil until HOC solubilization by micellar phase surfactant successfully competes with increased HOC sorption on surfactant-modified soil. This review provides discussion of equilibrium partitioning theory to account for the distribution of HOCs between soil, aqueous phase, sorbed surfactant, and micellar surfactant phases, as well as recently developed models for surfactant sorption onto soil. HOC partitioning is characterized by apparent soil-water distribution coefficients in the presence of surfactant.

  13. Effects of Interactions Among Surfactants,Water and Oil on Equilibrium Configuration of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Yin-quan; SUN Zhi-bo; XIE Yun; ZOU Xian-wu


    The distribution and configuration of surfactants at interface in surfactant-water-oil systems have been investigated using discontinuous molecular dynamic simulations. There exists a certain equilibrium concentration of surfactants at interface for the systems with certain interactions among surfactant, water and oil. The interface length and equilibrium morphology of the systems are dependent on the equilibrium concentration of surfactants at interface and the total amount of surfactants. The interaction strengths among surfactant, water and oil determine the equilibrium concentration of surfactants at interface. Three typical configurations of surfactants at interface have been observed: ① surfactant molecules are perpendicular to the interface and arranged closely; ② perpendicular to the interface and arranged at interval of two particles; ③ lie down in the interface partly.

  14. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)


    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  15. 阳离子表面活性剂CTAB与聚乙烯醇间相互作用的NMR分析%Interaction Between the Cationic Surfactant CTAB and Polyvinyl Alcohol Investigated by NMR

    Institute of Scientific and Technical Information of China (English)

    葛恒; 赵新; 孙万赋


    Using nuclear magnetic resonance 1H,spin-lattice relaxation time(t1),spin-spin relaxation time(t2),gCOSY and 2D NOESY techniques,interaction between the cationic surfactant cetyltrimethyl ammonium bromide(CTAB) and water-soluble polymer polyvinyl alcohol(PVA) was studied.These results suggest that:(1) the translational mobility of PVA suffocates with the presence of surfactant CTAB.The t1 of P1 proton of PVA reduces 0.8 s,and t2 decreases from 19.4 ms to 17.5 ms;(2) the translational mobility of CTAB,which concentration is 2mmol/L,decreases with the increase in PVA concentration.And when the concentration of CTAB is 4 mmol/L,the variation of t1 of the proton of CTAB is not significant.(3) PVA and CTAB formed complex substance can be observed using the contour plot of 2D NOESY.%用1H谱,自旋-晶格弛豫时间(t1)和自旋-自旋弛豫时间(t2),gCOSY谱及二维核Overhause增强谱(2D NOESY)技术,研究了阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)与水溶性聚合物聚乙烯醇(PVA)的相互作用。结果表明,当溶液中有CTAB存在时,PVA分子结构中的-CH质子的t1减小了0.8s,t2也从19.4ms降到17.5ms,即PVA分子链的运动受阻;随着PVA浓度的增加,当CTAB为2mmol/L时,CTAB分子的运动性下降,当CTAB为4mmol/L时,CTAB各质子的t1基本不变;从2D NOESY谱图中可以得出CTAB与PVA已经形成了复合物。

  16. Study of the interaction of flavonoids with 3-mercaptopropionic acid modified CdTe quantum dots mediated by cetyltrimethyl ammonium bromide in aqueous medium (United States)

    Aucelio, Ricardo Q.; Carvalho, Juliana M.; Real, Juliana T.; Maqueira-Espinosa, Luis; Pérez-Gramatges, Aurora; da Silva, Andrea R.


    Flavonoids are polyphenols that help the maintenance of health, aiding the prevention of diseases. In this work, CdTe QDs coated with 3-mercaptopropionic acid (3MPA), with an average size of 2.7 nm, were used as photoluminescence probe for flavonoids in different conditions. The interaction between 14 flavonoids and QDs was evaluated in aqueous dispersions in the absence and in the presence of cetyltrimethylammonium bromide (CTAB). To establish a relationship between photoluminescence quenching and the concentration of flavonoids, the Stern-Volmer model was used. In the absence of CTAB, the linear ranges for quercetin, morin and rutin were from 5.0 × 10- 6 mol L- 1 to 6.0 × 10- 5 mol L- 1 and from 1.0 × 10- 5 mol L- 1 to 6.0 × 10- 4 mol L- 1 for kaempferol. The sensibility of the Stern-Volmer curves (Ks) indicated that quercetin interacts more strongly with the probe: Ks quercetin > Ks kaempferol > Ks rutin > Ks morin. The conjugation extension in the 3 rings, and the acidic hydroxyl groups (positions 3ʹand 4ʹ) in the B-ring enhanced the interaction with 3MPA-CdTe QDs. The other flavonoids do not interact with the probe at 10- 5 mol L- 1 level. In CTAB organized dispersions, Ks 3-hydroxyflavone > Ks 7-hydroxyflavone > Ks flavona > Ks rutin in the range from 1.0 × 10- 6 mol L- 1 to 1.2 × 10- 5 mol L- 1 for flavones and of 1.0 × 10- 6 mol L- 1 to 1.0 × 10- 5 mol L- 1 for rutin. Dynamic light scattering, conductometric measurements and microenvironment polarity studies were employed to elucidate the QDs-flavonoids interaction in systems containing CTAB. The quenching can be attributed to the preferential solubility of hydrophobic flavonoid in the palisade layer of the CTAB aggregates adsorbed on the surface of the 3MPA CdTe QDs.

  17. Kinetic multi-layer model of the epithelial lining fluid (KM-ELF): Reactions of ozone and OH with antioxidants and surfactant molecules (United States)

    Lakey, Pascale; Pöschl, Ulrich; Shiraiwa, Manabu


    Oxidants cause damage to biosurfaces such as the lung epithelium unless they are effectively scavenged. The respiratory tract is covered in a thin layer of fluid which extends from the nasal cavity to the alveoli and contain species that scavenge ozone and other incoming oxidants. The kinetic multi-layer model of the epithelial lining fluid (KM-ELF) has been developed in order to investigate the reactions of ozone and OH with antioxidants (ascorbate, uric acid, glutathione and α-tocopherol) and surfactant lipids and proteins within the epithelial lining fluid (ELF). The model incorporates different processes: gas phase diffusion, adsorption and desorption from the surface, bulk phase diffusion and known reactions at the surface and in the bulk. The ELF is split into many layers: a sorption layer, a surfactant layer, a near surface bulk layer and several bulk layers. Initial results using KM-ELF indicate that at ELF thicknesses of 80 nm and 1 × 10-4cm the ELF would become rapidly saturated with ozone with saturation occurring in less than a second. However, at an ELF thickness of 1 × 10-3cm concentration gradients were observed throughout the ELF and the presence of antioxidants reduced the O3 reaching the lung cells and tissues by 40% after 1 hour of exposure. In contrast, the antioxidants were efficient scavengers of OH radicals, although the large rate constants of OH reacting with the antioxidants resulted in the antioxidants decaying away rapidly. The chemical half-lives of the antioxidants and surface species were also calculated using KM-ELF as a function of O3 and OH concentration and ELF thickness. Finally, the pH dependence of the products of reactions between antioxidants and O3 were investigated. The KM-ELF model predicted that a harmful ascorbate ozonide product would increase from 1.4 × 1011cm-3at pH 7.4 to 1.1 × 1014 cm-3 at pH 4after 1 hour although a uric acid ozonide product would decrease from 2.0 × 1015cm-3to 5.9 × 1012cm-3.

  18. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. (United States)

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D


    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  19. Flexible polyelectrolyte conformation in the presence of cationic and anionic surfactants (United States)

    Passos, C. B.; Kuhn, P. S.; Diehl, A.


    In this work we have studied the conformation of flexible polyelectrolyte chains in the presence of cationic and anionic surfactant molecules. We developed a simple theoretical model for the formation of the polyelectrolyte-cationic surfactant complexes and mixed micelles formed by cationic and anionic surfactant molecules, in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, with the hydrophobic interaction included explicitly as an effective short-ranged attraction between the surfactant hydrocarbon tails. This simple model allows us to calculate the extension of the polyelectrolyte-cationic surfactant complexes as a function of the anionic surfactant concentration, for different types of cationic and anionic surfactant molecules. A discrete conformational transition from a collapsed state to an elongated coil was found, for all surfactant chain lengths we have considered, in agreement with the experimental observations for the unfolding of ​DNA-cationic surfactant complexes.

  20. Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer. (United States)

    Sachan, Amit K; Galla, Hans-Joachim


    Interaction between hydrophobic nanoparticles (NPs) and a pulmonary surfactant (PS) film leads to a shift in molecular packing of surfactant molecules in the PS film around the interacting NPs. The resultant structural arrangement of surfactants around the NPs may be a potential structural factor responsible for their high retention ability within the film. Moreover, during this interaction, surfactant molecules coat the NPs and change their surface properties.

  1. Rheological properties of ovalbumin hydrogels as affected by surfactants addition. (United States)

    Hassan, Natalia; Messina, Paula V; Dodero, Veronica I; Ruso, Juan M


    The gel properties of ovalbumin mixtures with three different surfactants (sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate) have been studied by rheological techniques. The gel elasticities were determined as a function of surfactant concentration and surfactant type. The fractal dimension of the formed structures was evaluated from plots of storage modulus against surfactant concentration. The role of electrostatic, hydrophobic and disulfide SS interactions in these systems has been demonstrated to be the predominant. The viscosity of these structures tends to increase with surfactant concentration, except for the fluorinated one. Unfolded ovalbumin molecules tend to form fibrillar structures that tend to increase with surfactant concentration, except for the fluorinated one. This fact has been related to the particular nature of this molecule.

  2. Interfacial mechanisms for stability of surfactant-laden films

    CERN Document Server

    Bhamla, M Saad; Alvarez-Valenzuela, Marco A; Tajuelo, Javier; Fuller, Gerald G


    Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecularly-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stab...

  3. Two-dimensional photonic crystal surfactant detection. (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A


    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  4. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl (United States)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen


    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  5. The binding and insertion of imidazolium-based ionic surfactants into lipid bilayers: the effects of the surfactant size and salt concentration. (United States)

    Lee, Hwankyu; Jeon, Tae-Joon


    Imidazolium-based ionic surfactants with hydrocarbon tails of different sizes were simulated with lipid bilayers at different salt concentrations. Starting with the random position of ionic surfactants outside the bilayer, surfactants with long tails mostly insert into the bilayer, while those with short tails show the insertion of fewer surfactant molecules, indicating the effect of the tail length. In particular, surfactants with a tail of two or four hydrocarbons insert and reversibly detach from the bilayer, while the inserted longer surfactants cannot be reversibly detached because of the strong hydrophobic interaction with lipid tails, in quantitative agreement with experiments. Longer surfactants insert more deeply and irreversibly into the bilayer and thus increase lateral diffusivities of the bilayer, indicating that longer surfactants more significantly disorder lipid bilayers, which also agrees with experiments regarding the effect of the tail length of ionic surfactants on membrane permeability and toxicity. Addition of NaCl ions weakens the electrostatic interactions between headgroups of surfactants and lipids, leading to the binding of fewer surfactants into the bilayer. In particular, our simulation findings indicate that insertion of ionic surfactants can be initiated by either the hydrophobic interaction between tails of surfactants and lipids or the electrostatic binding between imidazolium heads and lipid heads, and the strength of hydrophobic and electrostatic interactions depends on the tail length of surfactants.

  6. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Madsen, Jens; Kejling, Karin


    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd...

  7. 氯金酸共振光散射探针测定阳离子表面活性剂%Determination of Cationic Surfactants with Chloroauric Acid for Resonance Light Scattering

    Institute of Scientific and Technical Information of China (English)

    王雪; 吴立航; 陈艳华; 梁芳慧; 邓新煜; 刘贺; 张寒琦; 田媛


    The chloroauric acid anion was applied as resonance light scattering (RLS) probe for the determination of three kinds of cationic surfactants, cetyltrimethyl ammonium bromide (CTMAB), cetyl trimethyl ammonium chloride (CTMAC), cetylpyridinium bromide (CPB) separately in HC1-NaAc (Ph = 2. 0) buffer solution. The reaction between chloroauric acid anion and cationic surfactants was because of their electrostatic attraction, which can form a stable ion-association complex, thus the RLS intensity of system increased. The characteristic peak was located at 400 nm. Another two peaks were also observed at 227 nm and 590 nm. The optimization conditions of the reaction were examined at 400 nm. Under the selected conditions, the enhanced RLS intensity showed a good linear relation-ship with the cationic surfactants concentrations in the range of 8. 00×10-7-1. 50×10-5 mol/L for CTMAB, 1. 00 × 10-7 - 1. 50 × 10-5 mol/L for CTMAC and 2. 50 × 10-7 - 1. 00 × 10-5 mol/L for CPB, respectively, the detection limits for CTMAB, CTMAC and CPB were 4. 01 × 10-8, 4. 06 × 10-8 and 4. 72×10-8 mol/L, respectively. The effect of some coexistent substances was aexamined. Some real samples were analyzed by the RLS method. The results of this method were consistent with those of spectrophotometric method.%在HCl-NaAc缓冲溶液(pH 2.0)中,十六烷基三甲基溴化铵(CTMAB),十六烷基三甲基氯化铵(CTMAC)和溴化十六烷基吡啶(CPB)3种阳离子表面活性剂,与氯金酸(HAuCl4)的酸根离子由于静电引力能形成稳定的离子缔合物,引起共振光散射信号的增强.在400 nm左右,CTMAB,CTMAC和CPB分别在8.00× 10-7~1.50× 10-5 mol/L,1.00× 10 7~1.50× 10-5 mol/L和2.50×10-7~1.00× 10-5 mol/L浓度范围内与共振光散射强度(AI)呈良好的线性关系.实验研究了影响共振光散射测定阳离子表面活性剂的各种因素,表明本方法具有较好的选择性,是一种快速、环保的检测污水中表面活性剂的方法.

  8. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma


    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also


    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White


    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  10. Dendrimer-surfactant interactions. (United States)

    Cheng, Yiyun; Zhao, Libo; Li, Tianfu


    In this article, we reviewed the interactions between dendrimers and surfactants with particular focus on the interaction mechanisms and physicochemical properties of the yielding dendrimer-surfactant aggregates. In order to provide insight into the behavior of dendrimers in biological systems, the interactions of dendrimers with bio-surfactants such as phospholipids in bulk solutions, in solid-supported bilayers and at the interface of phases or solid-states were discussed. Applications of the dendrimer-surfactant aggregates as templates to guide the synthesis of nanoparticles and in drug or gene delivery were also mentioned.

  11. Surfactant Sector Needs Urgent Readjustment

    Institute of Scientific and Technical Information of China (English)

    Huang Hongzhou


    @@ Surfactant industrial system has been basically established After 50 years' development, China has already established a surfactant industrial system with a relatively complete product portfolio and can produce 4714 varieties of surfactants in cationic,anionic, nonionic and amphoteric categories.

  12. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)


    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.


    Institute of Scientific and Technical Information of China (English)


    In this study, X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) together with Scanning probe microscopy (SPM) were used to characterize the structure and morphology of the complexes, where the hydrobiotites (Xinjiang) were modified by single-chain surfactants octyltrimethylammonium bromide (OTMA) and octadecyltrimethylammonium bromide (ODTMA). XRD patterns showed that the structure of complexes was significantly influenced by the surfactant concentration and the alkyl chain length, because obvious changes took place in the basal spacing. Furthermore, according to the XRD results, several arrangements of surfactant molecules within the hydrobiotite interlayer space were deduced. The FTIR spectrum indicated that the surfactant contents in complexes dramatically increased with the alkyl chain length. The SPM micrographs demonstrated that the surfaces of complexes prepared at lower surfactant concentration were relatively flat compared with that prepared at higher concentration, while those with higher surfactant concentration had much steeper surface due to the alkyl chain length. It was concluded that structure and morphology of surfactant/hydrobiotite complexes depend not only on the surfactant concentration, but also strongly on the surfactant species.


    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  15. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.


    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo. Re

  16. Surfactants and the Mechanics of Respiration (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.


    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  17. Micellization properties of cardanol as a renewable co-surfactant. (United States)

    Fontana, Antonella; Guernelli, Susanna; Zaccheroni, Nelsi; Zappacosta, Romina; Genovese, Damiano; De Crescentini, Lucia; Riela, Serena


    With the aim to improve the features of surfactant solutions in terms of sustainability and renewability we propose the use of hydrogenated natural and sustainable plant-derived cardanol as an additive to commercial surfactants. In the present study we demonstrated that its addition, in amounts as high as 10%, to commercial surfactants of different charge does not significantly affect surfactant properties. Conversely, the presence of hydrogenated cardanol can strongly affect spectrophotometric determination of CMC if preferential interactions with the dyes used take place. This latter evidence may be profitably exploited in surfactant manufacturing by considering that the concurrent presence of a rigid organic molecule such as Orange OT and 10% hydrogenated cardanol decreases the CMC of CTAB up to 65 times.

  18. Phase diagrams of DNA-photosensitive surfactant complexes: effect of ionic strength and surfactant structure. (United States)

    Zakrevskyy, Yuriy; Titov, Evgenii; Lomadze, Nino; Santer, Svetlana


    Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Löhmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity.

  19. Surfactants in the environment. (United States)

    Ivanković, Tomislav; Hrenović, Jasna


    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  20. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus


    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of th

  1. Circulating surfactant protein D is decreased in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Hoegh, Silje Vermedal; Voss, Anne; Sorensen, Grith Lykke


    Objective. Deficiencies of innate immune molecules like mannan binding lectin (MBL) have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Surfactant protein D (SP-D) and MBL belong to the same family of innate immune molecules - the collectins, which share important...

  2. Surface-enhanced Raman spectroscopy of surfactants on silver electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Soncheng; Birke, R.L.; Lombardi, J.R. (City Univ. of New York, NY (USA))


    Surface-enhanced Raman spectroscopy (SERS) has been used to study different kinds of surfactants (cationic, anionic, and nonionic surfactants) adsorbed on a roughened Ag electrode. Spectral assignments are made for the SERS spectrum of cetylpyridinium chloride (CPC), and it is shown that the molecule is oriented with its pyridinium ring end-on at the electrode surface at potentials positive to the point of zero charge (pzc) on Ag.

  3. Phosphine oxide surfactants revisited. (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G


    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  4. Gemini ester quat surfactants and their biological activity. (United States)

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław


    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  5. Calix-arene silver nanoparticles interactions with surfactants are charge, size and critical micellar concentration dependent. (United States)

    Tauran, Yannick; Brioude, Arnaud; Shahgaldian, Patrick; Cumbo, Alessandro; Kim, Beomjoon; Perret, Florent; Coleman, Anthony W; Montasser, Imed


    The interactions of silver nanoparticles capped by various calix[n]arenes bearing sulphonate groups at the para and/or phenolic faces with cationic, neutral and anionic surfactants have been studied. Changes in the plasmonic absorption show that only the calix[4]arene derivatives sulphonated at the para-position interact and then only with cationic surfactants. The interactions follow the CMC values of the surfactants either as simple molecules or mixed micelles.

  6. Inorganic Salts Effect on Adsorption Behavior of Surfactant AEC at Liquid/Liquid Interface

    Directory of Open Access Journals (Sweden)

    Changhua Yang


    Full Text Available Behaviors of nonionic-anionic surfactant sodium fatty Alcohol polyoxyethylene Ether Carboxylate (AEC at dodecane/water interface influenced by inorganic salts NaCl, CaCl2 and MgCl2 were investigated by interfacial tension methods and molecular dynamics simulation. Contrasted distributions of various salts at interface and in aqueous solutions and resulting lowering the interfacial tension have been observed. Composition of surfactants-salts complex at interface surrounding different cations within 2.5 Å were found to be in two categories: (i the octahedral complexation of divalent cation was generated by the participation of surfactant head group and water molecule, (ii only water molecules were involved in the complexation. According to the simulation results, all the Na+ involved in type ii, without any direct interaction with surfactant head group, while Ca2+ and Mg2+ involved in type I, following the formula: Ca2++4 (surfactant +2(H2 O⇄ [Ca (surfactant4 [(H2 O]2]2+ M2+g+(surfactant+5 (H2 O⇄[Mg (surfactant [(H2 O]5 ]2+ This strongly chelate interaction between Ca2+ and surfactants makes surfactants more stretched at interface, thus more effective in oil/water interface.

  7. Titration procedure for low ethoxylated nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, N. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany); Huelskoetter, F. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany)


    Highly lipophilic surfactants are frequently used as emulsifiers for preparing oil-in-water emulsions (e.g. coolants lubricants). Typical surfactants used for this purpose are low ethoxylated alcohols and ethoxylated alkylphenols. Due to the low degree of ethoxylation they cannot be analysed by conventional methods. The method described in this article is based on the introduction of an anionic group into the molecule by a derivatization reaction. The reaction product can be determined by conventional titration methods for anionic surfactants without any modification. The use of the new method for other nonionic surfactants like sorbitan esters, (ethoxylated) fatty acid amides or glycerol fatty acid partial esters is also described as well as the sample preparation for coolants lubricants. (orig.) [Deutsch] Lipophile Tenside werden haeufig zur Herstellung von Oel-in-Wasser-Emulsionen verwandt, wie sie beispielsweise in Kuehlschmiermitteln eingesetzt werden. Typische Vertreter dieser Tenside sind niedrig ethoxylierte Fettalkohole und Alkylphenole. Wegen ihres geringen Ethoxylierungsgrades koennen sie mit den konventionellen Methoden nicht analytisch bestimmt werden. Die hier beschriebene Analysenmethode beruht auf der Derivatisierung der Ethoxylate zu entsprechenden anionischen Tensiden (Ethersulfate). Diese koennen ohne weiteres mit den etablierten Titrationsverfahren bestimmt werden. Die Anwendung dieses neuen Verfahrens auf die Bestimmung anderer nichtionischer Tenside - Sorbitanester, (ethoxylierte) Fettsaeureamide und Partialglyceride - wird ebenso beschrieben wie die Probenvorbereitung fuer die Analyse von Kuehlschmiermitteln. (orig.)

  8. Mitoxantrone-Surfactant Interactions: A Physicochemical Overview

    Directory of Open Access Journals (Sweden)

    Mirela Enache


    Full Text Available Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest. Further, quantitative understanding of the interactions of drugs with biomimicking structures like surfactant micelles may provide helpful information for the control of physicochemical properties and bioactivities of encapsulated drugs in order to design better delivery systems with possible biomedical applications. The present review describes the physicochemical aspects of the interactions between the anticancer drug mitoxantrone and different surfactants. Mitoxantrone-micelle binding constants, partitions coefficient of the drug between aqueous and micellar phases and the corresponding Gibbs free energy for the above processes, and the probable location of drug molecules in the micelles are discussed.

  9. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review. (United States)

    Malik, Nisar Ahmad


    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  10. Effect of the head-group geometry of amino acid-based cationic surfactants on interaction with plasmid DNA. (United States)

    Jadhav, Vaibhav; Maiti, Souvik; Dasgupta, Antara; Das, Prasanta Kumar; Dias, Rita S; Miguel, Maria G; Lindman, Björn


    The interaction between DNA and different types of amino acid-based cationic surfactants was investigated. Particular attention was directed to determine the extent of influence of surfactant head-group geometry toward tuning the interaction behavior of these surfactants with DNA. An overview is obtained by gel retardation assay, isothermal titration calorimetry, fluorescence spectroscopy, and circular dichroism at different mole ratios of surfactant/DNA; also, cell viability was assessed. The studies show that the surfactants with more complex/bulkier hydrophobic head group interact more strongly with DNA but exclude ethidium bromide less efficiently; thus, the accessibility of DNA to small molecules is preserved to a certain extent. The presence of more hydrophobic groups surrounding the positive amino charge also gave rise to a significantly lower cytotoxicity. The surfactant self-assembly pattern is quite different without and with DNA, illustrating the roles of electrostatic and steric effects in determining the effective shape of a surfactant molecule.

  11. The effect of surfactant on pollutant biosorption of Trametes versicolor (United States)

    Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve


    The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.

  12. Surfactants in microbiology and biotechnology: Part 2. Application aspects. (United States)

    Singh, Ajay; Van Hamme, Jonathan D; Ward, Owen P


    Surfactants are amphiphilic compounds which can reduce surface and interfacial tensions by accumulating at the interface of immiscible fluids and increase the solubility, mobility, bioavailability and subsequent biodegradation of hydrophobic or insoluble organic compounds. Chemically synthesized surfactants are commonly used in the petroleum, food and pharmaceutical industries as emulsifiers and wetting agents. Biosurfactants produced by some microorganisms are becoming important biotechnology products for industrial and medical applications due to their specific modes of action, low toxicity, relative ease of preparation and widespread applicability. They can be used as emulsifiers, de-emulsifiers, wetting and foaming agents, functional food ingredients and as detergents in petroleum, petrochemicals, environmental management, agrochemicals, foods and beverages, cosmetics and pharmaceuticals, and in the mining and metallurgical industries. Addition of a surfactant of chemical or biological origin accelerates or sometimes inhibits the bioremediation of pollutants. Surfactants also play an important role in enhanced oil recovery by increasing the apparent solubility of petroleum components and effectively reducing the interfacial tensions of oil and water in situ. However, the effects of surfactants on bioremediation cannot be predicted in the absence of empirical evidence because surfactants sometimes stimulate bioremediation and sometimes inhibit it. For medical applications, biosurfactants are useful as antimicrobial agents and immunomodulatory molecules. Beneficial applications of chemical surfactants and biosurfactants in various industries are discussed in this review.

  13. A simplified treatment of surfactant effects on cloud drop activation

    Directory of Open Access Journals (Sweden)

    T. Raatikainen


    Full Text Available Dissolved surface active species, or surfactants, have a tendency to partition to solution surface and thereby decrease solution surface tension. Activating cloud droplets have large surface-to-volume ratios, and the amount of surfactant molecules in them is limited. Therefore, unlike with macroscopic solutions, partitioning to the surface can effectively deplete the droplet interior of surfactant molecules.

    Surfactant partitioning equilibrium for activating cloud droplets can be solved numerically from a group of equations. This can be a problem when surfactant effects are examined by using large-scale cloud models. Namely, computing time increases significantly due to the partitioning calculations done in the lowest levels of nested iterations.

    The purpose of this paper is to present analytical equations for surfactant partitioning equilibrium. Some simplifications are needed in deriving the equations, but the numerical errors caused by the simplifications are shown to be very minor. In addition, computing time is decreased roughly by an order of magnitude.

  14. Surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardana, U.R.; Christian, S.D.; Tucker, E.E.; Taylor, R.W.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))


    A new method has been developed for determining binding constants of complexes of cyclodextrins with surface-active compounds, including water-soluble ionic surfactants. The technique requires measuring the change in surface tension caused by addition of a cyclodextrin (CD) to aqueous solutions of the surfactant; the experimental results lead directly to inferred values of the thermodynamic activity of the surfactant. Surface tension results are reported for three different surfactants sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and cetyltrimethylammonium bromide (CTAB) in the presence and in the absence of added [beta]-CD. Data for CPC have been obtained at surfactant concentrations below and above the critical micelle concentration. Correlations between surface tension and surfactant activity are expressed by the Szyszkowski equation, which subsumes the Langmuir adsorption model and the Gibbs equation. It is observed that the surface tension increases monotonically as [beta]-cyclodextrin is added to ionic surfactant solutions. At concentrations of CD well in excess of the surfactant concentration, the surface tension approaches that of pure water, indicating that neither the surfactant-CD complexes nor CD itself are surface active. Binding constants are inferred from a model that incorporates the parameters of the Szyszkowski equation and mass action constants relating to the formation of micelles from monomers of the surfactant and the counterion. Evidence is given that two molecules of CD can complex the C-16 hydrocarbon chain of the cetyl surfactants. 30 refs., 5 figs., 1 tab.

  15. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation (United States)

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong


    Summary In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product. PMID:23425092

  16. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation. (United States)

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong


    In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product.

  17. SANS study of surfactant ordering in kappa-carrageenan/cetylpyridinium chloride complexes

    DEFF Research Database (Denmark)

    Evmenenko, G.; Theunissen, E.; Mortensen, K.


    Small-angle neutron scattering using contrast variation by H2O/D2O has been applied for the structural investigation of kappa -carrageenan/cetylpyridinium chloride (CPC) complexes. interaction of kappa -carrageenan with an ionic surfactant involves self-assembly of the surfactant molecules...

  18. Polymers and surfactants in solution and at interfaces : a model study on detergency

    NARCIS (Netherlands)

    Torn, L.H.


    This thesis deals with detergency-related adsorption phenomena of (mixtures of) polymers and surfactants. Both types of molecules play an important role in the removal and subsequent stabilization of soil from a substrate. Starting with a model detergency system consisting of polymers, surfactants,

  19. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    Directory of Open Access Journals (Sweden)

    Maciej Kozak


    Full Text Available Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3-decyloxymethyl pentane chloride (gemini surfactant on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR and circular dichroism (CD spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase.

  20. Adsorption of anionic and non-ionic surfactants on carbon nanotubes in water with dissipative particle dynamics simulation. (United States)

    Vo, Minh D; Shiau, Benjamin; Harwell, Jeffrey H; Papavassiliou, Dimitrios V


    The morphology of surfactants physically adsorbed on the surface of carbon nanotubes (CNTs) has a significant impact on the dispersion of CNTs in the solution. The adsorption of the surfactants alfoterra 123-8s (AF) and tergitol 15-s-40 (TG) on CNTs was investigated with dissipative particle dynamics (DPD) simulations, as well as the behavior of the binary surfactant system with CNTs. Properties of surfactants (i.e., critical micelle concentration, aggregation number, shape and size of micelle, and diffusivity) in water were determined to validate the simulation model. Results indicated that the assembly of surfactants (AF and TG) on CNTs depends on the interaction of the surfactant tail and the CNT surface, where surfactants formed mainly hemimicellar structures. For surfactants in solution, most micelles had spherical shape. The particles formed by the CNT and the adsorbed surfactant became hydrophilic, due to the outward orientation of the head groups of the surfactants that formed monolayer adsorption. In the binary surfactant system, the presence of TG on the CNT surface provided a considerable hydrophilic steric effect, due to the EO groups of TG molecules. It was also seen that the adsorption of AF was more favorable than TG on the CNT surface. Diffusion coefficients for the surfactants in the bulk and surface diffusion on the CNT were calculated. These results are applicable, in a qualitative sense, to the more general case of adsorption of surfactants on the hydrophobic surface of cylindrically shaped nanoscale objects.

  1. Adsorption of anionic and non-ionic surfactants on carbon nanotubes in water with dissipative particle dynamics simulation (United States)

    Vo, Minh D.; Shiau, Benjamin; Harwell, Jeffrey H.; Papavassiliou, Dimitrios V.


    The morphology of surfactants physically adsorbed on the surface of carbon nanotubes (CNTs) has a significant impact on the dispersion of CNTs in the solution. The adsorption of the surfactants alfoterra 123-8s (AF) and tergitol 15-s-40 (TG) on CNTs was investigated with dissipative particle dynamics (DPD) simulations, as well as the behavior of the binary surfactant system with CNTs. Properties of surfactants (i.e., critical micelle concentration, aggregation number, shape and size of micelle, and diffusivity) in water were determined to validate the simulation model. Results indicated that the assembly of surfactants (AF and TG) on CNTs depends on the interaction of the surfactant tail and the CNT surface, where surfactants formed mainly hemimicellar structures. For surfactants in solution, most micelles had spherical shape. The particles formed by the CNT and the adsorbed surfactant became hydrophilic, due to the outward orientation of the head groups of the surfactants that formed monolayer adsorption. In the binary surfactant system, the presence of TG on the CNT surface provided a considerable hydrophilic steric effect, due to the EO groups of TG molecules. It was also seen that the adsorption of AF was more favorable than TG on the CNT surface. Diffusion coefficients for the surfactants in the bulk and surface diffusion on the CNT were calculated. These results are applicable, in a qualitative sense, to the more general case of adsorption of surfactants on the hydrophobic surface of cylindrically shaped nanoscale objects.

  2. Perfluorinated Alcohols Induce Complex Coacervation in Mixed Surfactants. (United States)

    Jenkins, Samuel I; Collins, Christopher M; Khaledi, Morteza G


    Recently, we reported a unique and nearly ubiquitous phenomenon of inducing simple and complex coacervation in solutions of a broad variety of individual and mixed amphiphiles and over a wide range of concentrations and mole fractions. This paper describes a novel type of biphasic separation in aqueous solutions of mixed cationic-anionic (catanionic) surfactants induced by hexafluoroisopropanol (HFIP). The test cases included mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) (surfactants with different carbon chain lengths) as well as dodecyltrimethylammonium bromide (DTAB) with SDS (surfactants with the same carbon chain lengths). The CTAB-SDS-HFIP coacervate systems can be produced at many different mole ratios of surfactant, but DTAB-SDS-HFIP formed only coacervates at equimolar (1:1) mole ratios of DTAB and SDS. The phase-transition behavior of both systems was studied over a wide range of surfactant and HFIP concentrations at the stoichiometric (1:1) mole ratio of cationic/anionic surfactants. The chemical compositions of each of the two phases (aqueous-rich and coacervate phases) were studied with regard to the concentrations of HFIP, water, and individual surfactants. It is revealed that the surfactant-rich phase (coacervate phase) contains a large percentage of fluoroalcohol relative to the aqueous phase and is enriched in both surfactants but contains a small percentage of water. Surprisingly, the concentration of water in the coacervate phase increases as the total HFIP concentration is increased while the concentration of HFIP in the coacervate phase remains relatively constant, which means a larger amount of water associated with HFIP molecules is extracted into the coacervate phase, which results in the growth of the phase. The volume of the coacervate phase increases with an increase in surfactant concentration and total HFIP %. The coacervate phase is highly enriched in the two amphiphilic ions (DTA(+) and DS

  3. Sizing up surfactant synthesis. (United States)

    Han, SeungHye; Mallampalli, Rama K


    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  4. Quantitative Structure-Property Relationship on Prediction of Surface Tension of Nonionic Surfactants

    Institute of Scientific and Technical Information of China (English)


    A quantitative structure-property relationship (QSPR) study has been made for the prediction of the surface tension of nonionic surfactants in aqueous solution.The regressed model includes a topological descriptor,the Kier & Hall index of zero order (KH0) of the hydrophobic segment of surfactant and a quantum chemical one,the heat of formation () of surfactant molecules.The established general QSPR between the surface tension and the descriptors produces a correlation coefficient of multiple determination,=0.9877,for 30 studied nonionic surfactants.

  5. Mixing Effect of Polyoxyethylene-Type Nonionic Surfactants on the Liquid Crystalline Structures. (United States)

    Kunieda; Umizu; Yamaguchi


    An effective cross-sectional area per surfactant molecule at hydrophobic interfaces of aggregates, a(S), in hexagonal (H(1)) and lamellar (L(alpha)) liquid crystals was calculated in homogeneous and mixed polyoxyethylene dodecyl ether systems as a function of polyoxyethylene (EO) chain length by means of small-angle X-ray scattering. The a(S) increases with increasing the EO chain length. The a(S) in the mixed surfactant system is considerably smaller than that in the single surfactant system, even if the average EO chain length is the same. The reduction of a(S) is larger than that predicted by ideal mixing of the surfactants. Moreover, if the EO chain lengths of the surfactants are more separated, the a(S) is smaller. The shapes of surfactant self-organizing structures may be governed by the balance of the attractive and the repulsive forces acting at the hydrophobic interfaces of the aggregates. According to this consideration, the mixing effect of surfactants with the different EO chain lengths on the a(S) in the L(alpha) phase was discussed. It is considered that the surfactant molecules are tightly packed in the aggregates since the reduction in repulsion force takes place in the excess EO chain part of the hydrophilic surfactant longer than the short EO chain of the lipophilic one. The lower surface tensions and the better stability of macroemulsions and the large solubilizing capacity of microemulsions result from the mixing effect. Copyright 1999 Academic Press.

  6. Determination of some solubilization parameters with surfactants of egg-yolk lecithin multilamellar vesicles by static light-scattering measurements

    CERN Document Server

    Hobai, S; Hobai, St.; Fazakas, Zita


    Effective surfactant:phospholipid ratios (i.e. molar ratios in the mixed aggregates, vesicles or micelles) have been determined by static light-scattering for the interaction of egg-yolk lecithin (EYL) multilamellar vesicles (MLV) with Triton X-100 (TX-100), sodium deoxycholate (DOCNa) and cetyltrimethylammonium bromide (CTMB). The suspension of MLV-EYL was mixed with appropriate volumes of surfactant solution and was left overnight to reaches thermodynamic equilibrium. Rectan-gular optic diffusion data were used to compute the solubilization parameters: total surfactant concentrations, at saturation and solubilization Dtsat and Dtsol respectively, and effective molar ratios, Resat and Resol respectively. From the Resat value ob-tained graphically for interaction of vesicles with TX-100 resulted that in vesicle bilayers a surfactant molecule is surrounded with seven phospholipid molecules and the Resol value suggests that in mixed micelles ten lipid molecules with about fifteen surfactant molecules coexist. T...

