WorldWideScience

Sample records for surfactant membrane process

  1. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films.

    Science.gov (United States)

    Parra, Elisa; Pérez-Gil, Jesús

    2015-01-01

    The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.

  2. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  3. C-reactive protein increases membrane fluidity and distorts lipid lateral organization of pulmonary surfactant. Protective role of surfactant protein A

    DEFF Research Database (Denmark)

    Saenz, Alejandra; Lopez-Sanchez, Almudena; Mojica-Lazaro, Jonas

    2010-01-01

    The purpose of this study was to investigate how surfactant membranes can be perturbed by C-reactive protein (CRP) and whether surfactant protein A (SP-A) might overcome CRP-induced surfactant membrane alterations. The effect of CRP on surfactant surface adsorption was evaluated in vivo after int...

  4. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization

    Science.gov (United States)

    Duval-Terrié, Caroline; Cosette, Pascal; Molle, Gérard; Muller, Guy; Dé, Emmanuelle

    2003-01-01

    The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C10) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C10). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C10-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (α or β), 18C10 did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies. PMID:12649425

  5. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  6. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  7. Structure formation of surfactant membranes under shear flow

    Science.gov (United States)

    Shiba, Hayato; Noguchi, Hiroshi; Gompper, Gerhard

    2013-07-01

    Shear-flow-induced structure formation in surfactant-water mixtures is investigated numerically using a meshless-membrane model in combination with a particle-based hydrodynamics simulation approach for the solvent. At low shear rates, uni-lamellar vesicles and planar lamellae structures are formed at small and large membrane volume fractions, respectively. At high shear rates, lamellar states exhibit an undulation instability, leading to rolled or cylindrical membrane shapes oriented in the flow direction. The spatial symmetry and structure factor of this rolled state agree with those of intermediate states during lamellar-to-onion transition measured by time-resolved scatting experiments. Structural evolution in time exhibits a moderate dependence on the initial condition.

  8. Study on Treatment of Surfactant Wastewater by Coagulation and Membrane Separation Integrated Process%混凝-膜分离集成工艺处理表面活性剂废水的研究

    Institute of Scientific and Technical Information of China (English)

    王建明; 王汉斌; 仲晓晴; 宋宏臣

    2016-01-01

    Surfactants have complex compositions and low molecular weights, which usually leads to the eutrophication of waterbodies. For the treatment of wastewater that contains surfactants, the membrane separation technology is usually adopted. However, the membrane is easily polluted and the cleaning process is usually laborious. In this work, a new surfactants wastewater processing technology was investigated by combining the coagulation and membrane separation techniques. Firstly, the phase inversion technique was used for the preparation of titanium dioxide modiifed polyvinylidene lfuoride ultraifltration membrane. Structure and properties of the membrane are tested by several instrumentations, like the scanning electron microscopy, fourier transform infrared spectroscopy, and contact angle instrument. Secondly, using sodium dodecyl benzene sulfonate solution and polymerization aluminum chloride as surfactant wastewater and coagulant respectively, the treatment effect is evaluated with respect to ultraviolet light intensity, water lfow rate and pH values. By observation, the modified membrane has dense-selective layer on the surface, and its cross-section is composed with finger holes and spongy structures. By the analysis of fourier transform infrared spectroscopy, polyethylene glycol and titanium dioxide in the modiifed membrane can cover apart of infrared absorption of polyvinylidene lfuoride. The modiifed membrane has relative small contact angle and its performance is also insensitive to the change of ultraviolet light intensity and water lfow rate. Moreover, the process can reach best performance while the wastewater with pH value of 4.5. The proposed surfactants wastewater process technique has distinct advantages of high efifciency and low-cost, which makes it with great potentials in the application of large scale industrial and domestic wastewater processing.%废水中的表面活性剂成分复杂、分子量小,若不经处理直接排入水体,将造

  9. Micellar-enhanced ultrafiltration membrane (MEUF) of Batik wastewater using Cetylpyridinium chloride surfactant

    Science.gov (United States)

    Aryanti, Nita; Pramudono, Bambang; Prawira, Christ Nadya P.; Renardi, Rheza; Fatikhatul K. Ika, S.

    2015-12-01

    In batik production, reactive dyes such as remazol, indigosol, naphtol and rapid are used in the dying process. Batik wastewater contains high level of reactive dyes, wax and sodium salts and is characterized with high Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) as well as high concentration of phenol and Ammonia. Micellar-Enhanced Ultrafiltration Membrane (MEUF) is one of promising technology to separate low molecular weight substances such as dyes. The MEUF process involves combination of ultrafiltration membrane and surfactant at concentration higher than surfactant's Critical Micelle Concentration (CMC). This technique combines high selectivity of reverse osmosis membrane and high flux of ultrafiltration membrane but with lower pressure. Ultrafiltration of batik waste water without surfactant (UF) and with addition of surfactant (MEUF) were studied in order to compare the performance of both systems. The Batik wastewater were obtained from batik industry in Semarang and Surakarta, Central Java, Indonesia. Cetyl Pyridinium Chloride at concentration of 2 and 4 times of its CMC were used. Flatsheet ultrafiltration membrane was made from Polyethersulphone (12% w/w), N-methyl Pyrrolidone (83% w/w) and Polyethylene Glycol (5% w/w). The performance of the UF and MEUF were evaluated based on flux profiles and rejections (COD, TSS, concentration of Ammonia). The results showed that the MEUF had superior performance than the UF. Concentration of COD, TSS, phenol and ammonia were reduced significantly. The rejection of COD were 92.74% and 94.15%. Moreover, the MEUF was capable to reduce the TSS with the rejection of 86.26% and 65%. The concentration of ammonia in permeate were 0.43 ppm and below 0.01 ppm.

  10. Wetting Resistance of Commercial Membrane Distillation Membranes in Waste Streams Containing Surfactants and Oil

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-01-01

    Full Text Available Water management is becoming increasingly challenging and several technologies, including membrane distillation (MD are emerging. This technology is less affected by salinity compared to reverse osmosis and is able to treat brines up to saturation. The focus of MD research recently shifted from seawater desalination to industrial applications out of the scope of reverse osmosis. In many of these applications, surfactants or oil traces are present in the feed stream, lowering the surface tension and increasing the risk for membrane wetting. In this study, the technological boundaries of MD in the presence of surfactants are investigated using surface tension, contact angle and liquid entry pressure measurements together with lab-scale MD experiments to predict the wetting resistance of different membranes. Synthetic NaCl solutions mixed with sodium dodecyl sulfate (SDS were used as feed solution. The limiting surfactant concentration was found to be dependent on the surface chemistry of the membrane, and increased with increasing hydrophobicity and oleophobicity. Additionally, a hexadecane/SDS emulsion was prepared with a composition simulating produced water, a waste stream in the oil and gas sector. When hexadecane is present in the emulsion, oleophobic membranes are able to resist wetting, whereas polytetrafluoretheen (PTFE is gradually wetted by the feed liquid.

  11. Long wavelength undulations dominate dynamics in large surfactant membrane patches

    Science.gov (United States)

    Lipfert, Frederik; Holderer, Olaf; Frielinghaus, Henrich; Appavou, Marie-Sousai; Do, Changwoo; Ohl, Michael; Richter, Dieter

    2015-01-01

    By exposing microemulsions to small (80 nm diameter) and large (500 nm) disk shaped clay particles we were able to show the presence of long wavelength undulations that only occur for large membrane patches. A combination of small angle neutron scattering (SANS) and neutron spin echo (NSE) experiments have been applied to study microemulsions. These, consisting of D2O, d-decane and the surfactant C10E4, were used in connection with Laponite (small) and Nanofil (large) clay. To our knowledge our experiments show for the first time that the clay platelets induce lamellar ordering adjacent to the clay discs in the otherwise bicontinuous microemulsion. This is due to the fact that in purely structural investigations, radial averaging smears out the signature of the lamellar phase. For thermodynamically fluctuating membranes near interfaces the theory of Seifert predicts a cross-over of the dispersion relationship from k2 to a k3-dependence. With the correlation length of the membrane patches being confined by the dimension of the clay platelets we were able to show that this in fact takes place but is only present for the larger Nanofil particles.

  12. VOC removal from contaminated groundwater through membrane pervaporation. (Ⅱ): 1,1,1-trichloroethane- SDS surfactant solution system

    Institute of Scientific and Technical Information of China (English)

    PENG Ming; Sean LIU

    2003-01-01

    The conventional "pump-and-treat" technology for subsurface remediation of groundwater contaminated with volatile organic compounds(VOCs) such as 1,1,1-trichloroethane(TCA), a common chlorinated organic solvent, has limitation of prohibitively long treatment time due to extremely low water solubility of the VOCs. Surfactant-based soil remediation has emerged as the effective technology that substantially reduces the treatment time. In order to make the whole process economical, the surfactant used in soil washing has to be recovered and reused. This study examined the recovery of anionic surfactant, sodium dodecyl sulfate (SDS), from soil remediation fluids containing TCA, using a bench-scale membrane pervaporation unit. The effects of high TCA concentration, surfactant dosage, and flow rate on permeation flux and selectivity( α value) of the process were evaluated. In general, higher surfactant concentration yielded lower TCA flux and constant water flux, resulting in declining α values; higher flow rate of TCA feed stream results in higher VOC flux and selectivity, an indication of the effect of concentration polarization; higher TCA feed concentration produces higher TCA permeation across the membrane, however, the selectivity was virtually unchanged unless the total TCA concentration exceeded 2000 ppm.

  13. Effect of surfactants and temperature on the hyperfiltration performance of poly(ether/urea) membranes

    Science.gov (United States)

    Leban, M. I.; Wydeven, T. J.

    1984-01-01

    The individual and combined effects of pasteurization temperature (347 K) and surfactants (anionic, cationic, and neutral) on a poly(ether/urea) thin-film hyperfiltration membrane were studied. Performance of this positively charged membrane was measured in terms of sodium chloride rejection and water flux. The observed effect was mostly on water flux and minimal on salt rejection. Pasteurization temperature caused an irreversible flux decline (flux decline slope of 0.09). The gradual flux reduction caused by neutral and cationic surfactants was reversible, whereas the flux reduction caused by anionic surfactant was irreversible and of similar magnitude to flux reduction caused by pasteurization temperature. The effects of anionic surfactant and pasteurization temperature were additive. Because of flux decline at elevated temperatures the poly(ether/urea) membrane is not very attractive for long-term spaceflight use.

  14. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films

    DEFF Research Database (Denmark)

    Ortiz, Elisa Parra; Perez-Gil, Jesús

    2015-01-01

    The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breath......The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics...... of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant...... biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension...

  15. Effects of Perfluorocarbons on surfactant exocytosis and membrane properties in isolated alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Ravasio Andrea

    2010-05-01

    Full Text Available Abstract Background Perfluorocarbons (PFC are used to improve gas exchange in diseased lungs. PFC have been shown to affect various cell types. Thus, effects on alveolar type II (ATII cells and surfactant metabolism can be expected, data, however, are controversial. Objective The study was performed to test two hypotheses: (I the effects of PFC on surfactant exocytosis depend on their respective vapor pressures; (II different pathways of surfactant exocytosis are affected differently by PFC. Methods Isolated ATII cells were exposed to two PFC with different vapor pressures and spontaneous surfactant exocytosis was measured. Furthermore, surfactant exocytosis was stimulated by either ATP, PMA or Ionomycin. The effects of PFC on cell morphology, cellular viability, endocytosis, membrane permeability and fluidity were determined. Results The spontaneous exocytosis was reduced by PFC, however, the ATP and PMA stimulated exocytosis was slightly increased by PFC with high vapor pressure. In contrast, Ionomycin-induced exocytosis was decreased by PFC with low vapor pressure. Cellular uptake of FM 1-43 - a marker of membrane integrity - was increased. However, membrane fluidity, endocytosis and viability were not affected by PFC incubation. Conclusions We conclude that PFC effects can be explained by modest, unspecific interactions with the plasma membrane rather than by specific interactions with intracellular targets.

  16. Bolaform surfactants with polyoxometalate head groups and their assembly into ultra-small monolayer membrane vesicles.

    Science.gov (United States)

    Landsmann, Steve; Luka, Martin; Polarz, Sebastian

    2012-01-01

    Surfactants are indispensable in established technologies as detergents or emulsification agents, and also in recent studies for controlling the growth of nanoparticles or for creating nanocarriers. Although the properties of conventional, organic surfactants are thoroughly explored, strong interest persists in surfactants that possess unique features inaccessible for ordinary systems. Here we present dipolar, bolaform surfactants with a head group comprising of 11 tungsten atoms. These novel compounds are characterized by an exceptionally low critical self-organization concentration, which leads to monolayer vesicles with a diameter of only 15 nm, that is, substantially smaller than for any other system. The membrane of the vesicles is impermeable for water-soluble and oil-soluble guests. Control over release kinetics, which can be followed via the quantitative fluorescence quenching of confined fluorophores, is gained by means of pH adjustments.

  17. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations.

    Science.gov (United States)

    Timmer, Niels; Droge, Steven T J

    2017-02-22

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

  18. Non-covalent bonding interaction of surfactants with functionalized carbon nanotubes in proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Sayeed, M Abu; Kim, Young Ho; Park, Younjin; Gopalan, A I; Lee, Kwang-Pill; Choi, Sang-June

    2013-11-01

    Dispersion of functionalized multiwalled carbon nanotubes (MWCNTs) in proton exchange membranes (PEMs) was conducted via non-covalent bonding between benzene rings of various surfactants and functionalized MWCNTs. In the solution casting method, dispersion of functionalized MWCNTs in PEMs such as Nafion membranes is a critical issue. In this study, 1 wt.% pristine MWCNTs (p-MWCNTs) and oxidized MWCNTs (ox-MWCNTs) were reinforced in Nafion membranes by adding 0.1-0.5 wt.% of a surfactant such as benzalkonium chloride (BKC) as a cationic surfactant with a benzene ring, Tween-80 as a nonanionic surfactant without a benzene ring, sodium dodecylsulfonate (SDS) as an anionic surfactant without a benzene ring, or sodium dodecylben-zenesulfonate (SDBS) as an anionic surfactant with a benzene ring and their effects on the dispersion of nanocomposites were then observed. Among these surfactants, those with benzene rings such as BKC and SDBS produced enhanced dispersion via non-covalent bonding interaction between CNTs and surfactants. Specifically, the surfactants were adsorbed onto the surface of functionalized MWCNTs, where they prevented re-aggregation of MWCNTs in the nanocomposites. Furthermore, the prepared CNTs reinforced nanocomposite membranes showed reduced methanol uptake values while the ion exchange capacity values were maintained. The enhanced properties, including thermal property of the CNTs reinforced PEMs with surfactants, could be applicable to fuel cell applications.

  19. Roentgenographic findings in hyaline membrane disease treated with exogenous surfactant: comparison with control group

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Kyoung; Lim, Chae Ha; Lim, Woo Young; Kim, Young Sook; Byen, Ju Nam; Oh, Jae Hee; Kim, Young Chul [Chosun Univ. College of Medicine, Kwangju (Korea, Republic of)

    1997-01-01

    To compare, with the use of chest radiographic findings, improvement and complications in newborns treated with exogenous surfactant for hyaline membrane disease (HMD), and an untreated control group. Thirty-six patients with HMD were randomly assigned to a control group (n=18) or surfactant treated group (n=18). As part of an initial evaluation of their pulmonary status, we then performed a retrospective statistical analysis of chest radiographic findings obtained in exogenous surfactant treated and untreated infants within the first 90 minutes of life. Subsequent examinations were performed at less than 24 hours of age. Chest radiograph before treatment showed no significant differences between the two groups, but significant improvement was noted in the surfactant treated group, in contrast to the control group. The most common chest radiographic finding after surfactant administration was uniform (n=15) or disproportionate (n=2) improvement of pulmonary aeration. Patent ductus arteriosus developed in three treated neonates and in four cases in the control group. Air leak occurred in three cases in the treated group and in five cases in the control group. In one treated patient pulmonary hemorrhage developed and intracranial hemorrhage occurred in three treated neonates and in four cases in the control group. Bronchopulmonary dysplasia was developed in 6 cases of treated group and 3 cases of control group. A chest radiograph is considered to be helpful in the evaluation of improvement and complications of HMD in infants treated with surfactant.

  20. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term

  1. Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Orädd, Greger; Bagatolli, Luis

    2009-01-01

    The composition of pulmonary surfactant membranes and films has evolved to support a complex lateral structure, including segregation of ordered/disordered phases maintained up to physiological temperatures. In this study, we have analyzed the temperature-dependent dynamic properties of native...... surfactant membranes and membranes reconstituted from two surfactant hydrophobic fractions (i.e., all the lipids plus the hydrophobic proteins SP-B and SP-C, or only the total lipid fraction). These preparations show micrometer-sized fluid ordered/disordered phase coexistence, associated with a broad...... from the two types of surfactant hydrophobic extract. These latter results suggest that lipid dynamics are similar in the coexisting fluid phases observed by fluorescence microscopy. Additionally, it is found that surfactant proteins significantly reduce the average intramolecular lipid mobility...

  2. Surfactant process for promoting gas hydrate formation and application of the same

    Science.gov (United States)

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  3. Changes of cerebral hemodynamics following the administration of surfactant in the hyaline membrane disease of prematurity

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Hyun; Kim, Kyung Hee [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2000-09-15

    To evaluate the changes of cerebral blood flow velocity according to the time, before and after surfactant administration in hyaline membrane disease using Doppler ultrasonography. The patients were 15 premature babies who were clinically and radiologically diagnosed HMD. The ratio of male : female was 11:4, the mean gestational age was 30.1 {+-} 2.5 wks, mean body weight was 1.4 {+-} 0.6 kg,mean Apgar score at 5 min was 6.28, and type of delivery was C-section : vaginal delivery 9.6. Before and after, 10 mm, 30 min, 1 hr, 6 hr, 12 hr, 1 day, 3 day, 5 day and 7 day after surfactant administration, peak systolic and end-diastolic cerebral blood flow velocity (PSFV, EDFV) and resistive index (RI) were estimated by Doppler ultrasonography measuring MCA flow velocity using temporal window. The averages of all data according to the time were obtained and analyzed statistical significance. For the evaluation of the clinical status systemic BP, FiO2, pH, and respiratory rate were also checked according to the same time. The clinical status of FiO2, metabolic acidosis, and tachypnea was significantly improved after surfactant administration. There was no significant change of cerebral blood flow velocity (PSFV, EDFV) after the surfactant administration. The change of RI was nor statistically significant. The changes of the systemic BP had no significant changes. In spite of clinical improvement, there were no significant increases of cerebral blood flow velocity and changes of RI after surfactant administration in hyaline membrane disease.

  4. SURFACE MODIFICATION OF POLYPROPYLENE MICROPOROUS MEMBRANES BY THE ADSORPTION OF NON-IONIC SURFACTANTS

    Institute of Scientific and Technical Information of China (English)

    Ya-jie Xie; Hai-yin Yu; Zhi-kang Xu

    2006-01-01

    Surface modification by physical adsorption of a series of non-ionic surfactants including Tween 20, Tween 40,Tween 60, Tween 80 and Tween 85, was accomplished on polypropylene microporous hollow fiber and flat membranes. The adsorption curve of the membrane surface was analyzed by weight measurements and the typical results showed a twoplatform character similarly. Differences in the degree and curve shape of adsorption resulting from such factors as concentration, temperature, as well as water cleaning time were observed for Tween 85 among other Tweens. Attenuated total reflection - Fourier transform infrared spectroscopy analysis and field emission scanning electron microscopy observation showed that the adsorption of Tween on polypropylene microporous membrane (PPMM) is effective and occurs mainly in the pores of PPMMs at low adsorption amount, and on the membrane surface also at high adsorption value.

  5. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Simonsen, Adam C

    2004-01-01

    Pulmonary surfactant, the lipid-protein material that stabilizes the respiratory surface of the lungs, contains approximately equimolar amounts of saturated and unsaturated phospholipid species and significant proportions of cholesterol. Such lipid composition suggests that the membranes taking...... part in the surfactant structures could be organized heterogeneously in the form of inplane domains, originating from particular distributions of specific proteins and lipids. Here we report novel results concerning the lateral organization of bilayer membranes made of native pulmonary surfactant where...... of this material is naturally designed to be at the "edge" of a lateral structure transition under physiological conditions, likely providing particular structural and dynamic properties for its mechanical function. The observed lateral structure in native pulmonary surfactant membranes is dramatically affected...

  6. Olefin separation membrane and process

    Science.gov (United States)

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  7. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.

    1969-01-14

    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  8. Biosurfactants and surfactants interacting with membranes and proteins: Same but different?

    Science.gov (United States)

    Otzen, Daniel E

    2017-04-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. For several decades they have attracted interest as promising alternatives to current petroleum-based surfactants. Aside from their green profile, they have remarkably low critical micelle concentrations, reduce the air/water surface tension to very low levels and are excellent emulsifiers, all of which make them comparable or superior to their synthetic counterparts. These remarkable physical properties derive from their more complex chemical structures in which hydrophilic and hydrophobic regions are not as clearly separated as chemical surfactants but have a more mosaic distribution of polarity as well as branched or circular structures. This allows the lipopeptide surfactin to adopt spherical structures to facilitate dense packing at interfaces. They are also more complex. Glycolipid BS, e.g. rhamnolipids (RL) and sophorolipids, are produced biologically as mixtures which vary in the size and saturation of the hydrophobic region as well as modifications in the hydrophilic headgroup, such as the number of sugar groups and different levels of acetylation, leading to variable surface-active properties. Their amphiphilicity allows RL to insert easily into membranes at sub-cmc concentrations to modulate membrane structure and extract lipopolysaccharides, leading to extensive biofilm remodeling in vivo, sometimes in collaboration with hydrophobic RL precursors. Thanks to their mosaicity, even anionic BS like RL only bind weakly to proteins and show much lower denaturing potency, even supporting membrane protein refolding. Nevertheless, they can promote protein degradation by proteases e.g. by neutralizing positive charges, which together with their biofilm-combating properties makes them very promising detergent surfactants. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  9. Improvements in permeation and fouling resistance of PVC ultrafiltration membranes via addition of Tetronic-1107 and Triton X-100 as two non-ionic and hydrophilic surfactants.

    Science.gov (United States)

    Rabiee, Hesamoddin; Seyedi, S Mojtaba; Rabiei, Hossein; Alvandifar, Negar

    2016-09-01

    Two non-ionic and hydrophilic surfactant additives, Tetronic-1107 and Triton X-100, were added to poly(vinyl chloride)/NMP polymeric solution to prepare ultrafiltration membranes via immersion precipitation. Surfactants at three different weight percentages up to 6 wt% were added, and the fabricated membranes were characterized and their performance for water treatment in the presence of bovine serum albumin (BSA) as a foulant was assessed. The scanning electron microscopy images indicated remarkable changes in morphology due to higher thermodynamic instability after surfactant addition. The membranes are more porous with more macro-voids in the sub-layer. Plus, the membranes become more hydrophilic. Water flux increases for the modified membranes by nearly two times and the ability of membranes for flux recovery increases from 66% to over 83%. BSA rejection reduces slightly with the addition of surfactants, however this parameter is still almost over 90% for the membranes with the highest amount of surfactants.

  10. Mathematical evaluation of activated carbon adsorption for surfactant recovery in a soil washing process.

    Science.gov (United States)

    Ahn, Chi K; Lee, Min W; Lee, Dae S; Woo, Seung H; Park, Jong M

    2008-12-15

    The performances of various soil washing processes, including surfactant recovery by selective adsorption, were evaluated using a mathematical model for partitioning a target compound and surfactant in water/sorbent system. Phenanthrene was selected as a representative hazardous organic compound and Triton X-100 as a surfactant. Two activated carbons that differed in size (Darco 20-40 mesh and >100 mesh sizes) were used in adsorption experiments. The adsorption isotherms of the chemicals were used in model simulations for various washing scenarios. The optimal process conditions were suggested to minimize the dosage of activated carbon and surfactant and the number of washings. We estimated that the requirement of surfactant could be reduced to 33% of surfactant requirements (from 265 to 86.6g) with a reuse step using 9.1g activated carbon (>100 mesh) to achieve 90% removal of phenanthrene (initially 100mg kg-soil(-1)) with a water/soil ratio of 10.

  11. QENS investigation of proton confined motions in hydrated perfluorinated sulfonic membranes and self-assembled surfactants

    Directory of Open Access Journals (Sweden)

    Berrod Quentin

    2015-01-01

    Full Text Available We report on QuasiElastic Neutron Scattering (QENS investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures.

  12. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants.

    Science.gov (United States)

    Yoon, Bo Kyeong; Jackman, Joshua A; Kim, Min Chul; Cho, Nam-Joon

    2015-09-22

    Medium-chain saturated fatty acids and related compounds (e.g., monoglycerides) represent one class of membrane-active surfactants with antimicrobial properties. Most related studies have been in vitro evaluations of bacterial growth inhibition, and there is limited knowledge about how the compounds in this class destabilize lipid bilayers, which are the purported target within the bacterial cell membrane. Herein, the interaction between three representative compounds in this class and a supported lipid bilayer platform was investigated using quartz crystal microbalance-dissipation and fluorescence microscopy in order to examine membrane destabilization. The three tested compounds were lauric acid, sodium dodecyl sulfate, and glycerol monolaurate. For each compound, we discovered striking differences in the resulting morphological changes of supported lipid bilayers. The experimental trends indicate that the compounds have membrane-disruptive behavior against supported lipid bilayers principally above the respective critical micelle concentration values. The growth inhibition properties of the compounds against standard and methicillin-resistant Staphylococcus aureus bacterial strains were also tested. Taken together, the findings in this work improve our knowledge about how saturated fatty acids and related compounds destabilize lipid bilayers, offering insight into the corresponding molecular mechanisms that lead to membrane morphological responses.

  13. Interplay of mycolic acids, antimycobacterial compounds and pulmonary surfactant membrane: a biophysical approach to disease.

    Science.gov (United States)

    Pinheiro, Marina; Giner-Casares, Juan J; Lúcio, Marlene; Caio, João M; Moiteiro, Cristina; Lima, José L F C; Reis, Salette; Camacho, Luis

    2013-02-01

    This work focuses on the interaction of mycolic acids (MAs) and two antimycobacterial compounds (Rifabutin and N'-acetyl-Rifabutin) at the pulmonary membrane level to convey a biophysical perspective of their role in disease. For this purpose, accurate biophysical techniques (Langmuir isotherms, Brewster angle microscopy, and polarization-modulation infrared reflection spectroscopy) and lipid model systems were used to mimic biomembranes: MAs mimic bacterial lipids of the Mycobacterium tuberculosis (MTb) membrane, whereas Curosurf® was used as the human pulmonary surfactant (PS) membrane model. The results obtained show that high quantities of MAs are responsible for significant changes on PS biophysical properties. At the dynamic inspiratory surface tension, high amounts of MAs decrease the order of the lipid monolayer, which appears to be a concentration dependent effect. These results suggest that the amount of MAs might play a critical role in the initial access of the bacteria to their targets. Both molecules also interact with the PS monolayer at the dynamic inspiratory surface. However, in the presence of higher amounts of MAs, both compounds improve the phospholipid packing and, therefore, the order of the lipid surfactant monolayer. In summary, this work discloses the putative protective effects of antimycobacterial compounds against the MAs induced biophysical impairment of PS lipid monolayers. These protective effects are most of the times overlooked, but can constitute an additional therapeutic value in the treatment of pulmonary tuberculosis (Tb) and may provide significant insights for the design of new and more efficient anti-Tb drugs based on their behavior as membrane ordering agents.

  14. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    Science.gov (United States)

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  15. A moving boundary problem and orthogonal collocation in solving a dynamic liquid surfactant membrane model including osmosis and breakage

    Directory of Open Access Journals (Sweden)

    E.C. Biscaia Junior

    2001-06-01

    Full Text Available A dynamic kinetic-diffusive model for the extraction of metallic ions from aqueous liquors using liquid surfactant membranes is proposed. The model incorporates undesirable intrinsic phenomena such as swelling and breakage of the emulsion globules that have to be controlled during process operation. These phenomena change the spatial location of the chemical reaction during the course of extraction, resulting in a transient moving boundary problem. The orthogonal collocation method was used to transform the partial differential equations into an ordinary differential equation set that was solved by an implicit numerical routine. The model was found to be numerically stable and reliable in predicting the behaviour of zinc extraction with acidic extractant for long residence times.

  16. Pyrene removal from contaminated soil using electrokinetic process combined with surfactant

    Directory of Open Access Journals (Sweden)

    Seyed Enayat Hashemi

    2015-07-01

    Full Text Available Background: Pyrene is one of the stable polycyclic aromatic hydrocarbons that is considered as an important pollutants, because of extensive distribution in the environment and carcinogenic and mutagenic properties. Among the various treatment techniques, electrokinetic method is an environmental- friendly process for organic and mineral pollutants adsorbed to soil with fine pore size the same as clay and low hydraulic conductivity soils. For improving the efficiency of pyrene removal from soil, soulobilization of pyrene from soil could be used by surfactants. Materials and Methods : In this study, clay soil was selected as model because of the specific properties. Combined method using surfactant and electrokinetic was applied for pyrene removal from soil. Experiments were designed using response surface methodology (RSM, and effect of three variables includes surfactant concentration, voltage and surfactant type were evaluated for pyrene removal from contaminated soil. Results: Pyrene removal using anionic surfactants(SDS and nonionic surfactants(TX100 as a solubilizing agents has high removal efficiency. In the optimum condition with 95% confidence coefficient, utilizing mixed surfactants of sodium dodecyl sulfate and triton X-100 with the same volume, induced of 18.54 volt and 6.53 percent surfactant concentration have 94.6% pyrene removal efficiency. Conclusion:: Results of this study shows that electrokinetic process combined with surfactant as solubilizing agent could be applied as an efficient method for treating the pyrene-contaminated soils.

  17. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  18. Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes.

    Science.gov (United States)

    Jardak, K; Drogui, P; Daghrir, R

    2016-02-01

    Surfactants belong to a group of chemicals that are well known for their cleaning properties. Their excessive use as ingredients in care products (e.g., shampoos, body wash) and in household cleaning products (e.g., dishwashing detergents, laundry detergents, hard-surface cleaners) has led to the discharge of highly contaminated wastewaters in aquatic and terrestrial environment. Once reached in the different environmental compartments (rivers, lakes, soils, and sediments), surfactants can undergo aerobic or anaerobic degradation. The most studied surfactants so far are linear alkylbenzene sulfonate (LAS), quaternary ammonium compounds (QACs), alkylphenol ethoxylate (APEOs), and alcohol ethoxylate (AEOs). Concentrations of surfactants in wastewaters can range between few micrograms to hundreds of milligrams in some cases, while it reaches several grams in sludge used for soil amendments in agricultural areas. Above the legislation standards, surfactants can be toxic to aquatic and terrestrial organisms which make treatment processes necessary before their discharge into the environment. Given this fact, biological and chemical processes should be considered for better surfactants removal. In this review, we investigate several issues with regard to: (1) the toxicity of surfactants in the environment, (2) their behavior in different ecological systems, (3) and the different treatment processes used in wastewater treatment plants in order to reduce the effects of surfactants on living organisms.

  19. Threshold for spontaneous oscillation in a three-phase liquid membrane system involving nonionic surfactant.

    Science.gov (United States)

    Nanzai, Ben; Funazaki, Tomohisa; Igawa, Manabu

    2010-09-16

    This study of self-oscillation was conducted using a new three-phase liquid membrane system of ethanol aqueous solution, benzyl alcohol solution with nonionic surfactant, and pure water. Relations of the initial ethanol concentration to the oscillation amplitude and frequency, and to the induction period before oscillations were investigated. The oscillation amplitude is independent of the initial ethanol concentration, but the frequency and the induction period are related to it. The oscillation frequency increased concomitantly with the increased ethanol initial concentration, but the induction period before the electrical oscillations decreased with increasing concentration. To estimate the influence of ethanol diffusion on the electrical oscillations, the ethanol concentration in each phase was measured using separate experiments after different durations of oscillation. The diffusion coefficient was calculated using Fick's second law. Results show successful estimation of the threshold for oscillations. The threshold is defined in terms of the ethanol concentration at the interface between the benzyl alcohol phase and the pure water phase.

  20. Synthetic membranes and membrane processes with counterparts in biological systems

    Science.gov (United States)

    Matson, Stephen L.

    1996-02-01

    Conventional synthetic membranes, fashioned for the most part from rather unremarkable polymeric materials, are essentially passive structures that achieve various industrial and biomedical separations through simple and selective membrane permeation processes. Indeed, simplicity of membrane material, structure, and function has long been perceived as a virtue of membranes relative to other separation processes with which they compete. The passive membrane separation processes -- exemplified by micro- and ultrafiltration, dialysis, reverse osmosis, and gas permeation -- differ from one another primarily in terms of membrane morphology or structure (e.g., porous, gel-type, and nonporous) and the permeant transport mechanism and driving force (e.g., diffusion, convection, and 'solution/diffusion'). The passive membrane separation processes have in common the fact that interaction between permeant and membrane material is typically weak and physicochemical in nature; indeed, it is frequently an objective of membrane materials design to minimize interaction between permeant and membrane polymer, since such strategies can minimize membrane fouling. As a consequence, conventional membrane processes often provide only modest separation factors or permselectivities; that is, they are more useful in performing 'group separations' (i.e., the separation of different classes of material) than they are in fractionating species within a given class. It has long been recognized within the community of membrane technologists that biological membrane structures and their components are extraordinarily sophisticated and powerful as compared to their synthetic counterparts. Moreover, biomembranes and related biological systems have been 'designed' according to a very different paradigm -- one that frequently maximizes and capitalizes on extraordinarily strong and biochemically specific interactions between components of the membrane and species interacting with them. Thus, in recent

  1. Membranes for Environmentally Friendly Energy Processes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2012-10-01

    Full Text Available Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature and the impurities in a gas stream (such as SO2, NOx, H2S, etc.. Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation.

  2. Membrane filters and membrane-filtration processes for health care.

    Science.gov (United States)

    Eudailey, W A

    1983-11-01

    The development of membrane-filtration processes is reviewed, and current types and uses of membrane filtration in health care is discussed. Development of adequate support structures for filters and of disposable filtration devices has facilitated development of filtration processes for pharmaceutical industry, manufacturing in hospital pharmacies, and direct patient care. Hydrophobic filters have also been developed; aqueous solutions cannot wet the pore structures of these filters and therefore cannot pass. Sterility-testing systems have also been developed. There are two types of filters: depth (constructed of compacted fibers) and membrane (which have a homogeneous internal structure). Depth filters retain only a portion of particles in a particular size range and are generally not acceptable for use in health care. Membrane filters retain all particles of a given size. Types of membrane filters are selected for specific uses based on needed flow rates, particulate load, and retention capability. Membrane filters may be validated using bacterial-passage, bubble-point, and diffusion tests. Most membrane filters used in health care are microporous filters that retain particles in the 0.1-10-micron size range. Applications are currently being developed for ultrafilters, which retain both particles and substances with large molecular structures such as proteins, and reverse-osmosis filter membranes, which allow only water or water-miscible solvents of very low molecular weights to pass. Experience in engineering designs, quality assurance, and test procedures has led to the development of many safe, reliable, and effective membrane products for health care.

  3. Solar driven membrane pervaporation for desalination processes

    NARCIS (Netherlands)

    Zwijnenberg, H.J.; Koops, G.H.; Wessling, M.

    2005-01-01

    We describe details of a solar driven pervaporation process for the production of desalinated water from highly contaminated waters. The membrane material is a polyetheramide-based polymer film of 40 ¿m thickness. This Solar Dew® membrane is used in a tubular configuration in a direct solar membrane

  4. REMOVAL OF PHENOL AND SURFACTANT FROM LANDFILL LEACHATE BY COAGULATION-FLOCCULATION PROCESS

    Directory of Open Access Journals (Sweden)

    H. BAKRAOUY

    2016-02-01

    Full Text Available Following the action of rainfall and natural fermentation, the stored waste produces a liquid fraction called leachate. This leachate is rich in organic matter (biodegradable but also refractory and trace elements. There are many techniques of treating the leachate, in particular, biological, physicochemical, membrane processes. The choice of a technique instead of another depends on several parameters including: the age of the leachate, composition... In this work we applied a coagulation-flocculation process to treat intermediate landfill leachate of Rabat city with a combined ferric chloride coagulant and a polymer flocculant. We were inspired by full factorial design, including twenty five experiments, to determine optimal dosages of coagulant and flocculant. We operate at pH 8.4, the best removal efficiencies obtained were 88 % for Turbidity, 98 % for Phenol and 82 % for surfactant. The optimum dosages values determined by this study were 13.2 g∙L-1 of coagulant, 62 mL∙L-1 of flocculant.

  5. Effect of Source, Surfactant, and Deposition Process on Electronic Properties of Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Dheeraj Jain

    2011-01-01

    Full Text Available The electronic properties of arrays of carbon nanotubes from several different sources differing in the manufacturing process used with a variety of average properties such as length, diameter, and chirality are studied. We used several common surfactants to disperse each of these nanotubes and then deposited them on Si wafers from their aqueous solutions using dielectrophoresis. Transport measurements were performed to compare and determine the effect of different surfactants, deposition processes, and synthesis processes on nanotubes synthesized using CVD, CoMoCAT, laser ablation, and HiPCO.

  6. Effect of anionic surfactants on the process of Fenton degradation of methyl orange.

    Science.gov (United States)

    Yang, C W; Wang, D

    2009-01-01

    Fenton process has been shown to be very successful to remove dyes from water. However, the influence of other constituents in dyeing industry wastewater, such as Sodium Dodecyl Sulphate (SDS) surfactants, has not been investigated. In this study, the effect of SDS surfactant on the kinetics of Methyl Orange degradation undergoing Fenton process was investigated. Results show that Methyl Orange degradation rate decreased as SDS concentration increased, which was attributed to the consumption of hydroxyl radicals (OH) by surfactants and the formation of Methyl Orange-SDS complex. No evidence was found that the Methyl Orange degradation pathway was affected by the presence of SDS. The kinetics modelling indicates the reaction was the first-order reaction to Methyl Orange.

  7. Modeling and simulation of membrane process

    Science.gov (United States)

    Staszak, Maciej

    2017-06-01

    The article presents the different approaches to polymer membrane mathematical modeling. Traditional models based on experimental physicochemical correlations and balance models are presented in the first part. Quantum and molecular mechanics models are presented as they are more popular for polymer membranes in fuel cells. The initial part is enclosed by neural network models which found their use for different types of processes in polymer membranes. The second part is devoted to models of fluid dynamics. The computational fluid dynamics technique can be divided into solving of Navier-Stokes equations and into Boltzmann lattice models. Both approaches are presented focusing on membrane processes.

  8. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability.

    Science.gov (United States)

    Ghebremeskel, Alazar N; Vemavarapu, Chandra; Lodaya, Mayur

    2007-01-10

    Formation of solid dispersions as a means to enhance the dissolution rate of poorly soluble Active pharmaceutical ingredients (APIs) typically employs hydrophilic polymer systems and surfactants. While the utility of the surfactant systems in solubilization is well known, the secondary effects of the same on processing and subsequent physical stability of the solid dispersions needs to be studied further. Physical blends of the poorly soluble API and hydrophilic polymers such as PVP-K30, Plasdone-S630, HPMC-E5, HPMCAS, and Eudragit L100 with mass ratio 1:1 were prepared. The surfactants tested in this study included Tween-80, Docusate sodium, Myrj-52, Pluronic-F68 and SLS. Thermal analysis of the API-polymer-surfactant blends suggested that the surfactants caused solvation/plasticization, manifesting in reduction of (i) the melting (T(m)) of API (ii) T(g) of the polymers and (iii) the combined T(g) of the solid dispersion formed from quench cooling. Explanation of these effects of surfactants is attempted based on their physical state (at the temperature of interest), HLB values and similarity of their solubility parameter values with respect to drug-polymer systems. Furthermore, extruded matrices containing different API-polymer (PVP-K30, Plasdone-S630, and HPMC-E5) mixtures prepared with and without surfactants, were produced by feeding the powder blend through a hot-melt extruder. The melt viscosity of the polymer blends was assessed by torque rheometry using a Haake Rheomix. The physicochemical properties of the extruded API-polymer-surfactant were characterized by differential scanning calorimetry, X-ray diffraction, Raman spectroscopy, and polarized microscopy. The results demonstrated that the glass transition temperature of the carrier polymers decreased as direct result of the surfactants in the extrudate, due to an increase in the chain mobility of polymers. A decrease in the melt viscosity was seen due to a plasticization of the polymer. The drug release

  9. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  10. Recent Membrane Development for Pervaporation Processes

    KAUST Repository

    Ong, Yee Kang

    2016-03-11

    Pervaporation has been regarded as a promising separation technology in separating azeotropic mixtures, solutions with similar boiling points, thermally sensitive compounds, organic–organic mixtures as well as in removing dilute organics from aqueous solutions. As the pervaporation membrane is one of the crucial factors in determining the overall efficiency of the separation process, this article reviews the research and development (R&D) of polymeric pervaporation membranes from the perspective of membrane fabrication procedures and materials.

  11. Effect of bio-surfactant on municipal solid waste composting process

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou; LIU Hong-liang; HUANG G H; ZHANG Bai-yu; QIN Xiao-sheng

    2005-01-01

    Bio-surfactant is a new type of surfactant that is produced in microbial metabolism. Adding bio-surfactant during composting process, especially to those contain some toxic substances, has been proved to be a promising way. In this study, Strains Ⅲ (2), a bacterial with high activity to produce bio-surfactant, were isolated firstly. Following comparison experiments with and without adding Strains Ⅲ (2), namely Run 1 and Run R, were conducted, respectively. The experimental results showed that, by adding Strains Ⅲ (2),the surface tension could reduce from 46.5 mN/m to 39.8 mN/m and the corresponding time to maintain the surface tension under 50 mN/m could prolong from 60 h to 90 h. The oxygen uptake rate and total accumulated oxygen consumption with Stains Ⅲ (2) were both higher than those without Strains Ⅲ (2), while the accumulation of H2S in outlet gas was reduced to around 50% of Run R. Moreover, two additional experiments were also carried out to examine the effects of strains coming from different systems. One is adding Strains Ⅲ (2)with a dose of 0.4% (Run 2), and the other is seedling commercial Strains at the same conditions, the composting experiments showed that: Run 2 was more effective than Run 3, because the commercial Strains can be suppressed significantly in a complex composting system with different pH, high temperature and some of metals. The bio-surfactant was also added into the solid waste, which contained some toxic substances, the corresponding results showed that the remove rate of Hg and sodium pentachlorophenolate(PCP-Na) could be improved highly. Thus, the microenvironment, reactionrate and composting quality could be enhanced effectively by adding bio-surfactant to the composting process.

