WorldWideScience

Sample records for surfactant liquid crystal

  1. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant

    Directory of Open Access Journals (Sweden)

    Jun Kobayashi

    2016-06-01

    Full Text Available A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8 isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC impedance spectroscopy.

  2. Controlling Active Liquid Crystal Droplets with Temperature and Surfactant Concentration

    Science.gov (United States)

    Shechter, Jake; Milas, Peker; Ross, Jennifer

    Active matter is the study of driven many-body systems that span length scales from flocking birds to molecular motors. A previously described self-propelled particle system was made from liquid crystal (LC) droplets in water with high surfactant concentration to move particles via asymmetric surface instabilities. Using a similar system, we investigate the driving activity as a function of SDS surfactant concentration and temperature. We then use an optical tweezer to trap and locally heat the droplets to cause hydrodynamic flow and coupling between multiple droplets. This system will be the basis for a triggerable assembly system to build and couple LC droplets. DOD AROMURI 67455-CH-MUR.

  3. PEG-nanotube liquid crystals as templates for construction of surfactant-free gold nanorods.

    Science.gov (United States)

    Kameta, Naohiro; Shiroishi, Hidenobu

    2018-04-23

    Lyotropic liquid crystals, in which nanotubes coated with polyethylene glycol were aligned side-by-side in aqueous dispersions, acted as templates for the construction of surfactant-free gold nanorods with controllable diameters, functionalizable surfaces, and tunable optical properties.

  4. Stabilization of liquid crystal dispersion by nonionic surfactant/acrylamide copolymer containing hydrophobic moieties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, M.H.; Lee, J.R. [Korea Research Institute of Chemical Technology, Taejon (Korea)

    1999-07-01

    The effect of nonionic surfactant (H(OCH){sub 2}-OC{sub 6}H{sub 4}-C{sub 9}H{sub 19}, NP-8) and acrylamide copolymer containing nonylphenyl groups as hydrophobic moieties on the stabilization of liquid crystal (LC)-in-water dispersion has been studied. According to cloud point and adsorption measurements, the hydrophobically strong interaction between NP-8 and the nonylphenol moieties is formed. And the addition of surfactant increases the stability of LC dispersion and improve the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. It is due to the presence of surfactant which allows the formation of nonpolar microenvironment in the round of LC droplet and finally reduces the anchoring effect between LC and the polymeric wall. 21 refs., 8 figs.

  5. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    Science.gov (United States)

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-05

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  6. Nanoparticle guests in lyotropic liquid crystals

    Science.gov (United States)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  7. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Science.gov (United States)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  8. Insertion of liquid crystal molecules into hydrocarbon monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Piotr, E-mail: ppopov@kent.edu; Mann, Elizabeth K. [Department of Physics, Kent State University, Kent, Ohio 44242 (United States); Lacks, Daniel J. [Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Jákli, Antal [Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001 (United States)

    2014-08-07

    Atomistic molecular dynamics simulations were carried out to investigate the molecular mechanisms of vertical surface alignment of liquid crystals. We study the insertion of nCB (4-Cyano-4{sup ′}-n-biphenyl) molecules with n = 0,…,6 into a bent-core liquid crystal monolayer that was recently found to provide good vertical alignment for liquid crystals. The results suggest a complex-free energy landscape for the liquid crystal within the layer. The preferred insertion direction of the nCB molecules (core or tail first) varies with n, which can be explained by entropic considerations. The role of the dipole moments was found to be negligible. As vertical alignment is the leading form of present day liquid crystal displays (LCD), these results will help guide improvement of the LCD technology, as well as lend insight into the more general problem of insertion of biological and other molecules into lipid and surfactant layers.

  9. Liquid Crystals in Tribology

    Directory of Open Access Journals (Sweden)

    María-Dolores Bermúdez

    2009-09-01

    Full Text Available Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs, only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs. Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  10. Liquid crystals in tribology.

    Science.gov (United States)

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  11. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    Science.gov (United States)

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    2016-05-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.

  12. Liquid crystals of carbon nanotubes and graphene.

    Science.gov (United States)

    Zakri, Cécile; Blanc, Christophe; Grelet, Eric; Zamora-Ledezma, Camilo; Puech, Nicolas; Anglaret, Eric; Poulin, Philippe

    2013-04-13

    Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.

  13. Surfactant selection for a liquid foam-bed photobioreactor.

    Science.gov (United States)

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  14. Design of Agglomerated Crystals of Ibuprofen During Crystallization: Influence of Surfactant

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-01-01

    Full Text Available Objective(sIbuprofen is a problematic drug in tableting, and dissolution due to its poor solubility, hydrophobicity, and tendency to stick to surface. Because of the bad compaction behavior ibuprofen has to be granulated usually before tableting. However, it would be more satisfactory to obtain directly during the crystallization step crystalline particles that can be directly compressed and quickly dissolved. Materials and Methods Crystallization of ibuprofen was carried out using the quasi emulsion solvent diffusion method in presence of surfactant (sodium lauryl sulfate (SLS, Tween 80. The particles were characterized by differential scanning calorimetry (DSC, powder X-ray diffraction (XRPD and were evaluated for particle size, flowability, drug release and tableting behavior. ResultsIbuprofen particles obtained in the presence of surfactants consisted of numerous plate- shaped crystals which had agglomerated together as near spherical shape. The obtained agglomerates exhibited significantly improved micromeritic properties as well as tableting behavior than untreated drug crystals. The agglomerates size and size distribution was largely controlled by surfactant concentration, but there was no significant influence found on the tableting properties. The dissolution tests showed that the agglomerates obtained in presence of SLS exhibited enhanced dissolution rate while the agglomerates made in the presence of Tween 80 had no significant impact on dissolution rate of ibuprofen in comparison to untreated sample. The XRPD and DSC results showed that during the agglomeration process, ibuprofen did not undergo any polymorphic changes.Conclusion The study highlights the influence of surfactants on crystallization process leading to modified performance.

  15. In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.

    Science.gov (United States)

    Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C

    2005-11-01

    In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.

  16. Synthesis of carbonated hydroxyapatite nanorods in liquid crystals

    Directory of Open Access Journals (Sweden)

    Daniella Dias Palombino de Campos

    2009-09-01

    Full Text Available Syntheses of calcium phosphate nanoparticles, carried out in systems formed from surfactant, oil and water, have resulted in materials with promising possibilities for application. The calcium phosphate particles were synthesized using two different liquid crystals, formed from RenexTM, cyclohexane and a salts solution. The morphology of the nanoparticles synthesized in the liquid crystals is similar to that of hydroxyapatite particles that form bone mineral, where collagen fibers connect these particles so as to form a composite. Therefore, the synthesis of calcium phosphate nanoparticles in the systems used in this work can advance current understanding of mineralization processes that result in the formation of bone mineral.

  17. The Effect of Surfactants on Gas-Liquid Pipe Flows

    NARCIS (Netherlands)

    Van Nimwegen, A.T.

    2015-01-01

    Liquid loading is a major problem in the natural gas industry, in which gas production is limited by the accumulation of liquids in the well tubing. Liquid loading can be prevented by the injection of surfactants at the bottom of the well. The surfactants cause the liquid in the well to foam,

  18. Method of cement-solidification of radioactive liquid wastes containing surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Yusa, H

    1979-04-10

    Purpose: To provide the subject method comprising the steps of adjusting the concentration of the surfactant to a value less than the predetermined value even when the concentration of the surfactant is high, and rendering the uniaxial compression strength of the cement-solidification body into more than the defined fabrication reference value. Method: To radioactive liquid wastes there are applied means for boiling and heating liquid wastes by addition of sulfuric acid, means for cracking surfactants by the addition of oxidants and means for precipitating and arresting surfactants. After suppressing the hindrance of the cement hydration reaction by surfactants, the radioactive liquid wastes are cement-solidified. (Nakamura, S.).

  19. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  20. Determination of phase transitions in a lyotropic liquid crystal by Positron Annihilation technique

    International Nuclear Information System (INIS)

    Castillo V, V.M.

    1994-01-01

    Positron annihilation technique was used to determine the phase transitions in a lyotropic liquid crystal, as a function of temperature. Seven different concentrations of the surfactant cetyldimethylethylammonium bromide, were studied. The liquid crystal studied consisted of a binary system, formed by the surfactant and water. Positron annihilation technique has a very high sensitivity toward changes in the microestructure, in condensed matter, this is useful in order to detect the temperatures at which phase transitions occur and the number of these, in a liquid crystalline system. Thus, phase transitions are related with changes occurred in the ortho-positronium parameters: lifetime (τ 3 ) and intensity of formation (I 3 ). Six different kinds of phases were detected in the system studied in a temperature range of 35 to 140 Centigrade degrees, those phases were: hexagonal, hexagonal-lamellae, lamellae, lamellae-cubic, nematic and anisotropic. Using optical microscopic the textures of these phases were assigned. (Author)

  1. Surfactant induced flows in thin liquid films : an experimental study

    NARCIS (Netherlands)

    Sinz, D.K.N.

    2012-01-01

    The topic of the experimental work summarized in my thesis is the flow in thin liquid films induced by non-uniformly distributed surfactants. The flow dynamics as a consequence of the deposition of a droplet of an insoluble surfactant onto a thin liquid film covering a solid substrate where

  2. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2009-02-15

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {l_brace}M{sub W} = (1000, 6000, and 35,000) g . mol{sup -1}{r_brace} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed.

  3. Decisive Interactions between the Heterocyclic Moiety and the Cluster Observed in Polyoxometalate-Surfactant Hybrid Crystals

    Directory of Open Access Journals (Sweden)

    Saki Otobe

    2015-04-01

    Full Text Available Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda and dodecylpyridinium (C12py surfactants. The decatungstate (W10 anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10, the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10 had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions.

  4. Nanoparticles in liquid crystals, and liquid crystals in nanoparticles

    Science.gov (United States)

    de Pablo, Juan

    2015-03-01

    Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.

  5. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Paulo B. [Univ. of California, Berkeley, CA (United States)

    1998-12-14

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayer are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayer at Iiquidhapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the confirmational order of surfactant monolayers.

  6. Chirality transfer technique between liquid crystal microdroplets using microfluidic systems

    Science.gov (United States)

    Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun

    2018-02-01

    Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.

  7. Surfactant mediated liquid phase exfoliation of graphene

    Science.gov (United States)

    Narayan, Rekha; Kim, Sang Ouk

    2015-10-01

    Commercialization of graphene based applications inevitably requires cost effective mass production. From the early days of research on graphene, direct liquid phase exfoliation (LPE) of graphite has been considered as the most promising strategy to produce high-quality mono or few-layer graphene sheets in solvent dispersion forms. Substantial success has been achieved thus far in the LPE of graphene employing numerous solvent systems and suitable surfactants. This invited review article principally showcase the recent research progress as well as shortcomings of surfactant assisted LPE of graphene. In particular, a comprehensive assessment of the quality and yield of the graphene sheets produced by different categories of the surfactants are summarized. Future direction of LPE methods is also proposed for the eventual success of commercial applications.

  8. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  9. The effect of surfactant on stratified and stratifying gas-liquid flows

    Science.gov (United States)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  10. Surface-induced ordering of a liquid crystal in the isotropic phase

    International Nuclear Information System (INIS)

    Miyano, K.

    1979-01-01

    A detailed account of a measurement of order parameter of a liquid crystal at the boundary by means of the wall-induced pretransitional birefringence is given. Several surface treatments were studied including surfactants and evaporated films. Although all treatments produced good alignment in the nematic phase, the boundary order parameter (hence the strength of the aligning force) in the isotropic phase differed very much depending on the treatment, indicating the diverse nature of the alignment process

  11. Improved surfactants formulation for remediation of oil sludge recovery

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Shahidan Radiman

    2000-01-01

    Surfactant enhanced remediation based on mobilisation of the residual NAPLs (oil sludge) which is radioactive depends on the tendency of the surfactants to lower interfacial tension. Mobilisation has greater potential than solubilisation to increase the rate of remediation. Optimised surfactants formulation was determined with concentration of Aqua 2000 and D Bond of 1% wt respectively, sodium chloride concentration of 2 gmL -1 and addition of 3% wt butanol as cosolvent. The formulation was of benefit not only able to decrease further the interfacial tension of aqueous solution containing oil emulsion, but also to make possible to be more mobile and destruction of mixed liquid crystals that formed. Formation of liquid crystals can hinders significantly recovery efficiency of aqueous solution containing oil emulsion in field remediation work. In a 100 litres soil column experiment conducted containing oil emulsion in field sludge soil and using the surfactants formulation for flushing, miniemulsion formed sizes maintained at average size between 125 nm and 280 nm before and after remediation. Total oil and grease concentration removed from the soil were significant due to the decreased in oil emulsion sizes, increase mobility and solubility. (Author)

  12. Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings

    International Nuclear Information System (INIS)

    Barrientos, Laura G.; Dolan, Caroline; Gronenborn, Angela M.

    2000-01-01

    Media employed for imparting partial alignment onto solute molecules have recently attracted considerable attention, since they permit the measurement of NMR parameters for solute biomolecules commonly associated with solid state NMR. Here we characterize a medium which is based on a quasi-ternary surfactant system comprising cetylpyridinium bromide/hexanol/sodium bromide. We demonstrate that dilute solutions of this system can exist in liquid crystalline phases which orient in the magnetic field and allow the measurement of residual dipolar couplings under a variety of conditions. The present system is extremely versatile and robust, tolerating different buffer conditions, temperature ranges and concentrations

  13. Effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel

    International Nuclear Information System (INIS)

    Zheng, Lichun; Malfliet, Annelies; Wollants, Patrick; Blanpain, Bart; Guo, Muxing

    2016-01-01

    The effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel was studied by adding Te to liquid steel before Al deoxidation at 1873 K. After water-quenching, the spatial distribution homogeneity of alumina inclusions in the steel matrix was characterized using the Dirichlet tessellation method. The deterioration of this homogeneity with increasing the addition of Te indicates that Te facilitates pushing of alumina inclusions. This phenomenon was discussed based on the thermodynamics of an asymmetric thin liquid film confined by an advancing solid-liquid interface and a particle. The surface excesses of Te at the solid-liquid and particle-liquid interfaces were theoretically demonstrated to decrease when an alumina inclusion moves towards the solid-liquid interface, thereby weakening the effect of Te on the solid-liquid and particle-liquid interfacial energies. Based on this, effect of surfactants was incorporated in the models predicting the critical velocity V_C.

  14. Liquid Crystal Colloids

    Science.gov (United States)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  15. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    Directory of Open Access Journals (Sweden)

    Rajabalaya R

    2017-02-01

    Full Text Available Rajan Rajabalaya, Muhammad Nuh Musa, Nurolaini Kifli, Sheba R David PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam Abstract: Liquid crystal (LC dosage forms, particularly those using lipid-based lyotropic LCs (LLCs, have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. Keywords: liquid crystal, drug delivery, controlled release, lyotropic, surfactants, drug localization

  16. Physical Properties of Liquid Crystals

    CERN Document Server

    Gray, George W; Spiess, Hans W

    1999-01-01

    This handbook is a unique compendium of knowledge on all aspects of the physics of liquid crystals. In over 500 pages it provides detailed information on the physical properties of liquid crystals as well as the recent theories and results on phase transitions, defects and textures of different types of liquid crystals. An in-depth understanding of the physical fundamentals is a prerequisite for everyone working in the field of liquid crystal research. With this book the experts as well as graduate students entering the field get all the information they need.

  17. The sweet world of liquid crystals : The synthesis of non-amphiphilic carbohydrate-derived liquid crystals

    NARCIS (Netherlands)

    Smits, E

    1998-01-01

    The research in carbohydrate-derived liquid crystals was initiated by a review article by Jeffrey in 1986. This is rather late if one considers that the research on liquid crystals underwent a revival already in the 1960s after the discovery of the liquid crystal display (LCD). Carbohydrates were

  18. Pressure sensor using liquid crystals

    Science.gov (United States)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  19. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  20. Asymmetric electrooptic response in a nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dascalu, Constanta [Politechnica University of Bucharest, Bucharest (Romania)

    2001-06-01

    An asymmetric electrooptic response in nematic liquid crystal (LC) has been obtained. The liquid crystal hybrid cell was made by using a standard configuration. One of the ITO (Indium Tin Oxide) electrodes was covered with a surfactant, which induces a homeotropic alignment. The second of the indium tin oxide electrodes was covered by a thin layer of photopolymer, which was previously mixed with an acid, which favours a process of release of protons. Such cations are responsible of electrochemical process in the LC leading to an asymmetric electrooptic response, which depend on the polarity of the applied electric field. This fact is due to an internal field, which change the effective voltage thresholds for the reorientation of the liquid crystal. During the anodic polarization, the optical switching is inhibited because the effective field decreases below the threshold value. On contrary for the opposite polarization the effective field is enough to determine a homeotropic alignment. [Spanish] Se ha obtenido una respuesta electro-optica asimetrica en cristales liquidos neumaticos. La celula hibrida de cristal liquido fue construida utilizando una configuracion estandar. Uno de los electrodos ITO fue cubierto con una pelicula delgada de material organico para inducir una alineacion homeotropa. El otro electrodo ITO fue cubierto con una pelicula delgada de fotopolimero anteriormente mezclada con un acido para favorecer la emision de protones. Estos cationes son responsables del proceso electroquimico en LC, conduciendo a una respuesta electro-optica asimetrica que depende de la polaridad del campo electrico aplicado. Este efecto es originado por un campo interno que cambia el umbral efectivo del voltaje para la reorientacion del cristal liquido. Durante la polarizacion anodica, la conmutacion optica se inhibe debido a que el campo efectivo disminuye abajo del valor del umbral. Por el contrario, para la polarizacion opuesta el campo efectivo es suficiente para

  1. Liquid Crystals in Decorative and Visual Arts

    Science.gov (United States)

    Makow, David

    The following sections are included: * INTRODUCTION * PIGMENT AND STRUCTURAL COLOURS AND THEIR RELEVANCE TO LIQUID CRYSTALS * LIQUID CRYSTAL MATERIALS AND TECHNIQUES FOR DECORATIVE AND VISUAL ARTS * Free cholesteric liquid crystals (FCLC's) * Encapsulated liquid crystals (ECLC's) * Nonsteroid Chiral nematics * Polymers with liquid crystalline properties (PLCs) * COLOUR PROPERTIES OF CHOLESTERIC LIQUID CRYSTALS (CLC's) * Molecular structure and the mechanism of colour production * Dependence of perceived colours on the angle of illumination and viewing * Dependence of perceived colours on temperature * Additive colour properties * Methods of doubling the peak reflectance of cholesteric liquid crystals * Colour gamut * Colours of superimposed and pigmented coatings * Colours in transmission * ACKNOWLEDGEMENTS * REFERENCES

  2. Wetting of cholesteric liquid crystals.

    Science.gov (United States)

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  3. Mechanism of calcium phosphates precipitation in liquid crystals

    International Nuclear Information System (INIS)

    Prelot, B.; Zemb, T.