  7. Dynamic surface tension of surfactant TA: experiments and theory. (United States)

    Otis, D R; Ingenito, E P; Kamm, R D; Johnson, M


    A bubble surfactometer was used to measure the surface tension of an aqueous suspension of surfactant TA as a function of bubble area over a range of cycling rates and surfactant bulk concentrations. Results of the surface tension-interfacial area loops exhibited a rich variety of phenomena, the character of which varied systematically with frequency and bulk concentration. A model was developed to interpret and explain these data and for use in describing the dynamics of surface layers under more general circumstances. Surfactant was modeled as a single component with surface tension taken to depend on only the interfacial surfactant concentration. Two distinct mechanisms were considered for the exchange of surfactant between the bulk phase and interface. The first is described by a simple kinetic relationship for adsorption and desorption that pertains only when the interfacial concentration is below its maximum equilibrium value. The second mechanism is "squeeze-out" by which surfactant molecules are expelled from an interface compressed past a maximum packing state. The model provided good agreement with experimental measurements for cycling rates from 1 to 100 cycles/min and for bulk concentrations between 0.0073 and 7.3 mg/ml.


    Directory of Open Access Journals (Sweden)

    Pirog T. Р.


    Full Text Available The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates are summarized. It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.


    Directory of Open Access Journals (Sweden)

    T. P. Pirog


    Full Text Available The classification and the chemical structure of the lipopeptides and their producers (bacteria of the genera Bacillus and Pseudomonas are given. The role of the lipopeptides in cells motility, biofilm formation, metal binding and xenobiotics degradation and their action on the cells of pro- and eukaryotes is summarized. The stages of the nonribosomal lipopeptides synthesis and the role of two-component (GacA/GacS, ComA/ComP and the quorum system regulation of this process are shown. The potential of lactic acid bacteria and marine microorganisms as alternative surfactants producers (glycolipids, lipopeptides, phospholipids and fatty acids, glycolipopeptides are discussed. Their productivity and advantages over traditional producers are given as well. The properties of surfactants synthesized by lactic acid bacteria (the reduction of the surface tension, the critical micelle concentration, the stability in a wide range of pH, the temperature, the biological activity are summarized. Surfactants of nonpathogenic probiotic bacteria could be used as effective antimicrobial agents and antiadhesive and marine producers which able to synthesize unique metabolites that are not produced by other microorganisms.

  10. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications (United States)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.


    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  11. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions. (United States)

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng


    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Therapeutic surfactant-stripped frozen micelles (United States)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.


    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  13. Study of the interactions between lysozyme and a fully-fluorinated surfactant in aqueous solution at different surfactant-protein ratios. (United States)

    Ruso, Juan M; González-Pérez, Alfredo; Prieto, Gerardo; Sarmiento, Félix


    The interactions of a fluorinated surfactant, sodium perfluorooctanoate, with lysozyme, have been investigated by a combination of UV absorbance, electrical conductivity and dynamic light scattering to detect and to characterize the conformational transitions of lysozyme. By using difference spectroscopy, the transition was followed as a function of surfactant concentration, and the data were analyzed to obtain the Gibbs energy of the transition in water (DeltaGw(o)) and in a hydrophobic environment (DeltaGh(o)) for saturated protein-surfactant complexes. Electrical conductivity was used to determine the critical micelle concentration of the surfactant in the presence of different lysozyme concentration. From these results, the average number of surfactant monomer per protein molecule was calculated. Finally, dynamic light scattering show that only changes in the secondary structure of the protein can be observed.


    Directory of Open Access Journals (Sweden)

    Elena Irina Moater


    Full Text Available The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ion-selective electrode method and surface tension. High affinity isotherms which are typical of an anionic surfactant - protein bonding, exhibit an initial increase steep followed by a slow growth region and then a vertical growth above a certain concentration. This isotherm is typical of ionic surfactant to protein binding. Often the high affinity initial bond appears at very low concentrations of surfactant and therefore in some protein-surfactant systems, the exact shape of the isotherm in this region may be missing. The surfactant - protein binding is influenced by a number of variables such as the nature and chain length of surfactant, pH, ionic strength, temperature, nature of this protein and additives.

  15. A Computational Study of the Rheology and Structure of Surfactant Covered Droplets (United States)

    Maia, Joao; Boromand, Arman

    Using different types of surface-active agents are ubiquitous in different industrial applications ranging from cosmetic and food industries to polymeric nano-composite and blends. This allows to produce stable multiphasic systems like foams and emulsions whose stability and shelf-life are directly determined by the efficiency and the type of the surfactant molecules. Moreover, presence and self-assembly of these species on an interface will display complex dynamics and structural evolution under different processing conditions. Analogous to bulk rheology of complex systems, surfactant covered interfaces will response to an external mechanical forces or deformation differently depends on the molecular configuration and topology of the system constituents. Although the effect of molecular configuration of the surface-active molecules on the planar interfaces has been studied both experimentally and computationally, it remains challenging from both experimental and computational aspects to track efficiency and effectiveness of different surfactant molecules with different molecular geometries on curved interfaces. Using Dissipative Particle Dynamics, we have studies effectiveness and efficiency of different surfactant molecules on a curved interface in equilibrium and far from equilibrium. Interfacial tension is calculated for linear and branched surfactant with different hydrophobic and hydrophilic tail and head groups with different branching densities. Deformation parameter and Taylor plots are obtained for individual surfactant molecules under shear flow.


    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  17. Surfactant monitoring by foam generation (United States)

    Mullen, Ken I.


    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  18. Surfactant adsorption kinetics in microfluidics (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe


    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  19. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Bao-feng, E-mail:; Wang, Ye-fei; Huang, Yong


    Graphical abstract: Zeta potential of oil-wet quartz powder treated with different surfactants at different concentrations. - Highlights: • Mechanisms of wettability alteration during surfactant flooding were studied. • Different analytical instruments were used to study sandstone wettability alteration. • Surfactants’ structure plays a great role in wettability alteration of solid surface. • CTAB irreversibly desorbs carboxylic acid from solid surface by ionic interaction. • Cationic surfactant is more effective in wettability alteration of sandstone surface. - Abstract: Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.

  20. New multifunctional surfactants from natural phenolic acids. (United States)

    Centini, Marisanna; Rossato, Maria Sole; Sega, Alessandro; Buonocore, Anna; Stefanoni, Sara; Anselmi, Cecilia


    Several new multifunctional molecules derived from natural sources such as amino acids and hydroxycinnamic acids were synthesized. They exhibit various activities such as emulsifying, UV-protecting, and radical scavenging, thereby conforming to the latest requirements for cosmetic ingredients. The synthesis comprises only a few steps: (i) the amino acid, the acid groups of which are protected by esterification, is coupled with ferulic or caffeic acid; (ii) the p-hydroxyl group of the cinnamic derivative reacts with dodecyl bromide in the presence of potassium carbonate (the resulting compounds are highly lipophilic and tested as water/oil (W/O) emulsifiers); (iii) these molecules, by deprotonating the acid groups of the amino acids, with successive salification, are more hydrophilic, with stronger O/W emulsifying properties. The new multifunctional surfactants might prove useful for the treatment of multiple skin conditions, including loss of cellular antioxidants, damage from free radicals, damage from UV, and others.

  1. Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants

    Energy Technology Data Exchange (ETDEWEB)

    L Tamam; D Pontoni Z Sapir; S Yefet; S Sloutskin; B Ocko; H Reichert; M Deutsch


    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

  2. Innovation in surfactant therapy II: surfactant administration by aerosolization. (United States)

    Pillow, J Jane; Minocchieri, S


    Instilled bolus surfactant is the only approved surfactant treatment for neonatal respiratory distress syndrome. However, recent trends towards increased utilization of noninvasive respiratory support for preterm infants with surfactant deficiency have created a demand for a similarly noninvasive means of administering exogenous surfactant. Past approaches to surfactant nebulization met with varying success due to inefficient aerosol devices resulting in low intrapulmonary delivery doses of surfactant with variable clinical effectiveness. The recent development of vibrating membrane nebulizers, coupled with appropriate positioning of the interface device, indicates that efficient delivery of aerosolized surfactant is now a realistic goal in infants. Evidence of clinical effect despite low total administered dose in pilot studies, together with suggestions of enhanced homogeneity of pulmonary distribution indicate that this therapy may be applied in a cost-effective manner, with minimal patient handling and disruption. These studies need to be subjected to appropriately designed randomized controlled trials. Further work is also required to determine the optimum delivery route (mask, intranasal prong, nasopharyngeal or laryngeal), dosing amount and redosing interval.

  3. Surfactant induced complex formation and their effects on the interfacial properties of seawater. (United States)

    Guzmán, Eduardo; Santini, Eva; Benedetti, Alessandro; Ravera, Francesca; Ferrari, Michele; Liggieri, Libero


    The effect of a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), on the interfacial properties of seawater has been studied by dynamic and equilibrium surface tension and by dilational rheology essays. Important modifications of the surface tension and dilational rheology response have been observed already at the very low CTAB concentrations, where the effects due to the high ionic strength are negligible. The comparison with the effects of CTAB in different seawater models, or in natural seawater fractions, points out the establishment of strong interactions between the surfactant molecules and the lipophilic fraction of organic material dispersed/dissolved in seawater, affecting the interfacial activity of the molecules. Considering the biochemical richness of seawater, these results can be explained assuming interaction mechanisms and adsorption schemes similar to those speculated for protein and other macromolecules in the presence of surfactants, which in fact show similar features. Thus already at the low concentrations the surfactant molecules form highly surface-active complexes with part of the organic fraction of seawater. At the larger surfactant concentrations these complexes compete for adsorption with an excess of free CTAB molecules which, according to the thermodynamic conditions, are most favoured to occupy the liquid interface. The results of this study underline the important role of the sea organic content in enhancing the surface-activity of surfactants, which is relevant for a deeper understand of the direct and indirect effects of these types of pollutants on the physico-chemical environment in the sea coastal areas and develop mitigation strategies.

  4. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs. (United States)

    Salehi, Mehdi; Johnson, Stephen J; Liang, Jenn-Tai


    In naturally fractured reservoirs, oil recovery from waterflooding relies on the spontaneous imbibition of water to expel oil from the matrix into the fracture system. The spontaneous imbibition process is most efficient in strongly water-wet rock where the capillary driving force is strong. In oil- or mixed-wet fractured carbonate reservoirs, however, the capillary driving force for the spontaneous imbibition process is weak, and therefore the waterflooding oil recoveries are low. The recovery efficiency can be improved by dissolving low concentrations of surfactants in the injected water to alter the wettability of the reservoir rock to a more water-wet state. This wettability alteration accelerates the spontaneous imbibition of water into matrix blocks, thereby increasing the oil recovery during waterflooding. Several mechanisms have been proposed to explain the wettability alteration by surfactants, but none have been verified experimentally. Understanding of the mechanisms behind wettability alteration could help to improve the performance of the process and aid in identification of alternative surfactants for use in field applications. Results from this study revealed that ion-pair formation and adsorption of surfactant molecules through interactions with the adsorbed crude oil components on the rock surface are the two main mechanisms responsible for the wettability alteration. Previous researchers observed that, for a given rock type, the effectiveness of wettability alteration is highly dependent upon the ionic nature of the surfactant involved. Our experimental results demonstrated that ion-pair formation between the charged head groups of surfactant molecules and the adsorbed crude oil components on rock surface was more effective in changing the rock wettability toward a more water-wet state than the adsorption of surfactant molecules as a monolayer on the rock surface through hydrophobic interaction with the adsorbed crude oil components. By comparing

  5. Interaction of nonionic surfactant AEO9 with ionic surfactants*



    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, α AEO9=0.5. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γ CMC), maximum surface excess concentration (Γ max) and minimum area per...

  6. Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants. (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes


    This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.

  7. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.


    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.


    Directory of Open Access Journals (Sweden)

    T. P. Pirog


    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  9. Electrokinetic investigation of surfactant adsorption. (United States)

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K


    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  10. The formation of host-guest complexes between surfactants and cyclodextrins. (United States)

    Valente, Artur J M; Söderman, Olle


    Cyclodextrins are able to act as host molecules in supramolecular chemistry with applications ranging from pharmaceutics to detergency. Among guest molecules surfactants play an important role with both fundamental and practical applications. The formation of cyclodextrin/surfactant host-guest compounds leads to an increase in the critical micelle concentration and in the solubility of surfactants. The possibility of changing the balance between several intermolecular forces, and thus allowing the study of, e.g., dehydration and steric hindrance effects upon association, makes surfactants ideal guest molecules for fundamental studies. Therefore, these systems allow for obtaining a deep insight into the host-guest association mechanism. In this paper, we review the influence on the thermodynamic properties of CD-surfactant association by highlighting the effect of different surfactant architectures (single tail, double-tailed, gemini and bolaform), with special emphasis on cationic surfactants. This is complemented with an assessment of the most common analytical techniques used to follow the association process. The applied methods for computation of the association stoichiometry and stability constants are also reviewed and discussed; this is an important point since there are significant discrepancies and scattered data for similar systems in the literature. In general, the surfactant-cyclodextrin association is treated without reference to the kinetics of the process. However, there are several examples where the kinetics of the process can be investigated, in particular those where volumes of the CD cavity and surfactant (either the tail or in special cases the head group) are similar in magnitude. This will also be critically reviewed.

  11. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen


    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  12. Effect of concentration on surfactant micelle shapes--A molecular dynamics study

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; GE Wei; LI Jinghai


    Many aspects of the behavior of surfactants have not been well understood due to the coupling of many different mechanisms. Computer simulation is, therefore, attractive in the sense that it can explore the effect of different mechanisms separately. In this paper, the shapes, structures and sizes of sodium dodecylbenzenesulfonate (SDBS) micelles under different concentrations in an oil/water mixture were studied via molecular dynamics (MD) simulations using a simplified atomistic model which basically maintains the hydrophile and lipophile properties of the surfactant molecules. Above the critical micellar concentration (cmc), surfactant molecules aggregate spontaneously to form a wide variety of assemblies, from spherical to rodlike, wormlike and bilayer micelles. Changes in their ratios of the principle moments of inertia (g1/g3, g2/g3) indicated the transition of micelle shapes at different concentrations. The aggregation number of micelle is found to have a power-law dependence on surfactant concentration.

  13. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity. (United States)

    Ghosh, Subhajit; Dey, Joykrishna


    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature.

  14. Binding of 12-s-12 dimeric surfactants to calf thymus DNA: Evaluation of the spacer length influence. (United States)

    Sarrión, Beatriz; Bernal, Eva; Martín, Victoria Isabel; López-López, Manuel; López-Cornejo, Pilar; García-Calderón, Margarita; Moyá, María Luisa


    Several cationic dimeric surfactants have shown high affinity towards DNA. Bis-quaternary ammonium salts (m-s-m) have been the most common type of dimeric surfactants investigated and it is generally admitted that those that posses a short spacer (s≤3) show better efficiency to bind or compact DNA. However, experimental results in this work show that 12-s-12 surfactants with long spacers make the surfactant/ctDNA complexation more favorable than those with short spacers. A larger contribution of the hydrophobic interactions, which control the binding Gibbs energy, as well as a higher average charge of the surfactant molecules bound to the nucleic acid, which favors the electrostatic attractions, could explain the experimental observations. Dimeric surfactants with intermediate spacer length seem to be the less efficient for DNA binding.

  15. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities. (United States)

    Colomer, A; Pinazo, A; Manresa, M A; Vinardell, M P; Mitjans, M; Infante, M R; Pérez, L


    Three different sets of cationic surfactants from lysine have been synthesized. The first group consists of three monocatenary surfactants with one lysine as the cationic polar head with one cationic charge. The second consists of three monocatenary surfactants with two amino acids as cationic polar head with two positive charges. Finally, four gemini surfactants were synthesized in which the spacer chain and the number and type of cationic charges have been regulated. The micellization process, antimicrobial activity, and hemolytic activity were evaluated. The critical micelle concentration was dependent only on the hydrophobic character of the molecules. Nevertheless, the antimicrobial and hemolytic activities were related to the structure of the compounds as well as the type of cationic charges. The most active surfactants against the bacteria were those with a cationic charge on the trimethylated amino group, whereas all of these surfactants showed low hemolytic character.

  16. Study for optical manipulation of a surfactant-covered droplet using lattice Boltzmann method. (United States)

    Choi, Se Bin; Kondaraju, Sasidhar; Sang Lee, Joon


    In this study, we simulated deformation and surfactant distribution on the interface of a surfactant-covered droplet using optical tweezers as an external source. Two optical forces attracted a single droplet from the center to both sides. This resulted in an elliptical shape deformation. The droplet deformation was characterized as the change of the magnitudes of surface tension and optical force. In this process, a non-linear relationship among deformation, surface tension, and optical forces was observed. The change in the local surfactant concentration resulting from the application of optical forces was also analyzed and compared with the concentration of surfactants subjected to an extensional flow. Under the optical force influence, the surfactant molecules were concentrated at the droplet equator, which is totally opposite to the surfactants behavior under extensional flow, where the molecules were concentrated at the poles. Lastly, the quasi-equilibrium surfactant distribution was obtained by combining the effects of the optical forces with the extensional flow. All simulations were executed by the lattice Boltzmann method which is a powerful tool for solving micro-scale problems.

  17. [Determination of contact angle of pharmaceutical excipients and regulating effect of surfactants on their wettability]. (United States)

    Hua, Dong-dong; Li, He-ran; Yang, Bai-xue; Song, Li-na; Liu, Tiao-tiao; Cong, Yu-tang; Li, San-ming


    To study the effects of surfactants on wettability of excipients, the contact angles of six types of surfactants on the surface of two common excipients and mixture of three surfactants with excipients were measured using hypsometry method. The results demonstrated that contact angle of water on the surface of excipients was associated with hydrophilcity of excipients. Contact angle was lowered with increase in hydrophilic groups of excipient molecules. The sequence of contact angle from small to large was starch contact angle of excipients, and their abilities to lower contact angle varied. The results of the present study offer a guideline in the formulation design of tablets.

  18. Small angle neutron scattering studies on the interaction of cationic surfactants with bovine serum albumin

    Indian Academy of Sciences (India)

    Nuzhat Gull; S Chodankar; V K Aswal; Kabir-Ud-Din


    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant molecules aggregate along the unfolded polypeptide chain of the protein resulting in the formation of a fractal structure representing a necklace model of micelle-like clusters randomly distributed along the polypeptide chain. The fractal dimension as well as the size and number of micelles attached to the complex have been determined.

  19. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level. (United States)

    Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping


    Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants.

  20. Study of Structural Properties in Complex Fluids by Addition of Surfactants Using DPD Simulation

    CERN Document Server

    Mayoral, Estela; Martínez-Magadán, José Manuel; Ortega, Alejandro; Soto, Ismael


    In this work we study the tertiary structure of ionic surfactants when the pH in the system is modified using electrostatic dissipative particle dynamics simulations (DPD). The dependence with pH and kind of surfactant is presented. Our simulations reproduce the experimental behavior reported in the literature. The scaling for the radius of gyration with the size of the molecule as a function of pH is also obtained.

  1. Molecular dynamics simulation of adsorption of an oil-water-surfactant mixture on calcite surface

    Institute of Scientific and Technical Information of China (English)

    Lu Guiwu; Zhang Xuefen; Shao Changjin; Yang Hong


    An interface super molecular structure model for oil-water-surfactant mixture and calcite was established. By using a molecular dynamics method, the effects of rhamnolipid, sodium dodecyl benzene sulfonate and sodium hexadecyl sulfonate on the interface adsorption behavior of oil molecules were investigated. It was found that these three surfactants could reduce oil-calcite interface binding energy, and play a role of oil-displacing agent.

  2. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery. (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama


    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  3. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI


    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant metabol

  4. Electrochemical Oscillations Induced by Surfactants

    Institute of Scientific and Technical Information of China (English)

    翟俊红; 贺占博


    A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO4 aqueous and an aluminum rod in Al(NO3)3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg2SO4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.

  5. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.


    In this article, we discuss the structure and composition of mixed DNA-cationic surfactant adsorption layers on both hydrophobic and hydrophilic solid surfaces. We have focused on the effects of the bulk concentrations, the surfactant chain length, and the type solid surface on the interfacial...... layer structure (the location, coverage, and conformation the e DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA...... with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant DNA ratio determined by the surface coverage of the underlying...

  6. A study of corrosion inhibition of steel AISI-SAE 1020 in CO2-brine using surfactant Tween 80 (United States)

    Cedeño, M. L.; L, E. Vera; Pineda T, Y.


    Surfactant inhibitors also called active surface agents are molecules composed of a polar hydrophilic group and a non-polar hydrophobic group, with characteristics of adsorption on metal surfaces, high efficiency of inhibiting, low price, low toxicity and easy production. In this work, the corrosion inhibition was study by CO2 steel AISI-SAE 1020 with the addition of 0.01M Tween 80 surfactant to a brine solution (3% NaCl). Electrochemical Impedance Spectroscopy and potentiodynamic polarization testing investigated the phenomenon. The results revealed that the surfactant studied acts as an excellent corrosion inhibitor and inhibition efficiency (E%) increases with increasing fluid velocity. The morphology of the steel surface after exposure to the solution of 3% NaCl with and without surfactant indicates the inhibition phenomenon is due to the adsorption of the surfactant molecules, which insulate the surface of the corrosive medium and reduces the attack surficial.

  7. Development of PNA-Surfactant Systems for Nucleic Acid Separations (United States)

    Vernille, James; Armitage, Bruce; Schneider, James


    We have been exploring the use of novel peptide nucleic acid (PNA) surfactants for use in sequence specific, scalable DNA separations. While the synthetic and physical characteristics of PNA make it a useful molecule for bioseparations, PNA shows limited water solubility. Here we describe a molecular design strategy to improve water solubility while maintaining sequence specificity. A candidate molecule has been identified which contains lysine residues and a short alkane tail. Melting temperature data show that lipid tail interactions with the DNA nucleobases have a small but significant effect on stability while the added lysines stabilize the complex in an ionic strength dependent way. We also discuss the incorporation of these surfactants into micellar systems for novel separations.

  8. Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems. A methodological approach.

    Directory of Open Access Journals (Sweden)

    María Del Carmen Galán-Jiménez

    Full Text Available A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ, mesotrione (MS and flurtamone (FL, whose solubilities were examined in the presence of four commercial surfactants; (i neutral: two berols (B048, B266 and an alkylpolyglucoside (AG6202; (ii cationic: an ethoxylated amine (ET/15. Significant percent of active ingredient (a.i. in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for

  9. Persurf, a New Method to Improve Surfactant Delivery: A Study in Surfactant Depleted Rats



    PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary di...

  10. Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials. (United States)

    Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian


    The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C10E3) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C10E3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state (1)H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with(1)H-(13)C correlation experiments and different types of (13)C NMR experiments selectively probes mobile or rigid moieties of C10E3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution (1)H{(27)Al} CP-(1)H-(1)H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. (23)Na and (1)H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C10E3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.

  11. Coadsorption of low-molecular weight aromatic and aliphatic alcohols and acids with the cationic surfactant, CTAB, on silica surfaces. (United States)

    Wangchareansak, Thipvaree; Keniry, Max A; Liu, Guangming; Craig, Vincent S J


    We have investigated the coadsorption of a range of small molecules with the cationic surfactant CTAB to silica surfaces over a range of concentrations and CTAB to solute ratios and compared the coadsorption with adsorption in the presence of the salicylate ion. We find that molecules with aromatic character and molecules with double bonds are most favorably adsorbed, and we attribute this to cation-π bonding between the surfactant headgroups and the π orbitals of the unsaturated bonds of the solute molecules. The adsorption is complex and depends on chemical interactions between the solute molecules and the surfactant, which are highly specific to the structure of the solute. To improve our understanding of the specifics of these interactions, we have performed one-dimensional rotating frame Overhauser spectroscopy (ROESY) nuclear magnetic resonance experiments. These experiments show the complexity of the intermolecular interactions and can be used to determine the position of the solute molecule with regard to the CTAB molecules in the adsorbed aggregates. The ROESY spectrum for the salicylate anion is distinct from those of the other solute molecules and suggests that the anions are dimerizing. Along with the cation-π bonding between the dimers, this provides a model for the strong influence that salicylate has on adsorption, micellar structure, and viscoelasticity. The ROESY data indicate that the catechol molecule interacts with all parts of the surfactant alkane chains such that they wrap around the molecule, but this has little effect on the interfacial curvature or aggregate shape. More intense isophthalic acid-CTAB intermolecular ROEs compared to those of other aromatic solutes are consistent with an interaction between isophthalic acid and the headgroups of two surfactant molecules that slows the intramicellar motion of isophthalic acid. Differences in interactions between solute molecules and the aliphatic surfactant chains do not result in changes

  12. Biomimicry of surfactant protein C. (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E


    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  13. Surfactant protein A and surfactant protein D variation in pulmonary disease

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Husby, Steffen; Holmskov, Uffe


    Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding...... molecules present on immune cells leading to enhanced microbial clearance and modulation of inflammation. SP-A and SP-D also modulate the functions of cells of the adaptive immune system including dendritic cells and T cells. Studies on SP-A and SP-D polymorphisms and protein levels in bronchoalveolar...... preferentially to sugars on a broad spectrum of pathogen surfaces and thereby facilitating immune functions including viral neutralization, clearance of bacteria, fungi and apoptotic and necrotic cells, modulation of allergic reactions, and resolution of inflammation. SP-A and SP-D can interact with receptor...

  14. Surfactant for pediatric acute lung injury. (United States)

    Willson, Douglas F; Chess, Patricia R; Notter, Robert H


    This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.

  15. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin


    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd......-/-) mice. Atherogenesis involves both inflammation and lipid deposition, and we investigated the role of SP-D in the development of atherosclerosis. SP-D synthesis was localized to vascular endothelial cells. Atherosclerotic lesion areas were 5.6-fold smaller in the aortic roots in Spd-/- mice compared...... with wild-type C57BL/6N mice on an atherogenic diet. HDL cholesterol (HDL-C) was significantly elevated in Spd-/- mice. Treatment of Spd-/- mice with a recombinant fragment of human SP-D resulted in decreases of HDL-C (21%) as well as total cholesterol (26%), and LDL cholesterol (28%). Plasma TNF...

  16. Unsteady motion of receding contact lines of surfactant solutions: the role of surfactant re-self-assembly. (United States)

    Varanasi, K S; Garoff, S


    Re-self-assembly of surfactant molecules must occur at moving contact lines of soluble surfactant solutions. Molecules are transported into and out of the contact line region from four sources: the three interfaces meeting at the contact line and the fluid confined between the solid-liquid and liquid-vapor interfaces. As molecules move among these sources at the contact line, they must rearrange. The dynamics of this re-self-assembly has been shown to have a dominating effect on the structure of advancing contact lines, causing unsteady motion and complex structure of the contact line. It might be assumed that the re-self-assembly for receding contact lines leads to more steady contact line movement. However, in this article we show that for a wide variety of systems this is not true. Quasi-static distortions of the contact line occur as it retreats because of the inability of the surfactant to completely re-self-assemble at localized positions along the contact line.

  17. Determination of the critical micelle concentration in simulations of surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)


    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)

  18. High Efficient Loading of Hydrophobic Molecules in Layer-by-Layer Assembled Microgel Films with the Assistance of Surfactant Micelles%表面活性剂胶束实现疏水分子在聚合物微凝胶层层组装膜中的高效负载

    Institute of Scientific and Technical Information of China (English)

    陈栋栋; 王林; 孙俊奇


    photochromic property upon ultraviolet and visible light irradiation.The present work opens a cost-effective and general way to incorporate non-charged hydrophobic molecules into LbL assembled microgel films by using surfactant micelles as carriers.%基于层层组装技术制备了聚烯丙基胺-葡聚糖微凝胶(记作PAH-D)/透明质酸钠(HA)膜,将包覆有芘分子的十二烷基硫酸钠(SDS)表面活性剂胶束基于静电作用力负载到PAH-D/HA微凝胶膜中,实现了疏水分子芘在微凝胶膜中的高效负载.紫外-可见吸收光谱和荧光光谱证实了SDS胶束包覆的芘分子被稳定地负载在PAH-D微凝胶膜中.透过光谱表明负载有芘分子的(PAH-D/HA)*10微凝胶膜在可见光区仍保持良好光学透过性.芘在膜中的负载量可以通过改变PAH-D/HA微凝胶膜的沉积周期数和SDS胶束中包覆芘分子的浓度而实现调控.具有光致变色性质的螺吡喃分子同样可以借助SDS胶束负载到PAH-D/HA微凝胶膜中,制备具有光致变色性质的层层组装膜.本工作为疏水有机分子在层层组装聚合物膜中的高效负载提供了一种简便、易行的方法.

  19. A study of polymer-surfactant interactions by neutron reflectivity

    CERN Document Server

    Warren, N


    surfactants and their relative levels of interaction with the polymer. The surface behaviour of these systems was observed to be in many ways more remarkable than that of the bulk solution. In the high total surfactant concentration range, once all polymer molecules were associated with bound micelles, the extent of adsorption at the air-liquid interface was found to be dominated largely, as might be expected, by the solution monomer concentrations of the two surfactants. Prior to this, however, adsorption was dominated by the presence of a very surface active polymer-SDS complex which gave rise to enhanced SDS adsorption and low surface tensions compared with those found in polymer-free systems. The origin of this effect, being the stabilisation of the adsorbed SDS monolayer due to a reduction in the inter-headgroup repulsions through screening, by the charged polymer segments, suggests that this may be a characteristic feature of systems continuing a polyelectrolyte and an oppositely charged surfactant. In ...

  20. Evaluation and application of surfactants synthesized from asphalt components

    Directory of Open Access Journals (Sweden)

    E.R. Souaya


    Full Text Available The synthesis, characterization, surface activity and applications of nonionic surfactants derived from the asphalt components (maltenes M are presented. These compounds were synthesized by the sulfonation of (maltene, then the prepared maltene sulfonic acid (MS was reacted with hexadecylamine giving maltene sulfonamide product (A which undergoes an alkali-catalyzed ethoxylation at (135–150 °C. Several surfactants (M-10 to M-40 were formed with different ethylene oxide units (from 10 up to 40 and were characterized by molecular weight determinations, elemental analyses and FTIR analysis. Surface tension, as a function of concentration of the surfactants in the aqueous media, was measured at 25 °C. From these measurements, the critical micelle concentration (CMC, the maximum surface excess concentration (Гmax, Minimum area per molecule (Amin, effectiveness of surface reduction (ПCMC and the efficiency (pC20 were calculated. The prepared surfactants were applied as emulsifying agents for making asphalt emulsions. Storage stability, (Saybolt Furol viscosity, settlement (water content difference %, coating ability and water resistance were measured. The results indicated that M-20 (maltene sulfonamide ethoxylated with 20 units of ethylene oxides gives a maximum stability.

  1. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties. (United States)

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata


    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups.

  2. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes. (United States)

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar


    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  3. Surfactant recovery from water using foam fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Tharapiwattananon, N.; Osuwan, S. [Chulalongkorn Univ., Bangkok (Thailand); Scamehorn, J.F. [Inst. of Oklahoma, Norman, OK (United States)] [and others


    The purpose of this study was to investigate the use of foam fractionation to recover surfactant from water. A simple continuous mode foam fractionation was used and three surfactants were studied (two anionic and one cationic). The effects of air flow rate, foam height, liquid height, liquid feed surfactant concentration, and sparger porosity were studied. This technique was shown to be effective in either surfactant recovery or the reduction of surfactant concentration in water to acceptable levels. As an example of the effectiveness of this technique, the cetylpyridinium chloride concentration in water can be reduced by 90% in one stage with a liquid residence time of 375 minutes. The surfactant concentration in the collapsed foam is 21.5 times the feed concentration. This cationic surfactant was easier to remove from water by foam fractionation than the anionic surfactants studied.

  4. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.


    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  5. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies. (United States)

    Guo, Qing; Zhang, Zhaohong; Song, Youtao; Liu, Shuo; Gao, Wei; Qiao, Heng; Guo, Lili; Wang, Jun


    In this study, the interaction between DNA and several cationic surfactants with different head groups such as ethyl hexadecyl dimethyl ammonium bromide (EHDAB), hexadecyl dimethyl benzyl ammonium chloride (HDBAC), and cetyl pyridinium bromide (CPB) were investigated by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, gel electrophoresis, and viscosity technologies. The results show that these cationic surfactants can interact with DNA and major binding modes are electrostatic and hydrophobic. Also, CPB and HDBAC molecules interact with DNA by partial intercalation, and CPB has slightly stronger intercalation than HDBAC, while EHDAB interacts with DNA by non-intercalation. The different head groups of the surfactant molecules can influence the interaction strength. CPB has the stronger interaction with DNA than the others. Moreover, surfactant concentration, the ratio of DNA and fluorescence probe, ionic strength can influence the interaction. The surfactants may interact with DNA by the competition reactions with BR for DNA-BR. The increase of ionic strength may favor the surface binding between DNA and surfactants to some extent. This work provides deep mechanistic insight on the toxicity of cationic surfactants with different head groups to DNA molecules.

  6. Structure of the SDS/1-dodecanol surfactant mixture on a graphite surface: a computer simulation study. (United States)

    Domínguez, Hector


    Molecular dynamics simulations of mixtures of sodium dodecyl sulfate (SDS) and 1-dodecanol molecules on a graphite surface were carried out at low and high concentration to investigate the formation of aggregates on the solid plate. The simulations showed that at low concentration the surfactants were well adsorbed on the surface by forming layers structures or a hemicylinder aggregate for a slightly higher surfactant concentration whereas at the highest concentration the surfactants formed monolayer-like structures localized away from the graphite surface with a water bin between the monolayer and the graphite plate. Therefore, we obtained different arrays of those observed in recent simulations of pure SDS adsorbed on graphite at the same concentration reported in the literature. The unexpected water layer between the 1-dodecanol and the graphite surface, at the highest concentration, was explained in terms of the Hamaker constants. The present results suggest that the formation of aggregates on solid surfaces is a combined effect not only of the surfactant-surfactant and the surfactant-wall interactions but also of the surfactant concentration.

  7. Highly efficient hyperbranched CNT surfactants: influence of molar mass and functionalization. (United States)

    Bertels, Ellen; Bruyninckx, Kevin; Kurttepeli, Mert; Smet, Mario; Bals, Sara; Goderis, Bart


    End-group-functionalized hyperbranched polymers were synthesized to act as a carbon nanotube (CNT) surfactant in aqueous solutions. Variation of the percentage of triphenylmethyl (trityl) functionalization and of the molar mass of the hyperbranched polyglycerol (PG) core resulted in the highest measured surfactant efficiency for a 5000 g/mol PG with 5.6% of the available hydroxyl end-groups replaced by trityl functions, as shown by UV-vis measurements. Semiempirical model calculations suggest an even higher efficiency for PG5000 with 2.5% functionalization and maximal molecule specific efficiency in general at low degrees of functionalization. Addition of trityl groups increases the surfactant-nanotube interactions in comparison to unfunctionalized PG because of π-π stacking interactions. However, at higher functionalization degrees mutual interactions between trityl groups come into play, decreasing the surfactant efficiency, while lack of water solubility becomes an issue at very high functionalization degrees. Low molar mass surfactants are less efficient compared to higher molar mass species most likely because the higher bulkiness of the latter allows for a better CNT separation and stabilization. The most efficient surfactant studied allowed dispersing 2.85 mg of CNT in 20 mL with as little as 1 mg of surfactant. These dispersions, remaining stable for at least 2 months, were mainly composed of individual CNTs as revealed by electron microscopy.

  8. Adsorption and desorption of cationic surfactants onto silica from toluene studied by ATR-FTIR. (United States)

    Tabor, Rico F; Eastoe, Julian; Dowding, Peter


    The adsorption and desorption behavior of cationic dialkyldimethylammonium bromide surfactants (Di-CnDABs where n = 10, 12, 14) at the silica-toluene interface has been studied. Adsorption is a rapid process, consistent with transport control, whereas desorption appears to occur in a two-stage process, with varying proportions of surfactant desorbing in fast and slow modes. These proportions appear to be affected by trace moisture present in the adjacent toluene solvent, possibly owing to competition between surfactant and water molecules for surface sites. Surprisingly, the surfactant tail length (n) has a significant impact on solubility in toluene, and this appears to affect bulk-surface partitioning. The results are compared with previous experiments utilizing nonionic surfactants (Tabor, R. F.; Eastoe, J.; Dowding, P. Langmuir 2009, 25, 9785), and also with work on surfactant-stabilized silica in nonpolar solvents (Tabor, R. F.; Eastoe, J.; Dowding, P. J.; Grillo, I.; Heenan, R. K.; Hollamby, M. Langmuir 2008, 24, 12793). Observations are explained in terms of the balance of interactions between the surfactant, solvent, and surface.

  9. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳


    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  10. Complex Formation Between Polyelectrolytes and Ionic Surfactants



    The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and biology. In this paper we present a theory of polyelectrolyte ionic-surfactant solutions. The new theory successfully explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic-surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic polymer-sur...

  11. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.


    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the cati

  12. Surfactant analysis in oil-containing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gronsveld, J.; Faber, M.J. (Koninklijke Shell Exploratie en Produktie Laboratorium, Rijswijk (Netherlands))

    The total surfactant concentration in aqueous phase samples can be analysed with a potentiometric titration. In enhanced oil recovery research, however, the surfactant is produced not only in aqueous phase samples but also in oleic phase samples. The oleic constituents in the oliec phase samples interfere in the surfactant analysis and, therefore, the titration method has been adapted. (orig.).