  12. Fouling distribution in forward osmosis membrane process.

    Science.gov (United States)

    Lee, Junseok; Kim, Bongchul; Hong, Seungkwan

    2014-06-01

    Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter-current flow operation of FO membrane process.

  13. Ionomer-Membrane Water Processing Apparatus

    Science.gov (United States)

    MacCallum, Taber K. (Inventor); Kelsey, Laura Katrina (Inventor)

    2017-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion.RTM., over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  14. Ionomer-Membrane Water Processing Apparatus

    Science.gov (United States)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(Registered Trademark), over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  15. Dehydration processes using membranes with hydrophobic coating

    Science.gov (United States)

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  16. Membrane Operations for Process Intensification in Desalination

    Directory of Open Access Journals (Sweden)

    Enrico Drioli

    2017-01-01

    Full Text Available Process intensification strategy (PIS is emerging as an interesting guideline to revolutionize process industry in terms of improved efficiency and sustainability. Membrane engineering has appeared as a strong candidate to implement PIS. The most significant progress has been observed in desalination where substantial reduction in overall energy demand, environmental footprint, and process hazards has already been accomplished. Recent developments in membrane engineering are shaping the desalination industry into raw materials and energy production where fresh water will be produced as a byproduct. The present study discusses the current and perspective role of membrane engineering in achieving the objectives of PIS in the field of desalination.

  17. Palmitoylation as a key factor to modulate SP-C-lipid interactions in lung surfactant membrane multilayers.

    Science.gov (United States)

    Roldan, Nuria; Goormaghtigh, Erik; Pérez-Gil, Jesús; Garcia-Alvarez, Begoña

    2015-01-01

    Surfactant protein C (SP-C) has been regarded as the most specific protein linked to development of mammalian lungs, and great efforts have been done to understand its structure-function relationships. Previous evidence has outlined the importance of SP-C palmitoylation to sustain the proper dynamics of lung surfactant, but the mechanism by which this posttranslational modification aids SP-C to stabilize the interfacial surfactant film along the compression-expansion breathing cycles, is still unrevealed. In this work we have compared the structure, orientation and lipid-protein interactions of a native palmitoylated SP-C with those of a non-palmitoylated recombinant SP-C (rSP-C) form in air-exposed multilayer membrane environments, by means of ATR-FTIR spectroscopy. Palmitoylation does not affect the secondary structure of the protein, which exhibits a full α-helical conformation in partly dehydrated phospholipid multilayer films. However, differences between the Amide I band of the IR spectrum of palmitoylated and non-palmitoylated proteins suggest subtle differences affecting the environment of their helical component. These differences are accompanied by differential effects on the IR bands from phospholipid phosphates, indicating that palmitoylation modulates lipid-protein interactions at the headgroup region of phospholipid layers. On the other hand, the relative dichroic absorption of polarized IR has allowed calculating that the palmitoylated protein adopts a more tilted transmembrane orientation than the non-palmitoylated SP-C, likely contributing to more compact, dehydrated and possibly stable multilayer lipid-protein films. As a whole, the behavior of multilayer films containing palmitoylated SP-C may reflect favorable structural properties for surfactant reservoirs at the air-liquid respiratory interface.

  18. 2010 Membranes: Materials & Processes Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  19. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    Science.gov (United States)

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Producing monodisperse drug-loaded polymer microspheres via cross-flow membrane emulsification: the effects of polymers and surfactants.

    Science.gov (United States)

    Meyer, Robert F; Rogers, W Benjamin; McClendon, Mark T; Crocker, John C

    2010-09-21

    Cross-flow membrane emulsification (XME) is a method for producing highly uniform droplets by forcing a fluid through a small orifice into a transverse flow of a second, immiscible fluid. We investigate the feasibility of using XME to produce monodisperse solid microspheres made of a hydrolyzable polymer and a hydrophobic drug, a model system for depot drug delivery applications. This entails the emulsification of a drug and polymer-loaded volatile solvent into water followed by evaporation of the solvent. We use a unique side-view visualization technique to observe the details of emulsion droplet production, providing direct information regarding droplet size, dripping frequency, wetting of the membrane surface by the two phases, neck thinning during droplet break off, and droplet deformation before and after break off. To probe the effects that dissolved polymers, surfactants, and dynamic interfacial tension may have on droplet production, we compare our results to a polymer and surfactant-free fluid system with closely matched physical properties. Comparing the two systems, we find little difference in the variation of particle size as a function of continuous phase flow rate. In contrast, at low dripping frequencies, dynamic interfacial tension causes the particle size to vary significantly with drip frequency, which is not seen in simple fluids. No effects due to shear thinning or fluid elasticity are detected. Overall, we find no significant impediments to the application of XME to forming highly uniform drug-loaded microspheres.

  1. Biobased surfactant-like molecules from organic wastes: the effect of waste composition and composting process on surfactant properties and on the ability to solubilize Tetrachloroethene (PCE).

    Science.gov (United States)

    Quadri, Giorgia; Chen, Xiaosong; Jawitz, James W; Tambone, Fulvia; Genevini, Pierluigi; Faoro, Franco; Adani, Fabrizio

    2008-04-01

    In this work, four surfactant-like humic acids (HAs) obtained from garden lignocellulose wastes and kitchen food wastes mixed with garden-lignocellulose wastes, both before and after composting, were tested for surfactant properties and the ability to solubilize tetrachloroethene (PCE). The waste-derived HAs showed good surfactant properties, lowering the water surface tension from 74 mN m(-1) to 45.4 +/- 4.4 mN m(-1), with a critical micelle concentration (CMC) of 1.54 +/- 1.68 g L(-1), which is lower than many synthetic ionic surfactants. CMC was affected by both waste origin and composting processes. The addition of food waste and composting reduced CMC by adding alkyl-C (measured by CP MAS 13C NMR) and N- and S-HA contents (amide molecules), so that a multistep regression was found [CMC = 24.6 - 0.189 alkyl C - 2.64 (N + S); R2 = 0.77, P < 0.10, n = 6]. The four HAs solubilized PCE at the rate of 0.18-0.47 g PCE/g aqueous biosurfactant. These results were much higher than those reported in the literature for a commercial HA (0.026 g/g), but they were in line with those measured in this work for nonionic surfactants such as Tween-80 (0.69 g/g) and Triton X-100 (1.08 g/g).

  2. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)

    1997-07-01

    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  3. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  4. Modelling Of Manufacturing Processes With Membranes

    Science.gov (United States)

    Crăciunean, Daniel Cristian; Crăciunean, Vasile

    2015-07-01

    The current objectives to increase the standards of quality and efficiency in manufacturing processes can be achieved only through the best combination of inputs, independent of spatial distance between them. This paper proposes modelling production processes based on membrane structures introduced in [4]. Inspired from biochemistry, membrane computation [4] is based on the concept of membrane represented in its formalism by the mathematical concept of multiset. The manufacturing process is the evolution of a super cell system from its initial state according to the given actions of aggregation. In this paper we consider that the atomic production unit of the process is the action. The actions and the resources on which the actions are produced, are distributed in a virtual network of companies working together. The destination of the output resources is specified by corresponding output events.

  5. A DSC investigation on the influence of gemini surfactant stereochemistry on the organization of lipoplexes and on their interaction with model membranes.

    Science.gov (United States)

    Aleandri, S; Bonicelli, M G; Giansanti, L; Giuliani, C; Ierino, M; Mancini, G; Martino, A; Scipioni, A

    2012-12-01

    Previous investigations showed that the extent of DNA condensation and the efficiency in the transfection of liposomes formulated with 1,2-dimyristoyl-sn-glycero-phosphocholine and cationic stereomeric gemini surfactants depend heavily on the stereochemistry of the gemini. The influence of the stereochemistry on the interaction of lipoplexes with zwitterionic and anionic cell membrane models was investigated by differential scanning calorimetry to rationalize their different biological behavior. Further, the thermotropic behavior of the corresponding liposomes and of the spontaneous self-assemblies of gemini surfactants in the presence and in the absence of DNA was evaluated to correlate the physicochemical properties of lipoplexes and the stereochemistry of the cationic component. The obtained results show that the stereochemistry of the gemini surfactant controls lipoplexes organization and their mode and kinetic of interaction with different cell membrane models.

  6. Effect of surfactants in synthesis of CsH2PO4 as protonic conductive membrane

    Indian Academy of Sciences (India)

    Soraya Hosseini; Wan Ramli Wan Daud; Marzieh Badiei; Abdul Amir Hassan Kadhum; Abu Bakar Mohammad

    2011-07-01

    Cesium dihydrogen phosphate (CDP) powders were synthesized by cetyltrimethylammoniumbromide (CTAB), polyoxyethylene-polyoxypropylene (F-68) and mixture of both surfactants F-68 : CTAB with two molar ratios 0.06 and 0.12 as surfactant solutions at room temperature. The synthesized CsH2PO4 is characterized by ICP, XRD, TEM, SEM, FT–IR, BET and IS techniques. Based on the width of the (011) XRD diffraction peak and BET measurement, the average size of nanoparticles was ∼ 10 nm in diameter, while the TEM images indicate smaller size than both techniques. The analysis reveals existence of P and Cs with mole ratio 1.02 ± 0.03 which is compatible to molar ratio CsH2PO4 formula. The experimental results show that the conductivities increase in the order of CDPCTAB > CDP(F-68 : CTAB)0.12 > CDP(F-68:CTAB)0.06 > CDPF-68. The sequence of increasing conductivity is in accordance with the ion exchange capacities of the samples that has direct proportional effect on the proton mobility of samples. Indeed CTAB as cationic surfactant shows the highest proton mobility in the as-obtained samples.

  7. Effect of Surfactant Concentration in the Emulsions on the Process of Oleophilic Porous Structures Imbibition

    Directory of Open Access Journals (Sweden)

    Shtyka Olga S.

    2016-01-01

    Full Text Available The spontaneous imbibition has been a subject of the scientific interest being a background process for numerous industrial technologies and occurring in the natural environment. In literature the experimental and theoretical results regarding this phenomenon describe a media imbibition with single-phase liquids and the relation between the process rate and media characteristics. The imbibition of oleophilic porous structures with two-phase liquids, only one phase of which was wetting, is an objective of the current publication. The main purpose is to estimate the influence of both surfactant fraction and the dispersed phase concentration on the mentioned process. The imbibition rate was investigated during model experiments with stabilized oil-in-water emulsions having the dispersed phase concentrations of 10 vol%, 30 vol% and 50 vol%. The prepared emulsions differed with fraction of the added surfactant, i.e. 1 vol%, 2 vol% and 5 vol%. The obtained results allowed to conclude that at the him≥0.02 m, the dispersed phase concentration and viscosity decreased versus height. However, the raise of the surfactant fraction caused the increase of mass and height of the imbibed emulsions in porous medium. Moreover, this provided increasing of viscosity and a change of emulsions behaviour as a liquid.

  8. An Integrated Membrane Process for Butenes Production

    Directory of Open Access Journals (Sweden)

    Leonardo Melone

    2016-11-01

    Full Text Available Iso-butene is an important material for the production of chemicals and polymers. It can take part in various chemical reactions, such as hydrogenation, oxidation and other additions owing to the presence of a reactive double bond. It is usually obtained as a by-product of a petroleum refinery, by Fluidized Catalytic Cracking (FCC of naphtha or gas-oil. However, an interesting alternative to iso-butene production is n-butane dehydroisomerization, which allows the direct conversion of n-butane via dehydrogenation and successive isomerization. In this work, a simulation analysis of an integrated membrane system is proposed for the production and recovery of butenes. The dehydroisomerization of n-butane to iso-butene takes place in a membrane reactor where the hydrogen is removed from the reaction side with a Pd/Ag alloys membrane. Afterwards, the retentate and permeate post-processing is performed in membrane separation units for butenes concentration and recovery. Four different process schemes are developed. The performance of each membrane unit is analyzed by appropriately developed performance maps, to identify the operating conditions windows and the membrane permeation properties required to maximize the recovery of the iso-butene produced. An analysis of integrated systems showed a yield of butenes higher than the other reaction products with high butenes recovery in the gas separation section, with values of molar concentration between 75% and 80%.

  9. [Determination of Trace Lead in Water by UV-Visible Diffuse Reflectance Spectroscopy Combined with Surfactant and Membrane Filtration-Enrichment].

    Science.gov (United States)

    Zhang, Xiao-fang; Zhu, Bi-lin; Li, Wei; Wang, Lei; Zhang, Lei; Wu, Ting; Du, Yi-ping

    2015-07-01

    In this paper, a method of determination of trace lead in water by UV-Visible diffuse reflectance spectroscopy combined with surfactant and membrane filtration enrichment was proposed. In the NH3 x H2O-NH4Cl buffer solution with pH 8.5, the lead(II) ion would react with dithizone to form the red complex under vigorous stirring, which is hydrophobic and can be enriched by the mixed cellulose ester membrane. In addition, the nonionic surfactant Polyoxyethylene lauryl ether (Brij-30) was added into the solution to improve the enrichment efficiency, then visible diffuse reflectance spectra of the membrane were measured directly after the membrane were naturally dried. We also optimized the reaction conditions which may affect the complexation reaction process, such as type of surfactants, the concentration of the surfactant, the reaction acidity, the concentration of dithizone as well as the reaction time. The research results show that under the optimum conditions, a good linear correlation between absorbance at 485 nm and concentration of lead in the range of 5.0-100.0 microg x L(-1) was obtained with a squared correlation coefficient (R2) of 0.9906, and the detection limit was estimated accordingly to be 2.88 microg x L(-1). To determine real water sample, the interference from some potential coexisting ions was also studied at the optimal conditions when the concentration of lead (II) ion standard solution was fixed to 20 microg x L(-1). The results indicate that the following ions cannot interfere in the determination of lead with the proposed method: 500 times of the K+, Na+, Ca2+, Mg2+, NH4+, NO3-, Cl-, CH3COO-, SO4(2-); 10 times of the Al3+ (using 10% NaF as a masking reagent to avoid the interference); 10 times of the Fe3+ (using 10% NaF and 10% sodium potassium tartrate as masking reagents); 10 times of Hg2+ or Zn2+ (using 10% NaSCN and 10% potassium sodium tartrate as masking reagents); the same amount of Cd2+, Cu2+. The proposed method was applied to the

  10. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Wohlmuth da Silva, Salatiel, E-mail: salatielws@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGEM), Av. Bento Gonçalves, 9500, Porto Alegre, RS (Brazil); Klauck, Cláudia Regina, E-mail: claudiark@feevale.br [Universidade Feevale, Campus II ERS-239, 2755, Novo Hamburgo, RS (Brazil); Siqueira, Marco Antônio, E-mail: marcor@feevale.br [Universidade Feevale, Campus II ERS-239, 2755, Novo Hamburgo, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGEM), Av. Bento Gonçalves, 9500, Porto Alegre, RS (Brazil)

    2015-01-23

    Highlights: • NP{sub 4}EO in industrial effluents can be treated before reaching water reservoirs. • Advanced oxidation processes are proposed for the degradation of NP{sub 4}EO. • The degradation rate depends mainly on the light intensity. • The mineralization rate depends mainly on the current density. • Photo-assisted electrochemical oxidation showed the best degradation results. - Abstract: Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis – HP, eletrochemical oxidation – EO and photo-assisted electrochemical oxidation – PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NP{sub n}EO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NP{sub n}EO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NP{sub n}EO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250 W lamp and a current density of 10 mA/cm{sup 2} showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NP{sub n}EO, avoiding the contamination of water resources.

  11. Modification of Nanoclinoptilolite Zeolite with Hexadecyltrimethylammonium Surfactant as an Active Ingredient of Chromate-Selective Membrane Electrode

    Directory of Open Access Journals (Sweden)

    Alireza Nezamzadeh-Ejhieh

    2013-01-01

    Full Text Available A novel chromate selective PVC membrane electrode was constructed using a hexadecyltrimethylammonium-surfactant modified zeolite (SMZ. Nano particles of an Iranian clinoptilolite zeolite were prepared by a ball-mill mechanical method and characterized by FT-IR, SEM and XRD. Best performance was exhibited at the membrane composition of SMZ : PVC : dioctyl phthalate (DOP in the ratio of 4 : 32 : 64. This membrane worked well over a wide concentration range from to  mol L−1 of with a Nernstian slope of  mv per decade of concentration with detection limit of  mol L−1 in a wide pH range of 6.8–10.7. The response time of the sensor is 5–10 s over a period of 2 months with good reproducibility. The selectivity coefficients of the proposed electrode towards various interfering ions were determined by FIM and SSM methods. The sensor was successfully used as indicator electrode in the potentiometric titration of against Pb(II and determination of chromium in an electroplating wastewater sample.

  12. Retreatment of silicon slurry by membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Testa, F. [Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2 - UMR-CNRS 6181), Europole de l' Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04 (France); KEMESYS, 125 ZA Verdalai, 13790 Peynier (France); Coetsier, C.; Carretier, E. [Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2 - UMR-CNRS 6181), Europole de l' Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04 (France); Ennahali, M.; Laborie, B. [KEMESYS, 125 ZA Verdalai, 13790 Peynier (France); Serafino, C.; Bulgarelli, F. [Rockwood Wafer reclaim France, ZI des Pradeaux, 13850 Greasque (France); Moulin, P., E-mail: philippe.moulin@univ-cezanne.fr [Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2 - UMR-CNRS 6181), Europole de l' Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04 (France)

    2011-08-30

    Highlights: {yields} Membrane processes were used to regenerate Silicon CMP slurry effluent {yields} A two-step ultrafiltration process was performed at laboratory and industrial scales {yields} A new hybrid process (membrane ultrafiltration and chemical addition) is developed {yields} A ratio of 0.65 of dissolved chemicals allows RR and TTV to be within specifications {yields} At industrial scale, the hybrid process enables the reuse of electronic effluents. - Abstract: The purpose of the present study is to develop a process to regenerate the polish liquid used in Chemical and Mechanical Polishing (CMP), called 'slurry', and more specifically Silicon CMP slurry. Physico-chemical analyses show a considerable dilution of slurry through washing waters used in polishing. Thus, this effluent has been characterised for a better identification of the deviations from the slurry of reference (Point Of Use). Hence, the principle is to regenerate this effluent by membrane processes. The ultrafiltration results obtained at laboratory scale have led to the development of an industrial prototype. An optimal utilisation of this treatment allows completing a two-step process: the reconcentration by ultrafiltration and a chemical adjustment by addition of concentrated slurry. A stable behaviour of the slurry at the different steps of the process has been observed. Polishing results are similar with retreated and POU slurries. Furthermore, the functioning at industrial scale permits to maintain the performances obtained on the laboratory pilot.

  13. Surfactants as additives for NO{sub x} reduction during SNCR process with urea solution as reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Muhammad [Department of Environmental Engineering, Kwangwoon University (Korea, Republic of); Irfan, Muhammad Faisal, E-mail: muhammadfipk@um.edu.my [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yoo, Kyung-Seun [Department of Environmental Engineering, Kwangwoon University (Korea, Republic of)

    2011-09-15

    Highlights: {yields} We study SNCR process using urea as a reducing agent for NO{sub x} reduction. {yields} We improve NO{sub x} reduction efficiency by adding the different types of additives. {yields} We introduce new additives: surfactants and blends of alkali metal with organic group. {yields} Anionic surfactants give maximum efficiency and max. range for temperature window. - Abstract: NO{sub x} reduction from gas stream by selective non-catalytic reduction (SNCR) using urea as a reducing agent was performed in this study. A Pilot-scale experimental system was designed and constructed to evaluate the NO{sub x} reduction efficiency and temperature window of the process. Particularly, different types of additives were added during SNCR process to improve NO{sub x} reduction efficiency and enlarge temperature window. The addition of additives was based on organic compounds like alcoholic group (CH{sub 3}OH, C{sub 2}H{sub 5}OH and C{sub 3}H{sub 7}OH) and metallic compounds like alkali metals (NaOH, KOH and LiOH). Some newly introduced additives, such as surfactants and different blends of alkali metal NaOH (1%) with organic group or surfactants were also added to assess the effect of these mixed additives on NO{sub x} reduction efficiency and reaction temperature window during SNCR process. Main focus was laid on surfactants as an additive because of their cost effectiveness and availability. Basically, surfactants have both organic and metallic parts which provide -OH free radicals from both ends (organic and metallic) to enhance the reaction mechanism and improve the NO{sub x} reduction at low temperature. Different types of surfactants (anionic, cationic, amphitricha, long chain, short chain and with different functional groups attached to chains) were tested as an additive during SNCR process. Anionic surfactants (SPES, APS, LAS and SPS) gave maximum efficiency for NO{sub x} reduction and provided maximum range for the temperature window.

  14. Membrane module and process development for monopolar and bipolar membrane electrodialysis

    OpenAIRE

    Balster, Jörg Henning

    2006-01-01

    This thesis aims to develop more efficient monopolar and bipolar membrane electrodialysis processes. Three main topics have been investigated: 1. Membrane selectivity 2. Concentration polarisation 3. Membrane scaling and fouling

  15. UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    S.A.Stern; P.A. Rice; J. Hao

    2000-03-01

    The objective of the present study is to assess the potential usefulness of membrane separation processes for removing CO{sub 2} and H{sub 2}S from low-quality natural gas containing substantial amounts of both these ''acid'' gases, e.g., up to 40 mole-% CO{sub 2} and 10 mole-% H{sub 2}S. The membrane processes must be capable of upgrading the crude natural gas to pipeline specifications ({le} 2 mole-% CO{sub 2}, {le} 4 ppm H{sub 2}S). Moreover, these processes must also be economically competitive with the conventional separation techniques, such as gas absorption, utilized for this purpose by the gas industry.

  16. Adsorption of membrane-active surfactants studied by alternating current polarography; Wechselstrompolarographische Untersuchung der Adsorption membranaktiver Tenside

    Energy Technology Data Exchange (ETDEWEB)

    Volke, K. [Technische Univ. Bergakademie Freiberg (Germany). Lehrstuhl fuer Umweltverfahrenstechnik; Hardoerfer, F. [Technische Univ. Bergakademie Freiberg (Germany). Lehrstuhl fuer Umweltverfahrenstechnik; Haertel, G. [Technische Univ. Bergakademie Freiberg (Germany). Lehrstuhl fuer Umweltverfahrenstechnik

    1997-03-01

    The major problem encountered in the recycling of highly contaminated wastewater is the covering of the membrane surface by feed impurities (organic fouling, biofouling). Some earlier experiments have indicated that surfactants affect this layer in different ways. An octyl phenol ethoxylate (OPE{sub 9/10}) with 10 EO units showed an increase of layer formation with a consequent decrease in flux, while with lecithin the flux at the end of the experiments showed a significant higher level. These differences result from the various structures of the adsorption layers. The adsorption coefficient, interaction coefficient of the Frumkin isotherm and the area per molecule were determined by a.c. polarography. In addition the adsorption of both surfactants was examined on membrane material. It was found that the Frumkin isotherm characterises this adsorption on mercury and on the membrane surface. The lateral interaction forces within the lecithin layer are lower than the OPE{sub 9/10} ones. The loosely packed lecithin adsorption layers do not lead to an increase of the hydrodynamic resistance, but have a positive effect on the flux behaviour. (orig.) [Deutsch] Eines der Probleme bei der Aufbereitung hochbelasteter Abwaesser mittels Membranverfahren stellt die Belegung der Membranoberflaeche mit Verunreinigungen (organische Foulingbildner, Biofouling) dar. In vorangegangenen Experimenten konnte gezeigt werden, dass Tenside in unterschiedlicher Weise diese Deckschichtbildung beeinflussen. Waehrend Octylphenolethoxylat (OPE{sub 9/10}) mit 10 EO-Einheiten zu einer Zunahme der Deckschichtbildung fuehrt, konnte durch Lecithin jeweils am Ende der Experimente eine signifikante Erhoehung des Permeatflusses erreicht werden. Es konnte nachgewiesen werden, dass dieses unterschiedliche Verhalten durch eine andersartige Struktur der Adsorptionsschicht zustande kommt. Die Struktur der Adsorptionsschicht (Adsorptionskoeffizient, Wechselwirkungskoeffizient der Frumkin

  17. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants.

    Science.gov (United States)

    Zhou, Chengcheng; Wang, Fengyan; Chen, Hui; Li, Meng; Qiao, Fulin; Liu, Zhang; Hou, Yanbo; Wu, Chunxian; Fan, Yaxun; Liu, Libing; Wang, Shu; Wang, Yilin

    2016-02-17

    This work reports that cationic micelles formed by cationic trimeric, tetrameric, and hexameric surfactants bearing amide moieties in spacers can efficiently kill Gram-negative E. coli with a very low minimum inhibitory concentration (1.70-0.93 μM), and do not cause obvious toxicity to mammalian cells at the concentrations used. With the increase of the oligomerization degree, the antibacterial activity of the oligomeric surfactants increases, i.e., hexameric surfactant > tetrameric surfactant > trimeric surfactant. Isothermal titration microcalorimetry, scanning electron microscopy, and zeta potential results reveal that the cationic micelles interact with the cell membrane of E. coli through two processes. First, the integrity of outer membrane of E. coli is disrupted by the electrostatic interaction of the cationic ammonium groups of the surfactants with anionic groups of E. coli, resulting in loss of the barrier function of the outer membrane. The inner membrane then is disintegrated by the hydrophobic interaction of the surfactant hydrocarbon chains with the hydrophobic domains of the inner membrane, leading to the cytoplast leakage. The formation of micelles of these cationic oligomeric surfactants at very low concentration enables more efficient interaction with bacterial cell membrane, which endows the oligomeric surfactants with high antibacterial activity.

  18. Membrane device and process for mass exchange, separation, and filtration

    Science.gov (United States)

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  19. The Effect of Membrane Environment on Surfactant Protein C Stability Studied by Constant-pH Molecular Dynamics.

    Science.gov (United States)

    Carvalheda, Catarina A; Campos, Sara R R; Baptista, António M

    2015-10-26

    Pulmonary surfactant protein C (SP-C) is a small peptide with two covalently linked fatty acyl chains that plays a crucial role in the formation and stabilization of the pulmonary surfactant reservoirs during the compression and expansion steps of the respiratory cycle. Although its function is known to be tightly related to its highly hydrophobic character and key interactions maintained with specific lipid components, much is left to understand about its molecular mechanism of action. Also, although it adopts a mainly helical structure while associated with the membrane, factors as pH variation and deacylation have been shown to affect its stability and function. In this work, the conformational behavior of both the acylated and deacylated SP-C isoforms was studied in a DPPC bilayer under different pH conditions using constant-pH molecular dynamics simulations. Our findings show that both protein isoforms are remarkably stable over the studied pH range, even though the acylated isoform exhibits a labile helix-turn-helix motif rarely observed in the other isoform. We estimate similar tilt angles for the two isoforms over the studied pH range, with a generally higher degree of internalization of the basic N-terminal residues in the deacylated case, and observe and discuss some protonation-conformation coupling effects. Both isoforms establish contacts with the surrounding lipid molecules (preferentially with the sn-2 ester bonds) and have a local effect on the conformational behavior of the surrounding lipid molecules, the latter being more pronounced for acylated SP-C.

  20. Influence of the Surfactants on Microstructure and the Properties of Wet Coagulation Polyurethane Film

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-min; YAN Hao-jing; HU Jin-lian

    2002-01-01

    Polyurethane asymmetric membranes were prepared bywet coagulation process from the PU/DMF/Span-80/OT-70 solutions, and the morphological features of the cross section of the membranes obtained by scanning electron microscopy were presented. The influences of the non-ionic hydrophobic surfactant Span- 80 and the anionic surfactant hydrophilic OT-70 on the morphology of the membranes, the mechanical properties and the water vapor permeability were studied. The formation mechanism of the membrane microstructure from the different PU/DMF/Surfactants systems was discussed.

  1. Novel Membranes and Processes for Oxygen Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions

  2. Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing

    Science.gov (United States)

    Chung, C. K.; Liao, M. W.; Lin, S. L.

    2010-04-01

    Pyrex glass etching using laser ablation is an important technology for the microfluid application to lab-on-a-chip devices but suffers from the formation of surface crack. In this article, the addition of nonionic surfactant to water for glass ablation using water-assisted CO2 laser processing (WACLAP) has been investigated to enhance ablation rate and to eliminate conventional surface defects of cracks in air. WACLAP for Pyrex glass ablation can reduce thermal-stress-induced crack with water cooling and hydrophilic nonionic surfactant to water can enhance ablation performance. Compared to pure water, the 15% weight percent Lauramidopropyl Betaine surfactant solutions for WACLAP can enhance ablation rate from 13.6 to 25 μm/pass of Pyrex glass ablation at a linear laser energy density of 2.11 J/cm, i.e., 24 W power, 114 mm/s scanning speed, and obtain through-wafer etching at 3.16 J/cm for 20 passes without cracks on the surface. Effect of surfactant concentration and linear energy density on WACLAP was also examined. The possible mechanism of surfactant-enhanced phenomenon was discussed by the Newton’s law of viscosity of surfactant solution.

  3. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air-Water Interface: Presence of a SP-B Analog Peptide Promotes Membrane Aggregation, Formation of Tightly Stacked Lamellae, and Growth of Myelin Figures.

    Science.gov (United States)

    Parra, Elisa; Kinoshita, Koji; Needham, David

    2016-10-03

    The present study is a microscopic interfacial characterization of a series of lung surfactant materials performed with the micropipette technique. The advantages of this technique include the measurement of equilibrium and dynamic surface tensions while acquiring structural and dynamic information at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB)-containing formulation. It was observed that the presence of the natural hydrophobic proteins and, more strikingly, the peptide SMB, promoted vesicle condensation as thick membrane stacks beneath the interface. Only in the presence of SMB, these stacks underwent spontaneous structural transformations, consisting of the nucleation and growth of microtubes and in some cases their subsequent coiling into helices. The dimensions of these tubes (2-15 μm diameter) and their linear (2-3 μm/s) and volumetric growth rates (20-30 μm(3)/s) were quantified, and no specific effects were found on them for increasing SMB concentrations from 0.1 to 4%. Nevertheless, a direct correlation between the number of tubes and SMB contents was found, suggesting that SMB molecules are the promoters of tube nucleation in these membranes. A detailed analysis of the tube formation process was performed following previous models for the growth of myelin figures, proposing a combined mechanism between dehydration-rehydration of the lipid bilayers and induction of mechanical defects by SMB that would act as nucleation sites for the tubes. The formation of tubes was also observed in Infasurf, and in NS only after subsequent expansion and compression but neither in the other clinical surfactants nor in protein-free preparations. Finally, the connection between this data and the observations from

  4. Significantly Enhanced Actuation Performance of IPMC by Surfactant-Assisted Processable MWCNT/Nafion Composite

    Institute of Scientific and Technical Information of China (English)

    Qingsong He; Min Yu; Dingshan Yu; Yan Ding; Zhendong Dai

    2013-01-01

    The performance of Ionic Polymer Metal Composite (IPMC) actuator was significantly enhanced by incorporating surfactant-assisted processable Multi-Walled Carbon Nanotubes (MWCNTs) into a Nation solution.Cationic surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) was employed to disperse MWCNTs in the Nation matrix,forming a homogeneous and stable dispersion of nanotubes.The processing did not involve any strong acid treatment and thus effectively preserved the excellent electronic properties associated with MWCNT.The as-obtained MWCNT/Nafion-IPMC actuator was tested in terms of conductivity,bulk and surface morphology,blocking force and electric current.It was shown that the blocking force and the current of the new IPMC are 2.4 times and 1.67 times higher compared with a pure Nation-based IPMC.Moreover,the MWCNT/IPMC performance is much better than previously reported Nafion-IPMC doped by acid-treated MWCNT.Such significantly improved performance should be attributed to the improvement of electrical property associated with the addition of MWCNTs without acid treatment.

  5. Confinement of a nonionic surfactant membrane within a montmorillonite as a new way to prepare organoclay materials

    Energy Technology Data Exchange (ETDEWEB)

    Guegan, Regis, E-mail: regis.guegan@univ-orleans.fr [Universite d' Orleans (France); Giovanela, Marcelo [Universidade de Caxias do Sul (UCS), RS (Brazil)

    2016-11-15

    The aim of this study was to prepare and characterize a hybrid layered material (organoclay) with a Na-montmorillonite and the triethylene glycol mono-n-decyl ether (C{sub 10}E{sub 3} ) nonionic surfactant which forms a lamellar phase at room temperature. The synthesized organoclay was characterized by complementary techniques (Fourier transform infrared spectroscopy and X-ray diffraction). Experiments in conjunction with electron density analysis showed that a bilayer or membrane of C{sub 10}E{sub 3} was intercalated within the interlayer space of a naturally exchanged Na-montmorillonite. The intercalation of a bilayer of C{sub 10}E{sub 3} in a clay mineral offers new perspectives for the manufacturing of nanomaterials. While showing a hydrophobic surface and a large interlayer space value, the resulting organoclay preserves the compensating cations within the interlayer space allowing one to perform ion exchanges, making easier the intercalation of further organic molecules of important size with functional properties or for environmental purposes. (author)

  6. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of th

  7. Evaluation method of membrane performance in membrane distillation process for seawater desalination.

    Science.gov (United States)

    Chung, Seungjoon; Seo, Chang Duck; Choi, Jae-Hoon; Chung, Jinwook

    2014-01-01

    Membrane distillation (MD) is an emerging desalination technology as an energy-saving alternative to conventional distillation and reverse osmosis method. The selection of appropriate membrane is a prerequisite for the design of an optimized MD process. We proposed a simple approximation method to evaluate the performance of membranes for MD process. Three hollow fibre-type commercial membranes with different thicknesses and pore sizes were tested. Experimental results showed that one membrane was advantageous due to the highest flux, whereas another membrane was due to the lowest feed temperature drop. Regression analyses and multi-stage calculations were used to account for the trade-offeffects of flux and feed temperature drop. The most desirable membrane was selected from tested membranes in terms of the mean flux in a multi-stage process. This method would be useful for the selection of the membranes without complicated simulation techniques.

  8. Logically Sensing Aggregate Process and Discriminating SDS from Other Surfactants with the Assistance of BSA

    Institute of Scientific and Technical Information of China (English)

    钱俊红; 徐玉芳; 钱旭红

    2012-01-01

    An amphiphilic fluorescent probe, 3-dodecylamino dihydrogen imidazo[2,l-a]benz[de]isoquinolin-7-one (compound 3), was used to sense the aggregate formation process of bovine serum albumine (BSA), sodium dode- cyl sulfate (SDS) and their mixed system. The fluorescence intensity of 3 was significantly affected by the adding order of SDS and BSA, and SDS can be distinguished from other surfactants with the aid of BSA, but only when 3 is allowed to interact with BSA first. The results revealed that compound 3 is preferentially sited in the hydrophobic region of BSA, and thermodynamically in SDS-BSA mixed aggregate. Sodium phosphate buffer solution (PBS) and BSA played important but distinct roles in distinguishing SDS micelle from the others.

  9. Linking Findings in Microfluidics to Membrane Emulsification Process Design: The Importance of Wettability and Component Interactions with Interfaces

    Directory of Open Access Journals (Sweden)

    Karin Schroën

    2016-05-01

    Full Text Available In microfluidics and other microstructured devices, wettability changes, as a result of component interactions with the solid wall, can have dramatic effects. In emulsion separation and emulsification applications, the desired behavior can even be completely lost. Wettability changes also occur in one phase systems, but the effect is much more far-reaching when using two-phase systems. For microfluidic emulsification devices, this can be elegantly demonstrated and quantified for EDGE (Edge-base Droplet GEneration devices that have a specific behavior that allows us to distinguish between surfactant and liquid interactions with the solid surface. Based on these findings, design rules can be defined for emulsification with any micro-structured emulsification device, such as direct and premix membrane emulsification. In general, it can be concluded that mostly surface interactions increase the contact angle toward 90°, either through the surfactant, or the oil that is used. This leads to poor process stability, and very limited pressure ranges at which small droplets can be made in microfluidic systems, and cross-flow membrane emulsification. In a limited number of cases, surface interactions can also lead to lower contact angles, thereby increasing the operational stability. This paper concludes with a guideline that can be used to come to the appropriate combination of membrane construction material (or any micro-structured device, surfactants and liquids, in combination with process conditions.

  10. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Nida [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Nik Malek, Nik Ahmad Nazim [Faculty of Bioscience and Medical Engineering (FBME), Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Mahmood, Nasrul Humaimi Bin [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Murali, Malliga Raman; Kamarul, T. [Tissue Engineering Group, NOCERAL, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-09-01

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W for 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.

  11. Novel antifoam for fermentation processes: fluorocarbon-hydrocarbon hybrid unsymmetrical bolaform surfactant.

    Science.gov (United States)

    Calik, Pinar; Ileri, Nazar; Erdinç, Burak I; Aydogan, Nihal; Argun, Muharrem

    2005-09-13

    As foaming appears as a problem in chemical and fermentation processes that inhibits reactor performance, the eminence of a novel fluorocarbon-hydrocarbon unsymmetrical bolaform (FHUB: OH(CH2)11N+(C2H4)2(CH2)2(CF2)5CF3 I-) surfactant as an antifoaming agent as well as a foam-reducing agent was investigated and compared with other surfactants and a commercial antifoaming agent. The surface elasticity of FHUB was determined as 4 mN/m, indicating its high potential on thinning of the foam film. The interactions between FHUB and the microoganism were investigated in a model fermentation process related with an enzyme production by recombinant Escherichia coli, in V = 3.0 dm3 bioreactor systems with V(R) = 1.65 dm3 working volume at air inlet rate of Q(o)/V(R) = 0.5 dm3 dm(-3) min(-1) and agitation rate of N = 500 min(-1) oxygen transfer conditions, at T = 37 degrees C, pH(o) = 7.2, and C(FHUB) = 0 and 0.1 mM, in a glucose-based defined medium. As FHUB did not influence the metabolism, specific enzyme activity values obtained with and without FHUB were close to each other; however, because of the slight decrease in oxygen transfer coefficient, slightly lower volumetric enzyme activity and cell concentrations were obtained. However, when FHUB is compared with widely used silicon oil based Antifoam A, with the use of the FHUB, higher physical oxygen transfer coefficient (K(L)a) values are obtained. Moreover, as the amount required for the foam control is very low, minute changes in the working volume of the bioreactor were obtained indicating the high potential of the use of FHUB as an antifoaming agent as well as a foam-reducing agent.

  12. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil;

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented...

  13. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    Science.gov (United States)

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  14. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  15. Ocean thermocline driven membrane distillation process

    KAUST Repository

    Francis, Lijo

    2017-07-20

    Systems and methods using membrane distillation are provided for desalinating water, for example for the production of potable water, to address freshwater requirements. In an aspect the systems and methods do not require applying an external heat source, or the energy cost of the heating source, to heat the feed stream to the membrane. In an aspect, the sensible heat present in surface seawater is used for the heat energy for the warm stream fed to the membrane, and deep seawater is used as the cold/coolant feed to the membrane to provide the needed temperature gradient or differential across the membrane.

  16. Surfactant modified MgFe{sub 2}O{sub 4} nanopowders by reverse micelle processing: Effect of water to surfactant ratio (R) on the particle size and magnetic property

    Energy Technology Data Exchange (ETDEWEB)

    Chandradass, J.; Jadhav, Arvind H. [Energy and Environment Fusion Technology Center, Department of Environmental Engineering and Biotechnology, Myongji University, Yongin, Kyonggi-do 449-728 (Korea, Republic of); Kim, Hern, E-mail: hernkim@mju.ac.kr [Energy and Environment Fusion Technology Center, Department of Environmental Engineering and Biotechnology, Myongji University, Yongin, Kyonggi-do 449-728 (Korea, Republic of)

    2012-01-15

    Nanoparticles of surfactant modified MgFe{sub 2}O{sub 4} have been synthesized by reverse micelle processing using tertiary system of heptane/Igepal CO 520/H{sub 2}O. The effect of water to surfactant ratio on the particle size and magnetic property has been studied. X-ray diffraction analysis confirms that MgFe{sub 2}O{sub 4} nanoparticles are crystalline in nature with cubic spinel structure. The average particle size increases with increase in water to surfactant ratio. The Fourier transform infrared (FTIR) analysis confirms that the surface of MgFe{sub 2}O{sub 4} nanoparticles was coated with surfactants. The saturation magnetization ranged from 14.4 to 40.05 emu/g was measured by Superconducting Quantum Interference Device Magnetometry (SQUID).

  17. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, W.

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane modul

  18. Processes And Apparatus For Inhibiting Membrane Bio-fouling

    KAUST Repository

    Missimer, Thomas M.

    2012-12-20

    Certain embodiments are directed to a process and apparatus for cleaning and/or regeneration of permeable or semipermeable membranes comprising modulating pressure of a feed stream feeding the permeable or semipermeable membrane and providing intermittent pressure pulses for cleaning and/or regeneration of the permeable or semipermeable membrane.

  19. Evaluation of membrane processes for acid gas treatment

    NARCIS (Netherlands)

    Jahn, J.; Bos, W.A.P. van den; Broeke, L.J.P. van den

    2012-01-01

    An overview is given of different membrane processes that are used for acid gas removal from natural gas. The main characteristics of selective membranes and membrane contactors for gas separation involving mixtures with acid gases are discussed. The removal of carbon dioxide from gaseous streams an

  20. New process for high temperature polybenzimidazole membrane production and its impact on the membrane and the membrane electrode assembly

    Science.gov (United States)

    Liu, Zhenyu; Tsou, Yu-Min; Calundann, Gordon; De Castro, Emory

    Water addition is a key step in the new process developed at BASF Fuel Cell Inc. (BFC) for polybenzimidazole (PBI) membrane production. The added water prevents further polymerization and controls the solution viscosity for easier membrane casting. For large-scale PBI membrane production, a certain amount of tension is necessary during membrane upwinding. The applied tension could affect the polymer orientation and result in anisotropic membrane mechanical properties and proton conductivity. The membrane prepared with tension shows higher elastic modulus and proton conductivity in machine direction, which might suggest some degree of polymer chain orientation. However, the membrane electrode assembly (MEA) performance is not affected by the membrane's apparent anisotropic character. However, we observed performance variation as a function of MEA break-in condition, which might be explained by the formation of a phosphate anion concentration gradient during MEA operation.