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m 2 /g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  4. Effect of surfactant concentration on nifedipine crystal habit and its related pharmaceutical properties

    Science.gov (United States)

    Kumar, Dinesh; Thipparaboina, Rajesh; Modi, Sameer R.; Bansal, Arvind K.; Shastri, Nalini R.

    2015-07-01

    Crystallization in the presence of Polysorbate-80 (T-80), a non-ionic surfactant was explored for crystal habit modification of nifedipine polymorph I (Nif). A concentration dependent reduction in aspect ratio was observed with T-80. Generation of any new solvates/polymorphs was ruled out by Fourier Transform Infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, and thermogravimetric analysis, while the absence of T-80 on the surface or bulk of the recrystallized samples was established by liquid chromatography mass spectroscopy. The dissolution rate order of the re-crystallized Nif habits was in the order of; Nif-D (Nif with 0.6%v/v T-80)>Nif-C (Nif with 0.4% v/v T-80)>Nif-B (Nif with 0.2% v/v T-80)>Nif-A (plain Nif). Wetting ability and surface free energy determination from contact angle measurements were used to explain the order of dissolution rate. The consequences of varying concentration of T-80 on Nif crystal habit was supported by means of molecular dynamics (MD) which was executed using COMPASS force field while modified attachment energy was computed to acquire the absolute morphology. The mechanism for alteration in the morphology was suggested based on the computed crystal surface chemistry. Nif-D crystal habit was nearly iso-diametric with majority of facets occupied by polar dominant surfaces {0 1 1} and {0 0 2} which ultimately resulted in higher dissolution rate. In Nif-B and Nif-C the dissolution rate was dependent on the proportion of polar and non-polar facet area. The methodology used in this study could be an influential tool for selection of concentration of habit-modifying additives in other crystallization studies.

  5. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine.

    Science.gov (United States)

    Wang, Yi; Hu, Qiongzheng; Tian, Tongtong; Gao, Yan'an; Yu, Li

    2016-11-01

    A liquid crystal (LC)-based sensor, which is capable of monitoring enzymatic activity at the aqueous/LC interface and detecting cellulase and cysteine (Cys), was herein reported. When functionalized with a surfactant, dodecyl β-d-glucopyranoside, the 4-cyano-4'-pentylbiphenyl (5CB) displays a dark-to-bright transition in the optical appearance for cellulase. We attribute this change to the orientational transition of LCs, as a result of enzymatic hydrolysis between cellulase and surfactant. Furthermore, by adding cellulase and Cu(2+), our surfactant-LCs system performs an interesting ability to detect Cys, even though Cys could not interact with surfactant or LC directly. Alternatively, through the strong binding between Cys and Cu(2+), cellulase was able to hydrolyze surfactant in the presence of Cu(2+), leading to the transition of LCs from dark to bright. The detection limit of the LC sensor was around 1×10(-5)mg/mL and 82.5μM for cellulase and Cys, respectively. The LC-based sensor may contribute to the development of low-cost, expedient, and label-free detection for cellulase and Cys and the design strategy may also provide a novel way for detecting multiple analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Extraction of lithium ion from alkaline aqueous media by a liquid surfactant membrane

    International Nuclear Information System (INIS)

    Kinugasa, Takumi; Ono, Yuri; Kawamura, Yuko; Watanabe, Kunio; Takeuchi, Hiroshi.

    1995-01-01

    Extraction of lithium ion from aqueous alkaline media by a liquid surfactant membrane was performed using a mixture of LIX54 and TOPO as the extractant. Stripping of lithium from the kerosene solution to the acid solution was suppressed with increasing content of polyamine (ECA) surfactant. The extraction rate of lithium by the liquid membrane could be interpreted taking account of an interfacial resistance due to ECA. It was confirmed that swelling of the (W/O) emulsion drops by water permeation through the liquid membrane is evaluated in terms of a change in osmotic pressure gradient between the external and internal aqueous phases during the lithium extraction. In the present operation, the extraction ratio of Li + from the external feed and the uptake into the internal phase reached as high as 95%. (author)

  7. Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Junkuo [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ye, Kaiqi [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (China); He, Mi [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Xiong, Wei-Wei; Cao, Wenfang; Lee, Zhi Yi [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Yue [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (China); Wu, Tom [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Huo, Fengwei [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Xiaogang [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore); Institute of Materials Research Engineering, Agency for Science, Technology and Research, Singapore 117602 (Singapore); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2013-10-15

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal–organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D) MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η{sup 1} mode to tetra-donor coordination µ{sub 3}-η{sup 1}:η{sup 2}:η{sup 1} mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (T{sub c}) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. - Graphical abstract: Surfactants have been used as reaction media to grow MOF single crystals for the first time. Eight new two-dimensional or three-dimensional MOFs were successfully synthesized in surfactant polyethylene glycol-200 (PEG-200). Coordination modes of carboxylates up to eight were founded. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. Display Omitted - Highlights: • Surfactant-thermal synthesis of crystalline metal–organic frameworks. • Eight new 2-D or 3-D metal–organic frameworks

  8. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  9. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  10. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  11. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  12. Mercury Concentration Reduction In Waste Water By Using Liquid Surfactant Membrane Technique

    International Nuclear Information System (INIS)

    Prayitno; Sardjono, Joko

    2000-01-01

    The objective of this research is ti know effectiveness of liquid surfactant membrane in diminishing mercury found in waste water. This process can be regarded as transferring process of solved mercury from the external phase functioning as a moving phase to continue to the membrane internal one. The existence of the convection rotation results in the change of the surface pressure on the whole interface parts, so the solved mercury disperses on every interface part. Because of this rotation, the solved mercury will fulfil every space with particles from dispersion phase in accordance with its volume. Therefore, the change of the surface pressure on the whole interface parts can be kept stable to adsorb mercury. The mercury adsorbed in the internal phase moves to dispersed particles through molecule diffusion process. The liquid surfactant membrane technique in which the membrane phase is realized into emulsion contains os kerosene as solvent, sorbitan monoleat (span-80) 5 % (v/v) as surfactant, threbuthyl phosphate (TBP) 10 % (v/v) as extractant, and solved mercury as the internal phase. All of those things are mixed and stirred with 8000 rpm speed for 20 minutes. After the stability of emulsion is formed, the solved mercury is extracted by applying extraction process. The effective condition required to achieve mercury ion recovery utilizing this technique is obtained through extraction and re-extraction process. This process was conducted in 30 minutes with membrane and mercury in scale 1 : 1 on 100 ppm concentration. The results of the processes was 99,6 % efficiency. This high efficiency shows that the liquid surfactant membrane technique is very effective to reduce waste water contamined by mercury

  13. Nonlinear and quantum optics with liquid crystals

    International Nuclear Information System (INIS)

    Lukishova, Svetlana G

    2014-01-01

    Thermotropic liquid crystals' usual application is display technology. This paper describes experiments on light interaction with pure and doped liquid crystals under for these materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) at the single-photon level. In (1), I will outline several nonlinear optical effects under high-power, nanosecond laser irradiation which should be taken into account in the design of lasers with liquid crystal components and in fabrication of optical power limiters based on liquid crystals: (1.1) athermal helical pitch dilation and unwinding of cholesteric mirrors (both in free space and inside laser resonators); (1.2) some pitfalls in measurements of refractive nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3) the first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition rate (2-10 Hz) laser irradiation in the presence of two-photon absorption; (1.4) feedback-free kaleidoscope of patterns (hexagons, stripes, etc.) in dye-doped liquid crystals. In (2), at the single-photon level, it will be shown that with a proper selection of liquid crystals and a single-emitter dopant spectral range, liquid crystal structures can be used to control emitted single photons (both polarization and count rate). The application of the latter research is absolutely secure quantum communication with polarization coding of information. In particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in quantum dot fluorescence is reported. In (2.2), definite linear polarization of single (antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. In (2.3), some results on photon antibunching from NV-color center in nanodiamond in liquid crystal host and circularly polarized fluorescence of definite handedness from nanocrystals doped with trivalent ions of

  14. Key Developments in Ionic Liquid Crystals

    OpenAIRE

    Fernandez, A.A.; Kouwer, P.H.J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a...

  15. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  16. Nanoscopic Manipulation and Imaging of Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, Charles S. [Case Western Reserve Univ., Cleveland, OH (United States)

    2014-02-04

    This is the final project report. The project’s goals centered on nanoscopic imaging and control of liquid crystals and surfaces. We developed and refined techniques to control liquid crystal orientation at surfaces with resolution as small as 25 nm, we developed an optical imaging technique that we call Optical Nanotomography that allows us to obtain images inside liquid crystal films with resolution of 60 x 60 x 1 nm, and we opened new thrust areas related to chirality and to liquid crystal/colloid composites.

  17. Liquid crystals in biotribology synovial joint treatment

    CERN Document Server

    Ermakov, Sergey; Eismont, Oleg; Nikolaev, Vladimir

    2016-01-01

    This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids - containing cholesteric liquid crystals in natural synovial liquids - are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.

  18. Stability of an unsupported multi-layer surfactant laden liquid curtain under gravity

    KAUST Repository

    Henry, D.

    2015-11-07

    The industrial process of curtain coating has long been an important method in coating applications, by which a thin liquid curtain is formed to impinge upon a moving substrate, due to its highly lucrative advantage of being able to coat multiple layers simultaneously. We investigate the linear stability of an unsupported two-layer liquid curtain, which has insoluble surfactants in both liquids, which are widely used in industry to increase the stability of the curtain. We formulate the governing equations, simplified by making a thin film approximation, from which we obtain equations describing the steady-state profiles. We then examine the response of the curtain to small perturbations about this steady state to identify conditions under which the curtain is unstable, finding the addition of surfactants stabilizes the curtain. Our results are then compared to experimental data, showing a favourable trend and thereby extending the works of Brown (J Fluid Mech 10:297–305, 1960) and Dyson et al. (J Eng Math 64:237–250, 2009).

  19. Biaxial nematic liquid crystals theory, simulation and experiment

    CERN Document Server

    Luckhurst, Geoffrey R

    2015-01-01

    Liquid Crystals are a state of matter that have properties between those of conventional liquid and those of a solid crystal. Thermotropic liquid crystals react to changes in temperature or, in some cases, pressure. The reaction of lyotropic liquid crystals, which are used in the manufacture of soaps and detergents, depends on the type of solvent they are mixed with. Since the accidental discovery of the chiral nematic (ordered) phase in 1888 many liquid crystal phases have been found, sometimes by chance and sometimes by design. The existence of one such phase was predicted by Freiser in 197

  20. Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants

    Energy Technology Data Exchange (ETDEWEB)

    L Tamam; D Pontoni Z Sapir; S Yefet; S Sloutskin; B Ocko; H Reichert; M Deutsch

    2011-12-31

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

  1. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  2. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  3. Substrate and surfactant effects on the glass-liquid transition of thin water films.

    Science.gov (United States)

    Souda, Ryutaro

    2006-09-07

    Temperature-programmed time-of-flight secondary ion mass spectrometry (TP-TOF-SIMS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption, desorption, and glass-liquid transition of water on the graphite and Ni(111) surfaces in the temperature range 13-200 K. Water wets the graphite surface at 100-120 K, and the hydrogen-bonded network is formed preferentially in the first monolayer to reduce the number of nonbonding hydrogens. The strongly chemisorbed water molecules at the Ni(111) surface do not form such a network and play a role in stabilizing the film morphology up to 160 K, where dewetting occurs abruptly irrespective of the film thickness. The surface structure of the water film formed on graphite is fluctuated considerably, resulting in deweting at 150-160 K depending on the film thickness. The dewetted patches of graphite are molecularly clean, whereas the chemisorbed water remains on the Ni(111) surface even after evaporation of the film. The abrupt drop in the desorption rate of water molecules at 160 K, which has been attributed to crystallization in the previous TPD studies, is found to disappear completely when a monolayer of methanol is present on the surface. This is because the morphology of supercooled liquid water is changed by the surface tension, and it is quenched by termination of the free OH groups on the surface. The surfactant methanol desorbs above 160 K since the hydrogen bonds of the water molecules are reconstructed. The drastic change in the properties of supercooled liquid water at 160 K should be ascribed to the liquid-liquid phase transition.

  4. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  5. Computer modeling of liquid crystals

    International Nuclear Information System (INIS)

    Al-Barwani, M.S.

    1999-01-01

    In this thesis, we investigate several aspects of the behaviour of liquid crystal molecules near interfaces using computer simulation. We briefly discuss experiment, theoretical and computer simulation studies of some of the liquid crystal interfaces. We then describe three essentially independent research topics. The first of these concerns extensive simulations of a liquid crystal formed by long flexible molecules. We examined the bulk behaviour of the model and its structure. Studies of a film of smectic liquid crystal surrounded by vapour were also carried out. Extensive simulations were also done for a long-molecule/short-molecule mixture, studies were then carried out to investigate the liquid-vapour interface of the mixture. Next, we report the results of large scale simulations of soft-spherocylinders of two different lengths. We examined the bulk coexistence of the nematic and isotropic phases of the model. Once the bulk coexistence behaviour was known, properties of the nematic-isotropic interface were investigated. This was done by fitting order parameter and density profiles to appropriate mathematical functions and calculating the biaxial order parameter. We briefly discuss the ordering at the interfaces and make attempts to calculate the surface tension. Finally, in our third project, we study the effects of different surface topographies on creating bistable nematic liquid crystal devices. This was carried out using a model based on the discretisation of the free energy on a lattice. We use simulation to find the lowest energy states and investigate if they are degenerate in energy. We also test our model by studying the Frederiks transition and comparing with analytical and other simulation results. (author)

  6. Key Developments in Ionic Liquid Crystals.

    Science.gov (United States)

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  7. Key Developments in Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Alexandra Alvarez Fernandez

    2016-05-01

    Full Text Available Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  8. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  9. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  10. Adsorption phenomena and anchoring energy in nematic liquid crystals

    CERN Document Server

    Barbero, Giovanni

    2005-01-01

    Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals.The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage...

  11. Role of Marangoni stress during breakup of surfactant-covered liquid threads: Reduced rates of thinning and microthread cascades

    Science.gov (United States)

    Kamat, Pritish M.; Wagoner, Brayden W.; Thete, Sumeet S.; Basaran, Osman A.

    2018-04-01

    Adsorption onto and lowering of surface tension σ of fluid interfaces by surfactants is exploited in drop formation (e.g., inkjet printing) where a thinning liquid thread (radius h ) connects an about-to-form drop to the liquid that remains hanging from the nozzle when the former falls from it. Surfactants can affect thread pinch-off in two ways: first, by lowering σ , they lower capillary pressure (σ /h ), and second, as surfactant concentration along the interface can be nonuniform, they cause the interface to be subjected to a surface tension gradient or Marangoni stress. Recent studies show that the location where the thread breaks is devoid of surfactant, and others assert that the influence of Marangoni stress on pinch-off is negligible. We demonstrate by simulations and experiments that surfactants play a major role in drop formation and that Marangoni stresses acting near but not at the pinch point give rise to reduced rates of thread thinning and formation of multiple microthreads that distinguish pinch-off of surfactant-covered threads from surfactant-free ones. Thinning at finite Reynolds and Peclet numbers, Re and Pe, is shown to exhibit intermediate scaling regimes that have heretofore only been observed during pinch-off of threads undergoing creeping flow (Re=0 ) while convection of surfactant is weak compared to its diffusion (Pe<1 ).

  12. Liquid crystalline biopolymers: A new arena for liquid crystal research

    International Nuclear Information System (INIS)

    Rizvi, Tasneem Zahra

    2001-07-01

    This paper gives a brief introduction to liquid crystals on the basis of biopolymers and reviews literature on liquid crystalline behaviour of biopolymers both in vitro and in vivo in relation to their implications in the fields of biology, medicine and material science. Knowledge in the field of biological liquid crystals is crucial for understanding complex phenomena at supramolecular level which will give information about processes involved in biological organization and function. The understanding of the interaction of theses crystals with electric, magnetic, optical and thermal fields will uncover mechanisms of near quantum-energy detection capabilities of biosystems

  13. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic...

  14. Liquid crystals for organic transistors (Conference Presentation)

    Science.gov (United States)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  15. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    Science.gov (United States)

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  16. Strong dielectric liquid crystal polymer (Part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Hideaki; Shibasaki, Akira

    1988-11-01

    Influence of change of molecular parameters on liquid crystal condition is studied to get the correlation between molecular structure of liquid crystal and phase structure or visco-elastic properties. Eight kinds of biphenyl type liquid crystals with polyacrilate main chain and triphenyl type liquid crystals were used as samples. Followings were found by a ploarizing microscope and X-ray diffraction: Phases are transferred from isotropic phase S/sub A/ phase S/sup *//sub C/ phase S/sub 1/ phase to solid on temperature desending sequence. Degree of polymerization changes only these transfer point but spacer length affects not only transfer points and layer distance but also liquid crystal structure itself. Visco-elasticity of isotropic phase shows Newtonian viscosity and is affected by the main chain length. Macroscopic and microscopic structures influence on viscoelasticity in S/sub A/ phase and S/sup *//sub C/ phase. Two rapid rises of viscoelasticity are found in low molecular weight liquid crystal when S/sub A/ transfer and S/sub A/ to S/sup *//sub C/ transfer occur by temperature desending from the isotropic phase. Viscoelastic behavior is contributed by the properties of domain itself and interaction between domains, and the interaction is changed by polymerization. 6 references, 13 figures, 1 table.

  17. Lasing in liquid crystal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)], E-mail: palto@online.ru

    2006-09-15

    A lasing condition is formulated in matrix form for optically anisotropic thin films. Lasing behavior of liquid-crystal slabs is analyzed. In particular, it is shown that if the spatial extent of a liquid crystal slab is much larger than its thickness, then laser emission is feasible not only along the normal to the slab, but also in the entire angular sector. The generated laser light can be observed experimentally as a spot or as concentric rings on a screen. The lowest lasing threshold corresponds to in-plane sliding modes leaking into the substrate. The feedback required for lasing is provided by reflection from the interfaces, rather than edges, of the liquid-crystal slab operating as a planar Fabry-Perot cavity. For cholesteric liquid crystals, it is shown that energy loss to the sliding modes leaking into the substrates and escaping through their edges is a key factor that limits the efficiency of band-edge emission along the normal to the slab.

  18. Ionic Liquid Crystals: Versatile Materials.

    Science.gov (United States)

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  19. Electrically Tuned Microwave Devices Using Liquid Crystal Technology

    Directory of Open Access Journals (Sweden)

    Pouria Yaghmaee

    2013-01-01

    Full Text Available An overview of liquid crystal technology for microwave and millimeter-wave frequencies is presented. The potential of liquid crystals as reconfigurable materials arises from their ability for continuous tuning with low power consumption, transparency, and possible integration with printed and flexible circuit technologies. This paper describes physical theory and fundamental electrical properties arising from the anisotropy of liquid crystals and overviews selected realized liquid crystal devices, throughout four main categories: resonators and filters, phase shifters and delay lines, antennas, and, finally, frequency-selective surfaces and metamaterials.