  13. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.


    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  14. Theoretical modeling of cationic surfactant aggregation at the silica/aqueous solution interface: Effects of pH and ionic strength

    NARCIS (Netherlands)

    Drach, M.; Andrzejewska, A.; Narkiewicz-Michalek, J.; Rudzinski, W.; Koopal, L.K.


    A theory of ionic surfactant aggregation on oppositely charged surfaces is presented. In the proposed model the adsorbed phase is considered as a mixture of singly dispersed surfactant molecules, monolayered and bilayered aggregates of various sizes and the ions of simple electrolyte added to the aq

  15. Tailor-made surfactants for optimized chemical EOR. Meeting oil reservoir conditions by applied knowledge of structure-performance relationship in extended surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, G.; Sorensen, W. [Sasol North America Inc., Westlake, LA (United States); Jakobs-Sauter, B. [Sasol Germany GmbH (Germany)


    Formulating the surfactant package for chemical EOR is a time consuming and expensive process - the formulation needs to fit the specific reservoir conditions (like oil type, temperature, salinity, etc.) to give optimum performance and the number of formulation variables is virtually endless. This paper studies the impact of surfactant structure on EOR formulation ability and performance and how to adjust the structure of the surfactant molecule to meet a specific reservoir's needs. Data from salinity phase boundary studies of alcohol propoxy sulfates illustrate how changes in alcohol structure as well as in propylene oxide level can shift optimum salinity and temperature to the desired range in a given model oil. From these data the impact of individual structural units was evaluated. Application of the HLD model (Hydrophilic-Lipophilic Deviation) shows how to extrapolate from the known data set to actual reservoir conditions. This is illustrated by studies on crude oil samples. Additional tests study how effective the selected surfactants perform. The HLD concept proves to be a valuable tool to select and tailor surfactants to individual reservoir needs, thus simplifying the surfactant screening process for EOR formulations by pre-selection of suitable structures and ultimately reducing cost and effort on the way to the most effective chemical EOR package. (orig.)

  16. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  17. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants. (United States)

    Yoshimura, Tomokazu; Akiba, Kazuki


    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.

  18. Molecule nanoweaver (United States)

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela


    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  19. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media (United States)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia


    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets

  20. Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs. (United States)

    Kapoor, Yash; Thomas, Justin C; Tan, Grace; John, Vijay T; Chauhan, Anuj


    Eye drops are inefficient means of delivering ophthalmic drugs because of limited bioavailability and these can cause significant side effects due to systemic uptake of the drug. The bioavailability for ophthalmic drugs can be increased significantly by using contact lenses. This study focuses on the development of surfactant-laden poly-hydroxy ethyl methacrylate (p-HEMA) contact lenses that can release Cyclosporine A (CyA) at a controlled rate for extended periods of time. We focus on various Brij surfactants to investigate the effects of chain length and the presence of an unsaturated group on the drug release dynamics and partitioning inside the surfactant domains inside the gel. The gels were imaged by cryogenic scanning electron microscopy (cryo-SEM) to obtain direct evidence of the presence of surfactant aggregates in the gel, and to investigate the detailed microstructure for different surfactants. The images show a distribution of nano pores inside the surfactant-laden hydrogels which we speculate are regions of surfactant aggregates, possibly vesicles that have a high affinity for the hydrophobic drug molecule. The gels are further characterized by studying their mechanical and physical properties such as transparency, surface contact angle and equilibrium water content to determine their suitability as extended wear contact lenses. Results show that Brij surfactant-laden p-HEMA gels provide extended release of CyA, and possess suitable mechanical and optical properties for contact lens applications. The gels are not as effective for extended release of two other hydrophobic ophthalmic drugs, dexamethasone (DMS) and dexamethasone 21 acetate (DMSA) because of insufficient partitioning inside the surfactant aggregates.

  1. Polymer gels with associating side chains and their interaction with surfactants (United States)

    Gordievskaya, Yulia D.; Rumyantsev, Artem M.; Kramarenko, Elena Yu.


    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well.

  2. Physical properties of botanical surfactants. (United States)

    Müller, Lillian Espíndola; Schiedeck, Gustavo


    Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or used fresh and chopped. The neutral bar soap was used as a positive control. The drying and grinding of samples were the preparation method that resulted in higher foam column height in both species but Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756 and 1017 respectively. Critical micelle concentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40mNm(-1) while neutral bar soap was 0.15% with 34.96mNm(-1). Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Interactions of Ovalbumin with Ionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; YAN Hui; GUO Rong


    The interactions of ovalbumin (OVA) with one anionic surfactant,sodium dodecyl sulfate (SDS),and two cationic surfactants,dodecyl trimethylammonium bromide (DTAB) and cetyl trimethylammonium bromide (CTAB),in water have been studied through fluorescence and UV-Vis spectroscopies and transmission electronic microscopy,combined with the measurement of conductivity.OVA can increase the critical micelle concentrations (cmc) of SDS and CTAB but has little effect on that of DTAB.The interaction between surfactant monomer and OVA is greater than that between surfactant micelles and OVA.Moreover,SDS can make OVA unfolded while cationic surfactants cannot.

  4. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis


    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  5. Effect of double quaternary ammonium groups on micelle formation of partially fluorinated surfactant. (United States)

    Matsuoka, Keisuke; Chiba, Nagisa; Yoshimura, Tomokazu; Takeuchi, Emi


    To investigate the effect of divalency on the micelle properties, we synthesized divalent cationic surfactants composed of fluorocarbons and double quaternary ammonium groups N,N-dimethyl-N-[2-(N'-trimethylammonium)ethyl]-1-(3-perfluoroalkyl-2-hydroxypropyl) ammonium bromide [C(n)(F)C(3)-2Am; where n (=8 or 10) represents the number of carbon atoms in the fluorocarbon chain]. The double quaternary ammonium groups are continuously combined by the ethylene spacer in the surfactant head group, which clearly distinguishes the molecular design of the surfactant from those of the other typical divalent surfactants, bolaform and gemini types. The presence of the divalent head group results in an advantageous increase in their solubility [i.e., rise in the critical micelle concentration (cmc)]; however, the extra electrostatic repulsion between divalent cations decreases the surface activity in comparison with monovalent homologous fluorinated surfactants. The cmc, surface tension at cmc, and area occupied by a surfactant molecule in aqueous solution at 298.2K are 4.32 mM, 30.6 mN m(-1), and 0.648 nm(2 )molecule(-1), respectively, for C(8)(F)C(3)-2Am, and 1.51 mM, 30.4 mN m(-1), and 0.817 nm(2) molecule(-1), respectively, for C(10)(F)C(3)-2Am. The micellar size and shape were investigated by dynamic light scattering and freeze-fracture transmission electron microscopy (TEM). The TEM micrographs show that C(n)(F)C(3)-2Am (n=8 and 10) mainly forms ellipsoidal micelles approximately 10-100 nm in size for n=8 and approximately 10-20 nm in size for n=10. The degree of counterion binding to micelle was determined by selective electrode potential measurements, and the results of 0.7-0.8 agree with the average values for conventional monovalent ionic surfactants.

  6. Soap opera : polymer-surfactant interactions on thin film surfaces /

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, B. H. (Byram H.); Johal, M. S. (Malkiat S.); Wang, H. L. (Hsing-Lin); Robinson, J. M. (Jeanne M.)


    Surfactants are macromolecules with unique properties. They commonly contain a polar head group with a nonpolar hydrocarbon chain. These properties allow surfactants to solubilize greases and other nonpolar molecules. One particular way that this is accomplished is through the formation of micelles. Micelles are formed at the critical micelle concentration (cmc), which varies depending upon the nature of the surfactant and also the media in which the surfactant resides. These micelles can take a variety of shapes, but are generally characterized by surrounding the grease with the nonpolar hydrocarbon chains, exposing only the polarized head groups to the media, usually water. This property of easy solubilization has made surfactants a very attractive industrial agent, They are used most conventionally as industrial cleaning agents and detergents. However, they also have lesser-known applications in conjunction with polymers and other macromolecular mixtures, often creating a system with novel properties, such as increased solubilization and smoother mixture consistency. A recently developed field has investigated the self-assembly of polymers and polyelectrolytes onto thin film surfaces. There are many reasons for studying this process, such as for second harmonic generation purposes and bioassays. In this study, the interaction between the anionic polyelectrolyte poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and two surfactants of opposite charge, Sodium Dodecyl Sulfate (SDS) and Dodecyl Trimethyl Ammonium Bromide (DTAB), in their assembly onto thin film surfaces was investigated. The kinetics of adsorbance onto the thin films was examined, followed by construction of 10-bilayer films using an alternating layer of the cationic polyelectrolyte poly(ethylenimine) (PEI) to provide the electrostatic means for the PAZO/surfactant combination to assemble onto the thin film. The kinetics of adsorption is being

  7. An anionic surfactant for EOR applications (United States)

    Sagir, Muhammad; Tan, Isa M.; Mushtaq, Muhammad


    This work is to investigate the new anionic surfactants for the Enhanced Oil Recovery (EOR) application. Sulfonated anionic surfactant was produced by attaching SO3 to an ethoxylated alcohol to increase the performance of the surfactant. Methallyl chloride and ethoxylated alcohol was reacted followed by the reaction with sodium bisulfite to produce anionic sulfonated surfactant in 80.3 % yield. The sulfonation reaction parameters such as reactants mole ratio, reaction temperature and catalyst amount were optimized. The generation and stability of foam from the synthesized surfactant is also tested and results are reported. The synthesized novel surfactant was further investigated for the effect on the CO2 mobility in porous media and the findings are presented here. This in house developed surfactant has a great potential for CO2- EOR applications.

  8. Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties. (United States)

    Zhang, Xuetong; Zhang, Jin; Wang, Rongming; Zhu, Tao; Liu, Zhongfan


    We describe here a new approach to the synthesis of size-controllable polypyrrole/carbon nanotube (CNT) nanocables by in situ chemical oxidative polymerization directed by the cationic surfactant cetyltrimethylammonium bromide (CTAB) or the nonionic surfactant polyethylene glycol mono-p-nonylphenyl ether (Opi-10). When carbon nanotubes are dispersed in a solution containing a certain concentration of CTAB or Opi-10, the surfactant molecules are adsorbed and arranged regularly on the CNT surfaces. On addition of pyrrole, some of the monomer is adsorbed at the surface of CNTs and/or wedged between the arranged CTAB or Opi-10 molecules. When ammonium persulfate (APS) is added, pyrrole is polymerized in situ at the surfaces of the CNTs (core layer) and ultimately forms the outer shell of the nanocables. Such polypyrrole/CNT nanocables show enhanced electrical properties; a negative temperature coefficient of resistance at 77-300 K and a negative magnetoresistance at 10-200 K were observed.

  9. Effects of head type on the stability of gemini surfactant foam by molecular dynamics simulation (United States)

    Wu, Gang; Yuan, Congtai; Ji, Xianjing; Wang, Hongbing; Sun, Shuangqing; Hu, Songqing


    Molecular dynamics simulations have been carried out to study the stability of gemini surfactant foam with different head groups. The results showed that the interaction strength between the polar head groups of the surfactants and water molecules increased from 12-3S-12 (sulfate) system, 12-3Sn-12 (sulfonate) system to 12-3L-12 (carboxylate) system, and the coordination number of water molecules around head increased. From the perspective of energy, the interface formation energy of 12-3L-12 system was smallest, which means that the foam stability was the best. These results indicated that the different head type had a significant effect on the stability of gemini surfactant foam.

  10. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry (United States)

    Stebe, Kathleen J.


    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional


    Energy Technology Data Exchange (ETDEWEB)

    Prof. P. Somasundaran


    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Surfactant loss by adsorption or precipitation depends to a great extent on the type of surfactant complexes and aggregates formed. Such information as well as techniques to generate the information is lacking currently particularly for surfactant mixtures and surfactant/polymer systems. A novel analytical centrifuge application is explored during the last period to generate information on structures-performance relationship for different surfactant aggregates in solution and, in turn, at interfaces. To use analytical untracentrifuge for surfactant mixtures, information on partial specific volumes of single surfactants and their mixtures is required. Towards this purpose, surface tension and density measurements were performed to determine critical micellar concentrations (cmc), partial specific volumes of n-dodecyl-{beta}-Dmaltoside (DM), nonyl phenol ethoxylated decyl ether (NP-10) and their 1:1 mixtures at 25 C. Durchschlag's theoretical calculation method was adopted to calculate the partial specific volumes. Effects of temperature and mixing, as well as methods used for estimation on micellization and partial specific volumes were studied during the current period. Surface tension results revealed no interaction between the two surfactants in mixed micelles. Partial specific volume measurements also indicated no interaction in mixed micelles. Maximum adsorption density, area per molecule and free energy of micellization were also calculated. Partial specific volumes were estimated by two experimental methods: d{sub {rho}}/dc and V{sub {sigma}}. The difference between the results of using the two methods is within 0.5% deviation. It was found that the partial specific volume is concentration dependent and sensitive to changes in temperature. The information generated in this study will be used for the study of surfactant aggregate mass

  12. Synthesis and characterization of lower generation broom molecules

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Cui Qin Li; Shu Yan Zhang; Fang Sun; Teng Jie Ge


    Dendritic molecules with dodecyl groups as the hyperbranchs were synthesized in methanol by Michael addition withdodecylamine and methyl acrylate as raw materials. This new-type dendritic molecules were called vividly "broom molecules" inthis report. The surface tension of the aqueous solution of broom molecule terminated amino group was measured by using the drop-volume method. The demulsification performance of the broom molecules for the oil/water (O/W) simulated crude oil emulsion wasexamined. The experimental results revealed that, as a new-type of surfactants, the broom molecules terminated amino groupsshowed demulsification for the O/W simulated crude oil emulsion.

  13. Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow (United States)

    Das, Sayan; Mandal, Shubhadeep; Som, S. K.; Chakraborty, Suman


    The motion of a surfactant-laden viscous droplet in the presence of non-isothermal Poiseuille flow is studied analytically and numerically. Specifically, the focus of the present study is on the role of interfacial Marangoni stress generated due to imposed temperature gradient and non-uniform distribution of bulk-insoluble surfactants towards dictating the velocity and direction of motion of the droplet when the background flow is Poiseuille. Assuming the thermal convection and fluid inertia to be negligible, we obtain the explicit expression for steady velocity of a non-deformable spherical droplet when the droplet is located at the centerline of the imposed unbounded Poiseuille flow and encountering a linearly varying temperature field. Under these assumptions, the interfacial transport of surfactants is governed by the surface Péclet number which represents the relative strength of the advective transport of surfactant molecules over the diffusive transport. We obtain analytical solution for small and large values of the surface Péclet number. Analytical solution is also obtained for the case in which the surface Péclet number is of order unity by considering small surfactant Marangoni number which represents the relative strength of the surfactant-induced Marangoni stress over the viscous stress. For an arbitrary surface Péclet number, a numerical solution of the surfactant transport equation is performed using an iterative method which compares well with the analytical solutions. Depending on the direction of temperature gradient with respect to the imposed Poiseuille flow, the surfactant-induced Marangoni stress affects the droplet velocity significantly. When the imposed temperature increases in the direction of imposed Poiseuille flow, surfactants retard the droplet motion as compared with a surfactant-free droplet. However, when the imposed temperature decreases in the direction of imposed Poiseuille flow, the presence of surfactants may increase or

  14. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.


    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  15. In situ observation of self-assembly of sugars and surfactants from nanometres to microns

    NARCIS (Netherlands)

    Ouhajji, Samia; Landman, Jasper; Prévost, Sylvain; Jiang, Lingxiang; Philipse, Albert P.; Petukhov, Andrei V.


    The hierarchical self-assembly of sugar and surfactant molecules into hollow tubular microstructures was characterized in situ with high resolution small-angle X-ray scattering spanning more than three orders of magnitude of spatial scales. Scattering profiles reveal that aqueous host-guest

  16. Dynamic strength of the interaction between lung surfactant protein D (SP-D) and saccharide ligands

    DEFF Research Database (Denmark)

    Thormann, Esben; Dreyer, Jakob K; Simonsen, Adam C


    In order to investigate the dynamic strength of the interaction between lung surfactant protein D (SP-D) and different sugars, maltose, mannose, glucose, and galactose, we have used an atomic force microscope to monitor the interaction on a single molecule scale. The experiment is performed by me...

  17. A molecular dynamics study of CaCO3 nanoparticles in a hydrophobic solvent with a stearate co-surfactant. (United States)

    Bodnarchuk, Michael S; Heyes, David M; Breakspear, Angela; Chahine, Samir; Dini, Daniele


    Stearates containing overbased detergent nanoparticles (NPs) are used as acid neutralising additives in automotive and marine engine oils. Molecular dynamics (MD) simulations of the self-assembly of calcium carbonate, calcium stearate as a co-surfactant and stabilising surfactants of such NPs in a model explicit molecular hydrophobic solvent have been carried out using a methodology described first by Bodnarchuk et al. [J. Phys. Chem. C, 2014, 118, 21092]. The cores and particles as a whole become more elongated with stearate, and the surfactant molecules are more spaced out in this geometry than in their stearate-free counterparts. The rod dimensions are found to be largely independent of the surfactant type for a given amount of CaCO3. The corresponding particles without stearate were more spherical, the precise shape depending to a greater extent on the chemical architecture of the surfactant molecule. The rod-shaped stearate containing nanoparticles penetrated a model water droplet to a greater depth than the corresponding near-spherical particle, which is possibly facilitated by the dissociation of nanoparticle surfactant molecules onto the surface of the water in this process. These simulations are the first to corroborate the nanoparticle-water penetration mechanism proposed previously by experimental groups investigating the NP acid neutralisation characteristics.

  18. Influence of Conventional Surfactants on the Self-Assembly of a Bola Type Amphiphilic Peptide. (United States)

    Cao, Yueying; Wang, Dong; Zhou, Peng; Zhao, Yurong; Sun, Yawei; Wang, Jiqian


    Structural and morphological regulation is a distinctly important topic in peptide self-assembly, and is also regarded as the fundamental point in peptide-based biomaterials development. In this paper, we showed that adding anionic surfactant SDS to a bola amphiphilic peptide KI4K could result in the reconstruction of β-sheet secondary structure besides the changes in self-assembly morphologies from nanotubes to helical ribbons, nanofibers, or straight nanotapes according to the negatively stained transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, and Fourier transform infrared spectroscopy results. The inducing effect of SDS was observed at both above and below its CMC but with different transformation rates. Through comparison to other surfactants, including CTAB, C12EO4, and AOT, we proposed that the transitions of KI4K self-assemblies induced by anionic surfactants could be mainly attributed to the effect of hydrophobic interaction and electrostatic attraction between surfactants and peptide molecules. Rheological property measurement and dye adsorption experiments were also carried out to evaluate the properties of hydrogels formed by the peptide/surfactant hybrids. The samples formed self-supporting hydrogels at proper SDS or AOT concentrations, and the charges of hydrogel could be regulated by peptide to surfactant ratio.


    Institute of Scientific and Technical Information of China (English)

    Noor Rehman; Abbas Khan; Iram Bibi; Mohammad Siddiq


    The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene) (E39B18) with anionic surfactant sodium dodecyl sulphate (SDS) and cationic surfactant hexadecyltrimethylammonium bromide (CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration (CMC) and thereby the free energy of micellization (AGmic),free energy of adsorption (AGads),surface excess concentration (F) and minimum area per molecule (A).Conductivity measurements were used to determine the critical micelle concentration (CMC),critical aggregation concentration (CAC),polymer saturation point (PSP),degree of ionization (α) and counter ion binding (β).Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks (I1/I13) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number (N),number of binding sites (n) and free energy of binding (AGb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.

  20. Electrophoretic and spectroscopic characterization of the protein patterns formed in different surfactant solutions. (United States)

    Blanco, Elena; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix


    The complexations between catalase and the sodium perfluorooctanoate/sodium octanoate and sodium perfluorooctanoate/sodium dodecanoate systems have been studied by a combination of electrophoresis and spectroscopy measurements. The numbers of adsorption sites on the protein were determined from the observed increases of the zeta-potential as a function of surfactant concentration in the regions where the adsorption was a consequence of the hydrophobic effect. The Gibbs energies of adsorption of the surfactants onto the protein were evaluated and the results show that for all systems, Gibbs energies are negative and larger, in absolute values, at low values of surfactant concentration where binding to the high energy sites takes place, and become less negative as more surfactant molecules bind, suggesting a saturation process. The role of hydrophobic interactions in these systems has been demonstrated to be the predominant. Spectroscopy measurements suggest conformational changes on catalase depending on the surfactant mixture as well as the mixed ratio. No isosbestic point or shifts have been found showing that catalase has spectrophotometrically one kind of binding site for these surfactant mixtures.

  1. Effects of fluorinated and hydrogenated surfactants on human serum albumin at different pHs. (United States)

    Sabín, Juan; Prieto, Gerardo; González-Pérez, Alfredo; Ruso, Juan M; Sarmiento, Félix


    Complexation between human serum albumin (HSA) and two different surfactants, one fully fluorinated (sodium perfluorooctanoate, SPFO) and one fully hydrogenated (sodium caprylate, SO), was studied using zeta-potential measurements and difference spectroscopy. The study was carried out at three different pHs, 3.2, 6.7, and 10.0. The spectroscopy study was performed at pHs 6.7 and 10.0, given that at pH 3.2 high turbidity was observed in the wide range of surfactant concentrations. The results were interpreted in terms of the electrostatic and hydrophobic contributions to the stability of the different phases formed in the water-surfactant-HSA system. Solutions and precipitates were observed in the concentration range investigated in more detail. Using Pace methods, the thermodynamic values of the surfactant-induced conformational changes in HSA were determined for sodium perfluorooctanoate in the concentration range 2-12 mmol dm(-3) at pH 6.7 and 5-22 mmol dm(-3) at pH 10.0. Electrophoretic measurements were used to characterize surfactant adsorption by determining the number of molecules adsorbed on the surface of HSA and the Gibbs energy of adsorption. Finally, the interactions between human serum albumin and other anionic surfactants studied by other authors were compared with those observed in the present work.

  2. pH-Sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior. (United States)

    Colomer, Aurora; Pinazo, Aurora; García, Maria Teresa; Mitjans, Montserrat; Vinardell, M Pilar; Infante, Maria Rosa; Martínez, Verónica; Pérez, Lourdes


    The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna . All surfactants yielded EC(50) values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO(2) headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as "readily biodegradable compounds".

  3. Naturally occurring surfactants and their functional design. Seitai yurai safakutanto to kinoka sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Ishigami, Y. (National Inst. of Materials and Chemical Research, Tsukuba (Japan))


    An active use of the natural materials replaced the petroleum chemical products and an attempt for a development of the organism imitation materials are not limited only on the surfactants, but become a great trend also widely over the dyestuff, plastics material, food, cosmetics, agricultural chemicals and so forth. In addition, an institution of the recognition system for an 'eco-mark' is done, and a development of the environment conformity materials (eco-material) is advanced. In Japan since around 1950, a practical application and a research and development of new surfactants have been rapidly progressed making the derivatives originated in a petroleum chemistry as an axis. In this paper, including a viewpoint of the ecotechnology, a chemical structure and function of the surfactant being derived from the organisms, a molecule design and attempt for functional material making of the biomimetic surfactants are described. The author considers the biomimetic surfactants as one of the approaches to develop a new functional surfactant as the new raw materials, and is performing a development of the admixtures for improving a defect the soap has and so forth. 80 refs., 3 figs., 5 tabs.

  4. Micellization of alkyl-propoxy-ethoxylate surfactants in water-polar organic solvent mixtures. (United States)

    Sarkar, Biswajit; Lam, Stephanie; Alexandridis, Paschalis


    The effects of cosolvents (glycerol, ethanol, and isopropanol) on the self-assembly of novel alkyl-propoxy-ethoxylate surfactants in aqueous solutions have been investigated with a focus on the (i) quantification of solvent effects on the critical micelle concentration (cmc), (ii) free-energy contributions to micellization, (iii) local environment in the micellar solution, and (iv) structure of the micelles. The introduction of the polar organic solvents considered in this work into water decreases cohesive forces in the solvent mixture, resulting in an increase in the solubility of the surfactant molecules. As a result, micelle formation becomes less favorable and the cmc increases. The contribution of the cosolvent to the free energy of micellization is positive, and the data for different mixed solvents collapse onto a single straight line when plotted versus a function of the solubility parameters of the surfactant alkyl chains and the mixed solvents. The behavior of the poly(propylene oxide) part of the alkyl-propoxy-ethoxylate surfactants is hydrophilic, albeit less so in the ethanol-water mixed solvent than in plain water. Pyrene fluorescence emission I(1)/I(3) data suggest that the microenvironment in micellar solutions is affected mainly by the cosolvent concentration, not the surfactant degree of ethoxylation. Small-angle X-ray scattering data for both water and ethanol-water surfactant solutions are consistent with oblate ellipsoid micelles and reveal that the introduction of 20% ethanol decreases the micelle long axis by 10-15%.

  5. Sono-electroanalysis of copper: enhanced detection and determination in the presence of surfactants. (United States)

    Hardcastle, Joanna Lorraine; Hignett, Geraldine; Melville, James L; Compton, Richard G


    Surfactant adsorption has been shown to have a passivating effect on the electrode surface during anodic stripping voltammetric measurements. In the present work the feasibility of sono-anodic stripping analysis for the determination of copper in aqueous media contaminated with surfactant has been studied at an unmodified bare glassy carbon electrode. We illustrate the deleterious effect of three common surfactants, sodium dodecyl sulfate (SDS), dodecyl pyridinium chloride (DPC) and Triton-X 100 (TX-100) on conventional electroanalysis. The analogous sono-electroanalytical response was investigated for each surfactant at ultrasound intensities above and below the cavitation threshold. The enhancement in the stripping signal observed is attributed to the increased mass transport due to acoustic streaming and above the cavitation threshold the intensity of cavitational events is significantly increased leading to shearing of adsorbed surfactant molecules from the surface. As a result accurate analyses for SDS concentrations up to 100 ppm are possible, with analytical signals visible in solutions of SDS and TX-100 of 1000 ppm. Analysis is reported in high concentration of surfactant with use of sono-solvent double extraction. The power of this technique is clearly illustrated by the ability to obtain accurate measurements of copper concentration from starting solutions containing 1000 ppm SDS or TX-100. This was also exemplified by analysis of the low concentration 0.3 microM Cu(II) solution giving a percentage recovery of 94% in the presence of 1000 ppm SDS or TX-100.

  6. The effect of surfactants on the crystallization and polymorphic transformation of glutamic acid (United States)

    Garti, Nissim; Zour, Hadassa


    Glutamic acid can crystallize in two polymorphic structures depending on the crystallization regime. The study demonstrates an efficient method to preferentially crystallize the non-stable polymorphic structure (the α-form) in the presence of surface active agents. The rate of transformation was found to depend on the rate of growth of β and not on the rate of dissolution of α. The growth rate of β was a function of the supersaturation of the solute in solution. It was shown that the transformation could be inhibited by the addition of surfactants. The surfactants are capable of adsorbing preferentially to the α-growing crystals and solution mediating (retarding) the transformation of the α- to the β-form. It was suggested that the surfactant nature and steric considerations were important for the inhibition of both nucleation and growth of the β-polymorph. A Langmuir approach indicated that the kinetic parameter was related to the volume of surfactant adsorbed at the crystal surface. No changes in crystal morphology were observed, indicating that adsorption was not specific to any crystal face. Different mechanisms of surfactant adsorption were suggested: adsorption of single molecules at low concentrations of surfactant and formation of hemimicelles at higher concentrations.

  7. A fundamental investigation of the surfactant-stabilized single-walled carbon nanotube/epoxy resin suspensions by molecular dynamics simulation (United States)

    Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; O’Haver, John H.


    The surfactant-assisted stabilization of single-walled carbon nanotubes (SWCNTs) in SWCNT/epoxy resin suspensions were investigated for different surfactant types, concentrations, and temperatures using molecular dynamics simulation. One cationic surfactant, i.e. cetyltrimethylammonium bromide (CTAB), and three anionic surfactants, i.e. sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (NaDDBS), and sodium cholate (SC), as well as a 1:1 mixture of CTAB and SDS were used. Potentials of mean force (PMFs) were generated between two fixed-size (6,6) SWCNTs for all neat (no surfactant) and surfactant-loaded SWCNT/epoxy resin systems at three different surfactant concentrations (0.25, 0.50, and 1.00 wt%) at room (298 K) and elevated temperature (398 K, only for low-surfactant-concentration systems). Overall, two distinct mechanisms of SWCNT stabilization by the surfactants were identified: (1) an increase in the SWCNT aggregation energy barrier due to the wrapping of the SWCNTs by the surfactant molecules, and (2) a constantly positive free energy (repulsion) for all SWCNT separation distances due to the encapsulation of the two approaching SWCNTs. With the second mechanism, there is a delay for the epoxy molecules to be pushed out from the space between the two SWCNTs. With an increase in the surfactant concentration, the first mechanism becomes more prevalent. With an increase in temperature to 398 K, all surfactants migrate to the suspending medium, thereby the second mechanism of SWCNT stabilization dominates. A drop in the SWCNT-surfactant binding energy is observed around 360–370 K, signifying the surfactant migration to the suspending medium. More or less, all surfactants stabilize the SWCNTs in an epoxy resin at one or more surfactant concentrations. However, NaDDBS exhibits a higher SWCNT aggregation barrier at high concentrations and both temperatures (298 K and 398 K), thereby providing a better SWCNT stabilization in the epoxy resin

  8. Surfactants in tribology, v.3

    CERN Document Server

    Biresaw, Girma


    The manufacture and use of almost every consumer and industrial product rely on application of advanced knowledge in surface science and tribology. These two disciplines are of critical importance in major economic sectors, such as mining, agriculture, manufacturing (including metals, plastics, wood, computers, MEMS, NEMS, appliances), construction, transportation, and medical instruments, transplants, and diagnostic devices. An up-to-date reference with contributions by experts in surface science and tribology, Surfactants in Tribology, Volume 3 discusses some of the underlying tribological a

  9. Anaerobic Biodegradation of Detergent Surfactants


    Erich Jelen; Ute Merrettig-Bruns


    Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have str...

  10. Surfactant inhibition in acute respiratory failure : consequences for exogenous surfactant therapy

    NARCIS (Netherlands)

    E.P. Eijking (Eric)


    textabstractThe neonatal respiratory distress syndrome (RDS) is characterized by immaturity of the lung, resulting in relative or absolute absence of pulmonary surfactant. Worldwide, neonates suffering from RDS have been treated successfully with exogenous surfactant preparations. Currently, exogeno

  11. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations. (United States)

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle


    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels.

  12. Genotoxicity induced by saponified coconut oil surfactant in prokaryote systems. (United States)

    Petta, Tirzah Braz; de Medeiros, Sílvia Regina Batistuzzo; do Egito, Eryvaldo Sócrates Tabosa; Agnez-Lima, Lucymara Fassarella


    Surfactants are amphiphilic substances with special properties and chemical structures that allow a reduction in interfacial tension, which permits an increase in molecule solubilization. The critical micelle concentration (CMC) is an important characteristic of surfactants that determines their aggregate state, which is generally related to its functional mechanism. In this work the genotoxic potential of saponified coconut oil (SCO), a surfactant obtained from Cocos nucifera, was analyzed using prokaryote systems. DNA strand breaks were not observed after treatment of a plasmid with SCO. Negative results were also obtained in the SOS Chromotest using Escherichia coli strains PQ35 and PQ37. A moderate toxicity of SCO was observed after treatment of strain CC104 with a concentration above its CMC, in which micelles were found. Nevertheless, this treatment was not cytotoxic to a CC104mutMmutY strain. Furthermore, in this DNA repair-deficient strain treatment with a SCO dose below its CMC, in which only monomers were found, demonstrated the possibility of an antioxidant effect, since a reduction in spontaneous mutagenesis frequency was observed. Finally, in an Ames test without metabolic activation mutagenicity induction was observed in strains TA100 and TA104 with treatment doses below the CMC. The cytotoxic, antioxidant and mutagenic effects of SCO can be influenced by the aggregational state.

  13. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal


    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  14. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes. (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim


    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  15. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha


    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  16. Using biologically soft surfactants for dust suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Kolodiichak, V.K.; Motrii, A.E.; Severin, V.D.


    This article discusses environmental aspects of using surfactants in coal mines for dust suppression. Surfactants for underground black coal mines in the USSR are divided into three classes: so-called soft surfactants with a decomposition period from 1 to 3 days, hard surfactants with decomposition exceeding a month and an intermediary group. The decomposition process is analyzed; the role played by fermentation is stressed. Environmental effects of surfactant decomposition are evaluated. Selected surfactants tested in Soviet laboratories are described. The results of experimental use of diethanolamide as a surfactant for water injection in coal seams are evaluated. Wetting time amounts to 1 s when a 0.2% concentration is used. When surfactant concentration in water is reduced to 0.05% wetting time does not change; when concentration decreases to 0.025% wetting time increases to 3 s. Surfactant efficiency is investigated under operational conditions in a Donbass mine. Specifications of the working face, mining system and air pollution caused by a shearer loader are discussed. When diethanolamide is used dust suppression efficiency ranges from 86.4 to 90.4%. During the tests diethanolamide concentration in water was 0.05%.

  17. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox


    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  18. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto


    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  19. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C. (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner


    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  20. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto


    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  1. Determination of the free energy of adsorption on carbon blacks of a nonionic surfactant from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, C.M.; Gonzalez-Martin, M.L.; Gomez-Serrano, V.; Bruque, J.M.; Labajos-Broncano, L.


    The adsorption of a nonionic surfactant (Triton X-100) from aqueous solutions has been studied on six carbon blacks with very different specific surface areas. The surface area occupied per surfactant molecule on the carbon black surface and the free energy of adsorption have been evaluated from the adsorption isotherms. Also, the free energy of adsorption has been determined from the free energy of interaction between adsorbent and adsorbate through water. The results obtained from both methods are in good agreement. They indicate that adsorption progresses following two different processes: the first one deals with the direct interaction between carbon black surface and adsorbate molecules, and the second one mainly due to the interaction between surfactant molecules at the adsorbent-solution interphase.

  2. Interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations. (United States)

    Deguillard, E; Pannacci, N; Creton, B; Rousseau, B


    We have computed interfacial tension in oil-water-surfactant model systems using dissipative particle dynamics (DPD) simulations. Oil and water molecules are modelled as single DPD beads, whereas surfactant molecules are composed of head and tail beads linked together by a harmonic potential to form a chain molecule. We have investigated the influence of the harmonic potential parameters, namely, the force constant K and the equilibrium distance r0, on the interfacial tension values. For both parameters, the range investigated has been chosen in agreement with typical values in the literature. Surprisingly, we observe a large effect on interfacial tension values, especially at large surfactant concentration. We demonstrate that, due to a subtle balance between intra-molecular and inter-molecular interactions, the local structure of surfactants at the oil-water interface is modified, the interfacial tension is changed and the interface stability is affected.

  3. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air–Water Interface

    DEFF Research Database (Denmark)

    Ortiz, Elisa Parra; Kinoshita, K.; Needham, D.


    at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB...... from 0.1 to 4%. Nevertheless, a direct correlation between the number of tubes and SMB contents was found, suggesting that SMB molecules are the promoters of tube nucleation in these membranes. A detailed analysis of the tube formation process was performed following previous models for the growth...

  4. Hemolysis by surfactants--A review. (United States)

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine


    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.

  5. Atkins' molecules

    CERN Document Server

    Atkins, Peters


    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  6. Enumerating molecules.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (, . Tennessee Technological University, Cookeville, TN); Faulon, Jean-Loup Michel; Roe, Diana C.


    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  7. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A


    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  8. Innovation in surfactant therapy I: surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques. (United States)

    Dargaville, Peter A


    Innovation in the field of exogenous surfactant therapy continues more than two decades after the drug became commercially available. One such innovation, lung lavage using dilute surfactant, has been investigated in both laboratory and clinical settings as a treatment for meconium aspiration syndrome (MAS). Studies in animal models of MAS have affirmed that dilute surfactant lavage can remove meconium from the lung, with resultant improvement in lung function. In human infants both non-randomised studies and two randomised controlled trials have demonstrated a potential benefit of dilute surfactant lavage over standard care. The largest clinical trial, performed by our research group in infants with severe MAS, found that lung lavage using two 15-ml/kg aliquots of dilute surfactant did not reduce the duration of respiratory support, but did appear to reduce the composite outcome of death or need for extracorporeal membrane oxygenation. A further trial of lavage therapy is planned to more precisely define the effect on survival. Innovative approaches to surfactant therapy have also extended to the preterm infant, for whom the more widespread use of continuous positive airway pressure (CPAP) has meant delaying or avoiding administration of surfactant. In an effort to circumvent this problem, less invasive techniques of bolus surfactant therapy have been trialled, including instillation directly into the pharynx, via laryngeal mask and via brief tracheal catheterisation. In a recent clinical trial, instillation of surfactant into the trachea using a flexible feeding tube was found to reduce the need for subsequent intubation. We have developed an alternative method of brief tracheal catheterisation in which surfactant is delivered via a semi-rigid vascular catheter inserted through the vocal cords under direct vision. In studies to date, this technique has been relatively easy to perform, and resulted in rapid improvement in lung function and reduced need for

  9. Novel Highly Flexible Wormlike Micelles Formed by Cetylpyridinium Chloride and Trioxyethylene Monododecyl Ether Surfactants

    Directory of Open Access Journals (Sweden)

    Firoz Kapadia


    Full Text Available The impact of small nonionic hydrophobic molecule, trioxyethylene monododecyl ether (C12EO3, on the viscoelastic properties of aqueous solutions of cetylpyridinium chloride (CPC is studied. As the C12EO3 concentration increases, the viscosity passes through a maximum. Dynamic rheological measurements revealed a comprehensive picture of how C12EO3 affects the different length scales in the entangled wormlike micelles. Increase in the viscosity can normally be caused by insertion of amphiphilic C12EO3 molecules into the cationic surfactant (CPC layer, or micellar swelling, caused by solubilization of very hydrophobic molecules in the micellar core. The partial phase behavior and rheology of this mixed surfactant systems is studied.