  1. New process for high temperature polybenzimidazole membrane production and its impact on the membrane and the membrane electrode assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenyu; Tsou, Yu-Min; Calundann, Gordon; De Castro, Emory [BASF Fuel Cell Inc., 39 Veronica Avenue, Somerset, NJ 08873 (United States)

    2011-02-01

    Water addition is a key step in the new process developed at BASF Fuel Cell Inc. (BFC) for polybenzimidazole (PBI) membrane production. The added water prevents further polymerization and controls the solution viscosity for easier membrane casting. For large-scale PBI membrane production, a certain amount of tension is necessary during membrane upwinding. The applied tension could affect the polymer orientation and result in anisotropic membrane mechanical properties and proton conductivity. The membrane prepared with tension shows higher elastic modulus and proton conductivity in machine direction, which might suggest some degree of polymer chain orientation. However, the membrane electrode assembly (MEA) performance is not affected by the membrane's apparent anisotropic character. However, we observed performance variation as a function of MEA break-in condition, which might be explained by the formation of a phosphate anion concentration gradient during MEA operation. (author)

  2. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley Heights, NJ)

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  3. Automated sampling and data processing derived from biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Vissing, Thomas; Boesen, P.

    2009-01-01

    Recent advances in biomimetic membrane systems have resulted in an increase in membrane lifetimes from hours to days and months. Long-lived membrane systems demand the development of both new automated monitoring equipment capable of measuring electrophysiological membrane characteristics and new....... The combined solution provides a cost efficient and fast way to acquire, process and administrate large amounts of voltage clamp data that may be too laborious and time consuming to handle manually....

  4. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  5. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate.

    Science.gov (United States)

    Wang, Xiao-Jun; Song, Yang; Mai, Jun-Sheng

    2008-12-30

    The present study is to investigate the treatment of a surfactant wastewater containing abundant sulfate by Fenton oxidation and aerobic biological processes. The operating conditions have been optimized. Working at an initial pH value of 8, a Fe2+ dosage of 600mgL(-1) and a H2O2 dosage of 120mgL(-1), the chemical oxidation demand (COD) and linear alkylbenzene sulfonate (LAS) were decreased from 1500 and 490mgL(-1) to 230 and 23mgL(-1) after 40min of Fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton reagent was very effective at enhancing the biodegradability of this kind of wastewater. The wastewater was further treated by a bio-chemical treatment process based on an immobilized biomass reactor with a hydraulic detention time (HRT) of 20h after Fenton oxidation pretreatment under the optimal operating conditions. It was found that the COD and LAS of the final effluent were less than 100 and 5mgL(-1), corresponding to a removal efficiencies of over 94% and 99%, respectively.

  6. Rare earth extraction from wet process phosphoric acid by emulsion liquid membrane

    Institute of Scientific and Technical Information of China (English)

    张利昌; 陈前林; 康超; 马昕; 杨尊良

    2016-01-01

    The recovery of rare earths (RE) during the wet processing of phosphoric acid is very important, the method of emul-sion liquid membrane (ELM) with di(2-ethylhexly) phosphate (D2EHPA) as carrier has the high selectivity while cannot provide a satisfactory extraction rate. Here novel method of emulsion liquid membrane (ELM) using Aniline as carrier to extract RE from the feed solution was proposed. The method could increase the extraction rate of RE in the real sample to 93%. The effects of dif-ferent parameters such as type and concentration of carrier and surfactant, hydrochloric acid concentration, organic to internal phase volume ratio, membrane to external phase volume ratio on extraction of RE3+ were investigated. Quantitative extraction (>93%) of RE3+ was observed with 6 vol.% Aniline and 4 vol.% T154 liquid membrane at external to internal phase volume ratio of 10 for the feed solution. The proposed method of ELM using Aniline as carrier can be expected to provide a practical, efficient, and economical method for extracting RE from phosphate leach solution with high acidity in the industry of wet process phospho-ric acid.

  7. Performance of the Biocompatible Surfactant Tween 80, for the Formation of Microemulsions Suitable for New Pharmaceutical Processing

    Directory of Open Access Journals (Sweden)

    Cristina Prieto

    2013-01-01

    Full Text Available The aim of this work was to investigate the phase behaviour and the structure of the n-hexane/water emulsions based on a nonionic, nontoxic and biocompatible surfactant, Tween 80. This system is of interest for new pharmaceutical techniques based on supercritical fluids to form nano- and encapsulated particles. However, it showed a lack of stability denoted by large areas of macroemulsion. For this reason, the effect of additives (alcohols and brine and external variables (temperature were explored. The replacement of water by brine caused negligible impact due to the nonionic character of Tween 80. On the contrary, the presence of an alcohol (ethanol or 1-butanol enhanced the solubility of the surfactant in the oil phase and decreased the mixture viscosity, resulting in improved surface activity. Similar results were obtained by raising the temperature until the cloud point was reached (60°C. With these modifications, microemulsions at relatively low concentrations of surfactant (around 30% and within a broad interval of compositions could be obtained, widening their possible use in pharmaceuticals manufacturing (such as controlled drug delivery, enzymatic reactions, or excipient processing. The understanding of the surfactant performance could be further used to substitute the n-hexane by a greener solvent, such as supercritical CO2.

  8. Thermodynamic Analysis of Nanoporous Membrane Separation Processes

    Science.gov (United States)

    Rogers, David; Rempe, Susan

    2011-03-01

    We give an analysis of desalination energy requirements in order to quantify the potential for future improvements in desalination membrane technology. Our thermodynamic analysis makes it possible to draw conclusions from the vast array of equilibrium molecular dynamics simulations present in the literature as well as create a standardized comparison for measuring and reporting experimental reverse osmosis material efficiency. Commonly employed methods for estimating minimum desalination energy costs have been revised to include operations at positive input stream recovery ratios using a thermodynamic cycle analogous to the Carnot cycle. Several gaps in the statistical mechanical theory of irreversible processes have also been identified which may in the future lead to improved communication between materials engineering models and statistical mechanical simulation. Simulation results for silica surfaces and nanochannels are also presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Nanotube Dispersions Made With Charged Surfactant

    Science.gov (United States)

    Kuper, Cynthia; Kuzma, Mike

    2006-01-01

    Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.

  10. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2016-12-30

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  11. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    Science.gov (United States)

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.

  12. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata T.; Benes, N.E.; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate water-l

  13. Membrane contactors for CO2 capture processes - critical review

    Science.gov (United States)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard

    2017-07-01

    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  14. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    Science.gov (United States)

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme.

  15. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process.

    Science.gov (United States)

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin

    2015-01-01

    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. © 2015 American Institute of Chemical Engineers.

  16. SURFACTANTS IN LUBRICATION

    Science.gov (United States)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  17. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    Science.gov (United States)

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

  18. Separation process for lanthanides based on solvation properties of non ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Draye, M.; Favre-Reguillon, A.; Foos, J.; Cote, G

    2004-07-01

    In the present study, cloud-point extraction is used with a lipophilic chelating agent (8-hydroxyquinoline) to extract and separate lanthanum (III) and gadolinium (III) from an aqueous solution. The methodology used is based on the formation of lanthanide (III) organic complexes that are soluble in a micellar phase of non-ionic surfactant. The lanthanide (III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The cloud-point temperature, the structure of the lipophilic part of the nonionic surfactant and the chelating agent - metal molar ratio are identified as factors determining the extraction efficiency and selectivity. With Triton X-114, high selectivity and decontamination factor for Gd(III) is observed indicating that micelle mediated extraction involving cloud-point extraction is promising for the specific separation of actinide ions from nuclear waste solution. (authors)

  19. Impact of Surfactant Type on Adsorption Process and Oil Recovery: Implementation of New Surfactant Produced from Zizyphus Spina-Christi Extract

    National Research Council Canada - National Science Library

    Zargartalebi, Mohammad; Barati, Nasim; Pordel Shahri, Mojtaba

    2014-01-01

    Three different types of surfactants containing an anionic, a cationic and a new nonionic biosurfactant, Zizyphus Spina-Christi extract were used for the purpose of oil recovery in a core flood system...

  20. Synthesis of polyaluminum chloride with a membrane reactor: Process characteristics and membrane fouling

    Institute of Scientific and Technical Information of China (English)

    Zhiqian Jia; Fei He; Zhongzhou Liu

    2011-01-01

    Polyaluminum chloride was synthesized with a membrane reactor,in which NaOH was added into AlCl3 solution through the membrane's micropores to reduce the NaOH droplets size.The content of the most efficient species increased to about 80%.The process characteristics in the reaction (i.e.,flow velocity,pressure drop),and membrane fouling and cleaning were investigated.The evolution of both flow velocity and pressure drop during the reaction were related to changes in species distribution and solution viscosity.The process characteristics were well interpreted in terms of the Bernoulli equation.After reaction,the membranes were recovered by cleaning with diluted hydrochloride acid.This study is crucial for process design and scale-up of membrane reactors.

  1. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  2. Improving the quality of patchouli oil by adsorption process using surfactant modified of natural zeolite

    Science.gov (United States)

    Kuntari, Purbaningtias, Tri Esti; Wiyantoko, Bayu; Kurniawati, Puji; Prasetyoko, Didik; Suprapto

    2017-03-01

    This research concerns with the development of natural material i.e. natural zeolite. Natural zeolite were modified by surfactant treatment. Material modification has been done using cetyltrimethyllammonium bromide as cationic surfactant for mesopore template. The physicochemical characters of natural material modified and unmodified was investigated by using XRD, FTIR, nitrogen physisorption, and SEM-EDX. The XRD was used to show crystallinity structure of natural material modified and unmodified. Surfactant treatment caused decreasing crystallinity of natural zeolite. The FTIR spectra showed characteristic peaks for natural zeolite modified and unmodified, the bands around 3400-3500 cm-1 and 1635-1641 cm-1 correspond to adsorbed water and bands around finger print area were characteristic for silica and alumina. Meanwhile physisorption nitrogen profiles gave information that the pore modification by surfactant. The morphologies of natural material modified and unmodified as well as chemical composition of the particles were shown by SEM-EDX. The usage of modified material decrease acidity number into 19.47% than unmodified material, which is 7,62%. The GC analysis showed that percentage of patchouli alcohol increases and new peaks were not identified indicated there was not any reaction appeared.

  3. Gemini ester quat surfactants and their biological activity.

    Science.gov (United States)

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  4. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  5. A Short Review of Membrane Fouling in Forward Osmosis Processes

    Directory of Open Access Journals (Sweden)

    Youngpil Chun

    2017-06-01

    Full Text Available Interest in forward osmosis (FO research has rapidly increased in the last decade due to problems of water and energy scarcity. FO processes have been used in many applications, including wastewater reclamation, desalination, energy production, fertigation, and food and pharmaceutical processing. However, the inherent disadvantages of FO, such as lower permeate water flux compared to pressure driven membrane processes, concentration polarisation (CP, reverse salt diffusion, the energy consumption of draw solution recovery and issues of membrane fouling have restricted its industrial applications. This paper focuses on the fouling phenomena of FO processes in different areas, including organic, inorganic and biological categories, for better understanding of this long-standing issue in membrane processes. Furthermore, membrane fouling monitoring and mitigation strategies are reviewed.

  6. Processing of membranes for oxygenation using the Bellhouse-effect

    Directory of Open Access Journals (Sweden)

    Neußer C.

    2015-09-01

    Full Text Available State-of-the-art lung support systems are limited to short time application because of a lack of long term hemocompatibility and protein absorption on the membrane surfaces. In a highly interdisciplinary project at RWTH Aachen University a biohybrid lung assist system with endothelialised gas exchange flat membranes is developed to improve long term compatibility of oxygenators. To increase the gas exchange performance of flat membranes hollows are imprinted in the membrane surfaces. This approach is based on the research of B. J. Bell-house et al. [1], who discovered this effect, now known as Bellhouse-effect, around 1960. In this paper a processes to manufacture membrane assemblies for oxygenation with imprinted hollows on the flat membrane surfaces is reviewed.

  7. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  8. Process Intensification via Membrane Reactors, the DEMCAMER Project

    Directory of Open Access Journals (Sweden)

    Fausto Gallucci

    2016-05-01

    Full Text Available This paper reports the findings of a FP7 project (DEMCAMER that developed materials (catalysts and membranes and new processes for four industrially relevant reaction processes. In this project, active, stable, and selective catalysts were developed for the reaction systems of interest and their production scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed; in particular, dense supported thin palladium-based membranes for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in various lab-scale reactors for water gas shift (WGS, using both packed bed and fluidized bed reactors, and Fischer-Tropsch (FTS using packed bed reactors and in prototype reactors for WGS and FTS. Mixed ionic-electronic conducting membranes in capillary form were also developed for high temperature oxygen separation from air. These membranes can be used for both Autothermal Reforming (ATR and Oxidative Coupling of Methane (OCM reaction systems to increase the efficiency and the yield of the processes. The production of these membranes was scaled up to TRL3–4. The project also developed adequate sealing techniques to be able to integrate the different membranes in lab-scale and prototype reactors.

  9. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM.

    Science.gov (United States)

    Issa, Yousry M; Mohamed, Sabrein H; Baset, Mohamed Abd-El

    2016-08-01

    Chemically modified carbon-paste (CMCP) and membrane- sensors based on incorporating benzothonium-tetraphenylborate (BT-TPB) were constructed for the analysis of benzethonium chloride, and some other surfactants such as sodium lauryl ether sulphate (SLES), sodium dodecyl sulphate (SDS), and linear alkylbenzene sulphonic acid (LABSA). All sensors showed good sensitivity and reverse wide linearity over a concentration range of 5.97×10(-7) to 1.00×10(-3) and 5.96×10(-7) to 3.03×10(-3)molL(-1) with limit of detection of 3.92×10(-7)and 3.40×10(-7)molL(-1) for membrane and chemically modified carbon paste sensors, respectively, with respect to benzethonium chloride (BT.Cl). They could be used over a wide pH range of 2.0-10.0. The thermal coefficients of membrane and CMCP sensors are 5.40×10(-4), 1.17×10(-4)V/°C, respectively. The sensors indicated a wide selectivity over different inorganic cations. The effect of soaking on the surface morphology of the membrane sensor was studied using EDX-SEM and AFM techniques. The response time was <10s The freshly prepared, exhausted membrane, and CMCP sensors were successfully applied for the potentiometric determination of the pure BT.Cl solution. They were also used for the determination of its pharmaceutical formulation Dermoplast(®) antibacterial spray (20% benzocaine+0.2% benzethonium chloride) with recovery values ranging from 97.54±1.70 to 101.25±1.12 and from 96.32±2.49 to 101.23±2.15%. The second goal of these sensors is the potentiometric determination of different surfactants such as SLES, SDS, and LABSA with good recovery values using BT.Cl as a titrant in their pure forms, and in samples containing one of them (shampoo, Touri(®) dishwashing liquid, and waste water). The statistical analysis of the obtained data was studied.

  10. Effectiveness of water desalination by membrane distillation process.

    Science.gov (United States)

    Gryta, Marek

    2012-07-17

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  11. Effectiveness of Water Desalination by Membrane Distillation Process

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2012-07-01

    Full Text Available The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  12. Effectiveness of Water Desalination by Membrane Distillation Process

    Science.gov (United States)

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  13. Mitoxantrone-Surfactant Interactions: A Physicochemical Overview

    Directory of Open Access Journals (Sweden)

    Mirela Enache

    2016-10-01

    Full Text Available Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest. Further, quantitative understanding of the interactions of drugs with biomimicking structures like surfactant micelles may provide helpful information for the control of physicochemical properties and bioactivities of encapsulated drugs in order to design better delivery systems with possible biomedical applications. The present review describes the physicochemical aspects of the interactions between the anticancer drug mitoxantrone and different surfactants. Mitoxantrone-micelle binding constants, partitions coefficient of the drug between aqueous and micellar phases and the corresponding Gibbs free energy for the above processes, and the probable location of drug molecules in the micelles are discussed.

  14. Process intensification on membrane-based process for blackcurrant juice concentration

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Rong, Ben-Guang; Christensen, Knud Villy

    Juice concentrate production is a field where process intensification and novel concentration processes need to be implemented. The paper presents a systematic approach for process synthesis based on membrane processes for the concentration of blackcurrant juice, exemplified by the aroma recovery...... using combinations of vacuum membrane distillation and traditional distillation. Furthermore, the paper further suggests a novel method for the combination of nanofiltration, reverse osmosis and membrane distillation for the concentration of the dearomatized juice....

  15. Process intensification on membrane-based process for blackcurrant juice concentration

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Rong, Ben-Guang; Christensen, Knud Villy;

    Juice concentrate production is a field where process intensification and novel concentration processes need to be implemented. The paper presents a systematic approach for process synthesis based on membrane processes for the concentration of blackcurrant juice, exemplified by the aroma recovery...... using combinations of vacuum membrane distillation and traditional distillation. Furthermore, the paper further suggests a novel method for the combination of nanofiltration, reverse osmosis and membrane distillation for the concentration of the dearomatized juice....

  16. Use of polymers and a surfactant in the treatment of Kraft process wastewater

    OpenAIRE

    Seyffert, Hans J.

    1988-01-01

    This study-investigated the use of cationic polymers, and a surfactant, EHDABr, in the color removal treatment of Kraft pulp and paper wastewater. Four polymers were evaluated for their color removal performance by jar test procedures. The polymers removed between 77 and 87% of the wastewater color. The affect of pH upon polymer performance varied with the polymer tested. Powdered activated carbon addition improved the performance of the polymers. The color removal abili...

  17. Electrochemical modification process of anodic alumina membrane

    Institute of Scientific and Technical Information of China (English)

    YU Mei; LIU Jian-hua; LI Song-mei

    2006-01-01

    The modification procedure of anodic alumina membrane(AAM) was studied. The AAM structure after modification was characterized by nickel nanowires prepared in AAM. Scanning electron microscopy was used to characterize the topography and structure properties of the AAM and nickel nanowires. The transformation of the current during the voltage reduction was studied. The mechanism of current and structure change during modification was discussed. The results show that a root structure produces after the AAM modification. The length of the root structure depends on the velocity of the voltage reduction. Slow voltage reduction leads to a large length of the root structure,otherwise,a short length of the root structure. At the end of the modification,the barrier layer is thin enough to be passed by electrons. Hence,the direct electrodeposition of one-dimensional nanowires can be carried out on the AAM with barrier layer and aluminum matrix successfully without any other treatments.

  18. Electro-membrane processes for flue gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T. F.

    1997-12-31

    Various techniques for NO removal in Membrane Contactor were considered. However the NO absorption in a liquid adsorbent with chemical enhancement and its ease for regeneration, was selected as the most practicable choice. Various different compounds for chemical enhancement were studied and Fe(II)-chelate enhanced adsorbent was selected for further studies. The technical feasibility of Fe(II)-chelate enhanced adsorbent for obtaining greater than 80% NO removal have been successfully established. Even though the membrane area required for greater than 80% NO removal has been found to be about 500 m{sup 2}/MW{sub c} (compared to 50 - 150 m{sup 2}/MW{sub c}, for 95% SO{sub 2} removal, depending on the membrane characteristics), suitable Membrane Contactor design has been proposed for carrying out the process at an acceptable gas side pressure drop. The electro-membrane processes for the regeneration of adsorbents have been studied both theoretically and experimentally. The theoretical studies have concerned the study of basic functions of both the bipolar membranes and charge laden (anion/cation) membranes. Suitable experimental techniques have been devised for studying of these basic parameters (e.g. charge transport number, salt diffusion through membranes, current-voltage characteristics of bipolar membranes and electrical resistance of charge laden membranes). These parameters have further been utilized in the mechanistic model of combined membranes in an ED cell (electrodialysis). Based on these fundamental studies and analysis of process requirements, suitable configuration of ED cell has been developed and verified by experimental studies. The effect of both the stack design parameters (e.g. number of cells, membrane type and spacer design) and the operational parameters (e.g. temperature, electrolyte concentration, liquid velocity and current density) have been studied for optimization of energy consumption for regeneration of loaded adsorbents. As a result

  19. Membrane processes in production of functional whey components

    Directory of Open Access Journals (Sweden)

    Lutfiye Yilmaz-Ersan

    2009-12-01

    Full Text Available In recent years, whey has been recognised as a major source of nutritional and functional ingredients for the food industry. Commercial whey products include various powders, whey protein concentrates and isolates, and fractionated proteins, such as a-lactalbumin and b-lactoglobulin. The increased interest in separation and fractionation of whey proteins arises from the differences in their functional, biological and nutritional properties. In response to concerns about environmental aspects, research has been focused on membrane filtration technology, which provides exciting new opportunities for large-scale protein and lactose fractionation. Membrane separation is such technique in which particles are separated according to their molecular size. The types of membrane processing techniques are ultrafiltration, microfiltration, reverse osmosis, pervaporation, electrodialysis and nanofiltration. A higher purification of whey proteins is possible by combining membrane separation with ion-exchange. This paper provides an overview of types and applications of membrane separation techniques

  20. Dynamic scenario of membrane binding process of kalata b1.

    Directory of Open Access Journals (Sweden)

    Wanapinun Nawae

    Full Text Available Kalata B1 (kB1, a cyclotide that has been used in medical applications, displays cytotoxicity related to membrane binding and oligomerization. Our molecular dynamics simulation results demonstrate that Trp19 in loop 5 of both monomeric and tetrameric kB1 is a key residue for initial anchoring in the membrane binding process. This residue also facilitates the formation of kB1 tetramers. Additionally, we elucidate that kB1 preferentially binds to the membrane interfacial zone and is unable to penetrate into the membrane. In particular, significant roles of amino acid residues in loop 5 and loop 6 on the localization of kB1 to this membrane-water interface zone are found. This study reveals the roles of amino acid residues in the bioactivity of kB1, which is information that can be useful for designing new therapeutic cyclotides with less toxicity.

  1. CO₂ Capture Membrane Process for Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [Research Triangle Inst. International, Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Inst. International, Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. International, Research Triangle Park, NC (United States)

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO

  2. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  3. Hybrid membrane operations in water desalination and industrial process rationalisation.

    Science.gov (United States)

    Drioli, E; Di Profio, G; Curcio, E

    2005-01-01

    Membrane science and technology are recognized today as powerful tools in resolving some important global problems, and developing newer industrial processes, needed from the imperative of sustainable industrial growth. In seawater desalination, for resolving the dramatic increase of freshwater demand in many regions of the world, membrane unitary operations or the combination of some of them in integrated systems are already a real means for producing water from the sea, at lower costs and minimum environmental impact, with a very interesting prospective in particular for poor economy countries. However, membranes are used or are becoming used in some important industrial fields, for developing more efficient productive cycles, with reduced waste of raw-material, reducing the polluting charge by controlling byproduct generation, and reducing overall costs. In the present paper, other than for seawater desalination applications, some industrial applications where membrane technology has led already to match the goal of process intensification are discussed.

  4. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants

    Science.gov (United States)

    Suchomel, Eric J.; Ramsburg, C. Andrew; Pennell, Kurt D.

    2007-12-01

    The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween® 80) and sodium dihexyl sulfosuccinate (Aerosol® MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl 2 yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (> 30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR = 1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.

  5. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltık, M.B.; Özkan, Leyla; Jacobs, Marc; Padt, van der Albert

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process monitori

  6. Removal of a broad range of surfactants from municipal wastewater--comparison between membrane bioreactor and conventional activated sludge treatment.

    Science.gov (United States)

    González, Susana; Petrovic, Mira; Barceló, Damià

    2007-02-01

    Elimination of alkylphenol ethoxylates (APEO) and their degradation products (alkylphenols and alkylphenoxy carboxylates), as well as linear alkylbenzene sulfonates (LAS) and coconut diethanol amides (CDEA), was studied in a pilot plant membrane bioreactor (MBR) working in parallel to a full-scale wastewater treatment plant (WWTP) using conventional activated sludge (CAS). In the CAS system 87% of parent long ethoxy chain NPEOs were eliminated, but their decomposition yielded persistent acidic and neutral metabolites which were poorly removed. The elimination of short ethoxy chain NPEOs (NP(1)EO and NP(2)EO) averaged 50%, whereas nonylphenoxy carboxylates (NPECs) showed an increase in concentrations with respect to the ones measured in influent samples. Nonylphenol (NP) was the only nonylphenolic compound efficiently removed (96%) in the CAS treatment. On the other hand, MBR showed good performance in removing nonylphenolic compounds with an overall elimination of 94% for the total pool of NPEO derived compounds (in comparison of 54%-overall elimination in the CAS). The elimination of individual compounds in the MBR was as follows: 97% for parent, long ethoxy chain NPEOs, 90% for short ethoxy chain NPEOs, 73% for NPECs, and 96% for NP. Consequently, the residual concentrations were in the low mug/l level or below it. LAS and CDEA showed similar elimination in the both wastewater treatment systems that were investigated, and no significant differences were observed between the two treatment processes. Nevertheless, for all studied compounds the MBR effluent concentrations were consistently lower and independent of the influent concentrations. Additionally, MBR effluent quality in terms of chemical oxygen demand (COD), NH(4)(+) concentration and total suspended solids (TSS) was always superior to the ones of the CAS and also independent of the influent quality, which demonstrates high potential of MBRs in the treatment of municipal wastewaters.

  7. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Directory of Open Access Journals (Sweden)

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  8. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Science.gov (United States)

    Daramola, Michael O.; Aransiola, Elizabeth F.; Ojumu, Tunde V.

    2012-01-01

    Future production of chemicals (e.g., fine and specialty chemicals) in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  9. Optimal separation of jojoba protein using membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Nabetani, Hiroshi; Abbott, T.P.; Kleiman, R. [National Center for Agricultural Utilization Research, Peoria, IL (United States)

    1995-05-01

    The efficiency of a pilot-scale membrane system for purifying and concentrating jojoba protein was estimated. In this system, a jojoba extract was first clarified with a microfiltration membrane. The clarified extract was diafiltrated and the protein was purified with an ultrafiltration membrane. Then the protein solution was concentrated with the ultrafiltration membrane. Permeate flux during microfiltration was essentially independent of solids concentration in the feed, in contrast with the permeate flux during ultrafiltration which was a function of protein concentration. Based on these results, a mathematical model which describes the batchwise concentration process with ultrafiltration membranes was developed. Using this model, the combination of batchwise concentration with diafiltration was optimized, and an industrial-scale process was designed. The effect of ethylenediaminetetraacetic acid (EDTA) on the performance of the membrane system was also investigated. The addition of EDTA increased the concentration of protein in the extract and improved the recovery of protein in the final products. The quality of the final product (color and solubility) was also improved. However, EDTA decreased permeate flux during ultrafiltration.

  10. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes.

    Science.gov (United States)

    She, Qianhong; Jin, Xue; Li, Qinghua; Tang, Chuyang Y

    2012-05-01

    Osmotically driven membrane processes, such as forward osmosis (FO) and pressure retarded osmosis (PRO), are attracting increasing interest in research and applications in environment and energy related fields. In this study, we systematically investigated the alginate fouling on an osmotic membrane during FO operation using four types of draw solutions (NaCl, MgCl(2), CaCl(2) and Ca(NO(3))(2)) to elucidate the relationships between reverse (from draw solution to feed solution) and forward (from feed solution to draw solution) solute diffusion, and membrane fouling. At the same water flux level (achieved by adjusting the draw solution concentration), the greatest reverse solute diffusion rate was observed for NaCl draw solution, followed by Ca(NO(3))(2) draw solution, and then CaCl(2) draw solution and MgCl(2) draw solution, the order of which was consistent with that of their solute permeability coefficients. Moreover, the reverse solute diffusion of draw solute (especially divalent cation) can change the feed solution chemistry and thus enhance membrane fouling by alginate, the extent of which is related to the rate of the reverse draw solute diffusion and its ability to interact with the foulant. The extent of fouling for the four types of draw solution followed an order of Ca(NO(3))(2) > CaCl(2) > MgCl(2) > NaCl. On the other hand, the rate of forward diffusion of feed solute (e.g., Na(+)) was in turn promoted under severe membrane fouling in active layer facing draw solution orientation, which may be attributed to the fouling enhanced concentration polarization (pore clogging enhanced ICP and cake enhanced concentration polarization). The enhanced concentration polarization can lead to additional water flux reduction and is an important mechanism governing the water flux behavior during FO membrane fouling. Findings have significant implications for the draw solution selection and membrane fouling control in osmotically driven membrane processes.

  11. Preparation and characterisation of porous poly(2,5benzimidazole) (ABPBI) membranes using surfactants as templates for polymer electrolyte membrane fuel cells

    CSIR Research Space (South Africa)

    Zheng, H

    2010-04-01

    Full Text Available properties on mechanical strengths, thermal stability and electrochemical performance when compared with those of the original ABPBI membrane, suggestive of a promising polymer electrolyte for fuel cells at high temperature....

  12. Use of naturalized coagulants in removing laundry waste surfactant using various unit processes in lab-scale.

    Science.gov (United States)

    Mohan, S Mariraj

    2014-04-01

    This lab-scale experiment is aimed at demonstrating a treatment system for purification and reuse of laundry rinsing water generated from households. The main objective of the study is to compare the efficiencies of various natural coagulants in removing laundry waste surfactants and other major pollutants from the laundry rinsing water. The treatment system consists of Coagulation-Flocculation, Sand filtration and Granular Activated Carbon (GAC) adsorption. Four experiments were conducted in batch process by varying the coagulants (Nirmali seed and Pectin extracted from pith of Orange peel). Coagulants have been selected due to their local availability at affordable cost and technical feasibility. From the study it is concluded that laundry rinsing water polluted with high turbidity and anionic surfactant treated with Nirmali seeds as coagulant at a retention time of 24 h gives the best results. The treatment system where Orange peel pectin is used as coagulant at a retention time of 24 h is found to be the most efficient one based on the weighted factor. Hence the treatment of laundry rinsing water by aforesaid combination results in better water quality.

  13. Effect of surfactants or a water soluble polymer on the crystal transition of clarithromycin during a wet granulation process.

    Science.gov (United States)

    Nozawa, Kenji; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2015-11-10

    To generate products containing a stable form of clarithromycin (CAM) (form II) regardless of the initial crystal form of CAM or type of granulation solvent, the effects of five surfactants, or a water-soluble polymer (macrogol 400) were determined on the crystal transition of CAM. The metastable form (form I) was kneaded with water, after adding surfactants, or a water-soluble polymer. Form II was also kneaded with ethanol, after adding the same additives. The resulting samples were analyzed by powder X-ray diffraction. Form I was completely converted to form II by a wet granulation using water with additives bearing polyoxyethylene chains such as polysorbate 80 (PS80), polyoxyl 40 stearate or macrogol 400. The granulation of the form II using ethanol with these additives did not result in a crystal transition to form I. Furthermore, CAM tablets were manufactured using granules with PS80, and these crystal forms and dissolution behaviors were investigated. As a result, the wet granulation of CAM with PS80 gave CAM tablets containing only form II and PS80 did not have any adverse effects on tablet characteristics. Therefore, these data suggests that the crystal form of CAM can be controlled to be form II using a wet granulation process with additives bearing polyoxyethylene chains regardless of the initial crystal form of CAM or type of granulation solvent. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Stabilization of {alpha}-amylase by using anionic surfactant during the immobilization process

    Energy Technology Data Exchange (ETDEWEB)

    El-Batal, A.I. [National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt); Atia, K.S. [Nuclear Research Center, Radioisotopes Applications Division, Abo-Zable, P.O. Box 13759, Cairo (Egypt)]. E-mail: ks_atia@yahoo.com; Eid, M. [National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2005-10-01

    This work describes the entrapment of {alpha}-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using {gamma} irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized {alpha}-amylase were studied. Covering of {alpha}-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized {alpha}-amylase was increased below the critical micelle concentration (cmc) (10mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized {alpha}-amylase showed a higher k{sub cat}/K{sub m} and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of {alpha}-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems.

  15. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    Science.gov (United States)

    El-Batal, A. I.; Atia, K. S.; Eid, M.

    2005-10-01

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10 mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher k/K and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems.

  16. Hemolysis by surfactants--A review.

    Science.gov (United States)

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.

  17. Solute coupled diffusion in osmotically driven membrane processes.

    Science.gov (United States)

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  18. A novel, fast responding, low noise potentiometric sensor containing a carbon-based polymeric membrane for measuring surfactants in industrial and environmental applications.

    Science.gov (United States)

    Samardžić, Mirela; Galović, Olivera; Hajduković, Mateja; Sak-Bosnar, Milan

    2017-01-01

    A new high-sensitivity potentiometric sensor for anionic surfactants was fabricated using the dimethyldioctadecylammonium-tetraphenylborate (DDA-TPB) ion associate as an ionophore that was incorporated into a liquid PVC membrane. Carbon powder was used for immobilization of the ionophore in the membrane, thus significantly reducing its ohmic resistance and reducing its signal drift. The sensor exhibits a sub-Nernstian response for both dodecylbenzenesulfonate (DBS) and dodecyl sulfate (DS) in H2O (55.3 and 58.5mV/decade of activity, respectively) in a range between 3.2×10(-7) and 4.6×10(-3)M for DS and 2.5×10(-7) and 1.2×10(-3)M for DBS. The sensor also exhibited a sub-Nernstian response for DS and DBS in 10mM Na2SO4 (55.4 and 57.7mV/decade of activity, respectively) between 2.5×10(-7) and 4.6×10(-3)M for DS and 1.5×10(-7) and 8.8×10(-4)M for DBS. The detection limits for DS and DBS in H2O were 2.5×10(-7) and 2.0×10(-7) M and in 10mM Na2SO4 the detection limits were 2.5×10(-7) and 1.2×10(-7) M, respectively. The response time of the sensor was less than 5s for changes at higher concentration levels (above 1×10(-4)M) in both water and 10mM Na2SO4. At lower concentrations (below 1×10(-5)M) the response times were 8 and 6s in water and 10mM Na2SO4, respectively. The signal drift of the sensor was 1.2mV/hour. The new carbon-based sensor exhibited excellent selectivity performance for DS over almost all of the anions commonly present in commercial formulations and it was successfully employed as an end-point detector in potentiometric titrations of anionic surfactants in a pH range from 3 to 12. Three-component mixtures containing sodium alkanesulfonate (C10, C12 and C14) were successfully differentially titrated.

  19. Scaling-up parameters for site restoration process using surfactant-enhanced soil washing coupled with wastewater treatment by Fenton and Fenton-like processes.

    Science.gov (United States)

    Bandala, Erick R; Cossio, Horacio; Sánchez-Lopez, Adriana D; Córdova, Felipe; Peralta-Herández, Juan M; Torres, Luis G

    2013-01-01

    Estimation of scaling-up parameters for a site restoration process using a surfactant-enhanced soil washing (SESW) process followed by the application of advanced oxidation processes (Fenton and photo-Fenton) was performed. For the SESW, different parameters were varied and the soil washing efficiency for pesticide (2,4-D) removal assessed. The resulting wastewater was treated using the Fenton reaction in the absence and presence of ultraviolet (UV) radiation for pesticide removal. Results showed that agitation speed of 1550 rpm was preferable for the best pesticide removal from contaminated soil. It was possible to wash contaminated soils with different soil concentrations; however the power drawn was higher as the soil concentration increased. Complete removal of the pesticide and the remaining surfactant was achieved using different reaction conditions. The best degradation conditions were for the photo-Fenton process using [Fe(II)] = 0.3 mM; [H2O2] = 4.0 mM where complete 2,4-D and sodium dodecylsulfate (SDS) removal was observed after 8 and 10 minutes of reaction, respectively. Further increase in the hydrogen peroxide or iron salt concentration did not show any improvement in the reaction rate. Kinetic parameters, i.e. reaction rate constant and scaling-up parameters, were determined. It was shown that, by coupling both processes (SESW and AOPs), it is possible the restoration of contaminated sites.

  20. Ion exchange membranes in seawater applications : processes and characteristics

    NARCIS (Netherlands)

    Galama, A.H.

    2015-01-01

    Officiële titel ENG: Ion exchange membranes in seawater applications. Processes and characteristics Officiële titel NL: Ionwisselende membranen in zeewatertoepassingen. Processen en eigenschappen Auteur: A.H.Galama Jaar: 2015 ISBN: 978-94-6257-225-6 Samenvatting Zeewaterontzouting stelt me

  1. Caractérisation biophysique des interactions de nouveaux surfactants aromatiques glycolipidiques avec des membranes modèles.

    OpenAIRE

    Sainvitu, Pauline; Nasir, Mehmet Nail; Nott, Katherine; Lins, Laurence; Crowet, Jean-Marc; Nicks, françois; Laurent, Pascal; Willems, Luc; Cosse, Jean-Philippe; Jérôme, Christine; Deleu, Magali

    2013-01-01

    Aromatic glycolipids are of both medical and pharmaceutical interest. Antimicrobial, antiviral and anti-inflammatory activities have been reported (Otto, 2000, Journal of Molecular Catalysis B: Enzymatic). Moreover, they are expected to have interesting antioxidant properties when they contain phenolic groups. The alkyl chain should enhance their ability to penetrate into the cellular membrane (Nicolosi, 2002, Journal of Molecular Catalysis B: Enzymatic). The presence of a...

  2. Switchable Surfactants

    National Research Council Canada - National Science Library

    Yingxin Liu; Philip G. Jessop; Michael Cunningham; Charles A. Eckert; Charles L. Liotta

    2006-01-01

    .... We report that long-chain alkyl amidine compounds can be reversibly transformed into charged surfactants by exposure to an atmosphere of carbon dioxide, thereby stabilizing water/alkane emulsions...

  3. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

    2003-04-01

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  4. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Trudeau, J. [Metaldyne, Inc., Twinsburg, OH (United States); Cleary, B. [Metaldyne, Inc., Twinsburg, OH (United States); Hackett, M. [Metaldyne, Inc., Twinsburg, OH (United States); Greene, W. A. [SpinTek FIltrations, LLC, Los Alamitos, CA (United States)

    2003-04-30

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  5. Surfactant therapy in late preterm infants

    Directory of Open Access Journals (Sweden)

    Murat Yurdakök

    2013-06-01

    Full Text Available Late preterm (LPT neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS, transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature infants, leading to a gap in knowledge and understanding of the developmental biology and mechanism of pulmonary diseases in LPT neonates. Surfactant deficiency is the most frequent etiology of RDS in very preterm and moderately preterm infants, while cesarean section and lung infection play major roles in RDS development in LPT infants. The clinical presentation and the response to surfactant therapy in LPT infants may be different than that seen in very preterm infants. Incidence of pneumonia and occurrence of pneumothorax are significantly higher in LPT and term infants. High rates of pneumonia in these infants may result in direct injury to the type II alveolar cells of the lung with decreasing synthesis, release, and processing of surfactant. Increased permeability of the alveolar capillary membrane to both fluid and solutes is known to result in entry of plasma proteins into the alveolar hypophase, further inhibiting the surface properties of surfactant. However, the oxygenation index value do not change dramatically after ventilation or surfactant administration in LPT infants with RDS compared to very preterm infants. These finding may indicate a different pathogenesis of RDS in late preterm and term infants. In conclusion, surfactant therapy may be of significant benefit in LPT infants with serious respiratory failure secondary to a number of insults. However, optimal timing and dose of administration are not so clear in this group. Additional

  6. Surfactant-free coating of thiols on gold nanoparticles using sonochemistry: a study of competing processes.

    Science.gov (United States)

    Pallipurath, Anuradha; Nicoletti, Olivia; Skelton, Jonathan M; Mahajan, Sumeet; Midgley, Paul A; Elliott, Stephen R

    2014-09-01

    A method for the surfactant-free coating of gold nanoparticles with thiols using sonochemistry is presented. The gold nanoparticles were prepared by a modified Zsigmondy method, affording good control over the particle-size distribution, and the thiol coating was performed by the sonication of a biphasic system consisting of a nanoparticle suspension in water and thiols in toluene. The effects of two important reaction parameters on the particle morphology, viz. sonication time and thiol concentration, were investigated in detail using transmission electron microscopy. The effect of the thiol chain length was also studied. We show that the morphology of the coated particles is determined through a competition between two opposing effects: particle fusion, due to the sonication conditions, and digestive ripening, due to the action of the thiols. Additionally, we illustrate the utility of our technique for various applications, including surface-enhanced Raman scattering from bound molecules, and further functionalization using a thiol-exchange reaction. Our technique paves the way for an efficient synthesis of thiol-coated AuNPs of different shapes and sizes, suitable for a range of diverse applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Surfactant adsorption kinetics in microfluidics

    Science.gov (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  8. The role of surfactant treatment in preterm infants and term newborns with acute respiratory distress syndrome.

    Science.gov (United States)

    Wirbelauer, J; Speer, C P

    2009-05-01

    Surfactant treatment in preterm infants and term newborns with (acute respiratory distress syndrome) ARDS-like severe respiratory failure has become part of an individualized treatment strategy in many intensive care units around the world. These babies constitute heterogeneous groups of gestational ages, lung maturity, as well as of the underlying disease processes and postnatal interventions. The pathophysiology of respiratory failure in preterm infants is characterized by a combination of primary surfactant deficiency and surfactant inactivation as a result of plasma proteins leaking into the airways from areas of epithelial disruption and injury. Various pre- and postnatal factors, such as exposure to chorioamnionitis, pneumonia, sepsis and asphyxia, induce an injurious inflammatory response in the lungs of preterm infants, which may subsequently affect surfactant function, synthesis and alveolar stability. Surfactant inactivation--and dysfunction--is also a hallmark in newborns with meconium aspiration syndrome (MAS), pneumonia and other disorders affecting the pulmonary function. Although for the majority of suggested indications no data from randomized controlled trials exist, a surfactant replacement that counterbalances surfactant inactivation seems to improve oxygenation and lung function in many babies with ARDS without any apparent negative side effects. Newborns with MAS will definitely benefit from a reduced need for extracorporeal membrane oxygenation (ECMO). Clinical experience seems to justify surfactant treatment in neonates with ARDS.

  9. Understanding the transport processes in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  10. Silica membranes for hydrogen separation in coal gas processing

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G.R.