  20. Simultaneous determination of three surfactants and water in shampoo and liquid soap by ATR-FTIR.

    Science.gov (United States)

    Carolei, Luciano; Gutz, Ivano G R

    2005-03-31

    It is demonstrated for the first time that the principal constituents of a shampoo as well as of a liquid soap -three surfactants and water- can be determined directly, simultaneously and quickly in undiluted samples by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in the middle infrared region, despite the broad absorption bands of the solvent. Two of the surfactants, sodium lauryl ether sulfate (SLES) and cocoamidopropyl betaine (CAPB), are common to both formulations; alkylpolyglucoside (APG) is the third surfactant of the liquid soap and cocodiethanolamide (CDEA), the corresponding ingredient of the shampoo. Absorbance data of the undiluted samples and of the calibration standards was collected in the middle infrared region of the spectrum (800-1600 and 1900-3000cm(-1)). Two methods of multivariate quantification were compared: classical least squares (CLS), where absorbance data measured at 200 wavenumbers was processed, and inverse least squares (ILS), where data at 10 selected wavenumbers was analyzed. A spectra normalization procedure, based on a dominating water band, was examined. Twenty-seven standard mixtures were used for each application, consisting of all combinations at three concentration levels of each surfactant, respectively the lower limit, the expected value and the upper limit accepted in quality control. By favoring wavenumbers where absorption bands of the minor components (APG in the liquid soap and CDEA in the shampoo) are more intense, good results were obtained for 18 simulated samples of shampoo and 18 samples of liquid soap, no matter if calculations were made by CLS or ILS. The relative errors for water (major component, 84-88%) and SLES (7-10%) were always below 2%; for CAPB (2-4%), APG (<2%) and CDEA (<2%), they occasionally reached 5% of the component, an uncertainty of less than 0.07% in terms of the sample weight.

  1. Lyotropic liquid crystal preconcentrates for the treatment of periodontal disease.

    Science.gov (United States)

    Fehér, A; Urbán, E; Eros, I; Szabó-Révész, P; Csányi, E

    2008-06-24

    The aim of our study was to develop water-free lyotropic liquid crystalline preconcentrates, which consist of oils and surfactants with good physiological tolerance and spontaneously form lyotropic liquid crystalline phase in aqueous environment. In this way these preconcentrates having low viscosity can be injected into the periodontal pocket, where they are transformed into highly viscous liquid crystalline phase, so that the preparation is prevented from flowing out of the pocket due to its great viscosity, while drug release is controlled by the liquid crystalline texture. In order to follow the structure alteration upon water absorption polarization microscopical and rheological examinations were performed. The water absorption mechanism of the samples was examined by the Enslin-method. Metronidazole-benzoate was used as active agent the release of which was characterized via in vitro investigations performed by means of modified Kirby-Bauer disk diffusion method. On the grounds of the results it can be stated that the 4:1 mixture of the investigated surfactants (Cremophor EL, Cremophor RH40) and oil (Miglyol 810) formed lyotopic liquid crystalline phases upon water addition. Polarization microscopic examinations showed that samples with 10-40% water content possessed anisotropic properties. On the basis of water absorption, rheological and drug release studies it can be concluded that the amount of absorbed water and stiffness of lyotropic structure influenced by the chemical entity of the surfactant exerted major effect on the drug release.

  2. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  3. Demonstrations with a Liquid Crystal Shutter

    Science.gov (United States)

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  4. Control of liquid crystal molecular orientation using ultrasound vibration

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Satoki [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Koyama, Daisuke; Matsukawa, Mami [Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Shimizu, Yuki; Emoto, Akira [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  5. Alignment technology and applications of liquid crystal devices

    CERN Document Server

    Takatoh, Kohki; Hasegawa, Ray; Koden, Mitsushiro; Itoh, Nobuyuki; Hasegawa, Masaki

    2005-01-01

    Alignment phenomena are characteristic of liquid crystalline materials, and understanding them is critically important in understanding the essential features and behavior of liquid crystals and the performance of Liquid Crystal Devices (LCDs). Furthermore, in LCD production lines, the alignment process is of practical importance. Alignment Technologies and Applications of Liquid Crystal Devices demonstrates both the fundamental and practical aspects of alignment phenomena in liquid crystals. The physical basis of alignment phenomena is first introduced in order to aid the understanding of the various physical phenomena observed in the interface between liquid crystalline materials and alignment layer surfaces. Methods for the characterization of surfaces, which induce the alignment phenomena, and of the alignment layer itself are introduced. These methods are useful for the research of liquid crystalline materials and devices in academic research as well as in industry. In the practical sections, the alignme...

  6. Application of liquid crystals in thermal nondestructive evaluation

    International Nuclear Information System (INIS)

    Panakal, J.P.; Mukherjee, S.; Ghosh, J.K.

    1983-01-01

    In recent years, thermal nondestructive evaluation using Cholestric liquid crystals have found wide applications in industry. Thermography using Cholesteric liquid crystals can be used for detection of nonbonds in metallic composites, hot spots in electronic circuits and preliminary examination of welded pressure vessels. This paper presents the results of experiments on thermography of components using encapsulated liquid crystals. (author)

  7. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  8. Bi-liquid foams

    International Nuclear Information System (INIS)

    Sonneville, Odile

    1997-01-01

    Concentrated emulsions have structures similar to foams; for this reason they are also called 'bi-liquid foams'. For oil in water emulsions, they are made of polyhedral oil cells separated by aqueous surfactant films. The limited stability of these Systems is a major nuisance in their applications. In this work, we tried to understand and to control the mechanisms through which bi-liquid foams can loose their stability. In a first stage, we characterized the states of surfactant films in bi-liquid foams submitted to different pressures. We determined their hydration, the surfactant density at interfaces as well as their thicknesses. The bi-liquid foams were made by concentrating hexadecane-in-water emulsions through centrifugation. The initial emulsions contained submicron oil droplets that were completely covered with surfactant. We measured the resistance of the films to dehydration, and we represented it by pressure-film thickness curves or pressure-film hydration curves. We also obtained evidence that the interfacial surfactant density increases when the film thickness is decreased (SDS case). The Newton Black Film state is the most dehydrated metastable state that can be reached. In this state, the films can be described as surfactant bilayers that only contain the hydration water of the surfactant polar heads. Two different processes are involved the destabilization of bi-liquid foams: Ostwald ripening (oil transfer from small cells to large cells) and coalescence (films rupture). The first mechanism can be controlled by choosing oils that are very insoluble in water, avoiding ethoxylated nonionic surfactants of low molecular weight, and making emulsions that are not too fine. The second mechanism is responsible for the catastrophic destabilization of bi-liquid foams made of droplets above one micron or with a low coverage in surfactant. In these cases, destabilization occurs in the early stages of concentration, when the films are still thick. It is caused

  9. Ion-pair hollow-fiber liquid-phase microextraction of the quaternary ammonium surfactant dicocodimethylammonium chloride.

    Science.gov (United States)

    Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake

    2009-02-01

    A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.

  10. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  11. Nanoscience with liquid crystals from self-organized nanostructures to applications

    CERN Document Server

    Li, Quan

    2014-01-01

    This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active player

  12. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu

    2017-01-01

    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  13. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid-liquid microextraction method for determining personal care products.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Pino, Verónica; Ayala, Juan H; Afonso, Ana M

    2017-05-01

    The IL-based surfactant octylguanidinium chloride (C 8 Gu-Cl) was designed and synthetized with the purpose of obtaining a less harmful surfactant: containing guanidinium as core cation and a relatively short alkyl chain. Its interfacial and aggregation behavior was evaluated through conductivity and fluorescence measurements, presenting a critical micelle concentration value of 42.5 and 44.6mmolL -1 , respectively. Cytotoxicity studies were carried out with C 8 Gu-Cl and other IL-based and conventional surfactants, specifically the analogue 1-octyl-3-methylimidazolium chloride (C 8 MIm-Cl), and other imidazolium- (C 16 MIm-Br) and pyridinium- (C 16 Py-Cl) based surfactants, together with the conventional cationic CTAB and the conventional anionic SDS. From these studies, C 8 Gu-Cl was the only one to achieve the classification of low cytotoxicity. An in situ dispersive liquid-liquid microextraction (DLLME) method based on transforming the water-soluble C 8 Gu-Cl IL-based surfactant into a water-insoluble IL microdroplet via a simple metathesis reaction was then selected as the extraction/preconcentration method for a group of 6 personal care products (PCPs) present in cosmetic samples. The method was carried out in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The method was properly optimized, requiring the use of only 30μL of C 8 Gu-Cl for 10mL of aqueous sample with a NaCl content of 8% (w/v) to adjust the ionic strength and pH value of 5. The metathesis reaction required the addition of the anion exchange reagent (bis[(trifluoromethyl)sulfonyl]imide - 1:1 molar ratio), followed by vortex and centrifugation, and dilution of the final microdroplet up to 60μL with acetonitrile before the injection in the HPLC-DAD system. The optimum in situ DLLME-HPLC-DAD method takes ∼10min for the extraction step and ∼22min for the chromatographic separation, with analytical features of low detection limits: down to 0.4

  14. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants

    KAUST Repository

    Pan, Yichang

    2011-01-01

    Herein we report a facile synthesis method using surfactant cetyltrimethylammonium bromide (CTAB) as a capping agent for controlling the crystal size and morphology of zeolitic imidazolate framework-8 (ZIF-8) crystals in aqueous systems. The particle sizes can be precisely adjusted from ca. 100 nm to 4 μm, and the morphology can be changed from truncated cubic to rhombic dodecahedron. This journal is © The Royal Society of Chemistry.

  15. Liquid crystals: high technology materials for potential applications

    International Nuclear Information System (INIS)

    Saeed, M.A.; Badaruddin; Rizvi, T.Z.

    1993-01-01

    Liquid crystals have very rapidly emerged as a basis of many high technology fields within the last few decades. These materials because of their intriguing physical properties are regarded as the fourth state of matter. At present the applications of liquid crystals are established in digital display devices, electro-optical switches, optical computing, acousto-optics, thermo-indicators, laser thermo-recording, photo-chemical image recording and optical communication networks. More recently due to the concept of molecularly based electronics (MBE): the logical extreme for miniaturization of electronic device, liquid crystals are foreseen to play a vital role in the future optics based technologies. This paper gives a brief introduction to liquid crystals, the types of meso phases found in these materials together with their applications in research and industry. Some technical details of the construction liquid crystal cells for some typical applications in digital displays and other electro optical devices have also been discussed with special emphasis on relevant physical processes occurring at molecular level. (author)

  16. All-optical image processing with nonlinear liquid crystals

    Science.gov (United States)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  17. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  18. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    Directory of Open Access Journals (Sweden)

    Rui Yuan

    2017-01-01

    Full Text Available Adding a chiral dopant in twisted nematic (TN liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN or super TN (STN liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  19. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  20. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    Science.gov (United States)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  1. New scintillating media based on liquid crystals for particle detectors

    International Nuclear Information System (INIS)

    Barnik, M.I.; Yudin, S.G.; Vasil'chenko, V.G.; Golovkin, S.V.; Medvedkov, A.M.; Solovjev, A.S.

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors

  2. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  3. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  4. Liquid Crystals for Nondestructive Evaluation

    Science.gov (United States)

    1978-09-01

    polarizers (e.g., where p is the distance of alignment or pitch, X is the Nicol, Rochon, and Wollaston prisms ) are based upon peak wavelength of scattered...RANGE OF so 45" 45 - EVENT SEVENT T(°C) TEMPERATUJRE TC)4"TEMPERATURE 40RANGE OF T(°) 0-RANGE OF 40LIQUID ’ ൫" CRYSTAL S 36 3S. 30 0 IS 90 180 - I...Temperatures TI > T2 > - > TS defects was possible using the liquid crystal. are the Average TemperatursI Thes Resptivegi. Kapfer , Burns, Salvo, and Doyle

  5. Liquid crystals in micron-scale droplets, shells and fibers

    Science.gov (United States)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  6. Liquid crystals in micron-scale droplets, shells and fibers

    International Nuclear Information System (INIS)

    Urbanski, Martin; Reyes, Catherine G; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P F

    2017-01-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  7. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  8. Tunable photoluminescence of porous silicon by liquid crystal infiltration

    International Nuclear Information System (INIS)

    Ma Qinglan; Xiong Rui; Huang Yuanming

    2011-01-01

    The photoluminescence (PL) of porous silicon films has been investigated as a function of the amount of liquid crystal molecules that are infiltrated into the constricted geometry of the porous silicon films. A typical nematic liquid crystal 4-pentyl-4'-cyanobiphenyl was employed in our experiment as the filler to modify the PL of porous silicon. It is found that the originally red PL of porous silicon films can be tuned to blue by simply adjusting the amount of liquid crystal molecules in the microchannels of the porous films. The chromaticity coordinates are calculated for the recorded PL spectra. The mechanism of the tunable PL is discussed. Our results have demonstrated that the luminescent properties of porous silicon films can be efficiently tuned by liquid crystal infiltration. - Highlights: → Liquid crystal infiltration can tune the photoluminescence of porous silicon. → Red emission of porous silicon can be switched to blue by the infiltration. → Chromaticity coordinates are calculated for the tuned emissions. → White emission is realized for porous silicon by liquid crystal infiltration.

  9. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  10. Simulation of liquid crystals. Disclinations and surface modification

    International Nuclear Information System (INIS)

    Downton, M.

    2001-01-01

    In this thesis we investigate the behaviour of molecular models liquid crystals in several different situations. Basic introductory material on liquid crystals and computer simulations is discussed in the first two chapters, we then discuss the research. The third chapter investigates the interaction between a liquid crystal and a modified surface. A confined system of hard spherocylinders in a slab geometry is examined. The surface consists of planar hard walls with elongated molecules grafted perpendicularly onto them. The concentration of grafted molecules is varied to give different surfaces. Several different behaviours are found including planar, homeotropic and tilted anchorings of the liquid crystal. Molecular dynamics simulations of a nematic liquid crystal in slab geometry with twisted boundary conditions are performed. By arranging the initial configuration suitably it is possible to create a simulation cell with two regions of opposite twist separated by a strength half disclination line. The properties of the line are examined both with and without an applied external field. Finally, we again examine the system of grafted molecules on a flat substrate using an atomistic model of both the liquid crystal and the surface molecules. Again the effect of varying the density of grafted molecules is found to change the anchoring characteristics of the surface; both homeotropic and planar anchorings are observed. (author)

  11. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure. The prese......In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  12. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  13. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  14. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization

    Science.gov (United States)

    Dahani, Mohamed; Barret, Laurie-Anne; Raynal, Simon; Jungas, Colette; Pernot, Pétra; Polidori, Ange; Bonneté, Françoise

    2015-01-01

    The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar inter­actions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization. PMID:26144228

  15. Liquid nitrogen dewar for protein crystal growth

    Science.gov (United States)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  16. Fundamentals of liquid crystal devices

    CERN Document Server

    Yang, Deng-Ke

    2014-01-01

    Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reduce the response time and the number of optical components of LC-modules. Prof. Yang is a pion

  17. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    Science.gov (United States)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  18. Mixed system of ionic liquid and non-ionic surfactants in aqueous media: Surface and thermodynamic properties

    International Nuclear Information System (INIS)

    Bhatt, Darshak; Maheria, Kalpana; Parikh, Jigisha

    2014-01-01

    Highlights: • Interaction of ionic liquid and ethylene oxide based non-ionic surfactants in aqueous media. • Evaluation of various surface properties and thermodynamic parameters. • Micellar growth ensues from exothermic to endothermic with increase in temperature. • Micelle formation is enthalpy driven at low temperature and entropy driven at higher temperature. • The micellization power and adsorption proficiency decreased at high IL concentrations. - Abstract: The mixed system of ionic liquid (IL) tetraethyl ammonium tetrafluoroborate [TEA(BF 4 )] and numerous ethylene oxide based non-ionic surfactants in aqueous media were studied using surface tension, viscosity and dynamic light scattering (DLS) measurements. Various surface properties like critical micelle concentration (cmc), maximum surface excess concentration (Γ max ), minimum surface area per surfactant molecule (A min ), surface tension at the cmc (γ cmc ), adsorption efficiency (pC 20 ), and effectiveness of surface tension reduction (π cmc ) as well as thermodynamic parameters of micellization have been determined. DLS and viscosity measurements revealed that the micellar growth was attributed to the bridged solvophilicity of the POE chain in surfactants at elevated temperatures. In most of the cases, the progression ensues from exothermic to endothermic with increase in temperature of the mixed system. Thermodynamic parameter indicates that the micelle formation process is enthalpy driven at low temperature and entropy driven at higher temperature

  19. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Saman Zehra

    2018-06-01

    Full Text Available A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs. In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection. Keywords: Chemical co-precipitation method, Fourier transform infrared spectroscopy, Liquid crystals, Nanoparticles, Sensor, X-ray diffraction

  20. Molecular dynamics simulations of liquid crystals at interfaces

    International Nuclear Information System (INIS)

    Shield, Mark

    2002-01-01

    Molecular dynamics simulations of an atomistic model of 4-n-octyl-4'-cyanobiphenyl (8CB) were performed for thin films of 8CB on solid substrates (a pseudopotential representation of the molecular topography of the (100) crystal surface of polyethylene (PE), a highly ordered atomistic model of a pseudo-crystalline PE surface and an atomistic model of a partially orientated film of PE), free standing thin films of 8CB and 8CB droplets in a hexagonal pit. The systems showed strong homeotropic anchoring at the free volume interface and planar anchoring at the solid interface whose strength was dependent upon the surface present. The free volume interface also demonstrated weak signs of smectic wetting of the bulk. Simulations of thin free standing films of liquid crystals showed the ordered nature of the liquid crystals at the two free volume interfaces can be adopted by the region of liquid crystal molecules between the homeotropic layer at each interface only if there is a certain number of liquid crystal molecules present. The perpendicular anchoring imposed by the free volume interface and the solid interface for the thin films on the solid substrates resulted in some evidence for the liquid crystal director undergoing a continual rotation at low temperatures and a definite discontinuous change at higher temperatures. The liquid crystal alignment imparted by these substrates was found to depend upon the topography of the surface and not the direction of the polymer chains in the substrate. The liquid crystal was found to order via an epitaxy-like mechanism. The perpendicular anchoring results in a drop in the order - disorder transition temperature for the molecules in the region between the homeotropic layer at the free volume interface and the planar layers at the solid interface. An increase in the size of this region does not alter the transition temperature. The shape of the liquid crystal molecules is dependent upon the degree of order and thus the nematic

  1. Liquid crystal display

    International Nuclear Information System (INIS)

    Takami, K.

    1981-01-01

    An improved liquid crystal display device is described which can display letters, numerals and other necessary patterns in the night time using a minimized amount of radioactive material. To achieve this a self-luminous light source is placed in a limited region corresponding to a specific display area. (U.K.)