  10. Surfactant-thermal method to synthesize a new Zn(II)-trimesic MOF with confined Ru(bpy){sub 3}{sup 2+} complex

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Gao, Junkuo, E-mail: [The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Wang, Jiangpeng; Qian, Xuefeng [The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Song, Ruijing; Cui, Yuanjing; Yang, Yu [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Qian, Guodong, E-mail: [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China)


    A surfactant-thermal method was used to prepare a new zinc-1,3,5-benzentricarboxylate-based metal-organic framework (ZJU-100) with confined Ru(bpy){sub 3}{sup 2+} (RuBpy) complex by using surfactant PEG 400 as reaction medium. The RuBpy molecules were encapsulated between the 2-D sheets in ZJU-100. ZJU-100 showed bathochromic shift in the steady-state emission spectrum and increased emission lifetimes relative to RuBpy molecules. The extended lifetime is attributed to the reduced nonradiative decay rate due to the stabilization of RuBpy within the rigid MOF framework. These results represent the first example of MOF with confined complex synthesized by surfactant, indicating that the surfactant-thermal method could offer exciting opportunities for preparing new MOFs host/guest materials with novel structures and interesting luminescent properties. - Graphical abstract: A surfactant-thermal method was used to prepare a new zinc-1,3,5-benzentricarboxylate-based metal-organic framework (ZJU-100) with confined Ru(bpy){sub 3}{sup 2+} (RuBpy) complex by using surfactant PEG 400 as reaction medium. - Highlights: • Surfactant-thermal synthesis of crystalline metal-organic framework host/guest materials. • RuBpy molecules were encapsulated between the 2-D sheets of MOFs. • Extended lifetime is observed due to the stabilization of RuBpy within the rigid MOF framework.

  11. Adsorption at the biocompatible α-pinene-water interface and emulsifying properties of two eco-friendly surfactants. (United States)

    Trujillo-Cayado, Luis Alfonso; Ramírez, Pablo; Alfaro, María Carmen; Ruíz, Manuela; Muñoz, José


    In this contribution, we provide an accurate characterization at the α-pinene/water interface of two commercial polyoxytheylene glycerol ester surfactants which differ in the number of ethylene oxide (EO) groups, comprising a systematic analysis of interfacial pressure isotherms, dynamic curves, interfacial rheology and emulsifying properties. Polyoxyethylene glycerol esters derived from cocoa oil are non-ionic surfactants obtained from a renewable source which fulfill the environmental and toxicological requirements to be used as eco-friendly emulsifying agents. α-Pinene is a renewable biosolvent completely insoluble in water, which could find numerous applications. Interfacial rheology and equilibrium interfacial pressure data fitted a rigorous reorientation model that assumes that the surfactant molecules, when adsorbed at the interface, can acquire two orientations. The surfactant with the highest number of EO groups (Levenol C201) turned out to be more surface active at the α-pinene/water interface. In addition, the surfactant with the lowest number of EO groups (Levenol H&B) is solubilized into the adjacent oil phase. Slightly concentrated α-pinene emulsions were obtained using both surfactants. Nevertheless, more stable α-pinene emulsions with smaller droplet sizes and lower polidispersity were obtained when Levenol C201 was used as emulsifier instead of Levenol H&B. The systematic characterization presented in this work provides important new findings on the interfacial and emulsifying properties of polyoxytheylene glycerol ester surfactants, which can be applied in the rational development of new biocompatible products. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Prediction on Critical Micelle Concentration of Nonionic Surfactants in Aqueous Solution: Quantitative Structure-Property Relationship Approach

    Institute of Scientific and Technical Information of China (English)

    王正武; 黄东阳; 宫素萍; 李干佐


    In order to predict the critical micelle concentration (cmc) of nonionic surfactants in aqueous solution, a quantitative structure-property relationship (QSPR) was found for 77 nonionic surfactants belonging to eight series. The best-regressed model contained four quantum-chemical descriptors, the heat of formation (△H), the molecular dipole moment (D), the energy of the lowest unoccupied molecular orbital (ELUMO) and the energy of the highest occupied molecular orbital (EHOMO) of the surfactant molecule; two constitutional descriptors, the molecular weight of surfactant (M) and the number of oxygen and nitrogen atoms (nON ) of the hydrophilic fragment of surfactant molecule; and one topological descriptor, the Kier & Hall index of zero order (KH0) of the hydrophobic fragment of the surfactant. The established general QSPR between Ig (cmc) and the descriptors produced a relevant coefficient of multiple determination: R2=0.986. When cross terms were considered, the corresponding best model contained five descriptors ELUMO, D,KH0, M and a cross term nON·KH0, Which also produced the same coefficient as the seven-parameter model.

  13. Lycopene recovery from tomato peel under mild conditions assisted by enzymatic pre-treatment and non-ionic surfactants. (United States)

    Papaioannou, Emmanouil H; Karabelas, Anastasios J


    The tomato processing industry generates large quantities of tomato peel residues, usually creating environmental problems. These residues are a significant source of lycopene, thus providing an attractive alternative for profitable handling of these otherwise problematic by-products. The enzymatic pretreatment of these residues for lycopene recovery has already been employed, although the use of surfactants for enhancing the recovery has not been examined so far. The enzymatic pretreatment of tomato peels, using two commercially available pectinolytic enzyme preparations, was evaluated suggesting that there is an optimum pretreatment time of about 1 h, enzyme amount 250 Units/mL and no significant pH influence. Lycopene surfactant - assisted extraction was further investigated, showing that, among eight surfactants used, the most suitable was "Span 20", with an optimum ratio of 6-7 surfactant molecules per lycopene molecule. Sequential enzymatic pretreatment and surfactant-assisted extraction (30 min for each step) was evaluated leading to an improved lycopene extraction yield, with a somewhat smaller surfactant molar ratio (i.e. 4-5). In the latter case, the yield of lycopene recovery was almost four times greater compared to just 1 hr enzymatic pretreatment, and was approximately ten times greater compared to the recovery from untreated peels. Furthermore, such lipophilic compound recovery, avoiding the use of organic solvents, is environmentally attractive and ensures direct lycopene use in the food and cosmetics industries.

  14. Surfactant Adsorption: A Revised Physical Chemistry Lab (United States)

    Bresler, Marc R.; Hagen, John P.


    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  15. Surfactant effects on soil aggregate tensile strength (United States)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  16. Removal of petroleum aromatic hydrocarbons by surfactant-modified natural zeolite: the effect of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Torabian, Ali; Seifi, Laleh; Bidhendi, Gholamreza Nabi; Azimi, Ali Akbar [Faculty of the Environment, University of Tehran (Iran); Kazemian, Hossein [SPAG Zeolite R and D Group, Technology Incubation Centre, Science and Technology Park of Tehran University, Tehran (Iran); Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario (Canada); Ghadiri, Seid Kamal [Department of Environmental Health Engineering, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran (Iran)


    Monoaromatic hydrocarbons including benzene, toluene, ethylbenzene and xylene isomers (BTEX) are a very important category of water pollutants. These volatile compounds are very hazardous because of their fast migration in soil and water bodies and their acute and chronic toxicities when inhaled or ingested, especially benzene which is a known carcinogenic molecule. In this study, a natural zeolite (i. e., clinoptilolite-rich tuffs) was modified by two cationic surfactants (i. e., hexadecyltrimethyl ammonium chloride (HDTMA-Cl), and N-cetylpyridinium bromide (CPB)). The prepared adsorbents were then characterized, and their adsorptive capabilities for BTEX examined at different experimental conditions. The results of adsorption tests at 24 h revealed that the adsorption capacity of the modified zeolites improved by increasing the surfactant loading (i. e., less than the critical micelle concentration (CMC), to higher than the CMC), which caused an increase in sorption capacity from 60 to 70% for HDTMA-modified samples, and from 47 to 99% for CPB-modified zeolite. Adsorption kinetic tests showed the optimum contact time was 48 h with an average BTEX removal of 90 and 93% for HDTMA-modified and CPB-modified zeolite, respectively. Results showed that by increasing of pH from 3 to 11, the sorption capacity of the adsorbent decreased markedly from 97 to 75%. Analyzing the influence of temperature showed that the adsorption efficiency of adsorbents for benzene reduced from 93% at 20 C to 10% at 4 C. However, the influence of temperature on other compounds was not remarkable. Overall, CPB-modified zeolite exhibited higher selectivity toward BTEX compounds at optimum experimental conditions. Although commercial powder activated carbon (PAC) showed a higher capacity for all BTEX compounds and faster adsorption kinetics, the adsorption capacity of the CPB-modified zeolite at optimized conditions was competitive with PAC results. (Abstract Copyright [2010], Wiley Periodicals

  17. Metathesis depolymerization for removable surfactant templates.

    Energy Technology Data Exchange (ETDEWEB)

    Zifer, Thomas (Sandia National Laboratories, Livermore, CA); Wheeler, David Roger; Rahimian, Kamayar; McElhanon, James Ross (Sandia National Laboratories, Livermore, CA); Long, Timothy Michael; Jamison, Gregory Marks; Loy, Douglas Anson (Los Alamos National Laboratories, Los Alamos, NM); Kline, Steven R. (National Institute of Standards and Technology, Gaithersburg, MD); Simmons, Blake Alexander (Sandia National Laboratories, Livermore, CA)


    Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

  18. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...... both for complex surfactant systems as well as for oil and brine systems. It is widely accepted that an increase in oil recovery can be obtained through flooding, whether it is simple waterflooding, waterflooding where the salinity has been modified by the addition or removal of specific ions (socalled...... “smart” waterflooding) or surfactant flooding. High pressure experiments have been carried out in this work on a surfactant system (surfactant/ oil/ brine) and on oil/ seawater systems (oil/ brine). The high pressure experiments were carried out on a DBR JEFRI PVT cell, where a glass window allows...

  19. Under-water superoleophobic Glass: Unexplored role of the surfactant-rich solvent (United States)

    Waghmare, Prashant R.; Das, Siddhartha; Mitra, Sushanta K.


    Preparing low energy liquid-repellant surfaces (superhydrophobic or superoleophobic) have attracted tremendous attention of late. In all these studies, the necessary liquid repellency is achieved by irreversible micro-nano texturing of the surfaces. Here we show for the first time that a glass surface, placed under water, can be made superoleophobic (with unprecedented contact angles close to 180 degrees and roll off angles only a few fractions of 1 degree) by merely changing the surfactant content of the water medium in which the oil (immiscible in water) has been dispersed. Therefore, we propose a paradigm shift in efforts to achieve liquid-repellant systems, namely, altering the solvent characteristics instead of engineering the surfaces. The effect occurs for a surfactant concentration much larger than the critical micelle concentration, and is associated to strong adsorption of surfactant molecules at the solid surface, triggering an extremely stable Cassie-Baxter like conformation of the oil droplets.

  20. Interactions of a zwitterionic thiophene-based conjugated polymer with surfactants

    DEFF Research Database (Denmark)

    Costa, Telma; De Azevedo, Diego; Stewart, Beverly;


    In this paper we investigate the optical and structural properties of a zwitterionic poly[3-(N-(4-sulfonato-1-butyl)-N,N-diethylammonium)hexyl-2,5-thiophene] (P3SBDEAHT) conjugated polyelectrolyte (CPE) and its interaction in water with surfactants, using absorption, photoluminescence (PL......), electrical conductivity, molecular dynamics simulations (MDS) and small-angle X-ray scattering (SAXS). Different surfactants were studied to evaluate the effect of the head group and chain length on the self-assembly. PL data emphasize the importance of polymer-surfactant electrostatic interactions...... CAPB molecules are associated with the polymer. For molar ratios (in terms of the polymer repeat unit) >1 the SAXS interference maximum of the complexes resembles that of pure CAPB thus suggesting ongoing phase segregation in the formation of a "pure" CAPB phase....

  1. Under-water superoleophobic glass: unexplored role of the surfactant-rich solvent. (United States)

    Waghmare, Prashant R; Das, Siddhartha; Mitra, Sushanta K


    Preparing low energy liquid-repellant surfaces (superhydrophobic or superoleophobic) have attracted tremendous attention of late. In all these studies, the necessary liquid repellency is achieved by irreversible micro-nano texturing of the surfaces. Here we show for the first time that a glass surface, placed under water, can be made superoleophobic (with unprecedented contact angles close to 180 degrees and roll off angles only a few fractions of 1 degree) by merely changing the surfactant content of the water medium in which the oil (immiscible in water) has been dispersed. Therefore, we propose a paradigm shift in efforts to achieve liquid-repellant systems, namely, altering the solvent characteristics instead of engineering the surfaces. The effect occurs for a surfactant concentration much larger than the critical micelle concentration, and is associated to strong adsorption of surfactant molecules at the solid surface, triggering an extremely stable Cassie-Baxter like conformation of the oil droplets.

  2. Characterization of Particulate Matter Transport across the Lung-Surfactant Barrier using Langmuir Monolayers (United States)

    Eaton, Jeremy; Dennin, Michael; Levine, Alex; George, Steven


    We investigate the transport of particulate matter acros the lung using a monolayer of bovine lung surfactant tagged with NBD in conjunction with alveolar lung cells below the air-water interface. The monolaye dynamically compressed and expanded to induce phase transitions as well as buckling and folding. Polystyrene spheres ranging from 20 to 500 nm in diameter were tagged with fluorescent molecules and deposited on the monolayer. We will present results of preliminary studies of the transport of beads from the air-water surface to the lung cells through the monolayer. Characterization of the transfer will focus on differential fluorescence microscopy to distinguish uncoated beads from beads from beads coated with surfactant monolayers. The presence or absence of surfactant associated with the beads provides insight into potential transfer mechanisms and will serve as an input into models of the bead transfer. We gladly acknowledge the support of NSF grant DMR-1309402.

  3. Aqueous Foams Stabilized by Hydrophilic Silica Nanoparticles via In-Situ Physisorption of Nonionic TX100 Surfactant

    Directory of Open Access Journals (Sweden)

    Suriatie Yusuf


    Full Text Available This paper present the study of aqueous CO foam prepared 2 by a mixtures hydrophilic silica nanoparticles and non-ionic Triton X100, TX100, surfactant. The synergistic effects of the mixture on stabilizing the CO2 foam were inferred into few key parameters namely; particles and surfactant concentration, adsorption of surfactant onto the particles via surface tension and adsorption isotherm, foam lifetime and, the size of the bubbles produced. It was found that the adsorption behaviour of TX100 on silica surface exhibit a particular characteristics depend on the concentration of silica, high total surface area available leads to high adsorptionof surfactant molecules. The synergetic performance of silica/TX100 in stabilizing foam can be observed at low (0.01% and intermediate (0.1% concentration of TX100. Lower concentration required low silica concentration while the intermediate concentration required high silica fraction in the dispersion to stabilize the foam.

  4. Fibrinogen stability under surfactant interaction. (United States)

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M


    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Surfactant replacement therapy--economic impact. (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S


    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  6. Different effects of surfactant proteins B and C - implications for development of synthetic surfactants. (United States)

    Curstedt, Tore; Johansson, Jan


    Treatment of premature newborn rabbits with synthetic surfactants containing a surfactant protein C analogue in a simple phospholipid mixture gives similar tidal volumes as treatment with poractant alfa (Curosurf(R)) but ventilation with a positive end-expiratory pressure (PEEP) is needed for this synthetic surfactant to stabilize the alveoli at end-expiration. The effect on lung gas volumes seems to depend on the structure of the peptide since treatment with a synthetic surfactant containing the 21-residue peptide (LysLeu(4))(4)Lys (KL(4)) gives low lung gas volumes in experiments also performed with PEEP. Surfactant preparations containing both surfactant proteins B and C or their analogues prevent alveolar collapse at end-expiration even if ventilated without PEEP. Treatment of premature newborn rabbits with different natural surfactants indicates that both the lipid composition and the proteins are important in order to stabilize the alveoli at end-expiration. Synthetic surfactants containing two peptides may be able to replace natural surfactants within the near future but more trials need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants.

  7. Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

    Directory of Open Access Journals (Sweden)

    Alexei Birkun


    Full Text Available Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium in vitro and to identify appropriate combination(s for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa. Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia.

  8. Research on the Influence of the Type of Surfactant and Concentrator in Aqueous Dispersion of Pigments. (United States)

    Makarewicz, Edwin; Michalik, Agnieszka


    This work reports tests performed to evaluate the stability of aqueous dispersions of inorganic oxide pigments with different specific surface areas, with the use of anionic and non-ionic surfactants and concentrators. Color mixtures of oxide compounds of blue, green, olive and brown with the unit cell spinel structure were used as pigments. The sodium salt of sulfosuccinic acid monoester, oxyethylenated nonylphenol and ethoxylated derivatives of lauryl alcohol, fatty alcohol and fatty amine were used as surfactants. The concentrators used were: poly(vinyl alcohol), the sodium salt of carboxymethyl cellulose as well as a water-based polyurethane oligomer. The highest dispersion efficiency was found for dispersed systems in which surfactant and concentrator were incorporated in the formula. The one containing the sodium salt of carboxymethyl cellulose or polyurethane oligomer with ethoxylated saturated fatty alcohol or fatty amine was found to be the most efficient. It was discovered that a higher dispersion efficiency corresponds to pigments with larger specific surface. The efficiency is also found to improve when the concentrator is an acrylic polymer or copolymer made up of two acrylic species. In this case, the concentrator interaction with the surfactant is more effective if the value of its boundary viscosity number is higher. This observation confirms the existence of interactions between macro-chains of the concentrator and surfactant molecules forming micelles with the pigment particles.

  9. Temperature dependence of transport and equilibrium properties of alkylpyridinium surfactants in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Mohsin Ahmad; Dar, Aijaz Ahmed; Amin, Adil; Rashid, Peer Irfan [Department of Chemistry, University of Kashmir, Hazratbal Srinagar - 190006, J and K (India); Rather, Ghulam Mohammad [Department of Chemistry, University of Kashmir, Hazratbal Srinagar - 190006, J and K (India)], E-mail:


    Conductivity measurements at varying concentrations and temperatures for two alkyl pyridinium surfactants-dodecylpyridinium chloride (DPC) and cetylpyridinium chloride (CPC) in aqueous medium have been performed. The resulting data in the lower concentration range were used for the determination of limiting transport parameters of the surfactant ions. Temperature dependence of limiting ion conductance {lambda}{sub +(surf.cation)}{sup 0} and limiting ion mobility u{sub +(surf.cation)}{sup 0} of surfactant ions were used for determination of standard partial molar enthalpy of activation for ion migration ({delta}H{sub {lambda}{sub +0}}) and the change in activation energy for translational mobility ({delta}E{sub trans}{sup 0}) of water molecules from surfactant ion hydration shell. The conductivity data at higher concentrations were used for determination of equilibrium micellar parameters, viz. critical micelle concentration (cmc), degree of counter ion dissociation ({alpha}), and aggregation number (n). Comparison of such parameters of the two surfactants at different temperatures was made in the light of molecular structure, ion-solvent, ion-ion, and solvent-solvent interactions.

  10. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation. (United States)

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T


    Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.

  11. Pulmonary surfactant function studied with the pulsating bubble surfactometer (PBS) and the capillary surfactometer (CS). (United States)

    Enhorning, G


    Two instruments, the pulsating bubble surfactometer (PBS) and the capillary surfactometer (CS), were constructed for a study of pulmonary surfactant's physical properties. The instruments study spherical surfaces as in alveoli (PBS) and cylindrical surfaces as in terminal conducting airways (CS). Phospholipids, pulmonary surfactant's main components, are amphiphilic and, therefore, spontaneously form a film at air-liquid interfaces. When the film in the PBS is compressed to a reduced area during 'expiration', the molecules come closer together. Thereby, a high surface pressure develops, causing surface tension to be reduced more than bubble radius. If these conditions, observed with the PBS are analogous in lungs, alveolar stability would be promoted. The CS was developed for a study of how surfactant has ability to maintain patency of narrow conducting airways. Provided adsorption is extremely fast, a surfactant film will line the terminal conducting airway as soon as liquid blocking the airway has been extruded. During expiration that film will develop high surface pressure (=low surface tension). This will counteract the tendency for liquid to accumulate in the airway's most narrow section. If surfactant is dysfunctioning, liquid is likely to accumulate and block terminal airways. Airway resistance would then increase, causing FEV(1) to be reduced.

  12. Surfactant adsorption study in sandstone for enhanced oil recovery; Estudo da adsorcao de tensoativos em arenitos para recuperacao avancada de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Fabiola D.S.; Santanna, Vanessa C.; Barros Neto, Eduardo L. de; Dutra Junior, Tarcilio V.; Dantas Neto, Afonso A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Garnica, Alfredo I.C. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Tecnologia Quimica e de Alimentos; Lucena Neto, Marciano [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Dantas, Tereza N.C. [Faculdade Natalense para o Desenvolvimento do RN (FARN), Natal, RN (Brazil)


    Adsorption of surfactants from aqueous solutions in porous media is very important in Enhanced Oil Recovery (EOR) of oil reservoirs because surfactant loss due to adsorption on the reservoir rocks weakens the effectiveness of the injected chemical slug in reducing oil-water tension (IFT) and makes the process uneconomical. In this paper, two nonionic surfactants, such as alkyl phenol polyoxyethylene, with different ethoxylation degrees were studied, ENP95 and ENP150. The results of flow experiments of surfactant solutions in porous media showed that adsorption was higher for ENP95 because it has smaller ethoxylation degree than ENP150. This occurs what with increasing length of the head group, the molecules become more hydrophilic and, in associated structures, the steric hindrance between the head groups increases. Generally speaking, adsorption appears to be a cooperative process involving lateral interaction between surfactant and weak interaction with the solid surface. (author)

  13. Synthesis and Characterization of a Novel Addition-Fragmentation Reactive Surfactant (TRANSURF) for Use in Free-Radical Emulsion Polymerizations. (United States)

    Wilkinson, Terence S.; Boonstra, Armin; Montoya-Goñi, Amaia; van Es, Steven; Monteiro, Michael J.; German, Anton L.


    The synthesis and characterization of a new type of chain-transfer-active surfactant (i.e., TRANSURF) is reported. The compound was designed on the basis of the chemistry of macromers, which undergo free-radical chain-transfer addition-fragmentation reactions. In effect this allows incorporation of the surfactant molecule into the polymer backbone, and thus reduces the influence of surfactant migration during film formation. Surfactants of this type, containing two hydrophilic head groups, can have a marked influence on the polymer and latex properties (e.g., molecular weight distributions and particle size). Characterization of the physical properties of this surfactant was therefore carried out using surface tension, conductivity, and fluorescence techniques. Because of the surfactant's unusual "bolaform" (alpha, omega) (Zana, R., in "Structure-Performance Relationships in Surfactants" (K. Esumi and M. Ueno, Eds.), Surfactant Science Series 70, Dekker, New York, 1997) structure the micelle formation process has been found to be quite different from that of the conventional surfactant, sodium dodecyl sulfate (SDS). From the surface tension data a flat molecular conformation was evident at 1x10(-3) mol dm(-3) (131 Å(2) surface area), which we assumed to correspond to the low aggregation number of premicellar aggregates. There is evidence to suggest formation of a larger volume of the microdomains in these micelles compared to that in SDS. At higher TRANSURF concentrations, however, we find no clear indication of a switch to a "wicket"-type conformation, although such conformational changes cannot be ruled out. Copyright 2001 Academic Press.

  14. On-line capillary electrophoresis enrichment by combining chitosan trapping with surfactant assisted sample stacking for the ultratrace determination of organic acids in Plateau alfalfa roots. (United States)

    Li, Xi; Ju, Yuyun; Xu, Yinyin; Wang, Weifeng; Dong, Yalei; Ma, Yanhua; Chen, Xingguo


    In this paper, four organic acids constituents of Plateau alfalfa roots have been identified and detected by a novel capillary electrophoresis (CE) strategy which combined chitosan (CS) trapping and cetyltrimethyl ammonium bromide (CTAB) assisted sample stacking. Under the optimized condition, organic acids, i.e., aconitic acid, gallic acid, citric acid and l-malic acid were concentrated and separated within 3 min. Validation parameters of this method (such as detection limits, linearity and precision) were also investigated and the limit of detection (LOD) was 2.41-53.9 ng mL(-1). Linearity was obtained over the magnitude range of 5-4000 ng mL(-1) approximately for different organic acids and 3×10(2)-1.5×10(4) folds enrichment was achieved. The method has been applied to the determination of organic acids in roots of normal grown Plateau alfalfa and stressing affected Plateau alfalfa. Satisfactory results and recoveries were obtained in the analysis without costly and complicated sample pretreatment.

  15. Fluorescence emission of pyrene in surfactant solutions. (United States)

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih


    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  16. Tunable, antibacterial activity of silicone polyether surfactants. (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A


    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity.

  17. A study of surfactant-assisted waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J F; Harwell, J H


    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  18. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler


    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  19. Influence of surfactants in forced dynamic dewetting. (United States)

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen


    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s(-1) the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  20. Adsorption of non-ionic surfactants on hydrophobic and hydrophilic carbon surfaces. (United States)

    Soria-Sánchez, M; Maroto-Valiente, A; Guerrero-Ruiz, A; Nevskaia, D M


    The adsorption from aqueous solutions of a series of non-ionic surfactants (TX-114, TX-100, TX-165 and TX-305, where the ethoxylation degree is increasing in the series) on a non-microporous carbon surface, that is a high surface area graphite (GT), and on a mainly microporous activated carbon (NT) has been comparatively studied. Also the initially hydrophobic GT and NT surfaces have been modified by oxidation treatments in order to achieve partially hydrophilic carbon materials (GTox and NTox samples). The adsorption results reveal that for GT sample below the critical micellar concentrations (cmc) of surfactants practically the whole surface is covered by monomers. For NT there are steric hindrance limitations, so the surfactant molecules are adsorbed only on micropores of sizes larger than 8A. When oxygen surface groups are introduced on the carbonaceous surfaces, the adsorption behaviour is again different for both materials. Thus, for GTox the adsorbed amounts below the cmc decrease probably due to withdrawal effect of the oxygen surface groups. On the contrary, the adsorbed amounts above the cmc slightly increase with regard to bare graphite, possibly due to an improved formation of micelles. In the case of NTox the adsorbed uptakes below and above cmc increase remarkably in comparison with NT sample, which can be explained by some specific interactions of the surfactants molecules with oxygen surface groups inside the micropores.

  1. Surfactant-Assisted Coal Liquefaction (United States)

    Hickey, Gregory S.; Sharma, Pramod K.


    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  2. Gemini surfactants from natural amino acids. (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa


    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  3. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)


    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  4. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)


    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  5. Studies on the electrocapillary curves of anionic surfactants in presence of non-ionic surfactants. (United States)

    Bembi, R; Goyal, R N; Malik, W U


    Polyoxyethylated non-ionic surfactants such as Tween 20, Tween 40, Nonidet P40 and Nonex 501 have been supposed to be associated with cationic characteristics. Studies on the effect of these surfactants on the electrocapillary curves of the anionic surfactants Aerosol IB, Manaxol OT and sodium lauryl sulphate (SLS), show that the electrocapillary maxima shift towards positive potentials. The order of adsorption of the anionic surfactants is SLS > Manaxol OT > Aerosol IB while the shift in maxima is in the order Aerosol IB ~ Manaxol OT > SLS which confirms association of cationic characteristics with the micelles of these non-ionic surfactants. The magnitude of the shift in electrocapillary maxima is Nonex 501 > Nonidet P40 > Tween 20 > Tween 40 which may be the order of magnitude of the positive charge carried by these non-ionic surfactants.

  6. A Glimpse of Our Journey into the Design of Optical Probes in Self-assembled Surfactant Aggregates. (United States)

    Dey, Nilanjan; Bhattacharya, Santanu


    Dynamic self-assembling amphiphilic surfactant molecules, popularly known as "micelles", have received widespread attention, due to their ability to modulate the photophysical properties of various organic dyes upon encapsulation. Along with their well-known use as cleaning agents, catalysts in organic reactions, and even for drug delivery purposes, these surfactant assemblies also show promising pertinence in the recognition of both ionic and nonionic targeted analytes. Low micropolarity and relatively hydrophobic environments promote their interaction with ionic analytes, whereas neutral species mostly affect the aggregation pattern of the probe molecules upon partitioning inside the micellar hydrophobic milieu. The environment-sensitive nature of micelle-based self-assembled probes also prompts us to devise new sensor arrays for the recognition of multiple analytes. While this account will largely focus on our own work in developing surfactant-triggered self-assembled sensors, our findings have been placed in the context of the relevant contributions from others during their strategic evolution.

  7. Synthesis of novel quaternary ammonium surfactants containing adamantane

    Institute of Scientific and Technical Information of China (English)

    Jian Wei Guo; Xing Zhong; Hua Zhu; Li Juan Feng; Ying De Cui


    A series of novel quaternary ammonium surfactants containing adamantane were designed and synthesized from 1-adamantanecarboxylic acid.The structures of target surfactants were confirmed by 1H NMR,elements analysis and FTIR.Surface properties of these surfactants were investigated.Due to the lipophilicity of adamantane,the critical micelle concentration (CMC) and C20 values of the synthesized quaternary ammonium surfactants are lower than that of conventional quaternary ammonium surfactants.

  8. The ability of single-chain surfactants to emulsify an aqueous-based liquid crystal oscillates with odd-even parity of alkyl-chain length. (United States)

    Varghese, Nisha; Shetye, Gauri S; Yang, Sijie; Wilkens, Stephan; Smith, Robert P; Luk, Yan-Yeung


    The physical properties of many organic molecules often oscillate when the number of carbons in their aliphatic chains changes from odd to even. This odd-even effect for single-chain surfactants in solution is rarely observed. Here, we report the ability of single-chain surfactants to emulsify a class of non-amphiphilic organic salts, disodium cromoglycate (5'DSCG) oscillates as a function of the odd or even number of the aliphatic carbons. This system provides a water-in-oil-in-water emulsion, in which aqueous droplets of 5'DSCG in liquid crystal phases are coated with single-chain surfactants in a bulk carrying aqueous solution. For both surfactants of [Formula: see text] and CH3(CH2)nCOO(-)Na(+), the ability to emulsify 5'DSCG molecules in water is stronger for surfactants with an odd number of sp(3)-hybridized carbon atoms in the aliphatic chains than those with an even number. This observed odd-even effect is consistent with the notion that conventional micelles possess a core of randomly arranged surfactant hydrocarbon tails. However, this water-in-oil-in-water resembles a vesicle system in which the surfactants assemble in a highly ordered structure that separates two aqueous systems. These new self-assembled phases have potential application in the formulation and design of new organic soft materials.

  9. Surfactant solutions and porous substrates: spreading and imbibition. (United States)

    Starov, Victor M


    nitrocellulose membranes. J. Colloid Interface Sci. 264 (2003) 481-489]: the overall time of the spreading of drops of SDS solution over dry thin porous substrates decreases with the increase of surfactant concentration; the difference between advancing and hydrodynamic receding contact angles decreases with the surfactant concentration increase; the constancy of the contact angle during the third stage of spreading has nothing to do with the hysteresis of contact angle, but determined by the hydrodynamic reasons. It is shown using independent spreading experiments of the same drops on nonporous nitrocellulose substrate that the static receding contact angle is equal to zero, which supports the conclusion on the hydrodynamic nature of the hydrodynamic receding contact angle on porous substrates. In Section 3, a theory is developed to describe a spontaneous imbibition of surfactant solutions into hydrophobic capillaries, which takes into account the micelle disintegration and the concentration decreasing close to the moving meniscus as a result of adsorption, as well as the surface diffusion of surfactant molecules [N.V. Churaev, G.A. Martynov, V.M. Starov, Z.M. Zorin, Colloid Polym. Sci. 259 (1981) 747]. The theory predictions are in good agreement with the experimental investigations on the spontaneous imbibition of the nonionic aqueous surfactant solution, Syntamide-5, into hydrophobized quartz capillaries. A theory of the spontaneous capillary rise of surfactant solutions in hydrophobic capillaries is presented, which connects the experimental observations with the adsorption of surfactant molecules in front of the moving meniscus on the bare hydrophobic interface [V.J. Starov, Colloid Interface Sci. 270 (2003)]. In Section 4, capillary imbibition of aqueous surfactant solutions into dry porous substrates is investigated from both theoretical and experimental points of view in the case of partial wetting [V. Straov, S. Zhdanov, M. Velarde, J. Colloid Interface Sci. 273 (2004

  10. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  11. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D. (United States)

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa


    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+) and Ig-Hepta(-/-) mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space.

  12. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants. (United States)

    Goldsipe, Arthur; Blankschtein, Daniel


    In article 1 of this series, we developed a molecular-thermodynamic (MT) theory to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. In this article, we extend the MT theory to model mixtures containing a pH-sensitive surfactant. The MT theory was validated by examining mixtures containing both a pH-sensitive surfactant and a conventional surfactant, which effectively behave like ternary surfactant mixtures. We first compared the predicted micellar titration data to experimental micellar titration data that we obtained for varying compositions of mixed micelles containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) mixed with either a cationic surfactant (dodecyltrimethylammonium bromide, C12TAB), a nonionic surfactant (dodecyl octa(ethylene oxide), C12E8), or an anionic surfactant (sodium dodecyl sulfate, SDS) surfactant. The MT theory accurately modeled the titration behavior of C12DAO mixed with C12E8. However, C12DAO was observed to interact more favorably with SDS and with C12TAB than was predicted by the MT theory. We also compared predictions to data from the literature for mixtures of C12DAO and SDS. Although the pH values of solutions with no added acid were modeled with only qualitative accuracy, the MT theory resulted in quantitatively accurate predictions of solution pH for mixtures containing added acid. In addition, the predicted degree of counterion binding yielded a lower bound to the experimentally measured value. Finally, we predicted the critical micelle concentration (cmc) of solutions of two pH-sensitive surfactants, tetradecyldimethylamine oxide (C14DAO) and hexadecyldimethyl betaine (C16Bet), at varying solution pH and surfactant composition. However, at the pH values considered, the pH sensitivity of C16Bet could be neglected, and it was equivalently modeled as a zwitterionic surfactant. The cmc's predicted using the MT theory agreed well with the experimental

  13. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study. (United States)

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej


    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).

  14. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Zuzanna Pietralik

    Full Text Available The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration, they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp and siRNA (21 bp. The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16. On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain.

  15. Aggregation of sulfosuccinate surfactants in water

    Energy Technology Data Exchange (ETDEWEB)

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.


    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  16. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite. (United States)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik


    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading.

  17. CHARMM36 united atom chain model for lipids and surfactants. (United States)

    Lee, Sarah; Tran, Alan; Allsopp, Matthew; Lim, Joseph B; Hénin, Jérôme; Klauda, Jeffery B


    Molecular simulations of lipids and surfactants require accurate parameters to reproduce and predict experimental properties. Previously, a united atom (UA) chain model was developed for the CHARMM27/27r lipids (Hénin, J., et al. J. Phys. Chem. B. 2008, 112, 7008-7015) but suffers from the flaw that bilayer simulations using the model require an imposed surface area ensemble, which limits its use to pure bilayer systems. A UA-chain model has been developed based on the CHARMM36 (C36) all-atom lipid parameters, termed C36-UA, and agreed well with bulk, lipid membrane, and micelle formation of a surfactant. Molecular dynamics (MD) simulations of alkanes (heptane and pentadecane) were used to test the validity of C36-UA on density, heat of vaporization, and liquid self-diffusion constants. Then, simulations using C36-UA resulted in accurate properties (surface area per lipid, X-ray and neutron form factors, and chain order parameters) of various saturated- and unsaturated-chain bilayers. When mixed with the all-atom cholesterol model and tested with a series of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol mixtures, the C36-UA model performed well. Simulations of self-assembly of a surfactant (dodecylphosphocholine, DPC) using C36-UA suggest an aggregation number of 53 ± 11 DPC molecules at 0.45 M of DPC, which agrees well with experimental estimates. Therefore, the C36-UA force field offers a useful alternative to the all-atom C36 lipid force field by requiring less computational cost while still maintaining the same level of accuracy, which may prove useful for large systems with proteins.