    1993-01-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO[sub 2] or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO[sub 2] deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO[sub 2], TiO[sub 2], Al[sub 2]O[sub 3] and B[sub 2]O[sub 3] layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 [Angstrom] mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl[sub 4] (or TiCl[sub 4], AlCl[sub 3], BCl[sub 3]) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  11. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  12. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  13. Examining the Roles of Emulsion Droplet Size and Surfactant in the Interfacial Instability-Based Fabrication Process of Micellar Nanocrystals

    Science.gov (United States)

    Sun, Yuxiang; Mei, Ling; Han, Ning; Ding, Xinyi; Yu, Caihao; Yang, Wenjuan; Ruan, Gang

    2017-06-01

    The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes ( 25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes ( 3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.

  14. Innovation in surfactant therapy II: surfactant administration by aerosolization.

    Science.gov (United States)

    Pillow, J Jane; Minocchieri, S

    2012-01-01

    Instilled bolus surfactant is the only approved surfactant treatment for neonatal respiratory distress syndrome. However, recent trends towards increased utilization of noninvasive respiratory support for preterm infants with surfactant deficiency have created a demand for a similarly noninvasive means of administering exogenous surfactant. Past approaches to surfactant nebulization met with varying success due to inefficient aerosol devices resulting in low intrapulmonary delivery doses of surfactant with variable clinical effectiveness. The recent development of vibrating membrane nebulizers, coupled with appropriate positioning of the interface device, indicates that efficient delivery of aerosolized surfactant is now a realistic goal in infants. Evidence of clinical effect despite low total administered dose in pilot studies, together with suggestions of enhanced homogeneity of pulmonary distribution indicate that this therapy may be applied in a cost-effective manner, with minimal patient handling and disruption. These studies need to be subjected to appropriately designed randomized controlled trials. Further work is also required to determine the optimum delivery route (mask, intranasal prong, nasopharyngeal or laryngeal), dosing amount and redosing interval.

  15. Factors Determining the Pore Shape in Polycarbonate Track Membranes

    CERN Document Server

    Apel, P Yu; Orelovich, O L; Akimenko, S N; Sartowska, B; Dmitriev, S N

    2004-01-01

    The process of pore formation in ion-irradiated polycarbonate films on treatment with alkali solutions in the presence of a surfactant is studied. It is found that the pore shape depends on both the structure of the initial films and the peculiarities of the interaction of the surfactant with the polymer surface and the transport of the surfactant into tracks. Due to heterogeneity of the films the cross-section of a track pore channel changes along its length. The presence of the surfactant results in a further effect. Surfactant molecules adsorb on the polymer surface at the pore entries and reduce the etch rate which leads to formation of cigar-like pore channels. The use of surfactant as a component of chemical etchant enables one to control the pore shape in track membranes thus optimizing their retention and permeation characteristics.

  16. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    Science.gov (United States)

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation.

  17. Molecular Surveillance of Viral Processes Using Silicon Nitride Membranes

    Directory of Open Access Journals (Sweden)

    Deborah F. Kelly

    2013-03-01

    Full Text Available Here we present new applications for silicon nitride (SiN membranes to evaluate biological processes. We determined that 50-nanometer thin films of SiN produced from silicon wafers were sufficiently durable to bind active rotavirus assemblies. A direct comparison of SiN microchips with conventional carbon support films indicated that SiN performs equivalent to the traditional substrate to prepare samples for Electron Microscopy (EM imaging. Likewise, SiN films coated with Ni-NTA affinity layers concentrated rotavirus particles similarly to affinity-coated carbon films. However, affinity-coated SiN membranes outperformed glow-discharged conventional carbon films 5-fold as indicated by the number of viral particles quantified in EM images. In addition, we were able to recapitulate viral uncoating and transcription mechanisms directed onto the microchip surfaces. EM images of these processes revealed the production of RNA transcripts emerging from active rotavirus complexes. These results were confirmed by the functional incorporation of radiolabeled nucleotides into the nascent RNA transcripts. Collectively, we demonstrate new uses for SiN membranes to perform molecular surveillance on life processes in real-time.

  18. Numerical Simulation and Optimization of Enhanced Oil Recovery by the In Situ Generated CO2 Huff-n-Puff Process with Compound Surfactant

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2016-01-01

    Full Text Available This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2 Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2 and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2 Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2 process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.

  19. Hybrid Adsorption-Membrane Biological Reactors for Improved Performance and Reliability of Perchlorate Removal Processes

    Science.gov (United States)

    2008-12-01

    carbon supply for the autotrophic perchlorate reducing bacteria. The membrane used in the reactor is a hollow-fiber microfiltration membrane made from...1 HYBRID ADSORPTION- MEMBRANE BIOLOGICAL REACTORS FOR IMPROVED PERFORMANCE AND RELIABILITY OF PERCHLORATE REMOVAL PROCESSES L.C. Schideman...Center Champaign, IL 61826, USA ABSTRACT This study introduces the novel HAMBgR process (Hybrid Adsorption Membrane Biological Reactor) and

  20. Selective oxidative degradation of toluene for the recovery of surfactant by an electro/Fe²⁺/persulfate process.

    Science.gov (United States)

    Long, Anhua; Zhang, Hui

    2015-08-01

    An electro/Fe(2+)/persulfate process has been conducted for toluene removal from surfactant (SDS) flushing solution, and the pseudo-second-order reaction rate constant (k2 value) of toluene removal has been optimized by a response surface methodology (RSM). The results indicated that in this process, the reaction between persulfate and externally added Fe(2+) generates sulfate-free radicals, and at the same time, Fe(2+) is electro-regenerated at the cathode by the reduction of Fe(3+). RSM based on Box-Behnken design (BBD) has been applied to analyze the experimental variables, of which the concentrations of persulfate and Fe(2+) showed a positive effect on the rate constant of toluene removal, whereas the concentration of SDS showed a negative effect. The interactions between pairs of variables proved to be significant, such as between SDS, persulfate, and Fe(2+) concentrations. ANOVA results confirmed that the proposed models were accurate and reliable for analysis of the variables of the electro/Fe(2+)/persulfate process. The shapes of the 3D response surfaces and contour plots showed that the SDS, persulfate, and Fe(2+) concentrations substantially affected the k2 value of toluene removal. The results indicated that increasing persulfate or Fe(2+) concentration increased the k2 value, whereas increasing SDS concentration decreased the k2 value. The reaction intermediates have been identified by GC-MS, and a plausible degradation pathway for toluene degradation is proposed.

  1. An Underwater Superoleophobic Sepiolite Fibrous Membrane (SFM) for Oil­‐in­‐water Emulsion Separation

    KAUST Repository

    Yao, Pinjiang

    2014-12-01

    Separating oil/water emulsions is significant for the ecosystem and the petroleum and processing industry. To this end, we prepared an underwater superoleophobic membrane inspired by unique wettability of the fish scales. This membrane was fabricated by a facile vacuum filtration process of sepiolite nanofibers and chitosan, and after the cross-linking via glutaraldehyde, a self-standing membrane was obtained. The as-prepared membrane exhibited excellent capability of separating both the surfactant-free and surfactant-stabilized oil-in-water emulsions with high efficiency. This sepiolite fibrous membrane offers a convenient, reliable and efficient way for the large-scale de-emulsification process.

  2. Preconceptual design of a salt splitting process using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  3. Synthesis and Characterization of Flower-Like Bundles of ZnO Nanosheets by a Surfactant-Free Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Jijun Qiu

    2014-01-01

    Full Text Available Flower-like bundles of ZnO nanosheets have been prepared by using preheating hydrothermal process without any surfactants. The flower-like bundles consist of many thin and uniform hexagonal-structured ZnO nanosheets, with a thickness of 50 nm. The selected area electronic diffraction (SAED and high-resolution transmission electron microscope (HRTEM images indicate that the ZnO nanosheets are single crystal in nature. The growth mechanism of the flower-like bundles of ZnO nanosheets is discussed based on the morphology evolution with growth times and reaction conditions. It is believed that the formation of flower-like bundles of ZnO nanosheets is related to the shielding effect of OH− ions and the self-assembly process, which is dominated by a preheating time. Room temperature photoluminescence spectra results show that the annealing atmosphere strongly affects the visible emission band, which is sensitive to intrinsic and surface defects, especially oxygen interstitials, in flower-like bundles of ZnO nanosheets.

  4. BENCH-SCALE VISUALIZATION OF DNAPL REMEDIATION PROCESSES IN ANALOG HETEROGENEOUS AQUIFERS: SURFACTANT FLOODS, AND IN SITU OXIDATION USING PERMANGANATE

    Science.gov (United States)

    We have conducted well-controlled DNAPL remediation experiments using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Photographs and digital image analysis illustrate previously unobserved interactions b...

  5. Acute toxicity and relationship between metabolites and ecotoxicity during the biodegradation process of non-ionic surfactants: fatty-alcohol ethoxylates, nonylphenol polyethoxylate and alkylpolyglucosides.

    Science.gov (United States)

    Jurado, E; Fernández-Serrano, M; Núñez-Olea, J; Luzón, G; Lechuga, M

    2009-01-01

    The toxicity values of fatty-alcohol ethoxylates, nonylphenol polyethoxylate, and alkylpolyglucosides have been determined by applying assays with luminescent bacteria. Also, the relation between metabolites and ecotoxicity during the biodegradation process has been determined. The biodegradation tests were carried out according to the OECD 301 E test for ready biodegradability. In these tests a solution of the surfactant, representing the sole carbon source for the microorganisms, was tested in a mineral medium, inoculated and incubated under aerobic conditions in the dark. The toxicity of surfactants is related to their molecular structure (Quantitative Structure Activity Relationships, QSAR). For the alkylpolyglucosides, toxicity expressed as EC(50) is related with the critical micelle concentration (CMC), the hydrophilic-lipophilic balance (HLB) of the surfactant, and the hydrophobic alkyl chain (R). The results indicate that toxicity increased as the CMC decreased and as the hydrophobicity increased and R rose. For fatty-alcohol ethoxylates, parameters characteristic studied have been HLB, number of units of ethylene oxide and the alkyl chain length. Relationships found are in agreement with the fact that increasing the alkyl chain length leads to a lower EC(50), whereas increasing ethoxylation leads to a lower toxicity. An analysis of the behaviour of the toxicity and HLB again indicates that the toxicity was greater for surfactants with a smaller HLB. The evolution of the toxicity was studied over the biodegradation process, expressed as a percentage of inhibition. For all the non-ionic surfactants assayed, except for the nonylphenol polyethoxylate, a major decline was found in toxicity during the first days of the biodegradation assay and at all the concentrations tested.

  6. Kinetics of swelling-breakdown of a W/O/W multiple emulsion: possible mechanisms for the lipophilic surfactant effect.

    Science.gov (United States)

    Geiger, S; Tokgoz, S; Fructus, A; Jager-Lezer, N; Seiller, M; Lacombe, C; Grossiord, J L

    1998-03-01

    The properties and behavior of a W/O/W multiple emulsion formulation were analyzed during a swelling-breakdown process. Various experimental analyses, such as granulometry, rheology and conductimetry were performed, as well as a micropipette aspiration method. The predominant role of the lipophilic surfactant during the swelling phase confirmed. Two different mechanism can be proposed. Both imply the migration of the lipophilic surfactant from one interface to another and probably take place successively. The lipophilic surfactant could diffuse from the first to the second interface, thus rigidifying the membrane, or from the oily phase to the first interface, resulting in delayed coalescence of the aqueous droplets during swelling.

  7. Experimental studies on the influence of porosity on membrane absorption process

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; REN Zhongqi; ZHANG Zeting; ZHANG Weidong

    2007-01-01

    Eight kinds of flat membranes with different micro-structures were chosen to carry out the membrane absorption experiments with CO2 and de-ionized water or According to experimental results,the membrane pores shape (stretched pore and cylinder pore) and membrane thickness do not affect the membrane absorption process,and the membrane porosity has only little influence on membrane absorption process for slow mass transfer system.However,the influence of porosity on the membrane absorption process became visible for fast mass transfer system.Moreover,the mass transfer behavior near the membrane surface on liquid side was studied.The results show that the influence of membrane porosity on mass transfer relates to flow condition,absorption system and distance between micro-pores,etc.

  8. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    Science.gov (United States)

    2015-01-15

    capacities (IECs). Solution cast membranes were thermally cross- linked to form anion exchange membranes. Cross-linking was achieved by taking advantage...distribution is unlimited. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers The views...Box 12211 Research Triangle Park, NC 27709-2211 Anion Exchnage Membrane, Polymer synthesis, Morphology, Anion Conductivity REPORT DOCUMENTATION PAGE

  9. H2O2/UV process for surfactants removal from water

    OpenAIRE

    Melihen, Andrej

    2015-01-01

    Besides conventional approaches to water and wastewater treatment, we know many of advanced processes that are considered as more efficient ways of treatment. Amongst them have an important role, so called, advanced oxidation processes (AOP’s) that generates highly reactive hydroksyl radicals which degrade and remove a wide specter of biologicaly nondegradable pollutants. While operating a source of UV radiation can be used or not. In present study, H2O2/UV-C treatment was appl...

  10. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process

    OpenAIRE

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-01-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly us...

  11. Fabrication and evaluation of valsartan–polymer–surfactant composite nanoparticles by using the supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2014-11-01

    Full Text Available Min-Soo Kim,1 In-hwan Baek21College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, Republic of Korea; 2College of Pharmacy, Kyungsung University, Daeyeon-dong, Nam-gu, Busan, Republic of KoreaAbstract: The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability.Keywords: supersaturation, bioavailability, solid dispersion, dissolution, supercritical fluid

  12. Crude biodiesel refining using membrane ultra-filtration process: An environmentally benign process

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Ceramic membrane separation system was developed to simultaneously remove free glycerol and soap from crude biodiesel. Crude biodiesel produced was ultra-filtered by multi-channel tubular membrane of the pore size of 0.05 μm. The effects of process parameters: transmembrane pressure (TMP, bar, temperature (°C and flow rate (L/min on the membrane system were evaluated. The process parameters were then optimized using Central Composite Design (CCD coupled with Response Surface Methodology (RSM. The best retention coefficients (%R for free glycerol and soap were 97.5% and 96.6% respectively. Further, the physical properties measured were comparable to those obtained in ASTMD6751-03 and EN14214 standards.

  13. Biological wastewater treatment followed by physicochemical treatment for the removal of fluorinated surfactants.

    Science.gov (United States)

    Schröder, H F R; José, H J; Gebhardt, W; Moreira, R F P M; Pinnekamp, J

    2010-01-01

    Perfluorinated surfactants (PFS) have become compounds of high concern during the last decade. While "conventional surfactants" are degraded to a great extent in the biological wastewater treatment process, partly or perfluorinated surfactants are not only stable against biodegradation but also against oxidizing agents, they even resist OH-radical attacks. Our objectives were to eliminate the fluorinated surfactants perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by adsorption, separation or degradation with a balance of precursor compounds and follow-up of degradation products. Therefore, municipal wastewater was spiked with these fluorinated surfactants before membrane bioreactor (MBR) treatment-applying microfiltration membranes--was performed and before permeates were treated using ozone (O3) or different advanced oxidation treatment (AOP) techniques. O3 or hydrogen peroxide (H2O2), both in combination with UV radiation or in combination with catalysts, was applied. Removal by adsorption or membrane separation as well as degradation were monitored by substance specific determination and identification. High resolution mass spectrometry after high performance liquid chromatography (HPLC/HRMS and -MS(n)) was used for analysis. Contact to Teflon and/or glass during all analytical procedures was avoided.

  14. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen

    2009-03-01

    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  15. Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangci [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China University of Petroleum, No. 66, Changjiang West Road, Qingdao 266555 (China); Liu, Yunqi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China University of Petroleum, No. 66, Changjiang West Road, Qingdao 266555 (China); Liu, Di; Liu, Lihua; Liu, Chenguang [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China University of Petroleum, No. 66, Changjiang West Road, Qingdao 266555 (China)

    2010-10-15

    Boehmite (AlOOH) with hierarchical flower-like structures was synthesized by the solvothermal reaction of AlCl{sub 3}.6H{sub 2}O in the presence of ethanol and toluene at 200 {sup o}C for 24 h. The product was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that boehmite with flower-like nanostructures, which aggregated together by the weak hydrogen bonds, was formed through dissolution-deposition process of boehmite microcrystals and the toluene has a great effect on the morphology of product in the reaction system. Meanwhile, the {gamma}-Al{sub 2}O{sub 3} was also obtained by calcination of above product at 500 {sup o}C for 2 h, and the flower-like morphology kept no change. The surface area of {gamma}-Al{sub 2}O{sub 3} powder was determined to be 166.8 m{sup 2}/g by N{sub 2} adsorption measurement. The possible formation mechanism of flower-like boehmite nanostructures was proposed and discussed.

  16. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  17. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  18. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  19. Electrokinetic investigation of surfactant adsorption.

    Science.gov (United States)

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  20. Triton X-100 as an effective surfactant for the isolation and purification of photosystem I from Arthrospira platensis.

    Science.gov (United States)

    Yu, Daoyong; Huang, Guihong; Xu, Fengxi; Wang, Mengfei; Liu, Shuang; Huang, Fang

    2014-06-01

    Surfactants play important roles in the preparation, structural, and functional research of membrane proteins, and solubilizing and isolating membrane protein, while keeping their structural integrity and activity intact is complicated. The commercial n-Dodecyl-β-D-maltoside (DDM) and Triton X-100 (TX) were used as solubilizers to extract and purify trimeric photosystem I (PSI) complex, an important photosynthetic membrane protein complex attracting broad interests. With an optimized procedure, TX can be used as an effective surfactant to isolate and purify PSI, as a replace of the much more expensive DDM. A mechanism was proposed to interpret the solubilization process at surfactant concentrations lower than the critical solubilization concentration. PSI-TX and PSI-DDM had identical polypeptide bands, pigment compositions, oxygen consumption, and photocurrent activities. This provides an alternative procedure and paves a way for economical and large-scale trimeric PSI preparation.

  1. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  2. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  3. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    Science.gov (United States)

    Romero-Mangado, Jaione; Parodi, Jurek; Gamboa-Vazquez, Sonia; Stefanson, Ofir; Diaz-Cartagena, Diana C.; Flynn, Michael

    2016-01-01

    Wastewater treatment through forward osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flux rate. The aim of this study is to identify the materials that cause flux rate reduction due to membrane fouling, as well as to evaluate the flux rate recovery after membrane treatment using commercially available antifoulants. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flux rate recovery after membrane treatment using antifoulants.

  4. A STUDY ON MEMBRANE PROCESS WITH γ-ALUMINA MEMBRANE REACTOR FOR ETHYLBENZENE DEHYDROGENATION TO STYRENE

    Institute of Scientific and Technical Information of China (English)

    Chen Qingling; Xu Zhongqiang

    2001-01-01

    The membrane reaction of ethylbenzene(EB) dehydrogenation to styrene(ST) has been studied by using K2O/Fe2O3 industrial catalyst and γ-alumina ceramic membrane developed by our institute. In comparison with the packed bed reactor (that is, plug flow reactor, abbr. PFR) in industrial practice, the yield of styrene was increased by 5%~10% in the membrane reactor. Furthermore, mathematical modeling of membrane reaction has been studied to display the principle of optimal match between the catalytic activity and the membrane permeability.

  5. 荷电膜去除水中表面活性剂十二烷基苯磺酸钠研究%STUDY ON THE REMOVAL OF SURFACTANT SODIUM DODECYL BENZENE SULFONATE BY CHARGED MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    张洁欣; 魏俊富; 张环

    2011-01-01

    采用自制等离子体改性聚砜荷电膜对表面活性剂十二烷基苯磺酸钠(SDBS)进行截留测试,通过改变溶液的初始SDBS质量浓度(40~400 mg· L-1)、操作压力(0.15~0.35 MPa),离子强度(NaCl质量浓度100~300 mg·L-1)以及pH(2~12)等影响因素,观察荷电膜对SDBS溶液的截留率以及通量的变化,分析作用机理.结果表明,静电斥力为主要作用力,同时伴有机械筛分作用.初始SDBS含量低时比高时截留效果好,SDBS初始质量浓度为40 mg· L-1时截留率可达85.68%;低离子强度时静电斥力发挥主要作用,截留率比高离子强度时高;压力越大,截留率越高;溶液pH接近中性时截留效果最好.%Surfactant sodium dodecyl benzene sulfonate solution was retained by the plasma modified polysulfone charged membrane. The rejection tests were at different factors including solution concentration, operating pressure (0.15~0.35 Mpa), ionic strength (concentration of NaCl 100~300 mg*L') and pH (2~12). The retention rate and flux of SDBS solution retained by charged membrane were observed. The mechanism of retention was analyzed. Experimental results revealed that electrostatic repulsion was the main force in the process. And size exclusion also existed. Solutions possessing low concentration showed better rejection effect than those having high concentration. When initial feed concentration was 40 mg'L', the retention rate could reach 85.68%. Electrostatic repulsion played an important role at low ionic strength. The retention rate at low ionic strength was higher than those at high ionic strength. The retention rate increased as the operating pressure presented high. And the rejection performed well when pH was close to neutral.

  6. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    Science.gov (United States)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  7. Spectroscopic characterization approach to study surfactants effect on ZnO{sub 2} nanoparticles synthesis by laser ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Q.A. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Saleh, T.A. [Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H{sub 2}O{sub 2}. The effect of surfactants on the optical and structure of ZnO{sub 2} was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H{sub 2}O{sub 2}, and H{sub 2}O{sub 2} mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO{sub 2} nanoparticles prepared with and without surfactants show a characteristic ZnO{sub 2} absorption at 435-445 cm{sup -1}. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm{sup -1}.

  8. A triplet-triplet annihilation based up-conversion process investigated in homogeneous solutions and oil-in-water microemulsions of a surfactant.

    Science.gov (United States)

    Penconi, Marta; Gentili, Pier Luigi; Massaro, Giuseppina; Elisei, Fausto; Ortica, Fausto

    2014-01-01

    The triplet-triplet annihilation based up-conversion process, involving a platinum octaethyl-porphyrin (PtOEP) as a sensitizer and tetraphenyl-pyrene (TPPy) as an emitter, has been investigated in homogeneous solutions of toluene, bromobenzene and anisole, and oil-in-water microemulsions of the TX-100 surfactant, where toluene constitutes the non-polar phase. In homogeneous solutions, the highest up-conversion quantum yield (of the order of 20%) has been achieved in toluene, being the solvent that has the lowest viscosity among those explored. The up-conversion emission from the PtOEP-TPPy pair has been then investigated in a toluene based oil-in-water microemulsion at three different concentrations of the solutes, showing quantum yields up to the order of 1%, under the same irradiation conditions, but different deoxygenating procedures. The results herein reported might represent a good starting point for a future investigation in microheterogeneous systems. An optimization of the microemulsion composition, in terms of surfactant, co-surfactant and toluene concentrations, could allow us to increase the sensitizer and emitter concentrations and set up the best operative conditions to obtain even higher up-conversion efficiencies.

  9. On the Difference between Self-Assembling Process of Monomeric and Dimeric Surfactants with the Same Head to Tail Ratio: A Lattice Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Reza Behjatmanesh-Ardakani

    2013-01-01

    Full Text Available Experimental data show that gemini surfactants have critical micelle concentrations that are almost tenfold lower than the CMCs of single chain ones. It is believed that the spacer groups play an important role in this subject. Short hydrophilic or long hydrophobic spacers can reduce CMC dramatically. In this paper, self-assembling processes of double-chain and one-chain surfactants with the same head to tail ratio are compared. Dimeric chain structure is exactly double of single chain. In other words, hydrophilic-lyophilic balances of two chain models are the same. Two single chains are connected head-to-head to form a dimeric chain, without introducing extra head or tail beads as a spacer group. Premicellar, micellar, and shape/phase transition ranges of both models are investigated. To do this, lattice Monte Carlo simulation in canonical ensemble has been used. Results show that without introducing extra beads as spacer group, the CMC of (H3T32 as a dimeric surfactant is much lower than the CMC of its similar single chain, H3T3. For dimeric case of study, it is shown that bolaform aggregates are formed.

  10. Separation of single-walled carbon nanotubes by gel-based chromatography using surfactant step-gradient techniques and development of new instrumentation for studying SWCNT reaction processes

    Science.gov (United States)

    Breindel, Leonard M.

    Single-walled carbon nanotube (SWCNT) synthesis methods such as CoMoCATTM, HiPcoTM, pulsed laser vaporization (PLV), and catalytic chemical vapor deposition (CCVD) produce several different distributions of (n,m) SWCNT structures, where ( n,m) defines the nanotube diameter and chiral wrapping angle. Post-synthesis processing such as functionalization and/or separations must therefore be employed to yield high purity electronic or single (n,m) samples. Through the use of a surfactant gradient across a gel-based chromatographic column, separations of single (n,m) species can be achieved. Anionic surfactants such as SDS, SDBS, and AOT display different separation effectiveness for single (n,m) species. Results of near-infrared optical absorption for separated SWCNT surfactant suspensions will be discussed, leading to a broader understanding of the important factors necessary for the gel chromatography separation technique. In particular, the effects of SWCNT/surfactant micelle structure are found to be key to achieving fast, simple SWCNT electronic type separations. Additionally, development of new instrumentation for the near-infrared spectrofluorimetric analysis (NIR-SFA) of SWCNTs is useful to the advancement of fundamental SWCNT research and applications. NIR-SFA, for instance, allows for the (n,m) structures of a sample to be identified and monitored during the progress of a chemical reaction or separation experiment. Seeking to achieve the time resolutions necessary for such experiments, the design and optimizations of a system utilizing single-wavelength excitation by diode lasers coupled with a fast NIR detection system are presented.

  11. Modeling of membrane processes for air revitalization and water recovery

    Science.gov (United States)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  12. Hyaline membrane disease (HMD) therapy in Latin America: impact of exogenous surfactant administration on newborn survival, morbidity and use of resources.

    Science.gov (United States)

    Rossello, J D; Hayward, P E; Martell, M; Del Barco, M; Margotto, P; Grandzoto, J; Bastida, J; Peña, J; Villanueva, D

    1997-01-01

    Impact of surfactant administration, on neonatal mortality, morbidity and resource use, was assayed in a historically controlled study in 19 NICUs from 5 Latin American countries. Data from clinical records of infants with HMD were retrospectively reviewed for the previous 2 years (PRE phase n = 666 cases), and prospectively in cases that received surfactant (SURF phase, 348 cases). Birth weight stratified relative risk, with 95% confidence interval (RR +/-95% CI) for death, in the SURF as compared to the PRE was 0.60 (0.49-0.74), 0.79 (0.68-0.92) and 0.82 (0.71-0.94), for days 7, 28 and at discharge, respectively. At all ages mortality was significantly lower during SURF. Significant increases were observed in the occurrence of pulmonary interstitial emphysema, pulmonary hemorrhage, patent ductus arteriosus, bronchopulmonary dysplasia, intrahospital infection and necrotizing enterocolitis. Resource use increased significantly. It is concluded that the use of surfactant in the region is an important advance, and the efficacy of management of the late complications of the very premature and labile HMD survivors must increase. More attention should be given to thermal regulation, nutrition and management of infection in the survivors, before a more marked effect of surfactant can be seen.

  13. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    Science.gov (United States)

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of Na

  14. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions.

    Science.gov (United States)

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-06-19

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  15. Membrane process for separating H{sub 2}S from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.

    1995-07-01

    Objective was to develop a membrane process for separating hydrogen sulfide and other impurities (CO{sub 2}, water vapor) from low-quality natural gas. A membrane material was identified with very high H{sub 2}/CH{sub 4} selectivity in the range of 40--60; membrane production was scaled up to commercial size rolls; high-pressure membrane and module development and optimization were completed; and a membrane permeation flux of 4{times}10{sub {minus}6} cm{sup 3}/s{center_dot}cm{sup 2}cmHg, twice as high state-of-the-art cellulose acetate membranes, was achieved.

  16. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Lixia Bian

    2014-06-01

    Full Text Available The transmembrane electrical potential (TMEP in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2, concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  17. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  18. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    Science.gov (United States)

    Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.

    2002-01-01

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  19. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  20. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  1. Efficient control system for low-concentration inorganic gases from a process vent stream: application of surfactants in spray and packed columns.

    Science.gov (United States)

    Chein, Hungmin; Aggarwal, Shankar G; Wu, Hsin-Hsien

    2004-11-01

    Control of low-concentration pollutants from a semiconductor process vent stream using a wet-scrubbing technique is a challenging task to meet Taiwan environmental emission standards. An efficient wet-scrubber is designed on a pilot scale and tested to control low concentration acid and base waste-gas emission. The scrubber system consisted of two columns, i.e., a fine spray column [cutoff diameter (based on volume), Dv(50) = 15.63 microm; Sauter mean diameter (SMD) = 7.62 microm], which is especially efficient for NH3 removal as the pH of the spraying liquid is approximately 7 followed by a packed column with a scrubbing liquid pH approximately 9.0 mainly for acids removal. It is observed that use of the surfactants in low concentration about 10(-4) M and 10(-7) M in the spray liquid and in the scrubbing liquid, respectively, remarkably enhances the removal efficiency of the system. A traditional packed column (without the spray column and the surfactant) showed that the removal efficiencies of NH3, HF, and HCl for the inlet concentration range 0.2 to 3 ppm were (n = 5) 22.6+/-3.4%, 43.4+/-5.5%, and 40.4+/-7.4%, respectively. The overall efficiencies of the proposed system (the spray column and the packed column) in the presence of the surfactant in the spray liquid and in the scrubbing liquid forthese three species were found to increase significantly (n = 5) from 60.3+/-3.6 to 82.8+/-6.8%, 59.1+/-2.7 to 83.4+/-4.2%, and 56.2+/-7.3 to 81.0+/-6.7%, respectively. In this work, development of charge on the gas-liquid interface due to the surfactants has been measured and discussed. It is concluded that the presence of charge on the gas-liquid interface is the responsible factor for enhancement of the removal efficiency (mass-transfer in liquid phase). The effects of the type of surfactants, their chain length, concentration in liquid, etc. on the removal efficiency are discussed. Since the pilot tests were performed under the operating conditions similar to most of

  2. Calorimetry is not color-blind.Molecular insights on association processes in surfactant-polymer mixtures derived from calorimetric experiments

    Institute of Scientific and Technical Information of China (English)

    LOH Watson; BRINATTI Cesar

    2012-01-01

    This comment will review and discuss recent results obtained with the use of calorimetry in assessing molecular information from complex phenomena such as association in surfactant/polymer mixtures.These examples were selected to support the view that it is possible to ally the great sensitivity of modern calorimeters with carefully planned experiments and,sometimes,ancillary techniques in order to derive detailed information on molecular interactions.

  3. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    OpenAIRE

    Lixia Bian; Yanyan Fang; Xiaolin Wang

    2014-01-01

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which c...

  4. Applications of membrane distillation technology in energy transformation process-basis and prospect

    Institute of Scientific and Technical Information of China (English)

    WANG ZanShe; GU ZhaoLin; FENG ShiYu; LI Yun

    2009-01-01

    Membrane distillation technology is a new type of efficient separation technology that combines traditional distillation technology and membrane separation technology.In the study,applications of membrane distillation technology in thermal engineering and refrigerating engineering with typical energy transformation process were presented.Desorption and regeneration process of saline solution by vacuum membrane distillation was proposed on the basis of the concentration and separation properties of membrane distillation.Membrane distillation technology could be used in lithium bromide absorption refrigeration system,energy storage system,and the regeneration process of liquid desiccant solution in temperature-humidity independent control air-conditioning system.The aim of the applications was to use the low-grade energy such as waste heat,solar energy and geothermal energy adequately and to improve the available temperature difference of heat source.According to latent heat transfer and thermal conduction across the membrane in direct contact membrane distillation process,a novel membrane heat exchanger with both heat transfer and mass transfer processes was proposed.The heat exchanger could be used as the solution heat exchanger of lithium bromide absorption refrigeration system and as the special heat exchanger that recovered heat and pure water simultaneously.Some feasible process flows about the applications of membrane distillation technology to energy transformation process were listed and analyzed.Finally,future research emphases were indicated.

  5. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air–Water Interface

    DEFF Research Database (Denmark)

    Ortiz, Elisa Parra; Kinoshita, K.; Needham, D.

    2016-01-01

    at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB...... from 0.1 to 4%. Nevertheless, a direct correlation between the number of tubes and SMB contents was found, suggesting that SMB molecules are the promoters of tube nucleation in these membranes. A detailed analysis of the tube formation process was performed following previous models for the growth...

  6. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater.

    Science.gov (United States)

    Ng, Kok-Kwang; Lin, Cheng-Fang; Panchangam, Sri Chandana; Andy Hong, Pui-Kwan; Yang, Ping-Yi

    2011-08-01

    A novel Bio-Entrapped Membrane Reactor (BEMR) packed with bio-ball carriers was constructed and investigated for organics removal and membrane fouling by soluble microbial products (SMP). An objective was to evaluate the stability of the filtration process in membrane bioreactors through backwashing and chemical cleaning. The novel BEMR was compared to a conventional membrane bioreactor (CMBR) on performance, with both treating identical wastewater from a food and beverage processing plant. The new reactor has a longer sludge retention time (SRT) and lower mixed liquor suspended solids (MLSS) content than does the conventional. Three different hydraulic retention times (HRTs) of 6, 9, and 12 h were studied. The results show faster rise of the transmembrane pressure (TMP) with decreasing hydraulic retention time (HRT) in both reactors, where most significant membrane fouling was associated with high SMP (consisting of carbohydrate and protein) contents that were prevalent at the shortest HRT of 6 h. Membrane fouling was improved in the new reactor, which led to a longer membrane service period with the new reactor. Rapid membrane fouling was attributed to increased production of biomass and SMP, as in the conventional reactor. SMP of 10-100 kDa from both MBRs were predominant with more than 70% of the SMP <100 kDa. Protein was the major component of SMP rather than carbohydrate in both reactors. The new reactor sustained operation at constant permeate flux that required seven times less frequent chemical cleaning than did the conventional reactor. The new BEMR offers effective organics removal while reducing membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Separation of Process Water using Hydroxy Sodalite Membranes

    NARCIS (Netherlands)

    Khajavi, S.

    2010-01-01

    This thesis describes the synthesis, characterization, and application of Hydroxy Sodalite (H-SOD) membranes in selective separation of water from aqueous solutions and reaction media. The emphasis has been put on the development of a tight membrane film that could be primarily used for water separa

  8. Separation of Process Water using Hydroxy Sodalite Membranes

    NARCIS (Netherlands)

    Khajavi, S.

    2010-01-01

    This thesis describes the synthesis, characterization, and application of Hydroxy Sodalite (H-SOD) membranes in selective separation of water from aqueous solutions and reaction media. The emphasis has been put on the development of a tight membrane film that could be primarily used for water

  9. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review

    Institute of Scientific and Technical Information of China (English)

    Zee Ying Yeo; Thiam Leng Chew; Peng Wei Zhu; Abdul Rahman Mohamed; Siang-Piao Chai

    2012-01-01

    Membrane technology is becoming more important for CO2 separation from natural gas in the new era due to its process simplicity,relative ease of operation and control,compact,and easy to scale up as compared with conventional processes.Conventional processes such as absorption and adsorption for CO2 separation from natural gas are generally more energy demanding and costly for both operation and maintenance.Polymeric membranes are the current commercial membranes used for CO2 separation from natural gas.However,polymeric membranes possess drawbacks such as low permeability and selectivity,plasticization at high temperatures,as well as insufficient thermal and chemical stability.The shortcomings of commercial polymeric membranes have motivated researchers to opt for other alternatives,especially inorganic membranes due to their higher thermal stability,good chemical resistance to solvents,high mechanical strength and long lifetime.Surface modifications can be utilized in inorganic membranes to further enhance the selectivity,permeability or catalytic activities of the membrane.This paper is to provide a comprehensive review on gas separation,comparing membrane technology with other conventional methods of recovering CO2 from natural gas,challenges of current commercial polymeric membranes and inorganic membranes for CO2 removal and membrane surface modification for improved selectivity.

  10. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  11. Supported mesoporous carbon ultrafiltration membrane and process for making the same

    Science.gov (United States)

    Strano, Michael; Foley, Henry C.; Agarwal, Hans

    2004-04-13

    A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.

  12. Diffusion membrane and process for separating hydrogen from gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Behr, F.; Schulten, R.; Weirich, W.

    1985-01-29

    For separation of hydrogen and its isotopes by diffusion through a membrane virtually impermeable to other gases, a non-porous hydrogen-permeable metallic membrane is provided on the gas access side with a coating of an alloy of palladium with at least 45 atomic % Cu or at least 50 atomic percent Ag or at least 7 atomic % Y, the membrane itself containing Cu, Ag or Y respectively in a concentration at least equilibrated with the coating at operation temperature. Preferably the membrane consists of a metal of niobium and/or tantalum bases especially of an alloy containing from 10 to 30 % Ti, 3 to 10 % V, 0 to 25 % Nb and at least 30 % Ta, all by weight, and preferably it is of a composition of 20 to 25 % Ti, 5 to 7,5 % V, 0 to 25 Nb, and at least 50 % Ta, being saturated with copper and or silver, while a copper and/or silver palladium alloy coating is used. Such inherently oxidation sensitive membranes can be stabilized by provision of an internal intermediate layer in the form of a melt forming or containing an alkaline metal hydride and/or an alkaline earth metal hydride. A melt containing alkaline metal and/or alkaline earth metal which forms a hydride, brought into contact on the secondary side of a membrane in accordance with the invention, provides a hydrogen sink on the secondary side and inhibits internal hydride formation and secondary side oxidation of the membrane.

  13. Retention of Silica Nanoparticles in a Lab-Scale Membrane Bioreactor: Implications for Process Performance and Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Mark Larracas Sibag

    2016-07-01

    Full Text Available In conventional activated sludge (CAS involving aerobic biological processes, the retention of silica nanoparticles (SiO2 NPs has no detrimental effect on chemical oxygen demand (COD and ammonia nitrogen (NH3–N removal. However, for the membrane bioreactor (MBR system, which is also based on the activated sludge process in addition to the membrane separation process, it has implications not only on the process performance but also on membrane fouling. To investigate these two implications in lab-scale experiments, we continuously operated a control MBR and two experimental MBRs, in which the 28 nm SiO2 NPs and 144 nm SiO2 NPs were added separately to the influent at a final concentration of 100 mg/L. Although the retention of SiO2 NPs in the MBR, as confirmed by dynamic light scattering (DLS analysis, did not compromise the COD and NH3–N removal, it resulted in substantial increases in the transmembrane pressure (TMP suggesting the onset of membrane fouling. Analyses by batch-dead end filtration revealed the same fouling trend as observed during the continuous MBR experiments; membrane fouling is aggravated in the presence of SiO2 NPs. This was evident from permeate flux decline of between 30% and 74% at very low TMP (5 kPa and the further increases in the total resistance.

  14. Removal of surfactants from water by adsorption on activated carbon and advanced oxidation process; Eliminacion de surfactantes de las aguas mediante adsorcion sobre carbon activado y oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Diaz, J. D.; Sanchez Polo, M.; Rivera Utrilla, J.; Bautista, M. I.

    2007-07-01

    The objective of this study was to analyze the elimination process of surfactants from water, using sodium dode-cilbencenesulfonate (SDBS) as model compound, by means of adsorption on activated carbons as well as different processes of advanced oxidation (O{sub 3}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon). Results obtained have shown that the activated carbons used have a high efficiency to eliminate SDBS from waters which was enhanced when the adsorption process was carried out in the presence of bacteria. With regard to the oxidation processes studied, the results have indicated that the efficiency in the elimination of SDBS from water of the system based on the simultaneous use of O{sub 3} and powder activated carbon (PAC) is much higher than those of the other systems studied (O{sub 3},O{sub 3}/H{sub 2}O{sub 2}). (Author) 15 refs.

  15. Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound.

    Science.gov (United States)

    Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil

    2014-07-01

    This article addresses furthering the role of sonication for the optimal fabrication of nickel ceramic composite membranes using electroless plating. Deliberating upon process modifications for surfactant induced electroless plating (SIEP) and combined surfactant and sonication induced electroless plating (SSOEP), this article highlights a novel method of contacting of the reducing agent and surfactant to the conventional electroless nickel plating baths. Rigorous experimental investigations indicated that the combination of ultrasound (in degas mode), surfactant and reducing agent pattern had a profound influence in altering the combinatorial plating characteristics. For comparison purpose, purely surfactant induced nickel ELP baths have also been investigated. These novel insights consolidate newer research horizons for the role of ultrasound to achieve dense metal ceramic composite membranes in a shorter span of total plating time. Surface and physical characterizations were carried out using BET, FTIR, XRD, FESEM and nitrogen permeation experiments. It has been analyzed that the SSOEP baths provided maximum ratio of percent pore densification per unit metal film thickness (PPDδ) and hold the key for further fine tuning of the associated degrees of freedom. On the other hand SIEP baths provided lower (PPDδ) ratio but higher PPD. For SSOEP baths with dropwise reducing agent and bulk surfactant, the PPD and metal film thickness values were 73.4% and 8.4 μm which varied to 66.9% and 13.3 μm for dropwise reducing agent and drop surfactant case.

  16. MICROBIAL SURFACTANTS. II. LIPOPEPTIDES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2014-04-01

    Full Text Available The classification and the chemical structure of the lipopeptides and their producers (bacteria of the genera Bacillus and Pseudomonas are given. The role of the lipopeptides in cells motility, biofilm formation, metal binding and xenobiotics degradation and their action on the cells of pro- and eukaryotes is summarized. The stages of the nonribosomal lipopeptides synthesis and the role of two-component (GacA/GacS, ComA/ComP and the quorum system regulation of this process are shown. The potential of lactic acid bacteria and marine microorganisms as alternative surfactants producers (glycolipids, lipopeptides, phospholipids and fatty acids, glycolipopeptides are discussed. Their productivity and advantages over traditional producers are given as well. The properties of surfactants synthesized by lactic acid bacteria (the reduction of the surface tension, the critical micelle concentration, the stability in a wide range of pH, the temperature, the biological activity are summarized. Surfactants of nonpathogenic probiotic bacteria could be used as effective antimicrobial agents and antiadhesive and marine producers which able to synthesize unique metabolites that are not produced by other microorganisms.

  17. Effect of narcotics on membrane-bound mitochondrial processes in fish

    DEFF Research Database (Denmark)

    Vergauwen, Lucia; Nørgaard Schmidt, Stine; Michiels, Ellen

    observed decreasing growth, heart rate and motility with increasing exposure concentration of all narcotics, consistent with the general assumption of reduced cardiorespiratory function. At the cellular level, the cell membrane is expected to be the first target of narcotics. Since the mitochondrial...... and endoplasmic reticulum membrane are known to closely interact with the cell membrane, we hypothesize that narcotics can be further partitioned into these organelle membranes where they can disrupt essential membrane-bound processes. The electron transport chain (ETC) is an example of a crucial mitochondrial...