  2. Molecular dynamics simulations of surfactant and nanoparticle self-assembly at liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Luo Mingxiang; Dai, Lenore L [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-09-19

    We have performed molecular dynamics (MD) simulations to investigate self-assembly at water-trichloroethylene (TCE) interfaces with the emphasis on systems containing modified hydrocarbon nanoparticles (1.2 nm in diameter) and sodium dodecyl sulfate (SDS) surfactants. The nanoparticles and surfactants were first distributed randomly in the water phase. The MD simulations have clearly shown the progress of migration and final equilibrium of the SDS molecules at the water-TCE interfaces with the nanoparticles either at or in the vicinity of the interfaces. One unique feature is the 'attachment' of surfactant molecules to the nanoparticle clusters in the water phase followed by the 'detachment' at the water-TCE interfaces. At low concentrations of surfactants, the surfactants and nanoparticles co-equilibrate at the interfaces. However, the surfactants, at high concentrations, competitively dominate the interfaces and deplete nanoparticles away from the interfaces. The interfacial properties, such as interfacial thickness and interfacial tension, are significantly influenced by the presence of the surfactants, but not the nanoparticles. The order of the surfactants at the interfaces increases with increasing surfactant concentration, but is independent of nanoparticle concentration. Finally, the simulation has shown that surfactants can aggregate along the water-TCE interfaces, with and without the presence of nanoparticles.

  3. Small-angle neutron scattering technique in liquid crystal studies

    International Nuclear Information System (INIS)

    Shahidan Radiman

    2005-01-01

    The following topics discussed: general principles of SAS (Small-angle Neutron Scattering), liquid crystals, nanoparticle templating on liquid crystals, examples of SAS results, prospects of this studies

  4. Optical Power Limiting Liquid Crystal Composites

    Science.gov (United States)

    1994-11-10

    materials. In addition to the nonlinear studies, a separate subproject involving linear properties 0 of polymer dispersed liquid crystals in the infrared ...The horizontal axis represents on-axis laser intensity Io, defined as Io = 2P/( ww2 ), where P is the power and u0 is the beam waist. As can be seen in...I * 9 IR Shutter 1 Included in our original contract was a separate project to evaluate the use of liquid crystal composites in infrared shattering

  5. muSR-Investigation of a Liquid Crystal Containing Iron Atoms

    CERN Document Server

    Mamedov, T N; Galyametdinov, Yu G; Gritsaj, K I; Herlach, D; Kormann, O; Major, J V; Rochev, V Ya; Stoikov, A V; Zimmermann, U

    2000-01-01

    The work is devoted to the investigation of properties of a liquid crystal whose molecule contains iron atom. The compounds of this type are of interest from the point of view of obtaining liquid crystals with magnetic properties. The temperature dependence of the polarization and relaxation rate of positive muon spin in the liquid crystal was measured in the temperature range 4-300 K. The results obtained do not contradict the suggestion that the iron ions from an antiferromagnetically-ordered structure in this liquid crystal at the temperatures below 80 K.

  6. Surfactant-enhanced liquid-liquid microextraction coupled to micro-solid phase extraction onto highly hydrophobic magnetic nanoparticles

    International Nuclear Information System (INIS)

    Giannoulis, Kiriakos M.; Giokas, Dimosthenis L.; Tsogas, George Z.; Vlessidis, Athanasios G.; Zhu, Qing; Pan, Qinmin

    2013-01-01

    We are presenting a simplified alternative method for dispersive liquid-liquid microextraction (DLLME) by resorting to the use of surfactants as emulsifiers and micro solid-phase extraction (μ-SPE). In this combined procedure, DLLME of hydrophobic components is initially accomplished in a mixed micellar/microemulsion extractant phase that is prepared by rapidly mixing a non-ionic surfactant and 1-octanol in aqueous medium. Then, and in contrast to classic DLLME, the extractant phase is collected by highly hydrophobic polysiloxane-coated core-shell Fe 2 O 3 (at)C magnetic nanoparticles. Hence, the sample components are the target analyte in the DLLME which, in turn, becomes the target analyte of the μ-SPE step. This 2-step approach represents a new and simple DLLME procedure that lacks tedious steps such as centrifugation, thawing, or delicate collection of the extractant phase. As a result, the analytical process is accelerated and the volume of the collected phase does not depend on the volume of the extraction solvent. The method was applied to extract cadmium in the form of its pyrrolidine dithiocarbamate chelate from spiked water samples prior to its determination by FAAS. Detection limits were brought down to the low μg L −1 levels by preconcentrating 10 mL samples with satisfactory recoveries (96.0–108.0 %). (author)

  7. Electrically modulated transparent liquid crystal-optical grating projection

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Kristensen, Anders

    2013-01-01

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows...

  8. Liquid-crystal intraocular adaptive lens with wireless control

    NARCIS (Netherlands)

    Simonov, A.N.; Vdovine, G.V.; Loktev, M.

    2007-01-01

    We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively.

  9. Soap, science, and flat-screen TVs a history of liquid crystals

    CERN Document Server

    Dunmur, David

    2011-01-01

    The terms 'liquid crystal' or 'liquid crystal display' (LCD) are well-known in the context of flat-screen televisions, but the properties and history of liquid crystals are little understood. This book tells the story of liquid crystals, from their controversial discovery at the end of the nineteenth century, to their eventual acceptance as another state of matter to rank alongside gases, liquids and solids. As their story unfolds, the scientists involved and their works are put into illuminating broader socio-political contexts. In recent years, liquid crystals have had a major impact on the display industry, culminating in the now widely available flat-screen televisions; this development is described in detail over three chapters, and the basic science behind it is explained in simple terms accessible to a general reader. New applications of liquid crystals in materials, bio-systems, medicine and technology are also explained.

  10. Interactions between ionic liquid surfactant [C12mim]Br and DNA in dilute brine.

    Science.gov (United States)

    He, Yunfei; Shang, Yazhuo; Liu, Zhenhai; Shao, Shuang; Liu, Honglai; Hu, Ying

    2013-01-01

    Interactions between ionic liquid surfactant [C(12)mim]Br and DNA in dilute brine were investigated in terms of various experimental methods and molecular dynamics (MD) simulation. It was shown that the aggregation of [C(12)mim]Br on DNA chains is motivated not only by electrostatic attractions between DNA phosphate groups and [C(12)mim]Br headgroups but also by hydrophobic interactions among [C(12)mim]Br alkyl chains. Isothermal titration calorimetry analysis indicated that the [C(12)mim]Br aggregation in the presence and absence of DNA are both thermodynamically favored driven by enthalpy and entropy. DNA undergoes size transition and conformational change induced by [C(12)mim]Br, and the charges of DNA are neutralized by the added [C(12)mim]Br. Various microstructures were observed such as DNA with loose coil conformation in nature state, necklace-like structures, and compact spherical aggregates. MD simulation showed that the polyelectrolyte collapses upon the addition of oppositely charged surfactants and the aggregation of surfactants around the polyelectrolyte was reaffirmed. The simulation predicted the gradual neutralization of the negatively charged polyelectrolyte by the surfactant, consistent with the experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers.

    Science.gov (United States)

    Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas

    2016-05-13

    Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Large Electro-Optic Kerr-Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    Science.gov (United States)

    Schlick, Michael Christian; Kapernaum, Nadia; Neidhardt, Manuel; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Gießelmann, Frank

    2018-06-06

    The electro-optic Kerr effect in the isotropic phase of two ionic liquid crystals (ILCs) is investigated and compared to the Kerr effect in non-ionic liquid crystals (LCs) with same phase sequences, namely direct isotropic to hexagonal columnar transitions and direct isotropic to smectic-A transitions. Up to electric field amplitudes of some 106 V m-1, the optical birefringence induced in the isotropic phases follows Kerr's law and strongly increases when the temperature approaches the transition temperature into the particular liquid crystalline phase. Close to the transition, maximum Kerr constants in the order of 10-11 m V-2 are found, which are more than ten times higher than the Kerr constant of nitrobenzene, a strongly dipolar fluid with a huge Kerr effect applied in optical shutters and phase modulators. In comparison to their non-ionic LC counterparts the Kerr effect in ILCs is found to be enhanced in magnitude, but slowed-down in speed, showing rise times in the order of ten milliseconds. These remarkable differences are attributed to the presence of counterion polarization well-known from complex ionic fluids such as polyelectrolytes or ionic micellar solutions. ILCs thus combine the Kerr effect features of liquid crystals and complex ionic fluids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  14. Liquid crystals: a new topic in physics for undergraduates

    International Nuclear Information System (INIS)

    Pavlin, Jerneja; Čepič, Mojca; Vaupotič, Nataša

    2013-01-01

    This paper presents a teaching module about liquid crystals. Since liquid crystals are linked to everyday student experiences and are also a topic of current scientific research, they are an excellent candidate for a modern topic to be introduced into education. We show that liquid crystals can provide a pathway through several fields of physics such as thermodynamics, optics and electromagnetism. We discuss what students should learn about liquid crystals and what physical concepts they should know before considering them. In the presentation of the teaching module, which consists of a lecture and experimental work in a chemistry and physics laboratory, we focus on experiments on phase transitions, polarization of light, double refraction and colours. A pilot evaluation of the module was performed among pre-service primary school teachers who have no special preference for natural sciences. The evaluation shows that the module is very efficient in transferring knowledge. A prior study showed that the informally obtained pre-knowledge on liquid crystals of the first-year students from several different fields of study was negligible. Since social science students are the least interested in natural sciences, it can be expected that students in any study programme will on average achieve at least as good qualitative knowledge of phenomena related to liquid crystals as the group involved in the pilot study. (paper)

  15. Young-Laplace equation for liquid crystal interfaces

    Science.gov (United States)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  16. Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration.

    Science.gov (United States)

    Inoue, Tohru; Yamakawa, Haruka

    2011-04-15

    Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. H-Bond stabilized columnar discotic liquid crystals

    NARCIS (Netherlands)

    Paraschiv, I.

    2007-01-01

    Since 1977, more than 2300 publications on discotic (disk-like) liquid crystalline materials have appeared. Discotic liquid crystals, which usually consist of polyaromatic molecules surrounded by long peripheral alkyl tails, can form liquid crystalline mesophases in a wide temperature range. Within

  18. Hydrothermal decomposition of liquid crystal in subcritical water

    International Nuclear Information System (INIS)

    Zhuang, Xuning; He, Wenzhi; Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao

    2014-01-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H 2 O 2 supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment

  19. Magnetic, electrical and optical properties of liquid crystals

    International Nuclear Information System (INIS)

    Florea, S.C.

    1980-01-01

    This thesis lays stress on the study of thermotrop nematic liquid crystals. But the crystals whose mesomorphism is achieved by an increase and decrease in temperature and the crystal category exhibiting a mesomorphism in a deep freezing phase are also studied. The results of the research carried out in the laboratory of ''active media, lasers and matter-radiation interactions'' of the Institute for Physics and Technology of Radiation Apparata as well as in the laboratories of liquid crystals and nuclear magnetic resonance of the Polytechnical Institute of Bucharest during seven years have had in view two main objectives: to elucidate and prove experimentally a new mechanism of nuclear relaxation in liquid crystals, proposed by the author; to use the current experimental techniques and methods applied in the above-mentioned laboratories to characterize and test some foreign mesomorphic media which are synthesized locally, providing a wide range of applications, such as colour television. (author)

  20. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  1. Synthesis of novel liquid crystal compounds and their blood compatibility as anticoagulative materials

    International Nuclear Information System (INIS)

    Tu Mei; Cha Zhenhang; Feng Bohua; Zhou Changren

    2006-01-01

    The objective of this study was to synthesize new types of cholesteric liquid crystal compounds and study the anticoagulative properties of their composite membranes. Three kinds of cholesteric liquid crystal compounds were synthesized and characterized by infrared spectroscopy, differential scanning calorimetry and optical polarizing microscope. The polysiloxane, as a substrate, was blended with three liquid crystal compounds and was then used as membranes. The anticoagulative property of different polysiloxane liquid crystal composite membranes was identified by the blood compatibility tests. Three cholesteryl liquid crystals synthesized in this work contained hydrophilic soft chains and presented iridescent texture owned by cholesteric liquid crystals in the range of their liquid crystal state temperature, but only cholesteryl acryloyl oxytetraethylene glycol carbonate was in the liquid crystal state at body temperature. When liquid crystals were blended with polysiloxane to form polysiloxane/liquid crystal composite membranes, the haemocompatibility of these membranes could be improved to some extent. The blood compatibility of composite membranes whose hydrophilic property was the best was more excellent than that of other composite membranes, fewer platelets adhered and spread, and showed little distortion on the surface of materials

  2. Generation of transverse waves in a liquid layer with insoluble surfactant subjected to temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Mikishev, Alexander B; Friedman, Barry A [Department of Physics, Sam Houston State University, Huntsville, TX 77341 (United States); Nepomnyashchy, Alexander A, E-mail: amik@shsu.edu, E-mail: phy_baf@shsu.edu, E-mail: nepom@technion.ac.il [Department of Mathematics, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2016-12-15

    The formation of Faraday waves (FWs) at the surfactant-covered free surface of a vertically vibrated liquid layer is considered. The layer is subjected to a vertical temperature gradient. The surfactant is insoluble. Linear stability analysis and the Floquet method are used for disturbances with arbitrary wave numbers to find the regions of critical vibration amplitude where FWs are generated. The problem is considered for the semi-infinite liquid layer, as well as for the layer of a finite depth. It is shown numerically, that in the semi-infinite case the critical tongue of a neutral stability curve corresponding to the lowest value of the forcing amplitude is related to the subharmonic instability mode. It changes to the harmonic one in the case of finite depth. The influence of thermocapillary Marangoni number on the critical amplitude of FWs is studied. The growth of that number stabilizes the system, however, this effect is very weak. (paper)

  3. Surfactant Effect on the Average Flow Generation Near Curved Interface

    Science.gov (United States)

    Klimenko, Lyudmila; Lyubimov, Dmitry

    2018-02-01

    The present work is devoted to the average flow generation near curved interface with a surfactant adsorbed on the surface layer. The investigation was carried out for a liquid drop embedded in a viscous liquid with a different density. The liquid flows inside and outside the drop are generated by small amplitude and high frequency vibrations. Surfactant exchange between the drop surface and the surrounding liquid is limited by the process of adsorption-desorption. It was assumed that the surfactant is soluble in the surrounding liquid, but not soluble in the liquid drop. Surrounding liquid and the liquid in the drop are considered incompressible. Normal and shear viscous stresses balance at the interface is performed under the condition that the film thickness of the adsorbed surfactant is negligible. The problem is solved under assumption that the shape of the drop in the presence of adsorbed surfactant remains spherical symmetry. The effective boundary conditions for the tangential velocity jump and shear stress jump, describing the above generation have been obtained by matched asymptotic expansions method. The conditions under which the drop surface can be considered as a quasi-solid are determined. It is shown that in the case of the significant effect of surfactant on the surface tension, the dominant mechanism for the generation is the Schlichting mechanisms under vibrations.

  4. Invited review liquid crystal models of biological materials and silk spinning.

    Science.gov (United States)

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  5. Nanoparticles Doped, Photorefractive Liquid Crystals

    National Research Council Canada - National Science Library

    Kaczmarek, Malgosia

    2005-01-01

    ...: The main objectives of this exploratory, short project will concern the study of the quality of liquid crystal cells with diluted suspensions of ferroelectric nanoparticles and their photorefractive properties...

  6. Induced Magnetic Anisotropy in Liquid Crystals Doped with Resonant Semiconductor Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vicente Marzal

    2016-01-01

    Full Text Available Currently, there are many efforts to improve the electrooptical properties of liquid crystals by means of doping them with different types of nanoparticles. In addition, liquid crystals may be used as active media to dynamically control other interesting phenomena, such as light scattering resonances. In this sense, mixtures of resonant nanoparticles hosted in a liquid crystal could be a potential metamaterial with interesting properties. In this work, the artificial magnetism induced in a mixture of semiconductor nanoparticles surrounded by a liquid crystal is analyzed. Effective magnetic permeability of mixtures has been obtained using the Maxwell-Garnett effective medium theory. Furthermore, permeability variations with nanoparticles size and their concentration in the liquid crystal, as well as the magnetic anisotropy, have been studied.

  7. Magnetic, electric and optic properties of liquid crystals

    International Nuclear Information System (INIS)

    Florea, St.C.

    1980-01-01

    We study the nematic liquid crystals of thermotrop type. We also studied the crystals whose mesomorphism occured both at temperature increasing and decreasing and during the supercooling phase (monotrope). Investigation results performed by us have had in view the following: clearing up and experimental support of a new mechanism of nuclear relaxation in liquid crystals, proposed by author; usage of experimental techniques and methods for to characterize and test some mesomorph media used in very important applications, such as color TV. (author)

  8. Liquid crystals for organic thin-film transistors

    Science.gov (United States)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  9. NMR studies of liquid crystals and molecules dissolved in liquid crystal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Drobny, Gary Peter [Univ. of California, Berkeley, CA (United States)

    1982-11-01

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic BA, smectic BC, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from

  10. Influence of rubbing-alignment on microwave modulation induced by liquid crystal

    Directory of Open Access Journals (Sweden)

    Wenjiang Ye

    2015-06-01

    Full Text Available The microwave modulation induced by liquid crystal is decided by the liquid crystal director distribution under an external applied voltage. The rubbing-alignment of substrate has an effect on the liquid crystal director, which must result in the change of microwave phase-shift. To illustrate the influence of rubbing-alignment on the microwave phase-shift, the microwave modulation property of twisted nematic liquid crystal is researched adopting the elastic theory of liquid crystal and the finite-difference iterative method. The variations of microwave phase-shift per unit-length for different pre-tilt and pre-twist angles of liquid crystal on the substrate surface and anchoring energy strengths with the applied voltage are numerically simulated. The result indicates that with the increase of pre-tilt angle and with the decrease of anchoring energy strength the weak anchoring twisted cell with pre-twisted angle 90° relative to the strong anchoring non-twisted cell can increase the microwave phase-shift per unit-length. As a result, for achieving the maximum microwave modulation, the weak anchoring twisted cell with pre-tilt angle 5° and anchoring energy strength 1×10−5J/m2 should be selected, which provides a reliably theoretical foundation for the design of liquid crystal microwave modulator.

  11. Characterising laser beams with liquid crystal displays

    Science.gov (United States)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  12. Polarization-independent nematic liquid crystal waveguides for optofluidic applications

    NARCIS (Netherlands)

    d'Alessandro, A.; Martini, L.; Gilardi, G.; Beccherelli, R.; Asquini, R.

    2015-01-01

    We present the fabrication and the characterization of waveguides made of a nematic liquid crystal infiltrated in poly(dimethylsiloxane) channels. They are made by means of cast and molding technique and patterned using soft photolithography. The orientation of the nematic liquid crystal molecules

  13. Effect of surfactants or a water soluble polymer on the crystal transition of clarithromycin during a wet granulation process.