  18. Preparation of nanocrystalline MgO by surfactant assisted precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Mehran, E-mail: [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Khajenoori, Majid; Nematollahi, Behzad [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)


    Highlights: {yields} Nanocrystalline magnesium oxide with high surface area. {yields} MgO prepared with surfactant showed different morphologies compared with the sample prepared without surfactant. {yields} MgO prepared with surfactant showed a plate-like shape. {yields} Refluxing temperature and time and the surfactant to metal molar ratio affect the textural properties of MgO. -- Abstract: Nanocrystalline magnesium oxide with high surface area was prepared by a simple precipitation method using pluronic P123 triblock copolymer (Poly (ethylene glycol)-block, Poly (propylene glycol)-block, Poly (ethylene glycol)) as surfactant and under refluxing conditions. The prepared samples were characterized by X-ray diffraction (XRD), N{sub 2} adsorption (BET) and scanning and transmission electron microscopies (SEM and TEM). The obtained results revealed that the refluxing time and temperature and the molar ratio of surfactant to metal affect the structural properties of MgO, because of the changes in the rate and extent of P123 adsorption on the prepared samples. The results showed that the addition of surfactant is effective to prepare magnesium oxide with high surface area and affects the morphology of the prepared samples. With increasing the P123/MgO molar ratio to 0.05 the pore size distribution was shifted to larger size. The sample prepared with addition of surfactant showed a plate-like shape which was completely different with the morphology of the sample prepared without surfactant. The formation of nanoplate-like MgO was related to higher surface density of Mg ions on the (0 0 1) plane than that on the other planes of the Mg(OH){sub 2} crystal. The (0 0 1) plane would be blocked preferentially by the adsorbed P123 molecules during the growing process of Mg(OH){sub 2} nanoentities and the growth on the (0 0 1) plane would be markedly restricted, and the consequence is the generation of nanoplate-like MgO. In addition, increase in refluxing temperature and time

  19. Formation at low surfactant concentrations and characterization of mesoporous MCM-41

    Institute of Scientific and Technical Information of China (English)

    陈晓银; 丁国忠; 陈海鹰; 李全芝


    At low concentrations of cetyltrimethylammonium bromide,all silica-based mesoporous materials with hexagonal phase have been synthesized via interactions between self-assembled surfactant molecule aggregates and aniomc silicate polymers.The resulting materials are characterized by XRD,FT-IR,solid state 29Si MAS NMR,thermal analysis and N2 adsorption-desorption measurements.After soluble ions are removed,the interactors between surfactant micelles and silicate polymers are reorganized and then form mesostructures 1 he hexagonal framework is sonsistent with amorphous silica gel.The structures of materials depend on the synthesis conditions Hydrothermal process improves the interactions between molecules and increases the degree of framework silicon atom polymerization The.surface area and the mesopore volume of the material prepared at 100℃ increase by 87% and 71 %,respectively,compared with those obtained at room temperature.

  20. Investigation of a polyether trisiloxane surfactant


    Michel, Amandine


    Thanks to their adaptability and high efficiency compared to traditional carbon based surfactants, silicone surfactants are a success in many different applications, from pesticides to cosmetics, polyurethane foam, textile and car care products. In spite of those numerous applications, no analytical method existed for their trace determination in environmental samples and no data have been available regarding their environmental occurrence and fate. An analytical method for the trace ana...

  1. Surfactant apoprotein in nonmalignant pulmonary disorders.


    Singh, G.; Katyal, S. L.


    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to l...

  2. Evaluation of Surfactant Effects on Newborns

    Directory of Open Access Journals (Sweden)

    N. Khalessi


    Full Text Available Introduction & Objective: One of the standard therapies in neonates with severe respiratory distress syndrome (RDS is surfactant administration in early course of therapy that cause reduction in mortality, pneumothorax and need to mechanical ventilation. In this study that was carried out in Aliasghar Hospital NICU in 1994-1995 & 2001-2002, the goal was to compare two groups of neonates with severe RDS that had been ventilated in the first 24 hours but one group had received surfactant and the other group (7 years ago was deprived of this substance. Materials & Methods: In our study, 36 neonates that received surfactant and 52 neonates with only mechanical ventilation therapy were compared. Data collected and analyzed using SPSS.Results: We found that mortality in patients with surfactant administration was significantly lower compared to the second group who did not receive surfactant. There were not any significant differences in incidences of HIV, pneumothorax, sepsis, and PDA and also course of hospitalization and need to ventilation between two groups. Conclusion: As a result, all of these findings reflect obligatory surfactant administration in sever RDS in NICU under observation of an educated expert.

  3. Nonlinear water waves with soluble surfactant (United States)

    Lapham, Gary; Dowling, David; Schultz, William


    The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.

  4. Performance of some surfactants as wetting agents

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, M.N.; El-Shanny, O.A.A. [Egyptian Petroleum Research Institute (EPRI), Cairo (Egypt). Evaluation and Analysis Dept.


    The wetting power of anionic surfactant: sodium dodecyl sulfate (SDS), and nonionic surfactants: polyoxyethelene(14)monolaurate [La(EO){sub 14}] and polyoxyethelene(14)monoeleate [OI(EO){sub 14}] has been studied to determine their performance as wetting agents. The study reveals that the nonionic compound with a long hydrophobic chain exhibits higher wettability than the shorter one when used at very low cocentrations (below CMC) and the reverse is shown with high concentrations (above CMC). the wetting power of the investigated surfactants increases as the CMC values increases. In case of the nonionic compounds and at surfactant concentrations equal their CMC values, OI(EO){sub 14} shows a higher wetting power than La(EO){sub 14} while is possesses a lower HLB value. The anionic surfactant shows an optimum wetting in comparison with the tested nonionic one. The wettability of all the investigated samples increases as the surface tension of their solutions increases to the allowed limit that can be reached in the presence of surfactant. (orig.)

  5. Spinodal Decomposition in Mixtures Containing Surfactants (United States)

    Melenekvitz, J.


    Spinodal decomposition in mixtures containing two immiscible liquids (A and B) plus surfactant was investigated using a recently developed (J. Melenkevitz and S. H. Javadpour, J. Chem. Phys., 107, 623 (1997).) 3-component Ginzburg-Landau model. The time dependent Ginzburg-Landau (TDGL) equations governing the evolution of structure were numerically integrated in 2-dimensions. We found the growth rate of the average domain size, R(t), decreased with increasing surfactant concentration over a wide range of relative amounts of A and B. This can be attributed to the surfactant accumulating at the growing interface between the immiscible liquids, which leads to a reduction in the surface tension. At late times, the growth rate was noticeably altered when thermal fluctuations were added to the numerical simulations. In this case, power law behavior was observed for R(t) at late times, R(t) ~ t^α, with the exponent α decreasing as the amount of surfactant increased. The dynamics at early times were determined by linearizing the TDGL equations about a uniformly mixed state. The growth rate at ealry times was found to be strongly dependent on the model parameters describing the surfactant miscibility in A and B and the surfactant strength. Comparison with recent measurements on SBR / PB mixtures with added PB-SBR diblock copolymer will also be presented.


    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty


    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Imbibition in an originally oil-wet 2D capillary is the fastest in the case of Alf-38 and slowest in the case of DTAB (among the surfactants studied). Force of adhesion studies and contact angle measurements show that greater wettability alteration is possible with these anionic surfactants than the cationic surfactant studied. The water imbibition rate does not increase monotonically with an increase in the surfactant concentration. A numerical model has been developed that fits the rate of imbibition. Plans for the next quarter include conducting simulation and imbibition studies.

  7. The Role of Surfactants in the Stability of NiO Nanofluids: An Experimental and DFT Study. (United States)

    Sánchez-Coronilla, Antonio; Navas, Javier; Aguilar, Teresa; Martín, Elisa I; Gallardo, Juan Jesús; Gómez-Villarejo, Mr Roberto; Carrillo-Berdugo, Mr Iván; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín


    This study shows an analysis of the stability of nanofluids based on a eutectic mixture of diphenyl oxide and biphenyl, which is used as a heat transfer fluid (HTF) in concentrating solar energy, and NiO nanoparticles. Two surfactants are used to analyse the stability of the nanofluids: benzalkonium chloride (BAC) and 1-octadecanethiol (ODT). From an experimental perspective, the stability is analysed by means of UV/Vis spectroscopy, particle size measurements through the dynamic light-scattering technique, and ζ-potential measurements. The results show that the stability of the nanofluids improves with the use of BAC. DFT calculations are performed to understand the role played by the surfactants. The interaction of the surfactants with both the fluid and the NiO (100) surface is studied. Quantum theory of atoms in molecules (QTAIM) analysis shows that hydrogen bridge interactions favour the stability of the fluid-surfactant mixture. The more stabilising NiO-surfactant interaction involves the Ni-H interaction of the -SH and -CH3 groups of ODT and BAC. Also, nanofluids with BAC are favoured over those with ODT, which is in agreement with experimental results. The structural and electronic effects of incorporating the surfactant onto the NiO (100) surface are shown by using electron localisation function analysis, the non-covalent interaction index and projected density of states.

  8. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations. (United States)

    Borysik, Antoni J


    The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.

  9. Phase equilibria in model surfactants forming Langmuir monolayers. (United States)

    Ramírez, E; Santana, A; Cruz, A; López, G E


    The study of Langmuir monolayers has generated the attention of researchers because of their unique properties and their not well understood phase equilibrium. These monolayers exhibit interesting phase diagrams where the unusual liquid-liquid equilibrium can be observed for a single component monolayer. Monte Carlo computer simulations in the virtual Gibbs ensemble were used to obtain the phase diagram of Langmuir monolayers. The liquid-vapor and liquid-liquid phase equilibria were considered by constructing the Cailletet-Mathias phase diagrams. By using the Ising model and the rectilinear approximations the identification of the critical properties for both equilibria was determined. These critical parameters were calculated as a function of the strength of the interaction between the surfactant molecules and the aqueous subphase. As a result, we have identified the coexistence between a liquid expanded state (LES)-vapor and the liquid condensed state-LES, in agreement with experimental and theoretical evidence in the literature. We obtained a clear separation of phases and a strong dependence on the strength of the solvent used. Namely, as the interaction between the solvent and the head of the surfactant increases, the critical properties also increase. Equilibrium states were characterized by computing thermodynamic quantities as a function of temperature and solvent strength.

  10. Drops in Space: Super Oscillations and Surfactant Studies (United States)

    Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Shi, Tao; Chen, X.; Holt, R. Glynn; Trinh, Eugene; Croonquist, Arvid; Thornton, Kathyrn C.; Sacco, Albert, Jr.; Coleman, Catherine; Leslie, Fred W.; Matthiesen, David H.


    An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995). The observation was precipitated by the action of an intense sound field which produced a deforming force on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion. Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character. Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a theory which relies on spherical symmetry to solve the momentum and mass transport equations.

  11. Factors affecting protein transfer into surfactant-isooctane solution: a case study of extraction behavior of chemically modified cytochrome c. (United States)

    Ono, T; Goto, M


    The extraction mechanism of proteins by surfactant molecules in an organic solvent has been investigated using a chemically modified protein. We conducted guanidylation on lysine residues of cytochrome c by replacing their amino groups with homoarginine to enhance the protein-surfactant interaction. Results have shown that guanidylated cytochrome c readily forms a hydrophobic complex with dioleyl phosphoric acid (DOLPA) through hydrogen bonding between the phosphate moiety and the guanidinium groups. Although improved protein-surfactant interaction activated the formation of a hydrophobic complex at the interface, it could not improve the protein transfer in isooctane. It has been established that the protein extraction mechanism using surfactant molecules is mainly governed by two processes: formation of an interfacial complex at the oil-water interface and the subsequent solubilization of the complex into the organic phase. In addition, a kinetic study demonstrated that guanidylation of lysine accelerated the initial extraction rate of cytochrome c. This fact implies that the protein transferability from aqueous phase into organic phase depends on the protein-surfactant interaction which can be modified by protein surface engineering.

  12. Silicone antifoam performance enhancement by nonionic surfactants in potato medium. (United States)

    Christiano, Steven P; Fey, Kenneth C


    The ability of a silicone antifoam to retard foaming in a liquor prepared from potatoes is enhanced by the addition of ethoxylated nonionic surfactants. The enhancement is non-linear for surfactant concentration, with all 12 surfactants tested possessing a concentration at which foam heights strongly diminish, referred to as the surfactant critical antifoaming concentration (SCAFC). SCAFCs vary between surfactants, with lower values indicating better mass efficiency of antifoaming enhancement. SCAFCs decrease with degree of ethoxylation and decrease with the hydrophilic-lipophilic balance for ethoxylated nonionic surfactants. Surfactant addition produces a mixed water-surface layer containing surfactant and surface-active components in the potato medium. Surface tension reduction does not correlate well with antifoam performance enhancement. A model is proposed where surfactant adsorption promotes desorption of surface-active potato medium components from the water surface. At the SCAFC, desorption is not complete, yet the rate of bubble rupture is sufficiently enhanced to provide excellent foam control.

  13. Novel strategy involving surfactant-polymer combinations for enhanced stability of aqueous teflon dispersions. (United States)

    Sharma, Mukesh; Bharatiya, Bhavesh; Mehta, Krupali; Shukla, Atindra; Shah, Dinesh O


    Among various polymers, the Teflon surface possesses extreme hydrophobicity (low surface energy), which is of great interest to both industry and academia. In this report, we discuss the stability of aqueous Teflon dispersions (particle size range of 100-3000 nm) formulated by a novel strategy that involves distinct combinations of surfactant and polymer mixtures for dispersion stabilization. As a first step, the hydrophobic Teflon particles were wetted using a range of surfactants (ionic, Triton, Brij, Tween, and Pluronic series) bearing different hydrophobic-lipophilic balance (HLB) and further characterized by contact angle and liquid penetration in packed powder measurements. The interaction between hydrophobic chains of surfactants and the Teflon particle surface is the driving force resulting in wetting of the Teflon particle surface. Further, these wetted particles in aqueous solutions were mixed with various polymers, for example, poly(vinyl alcohol) (PVA), polyvinylpyrrolidone (PVP), hydroxyethyl cellulose (HEC), and hydroxypropyl methyl cellulose (HPMC). The rate of sedimentation for the final dispersions was measured using a pan suspended into the dispersion from a transducer recording the increase in weight with time. A significant stability was noticed for Teflon particles suspended in surfactant + polymer mixtures, which was linearly proportional to the concentration of added polymer. The observed phenomenon can be possibly explained by molecular interactions between the hydrophobic chains of surfactant molecules and polar groups in the polymer architecture. Brij-O10 + HEC mixture was found to be the best surfactant-polymer combination for decreasing the sedimentation of the Teflon particles in the final dispersion. As measured by dynamic light scattering (DLS), the hydrodynamic volume of the Teflon particles increases up to ∼55% in the final formulation. These dispersions could be further explored for various technological applications such as

  14. Interactions of organic contaminants with mineral-adsorbed surfactants (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.


    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  15. Investigation of phase separation behavior and formation of plasmonic nanocomposites from polypeptide-gold nanorod nanoassemblies. (United States)

    Huang, Huang-Chiao; Nanda, Alisha; Rege, Kaushal


    Genetically engineered elastin-like polypeptides (ELP) can be interfaced with cetyltrimethyl ammonium bromide (CTAB)-stabilized gold nanorods (GNRs) resulting in the formation of stable dispersions (nanoassemblies). Increasing the dispersion temperature beyond the ELP transition temperature results in phase separation and formation of solid-phase ELP-GNR matrices (nanocomposites). Here, we investigated different physicochemical conditions that influence nanocomposite formation from temperature-induced phase separation of ELP-GNR nanoassemblies. The presence of cetyltrimethyl ammonium bromide (CTAB), used to template the formation of gold nanorods, plays a significant role in the phase separation behavior, with high concentrations of the surfactant leading to dramatic enhancements in ELP transition temperature. Nanocomposites could be generated at 37 °C in the presence of low CTAB concentrations (nanoassemblies leading to nanocomposites, but had minimal effect on nanocomposite maturation, which is a later-stage longer event. Finally, nanocomposites prepared in the presence of low CTAB concentrations demonstrated a superior photothermal response following laser irradiation compared to those generated using higher CTAB concentrations. Our results on understanding the formation of plasmonic/photothermal ELP-GNR nanocomposites have significant implications for tissue engineering, regenerative medicine, and drug delivery.

  16. Adsorption of 2-mercaptobenzothiazole from aqueous solution by organo-bentonite

    Institute of Scientific and Technical Information of China (English)

    Ping Jing; Meifang Hou; Ping Zhao; Xiaoyan Tang; Hongfu Wan


    The adsorption behavior of 2-mercaptobenzothiazole onto organo-bentonite was investigated.Natural bentonite from Gaozhou in Guangdong Province,China was collected.Organo-bentonite was prepared by intercalation of cetyltrimethyl ammonium bromide into the natural bentonite.The physicochemical properties of the prepared organo-bentonite were characterized by X-ray diffraction,N2 adsorption-desorption isotherm and Fourier transform infrared spectroscopy.The results showed that montmorillonite is the main component of the natural bentonite.The basal spacing of the natural bentonite is 1.47 nm,which increased to 1.98 nm on intercalation with cetyltrimethyl ammonium bromide.Moreover,both the surface area and pore volume increased with intercalation.Clear CH2 stretching (3000-2800 cm-1) and scissoring (1480-1450 cm-1) modes of the intercalated surfactants were observed for organobentonite.Compared with the pseudo first-order kinetic model,the pseudo second-order kinetic model is more suitable to describe the adsorption kinetics of 2-mercaptobenzothiazole onto organo-bentonite.The adsorption capacity of 2-mercaptobenzothiazole onto organo-bentonite increased with increasing initial concentration of 2-mercaptobenzothiazole,but decreased with increasing adsorbent dosage.The adsorption isotherm of 2-mercaptobenzothiazole onto organo-bentonite fits well with the Langmuir model.The maximum adsorption capacity of organo-bentonite for 2-mercaptobenzothiazole was 33.61 mg/g,indicating that organo-bentonite is a promising adsorbent for 2-mercaptobenzothiazole.

  17. Determination of strychnine, brucine, strychnine N-oxide, and brucine N-oxide in plasma samples after the oral administration of processed semen strychni extract by high-performance liquid chromatography with ultrasound-assisted mixed cloud point extraction. (United States)

    Guo, Jun; Meng, Hua; Li, Huang Huang; Wang, Qiao Feng


    A sensitive and efficient mixed cloud point extraction combined with high-performance liquid chromatography was developed for the simultaneous separation and determination of four alkaloids (strychnine, strychnine N-oxide, brucine, and brucine N-oxide) in plasma after the oral administration of processed semen strychni extract. Tergitol TMN-6 and cetyl-trimethyl ammonium bromide were chosen as the mixed surfactants, and ultrasound was employed to enhance the extraction efficiency. Some important parameters affecting the mixed cloud point extraction efficiency, such as the content of Tergitol TMN-6 and cetyl-trimethyl ammonium bromide, pH, salt effect, extraction temperature, and ultrasound time were studied and optimized. Under optimum conditions, the linear range of four alkaloids was from 1.0 to 1000 ng/mL. All correlation coefficients of the calibration curves were higher than 0.9993. The intraday and interday precision were below 8.65% and the limits of detection for the four alkaloids were less than 1.0 ng/mL (S/N = 3).

  18. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions. (United States)

    Li, Yan; McClements, David Julian


    The effect of low-molecular weight surfactants on the digestibility of lipids in protein-stabilized corn oil-in-water emulsions was studied using an in vitro digestion model. The impact of non-ionic (Tween 20, Tween 80, Brij35), anionic (SDS), and cationic (DTAB) surfactants on the rate and extent of lipid digestion was studied. All surfactants were found to inhibit lipid digestion at sufficiently high concentrations, with half-maximal inhibitory concentrations (IC50) of 1.2% for Tween 20, 0.7% for Tween 80, 2.8% for Brij35, 1.1% for SDS, and 1.4% for DTAB. The effectiveness of the surfactants at inhibiting lipid digestion was therefore not strongly correlated to the electrical characteristics of the surfactant head group, since the IC50 increased in the following order: Tween 80>SDS>Tween 20>DTAB>Brij35. The ability of these low-molecular weight surfactants to inhibit lipid digestion was attributed to a number of potential mechanisms: (i) prevention of lipase/co-lipase adsorption to the oil-water interface; (ii) formation of interfacial complexes; (iii) direct interaction and inactivation of lipase/co-lipase. Interestingly, DTAB increased the rate and extent of lipid digestion when present at relatively low concentrations. This may have been because this cationic surfactant facilitated the adsorption of lipase to the droplet surfaces through electrostatic attraction, or it bound directly to the lipase molecule thereby changing its structure and activity. A number of the surfactants themselves were found to be susceptible to enzyme digestion by pancreatic enzymes in the absence of lipids: Tween 20, Tween 80, Brij35, and DTAB. This work has important implications for the development of emulsion-based delivery systems for food and pharmaceutical applications.

  19. Solubility limits and phase diagrams for fatty alcohols in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions. (United States)

    Tzocheva, Sylvia S; Danov, Krassimir D; Kralchevsky, Peter A; Georgieva, Gergana S; Post, Albert J; Ananthapadmanabhan, Kavssery P


    By analysis of experimental data, a quantitative theoretical interpretation of the solubility limit of medium- and long-chain fatty alcohols in micellar solutions of water-soluble surfactants is presented. A general picture of the phase behavior of the investigated systems is given in the form of phase diagrams. The limited solubility of the fatty alcohols in the micelles of conventional surfactants is explained with the precipitation of their monomers in the bulk, rather than with micelle phase separation. The long chain fatty alcohols (with n=14, 16 and 18 carbon atoms) exhibit an ideal mixing in the micelles of the anionic surfactant sodium laurylethersulfate (SLES) and the zwitterionic surfactant cocamidopropyl betaine (CAPB) at temperatures of 25, 30, 35 and 40 °C. Deviations from ideality are observed for the alcohols of shorter chain (n=10 and 12), which can be explained by a mismatch with the longer chains of the surfactant molecules. Using the determined thermodynamic parameters of the systems, their phase diagrams are constructed. Such a diagram consists of four domains, viz. mixed micelles; coexistent micelles and precipitate (dispersed crystallites or droplets); precipitate without micelles, and molecular solution. The four boundary lines intersect in a quadruple point, Q. For ionic surfactants (like SLES), a detailed theory for calculating the boundary lines of the phase diagrams is developed and verified against data for the positions of the kinks in surface tension isotherms. The theory takes into account the electrostatic interactions in the micellar solutions and the effect of counterion binding. The results can be useful for a quantitative interpretation and prediction of the phase behavior of mixed solutions of two (or more) surfactants, one of them being water soluble and forming micelles, whereas the other one has a limited water solubility, but readily forms mixed micelles with the former surfactant.

  20. Adsorption of alkyltrimethylammonium bromides at water/alkane interfaces: competitive adsorption of alkanes and surfactants. (United States)

    Fainerman, V B; Mucic, N; Pradines, V; Aksenenko, E V; Miller, R


    The adsorption of members of the homologous series of alkyl trimethylammonium bromides (C(n)TAB) is studied at water/alkane interfaces by drop profile analysis tensiometry. The results are discussed in terms of a competitive adsorption process of alkane and surfactant molecules. A thermodynamic model, derived originally for the adsorption of surfactant mixtures, is adapted such that it describes a competitive adsorption of the surfactant molecules from the aqueous phase and alkane molecules from the oil phase. This new model involves the interspecies attraction coefficient, which mutually increases the adsorption activities of the alkane and C(n)TAB. The effects of the alkyl chain length n of C(n)TABs and the influence of the number of C atoms in the alkane chain are discussed, and the physical quantities are compared to those determined at the aqueous solution/air interface. The new theoretical model for aqueous solution/oil interfaces is also compared to a theory that does not consider the adsorption of alkane. The proposed new model demonstrates good agreement with the experimental data.

  1. Critical interaction strength for surfactant-induced mesomorphic structures in polymer-surfactant systems

    NARCIS (Netherlands)

    Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Vahvaselka, S.; Saariaho, M.; ten Brinke, G.; Ikkala, O.; Vahvaselkä, Sakari


    The critical interaction strength to induce mesomorphic structures in flexible polymers by complexing with surfactants is determined by using surfactants with different hydrogen-bonding strengths;. Two essential requirements have to be satisfied: (i) the association has to be strong enough, otherwis

  2. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto


    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV a

  3. The structure of latherin, a surfactant allergen protein from horse sweat and saliva. (United States)

    Vance, Steven J; McDonald, Rhona E; Cooper, Alan; Smith, Brian O; Kennedy, Malcolm W


    Latherin is a highly surface-active allergen protein found in the sweat and saliva of horses and other equids. Its surfactant activity is intrinsic to the protein in its native form, and is manifest without associated lipids or glycosylation. Latherin probably functions as a wetting agent in evaporative cooling in horses, but it may also assist in mastication of fibrous food as well as inhibition of microbial biofilms. It is a member of the PLUNC family of proteins abundant in the oral cavity and saliva of mammals, one of which has also been shown to be a surfactant and capable of disrupting microbial biofilms. How these proteins work as surfactants while remaining soluble and cell membrane-compatible is not known. Nor have their structures previously been reported. We have used protein nuclear magnetic resonance spectroscopy to determine the conformation and dynamics of latherin in aqueous solution. The protein is a monomer in solution with a slightly curved cylindrical structure exhibiting a 'super-roll' motif comprising a four-stranded anti-parallel β-sheet and two opposing α-helices which twist along the long axis of the cylinder. One end of the molecule has prominent, flexible loops that contain a number of apolar amino acid side chains. This, together with previous biophysical observations, leads us to a plausible mechanism for surfactant activity in which the molecule is first localized to the non-polar interface via these loops, and then unfolds and flattens to expose its hydrophobic interior to the air or non-polar surface. Intrinsically surface-active proteins are relatively rare in nature, and this is the first structure of such a protein from mammals to be reported. Both its conformation and proposed method of action are different from other, non-mammalian surfactant proteins investigated so far.

  4. Surfactant Enhanced Electroremediation of Phenanthrene

    Institute of Scientific and Technical Information of China (English)

    佘鹏; 杨建刚; 等


    Removal of hydrophobic organic contaminants(HOCs) form soil of low permeability by electroremediation was investigated by using phenanthrene and kaolinite as a model system.Tween 80 was added into the purging solution in order to enhance the solubility of phenanthrene.The effects of pH on the adsorption of phenanthrene and Tween 80 on kaolinite and the magnitude of ζ-potential of kaolinite were examined,respectively.The effects of electric field strength indicated by electric current on the electroremediation behavior,including the pH of purging solution,the conductivity,phenanthrene concentration and flow rate of effluent,were experimentally investigated,repectively,In case of an electric field of 25mA applied for 72 hours,over 90% of phenanthrene was removed from 424g(dry mass)of kaolinite at an energy consumption of 0.148kW.h.The experimental results described in present study show that the addition of surfactant into purging solution greatly enhances the removel of HOCs by electroremediation.

  5. Competitive solubilization of phenol by cationic surfactant micelles in the range of low additive and surfactant concentrations. (United States)

    Chaghi, Radhouane; de Ménorval, Louis-Charles; Charnay, Clarence; Derrien, Gaëlle; Zajac, Jerzy


    Competitive interactions of phenol (PhOH) with micellar aggregates of hexadecyltrimethylammonium bromide (HTAB) against 1-butanol (BuOH) in aqueous solutions at surfactant concentrations close to the critical micelle concentration (CMC), BuOH concentration of 0.5 mmol kg(-1), and phenol contents of 1, 5, or 10 mmol kg(-1) have been investigated at 303 K by means of (1)H NMR spectroscopy, titration calorimetry, and solution conductimetry. The solubilization loci for phenol were deduced from the composition-dependence of the (1)H chemical shifts assigned to various protons in the surfactant and additive units. Since in pure HTAB solutions phenol is already in competition with Br(-), addition of 1 mmol kg(-1) NaBr to the system weakens the phenol competitiveness. The presence of butanol in the HTAB micelles causes phenol to penetrate deeper toward the hydrophobic micelle core. For higher phenol contents, the butanol molecules are constrained to remain in the bulk solution and are progressively replaced within the HTAB micelles by the aromatic units. The competitive character of phenol solubilization against butanol is well supported by changes in the thermodynamic parameters of HTAB micellization in the presence of both of the additives.

  6. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty


    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  7. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments. (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman


    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes.

  8. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness. (United States)

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu


    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.

  9. A Review on Progress in QSPR Studies for Surfactants

    Directory of Open Access Journals (Sweden)

    Zhengwu Wang


    Full Text Available This paper presents a review on recent progress in quantitative structure-property relationship (QSPR studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc and surface tension (γ of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for nonionic surfactants, biodegradation potential and some other properties of surfactants are evaluated .

  10. Equilibrium and dynamic interfacial properties of protein/ionic-liquid-type surfactant solutions at the decane/water interface. (United States)

    Cao, Chong; Lei, Jinmei; Zhang, Lu; Du, Feng-Pei


    The interfacial behavior of β-casein and lysozyme solutions has been investigated in the presence of an ionic liquid-type imidazolium surfactant ([C16mim]Br) at the decane/water interface. The dynamic dilational properties of the protein/surfactant solutions are investigated by the oscillating drop method and interfacial tension relaxation method. The interfacial tension isotherms for the mixed adsorption layers indicate that the increased addition of [C16mim]Br to a pure protein changes the properties of the complex formed at the decane/water interface. Whereas the interfacial tension data of the protein/surfactant mixed layers do not clearly show differences with changing bulk composition, the dilational rheology provides undoubted evidence that the structure and, in particular, the dynamics of the adsorbed layers depend on the bulk surfactant concentration. The experiment data for β-casein/[C16mim]Br solutions indicate that at higher bulk [C16mim]Br concentrations, β-casein in the interfacial layer is subject to conformational changes, where it gives space to [C16mim]Br molecules in the form of coadsorb rather than replacement; in contrast, in lysozyme/[C16mim]Br solutions some lysozyme molecules desorb from the interface due to the competitive adsorption of free [C16mim]Br molecules. Experimental results related to the interfacial dilational properties of the protein/surfactant solutions show that the dilational modulus turns out to be more sensitive to the conformation of protein/surfactant mixture at the liquid interface than the interfacial tension.

  11. The use of surfactant in lung transplantation. (United States)

    Amital, Anat; Shitrit, David; Raviv, Yael; Saute, Milton; Medalion, Benjamin; Bakal, Llana; Kramer, Mordechai R


    Lung transplantation impairs surfactant activity, which may contribute to primary graft dysfunction (PGD). Prompted by studies in animals and a few reports in humans, this study sought to determine if the administration of surfactant during transplantation serves as an effective preventive measure. An open, randomized, controlled prospective design was used. Forty-two patients scheduled for single (n=38) or double (n=4) lung transplantation at a major tertiary medical center were randomly assigned to receive, or not, intraoperative surfactant treatment. In the treated group, bovine surfactant was administered at a dose of 20 mg phospholipids/kg through bronchoscope after the establishment of bronchial anastomosis. The groups were compared for oxygenation (PaO2/FiO2), chest X-ray findings, PGD grade, and outcome. Compared with the untreated group, the patients who received surfactant were characterized by better postoperative oxygenation mean PaO2/FiO2 (418.8+/-123.8 vs. 277.9+/-165 mm Hg, P=0.004), better chest radiograph score, a lower PGD grade (0.66 vs. 1.86, P=0.005), fewer cases of severe PGD (1 patient vs. 12, P<0.05), earlier extubation (by 2.2 hr; 95% CI 1.1-4.3 hr, P=0.027), shorter intensive care unit stay (by 2.3 days; 95% CI 1.47-3.74 days, P=0.001), and better vital capacity at 1 month (61% vs. 50%, P=0.022). One treated and 2 untreated patients died during the first postoperative month. Surfactant instillation during lung transplantation improves oxygenation, prevents PGD, shortens intubation time, and enhances early posttransplantation recovery. Further, larger studies are needed to assess whether surfactant should be used routinely in lung transplantation.

  12. CISM Course on Fluid Mechanics of Surfactant and Polymer Solutions

    CERN Document Server

    Ivanov, Ivan


    Colloidal systems and dispersions are of great importance in oil recovery, waist water treatment, coating, food and beverage industry, pharmaceutical industry, medicine, environmental protection etc. Colloidal systems and dispersions are always multi-component and multiphase systems. In these systems at least one dimension is in a range of colloidal forces action: colloidal dispersions/emulsions are examples of three dimensional colloidal systems, while thin liquid films are examples of one dimensional colloidal systems. The contribution presented in this issue deals with flow, distribution and redistribution, coating and deposition of surfactant and polymer molecules in colloidal systems. The book presents reviews of recent advances and trends by well-know scientists and engineers in this area.

  13. Hadron Molecules

    CERN Document Server

    Gutsche, Thomas; Faessler, Amand; Lee, Ian Woo; Lyubovitskij, Valery E


    We discuss a possible interpretation of the open charm mesons $D_{s0}^*(2317)$, $D_{s1}(2460)$ and the hidden charm mesons X(3872), Y(3940) and Y(4140) as hadron molecules. Using a phenomenological Lagrangian approach we review the strong and radiative decays of the $D_{s0}^* (2317)$ and $D_{s1}(2460)$ states. The X(3872) is assumed to consist dominantly of molecular hadronic components with an additional small admixture of a charmonium configuration. Determing the radiative ($\\gamma J/\\psi$ and $\\gamma \\psi(2s)$) and strong ($J/\\psi 2\\pi $ and $ J/\\psi 3\\pi$) decay modes we show that present experimental observation is consistent with the molecular structure assumption of the X(3872). Finally we give evidence for molecular interpretations of the Y(3940) and Y(4140) related to the observed strong decay modes $J/\\psi + \\omega$ or $J/\\psi + \\phi$, respectively.

  14. Interaction between cationic and conventional nonionic surfactants in the mixed micelle and monolayer formed in aqueous medium

    Directory of Open Access Journals (Sweden)

    Nabel A. Negm


    Full Text Available Mixed micellization and surface properties of cationic and nonionic surfactants dimethyl decyl-, tetradecyl- and hexadecyl phosphineoxide mixtures are studied using conductivity and surface tension measurements. The models of Rubingh, Rosen, and Clint, are used to obtain the interaction parameter, minimum area per molecule, mixed micelle composition, free energies of mixing and activity coefficients. The micellar mole fractions were always higher than ideal values indicating high contributions of cationics in mixed micelles. Activity coefficients were less than unity indicating synergism in micelles. The negative free energies of mixing showed the stability of the surfactants in the mixed micelles.

  15. Structure formation in binary mixtures of surfactants: vesicle opening-up to bicelles and octopus-like micelles (United States)

    Noguchi, Hiroshi

    Micelle formation in binary mixtures of surfactants is studied using a coarse-grained molecular simulation. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle, the bicelle, is typically formed. It is found that cup-shaped vesicles and bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and critical micelle concentration. The obtained octopus shape of micelles agree with those observed in the cryo-TEM images reported in [S. Jain and F. S. Bates, Macromol. 37, 1511 (2004).]. Two types of connection structures between the worm-like micelles and the bicelles are revealed.

  16. Host-guest interactions in amylose inclusion complexes: photochemistry of surfactant stilbenes in helical cavities of amylose

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Y.; Russell, J.C.; Whitten, D.G.


    A series of substituted stilbenes, S/sub n/, in which the stilbene chromophore is incorporated into a surfactant molecule, has been synthesized. It has been found that these stilbenes are sensitive structural probes for organized media. The behavior of three of the surfactant stiblenes in the presence of amylose in aqueous dimethyl sulfoxide is described. The results reveal several interesting features of amylose host-guest interaction, including a clear indication that, at least for the stilbenes, the guest is held in a reasonably constrained site similar to that provided by various bilayer structures.


    Institute of Scientific and Technical Information of China (English)


    Interactions of collagen fibres (made from Beef Achilles tendons )with sodium dodecyl sulfate (SDS),sodium dodecylbenzene sulfonate (SDBS),cetylpyridinium bromide(CPB)and Igepal CA-720 were studied.Sorptions isotherms of all ionic surfactants under different reaction conditions were found out.At suitable conditions S-isotherms were obtained,while under isoeletric conditions isotherms were logaritmic.Igepal had no sorption.The interaction of surfactants with collagen is connected with its mass changes. Changes depend on reaction conditions,namely pH and ionic strenght of reaction solution.Degree of swelling(αm)was used for the description of these changes.At pH=3,in absence SDBS and under low ionic strenghts,a high swelling was attained.An addition of SDBS to reaction mixture led to vigerous deswelling and when the bound amount of SDBS reached about 1 mmol.g-1 αm became independent on a futher bound SDBS.With higher ionic strenghts αm was independent on the equilibrium bound amount of SDBS.Under isoeletric conditions changes of αm were markedly smaller than in acid region and had the opposite character.%研究了十二烷基硫酸钠(SDS)、二十烷基苯磺酸钠(SDBS)、溴化十六烷基吡啶翁(CPB)和Igepal CA-720等表面活性剂与胶原(来源于牛跟腱)间的相互作用.发现了不同的反应条件下,上述离子性表面活性剂的吸附等温线,得到了适当条件下的吸附等温线,同时发现在等电条件下等温线呈对数关系,Igepal没有吸附.表面活性剂与胶原的作用情况与其质量的变化是相互关联的,这种变化取决于反应条件,即pH值和反应溶液中的离子强度,胶原的膨胀程度(am)被用来描述这种变化.在pH3.0,无SDBS存在且在低的离子强度下,胶原得到了大的膨胀:加入SDBS将会导致强烈的消肿作用,并且当胶原对SDBS的结合量达到1mmol/g时,am的值将不再随SDBS结合量的进一步增加而变化.在高的离子

  18. History of surfactant up to 1980. (United States)

    Obladen, Michael


    Remarkable insight into disturbed lung mechanics of preterm infants was gained in the 18th and 19th century by the founders of obstetrics and neonatology who not only observed respiratory failure but also designed devices to treat it. Surfactant research followed a splendid and largely logical growth curve. Pathological changes in the immature lung were characterized in Germany by Virchow in 1854 and by Hochheim in 1903. The Swiss physiologist von Neergard fully understood surfactant function in 1929, but his paper was ignored for 25 years. The physical properties of surfactant were recognized in the early 1950s from research on warfare chemicals by Pattle in Britain and by Radford and Clements in the United States. The causal relationship of respiratory distress syndrome (RDS) and surfactant deficiency was established in the USA by Avery and Mead in 1959. The Australian obstetrician Liggins induced lung maturity with glucocorticoids in 1972, but his discovery was not fully believed for another 20 years. A century of basic research was rewarded when Fujiwara introduced surfactant substitution in Japan in 1980 for treatment and prevention of RDS.