  18. An algorithm for emulsion stability simulations: account of flocculation, coalescence, surfactant adsorption and the process of Ostwald ripening.

    Science.gov (United States)

    Urbina-Villalba, German

    2009-03-01

    The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1(st) Ed., Tojo J., Arce, A., Eds.; Solucion's: Vigo, Spain, 1999; Volume 2, pp. 364-369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening.

  19. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  20. Innovation in surfactant therapy I: surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques.

    Science.gov (United States)

    Dargaville, Peter A

    2012-01-01

    Innovation in the field of exogenous surfactant therapy continues more than two decades after the drug became commercially available. One such innovation, lung lavage using dilute surfactant, has been investigated in both laboratory and clinical settings as a treatment for meconium aspiration syndrome (MAS). Studies in animal models of MAS have affirmed that dilute surfactant lavage can remove meconium from the lung, with resultant improvement in lung function. In human infants both non-randomised studies and two randomised controlled trials have demonstrated a potential benefit of dilute surfactant lavage over standard care. The largest clinical trial, performed by our research group in infants with severe MAS, found that lung lavage using two 15-ml/kg aliquots of dilute surfactant did not reduce the duration of respiratory support, but did appear to reduce the composite outcome of death or need for extracorporeal membrane oxygenation. A further trial of lavage therapy is planned to more precisely define the effect on survival. Innovative approaches to surfactant therapy have also extended to the preterm infant, for whom the more widespread use of continuous positive airway pressure (CPAP) has meant delaying or avoiding administration of surfactant. In an effort to circumvent this problem, less invasive techniques of bolus surfactant therapy have been trialled, including instillation directly into the pharynx, via laryngeal mask and via brief tracheal catheterisation. In a recent clinical trial, instillation of surfactant into the trachea using a flexible feeding tube was found to reduce the need for subsequent intubation. We have developed an alternative method of brief tracheal catheterisation in which surfactant is delivered via a semi-rigid vascular catheter inserted through the vocal cords under direct vision. In studies to date, this technique has been relatively easy to perform, and resulted in rapid improvement in lung function and reduced need for

  1. Fluorescence of aminofluoresceins as an indicative process allowing one to distinguish between micelles of cationic surfactants and micelle-like aggregates

    Science.gov (United States)

    Mchedlov-Petrossyan, Nikolay O.; Cheipesh, Tatiana A.; Roshal, Alexander D.; Doroshenko, Andrey O.; Vodolazkaya, Natalya A.

    2016-09-01

    Among the vast set of fluorescein derivatives, the double charged R2- anions of aminofluoresceins are known to exhibit only low quantum yields of fluorescence, \\varphi . The \\varphi value becomes as high as that of the fluorescein dianion when the lone electron pair of the amino group is involved in a covalent bond. According to Munkholm et al (1990 J. Am. Chem. Soc. 112 2608-12), a much smaller increase in the emission intensity can be observed in the presence of surfactant micelles. However, all these observations refer to aqueous or alcoholic solvents. In this paper, we show that in the non-hydrogen bond donor (or ‘aprotic’) solvents DMSO and acetone, the quantum yields, φ, of the 4‧- (or 5‧)-aminofluorescein R2- species amount to 61-67% and approach that of fluorescein (φ  =  87%), whereas in water φ is only 0.6-0.8%. In glycerol, a solvent with an extremely high viscosity, the φ value is only 6-10%. We report on the enhancement of the fluorescence of the aminofluorescein dianions as an indicative process, which allows us to distinguish between the micelle-like aggregates of cationic dendrimers of low generation, common spherical surfactant micelles, and surfactant bilayers. Some of these colloidal aggregates partly restore the fluorescence of aminofluoresceins in aqueous media. By contrast, other positively charged micellar-like aggregates do not enhance the quantum yield of aminofluorescein R2- species. Results for several related systems, such as CTAB-coated SiO2 particles and reverse microemulsions, are briefly described, and the possible reasons for the observed phenomena are discussed.

  2. Structure–property tuning in hydrothermally stable sol–gel-processed hybrid organosilica molecular sieving membranes

    NARCIS (Netherlands)

    Elshof, ten J.E.; Dral, A.P.

    2016-01-01

    Supported microporous organosilica membranes made from bridged silsesquioxane precursors by an acid-catalyzed sol–gel process have demonstrated a remarkable hydrothermal stability in pervaporation and gas separation processes, making them the first generation of ceramic molecular sieving membranes w

  3. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    Science.gov (United States)

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej

    2015-01-01

    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).

  4. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Zuzanna Pietralik

    Full Text Available The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration, they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp and siRNA (21 bp. The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16. On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain.

  5. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    Science.gov (United States)

    Shih, Chi-Chung; Chien, Chi-Sheng; Kung, Jung-Chang; Chen, Jian-Chih; Chang, Shy-Shin; Lu, Pei-Shan; Shih, Chi-Jen

    2013-01-01

    Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO2-CaO-P2O5 mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1-9.1 wt% and significantly decreased from 328.7 to 204.0 m2/g in the concentration range of 9.1-12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  6. Thermally cleavable surfactants

    Science.gov (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  7. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  8. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  9. Spectroscopic investigation of the binding interactions of a membrane potential molecule in various supramolecular confined environments: contrasting behavior of surfactant molecules in relocation or release of the probe between nanocarriers and DNA surface.

    Science.gov (United States)

    Ghosh, Surajit; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2014-12-01

    The fluorescence and optical properties of membrane potential probes are widely used to measure cellular transmembrane potentials. Hemicyanine dyes are also able to bind to membranes. The spectral properties of these molecules depend upon the charge shift from the donor moiety to the acceptor moiety. Changes in their spectral properties, i.e. absorption and emission maxima or intensities, are helpful in characterizing model membranes, microheterogeneous media, etc. In this article, we have demonstrated the binding interaction of a membrane potential probe, 1-ethyl-2-(4-(p-dimethylaminophenyl)-1,3-butadienyl)-pyridinium perchlorate (LDS 698), with various supramolecular confined environments. The larger dipole moment in the ground state compared to the excited state is a unique feature of hemicyanine dyes. Due to this unique feature, red shifts in the absorption maxima are observed in hydrophobic environments, compared with bulk solvent. On addition of surfactants and CT DNA to an aqueous solution containing LDS 698, significant increase in the emission intensity along with the quantum yield and lifetime indicate partition of the probe molecules into organized assemblies. In the case of the sodium dodecyl sulfate (SDS)-water system, due to interactions between the cationic LDS 698 and the anionic dodecyl sulfate moiety, the fluorescence intensity at ∼666 nm decreases and an additional peak at ∼590 nm appears at premicellar concentration (∼0.20 mM-4.50 mM). But at ∼5.50 mM SDS concentration, the absorbance in the higher wavelength region increases again, indicating encapsulation of the probe in micellar aggregates. This observation indicates that the premicellar aggregation behavior of SDS can also be judged by observing the changes in the UV-vis and fluorescence spectral patterns. The temperature dependent study also indicates that non-radiative deactivation of the dye molecules is highly restricted in the DNA micro-environment, compared with micelles

  10. Using biologically soft surfactants for dust suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Kolodiichak, V.K.; Motrii, A.E.; Severin, V.D.

    1982-07-01

    This article discusses environmental aspects of using surfactants in coal mines for dust suppression. Surfactants for underground black coal mines in the USSR are divided into three classes: so-called soft surfactants with a decomposition period from 1 to 3 days, hard surfactants with decomposition exceeding a month and an intermediary group. The decomposition process is analyzed; the role played by fermentation is stressed. Environmental effects of surfactant decomposition are evaluated. Selected surfactants tested in Soviet laboratories are described. The results of experimental use of diethanolamide as a surfactant for water injection in coal seams are evaluated. Wetting time amounts to 1 s when a 0.2% concentration is used. When surfactant concentration in water is reduced to 0.05% wetting time does not change; when concentration decreases to 0.025% wetting time increases to 3 s. Surfactant efficiency is investigated under operational conditions in a Donbass mine. Specifications of the working face, mining system and air pollution caused by a shearer loader are discussed. When diethanolamide is used dust suppression efficiency ranges from 86.4 to 90.4%. During the tests diethanolamide concentration in water was 0.05%.

  11. Membrane process treatment for greywater recycling: investigations on direct tubular nanofiltration.

    Science.gov (United States)

    Hourlier, F; Massé, A; Jaouen, P; Lakel, A; Gérente, C; Faur, C; Cloirec, P Le

    2010-01-01

    On-site greywater recycling and reuse is one of the main ways to reduce potable water requirement in urban areas. Direct membrane filtration is a promising technology to recycle greywater on-site. This study aimed at selecting a tubular nanofiltration (NF) membrane and its operating conditions in order to treat and reuse greywater in buildings. To do so, a synthetic greywater (SGW) was reconstituted in order to conduct experiments on a reproducible effluent. Then, three PCI NF membranes (AFC30, AFC40 and AFC80) having distinct molecular weight cut-offs were tested to recycle this SGW with a constant concentration at 25°C at two different transmembrane pressures (20 and 35 bar). The best results were obtained with AFC80 at 35 bar: the flux was close to 50 L m⁻²  h⁻¹, retentions of 95% for chemical oxygen demand and anionic surfactants were observed, and no Enterococcus were detected in the permeate. The performances of AFC80 were also evaluated on a real greywater: fluxes and retentions were similar to those observed on SGW. These results demonstrate the effectiveness of direct nanofiltration to recycle and reuse greywater.

  12. A simple route utilizing surfactant-assisted templating sol-gel process for synthesis of mesoporous Dy2O3 nanocrystal.

    Science.gov (United States)

    Sreethawong, Thammanoon; Chavadej, Sumaeth; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2006-08-01

    A simple route of combined sol-gel process with surfactant-assisted templating technique was successfully employed for the first time to synthesize nanocrystalline mesoporous Dy(2)O(3) with narrow monomodal pore size distribution under mild conditions. The nanocrystalline Dy(2)O(3) with monomodal mesoporous characteristic was ultimately achieved by controlling the hydrolysis and condensation steps of dysprosium n-butoxide modified with acetylacetone in the presence of laurylamine hydrochloride surfactant aqueous solution. The synthesized material was methodically characterized by thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), N(2) adsorption-desorption, Brunauer-Emmett-Teller (BET) surface area analysis, and Barrett-Joyner-Halenda (BJH) pore size distribution analysis. The particle size of the synthesized Dy(2)O(3) in nanosized range obtained from the SEM and HRTEM micrographs was in good accordance with the crystallite size estimated from the XRD result. The N(2) adsorption-desorption result exhibited hysteresis pattern with single loop, indicating the existence of monomodal mesopore. The extremely narrow pore size distribution with mean pore diameter in the mesopore region of the synthesized Dy(2)O(3) was also confirmed by the BJH result.

  13. Vibratory shear enhanced membrane process and its application in starch wastewater recycle

    Directory of Open Access Journals (Sweden)

    Kazi Sarwar Hasan

    2002-11-01

    Full Text Available Membrane application in wastewater is gaining significant popularity. Selecting the right membrane and filtration technique is an important consideration to ensure a successful system development and long term performance. A new type of membrane filtration technology known as ‘Vibratory Shear Enhanced Process’ (VSEP is introduced in this paper with some test results that has been conducted with VSEP pilot unit to recycle starch wastewater. Conventional cross flow membrane process used in wastewater application always led to rapid fouling. This loss in throughput capacity is primarily due to the formation of a layer that builds up naturally on the membranes surface during the filtration process. In addition to cutting down on the flux performance of the membrane, this boundary or gel layer acts as a secondary membrane reducing the native design selectivity of the membrane in use. This inability to handle the buildup of solids has also limited the use of membranes to low-solids feed streams. In a VSEP system, an additional shear wave produced by the membrane’s vibration cause solids and foulants to be lifted off the membrane surface and remixed with the bulk material flowing through the membrane stack. This high shear processing exposes the membrane pores for maximum throughput that is typically between 3 to10 times the throughput of conventional cross-flow systems. The short term results with raw starch wastewater shows very stable flux rate of 110 lmh using the VSEP system and selecting the PVDF ultrafiltration membrane with no pre-filtration.

  14. Modelling Meso-Scale Diffusion Processes in Stochastic Fluid Bio-Membranes

    CERN Document Server

    Rafii-Tabar, H

    1999-01-01

    The space-time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is described by the Canham-Helfrich Hamiltonian, with the membrane height function treated as a stochastic process. The diffusion parameter of this process acts as the link coupling the membrane shape fluctuations to the kinematics of the inclusions. The latter is described via Ito stochastic differential equation. In addition to stochastic forces, the inclusions also experience membrane-induced deterministic forces. Our aim is to simulate the diffusion-driven aggregation of inclusions and show how the external inclusions arrive at the sites of the embedded inclusions. The model has potential use in such emerging fields as...

  15. New cation-exchange membranes for hyperfiltration processes

    NARCIS (Netherlands)

    Velden, van der P.M.; Smolders, C.A.

    1977-01-01

    A new route for the preparation of cation exchange membranes from polystyrene-polyisoprene-polystyrene (SIS) block copolymers has been studied, using N-chlorosulfonyl isocyanate. At temperatures of 0° to 20°C, N-chlorosulfonyl isocyanate reacts readily with the olefin group in polyisoprenes, resulti

  16. Characterizing the Deformation of the Polydimethylsiloxane (PDMS Membrane for Microfluidic System through Image Processing

    Directory of Open Access Journals (Sweden)

    Xiang Qian

    2016-05-01

    Full Text Available Polydimethylsiloxane (PDMS membranes have been widely used in the microfluidic community to achieve various functions such as control, sensing, filter, etc. In this paper, an experimental process was proposed to directly characterize the deformation of the on-chip PDMS membrane at large deformation based on the image processing method. High precision pressures were applied on the surface of the PDMS membrane with fixed edges and a series deformation of the PDMS membrane were captured by the imaging system. The Chan and Vese (CV level set method was applied to segment the images of the deformed membrane. The volumes wrapped by the deformed membranes were obtained, and pressure-volumes relationships of the PDMS membranes with different geometry parameters were also calculated. Then the membrane capacitance can be derived by differentiating the curve of pressure-volumes. In addition, the theoretical estimation of the capacitance of the PDMS membrane at large deformation was also obtained through finite element simulation (FEM, which was in good agreement with the experimental results. These results are expected to be significant for designing and on-chip measuring of such PDMS membrane based microfluidic components in our future work.

  17. Surfactant-Associated Bacteria in the Sea Surface Microlayer and their Effect on Remote Sensing Technology

    Science.gov (United States)

    Kurata, N.; Vella, K.; Tartar, A.; Matt, S.; Shivji, M.; Perrie, W. A.; Soloviev, A.

    2012-12-01

    Synthetic aperture radar remote sensing captures various fine-scale features on the ocean surface such as coastal discharges, oil pollution, vessel traffic, algal blooms and sea slicks. Although numerous factors potentially affect the synthetic aperture radar imaging process, the influence of biogenic and anthropogenic surfactants has been suggested as one of the primary parameters, especially under relatively low wind conditions. Surfactants have a tendency to dampen the short gravity-capillary ocean waves causing the sea surface to smoothen, thus allowing the radar to detect areas of surfactants. Surfactants are found in sea slicks, which are the accumulation of organic material shaped as elongated bands on the ocean's surface. Sea slicks are often observable with the naked eye due to their glassy appearance and can also be seen on synthetic aperture radar images as dark scars. While the sources of surfactants can vary, some are known to be of marine bacteria origin. Countless numbers of marine bacteria are present in the oceanic environment, and their biogeochemical contributions cannot be overlooked. Not only does marine-bacteria produce surfactants, but they also play an important role in the transformation of surfactants. In this study, we profiled the surfactant-associated bacteria composition within the biogenic thin layer of the ocean surface more commonly referred as the sea surface microlayer. Bacterial samples were collected from the sea surface microlayer for comparative analysis from both within and outside of sea slick areas as well as the underlying subsurface water. The bacterial microlayer sampling coincided with synthetic aperture radar satellite, RADARSAT-2, overpasses to demonstrate the simultaneous in-situ measurements during a satellite image capture. The sea surface microlayer sampling method was designed to enable aseptic bacterial sampling. A 47 mm polycarbonate membrane was utilized at each sampling site to obtain a snapshot of the

  18. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    Science.gov (United States)

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO4-P) and ammonia nitrogen (NH4-N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  19. Membrane technology in production of biofuels : tried-and-tested technology improves new biofuel processes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-15

    Membrane filtration technology, long used in many industrial process streams, is now being adopted in biofuels production and integrated biorefineries, particularly in second generation cellulosic ethanol processes. Second-generation bio-ethanol processes seek to optimize fuel recovery and secondary products from the feedstock and obtain a better value fuel. Membranes are being used to improve bioprocesses, lower energy costs, and increase product recovery. Membranes are engineered physical barriers used in processes for liquid/liquid and liquid/solid separation, permitting the passage of materials only up to a certain size, shape, or character. In biodiesel processes, membranes are being increasingly used to facilitate water reuse. The technology is being explored for use in the production of organic acids, which can form the base for biodegradable plastics. Integrated biorefineries are using microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Membranes are being used in fermentation with mesophilic and thermophilic organisms to produce biofuels and organic and amino acids. Membrane technology is low cost relative to using evaporators for recovering or removing water, and it is promising for continuous fermentation, as it helps retain microbial biomass in the fermenter while allowing liquid to be drawn out continuously. Membrane technology developed for use at wastewater treatment plants is being applied in biodiesel production, which produces wash water that is high in contaminants. Membrane technology is part of a wave of biofuel research and demonstration plants.

  20. Successful Integration of Membrane Technologies in a Conventional Purification Process of Tannery Wastewater Streams

    Directory of Open Access Journals (Sweden)

    Angelo Chianese

    2013-07-01

    Full Text Available The aim of this work is to design and integrate an optimized batch membrane process in a conventional purification process used for the treatment of tannery wastewater. The integration was performed by using two spiral wound membrane modules in series, that is, nanofiltration and reverse osmosis, as substitutes to the biological reactor. The membrane process was designed in terms of sensible fouling issues reduction, which may be observed on the nanofiltration membrane if no optimization is performed. The entity of the fouling phenomena was estimated by pressure cycling measurements, determining both the critical and the threshold flux on the nanofiltration membrane. The obtained results were used to estimate the need of the overdesign of the membrane plant, as well as to define optimized operating conditions in order to handle fouling issues correctly for a long period of time. Finally, the developed membrane process was compared, from a technical and economic point of view, with the conventional biological process, widely offered as an external service near tannery production sites, and, here, proposed to be substituted by membrane technologies.

  1. Counterion identity effects on the self-assembly processes in a series of perfluorinated surfactant-water mixtures

    CERN Document Server

    Zhou, R

    2003-01-01

    The effects of counterion on the lyotropic liquid crystalline phase behaviour of some quaternary ammonium salts of perfluorodecanoic acid in water have been studied using a combination of optical polarising microscopy (OPM), deuterium nuclear magnetic resonance ( sup 2 H NMR) and cryo-transmission electron microscopy (cryo-TEM). The results from the phase diagram studies fall into two groups. Firstly the ammonium (A) and tetramethylammonium (TMA) counterions show a phase behaviour with nematic (N) and random mesh (Mh sub 1 (0)) phase which possess non-uniform interfacial curvature. The second group of surfactants with counterions, butyltrimethylammonium (BTMA), dibutyidimetylammonium (DBDMA), and tetrabutylammonium (TEA), form only a classical lamellar phase (L subalpha). For both DBDMA and TBA lower consolute behaviour has been observed. At fixed concentration in all five systems cryo-TEM visualises isotropic liquid phase structures that vary from sphere / rod micelles for A and TMA to vesicles / bilayer pie...

  2. Insights into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance.

    Science.gov (United States)

    Jiang, Bo; Yu, Lihong; Wu, Lantao; Mu, Di; Liu, Le; Xi, Jingyu; Qiu, Xinping

    2016-05-18

    Nafion membranes are now the most widely used membranes for long-life vanadium flow batteries (VFBs) because of their extremely high chemical stability. Today, the type of Nafion membrane that should be selected and how to pretreat these Nafion membranes have become critical issues, which directly affects the performance and cost of VFBs. In this work, we chose the Nafion 115 membrane to investigate the effect of the pretreatment process (as received, wet, boiled, and boiled and dried) on the performance of VFBs. The relationship between the nanostructure and transport properties of Nafion 115 membranes is elucidated by wide-angle X-ray diffraction and small-angle X-ray scattering techniques. The self-discharge process, battery efficiencies, electrolyte utilization, and long-term cycling stability of VFBs with differently pretreated Nafion membranes are presented comprehensively. An online monitoring system is used to monitor the electrolyte volume that varies during the long-term charge-discharge test of VFBs. The capacity fading mechanism and electrolyte imbalance of VFBs with these Nafion 115 membranes are also discussed in detail. The optimal pretreatment processes for the benchmark membrane and practical application are synthetically selected.

  3. Donnan dialysis as membrane process for nitrate removal from drinking water: Membrane structure effect

    Directory of Open Access Journals (Sweden)

    S. Ben Hamouda

    2017-02-01

    Full Text Available Nitrates are extremely soluble in water and are considered as the renown pollutants of natural water and water table. Removing them through AMX, AM3, and RPA anion exchange membranes has been studied under donnan dialysis conditions as a function of concentration, pH and the nature of the feed phase. It was observed that the AMX membrane gives the highest nitrate transport efficiency and that the optimal concentration in the selected zone was in 6.2 g/L (0.1 M with 37.9%. It was also observed that the best pH for the concentration of 0.62 g/L is pH 10 with yield of 23%. Results are evaluated by the yield calculated with nitrates concentration detected by molecular absorption spectrometry in 212 nm.

  4. Direct Contact Membrane Distillation of Dairy Process Streams

    Science.gov (United States)

    Hausmann, Angela; Sanciolo, Peter; Vasiljevic, Todor; Ponnampalam, Elankovan; Quispe-Chavez, Nohemi; Weeks, Mike; Duke, Mikel

    2011-01-01

    Membrane distillation (MD) was applied for the concentration of a range of dairy streams, such as whole milk, skim milk and whey. MD of a pure lactose solution was also investigated. Direct contact MD (DCMD) mode experiments were carried out in continuous concentration mode, keeping the warm feed/retentate and cold permeate stream temperatures at 54 °C and 5 °C respectively. Performance in terms of flux and retention was assessed. The flux was found to decrease with an increase of dry-matter concentration in the feed. Retention of dissolved solids was found to be close to 100% and independent of the dry-matter concentration in the feed. Fourier Transform Infrared Spectroscopy (FTIR) of the fouled membranes confirms organics being present in the fouling layer. PMID:24957495

  5. Direct Contact Membrane Distillation of Dairy Process Streams

    Directory of Open Access Journals (Sweden)

    Mike Weeks

    2011-01-01

    Full Text Available Membrane distillation (MD was applied for the concentration of a range of dairy streams, such as whole milk, skim milk and whey. MD of a pure lactose solution was also investigated. Direct contact MD (DCMD mode experiments were carried out in continuous concentration mode, keeping the warm feed/retentate and cold permeate stream temperatures at 54 °C and 5 °C respectively. Performance in terms of flux and retention was assessed. The flux was found to decrease with an increase of dry-matter concentration in the feed. Retention of dissolved solids was found to be close to 100% and independent of the dry-matter concentration in the feed. Fourier Transform Infrared Spectroscopy (FTIR of the fouled membranes confirms organics being present in the fouling layer.

  6. Application of membrane separation in fruit and vegetable juice processing: a review.

    Science.gov (United States)

    Ilame, Susmit A; Satyavir, V Singh

    2015-01-01

    Fruit and vegetable juices are used due to convenience. The juices are rich in various minerals, vitamins, and other nutrients. To process the juices and their clarification and/or concentration is required. The membranes are being used for these purposes. These processes are preferred over others because of high efficiency and low temperature. Membranes and their characteristics have been discussed in brief for knowing suitability of membranes for fruit and vegetable juices. Membrane separation is low temperature process in which the organoleptic quality of the juice is almost retained. In this review, different membrane separation methods including Microfiltration, Ultrafiltration, and Reverse osmosis for fruit juices reported in the literature are discussed. The major fruit and vegetable juices using membrane processes are including the Reverse osmosis studies for concentration of Orange juice, Carrot juice, and Grape juice are discusses. The Microfiltration and Ultrafiltration are used for clarification of juices of mosambi juice, apple juice, pineapple juice, and kiwifruit juice. The various optimized parameters in membranes studies are pH, TAA, TSS, and AIS. In this review, in addition to above the OD is also discussed, where the membranes are used.

  7. Investigation of microbial communities on reverse osmosis membranes used for process water production

    NARCIS (Netherlands)

    Bereschenko, L.A.; Stams, A.J.M.; Heilig, G.H.J.; Euverink, G.J.W.; Nederlof, M.M.; Loosdrecht, M.C.M.

    2007-01-01

    In the present study, the diversity and the phylogenetic affiliation of bacteria in a biofouling layer on reverse osmosis (RO) membranes were determined. Fresh surface water was used as a feed in a membrane-based water purification process. Total DNA was extracted from attached cells from feed space

  8. Membrane contactor assisted extraction/reaction process employing ionic liquids

    Science.gov (United States)

    Lin, Yupo J.; Snyder, Seth W.

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  9. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard; Zhou, S James; Ding, Yong; Bikson, Ben

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating

  10. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process

    Indian Academy of Sciences (India)

    Bhabesh Kumar Nath; Aziz Khan; Joyanti Chutia; Arup Ratan Pal; Heremba Bailung; Neelotpal Sen Sarma; Devasish Chowdhury; Nirab Chandra Adhikary

    2014-12-01

    This work reports the achievement of higher proton conductivity of polystyrene based proton exchange membrane synthesized in a continuous RF plasma polymerization process using two precursors, styrene (C8H8) and trifluoromethane sulfonic acid (CF3SO3H). The chemical composition of the developed membranes is investigated using Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Scanning electron microscopy has been used for the study of surface morphology and thickness measurement of the membrane. The membranes deposited in the power range from 0.114 to 0.318 Wcm-2 exhibit a lot of variation in the properties like proton transport, water uptake, sulfonation rate, ion exchange capacity and thermal behaviour. The proton conductivity of the membranes is achieved up to 0.6 Scm-1, measured with the help of potentiostat/galvanostat. The thermogravimetric study of the plasma polymerized membrane shows the thermal stability up to 140 °C temperature.

  11. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  12. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  13. The binding and insertion of imidazolium-based ionic surfactants into lipid bilayers: the effects of the surfactant size and salt concentration.

    Science.gov (United States)

    Lee, Hwankyu; Jeon, Tae-Joon

    2015-02-28

    Imidazolium-based ionic surfactants with hydrocarbon tails of different sizes were simulated with lipid bilayers at different salt concentrations. Starting with the random position of ionic surfactants outside the bilayer, surfactants with long tails mostly insert into the bilayer, while those with short tails show the insertion of fewer surfactant molecules, indicating the effect of the tail length. In particular, surfactants with a tail of two or four hydrocarbons insert and reversibly detach from the bilayer, while the inserted longer surfactants cannot be reversibly detached because of the strong hydrophobic interaction with lipid tails, in quantitative agreement with experiments. Longer surfactants insert more deeply and irreversibly into the bilayer and thus increase lateral diffusivities of the bilayer, indicating that longer surfactants more significantly disorder lipid bilayers, which also agrees with experiments regarding the effect of the tail length of ionic surfactants on membrane permeability and toxicity. Addition of NaCl ions weakens the electrostatic interactions between headgroups of surfactants and lipids, leading to the binding of fewer surfactants into the bilayer. In particular, our simulation findings indicate that insertion of ionic surfactants can be initiated by either the hydrophobic interaction between tails of surfactants and lipids or the electrostatic binding between imidazolium heads and lipid heads, and the strength of hydrophobic and electrostatic interactions depends on the tail length of surfactants.

  14. Automated process flowsheet synthesis for membrane processes using genetic algorithm: role of crossover operators

    KAUST Repository

    Shafiee, Alireza

    2016-06-25

    In optimization-based process flowsheet synthesis, optimization methods, including genetic algorithms (GA), are used as advantageous tools to select a high performance flowsheet by ‘screening’ large numbers of possible flowsheets. In this study, we expand the role of GA to include flowsheet generation through proposing a modified Greedysub tour crossover operator. Performance of the proposed crossover operator is compared with four other commonly used operators. The proposed GA optimizationbased process synthesis method is applied to generate the optimum process flowsheet for a multicomponent membrane-based CO2 capture process. Within defined constraints and using the random-point crossover, CO2 purity of 0.827 (equivalent to 0.986 on dry basis) is achieved which results in improvement (3.4%) over the simplest crossover operator applied. In addition, the least variability in the converged flowsheet and CO2 purity is observed for random-point crossover operator, which approximately implies closeness of the solution to the global optimum, and hence the consistency of the algorithm. The proposed crossover operator is found to improve the convergence speed of the algorithm by 77.6%.

  15. River Water Purification via a Coagulation-Porous Ceramic Membrane Hybrid Process

    Institute of Scientific and Technical Information of China (English)

    张荟钦; 仲兆祥; 李卫星; 邢卫红; 金万勤

    2014-01-01

    Membrane filtration technology combined with coagulation is widely used to purify river water. In this study, microfiltration (MF) and ultrafiltration (UF) ceramic membranes were combined with coagulation to treat local river water located at Xinghua, Jiangsu province, China. The operation parameters, fouling mechanism and pilot-scale tests were investigated. The results show that the pore size of membrane has small effect on the pseudo-steady flux for dead-end filtration, and the increase of flux in MF process is more than that in UF process for cross-flow filtration with the same increase of cross-flow velocity. The membrane pore size has little influence on the water quality. The analysis on membrane fouling mechanism shows that the cake filtration has significant in-fluence on the pseudo-steady flux and water quality for the membrane with pore size of 50, 200 and 500 nm. For the membrane with pore size of 200 nm and backwashing employed in our pilot study, a constant flux of 150 L·m-2·h-1 was reached during stable operation, with the removal efficiency of turbidity, total organic carbon (TOC) and UV254 higher than 99%, 45%and 48%, respectively. The study demonstrates that coagulation-porous ceramic membrane hybrid process is a reliable method for river water purification.

  16. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis

    2011-01-01

    The objective of this paper is to assess if a membrane microbioreactor system could potentially be used to diagnose consequences of different process design and reactor operation options relevant for larger-scale enzymatic degradation of pectin reactions. The membrane microbioreactor prototype...... was demonstrated by performing a continuous enzymatic degradation of pectin experiment for a range of reactor conditions: different membrane molecular weight cutoff (MWCO) values, enzyme-to-substrate ratios (E/S), and substrate feeding rates (F) were assessed. Based on the experimental data, it was found...... design affected the membrane rejection profile. The results obtained thus underlined the suitability of a miniature membrane reactor system for evaluating different process design options that are relevant for larger-scale reactions of enzymatic pectin degradation....

  17. Proceedings Fourth Workshop on Membrane Computing and Biologically Inspired Process Calculi 2010

    CERN Document Server

    Ciobanu, Gabriel; 10.4204/EPTCS.40

    2010-01-01

    The 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010) is organized in Jena as a satellite event of the Eleventh International Conference on Membrane Computing (CMC11). Biological membranes play a fundamental role in the complex reactions which take place in cells of living organisms. The importance of this role has been considered in two different types of formalisms introduced recently. Membrane systems were introduced as a class of distributed parallel computing devices inspired by the observation that any biological system is a complex hierarchical structure, with a flow of biochemical substances and information that underlies their functioning. The modeling and analysis of biological systems has also attracted considerable interest of the process algebra research community. Thus the notions of membranes and compartments have been explicitly represented in a family of calculi, such as ambients and brane calculi. A cross fertilization of these two research areas has ...

  18. Replacement of chemical intensive water treatment processes with energy saving membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, M.C.; Goering, S.W.

    1983-11-01

    The project investigated the use of charged ultrafiltration membranes to treat hard water. More specifically, the work was undertaken to (1) make charged ultrafiltration membranes to demonstrate the technical feasibility of the chemical grafting approach; (2) evaluate the market potential for charged ultrafiltration membranes; and (3) evaluate the cost and energy savings for using charged ultrafiltration as compared to lime-based clarification and other treatment methods. The results suggest that chemical grafting is a relatively simple, reproducible and low-cost way to modify existing substrate materials to give them enhanced transport performance. Process studies lead to the identification of good market potential for membrane processes using charged ultrafiltration membranes. Capital and operating costs relative to lime-based clarification are favorable for low- and medium-sized treatment plants. Finally, substantial energy savings are apparent as compared to lime-based precipitation systems which incur substantial energy consumption in the lime production and transportation steps.

  19. Metathesis depolymerization for removable surfactant templates.

    Energy Technology Data Exchange (ETDEWEB)

    Zifer, Thomas (Sandia National Laboratories, Livermore, CA); Wheeler, David Roger; Rahimian, Kamayar; McElhanon, James Ross (Sandia National Laboratories, Livermore, CA); Long, Timothy Michael; Jamison, Gregory Marks; Loy, Douglas Anson (Los Alamos National Laboratories, Los Alamos, NM); Kline, Steven R. (National Institute of Standards and Technology, Gaithersburg, MD); Simmons, Blake Alexander (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

  20. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  1. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  2. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  3. Self-Assembling Peptide Surfactants A6K and A6D Adopt a-Helical Structures Useful for Membrane Protein Stabilization

    Directory of Open Access Journals (Sweden)

    Furen Zhuang

    2011-10-01

    Full Text Available Elucidation of membrane protein structures have been greatly hampered by difficulties in producing adequately large quantities of the functional protein and stabilizing them. A6D and A6K are promising solutions to the problem and have recently been used for the rapid production of membrane-bound G protein-coupled receptors (GPCRs. We propose that despite their short lengths, these peptides can adopt α-helical structures through interactions with micelles formed by the peptides themselves. These α-helices are then able to stabilize α-helical motifs which many membrane proteins contain. We also show that A6D and A6K can form β-sheets and appear as weak hydrogels at sufficiently high concentrations. Furthermore, A6D and A6K together in sodium dodecyl sulfate (SDS can form expected β-sheet structures via a surprising α-helical intermediate.

  4. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  5. Molecular dynamics of surfactant protein C

    DEFF Research Database (Denmark)

    Ramírez, Eunice; Santana, Alberto; Cruz, Anthony

    2006-01-01

    Surfactant protein C (SP-C) is a membrane-associated protein essential for normal respiration. It has been found that the alpha-helix form of SP-C can undergo, under certain conditions, a transformation from an alpha-helix to a beta-strand conformation that closely resembles amyloid fibrils, which...

  6. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...

  7. Energy minimization of separation processes using conventional/membrane hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Gottschlich, D.E.; Roberts, D.L. (SRI International, Menlo Park, CA (USA))

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  8. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Science.gov (United States)

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  9. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Directory of Open Access Journals (Sweden)

    Alejandro Cerrada

    Full Text Available Lung alveolar type II (ATII cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs have been differentiated into Alveolar Type II- Like Cells (ATII-LCs, which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  10. Palm oil based surfactant products for petroleum industry

    Science.gov (United States)

    Permadi, P.; Fitria, R.; Hambali, E.

    2017-05-01

    In petroleum production process, many problems causing reduced production are found. These include limited oil recovery, wax deposit, asphaltene deposit, sludge deposit, and emulsion problem. Petroleum-based surfactant has been used to overcome these problems. Therefore, innovation to solve these problems using surfactant containing natural materials deserves to be developed. Palm oil-based surfactant is one of the potential alternatives for this. Various types of derivative products of palm oil-based surfactant have been developed by SBRC IPB to be used in handling problems including surfactant flooding, well stimulation, asphaltene dissolver, well cleaning, and wax removal found in oil and gas industry.

  11. Process energy efficiency in pervaporation and vacuum membrane distillation separation of 2,3-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Shao, P.; Kumar, A. [National Research Council Canada (Canada)

    2011-10-15

    2,3- butanediol has not been produced lately as a fermentation product. Recovery of 2,3- butanediol by distillation is a very energy-intensive process, due to its low concentration in fermentation broth and strong hydrogen bonding interaction between water molecules. An initiative for recovery, an integrated process comprising solvent extraction and pervaporation (PV), has been proposed. This paper presents the energy efficiency of the pervaporative and vacuum membrane distillation separation processes of 2,3- butanediol. The mass and energy balance of the pervaporation process are simulated using a numerical model that is presented in this paper. From the study, it was observed that the distribution of the evaporation heat required over the membrane is asymmetric and within 60% of the membrane area, more than 85% of the heat was consumed. It was also discovered that recycling permeate improves the recovery process and enhances the energy efficiency of the process.

  12. Trypsin from the processing waste of the lane snapper (Lutjanus synagris) and its compatibility with oxidants, surfactants and commercial detergents.

    Science.gov (United States)

    Espósito, Talita S; Marcuschi, Marina; Amaral, Ian P G; Carvalho, Luiz B; Bezerra, Ranilson S

    2010-05-26

    A trypsin from the viscera of the lane snapper (Lutjanus synagris) was purified by heat treatment, fractionation with ammonium sulfate and affinity chromatography. The molecular weight of the enzyme was estimated to be 28.4 kDa (SDS-PAGE). The purified enzyme was capable of hydrolyzing the specific substrate for trypsin benzoyl-arginine-p-nitroanilide (BApNA) and was inhibited by benzamidine and tosyl lysine chloromethyl ketone (TLCK), synthetic trypsin inhibitors and phenylmethylsulfonyl fluoride (PMSF), which is a serine-protease inhibitor. The enzyme exhibited maximal activity at pH 9.0 and 45 degrees C and retained 100% of the activity after incubation at the optimal temperature for 30 min. At a concentration of 10 mM, activity was slightly activated by Ca(2+) and inhibited by the following ions in decreasing order: Cd(2+) > Hg(2+) > Cu(2+) > Zn(2+) > Al(3+). The effects of Ba(2+), K(1+) and Li(1+) proved to be less intensive. Using 1% (w/v) azocasein as substrate, the enzyme revealed high resistance (60% residual activity) when incubated with 10% H(2)O(2) for 75 min. The enzyme retained more than 80% activity after 60 min in the presence of different surfactants (Tween 20, Tween 80 and sodium choleate). The alkaline protease demonstrated compatibility with commercial detergents (7 mg/mL), such as Bem-te-vi, Surf and Ala, retaining more than 50% of initial activity after 60 min at 25 degrees C and 30 min at 40 degrees C. The thermostability and compatibility of this enzyme with commercial detergents suggest a good potentiality for application in the detergent industry.

  13. A hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment.

    Science.gov (United States)

    Zhang, Yong; Zhao, Peng; Li, Jie; Hou, Deyin; Wang, Jun; Liu, Huijuan

    2016-10-01

    A novel catalytic ozonation membrane reactor (COMR) coupling homogeneous catalytic ozonation and direct contact membrane distillation (DCMD) was developed for refractory saline organic pollutant treatment from wastewater. An ozonation process took place in the reactor to degrade organic pollutants, whilst the DCMD process was used to recover ionic catalysts and produce clean water. It was found that 98.6% total organic carbon (TOC) and almost 100% salt were removed and almost 100% metal ion catalyst was recovered. TOC in the permeate water was less than 16 mg/L after 5 h operation, which was considered satisfactory as the TOC in the potassium hydrogen phthalate (KHP) feed water was as high as 1000 mg/L. Meanwhile, the membrane distillation flux in the COMR process was 49.8% higher than that in DCMD process alone after 60 h operation. Further, scanning electron microscope images showed less amount and smaller size of contaminants on the membrane surface, which indicated the mitigation of membrane fouling. The tensile strength and FT-IR spectra tests did not reveal obvious changes for the polyvinylidene fluoride membrane after 60 h operation, which indicated the good durability. This novel COMR hybrid process exhibited promising application prospects for saline organic wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  15. Boric acid permeation in forward osmosis membrane processes: modeling, experiments, and implications.

    Science.gov (United States)

    Jin, Xue; Tang, Chuyang Y; Gu, Yangshuo; She, Qianhong; Qi, Saren

    2011-03-15

    Forward osmosis (FO) is attracting increasing interest for its potential applications in desalination. In FO, permeation of contaminants from feed solution into draw solution through the semipermeable membrane can take place simultaneously with water diffusion. Understanding the contaminants transport through and rejection by FO membrane has significant technical implications in the way to separate clean water from the diluted draw solution. In this study, a model was developed to predict boron flux in FO operation. A strong agreement between modeling results and experimental data indicates that the model developed in this study can accurately predict the boron transport through FO membranes. Furthermore, the model can guide the fabrication of improved FO membranes with decreased boron permeability and structural parameter to minimize boron flux. Both theoretical model and experimental results demonstrated that when membrane active layer was facing draw solution, boron flux was substantially greater compared to the other membrane orientation due to more severe internal concentration polarization. In this investigation, for the first time, rejection of contaminants was defined in FO processes. This is critical to compare the membrane performance between different membranes and experimental conditions.

  16. Preparation and Application of Chitosan Membranes to Filter Silver from X-ray Film Processing Wastes

    Science.gov (United States)

    Nyoman Rupiasih, N.; Rustam Purnomo, Rendra; Sumadiyasa, Made

    2016-04-01

    Chitosan is a natural polysaccharide biopolymer which has been widely used in different processes and applications. Chitosan based membranes have been used in reverse osmosis, gas separation, dialysis and pervaporation. The object of this research was investigating the possibility of chitosan membrane used as a filter for removing silver (Ag) from X-ray film processing wastes. Several of chitosan membranes such as M1, M2, M3 and M4 have been prepared for the purpose and filtration was done using dead-end filtration method. The filtration experiments were performed on a flat sheet membrane using pure water and X-ray film processing wastes as feeds. The analysis of silver concentration has been done by atomic absorption spectrometers (AAS). The results show that chitosan membrane M2 gave the highest filtration coefficient (Rcoeff ) i.e. 99.9%, with the pure water flux (PWF) and product flux (PF) are 2972.56 L/m2h and 1761.18 L/m2h respectively. The rejection coefficient of the membranes decreases with increasing the amount of chitosan, while the pure water flux and product flux are increased. The filtration coefficients show that the chitosan membranes are able to filter silver waste from X-ray film processing wastes with performance dependent on their characteristic such as pores size. This suggests that, chitosan membrane can be used as one method that is safe and friendly environment for recovering silver from X-ray film processing waste to improve the quality of treated to an acceptable quality level.