    Science.gov (United States)

    Nozawa, Kenji; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2015-11-10

    To generate products containing a stable form of clarithromycin (CAM) (form II) regardless of the initial crystal form of CAM or type of granulation solvent, the effects of five surfactants, or a water-soluble polymer (macrogol 400) were determined on the crystal transition of CAM. The metastable form (form I) was kneaded with water, after adding surfactants, or a water-soluble polymer. Form II was also kneaded with ethanol, after adding the same additives. The resulting samples were analyzed by powder X-ray diffraction. Form I was completely converted to form II by a wet granulation using water with additives bearing polyoxyethylene chains such as polysorbate 80 (PS80), polyoxyl 40 stearate or macrogol 400. The granulation of the form II using ethanol with these additives did not result in a crystal transition to form I. Furthermore, CAM tablets were manufactured using granules with PS80, and these crystal forms and dissolution behaviors were investigated. As a result, the wet granulation of CAM with PS80 gave CAM tablets containing only form II and PS80 did not have any adverse effects on tablet characteristics. Therefore, these data suggests that the crystal form of CAM can be controlled to be form II using a wet granulation process with additives bearing polyoxyethylene chains regardless of the initial crystal form of CAM or type of granulation solvent. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Surfactant modified clays’ consistency limits and contact angles

    Directory of Open Access Journals (Sweden)

    S Akbulut

    2012-07-01

    Full Text Available This study was aimed at preparing a surfactant modified clay (SMC and researching the effect of surfactants on clays' contact angles and consistency limits; clay was thus modified by surfactants formodifying their engineering properties. Seven surfactants (trimethylglycine, hydroxyethylcellulose  octyl phenol ethoxylate, linear alkylbenzene sulfonic acid, sodium lauryl ether sulfate, cetyl trimethylammonium chloride and quaternised ethoxylated fatty amine were used as surfactants in this study. The experimental results indicated that SMC consistency limits (liquid and plastic limits changedsignificantly compared to those of natural clay. Plasticity index and liquid limit (PI-LL values representing soil class approached the A-line when zwitterion, nonionic, and anionic surfactant percentageincreased. However, cationic SMC became transformed from CH (high plasticity clay to MH (high plasticity silt class soils, according to the unified soil classification system (USCS. Clay modifiedwith cationic and anionic surfactants gave higher and lower contact angles than natural clay, respectively.

  15. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals

    OpenAIRE

    Kim, Yuna; Frigoli, Michel; Vanthuyne, Nicolas; Tamaoki, Nobuyuki

    2017-01-01

    The first photoresponsive cholesteric liquid crystal comprising a photoisomerizable helical naphthopyran derivative dopant and a nematic liquid crystal is reported. An unprecedented helical twisting power switching ratio of over 90% allowed us to demonstrate multi-cycle rotational motion of micro-objects by UV light irradiation.

  16. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Surfactants: behavior and some of their applications in the petroleum industry

    International Nuclear Information System (INIS)

    Rivas, Hercilio; Gutierrez, Xiomara

    1999-01-01

    The most important theoretical aspect related to the behavior of surfactants in solution and the mechanism which govern the processes of their adsorption at the liquid - liquid, liquid- gas and liquid - solid interfaces are discussed in this paper. The basic principles, which characterize the phase behavior of surfactants in solution are described, and the procedures for stablishing the condition under which surfactants ca be successfully used in basic and applied research activities are given. Finally, the most important aspect of the different processes carried out in the oil industry, with special mention to those in exploration and production, where the surfactants play a very important role, are briefly discussed

  18. Effect of temperature on the (liquid + liquid) equilibrium for aqueous solution of nonionic surfactant and salt: Experimental and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Enghelab Avenue, Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2008-07-15

    The effect of temperature on the (liquid + liquid) equilibrium of the aqueous solution of surfactant polyoxyethylene cetylether (with abbreviation name Brij 58) and diammonium hydrogen phosphate has been investigated at T = (303.15, 313.15, 323.15, and 333.15) K. The Flory-Huggins equation with two electrostatic terms (Debye-Huckle and Pitzer-Debye-Huckle equations) was used to correlate the phase behavior of this system. Good agreement has been found between experimental and calculated data from both models. The results indicated that the enlargement of the two-phase region upon increasing the temperature. Additionally temperature dependency of the parameters of the Flory-Huggins model has been calculated.

  19. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  20. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants

    Science.gov (United States)

    Huang, Caili; Forth, Joe; Wang, Weiyu; Hong, Kunlun; Smith, Gregory S.; Helms, Brett A.; Russell, Thomas P.

    2017-11-01

    Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil-water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. Here, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) that bind to one another at the oil-water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m-1. Furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.

  1. Molecular dynamics of liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-02-01

    We derive Green-Kubo relations for the viscosities of a nematic liquid crystal. The derivation is based on the application of a Gaussian constraint algorithm that makes the director angular velocity of a liquid crystal a constant of motion. Setting this velocity equal to zero means that a director-based coordinate system becomes an inertial frame and that the constraint torques do not do any work on the system. The system consequently remains in equilibrium. However, one generates a different equilibrium ensemble. The great advantage of this ensemble is that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble. This facilitates the numerical evaluation of the viscosities by molecular dynamics simulations.

  2. High Resolution Displays Using NCAP Liquid Crystals

    Science.gov (United States)

    Macknick, A. Brian; Jones, Phil; White, Larry

    1989-07-01

    Nematic curvilinear aligned phase (NCAP) liquid crystals have been found useful for high information content video displays. NCAP materials are liquid crystals which have been encapsulated in a polymer matrix and which have a light transmission which is variable with applied electric fields. Because NCAP materials do not require polarizers, their on-state transmission is substantially better than twisted nematic cells. All dimensional tolerances are locked in during the encapsulation process and hence there are no critical sealing or spacing issues. By controlling the polymer/liquid crystal morphology, switching speeds of NCAP materials have been significantly improved over twisted nematic systems. Recent work has combined active matrix addressing with NCAP materials. Active matrices, such as thin film transistors, have given displays of high resolution. The paper will discuss the advantages of NCAP materials specifically designed for operation at video rates on transistor arrays; applications for both backlit and projection displays will be discussed.

  3. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    International Nuclear Information System (INIS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-01-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage

  4. Recent Advances in Discotic Liquid Crystal-Assisted Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ashwathanarayana Gowda

    2018-03-01

    Full Text Available This article primarily summarizes recent advancement in the field of discotic liquid crystal (DLC nanocomposites. Discotic liquid crystals are nanostructured materials, usually 2 to 6 nm size and have been recognized as organic semiconducting materials. Recently, it has been observed that the dispersion of small concentration of various functionalized zero-, one- and two-dimensional nanomaterials in the supramolecular order of mesophases of DLCs imparts negligible impact on liquid crystalline properties but enhances their thermal, supramolecular and electronic properties. Synthesis, characterization and dispersion of various nanoparticles in different discotics are presented.

  5. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tercjak, A; Garcia, I; Mondragon, I [Materials-Technologies Group, Departamento IngenierIa Quimica y M Ambiente, Escuela Politecnica, Universidad PaIs Vasco/Euskal Herriko Unibertsitatea, Plaza Europa 1, E-20018 Donostia-San Sebastian (Spain)], E-mail: scptesza@sc.ehu.es, E-mail: inaki.mondragon@ehu.es

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  6. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal.

    Science.gov (United States)

    Tercjak, A; Garcia, I; Mondragon, I

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  7. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    International Nuclear Information System (INIS)

    Tercjak, A; Garcia, I; Mondragon, I

    2008-01-01

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface

  8. Investigation of the liquid crystal alignment layer: effect on electrical properties

    International Nuclear Information System (INIS)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh; Ouada, Hafedh Ben

    2008-01-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit

  9. Investigation of the liquid crystal alignment layer: effect on electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ouada, Hafedh Ben [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000 Monastir (Tunisia)], E-mail: asma_abderrahmen@yahoo.fr

    2008-04-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit.

  10. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  11. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Rishøj, Lars Søgaard; Steffensen, Henrik

    2007-01-01

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner–Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy...... residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light–matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving...

  12. A new strategy for imaging biomolecular events through interactions between liquid crystals and oil-in-water emulsions.

    Science.gov (United States)

    Hu, Qiong-Zheng; Jang, Chang-Hyun

    2012-11-21

    In this study, we demonstrate a new strategy to image biomolecular events through interactions between liquid crystals (LCs) and oil-in-water emulsions. The optical response had a dark appearance when a nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), is in contact with emulsion droplets of glyceryl trioleate (GT). In contrast, the optical response had a bright appearance when 5CB is in contact with GT emulsions decorated with surfactants such as sodium oleate. Since lipase can hydrolyze GT and produce oleic acid, the optical response also displays a bright appearance after 5CB has been in contact with a mixture of lipase and GT emulsions. These results indicate the feasibility of monitoring biomolecular events through interactions between LCs and oil-in-water emulsions.

  13. In situ X-ray polymerization: from swollen lamellae to polymer-surfactant complexes.

    Science.gov (United States)

    Agzenai, Yahya; Lindman, Björn; Alfredsson, Viveka; Topgaard, Daniel; Renamayor, Carmen S; Pacios, Isabel E

    2014-01-30

    The influence of the monomer diallyldimethylammonium chloride (D) on the lamellar liquid crystal formed by the anionic surfactant aerosol OT (AOT) and water is investigated, determining the lamellar spacings by SAXS and the quadrupolar splittings by deuterium NMR, as a function of the D or AOT concentrations. The cationic monomer D induces a destabilization of the AOT lamellar structure such that, at a critical concentration higher than 5 wt %, macroscopic phase separation takes place. When the monomer, which is dissolved in the AOT lamellae, is polymerized in situ by X-ray initiation, a new collapsed lamellar phase appears, corresponding to the complexation of the surfactant with the resulting polymer. A theoretical model is employed to analyze the variation of the interactions between the AOT bilayers and the stability of the lamellar structure.

  14. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques

    Science.gov (United States)

    Mondal, Satyajit; Das, Bijan

    2018-06-01

    The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH 7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C16MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C16MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants.

  15. Liquid Crystal Microlenses for Autostereoscopic Displays

    Directory of Open Access Journals (Sweden)

    José Francisco Algorri

    2016-01-01

    Full Text Available Three-dimensional vision has acquired great importance in the audiovisual industry in the past ten years. Despite this, the first generation of autostereoscopic displays failed to generate enough consumer excitement. Some reasons are little 3D content and performance issues. For this reason, an exponential increase in three-dimensional vision research has occurred in the last few years. In this review, a study of the historical impact of the most important technologies has been performed. This study is carried out in terms of research manuscripts per year. The results reveal that research on spatial multiplexing technique is increasing considerably and today is the most studied. For this reason, the state of the art of this technique is presented. The use of microlenses seems to be the most successful method to obtain autostereoscopic vision. When they are fabricated with liquid crystal materials, extended capabilities are produced. Among the numerous techniques for manufacturing liquid crystal microlenses, this review covers the most viable designs for its use in autostereoscopic displays. For this reason, some of the most important topologies and their relation with autostereoscopic displays are presented. Finally, the challenges in some recent applications, such as portable devices, and the future of three-dimensional displays based on liquid crystal microlenses are outlined.

  16. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    Science.gov (United States)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  17. New developments in flexible cholesteric liquid crystal displays

    Science.gov (United States)

    Schneider, Tod; Davis, Donald J.; Franklin, Sean; Venkataraman, Nithya; McDaniel, Diaz; Nicholson, Forrest; Montbach, Erica; Khan, Asad; Doane, J. William

    2007-02-01

    Flexible Cholesteric liquid crystal displays have been rapidly maturing into a strong contender in the flexible display market. Encapsulation of the Cholesteric liquid crystal permits the use of flexible plastic substrates and roll-to-roll production. Recent advances include ultra-thin displays, laser-cut segmented displays of variable geometry, and smart card applications. Exciting technologies such as simultaneous laser-edge sealing and singulation enable high volume production, excellent quality control and non-traditional display geometries and formats.

  18. Bistable switching in dual-frequency liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Barnik, M I [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2006-06-15

    Various bistable switching modes in nematic liquid crystals with frequency inversion of the sign of dielectric anisotropy are revealed and investigated. Switching between states with different helicoidal distributions of the director field of a liquid crystal, as well as between uniform and helicoidal states, is realized by dual-frequency waveforms of a driving voltage. A distinctive feature of the dual-frequency switching is that the uniform planar distribution of the director field may correspond to a thermodynamically equilibrium state, and the chirality of an LC is not a necessary condition for switching to a helicoidal state.

  19. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  20. Liquid Phase Micro-Extraction of Linear Alkylbenzene Sulfonate Anionic Surfactants in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2011-10-01

    Full Text Available Hollow fiber liquid phase micro-extraction (LPME of linear alkylbenzene sulfonates (LAS from aqueous samples was studied. Ion pair extraction of C10, C11, C12 and C13 homologues was facilitated with trihexylamine as ion-pairing agent, using di-n-hexylether as solvent for the supported liquid membrane (SLM. Effects of extraction time, acceptor buffer concentration, stirring speed, sample volume, NaCl and humic acids were studied. At 10–50 µg L−1 linear R2-coefficients were 0.99 for C10 and C11 and 0.96 for C12. RSD was typically ~15%. Three observations were especially made. Firstly, LPME for these analytes was unusually slow with maximum enrichment observed after 15–24 h (depending on sample volume. Secondly, the enrichment depended on LAS sample concentration with 35–150 times enrichment below ~150 µg L−1 and 1850–4400 times enrichment at 1 mg L−1. Thirdly, lower homologues were enriched more than higher homologues at low sample concentrations, with reversed conditions at higher concentrations. These observations may be due to the fact that LAS and the amine counter ion themselves influence the mass transfer at the water-SLM interface. The observations on LPME of LAS may aid in LPME application to other compounds with surfactant properties or in surfactant enhanced membrane extraction of other compounds.

  1. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  2. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    International Nuclear Information System (INIS)

    Leaw, W.L.; Mamat, C.R.; Triwahyono, S.; Jalil, A.A.; Bidin, N.

    2016-01-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen. • Enhanced

  3. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Leaw, W.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Mamat, C.R., E-mail: che@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Jalil, A.A. [Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Centre of Hydrogen Energy, Institute of Future Energy, Univerisiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Bidin, N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia)

    2016-12-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  4. Liquid crystal television spatial light modulators

    Science.gov (United States)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  5. Temperature-dependent adsorption of surfactant molecules and associated crystallization kinetics of noncentrosymmetric Fe(IO{sub 3}){sub 3} nanorods in microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    El-Kass, Moustafa [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Ladj, Rachid [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Université Lyon1, CNRS, UMR 5007, LAGEP, CPE, 43 bd 11 Novembre 1918, F-69622 Villeurbanne (France); Mugnier, Yannick, E-mail: Yannick.Mugnier@univ-savoie.fr [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Le Dantec, Ronan [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Hadji, Rachid [Institut Jean Lamour, UMR CNRS n°7198, Université de Lorraine, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Marty, Jean-Christophe [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Rouxel, Didier [Institut Jean Lamour, UMR CNRS n°7198, Université de Lorraine, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Durand, Christiane [Université de Savoie, Laboratoire SYMME, BP 80439, 74944 Annecy Le Vieux Cedex (France); Fontvieille, Dominique [UMR CARRTEL (INRA/Université de Savoie), Laboratoire de Microbiologie Aquatique, BP 511, 74203 Thonon Cedex (France); Rogalska, Ewa [Structure et Réactivité des Systèmes Moléculaires Complexes, UMR 7565, Nancy Université, BP 70239, 54506 Vandoeuvre-lès-Nancy cedex (France); and others

    2013-11-15

    Graphical abstract: - Highlights: • Crystallization of Fe(IO{sub 3}){sub 3} in microemulsions probed by hyper-Rayleigh scattering. • A faster growth and a better shape control of nanorods are obtained at 80 °C. • Different persistent cell deformations are related to the crystallization kinetics. • A temperature-dependent adsorption of surfactants on nanorods is suggested. - Abstract: Aggregation-induced crystallization of iron iodate nanorods within organic–inorganic aggregates of primary amorphous precursors is probed by time-dependent hyper-Rayleigh scattering measurements in Triton X-100 based-microemulsions. In the context of a growing interest of noncentrosymmetric oxide nanomaterials in multi-photon bioimaging, we demonstrate by a combination of X-ray diffraction and electron microscopy that an increase in the synthesis of temperature results in faster crystallization kinetics and in a better shape-control of the final Fe(IO{sub 3}){sub 3} nanorods. For initial microemulsions of fixed composition, room-temperature synthesis leads to bundles of 1–3 μm long nanorods, whereas shorter individual nanorods are obtained when the temperature is increased. Results are interpreted in terms of kinetically unfavorable mesoscale transformations due to the strong binding interactions with Triton molecules. The interplay between the nanorod crystallization kinetics and their corresponding unit cell deformation, evidenced by lattice parameter refinements, is attributed to a temperature-dependent adsorption of surfactants molecules at the organic–inorganic interface.

  6. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques.

    Science.gov (United States)

    Mondal, Satyajit; Das, Bijan

    2018-06-05

    The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C 16 MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C 16 MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C 16 MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Vitrification and Crystallization of Phase-Separated Metallic Liquid

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-02-01

    Full Text Available The liquid–liquid phase separation (LLPS behavior of Fe50Cu50 melt from 3500 K to 300 K with different rapid quenching is investigated by molecular dynamics (MD simulation based on the embedded atom method (EAM. The liquid undergoes metastable phase separation by spinodal decomposition in the undercooled regime and subsequently solidifies into three different Fe-rich microstructures: the interconnected-type structure is kept in the glass and crystal at a higher cooling rate, while the Fe-rich droplets are found to crystalize at a lower cooling rate. During the crystallization process, only Fe-rich clusters can act as the solid nuclei. The twinning planes can be observed in the crystal and only the homogeneous atomic stacking shows mirror symmetry along the twinning boundary. Our present work provides atomic-scale understanding of LLPS melt during the cooling process.

  8. Variational Approach in the Theory of Liquid-Crystal State

    Science.gov (United States)

    Gevorkyan, E. V.

    2018-03-01

    The variational calculus by Leonhard Euler is the basis for modern mathematics and theoretical physics. The efficiency of variational approach in statistical theory of liquid-crystal state and in general case in condensed state theory is shown. The developed approach in particular allows us to introduce correctly effective pair interactions and optimize the simple models of liquid crystals with help of realistic intermolecular potentials.

  9. Smectic liquid crystals in anisotropic colloidal silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Dennis [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borthwick, Matthew A [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Leheny, Robert L [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2004-05-19

    We report x-ray scattering studies of the smectic liquid crystal octylcyano-biphenol (8CB) confined by strained colloidal silica gels. The gels, comprised of aerosil particles, possess an anisotropic structure that stabilizes long-range nematic order in the liquid crystal while introducing random field effects that disrupt the smectic transition. The short-range smectic correlations that form within this environment are inconsistent with the presence of a topologically ordered state predicted for 3D random field XY systems and are quantitatively like the correlations of smectics confined by isotropic gels. Detailed analysis reveals that the quenched disorder suppresses the anisotropic scaling of the smectic correlation lengths observed in the pure liquid crystal. These results and additional measurements of the smectic-A to smectic-C transition in 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8barS5) indicate that the observed smectic behaviour is dictated by random fields coupling directly to the smectic order while fields coupling to the nematic director play a subordinate role.

  10. Guided mode studies of smectic liquid crystals

    International Nuclear Information System (INIS)

    Hodder, B.