  19. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.


    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  20. Foaming behaviour of polymer-surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-MartInez, Alfredo [Departamento de Investigacion en PolImeros y Materiales, Universidad de Sonora, Apartado Postal 130, 83000 Hermosillo, Sonora (Mexico); Maldonado, Amir [Departamento de Fisica, Universidad de Sonora, Apartado Postal 1626, 83000 Hermosillo, Sonora (Mexico)


    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions.

  1. Surfactant apoprotein in nonmalignant pulmonary disorders. (United States)

    Singh, G.; Katyal, S. L.


    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to lung injury. The intra-alveolar material in pulmonary alveolar proteinosis stained intensely for surfactant apoprotein, indicating that the accumulated proteinaceous material contained pulmonary surfactant. Type II pneumocytes in pulmonary alveolar proteinosis exhibited hyperplasia as well as hypertrophy. The few macrophages in lung affected by pulmonary alveolar proteinosis stained intensely for lysozyme. The excessive intraalveolar accumulation of proteinaceous material in pulmonary alveolar proteinosis may be the result of both an over-production as well as a deficient removal of pulmonary surfactant. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 p[57]-a PMID:7004201

  2. 2-DE using hemi-fluorinated surfactants. (United States)

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge


    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.

  3. Surfactant effects on SF6 hydrate formation. (United States)

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do


    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  4. Syntheses of surfactants from oleochemical epoxides

    Directory of Open Access Journals (Sweden)

    Warwel Siegfried


    Full Text Available Sugar-based surfactants were obtained in good yields (up to 100% under mild conditions (70°C, methanol or mixtures of methanol and water by ring-opening of terminal epoxides with aminopolyols, derived from glucose. Reaction of N-methyl glucamine with epoxides from even-numbered C4-C18 alpha-olefins or from terminal unsaturated fatty acid methyl esters leads to linear products, while corresponding reactions with N-dodecyl glucamine or glucamine yield surfactants with different Y-structures. Products obtained by conversion of omega-epoxy fatty acid methyl esters were saponificated with NaOH or hydrolyzed enzymatically to sodium salts or free acids respectively, which are amphoteric surfactants. Studies of the surfactants at different pH-values demonstrate different surface active properties in aqueous solutions. Critical micelle concentrations (c.m.c. in a range between 2 and 500mg/l and surface tensions of 25-40mN/m were measured for several of the synthesized sugar-based surfactants. The ring-opening products are rather poor foamers, whereas some of the corresponding hydrobromides show good foaming properties.

  5. The photodegradation of trichloroethylene with or without the NAPL by UV irradiation in surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jia Juncai [Department of Civil and Structural Engineering, Research Centre for Urban Environmental Technology and Management, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Chu, W. [Department of Civil and Structural Engineering, Research Centre for Urban Environmental Technology and Management, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)], E-mail:


    The photodegradation of trichloroethene (TCE) with or without nonaqueous phase liquids (NAPL) by ultraviolet irradiation in surfactant solutions was examined in this study. The photodecay of TCE was studied at monochromatic 254 nm UV lamps. The effects of the type of surfactants, initial surfactant concentrations, pH levels and NAPL concentrations were examined to explore the photodecay of TCE. All the photodegradation of TCE followed pseudo-first-order decay kinetics at various conditions. It was found that Brij 35 overdose and higher initial pH levels may retard or inhibit the photodecay of TCE, mainly due to protons, intermediate generation and change of surfactant structure in the processes. The optimal condition for TCE photodecay was suggested based on the analysis of kinetics data, from which the reaction mechanism of TCE in the presence of NAPL form was also studied. In general, the reactions of TCE in micellar solution and NAPL pool can be considered as independent pathways due to the low molecule diffusion between the two phases.

  6. Hydrogenated/fluorinated catanionic surfactants as potential templates for nanostructure design. (United States)

    Hassan, Natalia; Ruso, Juan M; Piñeiro, Ángel


    The structure and physicochemical properties of the nanoparticles spontaneously formed within aqueous mixtures of the hydrogenated/fluorinated catanionic surfactant cetyltrimetylammonium perfluorooctanoate in the absence of counterions as a function of its concentration are investigated by a combined experimental/computational study at room temperature. Apparent molar volumes, isentropic apparent molar compressibilities, and dynamic light scattering measurements together with transmission and cryo-scanning electron as well as confocal laser microscopy images, and computational molecular dynamics simulations indicate that a variety of structures of different sizes coexist in solution with vesicles of ∼160 nm diameter. Interestingly, the obtained nanostructures were observed to self-assemble from a random distribution of monomers in a time scale easily accessible by atomistic classical molecular dynamics simulations, allowing to provide a comprehensive structural and dynamic characterization of the surfactant molecules at atomic level within the different aggregates. Overall, it is demonstrated that the use of mixed fluorinated hydrogenated surfactant systems represents an easy strategy for the design of specific nanoscale structures. The detailed structural analysis provided in the present work is expected to be useful as a reference to guide the design of new nanoparticles based on different hydrogenated/fluorinated catanionic surfactants.

  7. Solubilization of octane in cationic surfactant-anionic polymer complexes: effect of polymer concentration and temperature. (United States)

    Zhang, Hui; Deng, Lingli; Zeeb, Benjamin; Weiss, Jochen


    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effects of polymer concentration and temperature on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results showed that the CTAB binding capacity of carboxymethyl cellulose increased with increasing temperature from 301 to 323 K, and correspondingly the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to depend on temperature. The addition of carboxymethyl cellulose caused the solubilization in CTAB micelles to be less endothermic, and increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be mainly driven by enthalpy gains. Results suggest that increasing concentrations of the anionic polymer gave rise to a larger Gibbs energy decrease and a larger unfavorable entropy increase for octane solubilization in cationic surfactant micelles.

  8. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung. (United States)

    Abdullah, Mahdi; Goldmann, Torsten


    Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung.

  9. Preparation and Evaluation of Monodisperse Nonionic Surfactants Based on Fluorine-Containing Dicarbamates. (United States)

    Mureau; Trabelsi; Guittard; Geribaldi


    Novel bipodal surfactants of fluorine-containing carbamate type were synthesized with satisfactory yields from the action of fluorinated diisocyanates on oligooxyethylmonomethylated ethers without solvent. The synthetic pathways via malonic intermediates were elaborated in order to use low-price commercially available compounds such as 2-F-alkylethyl iodides and oligooxyethylmonomethylated ethers as starting materials. This new class of nonionic surfactants contains one hydrophobic part and one oleophobic part, and shows peculiar properties due to the presence of two hydrophilic parts (bipodal). All these compounds are monodisperse, i.e, include a perfectly defined number of oxyethylene units. Compared with their bipodal homologues previously described within the F-alkylated series, these new structures were easily obtained from commercial raw materials and are stable against pH media. The evaluation of their behavior at the air-water interface has been studied by measurements of surface tension versus concentration. This allows us to show clearly the variation of the critical micelle concentration (cmc) from 1.1x10(-5) to 9.8x10(-3) mol.l(-1), and of the surface area per surfactant molecule versus studied structures. The dicarbamates of oligooxyethylmonomethylether of 3-(F-alkyl)propyl so realized exhibit noteworthy properties as nonionic fluorinated surfactants. Copyright 2000 Academic Press.

  10. Green Synthesis, Molecular Characterization and Associative Behavior of Some Gemini Surfactants without a Spacer Group

    Directory of Open Access Journals (Sweden)

    Eugenio Caponetti


    Full Text Available A series of new gemini surfactants without a spacer group, disodium 2,3-dialkyl-1,2,3,4-butanetetracarboxylates, were synthesized in a green chemistry context minimizing the use of organic solvents and applying microwaves (MW when activation energy was required. Once the desired architecture was confirmed by means of the nuclear magnetic resonance technique (1H-NMR, 1H-1H COSY for all the studied surfactants, the critical micellization concentration was determined by conductance measurements. The diffusion coefficient of micelles formed by the four compounds was characterized using pulsed field gradient (PFG-NMR. Diffusion coefficients were found to be dependent on the concentration and on the number of carbon atoms in the alkyl chain. The absence of the spacer group, peculiar to this new series of gemini surfactants, may confer relatively low flexibility to the molecules, with potential implications on the interfacial properties, namely on micellization. These gemini surfactants might have interesting applications in the preparation of composite materials, in nanotechnology, in gene transfection and mainly, due to the low CMCs, as new interesting ingredients of cosmetics and toiletries.

  11. Interaction of Fluorocarbon Containing Hydrophobically Modified Polyelectrolyte with Nonionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO,Jin-Feng(郭金峰); ZHUANG,Dong-Qing(庄东青); ZHOU,Hui(周晖); ZHANG,Yun-Xiang(章云祥)


    The interaction of fluorocarbon containing hydrophobically modified polyelectrolyte (FMPAANa) with two kinds of nonionic surfactants (hydrogenated and fluorinated) in a semidilute (0.5 wt% ) aqueous solution had been studied by rheological measurements. Association behavior was found in both systems. The hydrophobic interaction of FMPAANa with fluorinated surfactant (FC171) is much stronger than that with hydrogenated surfactant (NP7.5) at low surfactant concentrations. The interaction is strengthened by surfactants being added for the density of active junctions increased. Whereas distinct phenomena for FC171 and NP7. 5 start to be found as the surfactants added over their respective certain concentration. The interaction of polyelectrolyte with fluorinated surfactant increases dramatical ly while that with hydrogenated surfactant decreases.

  12. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant (United States)

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  13. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    CERN Document Server

    Voisin, D


    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each po...

  14. Fullerene surfactants and their use in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi


    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  15. Understanding about How Different Foaming Gases Effect the Interfacial Array Behaviors of Surfactants and the Foam Properties. (United States)

    Sun, Yange; Qi, Xiaoqing; Sun, Haoyang; Zhao, Hui; Li, Ying


    In this paper, the detailed behaviors of all the molecules, especially the interfacial array behaviors of surfactants and diffusion behaviors of gas molecules, in foam systems with different gases (N2, O2, and CO2) being used as foaming agents were investigated by combining molecular dynamics simulation and experimental approaches for the purpose of interpreting how the molecular behaviors effect the properties of the foam and find out the key factors which fundamentally determine the foam stability. Sodium dodecyl sulfate SDS was used as the foam stabilizer. The foam decay and the drainage process were determined by Foamscan. A texture analyzer (TA) was utilized to measure the stiffness and viscoelasticity of the foam films. The experimental results agreed very well with the simulation results by which how the different gas components affect the interfacial behaviors of surfactant molecules and thereby bring influence on foam properties was described.

  16. Surfactant studies for bench-scale operation (United States)

    Hickey, Gregory S.; Sharma, Pramod K.


    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  17. Nanotube Dispersions Made With Charged Surfactant (United States)

    Kuper, Cynthia; Kuzma, Mike


    Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.


    Directory of Open Access Journals (Sweden)

    Pirog T. P.


    Full Text Available The literature and own experimental data on the synthesis of microbial surfactants of different chemical nature (rhamnolipids, sophorolipids, manozylerythritollipids, lipopeptides at various waste (vegetable oil and fat, sugar, dairy industry, agriculture, forestry, biodiesel, as well as waste — fried vegetable oils are presented. Most suitable substrates for the synthesis of microbial surfactants are oil containing waste that, unlike, for example, lignocellulose, whey, technical glycerol do not require pre-treatment and purification. Replacing traditional substrates for the biosynthesis of surfactant with industrial waste will help to reduce the cost of technology by several times, dispose of unwanted waste, solve the problem of storage or disposal of large amounts of waste from the food industry, agricultural sector and companies that produce biodiesel, which spent large amount of energy and money for such needs

  19. Natural surfactants used in cosmetics: glycolipids. (United States)

    Lourith, N; Kanlayavattanakul, M


    Cosmetic surfactant performs detergency, wetting, emulsifying, solubilizing, dispersing and foaming effects. Adverse reactions of chemical synthesis surfactant have an effect on environment and humans, particularly severe in long term. Biodegradability, low toxicity and ecological acceptability which are the benefits of naturally derived surfactant that promises cosmetic safety are, therefore, highly on demand. Biosurfactant producible from microorganisms exhibiting potential surface properties suitable for cosmetic applications especially incorporate with their biological activities. Sophorolipids, rhamnolipids and mannosylerythritol lipids are the most widely used glycolipids biosurfactant in cosmetics. Literatures and patents relevant to these three glycolipids reviewed were emphasizing on the cosmetic applications including personal care products presenting the cosmetic efficiency, efficacy and economy benefits of glycolipids biosurfactant.

  20. A Review on Progress in QSPR Studies for Surfactants


    Zhengwu Wang; Xiaoyi Zhang; Jiwei Hu


    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies o...

  1. Surfactant-Polymer Interaction for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Mohanty, Kishore K.


    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  2. Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    Yi Jian CHEN; Gui Ying XU; Shi Ling YUAN; Hai Ying SUN


    Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems,the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. Theresults reveal that the surface activity of C12C2C12 suffactant is higher than DTAB surfactant.

  3. Surfactant therapy in late preterm infants

    Directory of Open Access Journals (Sweden)

    Murat Yurdakök


    Full Text Available Late preterm (LPT neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS, transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature infants, leading to a gap in knowledge and understanding of the developmental biology and mechanism of pulmonary diseases in LPT neonates. Surfactant deficiency is the most frequent etiology of RDS in very preterm and moderately preterm infants, while cesarean section and lung infection play major roles in RDS development in LPT infants. The clinical presentation and the response to surfactant therapy in LPT infants may be different than that seen in very preterm infants. Incidence of pneumonia and occurrence of pneumothorax are significantly higher in LPT and term infants. High rates of pneumonia in these infants may result in direct injury to the type II alveolar cells of the lung with decreasing synthesis, release, and processing of surfactant. Increased permeability of the alveolar capillary membrane to both fluid and solutes is known to result in entry of plasma proteins into the alveolar hypophase, further inhibiting the surface properties of surfactant. However, the oxygenation index value do not change dramatically after ventilation or surfactant administration in LPT infants with RDS compared to very preterm infants. These finding may indicate a different pathogenesis of RDS in late preterm and term infants. In conclusion, surfactant therapy may be of significant benefit in LPT infants with serious respiratory failure secondary to a number of insults. However, optimal timing and dose of administration are not so clear in this group. Additional

  4. Influence of surfactant concentration on nanohydroxyapatite growth

    Indian Academy of Sciences (India)

    D Gopi; J Indira; S Nithiya; L Kavitha; U Kamachi Mudali; K Kanimozhi


    Nanohydroxyapatite particles with different morphologies were synthesized through a microwave coupled hydrothermal method using CTAB as a template. A successful synthesis of nanosized HAP spheres, rods and fibres is achieved through this method by controlling the concentration of the surfactant. The concentration of the surfactant was tuned in such a way that the desired HAP nanostructures were obtained. The resultant powders were sintered at 900 °C in order to obtain phase pure HAP particles. The results obtained by Fourier transform infrared spectroscopy (FT–IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have substantiated the formation of nanosized HAP spheres and fibres.


    NARCIS (Netherlands)

    Blandamer, M.J; Briggs, B.; Cullis, P.M.; Engberts, J.B.F.N.; Kacperska, A.


    Interactions of both cationic and anionic surfactants with vesicles formed by dimethyldioctadecylammonium bromide (DOAB) and by sodium didodecylphosphate (DDP) have been probed using differential scanning microcalorimetry. The scans show that the surfactants are incorporated into the vesicle bilayer

  6. Vesicle-Surfactant Interactions : Effects of Added Surfactants on the Gel to Liquid-crystal Transition for Two Vesicular Systems

    NARCIS (Netherlands)

    Blandamer, Michael J.; Briggs, Barbara; Cullis, Paul M.; Engberts, Jan B.F.N.; Kacperska, Anna


    Interactions of both cationic and anionic surfactants with vesicles formed by dimethyldioctadecylammonium bromide (DOAB) and by sodium didodecylphosphate (DDP) have been probed using differential scanning microcalorimetry. The scans show that the surfactants are incorporated into the vesicle bilayer

  7. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    WANG ZhengWu; YI XiZhang


    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO-3/CH3(CH2)nN+(CH3)3 as an example, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solution has been studied. εcan be obtained with two methods. One is from the relationship between εand the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  8. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)


    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  9. Synthesis and Properties of Novel Cationic Maleic Diester Polymerizable Surfactants

    Institute of Scientific and Technical Information of China (English)


    Three new cationic polymerizable surfactants are synthesized by the reaction of alkylmaleic hemiester with glycidyltrimethylammonium chloride. Their structures are confirmed by 1H NMR, IR and elements analysis. The values of CMC and gCMC of these surfactants have been measured. One can obtain nearly monodisperse polystyrene latex by emulsion polymerization using the polymerizable surfactant.

  10. Surfactant phosphatidylcholine metabolism in preterm infants studied with stable isotopes

    NARCIS (Netherlands)

    J.E.H. Bunt (Jan Erik)


    textabstractAIM OF THE STUDIES 1. To develop and use a novel method to study surfactant metabolism in preterm and older infants. (chapters 3 and 4). 2. To study endogenous surfactant synthesis in relation to prenatal glucocorticosteroids. (chapters 5 and 6). 3. To study the influence of surfactant

  11. Effects of selected surfactants on soil microbial activity (United States)

    Surfactants (surface-active agents) facilitate and accentuate the emulsifying, dispersing, spreading, and wetting properties of liquids. Surfactants are used in industry to reduce the surface tension of liquid and to solubilize compounds. For agricultural pest management, surfactants are an import...

  12. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.


    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  13. Surfactant phosphatidylcholine metabolism in preterm infants studied with stable isotopes

    NARCIS (Netherlands)

    J.E.H. Bunt (Jan Erik)


    textabstractAIM OF THE STUDIES 1. To develop and use a novel method to study surfactant metabolism in preterm and older infants. (chapters 3 and 4). 2. To study endogenous surfactant synthesis in relation to prenatal glucocorticosteroids. (chapters 5 and 6). 3. To study the influence of surfactant t

  14. Synthesis and characterization of zeolite material from coal ashes modified by surfactant; Sintese e caracterizacao de material zeolitico de cinzas de carvao modificado por surfactante

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, D.A., E-mail: dfungaro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CQMA/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente; Borrely, S.I. [Instituto de Pesquisas Energeticas e Nucleares (CTR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes


    Coal ash was used as starting material for zeolite synthesis by means of hydrothermal treatment. The surfactant-modified zeolite (SMZ) was prepared by adsorbing the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) on the external surface of the zeolite from coal ash. The zeolite structure stability was monitored during the characterization of the materials by FTIR, XDR and SEM. The structural parameters of surfactant-modified zeolite are very close to that of corresponding non-modified zeolite which indicates that the crystalline nature of the zeolite remained intact after required chemical treatment with HDTMA-Br molecules and heating treatment for drying. The most intense peaks in the FTIR spectrum of HDTMA-Br were observed in SMZ spectrum confirming adsorption of surfactant on zeolites. (author)

  15. Correlation between composition, morphology and optical properties of PVK: n-ZnO:CTAB thin films (United States)

    Azizi, Samir; Belhaj, Marwa; Zargouni, Sarra; Dridi, Cherif


    In this study, we report on the effect of zinc oxide nanoparticles ( n-ZnO) content and surfactant addition on the performance of poly ( N-vinylcarbazole) (PVK): n-ZnO nanocomposite thin films. Morphological and optical properties of ZnO, PVK and PVK: n-ZnO:cetyltrimethyl ammonium bromide (CTAB) hybrid films were investigated by atomic force microscopy (AFM), UV-Visible spectrophotometry and photoluminescence (PL) spectroscopy. We noticed that surface morphology was very dependent on surfactant addition into inorganic and organic components and on the ZnO content in the mixture. The optical absorption spectra of PVK: n-ZnO thin films showed a red shift of the optical band gap energy. Besides, PL measurements demonstrated an interfacial charge transfer between PVK matrix and ZnO nanoparticles through the reduced PL intensity of nanocomposites compared to PVK thin films.

  16. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays

    Directory of Open Access Journals (Sweden)

    M. Abdennouri


    Full Text Available Titanium dioxide was synthesized by the sol–gel method and titanium pillared purified clay was prepared with two titanium contents: 1.15 and 10.5 mmol of Ti per gram of clay. The composites were synthesized by immobilizing TiO2 onto surfactant-pillared clay via ion exchange reaction between clay with cation surfactant, cetyl-trimethyl ammonium bromide (CTMABr. The composition and texture of the prepared photocatalysts were characterized with X-ray powder diffraction (XRD, FT-IR spectroscopy, transmission electron microscopy (TEM and energy-dispersive spectroscopy (EDX. The adsorption performance and photocatalytic activities of the prepared samples were investigated using 2,4-dichlorophenoxyacetic acid (2,4-D and 2,4-dichlorophenoxypropionic acid (2,4-DP as models of organic pollutants. The results were obtained that these photocatalysts can effectively degrade selected pesticides. The removal efficiency increases with the Ti content in the pillared clay.

  17. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)


    Highlights: > Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. > Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. > Dimeric surfactants have attracted increasing attention due to their superior surface activity. > The positive values of {Delta}G{sub cp}{sup 0} indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-{alpha}-{omega}-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C{sub 16} alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy ({Delta}G{sub cp}{sup 0}), the enthalpy ({Delta}H{sub cp}{sup 0}) and the entropy ({Delta}S{sub cp}{sup 0}) of the clouding phenomenon were found positive in all cases. The standard free energy ({Delta}G{sub cp}{sup 0}) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic

  18. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias


    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  19. Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: Polyoxyethylene Sorbitan Fatty Acid Esters

    Directory of Open Access Journals (Sweden)

    Ehsan Mohajeri


    Full Text Available In this study, non-ionic surfactants, polyoxyethylene sorbitan fatty acid esters (polysorbate are chosen to examine the temperature effect on the CMC over a wide temperature range. The enthalpy and entropy of micelle formation are evaluated according to the phase separation model. The surface tension of solutions was determined by means of Du Nöuys ring. The CMC values were taken from the sharp breaks in the surface tension vs. logarithms of surfactant concentration plots. As the surfactants' chain length increases the CMC at a constant temperature decreases, which is directly related to the decrease of hydrophilicity of the molecules. For each surfactant, as the system temperature increases, the CMC initially decreases and then increases, owing to the smaller probability of hydrogen bond formation at higher temperatures. The onset of micellization tends to occur at higher concentrations as the temperature increases. To evaluate the enthalpy of micellization, the CMCs are first correlated by a polynomial equation. It is found that ∆Gºm decreases monotonically as the temperature increases over the whole temperature range. Both ∆Hºm and ∆Sºm appear to be decrease monotonically with an increase in temperature. The compensation temperature was found to be 42 ºC by linear regression over the whole temperature range and for all three surfactant systems together.

  20. Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route. (United States)

    Wang, Yude; Ma, Chunlai; Sun, Xiaodan; Li, Hengde


    Ordered hexagonal and cubic mesoporous tin oxides were synthesized for the first time in the presence of mixed cationic and neutral surfactants (a mixture of cetyltrimethylammonium bromide cationic surfactant and dodecylamine neutral surfactant) with different alkali and simple inorganic precursors at room temperature. In the synthesis systems, the dodecylamine neutral surfactant may function as a polar organic cosolvent and cosurfactant. The formation of the tin oxide mesostructured material was proposed to be due to the presence of hydrogen-bonding interactions between the supramolecular template and inorganic precursors Sn4+ and OH-, which were assumed to self-assemble around the cationic surfactant molecules. The materials are characterized by X-ray powder diffraction, transmission electron microscopy, thermogravimetric analysis, and N2 adsorption/desorption isotherm. The surface areas of materials evaluated from the N2 sorption isotherms are about 248 m(2)/g for hexagonal mesoporous tin oxide (SnH) and 281 m(2)/g for cubic mesoporous tin oxide (Sn-C) for calcination at 350 degrees C.

  1. Molecular dynamics of surfactant protein C

    DEFF Research Database (Denmark)

    Ramírez, Eunice; Santana, Alberto; Cruz, Anthony


    Surfactant protein C (SP-C) is a membrane-associated protein essential for normal respiration. It has been found that the alpha-helix form of SP-C can undergo, under certain conditions, a transformation from an alpha-helix to a beta-strand conformation that closely resembles amyloid fibrils, which...

  2. Photosensitive surfactants: micellization and interaction with DNA. (United States)

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana


    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  3. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete


    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...

  4. Photosensitive surfactants: Micellization and interaction with DNA (United States)

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana


    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  5. Topological transformation of a surfactant bilayer

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.


    Surfactant lamellar phases are often complicated by the formation of multilamellar (onions) under shear, which can originate simply by shaking the sample. A systematic study has been performed on the C10E3-D2O system in which different bilayer structures under a steady shear flow were investigated...

  6. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)


    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  7. Thermally stable surfactants and compositions and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Woodridge, IL)


    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  8. Minimally Invasive Surfactant Therapy and Noninvasive Respiratory Support. (United States)

    Kribs, Angela


    Respiratory distress syndrome (RDS) caused by surfactant deficiency is major cause for neonatal mortality and short- and long-term morbidity of preterm infants. Continuous positive airway pressure and other modes of noninvasive respiratory support and intubation and positive pressure ventilation with surfactant therapy are efficient therapies for RDS. Because continuous positive airway pressure can fail in severe surfactant deficiency, and because traditional surfactant therapy requires intubation and positive pressure ventilation, this entails a risk of lung injury. Several strategies to combine noninvasive respiratory therapy with minimally invasive surfactant therapy have been described. Available data suggest that those strategies may improve outcome of premature infants with RDS.

  9. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)


    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  10. Palm oil based surfactant products for petroleum industry (United States)

    Permadi, P.; Fitria, R.; Hambali, E.


    In petroleum production process, many problems causing reduced production are found. These include limited oil recovery, wax deposit, asphaltene deposit, sludge deposit, and emulsion problem. Petroleum-based surfactant has been used to overcome these problems. Therefore, innovation to solve these problems using surfactant containing natural materials deserves to be developed. Palm oil-based surfactant is one of the potential alternatives for this. Various types of derivative products of palm oil-based surfactant have been developed by SBRC IPB to be used in handling problems including surfactant flooding, well stimulation, asphaltene dissolver, well cleaning, and wax removal found in oil and gas industry.

  11. Surfactant Sensors in Biotechnology; Part 1 – Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Milan Sak-Bosnar


    Full Text Available An overview on electrochemical surfactant sensors is given with special attention to papers published since 1993. The importance of surfactants in modern biotechnology is stressed out. Electrochemical sensors are usually divided according to the measured physical quantity to potentiometric, amperometric, conductometric and impedimetric surfactant sensors. The last ones are very few. Potentiometric surfactant sensors are the most numerous due to their simplicity and versatility. They can be used either as end-point titration sensors or as direct EMF measurement sensors, in batch or flow-through mode. Some amperometric surfactant sensors are true biosensors that use microorganisms or living cells.

  12. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar


    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  13. Effect of non-ionic surfactants on interfacial rheological properties of water/oil systems

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos-Szabo, J.; Lakatos, I. (Magyar Tudomanyos Akademia, Miskolc-Egyetemvaros (Hungary))


    The interfacial rheological properties of characteristic Hungarian oil/water systems are discussed. It is shown that there are differences of several orders of magnitude in interfacial viscosities and in majority of cases the boundary layers have non-Newtonian flow behaviour. The study of tenside solutions proved that ethoxylated nonylphenols significantly reduce both the interfacial viscosity and the non-Newtonian character. The shorter the ethoxy chain in the monomer molecule, the greater the effect of nonionic surfactants. The concentration also enhances the effect and the phenomena can be explained by formation of closely packed adsorption layer between the phases. The results may contribute to elucidation of displacement mechanism, spontaneous emulsification, coalescence of dispersed systems etc. in presence of nonionic surfactants. (orig.).

  14. Corrosion inhibition of mild steel by amphoteric surfactants derived from aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, M.S. (Cairo Univ., Faculty of Science, Chemistry Dept., Giza (Egypt)); Barakat, Y.F. (Cairo Univ., Faculty of Science, Chemistry Dept., Giza (Egypt)); El-Sheikh, R. (Cairo Univ., Faculty of Science, Chemistry Dept., Giza (Egypt)); Hassan, A.M. (Cairo Univ., Faculty of Science, Chemistry Dept., Giza (Egypt)); Baraka, A. (Cairo Univ., Faculty of Science, Chemistry Dept., Giza (Egypt))


    The inhibition of mild steel corrosion in 0.5 M HCl solution by amphoteric surfactants (which contain both an anionic and a cationic moiety in the same molecule) of general formula: NH[sub 2]-(CH[sub 2])[sub 2]-NH-CH(COOH)-CH[sub 2]-CO-NHR (R alkyl group of C[sub 10,] [sub 11,] [sub 12,] [sub 13,] [sub 15,] [sub and] [sub 17]) is shown to confirm Langmuir's absorption isotherms. At a given concentration of surfactants, the inhibiting action increases with the increase of carbon chain length. The influence of both inductive and steric hindrance effects of methylene groups in -R on the inhibition efficiency has also been mentioned. (orig.)

  15. Adsorption of surfactants and polymers at interfaces (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  16. Triply Periodic Multiply Continuous Lyotropic Liquid Crystals Derived from Gemini Surfactants (United States)

    Sorenson, Gregory P.

    A subtle balance of non-covalent interactions directs the self-assembly of small molecule amphiphiles in aqueous media into supramolecular assemblies known as aqueous lyotropic liquid crystals (LLCs). Aqueous LLCs form many intricate, ordered nanoscale morphologies comprising distinct and structurally periodic hydrophobic and hydrophilic domains. Triply periodic multiply continuous (TPMC) LLC morphologies, which exhibit continuous hydrophobic and aqueous domains that percolate in three-dimensions, are of particular interest by virtue of their potentially wide ranging technological applications including advanced membranes for electrical energy storage and utilization, therapeutic delivery, and templates for new organic and inorganic mesoporous materials. However, robust molecular design criteria for amphiphiles that readily form TMPC morphologies are notably lacking in the literature. Recent reports have described the increased propensity for quaternary ammonium and phosphonium gemini surfactants, derived from dimerization of traditional single-tail surfactants at or near the hydrophilic headgroups through a hydrophobic linker, to stabilize TMPC mesophases. The generality of this surfactant design strategy remains untested in other amphiphiles classes bearing different headgroup chemistries. In this thesis, we describe the unusual aqueous LLC phase behavior of series of gemini dicarboxylate amphiphiles as a function of the alkyl tail length, hydrophobic linker length, and the charge-compensating counterion. These dicarboxylate surfactants unexpectedly exhibit a strong propensity to form TPMC LLCs over amphiphile concentration windows as wide as 20 wt% over a temperature range T = 25--100 °C. Through systematic modifications of the length of the hydrophobic linker and alkyl tails, we use small-angle X-ray scattering to demonstrate that these surfactants adopt new LLC mesophases including the first report of a single-gyroid phase (I4132 symmetry) and a new


    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson


    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  18. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces (United States)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)


    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which

  19. Photoresponsive carbohydrate-based giant surfactants: automatic vertical alignment of nematic liquid crystal for the remote-controllable optical device. (United States)

    Kim, Dae-Yoon; Lee, Sang-A; Kang, Dong-Gue; Park, Minwook; Choi, Yu-Jin; Jeong, Kwang-Un


    Photoresponsive carbohydrate-based giant surfactants (abbreviated as CELAnD-OH) were specifically designed and synthesized for the automatic vertical alignment (VA) layer of nematic (N) liquid crystal (LC), which can be applied for the fabrication of remote-controllable optical devices. Without the conventional polymer-based LC alignment process, a perfect VA layer was automatically constructed by directly adding the 0.1 wt % CELA1D-OH in the N-LC media. The programmed CELA1D-OH giant surfactants in the N-LC media gradually diffused onto the substrates of LC cell and self-assembled to the expanded monolayer structure, which can provide enough empty spaces for N-LC molecules to crawl into the empty zones for the construction of VA layer. On the other hand, the CELA3D-OH giant surfactants forming the condensed monolayer structure on the substrates exhibited a planar alignment (PA) rather than a VA. Upon tuning the wavelength of light, the N-LC alignments were reversibly switched between VA and PA in the remote-controllable LC optical devices. Based on the experimental results, it was realized that understanding the interactions between N-LC molecules and amphiphilic giant surfactants is critical to design the suitable materials for the automatic LC alignment.


    Energy Technology Data Exchange (ETDEWEB)

    Lebone T. Moeti; Ramanathan Sampath


    This final technical report describes work performed under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to August 31, 2001 which covers the total performance period of the project. During this period, detailed information on optimal salinity, temperature, emulsion morphologies, effectiveness for surfactant retention and oil recovery was obtained for an Alcohol Ethoxycarboxylate (AEC) surfactant to evaluate its performance in flooding processes. Tests were conducted on several AEC surfactants and NEODOX (23-4) was identified as the most suitable hybrid surfactant that yielded the best proportion in volume for top, middle, and bottom phases when mixed with oil and water. Following the selection of this surfactant, temperature and salinity scans were performed to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexisted. NEODOX 23-4 formed three phases between 4 and 52.5 C. It formed an aqueous rich microemulsion phase at high temperatures and an oleic rich microemulsion phase at low temperatures--a characteristic of the ionic part of the surfactant. The morphology measurement system was set-up successfully at CAU. The best oil/water/surfactant system defined by the above phase work was then studied for emulsion morphologies. Electrical conductivities were measured for middle and bottom phases of the NEODOX 23-4/dodecane/10mM water system and by mixing measured volumes of the middle phase into a fixed volume of the bottom phase and vice versa at room temperature. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. These experiments were then repeated for bottom/middle (B/M) and middle/bottom (M/B) conjugate pair phases at 10, 15, 25, 30, 35, 40, and 45 C. Electrical conductivity measurements were then compared with the predictions of the conductivity model developed in

  1. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge. (United States)

    Petkova, R; Tcholakova, S; Denkov, N D


    Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.

  2. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria. (United States)

    Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa


    We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.

  3. Fatty Acids as Surfactants on Aerosol Particles (United States)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.


    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  4. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller


    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  5. Pulmonary surfactant adsorption is increased by hyaluronan or polyethylene glycol. (United States)

    Taeusch, H William; Dybbro, Eric; Lu, Karen W


    In acute lung injuries, inactivating agents may interfere with transfer (adsorption) of pulmonary surfactants to the interface between air and the aqueous layer that coats the interior of alveoli. Some ionic and nonionic polymers reduce surfactant inactivation in vitro and in vivo. In this study, we tested directly whether an ionic polymer, hyaluronan, or a nonionic polymer, polyethylene glycol, enhanced adsorption of a surfactant used clinically. We used three different methods of measuring adsorption in vitro: a modified pulsating bubble surfactometer; a King/Clements device; and a spreading trough. In addition we measured the effects of both polymers on surfactant turbidity, using this assay as a nonspecific index of aggregation. We found that both hyaluronan and polyethylene glycol significantly increased the rate and degree of surfactant material adsorbed to the surface in all three assays. Hyaluronan was effective in lower concentrations (20-fold) than polyethylene glycol and, unlike polyethylene glycol, hyaluronan did not increase apparent aggregation of surfactant. Surfactant adsorption in the presence of serum was also enhanced by both polymers regardless of whether hyaluronan or polyethylene glycol was included with serum in the subphase or added to the surfactant applied to the surface. Therefore, endogenous polymers in the alveolar subphase, or exogenous polymers added to surfactant used as therapy, may both be important for reducing inactivation of surfactant that occurs with various lung injuries.


    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson


    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  7. Modeling of surfactant transport and adsorption in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.T.H.