  17. Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: javben@unex.es; Acero, Juan L.; Leal, Ana I.; Real, Francisco J. [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-03-21

    The degradation of the pollutant organic matter present in the cork processing wastewater was studied by combining chemical treatments, which used ozone and some Advanced Oxidation Processes, and membrane filtration procedures. Two schemes were conducted: firstly, a single ozonation stage followed by an UF stage; and secondly, a membrane filtration stage, using different MF and UF membranes, followed by a chemical oxidation stage, where ozone, UV radiation, and the AOPs constituted by ozone plus UV radiation and ozone plus hydrogen peroxide, were used. The membrane filtration stages were carried out in tangential filtration laboratory equipment, and the membranes used were two MF membranes with pores sizes of 0.65 and 0.1 {mu}m, and three UF membranes with molecular weights cut-off of 300, 10, and 5 kDa. The effectiveness of the different stages (conversions in the chemical procedures and rejection coefficients in the membrane processes) were evaluated in terms of several parameters which measure the global pollutant content of the wastewater: COD, absorbance at 254 nm, tannins content, color, and ellagic acid. In the ozonation/UF combined process the following removals were achieved: 100% for ellagic acid and color, 90% for absorbance at 254 nm, more than 80% for tannins, and 42-57% for COD reduction. In the filtration/chemical oxidation combined process, 100% elimination of ellagic acid, more than 90% elimination in color, absorbance at 254 nm and tannins, and removal higher than 80% in COD were reached, which indicates a greater purification power of this combination.

  18. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  19. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2016-08-01

    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  20. Microfiltration Process by Inorganic Membranes for Clarification of TongBi Liquor

    Directory of Open Access Journals (Sweden)

    Minyan Huang

    2012-02-01

    Full Text Available Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs. The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL, a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in terms of flux, transmittance of the ingredients, physical-chemical parameters, removal of macromolecular materials and fouling resistance. The results show that 0.2 μm zirconium oxide membrane is more suitable. The stable permeate flux reaches 135 L·h−1·m−2, the cumulative transmittance of the indicator is 65.53%. Macromolecular materials, such as starch, protein, tannin, pectin and total solids were largely eliminated in retentate after filtration using 0.2 μm ZrO2 ceramic membrane, resulting in clearer TBL. Moreover, this work also reveals that continuous ultrasound could strengthen membrane process that the permeate flux increases significantly. This work demonstrates that the purification of CHME with ceramic membranes is possible and yielded excellent results.

  1. Microfiltration process by inorganic membranes for clarification of TongBi liquor.

    Science.gov (United States)

    Li, Bo; Huang, Minyan; Fu, Tingming; Pan, Linmei; Yao, Weiwei; Guo, Liwei

    2012-02-01

    Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs). The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL), a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in terms of flux, transmittance of the ingredients, physical-chemical parameters, removal of macromolecular materials and fouling resistance. The results show that 0.2 μm zirconium oxide membrane is more suitable. The stable permeate flux reaches 135 L·h(-1)·m(-2), the cumulative transmittance of the indicator is 65.53%. Macromolecular materials, such as starch, protein, tannin, pectin and total solids were largely eliminated in retentate after filtration using 0.2 μm ZrO2 ceramic membrane, resulting in clearer TBL. Moreover, this work also reveals that continuous ultrasound could strengthen membrane process that the permeate flux increases significantly. This work demonstrates that the purification of CHME with ceramic membranes is possible and yielded excellent results.

  2. Ionic transport processes in electrochemistry and membrane science

    CERN Document Server

    Kontturi, Kyösti; Manzanares, José A

    2008-01-01

    Modelling of heterogeneous processes, such as electrochemical reactions, extraction or ion-exchange, usually requires solving the transport problem associated to the process. Since the processes at the phase boundary are described by scalar quantities and transport quantities are vectors or tensors, coupling of them can take place only via conservation of mass, charge or momentum. In this book, transport of ionic species is addressed in a versatile manner, emphasizing the mutualcoupling of fluxes in particular. Treatment is based on the formalism of irreversible thermodynamics, i.e. on linear

  3. Understanding leaf membrane protein extraction to develop a food-grade process.

    Science.gov (United States)

    Tamayo Tenorio, Angelica; Boom, Remko M; van der Goot, Atze Jan

    2017-02-15

    Leaf membrane proteins are an underutilised protein fraction for food applications. Proteins from leaves can contribute to a more complete use of resources and help to meet the increasing protein demand. Leaf protein extraction and purification is applied by other disciplines, such as proteomics. Therefore, this study analysed proteomic extraction methods for membrane proteins as an inspiration for a food-grade alternative process. Sugar beet leaves were extracted with two proteomic protocols: solvent extraction and Triton X-114 phase partitioning method. Extraction steps contributed to protein purity and/or to selective fractionation, enabling the purification of specific proteins. It was observed that membrane proteins distributed among different solvents, buffers and solutions used due to their physicochemical heterogeneity. This heterogeneity does not allow a total membrane protein extraction by a unique method or even combinations of processing steps, but it enables the creation of different fractions with different physicochemical properties useful for food applications.

  4. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects

    Directory of Open Access Journals (Sweden)

    Sagar Roy

    2017-09-01

    Full Text Available Pervaporation (PV has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  5. Microfiltration Process by Inorganic Membranes for Clarification of TongBi Liquor

    OpenAIRE

    Li, Bo; HUANG, MINYAN; Fu, Tingming; Pan, Linmei; Yao, Weiwei; Guo, Liwei

    2012-01-01

    Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs). The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL), a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in ter...

  6. Modeling of air-gap membrane distillation process: A theoretical and experimental study

    KAUST Repository

    Alsaadi, Ahmad Salem

    2013-06-03

    A one dimensional (1-D) air gap membrane distillation (AGMD) model for flat sheet type modules has been developed. This model is based on mathematical equations that describe the heat and mass transfer mechanisms of a single-stage AGMD process. It can simulate AGMD modules in both co-current and counter-current flow regimes. The theoretical model was validated using AGMD experimental data obtained under different operating conditions and parameters. The predicted water vapor flux was compared to the flux measured at five different feed water temperatures, two different feed water salinities, three different air gap widths and two MD membranes with different average pore sizes. This comparison showed that the model flux predictions are strongly correlated with the experimental data, with model predictions being within +10% of the experimentally determined values. The model was then used to study and analyze the parameters that have significant effect on scaling-up the AGMD process such as the effect of increasing the membrane length, and feed and coolant flow rates. The model was also used to analyze the maximum thermal efficiency of the AGMD process by tracing changes in water production rate and the heat input to the process along the membrane length. This was used to understand the gain in both process production and thermal efficiency for different membrane surface areas and the resultant increases in process capital and water unit cost. © 2013 Elsevier B.V.

  7. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  8. ELECTROCHEMICAL STABILITY OF STRONG BASIC ANION EXCHANGE MEMBRANES IN CONDITIONS OF HIGH INTENSIVE ELECTRODIALYSIS PROCESS

    OpenAIRE

    Zabolotskiy V. I.; Sharafan M. V.; Chermit R. H.; Vasilieva V. I.

    2014-01-01

    The stability of strongly basic anion-exchange membranes MA-41-2P (JSC "Schekino-Nitrogen", Russia) and AMX (Tokuyama Soda, Japan) under intensive current regimes was investigated in the current study. The process of water molecules dissociation at current densities above the limiting one in 0.01 M sodium chloride solution was studied in detail. The length of the electroconvective instability at the membrane / solution interface at currents exceeding the limiting current was measured by laser...

  9. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  10. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  11. Dendrimer-surfactant interactions.

    Science.gov (United States)

    Cheng, Yiyun; Zhao, Libo; Li, Tianfu

    2014-04-28

    In this article, we reviewed the interactions between dendrimers and surfactants with particular focus on the interaction mechanisms and physicochemical properties of the yielding dendrimer-surfactant aggregates. In order to provide insight into the behavior of dendrimers in biological systems, the interactions of dendrimers with bio-surfactants such as phospholipids in bulk solutions, in solid-supported bilayers and at the interface of phases or solid-states were discussed. Applications of the dendrimer-surfactant aggregates as templates to guide the synthesis of nanoparticles and in drug or gene delivery were also mentioned.

  12. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  13. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  14. Treatment of Zn-Containing Acidic Waste Water by Emulsion Liquid Membrane Process

    Institute of Scientific and Technical Information of China (English)

    王士柱; 何培炯; 郝东萍; 朱永贝睿

    2002-01-01

    Zn-containing waste water from a viscose staple fiber plant has been treated using the emulsion liquid membrane (ELM) process since 1995. The flow sheet and operating parameters of the ELM process are introduced. After adjusting the membrane composition, changing the emulsion phase ratio, and adding a scrubbing step, the ELM process operated normally without trouble for emulsion splitting and mass transport throughput. The splitter voltage was decreased to 3.55 kV. The zinc concentration of treated waste water was lowered to less than 10 mgL-1. More than 95% of the zinc was recovered and reused.

  15. Surfactant Sector Needs Urgent Readjustment

    Institute of Scientific and Technical Information of China (English)

    Huang Hongzhou

    2007-01-01

    @@ Surfactant industrial system has been basically established After 50 years' development, China has already established a surfactant industrial system with a relatively complete product portfolio and can produce 4714 varieties of surfactants in cationic,anionic, nonionic and amphoteric categories.

  16. Physical chemistry and process engineering of an emulsion - membrane bioreactor

    NARCIS (Netherlands)

    Schroe͏̈n, K.

    1995-01-01

    Fatty acids (and glycerol) are produced by hydrolysis of fats and oils in counter-current fat- splitting columns which operate at a temperature of 200-240 °C and a pressure of 50-60 bar. Undesired side-products are formed during the process. These have to be removed in order to obtain an

  17. Performance assessment of membrane distillation for skim milk and whey processing.

    Science.gov (United States)

    Hausmann, Angela; Sanciolo, Peter; Vasiljevic, Todor; Kulozik, Ulrich; Duke, Mikel

    2014-01-01

    Membrane distillation is an emerging membrane process based on evaporation of a volatile solvent. One of its often stated advantages is the low flux sensitivity toward concentration of the processed fluid, in contrast to reverse osmosis. In the present paper, we looked at 2 high-solids applications of the dairy industry: skim milk and whey. Performance was assessed under various hydrodynamic conditions to investigate the feasibility of fouling mitigation by changing the operating parameters and to compare performance to widespread membrane filtration processes. Whereas filtration processes are hydraulic pressure driven, membrane distillation uses vapor pressure from heat to drive separation and, therefore, operating parameters have a different bearing on the process. Experimental and calculated results identified factors influencing heat and mass transfer under various operating conditions using polytetrafluoroethylene flat-sheet membranes. Linear velocity was found to influence performance during skim milk processing but not during whey processing. Lower feed and higher permeate temperature was found to reduce fouling in the processing of both dairy solutions. Concentration of skim milk and whey by membrane distillation has potential, as it showed high rejection (>99%) of all dairy components and can operate using low electrical energy and pressures (<10 kPa). At higher cross-flow velocities (around 0.141 m/s), fluxes were comparable to those found with reverse osmosis, achieving a sustainable flux of approximately 12 kg/h·m(2) for skim milk of 20% dry matter concentration and approximately 20 kg/h·m(2) after 18 h of operation with whey at 20% dry matter concentration. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Testing of Synthetic Biological Membranes for Forward Osmosis Applications

    Science.gov (United States)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Mancinelli, Rocco; Kawashima, Brian; Trieu, Serena; Brozell, Adrian; Rosenberg, Kevan

    2016-01-01

    Commercially available forward osmosis membranes have been extensively tested for human space flight wastewater treatment. Despite the improvements achieved in the last decades, there is still a challenge to produce reliable membranes with anti-fouling properties, chemical resistance, and high flux and selectivity. Synthetic biological membranes that mimic the ones present in nature, which underwent millions of years of evolution, represent a potential solution for further development and progress in membrane technology. Biomimetic forward osmosis membranes based on a polymeric support filter and coated with surfactant multilayers have been engineered to investigate how different manufacturing processes impact the performance and structure of the membrane. However, initial results of the first generation prototype membranes tests reveal a high scatter in the data, due to the current testing apparatus set up. The testing apparatus has been upgraded to improve data collection, reduce errors, and to allow higher control of the testing process.

  19. Conversion of Methane to Syngas by a Membrane-Based Oxidation-Reforming Process

    NARCIS (Netherlands)

    Chen, C.S.; Chen, Chusheng; Feng, Shao-Jie; Ran, S.; Zhu, Du-Chun; Liu, W.; Liu, Wei; Bouwmeester, Henricus J.M.

    2003-01-01

    Two processes in one space: Methane, the main component of natural gas, can be converted into syngas efficiently in a two-stage oxygen-permeable ceramic membrane reactor by means of integrated oxidation and reforming processes (see picture). This could be a cheaper alternative to the current steam-r

  20. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  1. Effect of gamma-ray irradiation at low doses on the performance of PES ultrafiltration membrane

    Science.gov (United States)

    Zhang, Xue; Niu, Lixia; Li, Fuzhi; Yu, Suping; Zhao, Xuan; Hu, Hongying

    2016-10-01

    The influence of gamma irradiation on the performance of polyether sulfone (PES) ultrafiltration (UF) membrane was investigated at low absorbed doses (0-75 kGy) using a cobalt source. The performance of the UF membranes was tested using low level radioactive wastewater (LLRW) containing three types of surfactants (anionic, cationic and nonionic surfactants). The physical and chemical properties of membrane surface were analyzed, and relationships between these properties and separation performance and fouling characteristics were determined. At 10-75 kGy irradiation, there were no significant changes observed in the membrane surface roughness or polymer functional groups, however the contact angle decreased sharply from 92° to ca. 70° at irradiation levels as low as 10 kGy. When membranes were exposed to the surfactant-containing LLRW, the flux decreased more sharply for higher dosed irradiated membranes, while flux in virgin membranes increased during the filtration processes. The study highlights that fouling properties of membrane may be changed due to the changes of surface hydrophilicity at low dose irradiation, while other surface properties and retentions remain stable. Therefore, a membrane fouling test with real or simulated wastewater is recommended to fully evaluate the membrane irradiation resistance.

  2. Measurement of hearing loss due to perforated tympanic membrane using image processing techniques

    Science.gov (United States)

    Sardesai, Neha; Sardesai, Ravindra; Chang, Chein-I.

    2014-05-01

    The tympanic membrane (ear drum) is a thin tissue film that is stretched between the outer and middle ear. Sound waves travel from outside the ear, and strike the tympanic membrane resulting in its vibration. These vibrations amplify the sound waves and transmit them to the ossicles (auditory bones). The magnitude of amplification is directly proportional to vibrating area of tympanic membrane. Hence a perforation in this membrane would result in hearing loss. Pure-tone audiometry is the traditional procedure used to detect the amount of hearing loss in a patient. However, it is lengthy and less efficient, as it largely depends on the response of the patient to sound intensity and frequency of pure-tones. We present a relatively more efficient approach to determine hearing loss due to perforated tympanic membrane using image processing techniques. We describe an algorithm that uses unsharp masking to sharpen images of the perforations as well as the tympanic membrane. Then, it converts the image into a binary image using thresholding. A median filter is applied to get rid of the noise component in the image. The ratio of the area of perforation and total area of tympanic membrane will define the percentage of hearing loss. Our approach will eliminate the error introduced due to patient dependency as in the traditional method.

  3. Synthesis and Microstructure of Doped Alumina Composite Membrane by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-hong; ZHANG Ying; WU Jian-feng; BAI Zhan-liang

    2003-01-01

    The supported membranes of Al2O3 and its modification membranes were prepared.Al2O3,Al2O3-SiO2-TiO2 and Al2O3-SiO2-TiO2-ZrO2 membranes were mamufatured by the slip-casting process using mixing boehmite,silicate,titania and zirconia sols under proper conditions,then the composite membrane was prepared.The structure and characteristics of the membrane were determined by XRD,SEM and AFM measurement.The conditions of preparation of the membrane are discussed.The thickness of the layer is about 1-2μm,the diameter of an average pore is 200-300nm and has a narrow pore distribution without crack forming.By changing the ratios of Al∶Si∶Ti∶Zr(mol),variations of surface pore size of Al2O3-SiO2-TiO2-ZrO2 membrane can be gained.

  4. Synthesis of Nanostructured Anatase Mesoporous Membranes with Photocatalytic and Separation Capabilities for Water Ultrafiltration Process

    Directory of Open Access Journals (Sweden)

    Vahideh Tajer-Kajinebaf

    2013-01-01

    Full Text Available In this work, the nanostructured anatase mesoporous membranes were prepared for water ultrafiltration (UF process with photocatalytic and physical separation capabilities. A macroporous substrate was synthesized from α-Al2O3, then a colloidal titania sol was used for the preparation of the intermediate layer. Also, the membrane top layer was synthesized by deposition and calcination of titania polymeric sol on the intermediate layer. The characterization was performed by DLS, TG-DTA, XRD, BET, FESEM, TEM, and AFM techniques. Also, the filtration experiments were carried out based on separation of methyl orange from aqueous solution by a membrane setup with a dead-end filtration cell. Photocatalytic activity of the membranes was evaluated by methyl orange photodegradation using UV-visible spectrophotometer. The mean particle size of the colloidal and polymeric sols was 14 and 1.5 nm, respectively. The anatase membranes exhibited homogeneity, with the surface area of 32.8 m2/g, the mean pore size of 8.17 nm, and the crystallite size of 9.6 nm. The methyl orange removal efficiency by the mesoporous membrane based on physical separation was determined to be 52% that was improved up to 83% by a coupling photocatalytic technique. Thus, the UF membrane showed a high potential due to its multifunctional capability for water purification applications.

  5. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  6. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes.

  8. Quantification and morphology studies of nanoporous alumina membranes: a new algorithm for digital image processing.

    Science.gov (United States)

    Choudhari, Khoobaram S; Jidesh, Pacheeripadikkal; Sudheendra, Parampalli; Kulkarni, Suresh D

    2013-08-01

    A new mathematical algorithm is reported for the accurate and efficient analysis of pore properties of nanoporous anodic alumina (NAA) membranes using scanning electron microscope (SEM) images. NAA membranes of the desired pore size were fabricated using a two-step anodic oxidation process. Surface morphology of the NAA membranes with different pore properties was studied using SEM images along with computerized image processing and analysis. The main objective was to analyze the SEM images of NAA membranes quantitatively, systematically, and quickly. The method uses a regularized shock filter for contrast enhancement, mathematical morphological operators, and a segmentation process for efficient determination of pore properties. The algorithm is executed using MATLAB, which generates a statistical report on the morphology of NAA membrane surfaces and performs accurate quantification of the parameters such as average pore-size distribution, porous area fraction, and average interpore distances. A good comparison between the pore property measurements was obtained using our algorithm and ImageJ software. This algorithm, with little manual intervention, is useful for optimizing the experimental process parameters during the fabrication of such nanostructures. Further, the algorithm is capable of analyzing SEM images of similar or asymmetrically porous nanostructures where sample and background have distinguishable contrast.

  9. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater.

    Science.gov (United States)

    Benítez, F Javier; Acero, Juan L; Leal, Ana I; González, Manuel

    2009-03-15

    Filtration experiments in batch concentration mode (with recycling of the retentate stream) of the cork processing wastewater were performed in laboratory filtration membrane equipment, by using four commercial membranes: two UF membranes with MWCO of 20,000 and 5000 Da, and two NF membranes with an approximate MWCO of 150-300 Da. The filtration experiments of the selected wastewater were performed by modifying the most important operating variables: transmembrane pressure, tangential velocity, temperature, and the nature and MWCO of the membranes. The evolution of the cumulative permeate volumes and permeate fluxes with processing time were analysed, and it was established that the steady-state permeate flux was reached for a volume retention factor of 2. The effect of the mentioned operating conditions on this steady-state permeate flux was discussed. The effectiveness of the filtration treatments was determined by the evaluation of the rejection coefficients for several parameters, which measure the global pollutant content of the effluent: COD, absorbance at 254 nm, tannic content, color, and ellagic acid. Finally, the resistances in series model was used for the evaluation of the resistances to the permeate flux, and it was concluded that the contribution to the total resistance of the fouling resistance (combined external plus internal) was higher than the inherent resistance of the clean membrane.

  10. Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myeong-Jin; Nam, Suk-Tae [Kyungil University, Gyeongsan (Korea, Republic of); Lee, Keun-Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was 1.8081x10{sup -7} m/s·atm for draw solution on active layer (DS-AL) mode and 1.0957-10{sup -7} m/s·atm for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was 5.5306x10{sup 6} and 9.1266x10{sup 6} s·atm/m, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33-1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (π) would be expressed as J=-0.0177+0.4506π-0.0032π{sup 2} for the forward and J=0.0948+0.3292π-0.0037π{sup 2} for the latter.

  11. Membrane bioreactor process of organic wastewater from brassylic acid manufacturing plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The wastewater treatment from brassylic acid manufacturing plantusing membrane bioreactor (MBR) was studied. The membrane bioreactor consisted of batch-operation biological aeration tank and ultrafiltration evaluation tank. The content of test included the affection of variation operation conditions on ultrafiltration separation, the general characteristics of MBR process, and the difference comparing with the conventional biological treatment. The results are as follows: (1) among the test membrane material, polyether sulphone (PES) membrane is more suitable for the wastewater treatment; (2) when the cutoff molecular weight is among 10000-50000, the higher the cutoff molecular weight, the bigger the water flux is in the test; (3) under the operation pressure, water flux increases accompanying with the increasing of operation pressure; (4) the paper filtered COD concentration has more affection on the water flux than the suspended solid concentration; (5) as the volume loading of MBR increases, the accumulation of high molecule organic substance and colloid increases, the membrane permeate COD concentration and paper filtered COD concentration increase too, meanwhile the water flux reduces; (6) when the sludge retention time of activated sludge of MBR increases, the accumulation of high molecule organic substance and colloid reduces, the membrane permeate COD concentration and paper filtered COD concentration reduce too, and the water flux increases; (7) comparing with the conventional biological process, the microbial activity is higher, but the microbial species is less.

  12. Polymer/Ceramic Composite Membranes and Their Application in Pervaporation Process

    Institute of Scientific and Technical Information of China (English)

    刘公平; 卫旺; 金万勤; 徐南平

    2012-01-01

    Pervaporation (PV), as an environmental friendly and energy-saving separation technology, has been received increasing attention in recent years. This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes. The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane (PDMS) and hydrophilic poly(vinyl alcohol) (PVA), chitosan (CS) and polyelectrolytes. The effects of ceramic support treatment, polymer solution properties, interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed. Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussio.n. The.applications of these composite_membranesi_n_ pervaporation process are summarized as well, which contain the bio-fuels recovery, gasoline desulfuration and PV coupled process using PDMS/ceramic composite membrane, and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane. Finally, a brief conclusion remark on polymer/ceramic composite mem- branes is given and possible future research is outlined.

  13. Contribution of cubilin and amnionless to processing and membrane targeting of cubilin-amnionless complex.

    Science.gov (United States)

    Coudroy, Gwénaëlle; Gburek, Jakub; Kozyraki, Renata; Madsen, Mette; Trugnan, Germain; Moestrup, Søren K; Verroust, Pierre J; Maurice, Michèle

    2005-08-01

    Cubilin is a peripheral apical membrane receptor for multiple ligands that are taken up in several absorptive epithelia. Recently, amnionless (AMN) was identified to form a functional receptor complex with cubilin. By expression in transfected polarized MDCK cells of AMN and several cubilin fragments, including a functional "mini" version of cubilin, the processing, sorting, and membrane anchoring of the complex to the apical membrane were investigated. The results show that truncation mutants, including the N-terminal domain of cubilin, did not appear at the plasma membrane but instead were retained in the endoplasmic reticulum or partially secreted into the medium. Coexpression with AMN led to efficient transport to the apical cell surface of the cubilin constructs, which included the EGF domains, and prevented release into the medium. AMN co-precipitated with cubilin and co-localized with cubilin at the apical cell surface. Apical sorting was observed for a broad set of nonoverlapping cubilin fragments without the N-terminal region, in the absence of AMN. The preference for apical sorting disappeared when glycosylation was inhibited by tunicamycin. In conclusion, it is shown that both units contribute to the processing of the cubilin-AMN complex to the apical membrane: AMN interacts with the EGF domains of cubilin and is responsible for membrane attachment and export of the complex from the endoplasmic reticulum, whereas the extracellular cubilin molecule is responsible for apical sorting of the complex in a carbohydrate-dependent manner.

  14. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2014-08-01

    Full Text Available Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF. The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  15. Laser induced wounding of the plasma membrane and methods to study the repair process.

    Science.gov (United States)

    Jimenez, Ana J; Maiuri, Paolo; Lafaurie-Janvore, Julie; Perez, Franck; Piel, Matthieu

    2015-01-01

    Cells are constantly exposed to agents that can trigger the perforation of their plasma membrane. This damage occurs naturally, and the frequency and intensity depends on how much cells are exposed to damaging threats. The following protocol is a simple and powerful method to damage the plasma membrane using laser ablation. It allows the induction of a single and localized wound at the plasma membrane of cultured cells, which can be followed with fast time-lapse imaging. The first part of the protocol describes simple cell culture techniques and the material ideal to make the experiments. A second part of the protocol gives advice about the procedures to make effective wounds in cells while ensuring a good survival rate. We also propose different ways to follow the opening and closure of the plasma membrane. Finally, we describe the procedure to efficiently analyze the data acquired after single cell photodamage to characterize the wounding process.

  16. Contribution of cubilin and amnionless to processing and membrane targeting of cubilin-amnionless complex

    DEFF Research Database (Denmark)

    Coudroy, Gwénaëlle; Gburek, Jakub; Kozyraki, Renata;

    2005-01-01

    Cubilin is a peripheral apical membrane receptor for multiple ligands that are taken up in several absorptive epithelia. Recently, amnionless (AMN) was identified to form a functional receptor complex with cubilin. By expression in transfected polarized MDCK cells of AMN and several cubilin...... fragments, including a functional "mini" version of cubilin, the processing, sorting, and membrane anchoring of the complex to the apical membrane were investigated. The results show that truncation mutants, including the N-terminal domain of cubilin, did not appear at the plasma membrane but instead were...... retained in the endoplasmic reticulum or partially secreted into the medium. Coexpression with AMN led to efficient transport to the apical cell surface of the cubilin constructs, which included the EGF domains, and prevented release into the medium. AMN co-precipitated with cubilin and co...

  17. Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution.

    Science.gov (United States)

    Hu, Zhiqiang; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2012-04-01

    "Milking processing" describes the cultivation of microalgae in a water-organic solvent two-phase system that consists of simultaneous fermentation and secretion of intracellular product. It is usually limited by the conflict between the biocompatibility of the organic solvent to the microorganisms and the ability of the organic solvent to secret intracellular product into its extracellular broth. In the present work, submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle aqueous solution for pigment production is exploited, in which the fungus Monascus remains actively growing. Permeabilization of intracellular pigments across the cell membrane and extraction of the pigments to the nonionic surfactant micelles of its fermentation broth occur simultaneously. "Milking" the intracellular pigments in the submerged cultivation of Monascus is a perstraction process. The perstractive fermentation of intracellular pigments has the advantage of submerged cultivation by secretion of the intracellular pigments to its extracellular broth and the benefit of extractive microbial fermentation by solubilizing the pigments into nonionic surfactant micelles. It is shown as the marked increase of the extracellular pigment concentration by the submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle solution.

  18. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2016-01-01

    Full Text Available The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6-carboxyfluorescein (CF across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate , and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers.

  19. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo. Re

  20. Morphology control studies of TiO2 microstructures via surfactant-assisted hydrothermal process for dye-sensitized solar cell applications

    Science.gov (United States)

    Lekphet, Woranan; Ke, Tsai-Chyuan; Su, Chaochin; Kathirvel, Sasipriya; Sireesha, Pedaballi; Akula, Suri Babu; Li, Wen-Ren

    2016-09-01

    The controlled morphological TiO2 particles have gained great importance in a wide variety of applications due to their promising physico-chemical properties. In this study, TiO2 microstructures with various shapes to utilize as scattering layer in dye-sensitized solar cell (DSSC) applications were successfully synthesized via different hydrothermal conditions. The effects of the versatile preparation parameters including the amount of titania precursor and surfactant, the addition of ethanol/water, and the hydrothermal process temperature and time on the TiO2 morphology were investigated. The structural and morphological analysis clearly shown that the preparation conditions played crucial roles in the morphology, particle size, and crystalline phase of the TiO2 microparticles. Different kinds of shapes such as rice- (∼1.10 μm (l) and ∼0.41 μm (w)), star- (∼3.60 μm) and flower-like (3.75 μm) TiO2 morphological structures were obtained. The morphology and size of the TiO2 particles were mainly governed by the concentrations of titanium tetraisopropoxide (TTIP) precursor, amounts of tetramethylammonium hydroxide (TMAH) surfactant and hydrothermal temperatures and durations. The as-prepared rice-shaped TiO2 was composed of mixed anatase and brookite binary phases, whereas the star- and flower-shaped TiO2 microstructures were consisted of ternary anatase, rutile, and brookite crystalline TiO2 phases. The three different rice-, star-, and flower-shaped TiO2 microstructures were employed as scattering layers for photoanodes in DSSCs. Among them, the star-like TiO2 photoanode based DSSC exhibited the highest power conversion efficiency of 9.56%, which was also better than those of the devices fabricated without scattering layer (a-TiO2, 8.38%) and with commercial P25 as scattering layer (a-TiO2/P25-TiO2, 8.52%) at the same film thickness of ∼14 μm.

  1. Application of Photo-Fenton Process for COD Removal from Wastewater Produced from Surfactant-Washed  Oil-Contaminated (TPH Soils

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mehrasbi

    2012-10-01

    Full Text Available Backgrounds and Objectives: The base structure of total petroleum hydrocarbons (TPH is made of hydrogen and carbon. Widespread use, improper disposal and accidental spills of this compounds lead to long term remaining of contaminations such as organic solvents and poly aromatic hydrocarbons (PAHs in the soil and groundwater resources, resulting in critical environmental issues. In this study, an oil-contaminated soil was washed using Tween 80 surfactant and the application of photo-Fenton process (UV/Fe2+/H2O2 for treatment of the produced wastewater was evaluated. Materials and Methods: Tween 80 is a yellow liquid with high viscosity and soluble in water. In order to determine of the photo-Fenton process efficiency, we studied effective variables including Fe concentration, pH, H2O2 concentration, and irradiation time. The UV irradiation source was a medium-pressure mercury vapor lamp (400 w vertically immersed in the solution within 2L volume glass cylindrical reactor.Results: The results showed that efficiency of COD removal depends on the initial Fe concentration, pH, H2O2 concentration and irradiation time. Under optimum conditions, (Fe: 0.1mM, H2O2: 0.43 mM, pH: 3 and UV light irradiation time: 2 hours the removal efficiency of COD was 67.3%. pH plays a crucial role in the photo-Fenton process such that the removal efficiency increased with decreasing of pH. Conclusion: According to the results of this study, under acidic condition, this process is an efficient method for COD removal from the wastewater studied.

  2. Surfactants and the Mechanics of Respiration

    Science.gov (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  3. CeO2-Y2O3-ZrO2 Membrane with Enhanced Molten Salt Corrosion Resistance for Solid Oxide Membrane (SOM) Electrolysis Process

    Science.gov (United States)

    Zou, Xingli; Li, Xin; Shen, Bin; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong

    2017-02-01

    Innovative CeO2-Y2O3-ZrO2 membrane has been successfully developed and used in the solid oxide membrane (SOM) electrolysis process for green metallic materials production. The x mol pct ceria/(8- x) mol pct yttria-costabilized zirconia ( xCe(8- x)YSZ, x = 0, 1, 4, or 7) membranes have been fabricated and investigated as the membrane-based inert anodes to control the SOM electroreduction process in molten salt. The characteristics of these fabricated xCe(8- x)YSZ membranes including their corrosion resistances in molten salt and their degradation mechanisms have been systematically investigated and compared. The results show that the addition of ceria in the YSZ-based membrane can inhibit the depletion of yttrium during the SOM electrolysis, which thus makes the ceria-reinforced YSZ-based membranes possess enhanced corrosion resistances to molten salt. The ceria/yttria-costabilized zirconia membranes can also provide reasonable oxygen ion conductivity during electrolysis. Further investigation shows that the newly modified 4Ce4YSZ ceramic membrane has the potential to be used as novel inert SOM anode for the facile and sustainable production of metals/alloys/composites materials such as Si, Ti5Si3, TiC, and Ti5Si3/TiC from their metal oxides precursors in molten CaCl2.

  4. CeO2-Y2O3-ZrO2 Membrane with Enhanced Molten Salt Corrosion Resistance for Solid Oxide Membrane (SOM) Electrolysis Process

    Science.gov (United States)

    Zou, Xingli; Li, Xin; Shen, Bin; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong

    2016-10-01

    Innovative CeO2-Y2O3-ZrO2 membrane has been successfully developed and used in the solid oxide membrane (SOM) electrolysis process for green metallic materials production. The x mol pct ceria/(8-x) mol pct yttria-costabilized zirconia (xCe(8-x)YSZ, x = 0, 1, 4, or 7) membranes have been fabricated and investigated as the membrane-based inert anodes to control the SOM electroreduction process in molten salt. The characteristics of these fabricated xCe(8-x)YSZ membranes including their corrosion resistances in molten salt and their degradation mechanisms have been systematically investigated and compared. The results show that the addition of ceria in the YSZ-based membrane can inhibit the depletion of yttrium during the SOM electrolysis, which thus makes the ceria-reinforced YSZ-based membranes possess enhanced corrosion resistances to molten salt. The ceria/yttria-costabilized zirconia membranes can also provide reasonable oxygen ion conductivity during electrolysis. Further investigation shows that the newly modified 4Ce4YSZ ceramic membrane has the potential to be used as novel inert SOM anode for the facile and sustainable production of metals/alloys/composites materials such as Si, Ti5Si3, TiC, and Ti5Si3/TiC from their metal oxides precursors in molten CaCl2.

  5. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  6. Process intensification in the textile industry: the role of membrane technology.

    Science.gov (United States)

    Van der Bruggen, B; Curcio, E; Drioli, E

    2004-11-01

    Process intensification is a concept that was recently introduced in the chemical industry for the purpose of reducing environmental emissions, energy consumption and materials consumption. The principle of process intensification can be used in related industries as well; textile finishing is an exemplary activity where it may have a significant long-term added value. Membrane technology can be a key factor in the recycling and reuse of energy, water and chemicals. In this paper, an integral approach for treatment of aqueous process streams in the textile finishing industry is proposed. The proposed process includes microfiltration pretreatment of used finishing baths, followed by a dual nanofiltration (NF) unit. These can be operated at elevated temperatures so that no further energy is needed for preheating of recycle streams. In the proposed treatment scheme, the first of the NF units uses a loose nanofiltration membrane that retains most of the organic fraction but not the dissolved salts. The second unit uses a tight nanofiltration membrane, which produces a permeate fraction that can be directly reused, and a concentrated brine that is fed to a membrane crystallizer. In this unit, salts are recovered and recycled for use in new dye baths. The concentrate stream from the first NF unit is fed to a membrane distillation unit, where the high temperature is advantageously used for further concentration. The remaining fraction is not reusable, given the fact that most dyes are hydrolyzed after exhaustion of the bath, but has a significant energetic value, which can be utilized for compensation of energy losses and preheating of suppletion water, by using an incineration process with energy recovery. The concept was not tested experimentally, but a simulation for a 500 m3/d production unit shows that it is feasible, although modifications may be necessary depending on the nature of the finishing baths. Furthermore, the membrane choice in the first NF unit is a

  7. 2-DE using hemi-fluorinated surfactants.

    Science.gov (United States)

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.

  8. Water repellency induced by pulmonary surfactants.

    Science.gov (United States)

    Hills, B A

    1982-04-01

    1. Pure cotton fabric was partially carboxylated to produce a tough, porous, hydrophilic sub-phase to stimulate the epithelial membrane of the alveolar wall from a permeability standpoint. 2. Two of the predominant pulmonary surfactants, dipalmitoyl lecithin (DPL) and dipalmitoyl phosphatidylethanolamine (DPPE), were found to inhibit wetting of this synthetic membrane and of human cutaneous epithelium as manifest by a large contact angle. 3. When treated with DPL at physiological concentrations, the porous synthetic membrane was found to support a head of saline well in excess of systolic pulmonary artery pressure with no penetration and could do so for periods well in excess of 1 hr; untreated control samples allowed almost immediate fluid filtration. 4. Filtration could be initiated in the DPL-treated membranes by wetting the reverse side, confirming that the threshold pressure for fluid penetration was afforded by capillarity and, hence, by water repellency induced by the surfactant. 5. Water repellency induced by the amphoteric surfactants occurring naturally in the lung is discussed as a possible factor contributing to the pressure threshold to be exceeded for alveolar oedema to form. 6. Evidence is reviewed and several advantages discussed for the implied concept of an essentially dry lining to the alveolus with a discontinuous liquid layer largely confined to convex corners which could slowly resolve any oedema by surface forces.

  9. Preparation, Processing, and Characterization of Oriented Polycrystalline Zeolite and Aluminophosphate Membranes

    Science.gov (United States)

    Stoeger, Jared Andrew

    Since the advent of zeolite membranes, speculation on their industrial applicability has been closely monitored, although widespread commercialization has been hampered by limitations in fabrication and post-synthesis processing. Economical, energy-efficient technology breakthroughs require an evaluation of a range of material candidates which show robustness and reliability. Straightforward manufacturing techniques should be devised to generate thousands of square meters of membrane area; however, this demands control of structural characteristics on the scale of nanometers. As described in this dissertation, the path forward will be forged by exploiting the intrinsic crystalline properties of zeolites or aluminophosphates for the next advancement in membrane technology. A facile method is described for the preparation of silicalite-1 (MFI zeolite type) membranes using the secondary growth technique on symmetric porous stainless steel tubes. Activation through rapid thermal processing (RTP), a lamp-based heat-treatment process used as a critical fabrication step in silicon integrated circuit manufacturing, is proven to reduce the density of non-zeolitic transport pathways which are detrimental to high-resolution molecular sieving. RTP-treated membranes are shown to have enhanced performance in the binary separation of vapor-phase isomers (p-/o-xylene), gas-phase isomers (n-/i-butane), and alcohol/water when compared to membranes activated at a much slower heating rate but otherwise similarly-prepared. The performance is discussed in the context of the market potential for industrially-attractive separations: the recovery of p-xylene from an isomeric mixture or alcohol biofuels from aqueous post-fermentation streams. Hydrothermal growth techniques for the preparation and characterization of continuous aluminophosphate (AFI zeolite type) membranes with a preferential crystallographic alignment on porous alpha-Al2O3 disc supports are demonstrated. A mechanism is

  10. A process synthesis-intensification framework for the development of sustainable membrane-based operations

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Lutze, Philip; Woodley, John

    2014-01-01

    In this paper a multi-level, multi-scale framework for process synthesis-intensification that aims to make the process more sustainable than a base-case, which may represent a new process or an existing process, is presented. At the first level (operation-scale) a conceptual base case design...... larger-scale. Those alternatives that are able to address the identified hot-spots therefore give innovative and more sustainable process designs that otherwise could not be found from the larger-scales. In this paper, membrane-based operations identified through this framework are highlighted in terms...... more sustainable process design alternatives....

  11. Effect of powdered activated carbon on integrated submerged membrane bioreactor-nanofiltration process for wastewater reclamation.

    Science.gov (United States)

    Woo, Yun Chul; Lee, Jeong Jun; Shim, Wang-Geun; Shon, Ho Kyong; Tijing, Leonard D; Yao, Minwei; Kim, Han-Seung

    2016-06-01

    The aim of this study was to determine the effect of powdered activated carbon (PAC) on the overall performance of a submerged membrane bioreactor (SMBR) system integrated with nanofiltration (NF) for wastewater reclamation. It was found that the trans-membrane pressure of SMBR increased continuously while that of the SMBR with PAC was more stable, mainly because water could still pass through the PACs and membrane even though foulants adhered on the PAC surface. The presence of PAC was able to mitigate fouling in SMBR as well as in NF. SMBR-NF with PAC obtained a higher flux of 8.1 LMH compared to that without PAC (6.6 LMH). In addition, better permeate quality was obtained with SMBR-NF integrated process added with PAC. The present results suggest that the addition of PAC in integrated SMBR-NF process could possibly lead to satisfying water quality and can be operated for a long-term duration.

  12. Immobilized biocatalytic process development and potential application in membrane separation: a review.

    Science.gov (United States)

    Chakraborty, Sudip; Rusli, Handajaya; Nath, Arijit; Sikder, Jaya; Bhattacharjee, Chiranjib; Curcio, Stefano; Drioli, Enrico

    2016-01-01

    Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.

  13. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases].

    Science.gov (United States)

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan

    2016-08-01

    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases.

  14. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    Science.gov (United States)

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional

  15. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria.

    Science.gov (United States)

    Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa

    2013-09-17

    We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.

  16. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  17. Implications of membrane fouling toward the removal of the pharmaceutical sulfamethoxazole by nanofiltration processes

    Institute of Scientific and Technical Information of China (English)

    Alexander SIMON; William PRICE; Long Duc NGHIEM

    2011-01-01

    The influence of membrane fouling on the retention of the trace organic contaminant sulfamethoxazole by a nanofiltration (NF) process was investigated.Organic fouling caused a severe flux decline possibly due to pore blocking and adsorption directly after the commencement of the fouling layer development.Such membrane-foulant interactions were absent for colloidal fouling,which resulted in a more gradual flux decline.Membrane charge played a significant role in the separation process of inorganic salts,where the retention was the highest in a caustic environment (high pH) due to more swollen membrane material caused by the higher negative charge on the membrane.Organic fouling and a combination of colloidal and organic fouling led to a significant increase in the membrane negative charge.The influence of membrane fouling on solute retention was dependent on the fouling behaviour and the physicochemical properties of the model foulants,where the model foulants probably contributed to an increase in the retention of charged solutes due to enhanced electrostatic interactions.Organic fouling caused an increase in the retention of inorganic salts and sulfamethoxazole due to pore blocking.In contrast,colloidal fouling caused a decrease in the retention of inorganic salts due to cake-enhanced concentration polarisation.However,the presence of a colloidal fouling layer did not reduce the retention of sulfamethoxazole.A mixture of colloidal and organic matter improved the retention of inorganic salts.A similar conclusion can be inferred for sulfamethoxazole at pH 4 when the compound exists in a neutral form.