    2000-03-01

    Recently there has been considerable interest in the use of ferroelectric liquid crystals in low power, fast switching display devices. At present the voltage switching process in surface stabilised ferroelectric liquid crystal (SSFLC) devices is not fully understood and a convenient theory for such cells has yet to be found. It is the primary aim of this work to characterise the optic tensor configuration (director profile) in thin cells (∼ 3.5 μm) containing ferroelectric liquid crystal (FLC) material. These results form a benchmark by which continuum theories may be tested. Polarised microscopy is, perhaps, the most common optical probe of liquid crystal cells. It should be appreciated that this technique is fundamentally limited, as the results are deduced from an integrated optical response of any given cell, and cannot be used to spatially resolve details of the director profile through the cell. The guided mode techniques used in this study are the primary non-integral probe and enable detailed spatial resolution of the director profile within liquid crystal cells. Analysis of guided mode data from cells containing homeotropically aligned FLC reveals the temperature dependence of the optical biaxiality and cone angle for a 40% chiral mixture of the commercially available FLC SCE8*. From these optical biaxiality measurements the temperature dependence of the biaxial order parameter C is determined. Guided mode studies of cells containing homogeneously aligned SCE8* (the conventional alignment for SSFLC devices) reveal the 0V equilibrium director profile from which a cone and chevron model is constructed. Subsequent studies of voltage induced elastic deformations of the director profile are presented and compared with a single elastic constant continuum theory which is shown to be inadequate. Optical guided mode techniques are not directly sensitive to the smectic layer configuration but X-ray scattering is. Here, for the first time, results are presented

  11. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  12. 2D director calculation for liquid crystal optical phased array

    International Nuclear Information System (INIS)

    Xu, L; Zhang, J; Wu, L Y

    2005-01-01

    A practical numerical model for a liquid crystal cell is set up based on the geometrical structure of liquid crystal optical phased arrays. Model parameters include width and space of electrodes, thickness of liquid crystal layer, alignment layers and glass substrates, pre-tilted angles, dielectric constants, elastic constants and so on. According to electrostatic field theory and Frank-Oseen elastic continuum theory, 2D electric potential distribution and 2D director distribution are calculated by means of the finite difference method on non-uniform grids. The influence of cell sizes on director distribution is analyzed. The fringe field effect between electrodes is also discussed

  13. Liquid Crystal Gel Reduces Age Spots by Promoting Skin Turnover

    OpenAIRE

    Mina Musashi; Ariella Coler-Reilly; Teruaki Nagasawa; Yoshiki Kubota; Satomi Kato; Yoko Yamaguchi

    2014-01-01

    Studies have shown that liquid crystals structurally resembling the intercellular lipids in the stratum corneum can beneficially affect the skin when applied topically by stimulating the skin’s natural regenerative functions and accelerating epidermal turnover. In the present study, the effects of applying low concentrations of a liquid crystal gel of our own creation were evaluated using epidermal thickening in mouse skin as an assay for effective stimulation of epidermal turnover. A liquid ...

  14. Creation of tunable absolute bandgaps in a two-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal

    International Nuclear Information System (INIS)

    Liu Chenyang

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the tunable absolute bandgap in a two-dimensional anisotropic photonic crystal structures modulated by a nematic liquid crystal. The PC structure composed of an anisotropic-dielectric cylinder in the liquid crystal medium is studied by solving Maxwell's equations using the plane wave expansion method. The photonic band structures are found to exhibit absolute bandgaps for the square and triangular lattices. Numerical simulations show that the absolute bandgaps can be continuously tuned in the square and triangular lattices consisting of anisotropic-dielectric cylinders by infiltrating nematic liquid crystals. Such a mechanism of bandgap adjustment should open up a new application for designing components in photonic integrated circuits

  15. Thermal Conductivity and Liquid Crystal Thermometers.

    Science.gov (United States)

    Edge, R. D., Ed.

    1993-01-01

    Describes using stock liquid crystal postcards as inexpensive classroom thermometers. Also suggests using these postcards as a good visual temperature indicator for classroom demonstrations such as temperature gradients. One such activity is provided. (MVL)

  16. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles

    Science.gov (United States)

    Zehra, Saman; Gul, Iftikhar Hussain; Hussain, Zakir

    2018-06-01

    A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs). In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection.

  17. Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

    Science.gov (United States)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2018-04-01

    We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.

  18. Crystal-liquid-gas phase transitions and thermodynamic similarity

    CERN Document Server

    Skripov, Vladimir P; Schmelzer, Jurn W P

    2006-01-01

    Professor Skripov obtained worldwide recognition with his monograph ""Metastable liquids"", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase tra

  19. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Praveen, E-mail: pmalik100@yahoo.co [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab (India); Raina, K.K. [Liquid Crystal Group, Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala 147004, Punjab (India)

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that approx1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  20. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Malik, Praveen; Raina, K.K.

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that ∼1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  1. IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses

    Directory of Open Access Journals (Sweden)

    Jeong In Han

    2013-12-01

    Full Text Available IR sensor synchronizing active shutter glasses for three-dimensional high definition television (3D HDTV were developed using a flexible liquid crystal (FLC lens. The FLC lens was made on a polycarbonate (PC substrate using conventional liquid crystal display (LCD processes. The flexible liquid crystal lens displayed a maximum transmission of 32% and total response time of 2.56 ms. The transmittance, the contrast ratio and the response time of the flexible liquid crystal lens were superior to those of glass liquid crystal lenses. Microcontroller unit and drivers were developed as part of a reception module with power supply for the IR sensor synchronizing active shutter glasses with the flexible liquid crystal lens prototypes. IR sensor synchronizing active shutter glasses for 3D HDTV with flexible liquid crystal lenses produced excellent 3D images viewing characteristics.

  2. The liquid protein phase in crystallization: a case study—intact immunoglobulins

    Science.gov (United States)

    Kuznetsov, Yurii G.; Malkin, Alexander J.; McPherson, Alexander

    2001-11-01

    A common observation by protein chemists has been the appearance, for many proteins in aqueous solutions, of oil like droplets, or in more extreme cases the formation of a second oil like phase. These may accompany the formation of precipitate in "salting out" or "salting in' procedures, but more commonly appear in place of any precipitate. Such phase separations also occur, with even greater frequency, in the presence of polymeric precipitants such as polyethyleneglycol (PEG). In general the appearance of a second liquid phase has been taken as indicative of protein aggregation, though an aggregate state distinctly different from that characteristic of amorphous precipitate. While the latter is thought to be composed of linear and branched assemblies, polymers of a sort, the oil phase suggests a more compact, three-dimensional, but fluid state. An important property of an alternate, fluid phase is that it can mediate transitions between other states, for example, between protein molecules free in solution and protein molecules immobilized in amorphous precipitate or crystals. The "liquid protein" phase can be readily observed in many crystallization experiments either prior to the appearance of visible crystals, or directly participating in the crystal growth process. In some cases the relationship between the liquid phase and developing crystals is intimate. Crystals grow directly from the liquid phase, or appear only after the visible formation of the liquid phase. We describe here our experience with a class of macromolecules, immunoglobulins, and particularly IDEC-151, an IgG specific for CD4 on human lymphocytes. This protein has been crystallized from a Jeffamine-LiSO 4 mother liquor and, its crystallization illustrates many of the features associated with the liquid protein, or protein rich phase.

  3. Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide

    Science.gov (United States)

    Stephen, Mark A. (Inventor)

    2018-01-01

    An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.

  4. A dark hollow beam from a selectively liquid-filled photonic crystal fibre

    International Nuclear Information System (INIS)

    Mei-Yan, Zhang; Shu-Guang, Li; Yan-Yan, Yao; Bo, Fu; Lei, Zhang

    2010-01-01

    This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Liquid Crystal Gel Reduces Age Spots by Promoting Skin Turnover

    Directory of Open Access Journals (Sweden)

    Mina Musashi

    2014-07-01

    Full Text Available Studies have shown that liquid crystals structurally resembling the intercellular lipids in the stratum corneum can beneficially affect the skin when applied topically by stimulating the skin’s natural regenerative functions and accelerating epidermal turnover. In the present study, the effects of applying low concentrations of a liquid crystal gel of our own creation were evaluated using epidermal thickening in mouse skin as an assay for effective stimulation of epidermal turnover. A liquid crystal gel was also applied topically to human facial skin, and analysis was conducted using before-and-after photographs of age spots, measurements of L* values that reflect degree of skin pigmentation, single-layer samples of the stratum corneum obtained via tape-stripping, and measurements of trans-epidermal water loss that reflect the status of the skin’s barrier function. The results suggested that cost-effective creams containing as low as 5% liquid crystal gel might be effective and safely sold as skin care products targeting age spots and other problems relating to uneven skin pigmentation.

  6. Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers

    Science.gov (United States)

    Dingemans, Theo; Weiser, Erik; Hou, Tan; Jensen, Brian; St. Clair, Terry

    2004-01-01

    One of the major challenges for NASA's next-generation reusable-launch-vehicle (RLV) program is the design of a cryogenic lightweight composite fuel tank. Potential matrix resin systems need to exhibit a low coefficient of thermal expansion (CTE), good mechanical strength, and excellent barrier properties at cryogenic temperatures under load. In addition, the resin system needs to be processable by a variety of non-autoclavable techniques, such as vacuum-bag curing, resin-transfer molding (RTM), vacuum-assisted resin-transfer molding (VaRTM), resin-film infusion (RFI), pultrusion, and advanced tow placement (ATP). To meet these requirements, the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center developed a new family of wholly aromatic liquid-crystal oligomers that can be processed and thermally cross-linked while maintaining their liquid-crystal order. All the monomers were polymerized in the presence of a cross-linkable unit by use of an environmentally benign melt-condensation technique. This method does not require hazardous solvents, and the only side product is acetic acid. The final product can be obtained as a powder or granulate and has an infinite shelf life. The obtained oligomers melt into a nematic phase and do not exhibit isotropization temperatures greater than the temperatures of decomposition (Ti > T(sub dec)). Three aromatic formulations were designed and tested and included esters, ester-amides, and ester-imides. One of the major advantages of this invention, named LaRC-LCR or Langley Research Center-Liquid Crystal Resin, is the ability to control a variety of resin characteristics, such as melting temperature, viscosity, and the cross-link density of the final part. Depending on the formulation, oligomers can be prepared with melt viscosities in the range of 10-10,000 poise (100 rad/s), which can easily be melt-processed using a variety of composite-processing techniques. This capability provides NASA with custom

  7. Manipulation and control of instabilities for surfactant-laden liquid film flowing down an inclined plane using a deformable solid layer

    Science.gov (United States)

    Tomar, Dharmendra S.; Sharma, Gaurav

    2018-01-01

    We analyzed the linear stability of surfactant-laden liquid film with a free surface flowing down an inclined plane under the action of gravity when the inclined plane is coated with a deformable solid layer. For a flow past a rigid incline and in the presence of inertia, the gas-liquid (GL) interface is prone to the free surface instability and the presence of surfactant is known to stabilize the free surface mode when the Marangoni number increases above a critical value. The rigid surface configuration also admits a surfactant induced Marangoni mode which remains stable for film flows with a free surface. This Marangoni mode was observed to become unstable for a surfactant covered film flow past a flexible inclined plane in a creeping flow limit when the wall is made sufficiently deformable. In view of these observations, we investigate the following two aspects. First, what is the effect of inertia on Marangoni mode instability induced by wall deformability? Second, and more importantly, whether it is possible to use a deformable solid coating to obtain stable flow for the surfactant covered film for cases when the Marangoni number is below the critical value required for stabilization of free surface instability. In order to explore the first question, we continued the growth rates for the Marangoni mode from the creeping flow limit to finite Reynolds numbers (Re) and observed that while the increase in Reynolds number has a small stabilizing effect on growth rates, the Marangoni mode still remains unstable for finite Reynolds numbers as long as the wall is sufficiently deformable. The Marangoni mode remains the dominant mode for zero and small Reynolds numbers until the GL mode also becomes unstable with the increase in Re. Thus, for a given set of parameters and beyond a critical Re, there is an exchange of dominant mode of instability from the Marangoni to free surface GL mode. With respect to the second important aspect, our results clearly demonstrate

  8. Thin aligned organic polymer films for liquid crystal devices

    International Nuclear Information System (INIS)

    Foster, Kathryn Ellen

    1997-01-01

    This project was designed to investigate the possibility of producing alignment layers for liquid crystal devices by cross-linking thin films containing anisotropic polymer bound chromophores via irradiation with polarised ultraviolet light. Photocross-linkable polymers find use in microelectronics, liquid crystal displays, printing and UV curable lacquers and inks; so there is an increasing incentive for the development of new varieties of photopolymers in general. The synthesis and characterisation of two new photopolymers that are suitable as potential alignment layers for liquid crystal devices are reported in this thesis. The first polymer contains the anthracene chromophore attached via a spacer unit to a methacrylate backbone and the second used a similarly attached aryl azide group. Copolymers of the new monomers with methyl methacrylate were investigated to establish reactivity ratios in order to understand composition drift during polymerisation. (author)

  9. Electrostatic Interactions Govern "Odd/Even" Effects in Water-Induced Gemini Surfactant Self-Assembly.

    Science.gov (United States)

    Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun

    2017-01-26

    Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.

  10. Spectroscopic investigation of the far-infrared properties of liquid crystals

    DEFF Research Database (Denmark)

    Reuter, M.; Vieweg, N.; Fischer, B. M.

    2013-01-01

    Liquid crystals are one of the most promising base materials for switchable devices at THz frequencies. Therefore, a precise understanding of the optical parameters is crucial. Here, we present the refractive indices and absorption coefficients for 5 CB and an isothiocyanate terminated liquid...... crystal over a broad frequency range from 0.3 THz to 15 THz....

  11. Development of a surfactant liquid membrane extraction process for the cleansing of industrial aqueous effluents containing metallic cation traces

    International Nuclear Information System (INIS)

    Rapaumbya Akaye, Guy-Roland

    1994-01-01

    The purpose of this work was to develop a process of surfactant liquid membrane extraction to purify industrial waste solution containing Cu(II), Fe(III), and Zn(II) (about 0,1 g/L). The extractant is the ammonium salt of Cyanex 306 and Aliquat 336. The first part of this work deals with the study of the liquid-liquid extraction of the metals. The efficiency of the extractant has been shown for the extraction of each metal alone and for Cu(II) and Zn(II) in the case of a mixture of the three metals. During this study we have observed that Fe(III) is reduced to Fe(II) (which is not extracted by the salt of Cyanex 301) in presence of Cu(II) and the quaternary ammonium salt (Aliquat 336). The optimisation of the experimental conditions for the discontinuous surfactant liquid membrane process led us to choose the following composition of the emulsion: 1,5 % of Cyanex 301 salt, 2,5 % of ECA 4360, dodecan. The internal phase is an aqueous solution containing 3,5 mol/L of NaOH and 0,5 mol/L tri-ethanolamin The residual concentration of Cu(II) and Zn(II) in the external phase is very low. In the case of iron, only 60 % are extracted because of the reduction phenomenon (10 % in liquid-liquid extraction). The realisation of the continuous process in pulsed column, after optimisation of hydrodynamics conditions, leads to similar results. In stationary conditions, we obtain a raffinate containing less than 0,5 mg/L of Cu(II) and Zn(II) and 36 mg/L of iron. The internal phase contains about 2 g/L of Cu(II) an Zn(II). We tried and minimize the reduction of Fe(III) in surfactant liquid membrane process. Less than 16 % of iron cannot be reduced. This leads to a purification of only 84 % In the basis of these results, processes of purification have been proposed for effluents of various composition. They enable to purify the effluent and besides to concentrate the pollutants about twenty times. (author) [fr

  12. Do protein crystals nucleate within dense liquid clusters?

    International Nuclear Information System (INIS)

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  13. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  14. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    International Nuclear Information System (INIS)

    Kuehnel, Matthias

    2014-02-01

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  15. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  16. Photo polymerization-induced vertical phase separation and homeotropic alignment in liquid crystal and polymer mixtures

    International Nuclear Information System (INIS)

    Kang, Hyo; Joo, Sangwoo; Kang, Daeseung

    2012-01-01

    We presented a novel method for the homeotropic alignment of LC by using the irradiation of UV light on the LC/NOA65 mixture cell, in which the photo-initiated-polymerization-induced phase separation lowers the surface energy. When the amount of polymer content is sufficiently small, the gravel and network patterns were formed at the substrates via the vertical phase separation. We found that surface roughness plays an important role in the formation of the homeotropic alignment of LC. We also observed the alignment transition of the cells by varying the mixing ratio of LC/NOA65 or the UV radiation time. Furthermore, the present proposed method has great potential for application in display devices. For decades, studies on the alignment of liquid crystal (LC) molecules have been of significant interest due to their immediate applications for display devices and the intriguing physiochemical properties they exhibit at the surface of mixtures. Usually, homeotropic (or vertical) alignment, in which the long axes of the LC molecules are oriented in a direction perpendicular to the surface, is achieved by using surfactants such as lecithin, silanes or polyimide. Recently homeotropic alignment of liquid crystal molecules was achieved by irradiating photosensitive polymers, by doping nanoparticles into LC, by utilizing nano/micro patterns, or by incorporating self-assembled monolayers (SAMs). However, a clear understanding about the alignment mechanism is still elusive. In this paper, we report a novel method for homeotropic alignment of LC by utilizing the phase separation of LC/polymer mixtures

  17. Old and new ideas in ferroelectric liquid crystal technology

    Science.gov (United States)

    Lagerwall, Sven T.; Matuszczyk, M.; Matuszczyk, T.

    1998-02-01

    Ferroelectric liquid crystals (FLC) are to conventional liquid crystal what Gallium Arsenide is to Silicon in the semiconductor area. The first generation of FLC displays in now present on the market and has some outstanding features based on the symmetric bistability which may be achieved in these materials. One of the greatest challenges for the next generation is to achieve an analog grey scale out of an essentially digital principle. We will analyze in some detail which major problems had to be solved to reach the present state and show how the final steps could be taken toward a new state-of-the-art level in liquid crystal devices. In the last decade university research and industrial R and D have almost equally contributed to treat the very serious complications caused by the so-called chevron structures We will review this important topic in particular detail.

  18. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal

    Science.gov (United States)

    Iwabata, Kazuki; Seki, Yasutaka; Toizumi, Ryota; Shimada, Yuki; Furue, Hirokazu; Sakaguchi, Kengo

    2013-09-01

    With the widespread use of liquid crystals (LCs) in liquid crystal displays, we have looked into the application of liquid crystals in biotechnology. The purpose of the study described here is to investigate the physical properties of DNA using LCs. Synthetic oligonucleotide molecules were dispersed in MLC6884, the sample injected into antiparallel cells, and the amount of mobile ions was measured. The LC cell doped with oligonucleotide molecules showed a sequence-dependent, specific correlation between oligonucleotide concentration and the amount of mobile ions in the LC cells. In the framework of the Stokes model and polyacrylamide gel electrophoresis (PAGE) analysis, we speculate that this result arises from the difference in ion mobility, which is caused by the shape of the oligonucleotide molecule in the LC.