    When surfactant solution is flowing in a reservoir formation, surfactants will be diluted by flow dispersion, retained in dead-end pores, adsorbed on rock surfaces, or precipitated due to ion exchange. The loss of surfactant will be detrimental to the performance of gas foam. Information of surfactant concentration profiles in reservoir formations is essential for gas foaming technique development. The major objective of this research is to investigate with mathematical models the transport and dynamic adsorption of surfactants in porous media. The mathematical models have taken into account the convection, dispersion, capacitance, and adsorption effects on concentrations of surfactants. Numerical methods and computer programs have been developed which can be used to match experimental results and to determine the characterization parameters in the models. The models can be included in foam simulation programs to calculate surfactant concentration profiles in porous media. A flow experimental method was developed to measure the effluent surfactant concentration, which will be used to determine the model parameters. Commercial foaming agent Alipal CD-128 was used in this study. Equilibrium adsorption and surfactant precipitation have been tested. Tracer solutions with a nonadsorbing solute such as dextrose and sucrose were used to determine the dispersion parameters for the experimental sandpack; thus, the adsorption of the surfactant in the test sand can be identified with an adequate model. 49 refs., 21 figs.

  8. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau


    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  9. Moving liquid surfactant as a way of assessing the properties of surfactant, liquids and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Titov, A O; Titov, O P; Titov, M O; Karbainov, A N, E-mail: [RUSSIA. GOU VPO East Siberian State Technological University (Russian Federation)


    In the study of surface phenomena of the main and only instrumentally-defined parameters are surface tension and wetting angle, including in the field of nanotechnology. These indicators were introduced more than 200 years ago, and any new inventions in this field was no more. The university developed a new method and device for determining the surface activity. The basis of the method and device is the use of video cameras to record the droplet size and changes on the surface of the liquid layer of known thickness from the impact of drops of surfactant (surfactant). Committed changes are then processed using computer software and calculated parameters, which can be characterized by a surfactant and surface properties, which is fluid and very liquid. Determine the surface tension or contact angle is not necessary. Measures of surface activity using the method and device are: 1. The amount of fluid that can move one kilogram of surfactant. The value of this index varies from tens of nanometers to hundreds of thousands of units. The indicator can be converted to energy units, joules. 2. The amount of fluid confined by a surface per unit time is calculated based on the first indicator, complements the characterization of surfactant and may be an indicator of surface characteristics and fluid. 3. Propagation speed of the capillary and microwaves. This indicator complements the first two.

  10. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen. (United States)

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad


    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant.

  11. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Vesna [Brazilian Synchrotron Light Source, Campinas (Brazil); Broadbent, Charlotte [Columbia Univ., New York, NY (United States). Engineering Dept.; DiMasi, Elaine [Brookhaven National Lab. (BNL), Upton, NY (United States). Photon Sciences Division; Galleguillos, Ramiro [Lubrizol Advanced Materials, Cleveland, OH (United States); Woodward, Valerie [Lubrizol Advanced Materials, Cleveland, OH (United States)


    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such data make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.

  12. Polymer Surfactants and Their Application in the Oilfield%高分子表面活性剂及其在油田中的应用

    Institute of Scientific and Technical Information of China (English)

    李智慧; 张庆生; 黄雪松; 曹言光; 朱诚身


    表面活性剂是分子中带有性质不同的亲水基和疏水基的两亲结构化合物,是与乳化、增溶、分散、润湿、起泡等表界面现象有关的功能性精细化工产品。高分子表面活性剂是由连接基团通过化学键将两个或多个单体表面活性剂连接在一起的性能优异的高分子化合物,本文介绍了其结构特征、功能特性、分类和应用情况。%Surfactants are the compounds which have amphiphilic structure with a hydrophilic group and a hydrophobic group of different nature in molecules. Surfactants are kinds of functional fine chemical products that are related with their surface and interfacial phenomenas such as emulsification,solubilization,dispersion,wetting and foaming. Polymer surfactants are of the polymer compounds with excellent performance. Two or more monomers surfactants are linked by spacer groups of polymer surfactants through chemical bonds. The structural characteristics,functional properties,classification and application of polymer surfactants are introduced in the paper.

  13. Emulsion of aqueous-based nonspherical droplets in aqueous solutions by single-chain surfactants: templated assembly by nonamphiphilic lyotropic liquid crystals in water. (United States)

    Varghese, Nisha; Shetye, Gauri S; Bandyopadhyay, Debjyoti; Gobalasingham, Nemal; Seo, JinAm; Wang, Jo-Han; Theiler, Barbara; Luk, Yan-Yeung


    Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants. The droplets, stabilized against coalescence by encapsulated in a layer (or layers) of single chain surfactants, are of both nonspherical tactoid (elongated ellipsoid with pointy ends) and spherical shapes. The tactoids have an average long axis of ∼9 μm and a short axis of ∼3.5 μm with the liquid crystal aligning parallel to the droplet surface. The spherical droplets are 5-10 μm in diameter and have the liquid crystal aligning perpendicular to the droplet surface and a point defect in the center. Cationic and zwitterionic surfactants studied in this work did not promote the organic salt to form droplets. These results illustrate the complex interplay of self-association and thermodynamic incompatibility of molecules in water, which can cause new assembly behavior, including potential formation of vesicles or other assemblies, from surfactants that usually form only micelles. These unprecedented tactoidal shaped droplets also provide potential for the fabrication of new soft organic microcapsules.

  14. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. (United States)

    Pichot, R; Spyropoulos, F; Norton, I T


    The stability against coalescence of O/W emulsions in the presence of both surfactants and colloidal particles was investigated. In particular the effect of the surfactant type and concentration in these emulsifier mixtures on the O/W emulsions' stability was studied. Two types of surfactants were selected; those that have the ability to stabilise O/W emulsions on their own (O/W surfactants) and those that cannot (W/O surfactants). Tween 60 and Sodium Caseinate were selected as the O/W surfactants and lecithin as the W/O surfactant. Oil-in-water emulsions prepared with both particles and any of the three surfactants were stable against coalescence but, depending on the type of surfactant, the behaviour of the systems was found to depend on surfactant concentration. The droplet sizes of emulsions stabilised by mixed emulsifier systems containing low concentrations of O/W surfactants (Tween 60 or Sodium Caseinate) were smaller than those solely stabilised by either the surfactant or particles alone. At intermediate O/W surfactants concentrations, the droplet sizes of the emulsions increased. Further increases in the O/W surfactants' concentration, resulted in the complete removal of particles from the interface with the system now behaving as a surfactant-only stabilised emulsion. The behaviour of emulsions stabilised by emulsifier mixtures containing W/O surfactants was not dependent on the concentration of surfactant: no removal of particles was observed. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Bending elasticity of charged surfactant layers: the effect of mixing. (United States)

    Bergström, L Magnus


    Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged

  16. Surfactant-assisted carbon doping in ZnO nanowires using Poly Ethylene Glycol (PEG)

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, Malik; Javed, Qurat-ul-Ain, E-mail:; Rizwan, Syed


    Zinc Oxide (ZnO) provides unique properties owing to its wide bandgap, large resistivity range and possibility to tune the physical properties. The surfactant assisted carbon doping was made possible due to the lowering of surface energy. The ZnO and carbon doped ZnO (C-ZnO) nanowires fabricated by hydrothermal process, Poly Ethylene Glycol (PEG) is used as surfactant in hydrothermal synthesis followed by post growth annealing treatment at 600 °C–700 °C. At 5%–10% of diluted PEG carbon is doped in ZnO. The crystallinity, structural morphology and elemental composition analysis for ZnO and C-ZnO nanowires were carried out using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques respectively. Carbon doping in ZnO nanowires in the presence of different percentage of surfactant is explained by calculating the change in surface energy with respect to change in PEG molecule concentration. It was found that the surface energy per molecule modulates from 3.92 × 10{sup −8} J/m{sup 2} to 8.16 × 10{sup −7} J/m{sup 2} in the PEG concentration range between 5% and 10%. Our results provides a new theoretical calculations, implemented on real system, to observe the details of PEG-assisted Carbon doping in II-VI semiconductor nanowires. - Highlights: • ZnO and C-ZnO was synthesized by PEG assisted post growth annealing process. • At 5% and 10% of PEG successful synthesis of C-ZnO was found. • XRD, SEM and EDX characterizations confirm the successful synthesis of ZnO and C-ZnO. • Change in surface energy with respect to PEG molecule concentration was calculated.

  17. Water repellency induced by pulmonary surfactants. (United States)

    Hills, B A


    1. Pure cotton fabric was partially carboxylated to produce a tough, porous, hydrophilic sub-phase to stimulate the epithelial membrane of the alveolar wall from a permeability standpoint. 2. Two of the predominant pulmonary surfactants, dipalmitoyl lecithin (DPL) and dipalmitoyl phosphatidylethanolamine (DPPE), were found to inhibit wetting of this synthetic membrane and of human cutaneous epithelium as manifest by a large contact angle. 3. When treated with DPL at physiological concentrations, the porous synthetic membrane was found to support a head of saline well in excess of systolic pulmonary artery pressure with no penetration and could do so for periods well in excess of 1 hr; untreated control samples allowed almost immediate fluid filtration. 4. Filtration could be initiated in the DPL-treated membranes by wetting the reverse side, confirming that the threshold pressure for fluid penetration was afforded by capillarity and, hence, by water repellency induced by the surfactant. 5. Water repellency induced by the amphoteric surfactants occurring naturally in the lung is discussed as a possible factor contributing to the pressure threshold to be exceeded for alveolar oedema to form. 6. Evidence is reviewed and several advantages discussed for the implied concept of an essentially dry lining to the alveolus with a discontinuous liquid layer largely confined to convex corners which could slowly resolve any oedema by surface forces.

  18. Preparation and evaluation of sulphonamide nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. H. M.


    Alkyl (octyl, decyl and dodecyl; C{sub 8}, C{sub 1}0 and C{sub 1}2) benzene sulphonyl chloride was used in the preparation of a novel series of nonionic surfactants (IV-VI)a-c, (VII-IX) a-c and (X-XII)a-c. The preparations were completed by reacting each alkyl (C{sub 8}, C{sub 1}0 and C{sub 1}2) benzene sulphonyl chloride with ethanolamine to give (I-III) respectively. The resulting products were reacted separately with ethylene oxide in the presence of different (base KOH, Lewis acid SnCl4 and k10 clay) catalysts to produce different moles of nonionic surfactants (5, 7 and 9) in sequence corresponding to (IV-VI)a-c, (VII-IX) a-c and (X-XII)a-c respectively. The chemical structures of prepared nonionic surfactants were elucidated by IR and 1HNMR spectra. The surface activity, biodegradability and biological activities of the prepared compounds were investigated. The obtained data show that these compounds have good surface and biological activities as well as reasonable biodegradability properties. (Author) 30 refs.

  19. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition. (United States)

    Raesch, Simon Sebastian; Tenzer, Stefan; Storck, Wiebke; Rurainski, Alexander; Selzer, Dominik; Ruge, Christian Arnold; Perez-Gil, Jesus; Schaefer, Ulrich Friedrich; Lehr, Claus-Michael


    Pulmonary surfactant (PS) constitutes the first line of host defense in the deep lung. Because of its high content of phospholipids and surfactant specific proteins, the interaction of inhaled nanoparticles (NPs) with the pulmonary surfactant layer is likely to form a corona that is different to the one formed in plasma. Here we present a detailed lipidomic and proteomic analysis of NP corona formation using native porcine surfactant as a model. We analyzed the adsorbed biomolecules in the corona of three NP with different surface properties (PEG-, PLGA-, and Lipid-NP) after incubation with native porcine surfactant. Using label-free shotgun analysis for protein and LC-MS for lipid analysis, we quantitatively determined the corona composition. Our results show a conserved lipid composition in the coronas of all investigated NPs regardless of their surface properties, with only hydrophilic PEG-NPs adsorbing fewer lipids in total. In contrast, the analyzed NP displayed a marked difference in the protein corona, consisting of up to 417 different proteins. Among the proteins showing significant differences between the NP coronas, there was a striking prevalence of molecules with a notoriously high lipid and surface binding, such as, e.g., SP-A, SP-D, DMBT1. Our data indicate that the selective adsorption of proteins mediates the relatively similar lipid pattern in the coronas of different NPs. On the basis of our lipidomic and proteomic analysis, we provide a detailed set of quantitative data on the composition of the surfactant corona formed upon NP inhalation, which is unique and markedly different to the plasma corona.

  20. Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant. (United States)

    Bogomolova, Anna; Keller, Sandro; Klingler, Johannes; Sedlak, Marian; Rak, Dmytro; Sturcova, Adriana; Hruby, Martin; Stepanek, Petr; Filippov, Sergey K


    The behavior of pH-responsive polymers poly(N-methacryloyl-l-valine) (P1), poly(N-methacryloyl-l-phenylalanine) (P2), and poly(N-methacryloylglycyne-l-leucine) (P3) has been studied in the presence of the nonionic surfactant Brij98. The pure polymers phase-separate in an acidic medium with critical pHtr values of 3.7, 5.5, and 3.4, respectively. The addition of the surfactant prevents phase separation and promotes reorganization of polymer molecules. The nature of the interaction between polymer and surfactant depends on the amino acid structure in the side chain of the polymer. This effect was investigated by dynamic light scattering, isothermal titration calorimetry, electrophoretic measurements, small-angle neutron scattering, and infrared spectroscopy. Thermodynamic analysis revealed an endothermic association reaction in P1/Brij98 mixture, whereas a strong exothermic effect was observed for P2/Brij98 and P3/Brij98. Application of regular solution theory for the analysis of experimental enthalpograms indicated dominant hydrophobic interactions between P1 and Brij98 and specific interactions for the P2/Brij98 system. Electrophoretic and dynamic light scattering measurements support the applicability of the theory to these cases. The specific interactions can be ascribed to hydrogen bonds formed between the carboxylic groups of the polymer and the oligo(ethylene oxide) head groups of the surfactant. Thus, differences in polymer-surfactant interactions between P1 and P2 polymers result in different structures of polymer-surfactant complexes. Specifically, small-angle neutron scattering revealed pearl-necklace complexes and "core-shell" structures for P1/Brij98 and P2/Brij98 systems, respectively. These results may help in the design of new pH-responsive site-specific micellar drug delivery systems or pH-responsive membrane-disrupting agents.

  1. Estimation hydrophilic-lipophilic balance number of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pawignya, Harsa, E-mail: [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta (Indonesia); Prasetyaningrum, Aji, E-mail:; Kusworo, Tutuk D.; Pramudono, Bambang, E-mail: [Chemical Engineering Department Diponegoro University (Indonesia); Dyartanti, Endah R. [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Enginering Departement Sebelas Maret University (Indonesia)


    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  2. Influence of metacide - surfactant complexes on agricultural crops

    Directory of Open Access Journals (Sweden)

    Orynkul Esimova


    Full Text Available The complexes based on surfactants and polyhexamethyleneguanidine hydrochloride (metacide are important for agriculture. This paper considers compositions of known bactericidal metacide with different surfactants: anionic surfactant sodium dodecylsulphate (DDSNa and nonionic surfactant Tween 80 (monooleate of oxyethylenated anhydrosorbitols. The effect of individual components and associates of metacide and surfactants on productivity and infection of cereals was studied. According to the study, the highest productivity and infection rate were shown by the associate of metacide and Tween-80. At concentration of Tween-80 in aqueous solution equal to 0.001% in combination with metacide, efficiency was 98% at 0% infection. The surface tension and the wetting of metacide, DDSNa, Tween-80, and associates of metacide with surfactants were studied. In comparison with individual components, metacide-DDSNa and metacide-Tween-80 associates have higher surface activity.

  3. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases]. (United States)

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan


    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases.

  4. Branched alkyl alcohol propoxylated sulfate surfactants for improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Iglauer, S.; Shuler, P.; Tang, Y. [California Institute of Technology, Covina, CA (US). Power, Environmental and Energy Research (PEER) Center; Goddard, W.A. III [California Institute of Technology, Pasadena, CA (United States). Materials and Process Simulation Center


    This investigation considers branched alkyl alcohol propoxylated sulfate surfactants as candidates for chemical enhanced oil recovery (EOR) applications. Results show that these anionic surfactants may be preferred candidates for EOR as they can be effective at creating low interfacial tension (IFT) at dilute concentrations, without requiring an alkaline agent or cosurfactant. In addition, some of the formulations exhibit a low IFT at high salinity, and hence may be suitable for use in more saline reservoirs. Adsorption tests onto kaolinite clay indicate that the loss of these surfactants can be comparable to or greater than other types of anionic surfactants. Surfactant performance was evaluated in oil recovery core flood tests. Selected formulations recovered 35-50% waterflood residual oil even with dilute 0.2 wt% surfactant concentrations from Berea sandstone cores. (orig.)

  5. Gemini imidazolium surfactants: synthesis and their biophysiochemical study. (United States)

    Kamboj, Raman; Singh, Sukhprit; Bhadani, Avinash; Kataria, Hardeep; Kaur, Gurcharan


    New gemini imidazolium surfactants 9-13 have been synthesized by a regioselective epoxy ring-opening reaction under solvent-free conditions. The surface properties of these new gemini surfactants were evaluated by surface tension and conductivity measurements. These surfactants have been found to have low critical micelle concentration (cmc) values as compared to other categories of gemini cationic surfactants and also showed the tendency to form premicellar aggregates in solution at sufficiently low concentration below their cmc values. The thermal degradation of these surfactants was determined by thermograviometry analysis (TGA). These new cationic surfactants have a good DNA binding capability as determined by agarose gel electrophoresis and ethidium bromide exclusion experiments. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.

  6. Effects of silicon surfactant in rigid polyurethane foams

    Directory of Open Access Journals (Sweden)


    Full Text Available The rigid polyurethane foams (RPUFs have been fabricated from high functional crude 4,4’-di-phenylmethane diisocyanate (CMDI and polypropylene glycols (PPGs for a wide range of surfactant concentration with an environmently friendly blowing agent (HFC 365mfc. Cream time, gel time, and tack-free time increased with the addition of surfactant. Foam density decreased rapidly to a minimum at 0.5 pphp (part per hundred polyol surfactant due to the increased blowing efficiency with surfactant. Surface tension rapidly decreased to an asymptotic value at 2 pphp surfactant. In accordance with this, cell size decreased and closed cell content increased rapidly to constant values at low surfactant concentrations (<1 pphp. The decrease of cell size was accompanied by the decrease of thermal conductivity to give a linear relatiohship between the two implying that the series model of heat transfer is applicable.

  7. Inhibition of carbon steel corrosion in CO{sub 2}-saturated brine using some newly surfactants based on palm oil: Experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Lateef, Hany M., E-mail: [Chemistry Department, Faculty of Science, Sohag University, Sohag (Egypt); Abbasov, V.M.; Aliyeva, L.I.; Qasimov, E.E.; Ismayilov, I.T. [Mamedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, AZ1025 Baku (Azerbaijan)


    New surfactants from the type of fatty acids derivatives were synthesized based on palm oil and their inhibitive action against the corrosion of carbon steel in CO{sub 2}-saturated 1% NaCl solution were investigated at 50 °C. The detailed study of surfactants as corrosion inhibitors is given using polarization curves and electrochemical impedance spectroscopy methods. The inhibition efficiencies obtained from the two employed methods are nearly closed. Results show that, the investigated surfactants are good inhibitors and its inhibition efficiency reaches to 98.95% at 100 ppm for inhibitor V. The high inhibition efficiencies were attributed to the simple blocking effect by adsorption of inhibitor molecules on the steel surface. The surface activity of the synthesized surfactant solutions was determined using surface tension measurements at 25 °C. Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir's adsorption isotherm and chemisorption. The correlation between the inhibition efficiencies of the studied surfactants and their molecular structures has been investigated using quantum chemical calculations. The obtained theoretical results have been supported our experimental data. - Graphical abstract: To investigate the relationship between molecular structures of the studied surfactants and their inhibition effect; Quantum chemical molecular calculations were performed. The following quantum chemical indices such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), energy gap ΔE = E{sub HOMO} − E{sub LUMO}, and dipole moment (μ) were considered. The relation between these parameters and the inhibition efficiencies was explained. The obtained theoretical results have been supported our experimental data. - Highlights: • Effect of surfactants on carbon steel corrosion in CO{sub 2}-saturted brine was investigated. • The high inhibition efficiency attributed to the adherent adsorption

  8. Interaction Study and Reactivity of Zr(IV) -Substituted Wells-Dawson Polyoxometalate towards Hydrolysis of Peptide Bonds in Surfactant Solutions. (United States)

    Quanten, Thomas; Shestakova, Pavletta; Van Den Bulck, Dries; Kirschhock, Christine; Parac-Vogt, Tatjana N


    The interaction between the 1:2 Zr(IV) :Wells-Dawson complex, K15 H[Zr(α2 -P2 W17 O61 )2] (1), and a range of surfactants was studied in detail with the aim of developing metal-substituted POMs as potential artificial proteases for membrane proteins. The surfactants include the positively charged cetyl(trimethyl)ammonium bromide (CTAB), the negatively charged sodium dodecyl sulfate (SDS), the neutral Triton X-100 (TX-100), and zwitterionic 3-[dodecyl(dimethyl)ammonio]-1-propanesulfonate (Zw3-13) and 3-[dimethyl(3-{[(3α,5β,7α,12α)-3,7,12-trihydroxy-24-oxocholan-24-yl]amino}propyl)ammonio]-1-propanesulfonate (CHAPS). A combination of multinuclear (1)H, (13)C, and (31) P NMR spectroscopy, (1)H diffusion-ordered NMR spectroscopy ((1)H DOSY), and nuclear Overhauser effect spectroscopy (NOESY) was used to examine the interaction between 1 and each surfactant on the molecular level. Cationic surfactant CTAB caused precipitation of 1 due to strong electrostatic interactions, while the anionic SDS and neutral TX-100 surfactants did not exhibit any interaction at neutral pD. (1)H DOSY NMR spectroscopy indicated an interaction between 1 and zwitterionic surfactants Zw3-12 and CHAPS, which occurs via the positively charged ammonium group in the surfactant molecule. In the presence of anionic, neutral, and zwitterionic surfactants, 1 preserves its catalytic activity towards the hydrolysis of the peptide bond in the dipeptide glycyl-l-histidine (GH). The fastest hydrolysis was observed at pD 7.0 and could be rationalized by taking into account pD-dependent speciation of 1 and coordination properties of GH.

  9. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Directory of Open Access Journals (Sweden)

    Xu Jide


    Full Text Available Abstract Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS on the adsorption of the siderophores DFOB (cationic and DFOD (neutral and the ligand EDTA (anionic onto goethite (α-FeOOH at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition.

  10. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants (United States)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.


    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  11. Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants. (United States)

    Holmiere, Sébastien; Valentin, Romain; Maréchal, Philippe; Mouloungui, Zéphirin


    Glycerol carbonate is one of the most potentially multifunction glycerol-derived compounds. Glycerol is an important by-product of the oleochemical industry. The oligomerization of glycerol carbonate, assisted by the glycerol, results in the production of polyhydroxylated oligomers rich in linear carbonate groups. The polar moieties of these oligomers (Mwesters of sorbitan polyethoxylates. The self-assembling properties of oligocarbonate esters were highlighted by their ability to stabilize inverse and multiple emulsions. The oligo-(glycerol carbonate-glycerol ether) with relatively low molecular weights showed properties of relatively high-molecular weight molecules, and constitute a viable "green" alternative to ethoxylated surfactants. Copyright © 2016 Elsevier Inc. All rights reserved.


    Institute of Scientific and Technical Information of China (English)


    The nanoparticles γ-Fe2O3 coated with surfactants.DBS,ST and CTAB.repsectively.were synthesized by microemulsion method.The coated ferric oxides.which show enhanced nonlinear optical properties compared with their bulk counterpart.were probed by EXAFS in solution forms.The x=-ray absorption spectra for Fe K edge were measured at room temperature by help of synchrotron radiation light source.Extended x-ray absorption fine structure analysis shows that the coating layers of organic molecules interact with surface atoms of nanopartices,the Fe-O bond length was extended.

  13. Oligomannuronates from Seaweeds as Renewable Sources for the Development of Green Surfactants (United States)

    Benvegnu, Thierry; Sassi, Jean-François

    The development of surfactants based on natural renewable resources is a concept that is gaining recognition in detergents, cosmetics, and green chemistry. This new class of biodegradable and biocompatible products is a response to the increasing consumer demand for products that are both "greener", milder, and more efficient. In order to achieve these objectives, it is necessary to use renewable low-cost biomass that is available in large quantities and to design molecular structures through green processes that show improved performance, favorable ecotoxicological properties and reduced environmental impact. Within this context, marine algae represent a rich source of complex polysaccharides and oligosaccharides with innovative structures and functional properties that may find applications as starting materials for the development of green surfactants or cosmetic actives. Thus, we have developed original surfactants based on mannuronate moieties derived from alginates (cell-wall polyuronic acids from brown seaweeds) and fatty hydrocarbon chains derived from vegetable resources. Controlled chemical and/or enzymatic depolymerizations of the algal polysaccharides give saturated and/or unsaturated functional oligomannuronates. Clean chemical processes allow the efficient transformation of the oligomers into neutral or anionic amphiphilic molecules. These materials represent a new class of surface-active agents with promising foaming/emulsifying properties.

  14. Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion. (United States)

    Gumaste, Suhas G; Gupta, Simerdeep Singh; Serajuddin, Abu T M


    In a solid dispersion (SD), the drug is generally dispersed either molecularly or in the amorphous state in polymeric carriers, and the addition of a surfactant is often important to ensure drug release from such a system. The objective of this investigation was to screen systematically polymer-surfactant and polymer-drug-surfactant miscibility by using the film casting method. Miscibility of the crystalline solid surfactant, poloxamer 188, with two commonly used amorphous polymeric carriers, Soluplus® and HPMCAS, was first studied. Then, polymer-drug-surfactant miscibility was determined using itraconazole as the model drug, and ternary phase diagrams were constructed. The casted films were examined by DSC, PXRD and polarized light microscopy for any crystallization or phase separation of surfactant, drug or both in freshly prepared films and after exposure to 40°C/75% RH for 7, 14, and 30 days. The miscibility of poloxamer 188 with Soluplus® was <10% w/w, while its miscibility with HPMCAS was at least 30% w/w. Although itraconazole by itself was miscible with Soluplus® up to 40% w/w, the presence of poloxamer drastically reduced its miscibility to <10%. In contrast, poloxamer 188 had minimal impact on HPMCAS-itraconazole miscibility. For example, the phase diagram showed amorphous miscibility of HPMCAS, itraconazole, and poloxamer 188 at 54, 23, and 23% w/w, respectively, even after exposure to 40°C/75% RH for 1 month. Thus, a relatively simple and practical method of screening miscibility of different components and ultimately physical stability of SD is provided. The results also identify the HPMCAS-poloxamer 188 mixture as an optimal surface-active carrier system for SD.

  15. [Liposome phospholipid substitution and lung function in surfactant deprived rats]. (United States)

    Obladen, M


    In vivo activity of an artificial surfactant was studied in surfactant depleted rats. After tenfold alveolar lavage, PaO2, tidal volume, and compliance of the respiratory system fell to one third of initial value. Substitution of large unilamellar vesicles containing 90% Dipalmitoylphosphatidylcholine and 10% unsaturated phosphatidylglycerol largely restored oxygenation and lung mechanics in most animals. Complete normalization with weaning from the ventilator, however, was achieved neither with liposomes nor with natural surfactant concentrate.

  16. The Role of Surfactant in Respiratory Distress Syndrome



    The key feature of respiratory distress syndrome (RDS) is the insufficient production of surfactant in the lungs of preterm infants. As a result, researchers have looked into the possibility of surfactant replacement therapy as a means of preventing and treating RDS. We sought to identify the role of surfactant in the prevention and management of RDS, comparing the various types, doses, and modes of administration, and the recent development. A PubMed search was carried out up to March 2012 u...

  17. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope


    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  18. AARC Clinical Practice Guideline. Surfactant replacement therapy: 2013. (United States)

    Walsh, Brian K; Daigle, Brandon; DiBlasi, Robert M; Restrepo, Ruben D


    We searched the MEDLINE, CINAHL, and Cochrane Library databases for English-language randomized controlled trials, systematic reviews, and articles investigating surfactant replacement therapy published between January 1990 and July 2012. By inspection of titles, references having no relevance to the clinical practice guideline were eliminated. The update of this clinical practice guideline is based on 253 clinical trials and systematic reviews, and 12 articles investigating surfactant replacement therapy. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation scoring system: 1: Administration of surfactant replacement therapy is strongly recommended in a clinical setting where properly trained personnel and equipment for intubation and resuscitation are readily available. 2: Prophylactic surfactant administration is recommended for neonatal respiratory distress syndrome (RDS) in which surfactant deficiency is suspected. 3: Rescue or therapeutic administration of surfactant after the initiation of mechanical ventilation in infants with clinically confirmed RDS is strongly recommended. 4: A multiple surfactant dose strategy is recommended over a single dose strategy. 5: Natural exogenous surfactant preparations are recommended over laboratory derived synthetic suspensions at this time. 6: We suggest that aerosolized delivery of surfactant not be utilized at this time.

  19. Effects of Surfactant Adsorption on Surficial Wettability of Nonwoven Fabrics

    Institute of Scientific and Technical Information of China (English)

    CAI Bing; TANG Bing; LI Rui-xia; WU Da-cheng


    All types of surfactants (cationic, anionic and nonionic)reported in this paper could enhance the surficiai wettability of polypropylene (PP) and polyethylene terephthalate (PET) nonwoven fabrics. However, the effects of cationic and nonionic surfactants were better.The longer the treatment time of surfactants on the nonwoven fabrics, the better the surficial wettability.The surficial rewetting time would no longer change above a certain treatment time. The rewettability of nonwoven fabrics could be evidently improved just when the concentration of surfactants was just above the CMC,except for sodium dodecylbenzene sulfonate (LAS). The finer the fibers and the looser the structures, the better the surficial rewettability of nonwoven fabrics.

  20. Interactions in Calcium Oxalate Hydrate/Surfactant Systems. (United States)

    Sikiric; Filipovic-Vincekovic; Babic-Ivancić Vdović Füredi-Milhofer


    Phase transformation of calcium oxalate dihydrate (COD) into the thermodynamically stable monohydrate (COM) in anionic (sodium dodecyl sulfate (SDS)) and cationic (dodecylammonium chloride) surfactant solutions has been studied. Both surfactants inhibit, but do not stop transformation from COD to COM due to their preferential adsorption at different crystal faces. SDS acts as a stronger transformation inhibitor. The general shape of adsorption isotherms of both surfactants at the solid/liquid interface is of two-plateau-type, but differences in the adsorption behavior exist. They originate from different ionic and molecular structures of crystal surfaces and interactions between surfactant headgroups and solid surface. Copyright 1999 Academic Press.

  1. Effects of Surfactant on Solubility and Microbial Conversion of Steroid

    Institute of Scientific and Technical Information of China (English)


    Enhancing the dispersion and dissolution of substrate particles in substrate/water suspension is a feasible way to improve steroid bioconversion. The aim of the present study is to investigate the effects of applying surfactant to microbial conversion system on the dispersion, solubilization and in turn bioconversion of steroid substrate. The model system is hydroxylation of substrate 16α-,17α-epoxy-4-pregnene-3,20-dine by microbial enzymes from Rhizopus nigricanl. The results show that the presence of substrate leads to an increase in critical micelle concentration (CMC) of surfactant PSE compared with the normal CMC of PSE in aqueous solution. The grinding time during substrate suspension preparation affects the substrate aqueous solubility differently with the varied surfactant concentrations while barely making any difference in substrate solubility in the absence of surfactant. The properly prolonged grinding time can make up for the loss in substrate solubility arising from the reduction in surfactant concentration. The surfactant complexes composed of surfactants PSE and MGE at appropriate ratios are screened out with orthodoxy experiment method, the interaction between PSE and MGE exerts the most prominent effects on substrate bioconversion, and the surfactant complexes show more beneficial effects on steroid bioconversion than the surfactant PSE used alone.


    The relative environmental toxicities of synthetic and biogenic surfactants used in oil spill remediation efforts are not well understood. Acute and chronic toxicities of three synthetic surfactants and three microbially produced surfactants were determined and compared in this s...

  3. C-reactive protein increases membrane fluidity and distorts lipid lateral organization of pulmonary surfactant. Protective role of surfactant protein A

    DEFF Research Database (Denmark)

    Saenz, Alejandra; Lopez-Sanchez, Almudena; Mojica-Lazaro, Jonas


    The purpose of this study was to investigate how surfactant membranes can be perturbed by C-reactive protein (CRP) and whether surfactant protein A (SP-A) might overcome CRP-induced surfactant membrane alterations. The effect of CRP on surfactant surface adsorption was evaluated in vivo after int...

  4. Characterization of the host–guest complex of a curcumin analog with β-cyclodextrin and β-cyclodextrin–gemini surfactant and evaluation of its anticancer activity

    Directory of Open Access Journals (Sweden)

    Poorghorban M


    Full Text Available Masoomeh Poorghorban,1 Umashankar Das,2 Osama Alaidi,1 Jackson M Chitanda,2 Deborah Michel,1 Jonathan Dimmock,1 Ronald Verrall,3 Pawel Grochulski,1,4 Ildiko Badea1 1Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, 2Department of Chemical and Biological Engineering, 3Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada; 4Canadian Light Source, Saskatoon, SK, Canada Background: Curcumin analogs, including the novel compound NC 2067, are potent cytotoxic agents that suffer from poor solubility, and hence, low bioavailability. Cyclodextrin-based carriers can be used to encapsulate such agents. In order to understand the interaction between the two molecules, the physicochemical properties of the host–guest complexes of NC 2067 with β-cyclodextrin (CD or β-cyclodextrin–gemini surfactant (CDgemini surfactant were investigated for the first time. Moreover, possible supramolecular structures were examined in order to aid the development of new drug delivery systems. Furthermore, the in vitro anticancer activity of the complex of NC 2067 with CDgemini surfactant nanoparticles was demonstrated in the A375 melanoma cell line.Methods: Physicochemical properties of the complexes formed of NC 2067 with CD or CDgemini surfactant were investigated by synchrotron-based powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Synchrotron-based small- and wide-angle X-ray scattering and size measurements were employed to assess the supramolecular morphology of the complex formed by NC 2067 with CDgemini surfactant. Lastly, the in vitro cell toxicity of the formulations toward A375 melanoma cells at various drug-to-carrier mole ratios were measured by cell viability assay.Results: Physical mixtures of NC 2067 and CD or CDgemini surfactant showed characteristics of the individual components, whereas the complex of NC 2067 and CD or CDgemini surfactant presented new

  5. PLUNC is a novel airway surfactant protein with anti-biofilm activity.

    Directory of Open Access Journals (Sweden)

    Lokesh Gakhar

    Full Text Available BACKGROUND: The PLUNC ("Palate, lung, nasal epithelium clone" protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP family. Two members of this family--the bactericidal/permeability increasing protein (BPI and the lipopolysaccharide binding protein (LBP--are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways. METHODOLOGY/PRINCIPAL FINDINGS: Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen.

  6. Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery. (United States)

    Lv, Jing; Qiao, Weihong; Li, Zongshi


    Reversible transition from micelles to vesicles by regulating pH were realized by gemini amino-acid surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine. Measurement results of ζ-potential at different pH and DLS at varying solvents revealed that the protonation between H(+) and double NCH2COO(-) groups (generating NH(+)CH2COO(-)), expressed as pKa1 and pKa2, is the key driving force to control the aggregation behaviors of gemini surfactant molecule. Effect of pH on the bilayer structure was studied in detail by using steady-state fluorescence spectroscopy of hydrophobic pyrene and Coumarin 153 (C153) respectively and fluorescence resonance energy transfer (FRET) from C153 to Rhodamine 6G (R6G). Various pH-regulated and pH-reversible self-assemblies were obtained in one surfactant system. Vitamin D3 was encapsulated in vesicle bilayers to form nano-VD3-capsules as VD3 supplement agent for health care products. By using the electrostatic attraction between Ca(2+) and double -COO(-) groups, nano-VD3-capsules with Ca(2+) coated outermost layers were prepared as a formulation for VD3 and calcium co-supplement agent. DLS and TEM were performed to check stability and morphology of the nano-capsules. It is concluded that the pH-regulated gemini amino-acid surfactants can be used to construct colloidal systems for delivering hydrophobic drugs or nutritions without lipids at human physiological pH level.

  7. Solid crystal network of self-assembled cyclodextrin and nonionic surfactant pseudorotaxanes. (United States)

    Guerrero-Martínez, Andrés; Avila, David; Martínez-Casado, Francisco J; Ripmeester, John A; Enright, Gary D; De Cola, Luisa; Tardajos, Gloria


    The title system allows the straightforward formation of three-dimensional crystals of self-assembled pseudorotaxanes formed by the nonionic surfactant Igepal CO-520 and beta-cyclodextrin (beta-CD) in aqueous solution. The work involves a combination of X-ray powder diffraction, high resolution electron transmission microscopy, and (13)C CP/MAS NMR studies of the solid crystal, supported by single crystal structural analysis. The results indicate a lamellar self-assembly of pseudorotaxanes with preferential orientation and disorder in the structure. For the single crystal, the unit cell was found to be triclinic (P1) and contains a beta-CD dimer. The surfactant molecules are located in the channel formed by these dimers along the c axis of the crystal network. The individual pseudorotaxane structure is formed by a dimer of beta-CDs threaded by the oxyethylene hydrophilic segment of Igepal CO-520, and a beta-CD dimer that binds the hydrophobic region of the surfactant. Thus, as in a CD polyrotaxane structure, this system results in an ordered self-assembly of pseudorotaxanes through the formation of a network of hydrogen bonds between head-to-head beta-CD dimers. Moreover, the analysis of the (1)H NMR spectra in solutions of pseudorotaxanes formed by beta-CD and Igepals with different lengths of the hydrophilic tails indicates equal stoichiometry patterns of both oxyethyelene and hydrophobic regions for the different supramolecules. Whereas the common hydrophobic moiety threads two macrocycles, the ratio between complexed oxyehtlyene segments and beta-CD is 2.5 for the hydrophilic tails. All these results show that nonionic surfactants can be used as alternative and effective linear threads to polymers and copolymers in the synthesis of supramolecular polyrotaxane solid crystals with CDs.