  18. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  19. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  20. Studies on improved integrated membrane-based chromatographic process for bioseparation

    Science.gov (United States)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  1. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    Science.gov (United States)

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO2-selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  2. Surfactants in the environment.

    Science.gov (United States)

    Ivanković, Tomislav; Hrenović, Jasna

    2010-03-01

    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  3. In-situ product removal from fermentations by membrane extraction: conceptual process design and economics

    NARCIS (Netherlands)

    Heerema, L.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.

    2011-01-01

    This paper describes a conceptual process design for the production of the model component phenol by a recombinant strain of the micro-organism Pseudomonas putida S12. The (bio)production of the inhibiting component phenol in a bioreactor is combined with direct product removal by membrane extractio

  4. Membrane-integrated oxy-fuel combustion of coal: Process design and simulation

    NARCIS (Netherlands)

    Chen, Wei; Ham, van der A.G.J.; Nijmeijer, A.; Winnubst, A.J.A.

    2015-01-01

    A membrane-integrated oxy-fuel combustion process is designed and simulated in UniSim Design®. The results of the simulation indicate that a net efficiency of 31.8% is obtained for a coal-fired power plant of 182 MWth (assuming only carbon in the coal), including the compression of CO2 to 100 bar. T

  5. Improved Production Process for Native Outer Membrane Vesicle Vaccine against Neisseria meningitidis

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Wijffels, R.H.; Zomer, G.; Kaaijk, P.; Ruiterkamp, N.; Dobbelsteen, van den G.J.M.; Pol, van der L.A.

    2013-01-01

    An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV) against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable

  6. Pengolahan Limbah Cair Laundry Menggunakan Membran Selulosa Diasetat Berbasis Selulosa Pulp Kayu Sengon (Paraserianthes falcataria

    Directory of Open Access Journals (Sweden)

    Vera Roni Setiawan

    2013-06-01

    Full Text Available The improvement of laundry activity brought a negative effect on the environment because laundry wastewater have a high content pollutants such as phosphate, surfactants, mineral, nitrogen, COD and other components, so the treatment is needed before being discharged into terristorial water. Laundry wastewater treatment has been conducted by membrane technology. Preparation of cellulose diacetate  membranes with ultrafiltration process had be done by phase inversion using dimethylformamide (DMF as a solvent. The filtration experiment showed that the highest membrane flux was 77,408 L/m2.h at TMP 3 bar. While the lowest flux at TMP 1 bar was 55.649 L/m2.h. Rejection of membrane ultrafiltration for parameters of COD, phosphate, and surfactant were 67%, 72%, and 63% respectively. Keywords: cellulose diacetate membranes, laundry wastewater, flux, rejection

  7. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  8. Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes - A solution to bio-fouling in membrane separation processes

    Science.gov (United States)

    Prince, J. A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K. V. K.; Singh, G.

    2014-10-01

    Bio-fouling is a serious problem in many membrane-based separation processes for water and wastewater treatment. Current state of the art methods to overcome this are to modify the membranes with either hydrophilic additives or with an antibacterial compound. In this study, we propose and practise a novel concept to prevent bio-fouling by developing a killing and self-cleaning membrane surface incorporating antibacterial silver nanoparticles and highly hydrophilic negatively charged carboxylic and amine functional groups. The innovative surface chemistry helps to reduce the contact angle of the novel membrane by at least a 48% and increase the pure water flux by 39.4% compared to the control membrane. The flux drop for the novel membrane is also lower (16.3% of the initial flux) than the control membrane (55.3% of the initial flux) during the long term experiments with protein solution. Moreover, the novel membrane continues to exhibit inhibition to microbes even after 1320 min of protein filtration. Synthesis of self-cleaning ultrafiltration membrane with long lasting properties opens up a viable solution for bio-fouling in ultrafiltration application for wastewater purification.

  9. Solid oxide membrane process for the direct reduction of magnesium from magnesium oxide

    Science.gov (United States)

    Krishnan, Ajay

    The Solid Oxide Membrane (SOM) process is an emerging generic technology for the environmentally friendly extraction of high-energy-content metals directly from their oxides. This process has the potential to offer a viable, cost effective and cleaner alternative to existing state of the art primary magnesium extraction processes. The SOM process in principle uses a tubular yttria stabilized-zirconia-based solid oxide fuel cell with liquid metal (copper or tin) as an anode in the temperature range of 1100--1300°C. Magnesium oxide is dissolved in a molten ionic flux and oxygen ions are pumped out of the flux through the zirconia membrane and are oxidized at, the liquid metal anode. Magnesium vapor evolves at the cathode and is condensed in a separate chamber (condenser). The proof of concept for the SOM process was initially demonstrated at 1300°C using a magnesium fluoride-based flux. Since the membrane is the most expensive part of the process, its long-term stability is critical to the scale up and eventual commercialization of the process. Temperature, flux chemistry and cell operating conditions have been identified as key process parameters for membrane stability. A new low temperature flux based on the eutectic: magnesium fluoride-calcium fluoride system, has been developed which has lowered the operating temperature of the SOM cell to 1150°C. Additionally, a minor addition of yttrium fluoride to the flux minimized yttria diffusion from the yttria-stabilized-zirconia membrane, thereby further enhancing membrane stability. Important thermo-physical properties of the selected flux compositions critical to the process such as viscosity, density, volatility, solubility and electrical conductivity have been measured. The SOM cell has been electrochemically characterized and concepts related to MgO dissociation voltage, observed leakage current and mass transfer in the SOM cell are explained. The viability of the SOM process has been demonstrated by the

  10. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  11. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  12. A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham Bin; Pinelo, Manuel; Samanta, Kama

    2011-01-01

    hydrolysis of the substrate to obtain e.g. value-added oligosaccharides from complex biopolymers. The microbioreactor prototype was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) and designed as a loop reactor (working volume approximately 190μL) integrated...... with a regenerated cellulose membrane for separation of low molecular weight products. The main technical considerations and challenges related to establishing the continuous membrane microbioreactor are discussed. The workability of the prototype was validated by comparing the process data at microscale to those...

  13. ELECTROCHEMICAL STABILITY OF STRONG BASIC ANION EXCHANGE MEMBRANES IN CONDITIONS OF HIGH INTENSIVE ELECTRODIALYSIS PROCESS

    Directory of Open Access Journals (Sweden)

    Zabolotskiy V. I.

    2014-12-01

    Full Text Available The stability of strongly basic anion-exchange membranes MA-41-2P (JSC "Schekino-Nitrogen", Russia and AMX (Tokuyama Soda, Japan under intensive current regimes was investigated in the current study. The process of water molecules dissociation at current densities above the limiting one in 0.01 M sodium chloride solution was studied in detail. The length of the electroconvective instability at the membrane / solution interface at currents exceeding the limiting current was measured by laser interferometry

  14. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  15. Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering.

    Science.gov (United States)

    Lautner, Lisa; Pluhackova, Kristyna; Barth, Nicolai K H; Seydel, Tilo; Lohstroh, Wiebke; Böckmann, Rainer A; Unruh, Tobias

    2017-08-01

    Neutron scattering is a powerful tool to study relaxation processes in biological membrane mimics in space and time. Combining different inelastic and quasielastic neutron scattering techniques, a large dynamic range can be covered: from atomic to mesoscopic lengths and from femto- to some hundreds of nanoseconds in time. This allows studies on e.g. the diffusion of lipids, the membrane undulation motions, the dispersion of sound waves in membranes as well as the mutual interactions of membrane constituents such as lipids, proteins, and additives. In particular, neutron scattering provides a quite direct experimental approach to the inter-atomic and inter-molecular potentials on length and time scales which are perfectly accessible by molecular dynamics (MD) simulations. Neutron scattering experiments may thus substantially support the further refinement of biomolecular force fields for MD simulations by supplying structural and dynamical information with high spatial and temporal resolution. In turn, MD simulations support the interpretation of neutron scattering data. The combination of both, neutron scattering experiments and MD simulations, yields an unprecedented insight into the molecular interactions governing the structure and dynamics of biological membranes. This review provides an overview of the molecular dynamics in biological membrane mimics as revealed by neutron scattering. It focuses on the latest findings such as the fundamental molecular mechanism of lateral lipid diffusion as well as the influence of additives and proteins on the short-time dynamics of lipids. Special emphasis is placed on the comparison of recent neutron scattering and MD simulation data with respect to molecular membrane dynamics on the pico- to nanosecond time scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessment of anti-fouling strategies for membrane coupled with upflow anaerobic sludge blanket (MUASB) process.

    Science.gov (United States)

    Tran, Thao Minh; Ye, Yun; Chen, Vicki; Stuetz, Richard; Le-Clech, Pierre

    2013-01-01

    In this novel process, domestic wastewater was filtered by a hollow-fibre membrane coupled with an upflow anaerobic sludge blanket (MUASB) bioreactor. To improve the process sustainability and decrease energy costs, the membranes were operated under low fluxes with little, or no, shear. The efficiency of anti-fouling strategies, including relaxation, backwashing and supply of low aeration and stir rates, was assessed through detailed characterization of the fouling layers. Results indicated that backwashing was more efficient than relaxation, even when the systems were operated under the same flux productivity. In terms of shear supply, stir provided a better fouling limitation strategy compared to aeration, at similar shear stress values. Physical and chemical cleaning methods were applied to recover three fouling fractions (i.e. cake, residual and irreversible) for better characterization of the fouling layers. Under the sustainable operating conditions used in this study, most of the fouling was easily reversible by simple rinsing. In addition, permanent and irreversible fouling, resulting in the need for frequent chemical cleanings and potential membrane degradation, is limited once small shear stresses are applied. These outcomes are expected to form the basis for the future assessment of trade-off between operation, maintenance and replacement costs of membrane filtration processes used in wastewater treatment.

  17. Post-translational processing of surfactant protein-C proprotein: targeting motifs in the NH(2)-terminal flanking domain are cleaved in late compartments.

    Science.gov (United States)

    Johnson, A L; Braidotti, P; Pietra, G G; Russo, S J; Kabore, A; Wang, W J; Beers, M F

    2001-03-01

    Rat surfactant protein (SP)-C is a 3.7-kD hydrophobic lung-specific protein generated from proteolytic processing of a 21-kD propeptide (SP-C(21)). We have demonstrated that initial post-translational processing of SP-C(21) involves two cleavages of the COOH-terminus (Beers and colleagues, J. Biol. Chem. 1994;269:20,318--20,328). The goal of the current study was to define processing and function of the NH(2)-terminal flanking domain. Epitope-specific antisera directed against spatially distinct regions of the NH(2) terminus, NPROSP-C(2-9) (epitope = D(2)-L(9)) and NPROSP-C(11-23) (= E(11)-Q(23)) were produced. By Western blotting, both antisera identified SP-C(21) in microsomes. A 6-kD form (SP-C(6)), enriched in lamellar bodies (LBs), was detected only by NPROSP-C(11-23) and not extractable with NaCO(3) treatment. Immunogold staining of ultrathin lung sections with NPROSP-C(11-23) identified proSP-C in both multivesicular bodies (mvb) and LBs whereas NPROSP-C(2-9) labeled only mvb. (35)S-pulse chase analysis demonstrated synthesis of SP-C(21) and three intermediate forms (SP-C(16), SP-C(7), and SP-C(6)). Complete processing involved four separate cleavages with a precursor- product relationship between the low molecular weight forms SP-C(7) and SP-C(6). Fluorescence microscopy of A549 cells expressing fusion proteins of enhanced green fluorescent protein (EGFP) and proSP-C NH(2)-terminal deletion mutants showed targeting of EGFP/SP-C(1-194) and EGFP/SP-C(10-194) to early endosomal antigen-1-negative, CD-63-positive cytoplasmic vesicles whereas EGFP/SP-C(19-194), EGFP/SP-C(Delta 10-18), and EGFP/SP-C(24-194) were restricted to the endoplasmic reticulum (ER). We conclude that synthetic processing includes a previously unrecognized cleavage of the proximal NH(2) terminus (M(1)-L(9)), which occurs after removal of COOH-flanking domains (H(59)-I(194)) but before packaging in LBs, and that the region M(10)-T(18) is required for targeting of proSP-C to post-ER vesicular

  18. Standard Practice for Processing Aerospace Liquid Samples for Particulate Contamination Analysis Using Membrane Filters

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice covers the processing of liquids in preparation for particulate contamination analysis using membrane filters and is limited only by the liquid-to-membrane filter compatibility. 1.2 The practice covers the procedure for filtering a measured volume of liquid through a membrane filter. When this practice is used, the particulate matter will be randomly distributed on the filter surface for subsequent contamination analysis methods. 1.3 The practice describes procedures to allow handling particles in the size range between 2 and 1000 μm with minimum losses during handling. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  19. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu

    2017-02-13

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  20. Multilayered composite proton exchange membrane and a process for manufacturing the same

    Energy Technology Data Exchange (ETDEWEB)

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  1. The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    CERN Document Server

    Seeger, H M; Heimburg, T; Gudmundsson, Marie L.; Heimburg, Thomas; Seeger, Heiko M.

    2007-01-01

    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases...

  2. Fuzzy self-tuning PID control of the operation temperatures in a two-staged membrane separation process

    Institute of Scientific and Technical Information of China (English)

    Lei Wang; Wencai Du; Hai Wang; Hong Wu

    2008-01-01

    A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.

  3. Concentration of antioxidant polyphenols from Thymus capitatus extracts by membrane process technology.

    Science.gov (United States)

    Achour, Sami; Khelifi, Eltaief; Attia, Yesmine; Ferjani, Ezzeddine; Noureddine Hellal, Ahmed

    2012-06-01

    Thymus capitatus is a Mediterranean plant characterized by its antioxidant polyphenols of which the most known are the carnosic and rosmarinic acids. In this way, this study aims to concentrate these acids by membrane processes. The thyme essential oil composition was established by capillary GC-MS and 27 components were identified representing 98.93%± 1.97% of total oils. The antioxidant test for permeate and retentate of methanolic and aqueous extract were determined using 3 types of membranes. The results showed that the synthetic NF membrane is able to trap and concentrate phenolic compounds in the retentate much better than the NF commercial and UF synthetic membrane. The results of the total phenolic content (TPC) showed a significant value of the polyphenol content present in the aqueous extract with 175.53 mg Gallic Acid Equivalents (GAE)/g of extract. The spectrum of the aqueous extract of Thymus capitatus showed the presence of 3 visible peaks, the 1st one at 217 nm corresponding to the carnosic acid, the 2nd one at 277 nm for essential oils, and the last one at 326 nm attributed to the rosmarinic acid. The commercial membrane NF-DK succeeded to concentrate rosmarinic acid and can be considered as a stage towards the concentration of this product with a high added value.

  4. Distinct constrictive processes, separated in time and space,divide Caulobacter inner and outer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Ellen M.; Comolli, Luis R.; Chen, Joseph C.; Downing,Kenneth H.; Moerner, W.E.; McAdams, Harley H.

    2005-05-01

    Cryo-electron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner, and then the outer, membrane in a manner distinctly different from septum-forming bacteria. The smallest observed pre-fission constrictions were 60 nm for both the inner and outer membrane. FLIP experiments had previously shown cytoplasmic compartmentalization, when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments, occurring 18 min before daughter cell separation in a 135 min cell cycle. Here, we used FLIP experiments with membrane-bound and periplasmic fluorescent proteins to show that (1) periplasmic compartmentalization occurs after cytoplasmic compartmentalization, consistent with the cryoEM observations, and (2) inner membrane and periplasmic proteins can diffuse past the FtsZ constriction site, indicating that the cell division machinery does not block membrane diffusion.

  5. Phosphine oxide surfactants revisited.

    Science.gov (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  6. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  7. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2016-09-06

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  8. On controllability of an integrated bioreactor and periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    to understand the controlled operation of the integrated process, it is convenient to use a model based approach supported by experimental evidence. Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro- Enhanced Dialysis - REED) has been proposed as a method...... for intensification of lactic acid fermentation (Rype, 2003). This fermentation has been studied extensively driven by an increasing number of applications of the potential fermentation products. The main limitation of lactic acid bioproduction is that lactic acid bacteria normally are impaired by product inhibition...... at a certain lactate concentration level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical potential gradients. The novelty of the integrated process lies...

  9. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  10. Integrated membrane distillation-crystallization: process design and cost estimations for seawater treatment and fluxes of single salt solutions

    NARCIS (Netherlands)

    Creusen, R.J.M.; Medevoort, J. van; Roelands, C.P.M.; Renesse van Duivenbode, J.A.D. van; Hanemaaijer, J.H.; Leerdam, R.C. van

    2013-01-01

    The goal of this research is to design an integrated membrane distillation-crystallization (MDC) process for desalination of seawater with pure water and dry salts as the only products. The process is based on a combination of membrane distillation (MD) and osmotic distillation (OD) steps with

  11. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  12. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  13. Integrated forward osmosis-membrane distillation process for human urine treatment.

    Science.gov (United States)

    Liu, Qianliang; Liu, Caihong; Zhao, Lei; Ma, Weichao; Liu, Huiling; Ma, Jun

    2016-03-15

    This study demonstrated a forward osmosis-membrane distillation (FO-MD) hybrid system for real human urine treatment. A series of NaCl solutions at different concentrations were adopted for draw solutions in FO process, which were also the feed solutions of MD process. To establish a stable and continuous integrated FO-MD system, individual FO process with different NaCl concentrations and individual direct contact membrane distillation (DCMD) process with different feed temperatures were firstly investigated separately. Four stable equilibrium conditions were obtained from matching the water transfer rates of individual FO and MD processes. It was found that the integrated system is stable and sustainable when the water transfer rate of FO subsystem is equal to that of MD subsystem. The rejections to main contaminants in human urine were also investigated. Although individual FO process had relatively high rejection to Total Organic Carbon (TOC), Total Nitrogen (TN) and Ammonium Nitrogen (NH4(+)-N) in human urine, these contaminants could also accumulate in draw solution after long term performance. The MD process provided an effective rejection to contaminants in draw solution after FO process and the integrated system revealed nearly complete rejection to TOC, TN and NH4(+)-N. This work provided a potential treatment process for human urine in some fields such as water regeneration in space station and water or nutrient recovery from source-separated urine.

  14. Bending elasticity of charged surfactant layers: the effect of mixing.

    Science.gov (United States)

    Bergström, L Magnus

    2006-08-01

    Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged

  15. Knockdown of flotillin-2 inhibits lung surfactant secretion by alveolar type Ⅱ cells

    Institute of Scientific and Technical Information of China (English)

    Narendranath Reddy Chintagari; Deming Gou; Lin Liu

    2008-01-01

    @@ Dear Editor, Lung surfactant is stored in lamellar bodies and exocytosed following fusion of the lamellar bodies with the plasma membrane of alveolar type Ⅱ (AT2) cells [1].A number of proteins have been shown to be involved in surfactant secretion including SNAREs,NSF,α-SNAP and annexin A2 [2,3].Lipid rafts enriched in SNAREs are crucial for surfactant secretion [4].

  16. Hybrid flotation--membrane filtration process for the removal of heavy metal ions from wastewater.

    Science.gov (United States)

    Blöcher, C; Dorda, J; Mavrov, V; Chmiel, H; Lazaridis, N K; Matis, K A

    2003-09-01

    A promising process for the removal of heavy metal ions from aqueous solutions involves bonding the metals firstly to a special bonding agent and then separating the loaded bonding agents from the wastewater stream by separation processes. For the separation stage, a new hybrid process of flotation and membrane separation has been developed in this work by integrating specially designed submerged microfiltration modules directly into a flotation reactor. This made it possible to combine the advantages of both flotation and membrane separation while overcoming the limitations. The feasibility of this hybrid process was proven using powdered synthetic zeolites as bonding agents. Stable fluxes of up to 80l m(-2)h(-1) were achieved with the ceramic flat-sheet multi-channel membranes applied at low transmembrane pressure (copper, nickel and zinc, were reduced from initial concentrations of 474, 3.3 and 167mg x l(-1), respectively, to below 0.05 mg x l(-1), consistently meeting the discharge limits.

  17. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.

    Science.gov (United States)

    Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert

    2016-08-16

    Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different

  18. Silica membranes for hydrogen separation in coal gas processing. Final report, January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G.R.

    1993-03-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO{sub 2} or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO{sub 2} deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3} and B{sub 2}O{sub 3} layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl{sub 4} (or TiCl{sub 4}, AlCl{sub 3}, BCl{sub 3}) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  19. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.

    Science.gov (United States)

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar

    2012-08-14

    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  20. Pollutants removal and simulation model of combined membrane process for wastewater treatment and reuse in submarine cabin for long voyage

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhaobo; ZHOU Aijuan; REN Nanqi; TIAN Yu; HU Dongxue

    2009-01-01

    A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m~3/d for 240 d to treat the mixed wastewater of humidity condensate,hygiene wastewater and urine in submarine cabin during prolonged voyage.Removal performance of COD,ammonia nitrogen (NH4~+-N),turbidity and anionic surfactants (LAS) was investigated under different conditions.It was observed that the effluent COD,NH4~+-N,turbidity and LAS flocculated in respective ranges of 0.19-0.85 mg/L,0.03-0.18 mg/L,0.0-0.15 NTU and 0.0-0.05 mg/L in spite of considerable fluctuation in corresponding influent of 2120-5350 mg/L,79.5-129.3 mg/L,110-181.1NTU and 4.9-5.4 mg/L.The effluent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002).The removal rates of COD,NH4~+-N,turbidity and LAS removed in the MBR were more than 90%,which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse.A model,built on the back propagation neural network (BPNN) theory,was developed for the simulation of CMP and produced high reliability.The average error of COD and NH4~+-N was 5.14% and 6.20%,respectively and the root mean squared error of turbidity and LAS was 2.76% and 1.41%,respectively.The results indicated that the model well fitted the laboratory data,and was able to simulate the removal of COD,NH4~+-N,turbidity and LAS.It is also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.

  1. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  2. Surfactant-assisted liquefaction of particulate carbonaceous substances

    Science.gov (United States)

    Hsu, G. C. (Inventor)

    1978-01-01

    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  3. Operating Experience of A/O Process for Treatment of Surfactant Production Wastewater%A/O装置处理表面活性剂废水的运行经验

    Institute of Scientific and Technical Information of China (English)

    韩正昌; 黄勇; 王少浦; 蒋雨媚

    2001-01-01

    The process flow of A/O proces for treatment of surfactant production wastewater is introduced,the factors affecting treatment effect are mainly analyzed and the operating mode and control indexes of the process are proposed.Effluent COD is less than 120 mg/L.%介绍了表面活性剂废水处理装置的工艺流程,重点分析了影响A/O装置处理效果的因素,提出了适合该废水处理的运行模式及工艺控制指标,出水COD<120 mg/L.

  4. Modeling and simulation of membrane separation process using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Kambiz Tahvildari

    2016-01-01

    Full Text Available Separation of CO2 from air was simulated in this work. The considered process for removal of CO2 was a hollow-fiber membrane contactor and an aqueous solution of 2-amino-2-metyl-1-propanol (AMP as absorbent. The model was developed based on mass transfer as well as chemical reaction for CO2 and solvent in the contactor. The equations of model were solved using finite element method. Simulation results were compared with experimental data, and good agreement was observed. The results revealed that increasing solvent velocity enhances removal of CO2 in the hollow-fiber membrane contactor. Moreover, it was found that counter-current process mode is more favorable to achieve the highest separation efficiency.

  5. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  6. Performance of Ozonation Process as Advanced Treatment for Antibiotics Removal in Membrane Permeate

    OpenAIRE

    Thanh Cao Ngoc Dan; Quyen Vo Thi Kim; Tin Nguyen Thanh; Thanh Bui Xuan

    2016-01-01

    There was an investigation into the removal of 6 types of antibiotics from hospital wastewater through membrane bioreactor (MBR) treatment and ozonation processes. Six types of antibiotics, namely, Sulfamethoxazole (SMZ), Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL), Erythromycin (ERY), and Vancomycin (VAN) which had high detection frequencies in collected samples from hospital wastewater treatment plant (HWTPs). After MBR treatment, the removal efficiencies of SMZ, NOR, OFL, and E...

  7. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    Science.gov (United States)

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  8. Physical-chemical hydrodynamics of the processes of sorption-membrane technology of LRW treatment

    Energy Technology Data Exchange (ETDEWEB)

    Alexander D Efanov; Pyotr N Martynov; Yuri D Boltoev; Ivan V Yagodkin; Nataliya G Bogdanovich; Sergey S Skvortsov; Alexander R Sokolovsky; Elena V Ignatova; Gennady V Grigoriev; Vitaly V Grigorov [Institute for Physics and Power Engineering named after A.I. Leypunsky Bondarenko sq. 1, 249033, Obninsk, Kaluga region (Russian Federation)

    2005-07-01

    Full text of publication follows: Liquid radioactive NPP waste is generated, when radioactive water is collected and mixed from various routine and non-routine process measures being performed in accordance with the operating regulations of reactor units with water coolant. The main sources of LRW are the primary loop water coolant, deactivation, regeneration and rinse waters, waste laundry and showers water producing the initial averaged LRW as well as spent fuel element cooling pond water and water of biological protection tanks. LRW handling can be substantially advanced, in particular, through development and introduction of the non-conventional sorption-membrane technology of NPP LRW treatment, being developed at SSC RF IPPE. This technology makes use of natural inorganic sorbents (tripolite, zeolite, ion-exchange materials) and filtering nano-structured metallic and ceramic membranes (titanium, zirconium, chromium and other or their oxides, carbides and nitrides). The efficiency of the sorption membrane technology is associated just with the investigation of the physical-chemical processes of sorption, coagulation and sedimentation under the conditions of forced and free convection occurring in LRW. Besides, it is necessary to take into consideration that the hydrodynamics of the flows of LRW being decontaminated by membrane filtration depends on the structure and composition of the porous composition pare 'nano-structured membrane-substrate'. Neglecting these peculiarities can result in drastic reduction of the time of stable LRW filtration, reduction of the operability resource of filtration systems or in quick mechanical destruction of porous materials. The paper presents the investigation results on: -the effect of the convection flows being generated by air bubbling or LRW stirring by agitator on the static sorption conditions (sorption time, medium pH, sorbent dispersity, sorbent concentration in liquid medium) and on the efficiency of

  9. Comparison of methods for assessing reverse osmosis membrane treatment of shrimp process water.

    Science.gov (United States)

    Casani, Sandra; Hansen, Tina B; Christensen, Jakob; Knøchel, Susanne

    2005-04-01

    Interest in reuse of process water from the food industry has reinforced the importance of controlling and monitoring the effectiveness and reliability of treatment systems regarding removal of organic matter and microorganisms. The ability of adenosine triphosphate bioluminescence, conductivity, turbidometry, absorbance, and multichannel fluorescence spectroscopy for indirectly monitoring the integrity of a reverse osmosis membrane when treating process water recovered from peeling in a shrimp processing line was evaluated. This study demonstrated that reverse osmosis was capable of removing bacteria (ca. 7 log CFU ml(-1)) to the levels required by the regulatory authorities for water recycling within the same food unit operation. Adenosine triphosphate and turbidometry showed a higher sensitivity for detecting compromising conditions at the treatment system (0.1% concentration of feed in permeate) and a better correlation with the aerobic count at lower levels than the other methods investigated. The sensitivity for assessing membrane integrity of conductivity and multichannel fluorescence was 1% of feed in permeate. Impact of feed variations was best leveled out in the permeates for turbidity measurements. Multichannel fluorescence spectroscopy may require laborious calibration procedures and expertise regarding data analysis and interpretation of results, which are not always available in food industries. Absorbance did not respond to changes in membrane integrity and was not well correlated to the aerobic count because of the poor sensitivity of this method for these purposes.

  10. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  11. Carbon dioxide-selective membranes and their applications in hydrogen processing

    Science.gov (United States)

    Zou, Jian

    Fuel cells, which are regarded as a promising energy conversion approach in the 21st century, are now receiving increasing attention worldwide. In most cases, hydrogen is the preferred fuel for fuel cells, especially for proton-exchange membrane fuel cells (PEMFCs). One key issue in the development of PEMFC is how to generate hydrogen from the available hydrocarbon fuels. Most feasible strategies consist of a reforming step followed by the water gas shift (WGS) reaction. The resulting synthesis gas (syngas) still consists of 0.5--1.0% CO, which needs to be reduced to less than 10 ppm to meet the requirement of PEMFCs. Therefore, a further CO clean-up step is usually used to decrease CO concentration. In the present work, new CO2-selective membranes were synthesized and their applications for fuel cell fuel processing and synthesis gas purification were investigated. In order to enhance CO2 transport across membranes, the synthesized membranes contained both mobile and fixed site carriers in crosslinked poly(vinyl alcohol). The effects of crosslinking, membrane composition, feed pressure, water content, and temperature on transport properties were investigated. The membranes have shown a high permeability and a good CO 2/H2 selectivity and maintained their separation performance up to 170°C. One type of these membranes showed a permeability of 8000 Barrers (1 Barrer = 10-10 cm3 (STP).cm/(cm 2.s.cm.Hg)) and a CO2/H2 selectivity of 290 at 110°C. This membrane had a permeability of 1200 Barrers and a CO 2/H2 selectivity of 33 even at 170°C. The applications of the synthesized membranes were demonstrated in a CO2-removal experiment, in which the CO2 concentration in retentate was decreased from 17% to less than 10 ppm. With such membranes, there are several options to reduce the CO concentration of syngas. One option is to develop a WGS membrane reactor, in which both the low temperature WGS reaction and the CO2-removal take place. Another option is to use a proposed

  12. Protein denaturation due to the action of surfactants: a study by SAXS and ITC

    Energy Technology Data Exchange (ETDEWEB)

    Oseliero Filho, Pedro Leonidas; Oliveira, Cristiano Luis Pinto de [Universidade de Sao Paulo (USP), SP (Brazil); Pedersen, Jan Skov; Otzen, Daniel Erik [University of Aarhus (Denmark)

    2012-07-01

    Full text: Proteins are the major constituent of biological systems along with carbohydrates, lipids and nucleic acids (DNA and RNA). According to their structure and composition, proteins perform several functions in the organism, starting from the macroscopic level, with participation on the olfaction of animals, down to the cellular level, allocated in the membrane and making the connection between extra and intracellular environment. The function of a protein (which may be enzymatic, hormonal, structural, energetic, transport etc) is related to several factors including its structure (primary, secondary, tertiary or quaternary). Denaturation occurs when the secondary structure and/or tertiary is lost, which is almost always followed by the loss of the associated biological function. Temperature, pH and the action of surfactants influence the process of the denaturation. The influence of surfactants to the protein structure and function is the aim of this work. Therefore we are using an isolated protein, {alpha}-lactalbumin, that is found in the milk and whose function is related to the synthesis of galactose. The purpose is to characterize, in a thermodynamic-structural point of view, the denaturation of alpha-lactalbumin in the presence of surfactants anionic (sodium dodecyl sulfate - SDS), cationic (tetradecyltrimethylammonium bromide - TTAB), zwitterionic (2-diheptanoyl-sn-glycero-3- phosphocholine - DHPC) and nonionic (decyl-{beta}-D-Maltopyranoside - DM). The isothermal titration calorimetry (ITC) technique, which provides information of structural changes from changes in energy, represents the starting point for the study, while the technique of small angle X-ray scattering (SAXS) provides information about the structural characteristics of surfactant-protein complexes formed at each step of the denaturation process. The data analysis is in the initial stage, but it was possible to obtain general parameters related to the complex formed from the

  13. Membrane Processes Based on Complexation Reactions of Pollutants as Sustainable Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Teresa Poerio

    2009-11-01

    Full Text Available Water is today considered to be a vital and limited resource due to industrial development and population growth. Developing appropriate water treatment techniques, to ensure a sustainable management, represents a key point in the worldwide strategies. By removing both organic and inorganic species using techniques based on coupling membrane processes and appropriate complexing agents to bind pollutants are very important alternatives to classical separation processes in water treatment. Supported Liquid Membrane (SLM and Complexation Ultrafiltration (CP-UF based processes meet the sustainability criteria because they require low amounts of energy compared to pressure driven membrane processes, low amounts of complexing agents and they allow recovery of water and some pollutants (e.g., metals. A more interesting process, on the application point of view, is the Stagnant Sandwich Liquid Membrane (SSwLM, introduced as SLM implementation. It has been studied in the separation of the drug gemfibrozil (GEM and of copper(II as organic and inorganic pollutants in water. Obtained results showed in both cases the higher efficiency of SSwLM with respect to the SLM system configuration. Indeed higher stability (335.5 vs. 23.5 hours for GEM; 182.7 vs. 49.2 for copper(II and higher fluxes (0.662 vs. 0.302 mmol·h-1·m-2 for GEM; 43.3 vs. 31.0 for copper(II were obtained by using the SSwLM. Concerning the CP-UF process, its feasibility was studied in the separation of metals from waters (e.g., from soil washing, giving particular attention to process sustainability such as water and polymer recycle, free metal and water recovery. The selectivity of the CP-UF process was also validated in the separate removal of copper(II and nickel(II both contained in synthetic and real aqueous effluents. Thus, complexation reactions involved in the SSwLM and the CP-UF processes play a key role to meet the sustainability criteria.

  14. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation

    Science.gov (United States)

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2013-01-01

    Summary In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product. PMID:23425092

  15. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation.

    Science.gov (United States)

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2013-09-01

    In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product.

  16. Modification of nano-sized layered double hydroxides by long-chain organic aliphatic surfactants

    OpenAIRE

    RAMASAMY ANBARASAN; SEUNG SOON IM; WANDUC LEE

    2008-01-01

    The inter-layer anion of layered double hydroxides (LDH) with a hydrotalcite (HT)-like structure was ion-exchanged with various organic surfactants, particularly with long chain aliphatic surfactants. After the ion-exchange process, the basal spacing of the LDH was increased and the increase of the basal spacing depended on various factors, such as the intercalation capacity functionality and orientation capability of the surfactant. Of the employed surfactants, stearic acid intercalated LDH ...

  17. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2015-08-01

    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  18. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO{sub 2} nanopowders by a simple coprecipitation process without adding surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Shang-Wei [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Department of Life Science, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan (China); Ko, Horng-Huey [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Chiang, Hsiu-Mei [Department of Cosmeceutics, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Chen, Yen-Ling, E-mail: yelichen@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Lee, Jian-Hong [Clean Energy and Eco-Technology Center, Industrial Technology Research Institute, 8 Gongyan Road, Tainan 734, Taiwan (China); Wen, Chiu-Ming [Department of Life Science, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China)

    2014-11-15

    Highlights: • The TiO{sub 2} precursor powder contained anatase and 19.5% NH{sub 4}Cl. • Mesoporous anatase TiO{sub 2} nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH{sub 4}Cl and anatase TiO{sub 2}. • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO{sub 2} nanopowders using titanium tetrachloride (TiCl{sub 4}) and NH{sub 4}OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO{sub 2} nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH{sub 4}Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO{sub 2} only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO{sub 2} coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO{sub 2} was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH{sub 4}Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m{sup 2}/g and 0.392 cm{sup 3}/g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively.

  19. Performance of diatomite/iron oxide modified nonwoven membrane used in membrane bioreactor process for wastewater reclamation.

    Science.gov (United States)

    He, Yueling; Zhang, Wenqi; Rao, Pinhua; Jin, Peng

    2014-01-01

    This study describes an approach for surface modification of a nonwoven membrane by diatomite/iron oxide to examine its filterability. Analysis results showed that nonwoven hydrophilicity is enhanced. Static contact angle decreases dramatically from 122.66° to 39.33°. Scanning electron micrograph images show that diatomite/iron oxide is attached on nonwoven fiber. X-ray diffraction analysis further proves that the compound is mostly magnetite. Fourier transformed infrared spectra results reveal that two new absorption peaks might be attributed to Si-O and Fe-O, respectively. Modified and original membranes were used in double nonwoven membrane bioreactors (MBRs) for synthetic wastewater treatment. High critical flux, long filtration time, slow trans-membrane pressure rise and stable sludge volume index confirmed the advantages of modified nonwoven. Comparing with original nonwoven, similar effluent qualities are achieved, meeting the requirements for wastewater reclamation.

  20. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    Science.gov (United States)

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  1. The Effect of Tween® Surfactants in Sol-Gel Processing for the Production of TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson

    2014-12-01

    Full Text Available Titanium dioxide thin films were deposited using a Tween® surfactant modified non-aqueous sol-gel method onto fluorine doped tin oxide glass substrates. The surfactant concentration and type in the sols was varied as well as the number of deposited layers. The as deposited thin films were annealed at 500 °C for 15 min before characterisation and photocatalytic testing with resazurin intelligent ink. The films were characterised using scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy and UV-Vis spectroscopy. Photocatalytic activity of the films was evaluated using a resazurin dye-ink test and the hydrophilicity of the films was analysed by water-contact angles measurements. Characterisation and photocatalytic testing has shown that the addition of surfactant in varying types and concentrations had a significant effect on the resulting thin film microstructure, such as changing the average particle size from 130 to 25 nm, and increasing the average root mean square roughness from 11 to 350 nm. Such structural changes have resulted in an enhanced photocatalytic performance for the thin films, with an observed reduction in dye half-life from 16.5 to three minutes.

  2. Process simulation of integrated biohydrogen production: hydrogen recovery by membrane separation

    Directory of Open Access Journals (Sweden)

    László Koók

    2014-10-01

    Full Text Available In this project, the production of biohydrogen, as a renewable and sustainable energy source was studied. Biohydrogen was manufactured by using E. coli strain in a batch dark fermentative process integrated with membrane gas separation. Two different methods were applied: Firstly, the amount of the produced gas and component concentrations were measured, but CO2 and H2 gases were not separated. In the second experiment CO2 was removed from the gas mixture via chemical sorption (reacting with NaOH. Both methods use continuous product removal in order to enhance the biohydrogen formation. In addition, process modeling was carried out with a simulation software (SuperPro Designer, Intelligen Inc. so that experimental and computational results could be compared. CO2 and H2 flow rates and fluxes were calculated on the basis of the membrane permeation data obtained by using pure gases and silicone (PDMS hollow-fiber membrane module (PermSelect – MedArray Inc..

  3. Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases

    Institute of Scientific and Technical Information of China (English)

    Lei Wang; Cheng Shao; Hai Wang; Hong Wu

    2006-01-01

    Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.

  4. Surfactant effects on SF6 hydrate formation.

    Science.gov (United States)

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  5. A non-permselective membrane reactor for chemical processes normally requiring strict stoichiometric feed rates of reactants

    NARCIS (Netherlands)

    Sloot, H.J.; Versteeg, G.F.; Swaaij, W.P.M. van

    1990-01-01

    A novel type of membrane reactor with separated feeding of the reactants is presented for chemical processes normally requiring strict stoichiometric feed rates of premixed reactants. The reactants are fed in the reactor to the different sides of a porous membrane which is impregnated with a catalys

  6. A non-permselective membrane reactor for chemical processes normally requiring strict stoichiometric feed rates of reactants

    NARCIS (Netherlands)

    Sloot, H.J.; Versteeg, G.F.; Swaaij, W.P.M. van

    1990-01-01

    A novel type of membrane reactor with separated feeding of the reactants is presented for chemical processes normally requiring strict stoichiometric feed rates of premixed reactants. The reactants are fed in the reactor to the different sides of a porous membrane which is impregnated with a

  7. Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation.

    Science.gov (United States)

    Pithan, Frankie; Staudt-Bickel, Claudia

    2003-09-15

    The effectiveness of different copolyimide membranes in the process of recovering phenol from water by pervaporation has been investigated. The polyimides were obtained by the polycondensation of 6FDA (4,4'-hexafluoro-isopropylidene diphthalic anhydride) with different diamines. The diamines 4 MPD (2,3,5,6-tetramethyl-1,4-phenylene diamine), 6FpDA (4,4'-hexafluoro-isopropylidene dianiline), 6FpODA (4,4'-bis-(4'-aminophenoxyphenyl)-hexafluoropropane), and DABA (3,5-diaminobenzoic acid) as a monomer providing a crosslinkable group, were used. In order to reach chemical stability at high phenol concentrations, the polymer structures were crosslinked with 1,10-decanediol and OFHD (2,2,3,3,4,4,5,5-octafluorohexanediol). Pervaporation experiments were performed at 60 degrees C, covering a concentration range of phenol between 2 and 11 wt.%. The best separation characteristics were obtained with a 6FDA-6FpDA/DABA 2:1 membrane crosslinked with 1,10-decanediol. Using a 7.8 wt.% phenol feed mixture, a total flux of 14 kg microns m-2 h-1 was reached with an enrichment of 40 wt.% phenol in the permeate. It was found that conditioning the membrane using high phenol concentrations (between 8 and 11 wt.%) is a necessary pretreatment in order to enhance the flux and improve enrichment, especially if process water with low phenol concentrations is to be treated. In addition to the experimental results, a comparison with rubbery membrane materials is presented in the discussion.

  8. Evaluation of membrane bioreactor process capabilities to meet stringent effluent nutrient discharge requirements.

    Science.gov (United States)

    Fleischer, Edwin J; Broderick, Thomas A; Daigger, Glen T; Fonseca, Anabela D; Holbrook, R David; Murthy, Sudhir N

    2005-01-01

    A six-stage membrane bioreactor (MBR) pilot plant was operated to determine and demonstrate the capability of this process to produce a low-nutrient effluent, consistent with the nutrient reduction goals for the Chesapeake Bay. Biological nitrogen removal was accomplished using a multistage configuration with an initial anoxic zone (using the carbon in the influent wastewater), an aerobic zone (where nitrification occurred), a downstream anoxic zone (where methanol was added as a carbon source), and the aerated submerged membrane zone. The capability to reliably reduce effluent total nitrogen to less than 3 mg/L as nitrogen (N) was demonstrated. A combination of biological (using an initial anaerobic zone) and chemical (using alum) phosphorus removal was used to achieve effluent total phosphate concentrations reliably less than 0.1 mg/L as phosphorus (P) and as low as 0.03 mg/L as P. Alum addition also appeared to enhance the filtration characteristics of the MBR sludge and to reduce membrane fouling. Aeration of the submerged membranes results in thickened sludge with a high dissolved oxygen concentration (approaching saturation), which can be recycled to the main aeration zone rather than to an anoxic or anaerobic zone to optimize biological nutrient removal. Biological nutrient removal was characterized using the International Water Association Activated Sludge Model No. 2d. The stoichiometry of chemical phosphorus removal was also consistent with conventional theory and experience. The characteristics of the solids produced in the MBR were compared with those of a parallel full-scale conventional biological nitrogen removal process and were generally found to be similar. These results provide valuable insight to the design and operating characteristics of MBRs intended to produce effluents with very low nutrient concentrations.