  19. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    , thus reducing the interfacial tension (IFT) to ultra low (0.001 mN/m), which consequently will mobilize the residual oil and result in improved oil recovery. This EOR technology is, however, made challenging by a number of factors, such as the adsorption of surfactant and co-surfactant to the rock...... be resistant to and remain active at reservoir conditions such as high temperatures, pressures and salinities. Understanding the underlying mechanisms of systems that exhibit liquid-liquid equilibrium (e.g. oil-brine systems) at reservoir conditions is an area of increasing interest within EOR. This is true...... studied. The effect of increased pressure became more significant when combined with increasing temperature. The experiments performed on the oil/ seawater systems were similar to the high pressure experiments for the surfactant system discussed above. Oil was contacted with different brine solutions...

  20. Ultraviolet-pumped liquid-crystal dye-laser

    International Nuclear Information System (INIS)

    Bertolotti, M.; Sbrolli, L.; Scudieri, F.; Papa, T.

    1981-01-01

    The possibility offered by the orientation properties of liquid crystals as a matrix for dye lasers is shown. In particular, the linear polarization of emitted light can be changed by acting with an external magnetic field on the molecular nematic director. (author)

  1. Calculation of Optical Parameters of Liquid Crystals

    Science.gov (United States)

    Kumar, A.

    2007-12-01

    Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.

  2. NMR studies of macroscopic and microscopic properties of liquid crystals

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1998-03-01

    The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)

  3. Chemistry of Discotic Liquid Crystals From Monomers to Polymers

    CERN Document Server

    Kumar, Sandeep

    2010-01-01

    Compiling the scattered literature into a single seminal work, this book describes the basic design principles, synthesis, and mesomorphic properties of discotic liquid crystals. Of fundamental importance as models for the study of energy and charge migration in self-organized systems, discotic liquid crystals find functional application as one-dimensional conductors, photoconductors, light emitting diodes, photovoltaic solar cells, field-effect transistors, and gas sensors. This book highlights the scientific concepts behind the hierarchical self-assembly of these disc-shaped molecules alongs

  4. Surfactant properties of human meibomian lipids.

    Science.gov (United States)

    Mudgil, Poonam; Millar, Thomas J

    2011-03-25

    Human meibomian lipids are the major part of the lipid layer of the tear film. Their surfactant properties enable their spread across the aqueous layer and help maintain a stable tear film. The purpose of this study was to investigate surfactant properties of human meibomian lipids in vitro and to determine effects of different physical conditions such as temperature and increased osmolarity, such as occur in dry eye, on these properties. Human meibomian lipids were spread on an artificial tear solution in a Langmuir trough. The lipid films were compressed and expanded to record the surface pressure-area (Π-A) isocycles. The isocycles were recorded under different physical conditions such as high pressure, increasing concentration and size of divalent cations, increasing osmolarity, and varying temperature. Π-A isocycles of meibomian lipids showed that they form liquid films that are compressible and multilayered. The isocycles were unaffected by increasing concentration or size of divalent cations and increasing osmolarity in the subphase. Temperature had a marked effect on the lipids. Increase in temperature caused lipid films to become fluid, an expected feature, but decrease in temperature unexpectedly caused expansion of lipids and an increase in pressure suggesting enhanced surfactant properties. Human meibomian lipids form highly compressible, non-collapsible, multilayered liquid films. These lipids have surfactants that allow them to spread across an aqueous subphase. Their surfactant properties are unaffected by increasing divalent cations or hyperosmolarity but are sensitive to temperature. Cooling of meibomian lipids enhances their surfactant properties.

  5. Bond orientational ordering in a metastable supercooled liquid: a shadow of crystallization and liquid–liquid transition

    International Nuclear Information System (INIS)

    Tanaka, Hajime

    2010-01-01

    It is widely believed that a liquid state can be characterized by a single order parameter, density, and that a transition from a liquid to solid can be described by density ordering (translational ordering). For example, this type of theory has had great success in describing the phase behaviour of hard spheres. However, there are some features that cannot be captured by such theories. For example, hard spheres crystallize into either hcp or fcc structures, without a tendency of bcc ordering which is expected by the Alexander–McTague theory based on the Landau-type free energy of the density order parameter. We also found hcp-like bond orientational ordering in a metastable supercooled liquid, which promotes nucleation of hcp crystals. Furthermore, theories based on the single order parameter cannot explain water-like thermodynamic and kinetic anomalies of a liquid and liquid–liquid transition in a single-component liquid. Based on these facts, we argue that we need an additional order parameter to describe a liquid state. It is bond orientational order, which is induced by dense packing in hard spheres or by directional bonding in molecular and atomic liquids. Bond orientational order is intrinsically of local nature, unlike translational order which is of global nature. This feature plays a unique role in crystallization and quasicrystal formation. We also reveal that bond orientational ordering is a cause of dynamic heterogeneity near a glass transition and is linked to slow dynamics. In relation to this, we note that, for describing the structuring of a highly disordered liquid, we need a structural signature of low configurational entropy, which is more general than bond orientational order. Finally, the water-like anomaly and liquid–liquid transition can be explained by bond orientational ordering due to hydrogen or covalent bonding and its cooperativity, respectively. So we argue that bond orientational ordering is a key to the physical understanding

  6. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    Science.gov (United States)

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  7. The opto-thermal effect on encapsulated cholesteric liquid crystals

    Science.gov (United States)

    Liu, Yu-Sung; Lin, Hui-Chi; Yang, Kin-Min

    2017-12-01

    In this study, we implemented a micro-encapsulated CLC electronic paper that is optically addressed and electrically erasable. The mechanism that forms spot diameters on the CLC films is discussed and verified through various experimental parameters, including the thickness of CLCs and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), pump intensity, and pumping time. The opto-thermal effect, brought on by the PEDOT:PSS absorbing layer, causes the spot diameters on the cholesteric liquid crystal thin films to vary. According to our results, the spot diameter is larger for a sample with a thinner cholesteric liquid crystal layer with the same excitation conditions and same thickness of the PEDOT layer. The spot diameter is also larger for a sample with a thicker PEDOT under the same excitation conditions and same thickness of the cholesteric liquid crystal layer. We proposed a simple heat-conducting model to explain the experimental results, which qualitatively agree with this theoretical model.

  8. Ionic diffusion and salt dissociation conditions of lithium liquid crystal electrolytes.

    Science.gov (United States)

    Saito, Yuria; Hirai, Kenichi; Murata, Shuuhei; Kishii, Yutaka; Kii, Keisuke; Yoshio, Masafumi; Kato, Takashi

    2005-06-16

    Salt dissociation conditions and dynamic properties of ionic species in liquid crystal electrolytes of lithium were investigated by a combination of NMR spectra and diffusion coefficient estimations using the pulsed gradient spin-echo NMR techniques. Activation energies of diffusion (Ea) of ionic species changed with the phase transition of the electrolyte. That is, Ea of the nematic phase was lower than that of the isotropic phase. This indicates that the aligned liquid crystal molecules prepared efficient conduction pathways for migration of ionic species. The dissociation degree of the salt was lower compared with those of the conventional electrolyte solutions and polymer gel electrolytes. This is attributed to the low concentration of polar sites, which attract the dissolved salt and promote salt dissociation, on the liquid crystal molecules. Furthermore, motional restriction of the molecules due to high viscosity and molecular oriented configuration in the nematic phase caused inefficient attraction of the sites for the salt. With a decreased dissolved salt concentration of the liquid crystal electrolyte, salt dissociation proceeded, and two diffusion components attributed to the ion and ion pair were detected independently. This means that the exchange rate between the ion and the ion pair is fairly slow once the salt is dissociated in the liquid crystal electrolytes due to the low motility of the medium molecules that initiate salt dissociation.

  9. Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging

    Directory of Open Access Journals (Sweden)

    N. V. Kamanina

    2016-01-01

    Full Text Available Functional nematic liquid crystal structures doped with nano- and bioobjects have been investigated. The self-assembling features and the photorefractive parameters of the structured liquid crystals have been comparatively studied via microscopy and laser techniques. Fullerene, quantum dots, carbon nanotubes, DNA, and erythrocytes have been considered as the effective nano- and biosensitizers of the LC mesophase. The holographic recording technique based on four-wave mixing of the laser beams has been used to investigate the laser-induced change of the refractive index in the nano- and bioobjects-doped liquid crystal cells. The special accent has been given to novel nanostructured relief with vertically aligned carbon nanotubes at the interface: solid substrate-liquid crystal mesophase. It has been shown that this nanostructured relief influences the orienting ability of the liquid crystal molecules with good advantage. As a result, it provokes the orientation of the DNA. The modified functional liquid crystal materials have been proposed as the perspective systems for both the photonics and biology as well as the medical applications.

  10. Evanescent Field Enhancement in Liquid Crystal Optical Fibers: A Field Characteristics Based Analysis

    Directory of Open Access Journals (Sweden)

    P. K. Choudhury

    2013-01-01

    Full Text Available The paper presents the analysis of the electromagnetic wave propagation through liquid crystal optical fibers (LCOFs of two different types—conventional guides loaded with liquid crystals (addressed as LCOFs and those with additional twists due to conducting helical windings (addressed as HCLCOFs. More precisely, the three-layer optical waveguide structures are considered along with its outermost region being loaded with radially anisotropic liquid crystal material and the inner regions being made of usual silica, as used in conventional optical fibers. In addition to that, LCOF with twists introduced in the form of conducting helical windings at the interface of the silica core and the liquid crystal clad is also taken into account. Emphasis has been put on the power confinements by the lower-order TE modes sustained in the different sections of the LCOF structure. The results demonstrate useful applications of these guides in integrated optics as the power sustained in the liquid crystal section by the excited TE modes remains very high. In the case of twisted clad liquid crystal guides, descriptions are limited to the nature of dispersion relation only under the TE mode excitation, and corresponding to the cases of helix orientations being parallel and perpendicular to the optical axis.

  11. Nonionic Fluorinated Surfactant Removal from Mesoporous Film Using sc-CO2.

    Science.gov (United States)

    Chavez Panduro, Elvia A; Assaker, Karine; Beuvier, Thomas; Blin, Jean-Luc; Stébé, Marie-José; Konovalov, Oleg; Gibaud, Alain

    2017-01-25

    Surfactant templated silica thin films were self-assembled on solid substrates by dip-coating using a partially fluorinated surfactant R 8 F (EO) 9 as the liquid crystal template. The aim was 2-fold: first we checked which composition in the phase diagram was corresponding to a 2D rectangular highly ordered crystalline phase and second we exposed the films to sc-CO 2 to foster the removal of the surfactant. The films were characterized by in situ X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS) under CO 2 pressure from 0 to 100 bar at 34 °C. GISAXS patterns reveal the formation of a 2-D rectangular structure at a molar ratio R 8 F (EO) 9 /Si equal to 0.1. R 8 F (EO) 9 micelles have a cylindrical shape, which have a core/shell structure ordered in a hexagonal system. The core contains the R 8 F part and the shell is a mixture of (EO) 9 embedded in the silica matrix. We further evidence that the extraction of the template using supercritical carbon dioxide can be successfully achieved. This can be attributed to both the low solubility parameter of the surfactants and the fluorine and ethylene oxide CO 2 -philic groups. The initial 2D rectangular structure was well preserved after depressurization of the cell and removal of the surfactant. We attribute the very high stability of the rinsed film to the large value of the wall thickness relatively to the small pore size.

  12. Thermotropic liquid crystals recent advances

    CERN Document Server

    Ramamoorthy, Ayyalusamy

    2007-01-01

    This book covers developments in the field of thermotropic liquid crystals and their functional importance. It also presents advances related to different sub-areas pertinent to this interdisciplinary area of research. This text brings together research from synthetic scientists and spectroscopists and attempts to bridge the gaps between these areas. New physical techniques that are powerful in characterizing these materials are discussed.

  13. Foam flow and liquid films motion: role of the surfactants properties

    Science.gov (United States)

    Cantat, Isabelle

    2011-11-01

    Liquid foams absorb energy in a much more efficient way than each of its constituents, taken separately. However, the local process at the origin of the energy dissipation is not entirely elucidated yet, and several models may apply, thus making worth local studies on simpler systems. We investigate the motion through a wet tube of transverse soap films, or lamellae, combining local thickness and velocity measurements in the wetting film. For foaming solution with a high dilatational surface modulus, we reveal a zone of several centimeters in length, the dynamic wetting film, which is significantly influenced by a moving lamella. The dependence of this influence length on lamella velocity and wetting film thickness provides an accurate discrimination among several possible surfactants models. In collaboration with B. Dollet.

  14. Effect of surfactant and partial liquid ventilation treatment on gas exchange and lung mechanics in immature lambs: influence of gestational age.

    Science.gov (United States)

    Rey-Santano, Carmen; Mielgo, Victoria; Gastiasoro, Elena; Valls-i-Soler, Adolfo; Murgia, Xabier

    2013-01-01

    Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. Prospective, randomized study using sealed envelopes. 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h. Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.

  15. Liquid Crystal Airborne Display

    Science.gov (United States)

    1977-08-01

    Cum.nings, J. P., et al., Properties and Limitations oe Liquid Crystals for Aircraft Displays, Honeywell Corporate Researc ."I Center, Final Report HR-72...basic module could be used to build displays for both the commercial and military! 157- marhecs, and so would establi sh a broad and sizable market ... market for the display becomes a reality; therein lies, f TABLE 16 THE COURSE OF FUTURE DISPLAY DEVELOPMENT Today 1976-77 1980 1985 Display Size 2" 1 3.2

  16. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.

    Science.gov (United States)

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-03-15

    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  17. The finite-size effect in thin liquid crystal systems

    Science.gov (United States)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  18. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors

    NARCIS (Netherlands)

    Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M.

    2014-01-01

    Current developments in the field of thermotropic chiral-nematic liquid crystals as sensors are discussed. These one dimensional photonic materials are based on low molecular weight liquid crystals and chiral-nematic polymeric networks. For both low molecular weight LCs and polymer networks,

  19. Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used to demons......We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used...... to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer....

  20. Growth of anatase and rutile phase TiO{sub 2} nanoparticles using pulsed laser ablation in liquid: Influence of surfactant addition and ablation time variation

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Amita, E-mail: amita-chaturvedi@rrcat.gov.in [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India); Joshi, M.P. [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai – 400094 (India); Mondal, P.; Sinha, A.K.; Srivastava, A.K. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)

    2017-02-28

    Highlights: • Ablations of Ti metal target were carried out in DI water and in 0.001 M SDS solution for different times using PLAL process. • Different characterization studies have been carried out to confirm the growth of TiO{sub 2} nanoparticles in both the liquid mediums. • Anatase phase TiO{sub 2} nanoparticles were obtained in DI water and rutile phase in 0.001 M SDS aqueous solution. • In surfactant solution, longer time ablation leads depletion of SDS molecules causes growth of anatase phase for 90 min. • Our studies confirmed the role of liquid ambience conditions variation over the different phase formations of nanoparticles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles were grown using nanosecond pulsed laser ablation of Ti target in DI water and in 0.001 M sodium dodecyl sulfate (SDS) surfactant aqueous solution. Growth was carried out with varying ablation times i. e. 30 min, 60 min and 90 min. The objective of our study was to investigate the influence of variations in liquid ambience conditions on the growth of the nanoparticles in a pulsed laser ablation in liquid (PLAL) process. Size, composition and optical properties of the grown TiO{sub 2} nanoparticles were investigated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption, photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) studies. The obtained nanoparticles of TiO{sub 2} were found almost spherical in shape and polycrystalline in nature in both the liquid mediums i.e. DI water and aqueous solution of surfactant. Nanoparticles number density was also found to increase with increasing ablation time in both the liquid mediums. However crystalline phase of the grown TiO{sub 2} nanoparticles differs with the change in liquid ambience conditions. Selected area electron diffraction (SAED), PL and XRD studies suggest that DI water ambience is favorable for the growth of anatase phase TiO{sub 2} nanoparticles for all

  1. Thermal Analysis, Mechanical and Rheological Behaviour of Melt Manufactured Polyethylene/Liquid Crystal Polymer Blends

    Directory of Open Access Journals (Sweden)

    Ilze ELKSNITE

    2011-07-01

    Full Text Available Modification of properties of conventional thermoplastics with thermotropic liquid crystal polymers, from one hand, allows decrease their viscosities, substantially facilitating processing conditions, and, from another hand, allows increase their exploitation properties. Orientation of the labile structure of liquid crystal polymer in extrusion or injection moulding causes specific reinforcement (so-called self-reinforcement to occur in the blends containing liquid crystal polymer. Up to now the effect of self-reinforcement is mostly investigated in the blends, containing considerable amount of liquid crystal polymer. In this research the effect of minor amounts of liquid crystalline co-polyester modifier on the properties of polyethylene is investigated. Various compositions of laboratory synthesized hydroxybenzoic acid /polyethylene terephtalate copolymer containing polyethylene composites have been manufactured by thermoplastic blending. It has been observed that 1 modulus of elasticity, yield strength and ultimate strength increase with raising the content of liquid crystalline modifier; 2 void content in the investigated polyethylene/liquid crystal copolymer composites is not greater that 1 %; 3 addition of liquid crystalline co-polyester modifier improves arrangement of PE crystalline phase.http://dx.doi.org/10.5755/j01.ms.17.2.483

  2. Shrink, twist, ripple and melt: Studies of frustrated liquid crystals

    Science.gov (United States)

    Fernsler, Jonathan G.

    Complex structures can arise out of a simple system with more than one competing influence on its behavior. The protypical example of this is the two-dimensional triangular lattice Ising model. The ferromagnetic model has two simple degenerate ground states of all spins up or down, but the antiferromagnetic model is a frustrated system. Its geometry does not allow satisfaction of the antiferro condition everywhere, which produces complex ordered structures with dimerization of the spins [1]. Without frustration, the complex structures and phase behavior are lost. All of the topics discussed in this thesis concern smectic liquid crystals. Liquid crystals are perhaps uniquely adept at manifesting frustrated phases. Their combination of periodicity in one or more dimensions allows ordered structures, yet their fluid nature in remaining dimensions allows creation of defects and extraordinarily complex structures in ways that a normal crystal could not tolerate. Liquid crystals contain a huge menagerie of frustrated phases and effects including the polarization modulated [2], vortex lattice [3], twist grain boundary [4], and blue [5] phases, as well as frustrated structures such as cholesteric or SmC* helix unwinding [6], defect lattices in thin films [7], and bend melted grain boundary defects [8], arising from boundary conditions and field effects. In this thesis, we study four liquid crystal systems that show unusual phase behavior or complex structures, deriving from the effects of frustration. Frustration, despite some human prejudices against the word, leaves nature all the more interesting and beautiful.

  3. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  4. Flexoelectricity in an oxadiazole bent-core nematic liquid crystal

    OpenAIRE

    Kaur, Sarabjot; Panov, V. P.; Greco, C.; Ferrarini, A.; Görtz, Verena; Goodby, John W.; Gleeson, Helen F.