  8. Static and dynamic properties of surfactant films on natural waters

    Directory of Open Access Journals (Sweden)

    Stanis³aw J. Pogorzelski


    Full Text Available The paper contains the results of natural surface film surface pressure - area experiments carried out in inland waters and shallow offshore regions of the Baltic and Mediterranean Seas during 1990-99 under calm water conditions using the Langmuir trough - Wilhelmy filter paper plate system, which "cuts out" an undisturbed film-covered sea area without any initial physico-chemical sample processing. The limiting specific area Alim (268–3157 Å2/molecule-1 and mean molecular mass (0.65-9.7 kDa of microlayer surfactants were determined from the 2D virial equation of state applied to the isotherms. Film structure signatures were derived from – A isotherm hysteresis and application of the 2D polymer scaling theory. The stress-relaxation measurements revealed a two-step relaxation process at the interface with characteristic times 1 (1.1–2.8 and 2 (5.6-25.6 seconds suggesting the presence of diffusion-controlled and structural organization relaxation phenomena. The results demonstrate that natural films are a complex mixture of biomolecules covering a wide range of solubilities, surface activity and molecular mass with an apparent structural organization exhibiting a spatial and temporal variability.

  9. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression

    National Research Council Canada - National Science Library

    Hassan, A K


    ...°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required...

  10. Steroidal Surfactants: Detection of Premicellar Aggregation, Secondary Aggregation Changes in Micelles, and Hosting of a Highly Charged Negative Substance. (United States)

    Barnadas-Rodríguez, Ramon; Cladera, Josep


    CHAPSO and CHAPS are zwitterionic surfactants derived from bile salts which are usually employed in protein purification and for the preparation of liposomes and bicelles. Despite their spread use, there are significant discrepancies on the critical concentrations that determine their aggregation behavior. In this work, we study the interaction between these surfactants with the negative fluorescent dye pyranine (HPTS) by absorbance, fluorescence, and infrared spectrometry to establish their concentration-dependent aggregation. For the studied surfactants, we detect three critical concentrations showing their concentration-dependent presence as a monomeric form, premicellar aggregates, micelles, and a second type of micelle in aqueous medium. The nature of the interaction of HPTS with the surfactants was studied using analogues of their tails and the negative bile salt taurocholate (TC) as reference for the sterol ring. The results indicate that the chemical groups involved are the hydroxyl groups of the polar face of the sterol ring and the sulfonate groups of the dye. This interaction causes not only the incorporation of the negative dye in CHAPSO and CHAPS micelles but also its association with their premicellar aggregates. Surprisingly, this hosting behavior for a negative charged molecule was also detected for the negative bile salt TC, bypassing, in this way, the electrostatic repulsion between the guest and the host.

  11. Adsorption of the disinfectant benzalkonium chloride on montmorillonite. Synergistic effect in mixture of molecules with different chain lengths. (United States)

    Zanini, Graciela P; Ovesen, Rikke Gleerup; Hansen, H C B; Strobel, Bjarne W


    The biocide benzalkonium chloride (BAC) is a mix of cationic alkylbenzyldimethylammonium surfactants having different alkyl chain lengths. A comparative study of adsorption on the phyllosilicate clay montmorillonite of two of these surfactants, with alkyl chains having respectively 12 C atoms (BAC-12) and 14 C atoms (BAC-14), and a mixture of both surfactants is presented in this work. Adsorption isotherms were performed for individual surfactants and for a 1:1 mixture BAC-12+BAC-14. The adsorption was investigated in an ample concentration range that covers almost seven orders of magnitude in concentrations (from 1 nM to 10 mM), range that includes environmentally relevant concentrations. Quantification of BAC was performed by HPLC-UV and LC-MS and the results were completed with powder X-Ray diffraction. The adsorption of both surfactants leads to adsorption isotherms with two well differentiated steps. The first step corresponds almost exclusively to a cation exchange process, and the binding constant is very similar for both surfactants. The second step of the isotherms is observed at higher concentrations and adsorption is mainly driven by lateral interactions between surfactant molecules. The binding constant of this step is larger for BAC-14 than for BAC-12. Adsorption from a BAC-12+BAC-14 mixture shows a synergistic behaviour, possibly due to a better packing arrangement in the interlayer. Calculations show that in natural systems silicate clays are major sorbents of BAC at low concentrations whereas binding to humic acid is predominant at high concentrations.

  12. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant (United States)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  13. Evaluation of Clay and Fumed Silica Nanoparticles on Adsorption of Surfactant Polymer during Enhanced Oil Recovery

    National Research Council Canada - National Science Library

    Cheraghian, Goshtasp


    .... The effects of nano concentration on static adsorption of surfactant were investigated at variable condition polymer and surfactant concentration and nanoparticles are critical parameters influence...

  14. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB (United States)

    Sobhani, Azam; Davar, Fatemeh; Salavati-Niasari, Masoud


    Nano-sized nickel selenide powders have been successfully synthesized via an improved hydrothermal route based on the reaction between NiCl2·6H2O, SeCl4 and hydrazine (N2H4·H2O) in water, in present of cetyltrimethyl ammonium bromide (CTAB) as surfactant, at various conditions. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy analysis. Effects of temperature, reaction time and reductant agent on the morphology, the particle sizes and the phase of the final products have been investigated. It was found that the phase and morphology of the products could be greatly influenced by these parameters. The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  15. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Azam [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)


    Nano-sized nickel selenide powders have been successfully synthesized via an improved hydrothermal route based on the reaction between NiCl{sub 2}.6H{sub 2}O, SeCl{sub 4} and hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) in water, in present of cetyltrimethyl ammonium bromide (CTAB) as surfactant, at various conditions. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy analysis. Effects of temperature, reaction time and reductant agent on the morphology, the particle sizes and the phase of the final products have been investigated. It was found that the phase and morphology of the products could be greatly influenced by these parameters. The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  16. Preparation of polystyrene–clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    P K Paul; S A Hussain; D Bhattacharjee; M Pal


    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS. X-ray diffraction analysis in combination with scanning electron microscopy gives an idea of structural and morphological information of PS–laponite nanocomposite for different varying organo-laponite contents. Intercalation of PS chain occurs into the interlayer spacings of laponite for low organo-laponite concentration in the PS–O-laponite mixture. However, aggregation and agglomeration occur at higher clay concentration. The molecular bond vibrational profile of laponite as well as PS–laponite nanocomposite have been explored by Fourier transform infrared spectroscopy. Thermogravimetric analysis along with differential scanning calorimetry results reveal the enhancement of both thermal stability and glass transition temperature of PS due to the incorporation of clay platelets.

  17. The effect of emulsifying wax on the physical properties of CTAB-based solid lipid nanoparticles (SLN). (United States)

    Siddiqui, Akhtar; Alayoubi, Alaadin; Nazzal, Sami


    The objective of this study was to investigate the effect of cetyl alcohol (CA) and Tween® 60 (polysorbate), the primary components of emulsifying wax, on the size, zeta potential and stability of cetyltrimethyl ammonium bromide (CTAB)-based solid lipid nanoparticles (SLN) by D-optimal mixture design. A binary CTAB/polysorbate surfactant blend did not offer an advantage over a simple CTAB-stabilized SLN. This led to the conclusion that emulsifying wax could be readily substituted with CA in simple SLNs based on binary CTAB/CA blends. Polysorbate, however, may be added as a co-emulsifier to adjust the physical properties of the nanoparticles, as dictated by the formulator.

  18. Synthesis and Surface Properties of Silica Spheres with Core Shell Structure by One Convenient Method

    Directory of Open Access Journals (Sweden)

    D. P. Das


    Full Text Available Earlier, we have published a paper on the preparation of silica sphere using propanol as cosurfactant. We report here a highly cost-effective method of preparation of mesoporous silica spheres with core shell structure using sodium silicate as silica precursor, cetyltrimethyl ammonium bromide (CTAB as surfactant, and methanol as cosurfactant. Thus after removal of the template by dissolutions or/and activation at higher temperature, mesoporous silica spheres with core shell structure were obtained. The products prepared with methanol to CTAB molar ratio 8.5 : 1 were confirmed to give best results. All the spherical products have very large surface area (∼589–1044 m2/g, pore volume (∼0.98–1.41 cm3/g, and ordered pore structure.

  19. Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. (United States)

    Valério, Alexsandra; Conti, Denise S; Araújo, Pedro H H; Sayer, Claudia; da Rocha, Sandro R P


    In this work biocompatible polyurethane nanoparticles for future application as noninvasive polymeric nanocarriers using propellant-based inhalers in the treatment of respiratory diseases were prepared by miniemulsion interfacial polymerization derived from isophorone diisocyanate, poly(ϵ-caprolactone), and poly(ethylene glycol). The effects of the surfactant type, nonionic Tween 80 and Brij 35, anionic sodium dodecyl sulfate, and cationic cetyltrimethyl ammonium bromide, and poly(ethylene glycol) molar mass on the stability, size and morphology of nanoparticles were evaluated. In addition, the ability of cells to proliferate in contact with polyurethane nanoparticles was assessed by MTS ([(3-(4,5-dimethylthiazole-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium, inner salt]) assay using human lung adenocarcinoma A549 cells, an in vitro model of Type II alveolar epithelium.

  20. Neonatal varicella pneumonia, surfactant replacement therapy

    Directory of Open Access Journals (Sweden)

    Mousa Ahmadpour-kacho


    Full Text Available Background: Chickenpox is a very contagious viral disease that caused by varicella-zoster virus, which appears in the first week of life secondary to transplacental transmission of infection from the affected mother. When mother catches the disease five days before and up to two days after the delivery, the chance of varicella in neonate in first week of life is 17%. A generalized papulovesicular lesion is the most common clinical feature. Respiratory involvement may lead to giant cell pneumonia and respiratory failure. The mortality rate is up to 30% in the case of no treatment, often due to pneumonia. Treatment includes hospitalization, isolation and administration of intravenous acyclovir. The aim of this case report is to introduce the exogenous surfactant replacement therapy after intubation and mechanical ventilation for respiratory failure in neonatal chickenpox pneumonia and respiratory distress. Case Presentation: A seven-day-old neonate boy was admitted to the Neonatal Intensive Care Unit at Amirkola Children’s Hospital, Babol, north of Iran, with generalized papulovesicular lesions and respiratory distress. His mother has had a history of Varicella 4 days before delivery. He was isolated and given supportive care, intravenous acyclovir and antibiotics. On the second day, he was intubated and connected to mechanical ventilator due to severe pneumonia and respiratory failure. Because of sever pulmonary involvement evidenced by Chest X-Ray and high ventilators set-up requirement, intratracheal surfactant was administered in two doses separated by 12 hours. He was discharged after 14 days without any complication with good general condition. Conclusion: Exogenous surfactant replacement therapy can be useful as an adjunctive therapy for the treatment of respiratory failure due to neonatal chickenpox.

  1. Hydrodynamics of dip-coated thin films in the presence of evaporation, and, Surfactant structures controlling spontaneous dewetting (United States)

    Qu, Dan

    In this dissertation, we discuss the investigation of two problems in dynamic wetting: the hydrodynamics of dip-coated, finite-length films of evaporative fluids and the surfactant structures controlling the spontaneous dewetting of a surfactant solution. While films pulled from non-volatile fluids on a vertical substrate are essentially infinite in length, films pulled from volatile fluids have a finite length. We examine such finite films using three well-controlled oligomer liquids as well as surfactant solutions. We find that the finite length of the film is controlled by a global balance between mass lost by evaporation and mass input by viscous forces. While the attendant thermally driven Marangoni flows have small impact on the mass balance, they do alter the velocity field in the film in the direction parallel to the substrate. Using measured film profiles, wit have developed a novel method to determine the combined effects of evaporation and Marangoni flow on velocity and pressure fields in the film. This method is independent of any specific model of the evaporation process. In preliminary studies with surfactant solutions, we observed strong effects of solutal Marangoni flows on dip-coated films. For the second problem, we examine the structures of self-assemblies left on a solid as a contact line spontaneously retreats across a surface during an autophobing event. We find that surfactants of a continuous structural gradient are deposited: from molecules lying down on the surface with low packing densities in a region never touched by the solution, to molecules standing up with higher packing densities in a region where the contact line has moved slowly. Despite significant free volumes within the self-assemblies, we see no evidence of clustering of molecules. We see a clear correlation between contact line speed and the surfactant structures. We show that the dynamics during at least a later period of the autophobing event is dominated by the time

  2. Size separation of analytes using monomeric surfactants (United States)

    Yeung, Edward S.; Wei, Wei


    A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.

  3. The Krafft temperature of surfactant solutions

    Directory of Open Access Journals (Sweden)

    Manojlović Jelena Ž.


    Full Text Available Our main motivation to revisit the solution properties of cetyltrimethylammonium bromide is related to the clear requirement for better control of the adsorption parameters to form uniform self-assembled monolayers on muscovite mica substrates. To readily monitor the temporal evolution of structural details in cetyltrimethylammonium bromide solutions, we realized a rather simple conductivity experiment. Conductivity measurements were carried out as a function of temperature, to look closer into the Krafft temperature behavior of this surfactant. We measured the electrical conductivity of different concentrations of aqueous cetyltrimethylammonium bromide solutions, below and above the critical micells concentration.

  4. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  5. Endogenous surfactant turnover in preterm infants measured with stable isotopes

    NARCIS (Netherlands)

    J.E.H. Bunt (Jan Erik); L.J.I. Zimmermann (Luc); J.L.D. Wattimena (Josias); R.H.Th. van Beek (Ron); P.J.J. Sauer (Pieter); V.P. Carnielli (Virgilio)


    textabstractWe studied surfactant synthesis and turnover in vivo in preterm infants using the stable isotope [U-13C]glucose, as a precursor for the synthesis of palmitic acid in surfactant phosphatidylcholine (PC). Six preterm infants (birth weight, 916 +/- 244 g; gesta

  6. Physical principles for developing a synthetic lung surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Jaehnig, F. (Max-Planck-Institut fuer Biologie, Tuebingen (Germany, F.R.)); Obladen, M. (Tuebingen Univ. (Germany, F.R.). Kinderklinik)


    The physical principles for developing a synthetic lung surfactant to treat the respiratory distress syndrome are discussed. Requirements for the lipid composition and preparation of the synthetic surfactant are detailed, leading to the conclusion that a suspension of large unilamellar vesicles consisting of dipalmitoylphosphatidylcholine and a small amount of unsaturated lipid is a promising choice.

  7. Polyfluorinated alkyl phosphate ester surfactants - current knowledge and knowledge gaps

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Rosenmai, Anna Kjerstine; Vinggaard, Anne Marie


    information on fluorochemicals. Polyfluorinated alkyl phosphate ester surfactants (PAPs) belong to the group of polyfluorinated alkyl surfactants. They have been detected in indoor dust and are widely used in food-contact materials, from which they have the ability to migrate into food. Toxicological data...

  8. New Focuses on Surfactants for Personal Care Products

    Institute of Scientific and Technical Information of China (English)

    Wang Yan


    @@ Global output of surfactants is already more than 12 million tons a year today. There are more than 10 000 varieties in the portfolio. The total market sales value is over US$10 billion. The output of surfactants in China is more than 1.5 million tons a year in recent years. China can manufacture more than 3 380 varieties.

  9. Colloidal stability influenced by inhomogeneous surfactant assemblies in confined spaces

    NARCIS (Netherlands)

    Jodar-Reyes, A.B.; Leermakers, F.A.M.


    Recently, a molecular-level self-consistent field approach was used to show that some surfactants assemblies (with local cylindrical structure) can bridge between two surfaces that in turn are covered by surfactant bilayers. The stability of such a connection is related to a higher end-cap (free) en

  10. Studies on the Cloud Points of Nonionic Surfactants with QSPR

    Institute of Scientific and Technical Information of China (English)

    CHEN Mei-ling; WANG Zheng-wu; ZHANG Ge-xin; GU Jin; CUN Zhe; TAO Fu-ming


    With quantum chemical parameters, topological indexes, and physical ehemistry parameters as descriptors, a quantitative structure-property relationship(QSPR) has been found for the cloud points of four series of nonionic surfactants(a total of 65 surfactants). The best-regressed model includes six descriptors, and the correlation coefficient of multiple determination is as high as 0. 962.

  11. Surfactant-assisted liquefaction of particulate carbonaceous substances (United States)

    Hsu, G. C. (Inventor)


    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  12. Study of surfactant-skin interactions by skin impedance measurements. (United States)

    Lu, Guojin; Moore, David J


    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation.

  13. A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling

    NARCIS (Netherlands)

    Banerjee, S.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.


    Surfactants soluble in liquid CO2 are rare and knowledge on interfacial and self-assembly behaviour is fragmented. We found that polyoxyethylene (5) isooctylphenyl ether is interfacially active at the water–liquid CO2 interface. Water–liquid CO2 interfacial tension was measured at various surfactant

  14. New Y-shaped surfactants from renewable resources. (United States)

    Ali, Tammar Hussein; Hussen, Rusnah Syahila Duali; Heidelberg, Thorsten


    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Predictive model of cationic surfactant binding to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.


    The humic substances (HS) have a high reactivity with other components in the natural environment. An important factor for the reactivity of HS is their negative charge. Cationic surfactants bind strongly to HS by electrostatic and specific interaction. Therefore, a surfactant binding model is devel

  16. Method of separating a surfactant from a liquid

    NARCIS (Netherlands)

    Van den Berg, A.W.; Lems, S.


    The present invention relates to a method of separating a surfactant from a liquid, such as a wastewater stream from an industrial laundry. In accordance with the invention, the liquid is cooled to below the Krafft temperature of the surfactant and subjected to centrifugal forces for the separation

  17. Binding of alkylpyridinium chloride surfactants to sodium polystyrene sulfonate

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.


    Binding of cationic surfactants to anionic polymers is well studied. However, the surfactant binding characteristics at very low concentration near the start of binding and at high concentration, where charge compensation may Occur. are less well known. Therefore, the binding characteristics of

  18. Enrichment of surfactant from its aqueous solution using ultrasonic atomization. (United States)

    Takaya, Haruko; Nii, Susumu; Kawaizumi, Fumio; Takahashi, Katsuroku


    Dilute aqueous solutions of dodecyl-benzenesulfonic acid sodium salt (DBS-Na) and polyoxyethylenenonylphenyl ethers (PONPEs) were ultrasonically atomized. The surfactants were concentrated in collected mist droplets. The enrichment ratio increased with decreasing surfactant concentration. Depending on the surfactant's molecular weight and affinity to water, different enrichment ratio was observed in the range of low feed concentrations. For anionic surfactant, DBS-Na, the enrichment ratio was significantly improved by KCl addition and a peak appeared on the plot of the ratio against KCl concentration. Addition of NaCl or CaCl2 . 2H2O to the surfactant solution also enhanced the enrichment ratio; however, the effect was relatively small. Such behaviors of the ratio were interpreted as enhanced interfacial adsorption of the surfactant and a lack of supply of surfactant monomers from liquid bulk because of slow breaking of surfactant micelles. Time required for collecting an amount of mist was also observed. Among the three salt systems, the time for KCl system was twice as long as others. This fact suggested that the formation of smaller droplets in KCl system.

  19. Coupled Transport of PAH and Surfactants in Natural Aquifer Material (United States)

    Danzer, J.; Grathwohl, P.


    Surfactants in aqueous solution adsorb onto mineral surfaces and form micelles above the critical micelle concentration (CMC) due to their physico-chemical properties. Hydrophobic organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have a high affinity for the adsorbed surfactant layers (monomers, hemimicelles and admicelles) and to the micelles in the mobile aqueous phase. The transport of PAHs is controlled by the concentration of the surfactant and the partition coefficients, of the PAHs between water and admicelles (adsolubilization: K adm) and water and micelles (solubilization: K mic), respectively. These partition coefficients were measured in laboratory batch and column experiments using phenanthrene as a chemical probe for the PAHs, a non-ionic surfactant (Terrasurf G50), natural aquifer sand (River Neckar Alluvium: RNA) and its petrographic subcomponents. The sorption of the surfactant can be described by a linear isotherm for concentrations below the CMC and a sorption maximum above the CMC, which both depend on the grain size and the surfactant accessible internal surface area of the particles. K adm was found to be higher than K mic. Both depend on the surfactant's properties, such as alkyl chain length, polar headgroup or ethoxylation. In column experiments an increasing retardation of phenanthrene was observed up to the CMC followed by a facilitated transport at surfactant concentration several times the CMC.

  20. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco


    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  1. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zakrevskyy, Yuriy, E-mail:; Paasche, Jens; Lomadze, Nino; Santer, Svetlana, E-mail: [Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany); Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd [Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)


    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  2. Interaction of photosensitive surfactant with DNA and poly acrylic acid (United States)

    Zakrevskyy, Yuriy; Cywinski, Piotr; Cywinska, Magdalena; Paasche, Jens; Lomadze, Nino; Reich, Oliver; Löhmannsröben, Hans-Gerd; Santer, Svetlana


    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes' properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate - for the first time - complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  3. Perfluoroalkyl Epoxides: Synthesis and Conversion into Ionic Surfactants

    Directory of Open Access Journals (Sweden)

    Abdelhamid Ayari


    Full Text Available Perfluoroalkylated surfactants having a quaternary ammonium surrounded by three hydroxyl groups as hydrophilic moiety and a perfluoroalkyl chain as tail were obtained by coupling diethanolamine with perfluoroalkylated epoxide followed by quaternisation. The amphiphilic properties of these surfactants were investigated by measuring their surface and interfacial tensions.

  4. New mechanisms for phase separation in polymer-surfactant mixtures

    NARCIS (Netherlands)

    Currie, E.P.K.; Cohen Stuart, M.A.; Borisov, O.V.


    The cooperative association of ionic surfactants with polymer chains leads to quite novel features in the phase behaviour of polymer solutions. Using an analytic mean-field model, we analyze phase equilibria in solutions of neutral polymers mixed with ionic surfactants. We predict the possibilities


    Institute of Scientific and Technical Information of China (English)


    Based on the features of surfactant flooding, a mathematical model for surfactant flooding is established. The adsorption-retention, convection diffusion of surfactant and influence of concentration change upon relative permeability curve are included in the model. The novel description of adsorption quantity of surfactant and relative permeability curve are presented, which enhance the coincidence between mathematical model and field practice, the relative errors of main development indexes are within 6%. The model is applied to the numerical research of the surfactant flooding in the untabulated beds of Xing1-3 surfactant flooding pilot site of No.4 Oil Production Company of Daqing Oilfield, the influences of surfactant concentration, injection quantity, slug combination mode upon the development effect and economic benefit are quantitatively analyzed, the injection scheme is optimized as follows: surfactant concentration is 0.5%, slug volume is 0.02 PV, slug combination mode is 2 slugs. After the implementation of scheme in oilfield, the cumulative increase of oil is 2186.0 t, up to nearly 30%.

  6. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco


    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  7. Surfactant-free fabrication of fullerene C{sub 60} nanotubules under shear

    Energy Technology Data Exchange (ETDEWEB)

    Vimalanathan, Kasturi; Raston, Colin L. [Flinders Centre for NanoScale Science Technology (CNST) Chemical and Physical Sciences, Flinders University, Adelaide (Australia); Shrestha, Rekha Goswami [International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki (Japan); Zhang, Zhi; Zou, Jin [Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD (Australia); Nakayama, Tomonobu [International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan)


    A method for controlling the self-assembly of fullerene C{sub 60} molecules into nanotubules in the fcc phase, devoid of entrapped solvent, has been established in a thin film microfluidic device. The micron length C{sub 60} nanotubules, with individual hollow diameters of 100 to 400 nm, are formed under continuous flow processing during high shear micromixing of water and a toluene solution of the fullerene, in the absence of surfactant, and without the need for further down-stream processing. TEM revealed pores on the surface of the nanotubes, and the isolated material has a much higher response to small molecule sensing than that for analogous material formed using multistep batch processing. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Theory of interfacial phase transitions in surfactant systems (United States)

    Shukla, K. P.; Payandeh, B.; Robert, M.


    The spin-1 Ising model, which is equivalent to the three-component lattice gas model, is used to study wetting transitions in three-component surfactant systems consisting of an oil, water, and a nonionic surfactant. Phase equilibria, interfacial profiles, and interfacial tensions for three-phase equilibrium are determined in mean field approximation, for a wide range of temperature and interaction parameters. Surfactant interaction parameters are found to strongly influence interfacial tensions, reducing them in some cases to ultralow values. Interfacial tensions are used to determine whether the middle phase, rich in surfactant, wets or does not wet the interface between the oil-rich and water-rich phases. By varying temperature and interaction parameters, a wetting transition is located and found to be of the first order. Comparison is made with recent experimental results on wetting transitions in ternary surfactant systems.

  9. Fate and effects of amphoteric surfactants in the aquatic environment. (United States)

    Garcia, M Teresa; Campos, Encarna; Marsal, Agustí; Ribosa, Isabel


    Amphoteric surfactants form part of specialty surfactants available for formulators to improve or design new formulations in response to environmental, toxicity, safety and performance demands. Nevertheless, limited information on the ecological properties of amphoterics is available. In the present work, the aerobic and anaerobic biodegradability and the aquatic toxicity of different types of amphoteric surfactants (three alkyl betaines, one alkylamido betaine and three alkyl imidazoline derivatives) were studied. The amphoteric surfactants tested were readily biodegradable under aerobic conditions (CO2 headspace test) and alkylamido betaines and alkyl imidazoline derivatives were also easily biodegradable under anaerobic conditions (test based on the ECETOC method). Toxicity to Photobacterium phosphoreum and Daphnia magna increased with the fatty chain length of the surfactant. The EC50 toxicity values of the amphoterics tested were higher than 5 mg/L, and alkyl imidazoline derivatives, with EC50 values from 20 to > 200 mg/L, showed the lowest aquatic toxicity.

  10. Pulmonary Surfactants for Acute and Chronic Lung Diseases (Part II

    Directory of Open Access Journals (Sweden)

    O. A. Rozenberg


    Full Text Available Part 2 of the review considers the problem of surfactant therapy for acute respiratory distress syndrome (ARDS in adults and young and old children. It gives information on the results of surfactant therapy and prevention of ARDS in patients with severe concurrent trauma, inhalation injuries, complications due to complex expanded chest surgery, or severe pneumonias, including bilateral pneumonia in the presence of A/H1N1 influenza. There are data on the use of a surfactant in obstetric care and prevention of primary graft dysfunction during lung transplantation. The results of longterm use of surfactant therapy in Russia, suggesting that death rates from ARDS may be substantially reduced (to 20% are discussed. Examples of surfactant therapy for other noncritical lung diseases, such as permanent athelectasis, chronic obstructive pulmonary diseases, and asthma, as well tuberculosis, are also considered.

  11. Surfactant Effects on Microemulsion-Based Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Concha Tojo


    Full Text Available The effect of the surfactant on the size, polydispersity, type of size distribution and structure of nanoparticles synthesized in microemulsions has been studied by computer simulation. The model simulates the surfactant by means of two parameters: the intermicellar exchange parameter, kex, related to dimer life time, and film flexibility parameter, f, related to interdroplet channel size. One can conclude that an increase in surfactant flexibility leads to bigger and polydisperse nanoparticle sizes. In addition, at high concentrations, the same reaction gives rise to a unimodal distribution using a flexible surfactant, and a bimodal distribution using a rigid one. In relation to bimetallic nanoparticles, if the nanoparticle is composed of two metals with a moderate difference in reduction potentials, increasing the surfactant flexibility modifies the nanoparticle structure, giving rise to a transition from a nanoalloy (using a rigid film to a core-shell structure (using a flexible one.

  12. Micellization of monomeric and poly-ω-methacryloyloxyundecyltrimethylammonium surfactants. (United States)

    FitzGerald, Paul A; Chatjaroenporn, Khwanrat; Zhang, Xiaoli; Warr, Gregory G


    We have used small-angle neutron scattering to study how micelle morphology of the tail-polymerizable surfactants MUTAB and MUTAC (ω-methacryloyloxyundecyltrimethylammonium bromide and chloride) is affected by classic self-assembly modifiers such as temperature changes, salt addition, and counterion exchange, as a function of their conversion from monomer into polymer amphiphile in aqueous solution. Contrary to common assumptions about polymerized surfactants, these systems remain in dynamic equilibrium under all conditions examined and at all conversions (except for a small amount of high-molecular-weight precipitation by MUTAC). Counterintuitively, the polymerized methacrylate backbone has little influence on aggregate morphology, except for the formation of rod-like mixed micelles of polymerized and unpolymerized surfactant at intermediate conversions. The addition of salt produces a transition to rod-like micelles at all conversions except in the unpolymerized surfactant, which has some characteristics of an asymmetric bolaform surfactant and retains its spheroidal geometry under almost all conditions.

  13. Aqueous foam surfactants for geothermal drilling fluids: 1. Screening

    Energy Technology Data Exchange (ETDEWEB)

    Rand, P.B.


    Aqueous foam is a promising drilling fluid for geothermal wells because it will minimize damage to the producing formation and would eliminate the erosion problems of air drilling. Successful use of aqueous foam will require a high foaming surfactant which will: (1) be chemically stable in the harsh thermal and chemical environment, and (2) form stable foams at high temperatures and pressures. The procedures developed to generate and test aqueous foams and the effects of a 260/sup 0/C temperature cycle on aqueous surfactant solutions are presented. More than fifty selected surfactants were evaluated with representatives from the amphoteric, anionic, cationic, and nonionic classes included. Most surfactants were severely degraded by this temperature cycle; however, some showed excellent retention of their properties. The most promising surfactant types were the alkyl and alkyl aryl sulfonates and the ethoxylated nonionics.

  14. Enhanced solubilization of curcumin in mixed surfactant vesicles. (United States)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K


    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible.

  15. Bending of the Flexible Spacer Chain of Gemini Surfactant Induced by Hydrophobic Interaction

    Institute of Scientific and Technical Information of China (English)

    YOU,Yi; JIANG,Rong; LING,Tingting; ZHAO,Jianxi


    In order to understand the special role of the flexible alkylene spacer of gemini surfactant in the self-assembly,three gemini surfactants,alkylene-α,ω-bis(didodecylmethylammonium bromide)that is designated as 2C12-s-2C12·2Br (s=3,6,8),were synthesized.When the spread films of 2C12-s-2C12·2Br on the surface of water were con-structed,they form the dense layer of the alkyl tails owing to four dodecyl chains per molecule.This induced the bending of the spacer chain toward the air-side at the s smaller than that of C12-s-C12·2Br adsorbed on the air/water interface owing to the enhanced hydrophobic interaction between the alkyl tails and the spacer chain, where C12-s-C12·2Br has only two alkyl tails per molecule. Conclusively.,the enhanced hydrophobic interaction between the alkyl tails and the spacer chain can effectively induce the bending of the latter toward the air-side.

  16. The polydispersity effect of distributed oxyethylene chains on the cloud points of nonionic surfactants. (United States)

    Kim, Hui Chan; Kim, Jong-Duk


    The cloud points of aqueous solutions containing polyoxyethylene surfactant molecules with a distribution of chain lengths were studied for several nonionic surfactants. Experimentally, the cloud points increased as the oxyethylene chain lengths increased with a linear or logarithmic relation of the number of oxyethylates, as proposed by Schott. An experimental scale, the p-Po scale, was previously developed to correspond to the cloud points, where p is the average number of oxyethylene units per molecule and Po is the shortest chain length reference. However, no previous prediction methods of cloud point addressed systems containing a range of chain lengths. In this work, we propose a rescaling of the representative chain length as s-Po, where s is the cloud point-weighted mean ethylene oxide chain below p, and approximated as (p-Po)/PDI where PDI is the polydispersity index. Using the rescaled length, the experimental data for C(12)Es (lauryl alcohol ethoxylate, LAE), NPE-10 (nonyl phenol ethoxylate) and TDE-10 (tridecyl alcohol ethoxylate) were successfully predicted with no additional parameters, such as {(p-Po)/(PDI)}/CP=a+b{(p-Po)/(PDI)}, where PDI indicates the Broadness of the chain length distribution.

  17. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders. (United States)

    El-Gendy, Nashwa; Kaviratna, Anubhav; Berkland, Cory; Dhar, Prajnaparamita


    Lung surfactant is crucial for optimal pulmonary function throughout life. An absence or deficiency of surfactant can affect the surfactant pool leading to respiratory distress. Even if the coupling between surfactant dysfunction and the underlying disease is not always well understood, using exogenous surfactants as replacement is usually a standard therapeutic option in respiratory distress. Exogenous surfactants have been extensively studied in animal models and clinical trials. The present article provides an update on the evolution of surfactant therapy, types of surfactant treatment, and development of newer-generation surfactants. The differences in the performance between various surfactants are highlighted and advanced research that has been conducted so far in developing the optimal delivery of surfactant is discussed.

  18. Synthesis and characterization of zeolite from coal ashes modified by cationic surfactant; Sintese e caracterizacao de zeolita de cinzas de carvao modificada por surfactante cationico

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, D.A.; Borrely, S.I., E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    Zeolite synthesized from coal fly ash was modified with different concentrations (2 and 20 mmol.L{sup -1}) of hexadecyltrimethylammonium bromide (HDTMA-Br). The Non-Modified Zeolite (NMZ) and Surfactant-Modified Zeolites (SMZ) were characterized by X-ray fluorescence spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, thermogravimetric analysis, among others. The SMS presented negative charge probably due to the formation of a partial bilayer of HDTMA on exchangeable active sites on the external surface of NMZ. A decrease in surface area was observed for SMZ as compared to NMZ indicating zeolite surface coverage with HDTMA-Br molecules. The crystalline nature of the zeolite remained intact after adsorption of surfactant and heating for drying. FTIR analysis indicated that there were no significant changes in the structure of the zeolite after adsorption of surfactant. (author)

  19. Structure, interfacial properties, and dynamics of the sodium alkyl sulfate type surfactant monolayer at the water/trichloroethylene interface: a molecular dynamics simulation study. (United States)

    Shi, Wen-Xiong; Guo, Hong-Xia


    In this work, we perform a series of molecular dynamics (MD) simulations on the category of sodium alkyl sulfate (SDS-type) surfactant monolayers at the water/trichloroethylene (TCE) interface. Three separate tail-length SDS-type molecules are used. We investigate the conformation of surfactant chain (i.e., packing, orientation, and order), interfacial properties (i.e., interfacial thickness, interfacial tension, area compressibility, and bending modulus), their dependence on the chain length, and the average area per surfactant chain. We also examine the behavior of the surfactant monolayer in the metastable regime of negative surface tension with reference to collapse. The simulation has clearly shown that the very dilute monolayer is well described as a two-dimensional gas. With the increase of interfacial surfactant coverage, the monolayer is in the liquid-expanded (LE) phase. The surfactant tails at the interface become straighter, more ordered, and thicker at higher surfactant coverage. At the same time, interfacial tension of long-tail systems is always lower than that of short-tail systems. In the LE phase, the area compressibility modulus and the bending modulus increase with an increase in tail length. With a further decrease in molecular areas, the monolayer with large negative surface tension becomes unstable. Our simulations show that buckling of the monolayers is of dynamic nature as a response to mechanical instability. The further transformation pathway from buckling to bud can be controlled by the bending modulus, which depends crucially on the tail length and interfacial surfactant coverage. At a given area per molecule, the short tail chain makes the monolayer softer, and the budding process becomes more probable. For the supersaturated softer SDS monolayer, the collapse transition is initiated by the buckling of monolayers, followed primarily by budding and detachment of the nanoscale swollen micelle from the monolayer. Despite a number of

  20. Heat-regulated foaming in surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, M.Y.; Eremina, L.D.; Vlasenko, I.G.


    This article examines the mechanism of the foam-inhibiting action resulting from the use of propylene oxide derivatives in solutions both of anionic and of nonionic surfactants. The objective is the creation of a detergent composition with heat-regulated foaming, which would foam well at 30-50/sup 0/ and poorly at 80-90/sup 0/, which is the usual temperature of washing machines. It is demonstrated that foaming can be regulated by the variation of the cloud points of solutions with the aid of additions of polypropylene glycols and their alkyl derivatives or block copolymers in solutions of surfactants. Foaming and foam stability decrease sharply above the cloud points of the solutions due to the foam-inhibiting action of the coacervate phase on the coexisting foam-forming solution. The foam inhibition of polypropylene glycols increases and becomes apparent at lower concentrations with the increase of the average molecular weight of the hydrophobic blocks, the increase of their relative content (in block copolymers with oxyethylene groups), and upon the introduction of alkyl groups.