  9. Firing membranes

    NARCIS (Netherlands)

    Kappert, Emiel Jan

    2015-01-01

    Thermal processing is commonly employed to alter the chemistry and microstructure of membrane layers. It can shape, strengthen, and give functionality to a membrane. A good understanding of the processes taking place during the thermal processing of a membrane material allows for optimization and tu

  10. Surfactant studies for bench-scale operation

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  11. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: hakbas34@yahoo.com [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)

    2011-12-15

    Highlights: > Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. > Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. > Dimeric surfactants have attracted increasing attention due to their superior surface activity. > The positive values of {Delta}G{sub cp}{sup 0} indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-{alpha}-{omega}-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C{sub 16} alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy ({Delta}G{sub cp}{sup 0}), the enthalpy ({Delta}H{sub cp}{sup 0}) and the entropy ({Delta}S{sub cp}{sup 0}) of the clouding phenomenon were found positive in all cases. The standard free energy ({Delta}G{sub cp}{sup 0}) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic

  12. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  13. Estimated costs of implementation of membrane processes for on-site greywater recycling.

    Science.gov (United States)

    Humeau, P; Hourlier, F; Bulteau, G; Massé, A; Jaouen, P; Gérente, C; Faur, C; Le Cloirec, P

    2011-01-01

    Greywater reuse inside buildings is a possible way to preserve water resources and face up to water scarcity. This study is focused on a technical-economic analysis of greywater treatment by a direct nanofiltration (NF) process or by a submerged membrane bioreactor (SMBR) for on-site recycling. The aim of this paper is to analyse the cost of recycled water for two different configurations (50 and 500 inhabitants) in order to demonstrate the relevance of the implementation of membrane processes for greywater recycling, depending on the production capacity of the equipment and the price of drinking water. The first step was to define a method to access the description of the cost of producing recycled water. The direct costs were defined as a sum of fixed costs due to equipment, maintenance and depreciation, and variable costs generated by chemical products and electricity consumptions. They were estimated from an experimental approach and from data found in literature, enabling operating conditions for greywater recycling to be determined. The cost of treated water by a SMBR unit with a processing capacity of 500 persons is close to 4.40 euros m(-3), while the cost is 4.81 euros m(-3) with a NF process running in the same conditions. These costs are similar to the price of drinking water in some European countries.

  14. Thermodynamic modelling of a membrane distillation crystallisation process for the treatment of mining wastewater.

    Science.gov (United States)

    Nathoo, Jeeten; Randall, Dyllon Garth

    2016-01-01

    Membrane distillation (MD) could be applicable in zero liquid discharge applications. This is due to the fact that MD is applicable at high salinity ranges which are generally outside the scope of reverse osmosis (RO) applications, although this requires proper management of precipitating salts to avoid membrane fouling. One way of managing these salts is with MD crystallisation (MDC). This paper focuses on the applicability of MDC for the treatment of mining wastewater by thermodynamically modelling the aqueous chemistry of the process at different temperatures. The paper is based on the typical brine generated from an RO process in the South African coal mining industry and investigates the effect water recovery and operating temperature have on the salts that are predicted to crystallise out, the sequence in which they will crystallise out and purities as a function of the water recovery. The study confirmed the efficacy of using thermodynamic modelling as a tool for investigating and predicting the crystallisation aspects of the MDC process. The key finding from this work was that, for an MDC process, a purer product can be obtained at higher operating temperatures and recoveries because of the inverse solubility of calcium sulphate.

  15. Solid Oxide Membrane (SOM) Process for Facile Electrosynthesis of Metal Carbides and Composites

    Science.gov (United States)

    Zou, Xingli; Chen, Chaoyi; Lu, Xionggang; Li, Shangshu; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong

    2017-02-01

    Metal carbides (MCs) and composites including TiC, SiC, TaC, ZrC, NbC, Ti5Si3/TiC, and Nb/Nb5Si3 have been directly electrosynthesized from their stoichiometric metal oxides/carbon (MOs/C) mixture precursors by an innovative solid oxide membrane (SOM)-assisted electrochemical process. MOs/C mixture powders including TiO2/C, SiO2/C, Ta2O5/C, ZrO2/C, Nb2O5/C, TiO2/SiO2/C, Nb2O5/SiO2 were pressed to form porous pellets and then served as cathode precursors. A SOM-based anode, made from yttria-stabilized zirconia (YSZ)-based membrane, was used to control the electroreduction process. The SOM electrochemical process was performed at 1273 K (1000 °C) and 3.5 to 4.0 V in molten CaCl2. The oxygen component contained in the MOs/C precursors was gradually removed during electroreduction process, and thus, MOs/C can be directly converted into MCs and composites at the cathode. The reaction mechanism of the electroreduction process and the characteristics of the obtained MCs and composites products were systematically investigated. The results show that the electrosynthesis process typically involves compounding, electroreduction, dissolution-electrodeposition, and in situ carbonization processes. The products can be predesigned and controlled to form micro/nanostructured MCs and composites. Multicomponent multilayer composites (MMCs) have also been tried to electrosynthesize in this work. It is suggested that the SOM-assisted electroreduction process has great potential to be used for the facile and green synthesis of various MCs and composites.

  16. Solid Oxide Membrane (SOM) Process for Facile Electrosynthesis of Metal Carbides and Composites

    Science.gov (United States)

    Zou, Xingli; Chen, Chaoyi; Lu, Xionggang; Li, Shangshu; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong

    2016-09-01

    Metal carbides (MCs) and composites including TiC, SiC, TaC, ZrC, NbC, Ti5Si3/TiC, and Nb/Nb5Si3 have been directly electrosynthesized from their stoichiometric metal oxides/carbon (MOs/C) mixture precursors by an innovative solid oxide membrane (SOM)-assisted electrochemical process. MOs/C mixture powders including TiO2/C, SiO2/C, Ta2O5/C, ZrO2/C, Nb2O5/C, TiO2/SiO2/C, Nb2O5/SiO2 were pressed to form porous pellets and then served as cathode precursors. A SOM-based anode, made from yttria-stabilized zirconia (YSZ)-based membrane, was used to control the electroreduction process. The SOM electrochemical process was performed at 1273 K (1000 °C) and 3.5 to 4.0 V in molten CaCl2. The oxygen component contained in the MOs/C precursors was gradually removed during electroreduction process, and thus, MOs/C can be directly converted into MCs and composites at the cathode. The reaction mechanism of the electroreduction process and the characteristics of the obtained MCs and composites products were systematically investigated. The results show that the electrosynthesis process typically involves compounding, electroreduction, dissolution-electrodeposition, and in situ carbonization processes. The products can be predesigned and controlled to form micro/nanostructured MCs and composites. Multicomponent multilayer composites (MMCs) have also been tried to electrosynthesize in this work. It is suggested that the SOM-assisted electroreduction process has great potential to be used for the facile and green synthesis of various MCs and composites.

  17. Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-07-01

    Full Text Available Abstract Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL® 816 and AEROSIL® 200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample (solid phase and surfactant solution (aqueous phase. The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.

  18. Membrane Separation Processes for Post-Combustion Carbon Dioxide Capture: State of the Art and Critical Overview

    Directory of Open Access Journals (Sweden)

    Belaissaoui Bouchra

    2014-11-01

    Full Text Available Membrane processes have been initially seldom considered within a post-combustion carbon dioxide capture framework. More traditional processes, particularly gas-liquid absorption in chemical solvents, are often considered as the most appropriate solution for the first generation of technologies. In this paper, a critical state of the art of gas separation membranes for CO2 capture is proposed. In a first step, the key performances (selectivity, permeability of different membrane materials such as polymers, inorganic membranes, hybrid matrices and liquid membranes, including recently reported results, are reviewed. In a second step, the process design characteristics of a single stage membrane unit are studied. Purity and energy constraints are analysed as a function of operating conditions and membrane materials performances. The interest of multistage and hybrid systems, two domains which have not sufficiently investigated up to now, are finally discussed. The importance of technico-economical analyses is highlighted in order to better estimate the optimal role of membranes for CCS applications.

  19. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  20. Novel polymer membrane process for pre-combustion CO{sub 2} capture from coal-fired syngas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim [MTR Inc., Menlo Park, CA (United States)

    2011-09-14

    This final report describes work conducted for the Department of Energy (DOE NETL) on development of a novel polymer membrane process for pre-combustion CO{sub 2} capture from coalfired syngas (award number DE-FE0001124). The work was conducted by Membrane Technology and Research, Inc. (MTR) from September 15, 2009, through December 14, 2011. Tetramer Technologies, LLC (Tetramer) was our subcontract partner on this project. The National Carbon Capture Center (NCCC) at Wilsonville, AL, provided access to syngas gasifier test facilities. The main objective of this project was to develop a cost-effective membrane process that could be used in the relatively near-term to capture CO{sub 2} from shifted syngas generated by a coal-fired Integrated Gasification Combined Cycle (IGCC) power plant. In this project, novel polymeric membranes (designated as Proteus™ membranes) with separation properties superior to conventional polymeric membranes were developed. Hydrogen permeance of up to 800 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 50 psig, which exceeds the original project targets of 200 gpu for hydrogen permeance and 10 for H{sub 2}/CO{sub 2} selectivity. Lab-scale Proteus membrane modules (with a membrane area of 0.13 m{sup 2}) were also developed using scaled-up Proteus membranes and high temperature stable module components identified during this project. A mixed-gas hydrogen permeance of about 160 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 100 psig. We believe that a significant improvement in the membrane and module performance is likely with additional development work. Both Proteus membranes and lab-scale Proteus membrane modules were further evaluated using coal-derived syngas streams at the National Carbon Capture Center (NCCC). The results indicate that all module components, including the Proteus membrane, were stable under the field

  1. Unique membrane properties and enhanced signal processing in human neocortical neurons

    Science.gov (United States)

    Eyal, Guy; Verhoog, Matthijs B; Testa-Silva, Guilherme; Deitcher, Yair; Lodder, Johannes C; Benavides-Piccione, Ruth; Morales, Juan; DeFelipe, Javier; de Kock, Christiaan PJ; Mansvelder, Huibert D; Segev, Idan

    2016-01-01

    The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of the human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm2, half of the commonly accepted 'universal' value (~1 µF/cm2) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex. DOI: http://dx.doi.org/10.7554/eLife.16553.001 PMID:27710767

  2. Pretreatment with ceramic membrane microfiltration in the clarification process of sugarcane juice by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Priscilla dos Santos Gaschi

    2014-04-01

    Full Text Available In the present study, the sugar cane juice from COCAFE Mill, was clarified using tubular ceramic membranes (α-Al2O3/TiO2 with pore size of 0.1 and 0.3 µm, and membrane area of 0.005 m2. Experiments were performed in batch with sugar cane juice, in a pilot unit of micro and ultrafiltration using the principle of tangential filtration. The sugar cane juice was settled for one hour and the supernatant was treated by microfiltration. After that, the MF permeate was ultrafiltered. The experiments of micro and ultrafiltration were carried out at 65ºC and 1 bar. The ceramic membranes were able to remove the colloidal particles, producing a limpid permeated juice with color reduction. The clarification process with micro- followed by ultrafiltration produced a good result with an average purity rise of 2.74 units, 99.4% lower turbidity and 44.8% lighter color in the permeate.

  3. Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process.

    Science.gov (United States)

    Li, Yi; Wang, Hongqi; Hua, Fei; Su, Mengyuan; Zhao, Yicun

    2014-03-01

    The mechanism of transport of (14)C-fluoranthene by Rhodococcus sp. BAP-1, a Gram-positive bacterium isolated from crude oil-polluted soil, was examined. Our finding demonstrated that the mechanism for fluoranthene travel across the cell membrane in Rhodococcus sp. BAP-1 requires energy. Meanwhile, the transport of fluoranthene involves concurrent catabolism of (14)C, that leading to the generation of significant amount of (14)CO2. Combined with trans-membrane transport dynamic and response surface methodology, a significant influence of temperature, pH and salinity on cellular uptake rate was screened by Plackett-Burman design. Then, Box-Behnken design was employed to optimize and enhanced the trans-membrane transport process. The results predicted by Box-Behnken design indicated that the maximum cellular uptake rate of fluoranthene could be achieve to 0.308μmolmin(-1)mg(-1)·protein (observed) and 0.304μmolmin(-1)mg(-1)·protein (predicted) when the initial temperature, pH and salinity were set at 20°C, 9% and 1%, respectively.

  4. Photo catalytic membrane processes for degradation of various types of organic pollutants and micropollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, R.; Borgese, M.; Drioli, E. [Rende Univ. of Calabria, Rende, CS (Italy). Dipt. di Ingegneria Chimica e dei Materiali; Palmisano, L.; Schiavello, M. [Palermo Univ., Palermo (Italy). Dipt. di Ingegneria Chimica dei Processi e dei Materiali

    2001-04-01

    Degradation test in a photocatalytic membrane system have been carried out using TiO{sub 2} (Degussa P25) as catalyst and humic acid, organic dyes, 4-nitrophenol as pollutants. The influence of UV radiation and initial concentration of pollutant on the photodegradation rate were investigated in discontinuous and continuous systems. Experimental results, showed that it is possible to obtain an efficient photocatalytic membrane process, but various parameters (e. g. p H) should be optimised to obtain high reaction rate and high membrane rejection of pollutants and their by-products. [Italian] Prove di degradazione in un sistema fotocatalitico a membrana sono state condotte utilizzando TiO{sub 2} (Degussa P25) come catalizzatore e acido umico, coloranti organici, 4-nitrofenolo, come inquinanti. E' stata studiata l'influenza della radiazione UV e della concentrazione iniziale dell'inquinante sulla velocita' di fotodegradazione in sistemi continui, che discontinui. I risultati sperimentali hanno mostrato che e' possibile ottenere un efficiente proesso fotocatalitico a membrana, ma e' necessario ottimizzare vari parametri (per es. il pH) se si vuole ottenere un'elevata velocita' di fotodegradazione ed un'altrettanta elevata reiezione della membrana verso gli inquinanti da fotodegradare ed i loro sottoprodotti.

  5. Sizing up surfactant synthesis.

    Science.gov (United States)

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  6. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  7. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  8. Mixed matrix membrane application for olive oil wastewater treatment: process optimization based on Taguchi design method.

    Science.gov (United States)

    Zirehpour, Alireza; Rahimpour, Ahmad; Jahanshahi, Mohsen; Peyravi, Majid

    2014-01-01

    Olive oil mill wastewater (OMW) is a concentrated effluent with a high organic load. It has high levels of organic chemical oxygen demand (COD) and phenolic compounds. This study presents a unique process to treat OMW. The process uses ultrafiltration (UF) membranes modified by a functionalized multi wall carbon nano-tube (F-MWCNT). The modified tube has an inner diameter of 15-30 nm and is added to the OMW treatment process to improve performance of the membrane. Tests were done to evaluate the following operating parameters of the UF system; pressure, pH and temperature; also evaluated parameters of permeate flux, flux decline, COD removal and total phenol rejection. The Taguchi robust design method was applied for an optimization evaluation of the experiments. Variance (ANOVA) analysis was used to determine the most significant parameters affecting permeate flux, flux decline, COD removal and total phenols rejection. Results demonstrated coagulation and pH as the most important factors affecting permeate flux of the UF. Moreover, pH and F-MWCNT UF had significant positive effects on flux decline, COD removal and total phenols rejection. Based on the optimum conditions determined by the Taguchi method, evaluations for permeate flux tests; flux decline, COD removal and total phenols rejection were about 21.2 (kg/m(2) h), 12.6%, 72.6% and 89.5%, respectively. These results were in good agreement with those predicted by the Taguchi method (i.e.; 22.8 (kg/m(2) h), 11.9%, 75.8 and 94.7%, respectively). Mechanical performance of the membrane and its application for high organic wastewater treatment were determined as strong.

  9. Surfactant solutions and porous substrates: spreading and imbibition.

    Science.gov (United States)

    Starov, Victor M

    2004-11-29

    In Section 1, spreading of small liquid drops over thin dry porous layers is investigated from both theoretical and experimental points of view [V.M. Starov, S.R. Kosvintsev, V.D. Sobolev, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 252 (2002) 397]. Drop motion over a porous layer is caused by an interplay of two processes: (a) the spreading of the drop over already saturated parts of the porous layer, which results in an expanding of the drop base, and (b) the imbibition of the liquid from the drop into the porous substrate, which results in a shrinkage of the drop base and an expanding of the wetted region inside the porous layer. As a result of these two competing processes, the radius of the drop goes through a maximum value over time. A system of two differential equations has been derived to describe the evolution with time of radii of both the drop base and the wetted region inside the porous layer. This system includes two parameters, one accounts for the effective lubrication coefficient of the liquid over the wetted porous substrate, and the other is a combination of permeability and effective capillary pressure inside the porous layer. Two additional experiments were used for an independent determination of these two parameters. The system of differential equations does not include any fitting parameter after these two parameters are determined. Experiments were carried out on the spreading of silicone oil drops over various dry microfiltration membranes (permeable in both normal and tangential directions). The time evolution of the radii of both the drop base and the wetted region inside the porous layer were monitored. All experimental data fell on two universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer on dimensionless time. The predicted theoretical relationships are two universal curves accounting quite satisfactory for the experimental

  10. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zakrevskyy, Yuriy, E-mail: yuriy.zakrevskyy@fh-koeln.de; Paasche, Jens; Lomadze, Nino; Santer, Svetlana, E-mail: santer@uni-potsdam.de [Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany); Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd [Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  11. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    Science.gov (United States)

    Zakrevskyy, Yuriy; Cywinski, Piotr; Cywinska, Magdalena; Paasche, Jens; Lomadze, Nino; Reich, Oliver; Löhmannsröben, Hans-Gerd; Santer, Svetlana

    2014-01-01

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes' properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate - for the first time - complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  12. Enhancing shelf life of minimally processed multiplier onion using silicone membrane.

    Science.gov (United States)

    Naik, Ravindra; Ambrose, Dawn C P; Raghavan, G S Vijaya; Annamalai, S J K

    2014-12-01

    The aim of storage of minimal processed product is to increase the shelf life and thereby extend the period of availability of minimally processed produce. The silicone membrane makes use of the ability of polymer to permit selective passage of gases at different rates according to their physical and chemical properties. Here, the product stored maintains its own atmosphere by the combined effects of respiration process of the commodity and the diffusion rate through the membrane. A study was undertaken to enhance the shelf life of minimally processed multiplier onion with silicone membrane. The respiration activity was recorded at a temperature of 30 ± 2 °C (RH = 60 %) and 5 ± 1 °C (RH = 90 %). The respiration was found to be 23.4, 15.6, 10 mg CO2kg(-1)h(-1) at 5 ± 1 °C and 140, 110, 60 mg CO2kg(-1) h(-1) at 30 ± 2° for the peeled, sliced and diced multiplier onion, respectively. The respiration rate for the fresh multiplier onion was recorded to be 5, 10 mg CO2kg(-1) h(-1) at 5 ± 1 °C and 30 ± 1 ° C, respectively. Based on the shelf life studies and on the sensory evaluation, it was found that only the peeled multiplier onion could be stored. The sliced and diced multiplier onion did not have the required shelf life. The shelf life of the multiplier onion in the peel form could be increased from 4-5 days to 14 days by using the combined effect of silicone membrane (6 cm(2)/kg) and low temperature (5 ± 1 °C).

  13. Mathematical modeling of a carrier-mediated transport process in a liquid membrane.

    Science.gov (United States)

    Ganesan, Subramanian; Anitha, Shanmugarajan; Subbiah, Alwarappan; Rajendran, Lakshmanan

    2013-06-01

    An analysis of the reaction diffusion in a carrier-mediated transport process through a membrane is presented. A simple approximate analytical expression of concentration profiles is derived in terms of all dimensionless parameters. Furthermore, in this work we employ the homotopy perturbation method to solve the nonlinear reaction-diffusion equations. Moreover, the analytical results have been compared to the numerical simulation using the Matlab program. The simulated results are comparable with the appropriate theories. The results obtained in this work are valid for the entire solution domain.

  14. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors.

    Science.gov (United States)

    Cookney, J; Cartmell, E; Jefferson, B; McAdam, E J

    2012-01-01

    This paper demonstrates the potential for recovering dissolved methane from low temperature anaerobic processes treating domestic wastewater. In the absence of methane recovery, ca. 45% of the produced methane is released as a fugitive emission which results in a net carbon footprint of -0.47 kg CO(2e) m(-3). A poly-di-methyl-siloxane (PDMS) membrane contactor was applied to support sweep gas desorption of dissolved methane using nitrogen. The dense membrane structure controlled gaseous mass transfer thus recovery was maximised at low liquid velocities. At the lowest liquid velocity, V(L), of 0.0025 m s(-1), 72% of the dissolved methane was recovered. A vacuum was also trialled as an alternative to sweep-gas operation. At vacuum pressures below 30 mbar, reasonable methane recovery was observed at an intermediate V(L) of 0.0056 m s(-1). Results from this study demonstrate that dissolved methane recovery could increase net electrical production from low temperature anaerobic processes by ca. +0.043 kWh(e) m(-3) and reduce the net carbon footprint to +0.01 kg CO(2e) m(-3). However, further experimental work to optimise the gas-side hydrodynamics is required as well as validation of the long-term impacts of biofouling on process performance.

  15. Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes.

    Science.gov (United States)

    Zuthi, M F R; Guo, W S; Ngo, H H; Nghiem, L D; Hai, F I

    2013-07-01

    A modified activated sludge process (ASP) for enhanced biological phosphorus removal (EBPR) needs to sustain stable performance for wastewater treatment to avoid eutrophication in the aquatic environment. Unfortunately, the overall efficiency of the EBPR in ASPs and membrane bioreactors (MBRs) is frequently hindered by different operational/system constraints. Moreover, although phosphorus removal data from several wastewater treatment systems are available, a comprehensive mathematical model of the process is still lacking. This paper presents a critical review that highlights the core issues of the biological phosphorus removal in ASPs and MBRs while discussing the inhibitory process requirements for other nutrients' removal. This mini review also successfully provided an assessment of the available models for predicting phosphorus removal in both ASP and MBR systems. The advantages and limitations of the existing models were discussed together with the inclusion of few guidelines for their improvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment

    NARCIS (Netherlands)

    Kappel, C.; Kemperman, A.J.B.; Temmink, B.G.; Zwijnenburg, A.; Rijnaarts, H.; Nijmeijer, K.

    2014-01-01

    As water shortages are increasing, the need for sustainable water treatment and the reuse of water is essential. Water reuse from wastewater can be accomplished in a membrane bioreactor (MBR) in the secondary activated sludge stage of a wastewater treatment plant. To remove viruses, dissolved organi

  17. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water.

    Science.gov (United States)

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Yusop, Zulkifli

    2016-06-01

    Massive utilization of bisphenol A (BPA) in the industrial production of polycarbonate plastics has led to the occurrence of this compound (at μg/L to ng/L level) in the water treatment plant. Nowadays, the presence of BPA in drinking water sources is a major concern among society because BPA is one of the endocrine disruption compounds (EDCs) that can cause hazard to human health even at extremely low concentration level. Parallel to these issues, membrane technology has emerged as the most feasible treatment process to eliminate this recalcitrant contaminant via physical separation mechanism. This paper reviews the occurrences and effects of BPA toward living organisms as well as the application of membrane technology for their removal in water treatment plant. The potential applications of using polymeric membranes for BPA removal are also discussed. Literature revealed that modifying membrane surface using blending approach is the simple yet effective method to improve membrane properties with respect to BPA removal without compromising water permeability. The regeneration process helps in maintaining the performances of membrane at desired level. The application of large-scale membrane process in treatment plant shows the feasibility of the technology for removing BPA and possible future prospect in water treatment process.

  18. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    Science.gov (United States)

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  20. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  1. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  2. Simulations of a dielectrophoretic membrane filtration process for removal of water droplets from water-in-oil emulsions.

    Science.gov (United States)

    Molla, Shahnawaz H; Masliyah, Jacob H; Bhattacharjee, Subir

    2005-07-01

    A novel separation technique based on simultaneous application of AC dielectrophoresis and preferential transport through a semipermeable hydrophilic membrane is proposed for separation of small amounts of emulsified water droplets from a water-in-oil emulsion. Embedding an array of parallel microelectrodes on a membrane matrix, followed by application of an AC potential to these electrodes, can result in capturing the water droplets onto the membranes from the emulsion during a crossflow filtration process. The present paper describes the theoretical principles underlying such a process, and describes a simple mathematical framework based on trajectory analysis for assessing the separation efficiency of such a technique. The results indicate that superimposition of an AC dielectrophoretic field can significantly enhance the preferential transport of the emulsified water through the membrane in a crossflow filtration device. This can lead to a highly efficient continuous separation process for dilute emulsions.

  3. CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lebone T. Moeti; Ramanathan Sampath

    2001-09-28

    This final technical report describes work performed under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to August 31, 2001 which covers the total performance period of the project. During this period, detailed information on optimal salinity, temperature, emulsion morphologies, effectiveness for surfactant retention and oil recovery was obtained for an Alcohol Ethoxycarboxylate (AEC) surfactant to evaluate its performance in flooding processes. Tests were conducted on several AEC surfactants and NEODOX (23-4) was identified as the most suitable hybrid surfactant that yielded the best proportion in volume for top, middle, and bottom phases when mixed with oil and water. Following the selection of this surfactant, temperature and salinity scans were performed to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexisted. NEODOX 23-4 formed three phases between 4 and 52.5 C. It formed an aqueous rich microemulsion phase at high temperatures and an oleic rich microemulsion phase at low temperatures--a characteristic of the ionic part of the surfactant. The morphology measurement system was set-up successfully at CAU. The best oil/water/surfactant system defined by the above phase work was then studied for emulsion morphologies. Electrical conductivities were measured for middle and bottom phases of the NEODOX 23-4/dodecane/10mM water system and by mixing measured volumes of the middle phase into a fixed volume of the bottom phase and vice versa at room temperature. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. These experiments were then repeated for bottom/middle (B/M) and middle/bottom (M/B) conjugate pair phases at 10, 15, 25, 30, 35, 40, and 45 C. Electrical conductivity measurements were then compared with the predictions of the conductivity model developed in

  4. Formation of surfactant-laden drops: comparison of experimental and numerical results

    Science.gov (United States)

    Kovalchuk, Nina; Kahouadji, Lyes; Simmons, Mark; Craster, Richard; Matar, Omar; Juric, Damir; Chergui, Jalel; Shin, Seungwon

    2016-11-01

    Drop formation is ubiquitous in many industrial processes, with surfactants being commonly used to stabilise drops. Thus, understanding the regularities of drop formation and accompanying processes, such as formation of satellite droplets in the presence of surfactant is of high importance. Here we present the results of a comparative experimental and numerical study on formation of surfactant-laden drops over a range of flow rates and surfactant concentrations. The precise parameters of the surface tension isotherm for surfactants used in the experimental study are implemented in the numerical code enabling quantitative comparison between the two approaches. It is shown that the effect of surfactant depends not only on concentration, but also on the value of critical micellar concentration (cmc). The transition to the regime where satellite droplets are no longer released was observed when the flow rate exceeded a threshold value depending on surfactant concentration and cmc value. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).

  5. Fibrinogen stability under surfactant interaction.

    Science.gov (United States)

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Biosynthesis of intestinal microvillar proteins. Processing of aminopeptidase N by microsomal membranes

    DEFF Research Database (Denmark)

    Danielsen, E M; Norén, Ove; Sjöström, H

    1983-01-01

    The biosynthesis of small-intestinal aminopeptidase N (EC 3.4.11.2) was studied in a cell-free translation system derived from rabbit reticulocytes. When dog pancreatic microsomal fractions were present during translation, most of the aminopeptidase N synthesized was found in a membrane-bound rat......The biosynthesis of small-intestinal aminopeptidase N (EC 3.4.11.2) was studied in a cell-free translation system derived from rabbit reticulocytes. When dog pancreatic microsomal fractions were present during translation, most of the aminopeptidase N synthesized was found in a membrane......-bound rather than a soluble form, indicating that synthesis of the enzyme takes place on ribosomes attached to the rough endoplasmic reticulum. The microsomal fractions process the Mr-115 000 polypeptide, which is the primary translation product of aminopeptidase N, to a polypeptide of Mr 140 000...... that microsomal fractions should be added before about 25% of the polypeptide was synthesized to ensure processing to the high-mannose glycosylated form. This suggests that the signal sequence is situated in the N-terminal part of the aminopeptidase N. The size of the cell-free translation product in the absence...

  7. Melt-processed anhydrous proton exchange membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Siu, A.; Diaz, G.; Crites, C.; Robitaille, L. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.

    2009-07-01

    The current benchmark materials for proton exchange membrane (PEM) fuel cells are perfluorosulfonic acid resins (PFSA) because of their excellent stability and proton conductivity of 0.1 s/cm at 80 degrees C when fully humidified. However their performance decreases significantly at higher temperatures and low humidity. This paper presented the properties of nanocomposite PEMs incorporating a series of anhydrous charge carriers that are viable candidates for making water-free membranes that can operate at temperatures above 120 degrees C. However, the volatility or leaching of these anhydrous charge carriers could prevent them from being successfully used in open electrochemical systems. Therefore, in this study, the anhydrous charge carriers were immobilized on inorganic nanoparticles and incorporated into PEMs formulations. Nanoparticles with diameters ranging from 50-200 nm were synthesized via a sol-gel process and the desired anhydrous charge carriers immobilized on their surfaces. Nanocomposite PEMs were prepared using melt-processing technologies, by blending the grafted nanoparticles and fluorinated polymers such as poly (vinylidene fluoride) (PVDF) and ionomers such as Nafion. This paper presented the properties of the PEMs developed as a function of nanoparticles size and content, as well as the proton conductivity at controlled temperature and RH.

  8. Barrier or carrier? Pulmonary surfactant and drug delivery.

    Science.gov (United States)

    Hidalgo, Alberto; Cruz, Antonio; Pérez-Gil, Jesús

    2015-09-01

    To consider the lung as a target for drug delivery and to optimise strategies directed at the pulmonary route, it is essential to consider the role of pulmonary surfactant, a thin lipid-protein film lining the respiratory surface of mammalian lungs. Membrane-based surfactant multilayers are essential for reducing the surface tension at the respiratory air-liquid interface to minimise the work of breathing. Different components of surfactant are also responsible for facilitating the removal of potentially pathological entities such as microorganisms, allergens or environmental pollutants and particles. Upon inhalation, drugs or nanoparticles first contact the surfactant layer, and these interactions critically affect their lifetime and fate in the airways. This review summarises the current knowledge on the possible role and effects of the pulmonary surfactant system in drug delivery strategies. It also summarises the evidence that suggests that pulmonary surfactant is far from being an insuperable barrier and could be used as an efficient shuttle for delivering hydrophobic and hydrophilic compounds deep into the lung and the organism.

  9. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  10. Colorful Hydrophobic Poly(Vinyl Butyral)/Cationic Dye Fibrous Membranes via a Colored Solution Electrospinning Process

    Science.gov (United States)

    Yan, Xu; You, Ming-Hao; Lou, Tao; Yu, Miao; Zhang, Jun-Cheng; Gong, Mao-Gang; Lv, Fu-Yan; Huang, Yuan-Yuan; Long, Yun-Ze

    2016-12-01

    Colorful nanofibrous membranes have attracted much attention for their visual varieties and various functionalities. In this article, a colored solution electrospinning process was used to fabricate colorful hydrophobic poly(vinyl butyral) (PVB)/cationic dye nanofibrous membranes (NFMs) successfully. The color and morphology of these as-spun nanofibrous membranes have been analyzed by colorimetry, spectroscopy, and scanning electron microscopy (SEM). It is shown that the as-spun colorful PVB-based membranes exhibit excellent level-dyeing property and color stability. Furthermore, the doping of cationic dye and the increase of dye concentration can decrease the diameter of the as-spun colored fibers, which results in better level-dyeing property and higher water contact angle more than 140°. The stained PVB fibrous membranes with excellent level-dyeing property and hydrophobicity are promising in some applications such as textiles, wallpapers, and anticorrosive coating/painting.

  11. Membrane-controlled processes for the energy-efficient conversion of sludges to fuels and marketable chemicals

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    Studies were carried out on the concentration of primary and secondary sludges by ultrafiltration, and the operation of a membrane-assisted anaerobic digester to treat these sludges. Auxiliary devices including water-spilling and membrane solvent extraction were tested for their feasibility in the ehhancement of digester operations and the recovery of valuable byproducts. It was shown that membrane-facilitated digestion can increase the rate of these processes by a factor of ten, together with a substantial decrease in the amount going to waste, and with the ultrafiltration permeate containing appreciable concentrations of valuable byproducts which could be concentrated and recovered using a combination of other membrane technologies. The utility of electrodialytic water-splitting and membrane solvent extraction was demonstrated. All of this was accomplished with a small three-liter bench-scale digester, the operation of which presented many problems because of its very small size and the difficulty in handling real sewage sludges.

  12. A foaming process to prepare porous polymer membrane for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.H. [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)], E-mail: lzh69@xtu.edu.cn; Cheng, C.; Zhan, X.Y. [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Wu, Y.P. [New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)], E-mail: wuyp@fudan.edu.cn; Zhou, X.D. [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2009-07-15

    A foaming process was used to prepare porous polymer membranes (PPMs) based on poly(vinylidene diflouride-co-hexafluoropropylene) copolymer for lithium ion batteries. In this simple process, urea, the foaming agent, was decomposed into gases and was removed at an elevated temperature to get the porous structure within the polymer matrix. When the weight ratio of urea to P(VDF-HFP) is 5:6, the PPM presents the highest porosity, 70.2%, and the prepared gelled polymer electrolyte shows an ionic conductivity up to 1.43 x 10{sup -3} S cm{sup -1} at room temperature. This provides another way to prepare gelled polymer electrolytes easily for application in rechargeable lithium batteries.

  13. Evaluation of Miniaturized Infrared Sensors for Process Control of the Palladium Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R. J.; Howard, D. W.

    2005-07-31

    We have tested the suitability of a miniaturized infrared sensor for measurements of CO and H{sub 2}O in the inlet stream to the Palladium Membrane Reactor (PMR). We demonstrated that both analytes can be measured with absolute accuracies of 2-4% at the process inlet conditions of 120-140 C and approximately 1 atm of each gas. This accuracy must be improved to 1-1.5% for effective PMR process control. The use of a reference detector and independent temperature and pressure measurements to correct the raw signals will improve the accuracy to a level that will approach, if not meet, this goal. With appropriate bandpass filters, the infrared sensors may be used for other gas analysis applications.

  14. Surfactant-Assisted Coal Liquefaction

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  15. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods.

    Science.gov (United States)

    Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S

    2015-01-01

    Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.

  16. Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes

    KAUST Repository

    Louie, Jennifer Sarah

    2011-02-01

    The application of polymer surface coatings to improve the fouling resistance of reverse osmosis membranes tends to increase flow resistance across the membrane. This paper presents a systematic analysis on how membrane properties and performance are impacted by the coating process steps, and investigates how such effects could contribute to lower water flux. On one hand, simply pre-soaking dry aromatic polyamide composite membranes in aliphatic alcohols results in a significant increase in water flux, which is attributed to wetting of pores in the selective polyamide layer and to changes in the polymer structure. This flux increase was not readily reversible, based on a 300-h water permeation test. Conversely, drying a wetted membrane led to a decrease in water flux, which we hypothesize is caused by increased interchain hydrogen-bonding in the selective layer. This drop in water flux was not permanent; higher flux was observed if the same wetted/dried membrane was then re-soaked in ethanol prior to the water permeation experiment. An ethanol pre-soaking step also increased water flux of a PEBAX-coated membrane by nearly 70%. In contrast to the reduction in water flux caused by the specific treatment sequence of ethanol-swelling followed by drying, this same sequence actually increased gas transport. The eight- to ten-fold increase in Knudsen diffusion-based gas permeance after this pre-treatment was attributed to an increase in the number or size of membrane defects. © 2010 Elsevier B.V.

  17. Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process

    Science.gov (United States)

    Kim, Tae Kyoung; Kang, Myeongsoon; Choi, Yeong Suk; Kim, Hae Kyung; Lee, Wonmok; Chang, Hyuk; Seung, Doyoung

    Nafion sulfonated clay nanocomposite membranes were successfully produced via a film coating process using a pilot coating machine. For producing the composite membranes, we optimized the solvent ratio of N-methyl-2-pyrrolidinone (NMP) to N, N‧-dimethylacetamide (DMAc), the amount of sulfonated montmorillonite (S-MMT) in composite membranes and the overall concentration of composite dispersions. Based on the optimized viscosity and composition, the composite dispersions were coated on a poly(ethylene terephthalate) (PET) substrate film. The distance between a metering roll and a PET film and the ratio of metering roll speed versus coating roll speed of the pilot coating machine were varied to control membrane thickness. The film coated composite membrane exhibited enhanced properties in the swelling behavior against MeOH solution, ion conductivity and MeOH permeability, compared to the cast Nafion composite membrane due to the higher dispersion state of S-MMT in Nafion matrix and the uniform distribution of small-size ion clusters. These properties influenced a cell performance test of a direct methanol fuel cell (DMFC), showing the film coated composite membrane had a higher power density than that of Nafion 115. The power density was also related with the higher selectivity of the composite membrane than Nafion 115.

  18. Factors that influence the membrane area of a multistage microfiltration process required to produce a micellar casein concentrate.

    Science.gov (United States)

    Hurt, Emily E; Barbano, David M

    2015-04-01

    The objective of the work reported in this paper was to develop a theoretical model to determine the effect of type of microfiltration (MF)-process feed, number of stages, and flux on the minimization of the MF membrane area required to produce a 95% serum protein-reduced micellar casein concentrate. The MF feed, number of stages, and flux were all factors that had an effect on the MF membrane area and should be taken into consideration when designing a MF system to produce a 95% serum protein-reduced micellar casein concentrate. Feeding the MF process with a diluted ultrafiltration retentate (DUR) diluted to the protein concentration of skim milk, as opposed to skim milk, reduced the required membrane area by 36% for a 5-stage process. When DUR was the MF feed, feed protein concentration, which depended on the number of MF stages, was optimized. The DUR protein concentration that minimized the required MF membrane area was 2.47, 3.85, 4.77, and 5.41% for a 2-, 3-, 4-, or 5-stage MF process, respectively. For a 5-stage process, increasing the protein concentration of the feed from 3.2 to 5.4% decreased the required MF membrane area by 10%. It was also found that as the number of stages increased from 2 to 5, the required MF membrane area decreased by 39%, when the MF feed was DUR at the optimal feed protein concentration. Finally, increasing the flux from 50 to 60 kg/m(2) per hour decreased the required MF membrane area by 17% when the MF feed was DUR at the optimal MF feed protein concentration. Overall, using DUR as a feed for MF could reduce the amount of MF membrane area required to make a 95% serum protein-reduced micellar casein concentrate.

  19. INFLUENCE OF ALCOHOL-BASED NONSOLVENTS ON THE FORMATION AND MORPHOLOGY OF PVDF MEMBRANES IN PHASE INVERSION PROCESS

    Institute of Scientific and Technical Information of China (English)

    Dan-ying Zuo; Bao-ku Zhu; Jian-hua Cao; You-yi Xu

    2006-01-01

    Through the preparation of PVDF membranes using various nonsolvent coagulation baths following the phase inversion process, the influence of alcohol-based nonsolvents on the formation and structure of PVDF membranes were investigated. The light scattering and light transmission measurements were used to characterize the equilibrium phase diagram and the gelation speed, respectively. The locations of the crystallization-induced gelation boundaries for various systems and precipitation processes were explained from the corresponding thermodynamic and kinetic parameters. It was found that the better affinity between alcohol-based nonsolvents and DMAc solvent caused the gelation boundaries further away from the PVDF-DMAc axis with the coagulation bath varying from water, methanol, ethanol to iso-propanol. Due to the lower exchange rate of DMAc and alcohols, the delayed demixing took place for the membrane-forming using alcohols as baths, and the delayed time became longer when the coagulation bath was changed from methanol, ethanol to iso-propanol.The characterization results of membranes indicate that the influence of nonsolvents on the phase diagram and the precipitation process are in agreement with those on the membrane morphology. The better thermodynamic stability and a low exchange diffusion rate of PVDF/DMAc/alcohols favor the liquid-solid phase separation in gelation process, and therefore yield the membranes with a porous upper surface, a particular bottom surface and symmetrical structure.

  20. The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis.

    Science.gov (United States)

    Ioannou-Ttofa, L; Foteinis, S; Chatzisymeon, E; Fatta-Kassinos, D

    2016-10-15

    This study includes an environmental analysis of a membrane bioreactor (MBR), the objective being to quantitatively define the inventory of the resources consumed and estimate the emissions produced during its construction, operation and end-of-life deconstruction. The environmental analysis was done by the life cycle assessment (LCA) methodology, in order to establish with a broad perspective and in a rigorous and objective way the environmental footprint and the main environmental hotspots of the examined technology. Raw materials, equipment, transportation, energy use, as well as air- and waterborne emissions were quantified using as a functional unit, 1m(3) of urban wastewater. SimaPro 8.0.3.14 was used as the LCA analysis tool, and two impact assessment methods, i.e. IPCC 2013 version 1.00 and ReCiPe version 1.10, were employed. The main environmental hotspots of the MBR pilot unit were identified to be the following: (i) the energy demand, which is by far the most crucial parameter that affects the sustainability of the whole process, and (ii) the material of the membrane units. Overall, the MBR technology was found to be a sustainable solution for urban wastewater treatment, with the construction phase having a minimal environmental impact, compared to the operational phase. Moreover, several alternative scenarios and areas of potential improvement, such as the diversification of the electricity mix and the material of the membrane units, were examined, in order to minimize as much as possible the overall environmental footprint of this MBR system. It was shown that the energy mix can significantly affect the overall sustainability of the MBR pilot unit (i.e. up to 95% reduction of the total greenhouse gas emissions was achieved with the use of an environmentally friendly energy mix), and the contribution of the construction and operational phase to the overall environmental footprint of the system.