    2014-01-01

    We have determined experimentally the magnitude of the difference in the splay and bend flexoelectric coefficients, |e 1 − e 3|, of an oxadiazole bent-core liquid crystal by measuring the critical voltage for the formation of flexodomains together with their wave number. The coefficient |e 1 − e 3| is found to be a factor of 2–3 times higher than in most conventional calamitic nematic liquid crystals, varying from 8 pCm−1 to 20 pCm−1 across the ∼60 K—wide nematic regime. We have also calculat...

  5. Cholesteric colloidal liquid crystals from phytosterol rod-like particles

    NARCIS (Netherlands)

    Rossi, L.; Sacanna, S.; Velikov, K.P.

    2011-01-01

    We report the first observation of chiral colloidal liquid crystals of rod-like particles from a low molecular weight organic compound— phytosterols. Based on the particles shape and crystal structure, we attribute this phenomenon to chiral distribution of surface charge on the surface of

  6. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    Directory of Open Access Journals (Sweden)

    Amanda García-García

    2016-06-01

    Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  7. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    Science.gov (United States)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  8. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Pérez, Julio C. [Institute; División; Li, Xiao [Institute; Martínez-González, José A. [Institute; Smith, Coleman [Institute; Hernández-Ortiz, J. P. [Departamento; Nealey, Paul F. [Institute; Materials; de Pablo, Juan J. [Institute; Materials

    2017-08-17

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal. To do so, we adopt a tensorial description of the free energy of the hybrid liquidcrystal surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.

  9. Mixing effects in the crystallization of supercooled quantum binary liquids

    International Nuclear Information System (INIS)

    Kühnel, M.; Kalinin, A.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.; Tramonto, F.; Galli, D. E.; Nava, M.; Grisenti, R. E.

    2015-01-01

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH 2 ) or orthodeuterium (oD 2 ) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH 2 and oD 2 crystal growth rates, similarly to what found in our previous work on supercooled pH 2 -oD 2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites

  10. Mixing effects in the crystallization of supercooled quantum binary liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  11. Liquid Crystal Phases of Colloidal Platelets and their Use as Nanocomposite Templates

    NARCIS (Netherlands)

    Mourad, M.C.D.|info:eu-repo/dai/nl/304837563

    2009-01-01

    This thesis explores the gelation and liquid crystal phase behavior of colloidal dispersions of platelike particles as well as the use of such dispersions for the generation of nanocomposites. We report on the sol-gel, sol-glass and liquid crystal phase transitions of positively charged colloidal

  12. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    Science.gov (United States)

    Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

  13. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  14. NATO Advanced Research Workshop on Incommensurate Crystals, Liquid Crystals, and Quasi-Crystals

    CERN Document Server

    Clark, N

    1988-01-01

    In this NATO-sponsored Advanced Research Workshop we succeeded in bringing together approximately forty scientists working in the three main areas of structurally incommensurate materials: incommensurate crystals (primarily ferroelectric insulators), incommensurate liquid crystals, and metallic quasi-crystals. Although these three classes of materials are quite distinct, the commonality of the physics of the origin and descrip­ tion of these incommensurate structures is striking and evident in these proceedings. A measure of the success of this conference was the degree to which interaction among the three subgroups occurred; this was facili­ tated by approximately equal amounts of theory and experiment in the papers presented. We thank the University of Colorado for providing pleasant housing and conference facilities at a modest cost, and we are especially grate­ ful to Ann Underwood, who retyped all the manuscripts into camera-ready form. J. F. Scott Boulder, Colorado N. A. Clark v CONTENTS PART I: INCO...

  15. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  16. Soft Elasticity in Main Chain Liquid Crystal Elastomers

    Directory of Open Access Journals (Sweden)

    Anselm C. Griffin

    2013-06-01

    Full Text Available Main chain liquid crystal elastomers exhibit several interesting phenomena, such as three different regimes of elastic response, unconventional stress-strain relationship in one of these regimes, and the shape memory effect. Investigations are beginning to reveal relationships between their macroscopic behavior and the nature of domain structure, microscopic smectic phase structure, relaxation mechanism, and sample history. These aspects of liquid crystal elastomers are briefly reviewed followed by a summary of the results of recent elastic and high-resolution X-ray diffraction studies of the shape memory effect and the dynamics of the formation of the smectic-C chevron-like layer structure. A possible route to realizing auxetic effect at molecular level is also discussed.

  17. Dye-Induced Enhancement of Optical Nonlinearity in Liquids and Liquid Crystals

    International Nuclear Information System (INIS)

    Muenster, R.; Jarasch, M.; Zhuang, X.; Shen, Y.

    1997-01-01

    Optical nonlinearity of liquid crystals (LC) in the isotropic phase can be enhanced by 1 order of magnitude by dissolving 0.1% of anthraquinone dye in the LC. The enhancement decreases by ∼30% when the LC transforms into the nematic phase. The same guest-host effect also exists in non-LC liquids. It can be explained by a model based on the change of guest-host interaction induced by optical excitations of the dye. copyright 1996 The American Physical Society

  18. Liquid Crystals of Lithium Dodecylbenzenesulfonate for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Kuzmin, Andrey Vasil’evich; Yurtov, Evgeny V.

    2016-01-01

    Ionic lyotropic liquid crystals based on lithium dodecylbenzenesulfonate were used as electrolytes for electric double layer capacitors with carbon fibrous electrodes. The capacitors were tasted by cyclic voltammetry, galvanostatic charge and discharge, and impedance spectroscopy. The highest specific capacitance was achieved for electrical double layer capacitor equipped with ionic lyotropic liquid crystal of lithium dodecylbenzenesulfonate 35 wt% in water. The specific capacitance of capacitor was calculated from galvanostatic discharge curves – 15 F/g of carbon fibrous material

  19. Liquid crystalline states of surfactant solutions of isotropic micelles

    International Nuclear Information System (INIS)

    Bagdassarian, C.; Gelbart, W.M.; Ben-Shaul, A.

    1988-01-01

    We consider micellar solutions whose surfactant molecules prefer strongly to form small, globular aggregates in the absence of intermicellar interactions. At sufficiently high volume fraction of surfactant, the isotropic phase of essentially spherical micelles is shown to be unstable with respect to an orientationally ordered (nematic) state of rodlike aggregates. This behavior is relevant to the phase diagrams reported for important classes of aqueous amphiphilic solutions

  20. Smart lighting using a liquid crystal modulator

    Science.gov (United States)

    Baril, Alexandre; Thibault, Simon; Galstian, Tigran

    2017-08-01

    Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.

  1. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals.

    Science.gov (United States)

    Tercjak, Agnieszka; Gutierrez, Junkal; Ocando, Connie; Mondragon, Iñaki

    2010-03-16

    Conductive properties of different thermosetting materials modified with nematic 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) liquid crystal and rutile TiO(2) nanoparticles were successfully studied by means of tunneling atomic force miscroscopy (TUNA). Taking into account the liquid crystal state of the HBC at room temperature, depending on both the HBC content and the presence of TiO(2) nanoparticles, designed materials showed different TUNA currents passed through the sample. The addition of TiO(2) nanoparticles into the systems multiply the detected current if compared to the thermosetting systems without TiO(2) nanoparticles and simultaneously stabilized the current passed through the sample, making the process reversible since the absolute current values were almost the same applying both negative and positive voltage. Moreover, thermosetting systems modified with liquid crystals with and without TiO(2) nanoparticles are photoluminescence switchable materials as a function of temperature gradient during repeatable heating/cooling cycle. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals can allow them to find potential application in the field of photoresponsive devices, with a high contrast ratio between transparent and opaque states.

  2. Characterising laser beams with liquid crystal displays

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2016-09-01

    Full Text Available the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD...

  3. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and ...

  4. Adsorption of quantum dots onto polymer and Gemini surfactant films: a quartz crystal microbalance study.

    Science.gov (United States)

    Alejo, T; Merchán, M D; Velázquez, M M

    2014-08-26

    We used quartz crystal microbalance with dissipation to study the mechanical properties, the kinetics of adsorption, and the amount of CdSe quantum dots (QDs) adsorbed onto a SiO2 sensor, referred as bare sensor, onto the sensor modified with a film of the polymer poly(maleic anhydride-alt-1-octadecene), PMAO, or with a film of the Gemini surfactant ethyl-bis(dimethyl octadecyl ammonium bromide), abbreviated as 18-2-18. Results showed that when the sensor is coated with polymer or surfactant molecules, the coverage increases compared with that obtained for the bare sensor. On the other hand, rheological properties and kinetics of adsorption of QDs are driven by QD nanoparticles. Thus, the QD films present elastic behavior, and the elasticity values are independent of the molecule used as coating and similar to the elasticity value obtained for QDs films on the bare sensor. The QD adsorption is a two-step mechanism in which the fastest process is attributed to the QD adsorption onto the solid substrate and the slowest one is ascribed to rearrangement movements of the nanoparticles adsorbed at the surface.

  5. Uncovering behavioural diversity amongst high-strength Pseudomonas spp. surfactants at the limit of liquid surface tension reduction.

    Science.gov (United States)

    Kabir, Kamaluddeen; Deeni, Yusuf Y; Hapca, Simona M; Moore, Luke; Spiers, Andrew J

    2018-02-01

    Bacterial biosurfactants have a wide range of biological functions and biotechnological applications. Previous analyses had suggested a limit to their reduction of aqueous liquid surface tensions (γMin), and here we confirm this in an analysis of 25 Pseudomonas spp. strains isolated from soil which produce high-strength surfactants that reduce surface tensions to 25.2 ± 0.1-26.5 ± 0.2 mN m-1 (the surface tension of sterile growth medium and pure water was 52.9 ± 0.4 mN m-1 and 72.1 ± 1.2 mN m-1, respectively). Comparisons of culture supernatants produced using different growth media and semi-purified samples indicate that the limit of 24.2-24.7 mN m-1 is not greatly influenced by culture conditions, pH or NaCl concentrations. We have used foam, emulsion and oil-displacement behavioural assays as a simple and cost-effective proxy for in-depth biochemical characterisation, and these suggest that there is significant structural diversity amongst these surfactants that may reflect different biological functions and offer new biotechnological opportunities. Finally, we obtained a draft genome for the strain producing the highest strength surfactant, and identified a cluster of non-ribosomal protein synthase genes that may produce a cyclic lipopeptide (CLP)-like surfactant. Further investigation of this group of related bacteria recovered from the same site will allow a better understanding of the significance of the great variety of surfactants produced by bacterial communities found in soil and elsewhere. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  7. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...

  8. Effect of an insoluble surfactant on the dynamics of a thin liquid film flowing over a non-uniformly heated substrate.

    Science.gov (United States)

    Srivastava, Ashna; Tiwari, Naveen

    2018-05-07

    The stability analysis of a gravity-driven thin liquid film with an insoluble surfactant flowing over a surface with embedded, regularly spaced heaters is investigated. At the leading edge of a heater, the presence of a temperature gradient induces an opposing Marangoni stress at the interface leading to the formation of a capillary ridge. This ridge has been shown to be susceptible to thermocapillary (oscillating in the flow direction) and rivulet (spanwise periodic pattern) instabilities. The presence of an insoluble surfactant is shown to have a stabilizing effect on this system. The governing equations for the evolution of the film thickness and surfactant concentration are obtained within the lubrication approximation. The coupled two-dimensional base solutions for the film thickness and surfactant concentration show that there is no significant change in the height of the capillary ridge at the subsequent heaters downstream. The height of the capillary ridge is reduced by the presence of the surfactant. For very small Peclet number, the presence of multiple heaters has almost no significant effect on the film stability as compared to a single heater and similar trends are observed between the two configurations in the presence of the surfactant as for the case of a clean interface. However, for large Peclet number, the effect was observed on both types of instabilities for certain heater configurations. The Biot number is shown to have a strong effect on the stability results wherein the dominant mode of instability is altered (from rivulet to thermocapillary instability) for a passive or no surfactant case with increase in the Biot number. For an active surfactant thermocapillary instability is found to remain the dominant mode of instability for all the values of the Biot number. It is shown that increasing the number of heaters beyond a couple does not further affect the stability results.

  9. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong

    2012-06-08

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  10. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong; Majumdar, Apala; Erban, Radek

    2012-01-01

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  11. Liquid crystals with novel terminal chains as ferroelectric liquid crystal hosts

    International Nuclear Information System (INIS)

    Cosquer, G.Y.

    2000-02-01

    Changes to the molecular structure of liquid crystals can have a significant effect upon their mesomorphism and ferroelectric properties. Most of the research in liquid crystal for display applications concentrates on the design and synthesis of novel mesogenic cores to which straight terminal alkyl or alkoxy chains are attached. However, little is known about the effects upon the mesomorphism and ferroelectric properties of varying the terminal chains. The compounds prepared in this work have a common core - a 2,3-difluoroterphenyl unit with a nine-atom alkyl (nonyl) or alkoxy (octyloxy) chain at the 4-position, but with an unusual chain at the 4''-position. In some cases the terminal chain contains hetero atoms such as silicon, oxygen, chlorine and bromine or has a bulky end group. In total 46 final materials were synthesised in an attempt to understand the effect of an unusual terminal chains on mesomorphism and for some of these compounds the effect upon the switching times when added to a standard ferroelectric mixture were investigated. It was found that most compounds containing a bulky end group only displayed a smectic C phase, compounds with a halogen substituent as an end unit displayed a smectic A phase and that increasing the chain flexibility by introducing an oxygen atom in the chain reduces the melting and clearing points. The electro-optical measurements carried out on ferroelectric mixtures containing a bulky end group compound showed that shorter switching times were produced than for the ferroelectric mixture containing a straight chain compound. It is suggested that a bulky end group diminishes te extent of interlayer mixing in the chiral smectic C phase and therefore the molecules move more easily with ferroelectric switching. (author)

  12. Directional Scattering of Semiconductor Nanoparticles Embedded in a Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Braulio García-Cámara

    2014-04-01

    Full Text Available Light scattering by semiconductor nanoparticles has been shown to be more complex than was believed until now. Both electric and magnetic responses emerge in the visible range. In addition, directional effects on light scattering of these nanoparticles were recently obtained. In particular, zero backward and minimum-forward scattering are observed. These phenomena are very interesting for several applications such as, for instance, optical switches or modulators. The strong dependence of these phenomena on the properties of both the particle and the surrounding medium can be used to tune them. The electrical control on the optical properties of liquid crystals could be used to control the directional effects of embedded semiconductor nanoparticles. In this work, we theoretically analyze the effects on the directional distribution of light scattering by these particles when the refractive index of a surrounded liquid crystal changes from the ordinary to the extraordinary configuration. Several semiconductor materials and liquid crystals are studied in order to optimize the contrast between the two states.

  13. Liquid crystal templating as an approach to spatially and temporally organise soft matter.

    Science.gov (United States)

    van der Asdonk, Pim; Kouwer, Paul H J

    2017-10-02

    Chemistry quickly moves from a molecular science to a systems science. This requires spatial and temporal control over the organisation of molecules and molecular assemblies. Whilst Nature almost by default (transiently) organises her components at multiple different length scales, scientists struggle to realise even relatively straightforward patterns. In the past decades, supramolecular chemistry has taught us the rules to precisely engineer molecular assembly at the nanometre scale. At higher length scales, however, we are bound to top-down nanotechnology techniques to realise order. For soft, biological matter, many of these top-down techniques come with serious limitations since the molecules generally show low susceptibilities to the applied stimuli. A new method is based on liquid crystal templating. In this hierarchical approach, a liquid crystalline host serves as the scaffold to order polymers or assemblies. Being a liquid crystal, the host material can be ordered at many different length scales and on top of that, is highly susceptible to many external stimuli, which can even be used to manipulate the liquid crystal organisation in time. As a result, we anticipate large control over the organisation of the materials inside the liquid crystalline host. Recently, liquid crystal templating was also realised in water. This suddenly makes this tool highly applicable to start organising more delicate biological materials or even small organisms. We review the scope and limitations of liquid crystal templating and look out to where the technique may lead us.

  14. Modeling texture transitions in cholesteric liquid crystal droplets

    Science.gov (United States)

    Selinger, Robin; Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Konya, Andrew

    2012-02-01

    Cholesteric liquid crystals can be switched reversibly between planar and focal-conic textures, a property enabling their application in bistable displays, liquid crystal writing tablets, e-books, and color switching ``e-skins.'' To explore voltage-pulse induced switching in cholesteric droplets, we perform simulation studies of director dynamics in three dimensions. Electrostatics calculations are solved at each time step using an iterative relaxation method. We demonstrate that as expected, a low amplitude pulse drives the transition from planar to focal conic, while a high amplitude pulse drives the transition from focal conic back to the planar state. We use the model to explore the effects of droplet shape, aspect ratio, and anchoring conditions, with the goal of minimizing both response time and energy consumption.

  15. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    Science.gov (United States)

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  16. Thermal diode made by nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Djair, E-mail: djfmelo@gmail.com [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Fernandes, Ivna [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Moraes, Fernando [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB (Brazil); Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE (Brazil); Fumeron, Sébastien [Institut Jean Lamour, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre les Nancy (France); Pereira, Erms [Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, Madalena, 50720-001 Recife, PE (Brazil)

    2016-09-07

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed. - Highlights: • An escaped radial disclination as a thermal diode made by a nematic liquid crystal. • Rectifying effects comparable to those caused by carbon and boron nitride nanotubes. • Thermal rectification increasing with radius and decreasing with height of the tube. • Asymmetric BCs cause rectification from the spatial asymmetry produced by the escape. • Symmetric BCs provide rectifications smaller than those yields by asymmetric BCs.

  17. Photosensitive bent-core liquid crystals based on methyl substituted 3-hydroxybenzoic acid.

    Czech Academy of Sciences Publication Activity Database

    Kohout, M.; Alaasar, M.; Poryvai, A.; Novotná, Vladimíra; Poppe, S.; Tschierske, C.; Svoboda, J.

    2017-01-01

    Roč. 7, č. 57 (2017), s. 35805-35813 ISSN 2046-2069 R&D Projects: GA ČR GA16-12150S Institutional support: RVO:68378271 Keywords : liquid crystals * photosensitivity * bent-core liquid crystals * 3-hydroxybenzoic acid Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 3.108, year: 2016

  18. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  19. Thermal conductivity of Glycerol's liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures.

    Science.gov (United States)

    Andersson, Ove; Johari, G P

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κcrystal is 3.6-times the κliquid value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T(-0.95); (ii) the ratio κliquid (p)/κliquid (0.1 MPa) is 1.45 GPa(-1) at 280 K, which, unexpectedly, is about the same as κcrystal (p)/κcrystal (0.1 MPa) of 1.42 GPa(-1) at 298 K; (iii) κglass is relatively insensitive to T but sensitive to the applied p (1.38 GPa(-1) at 150 K); (iv) κglass-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κcrystal of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.

  20. A flexible optically re-writable color liquid crystal display

    Science.gov (United States)

    Zhang, Yihong; Sun, Jiatong; Liu, Yang; Shang, Jianhua; Liu, Hao; Liu, Huashan; Gong, Xiaohui; Chigrinov, Vladimir; Kowk, Hoi Sing

    2018-03-01

    It is very difficult to make a liquid crystal display (LCD) that is flexible. However, for an optically re-writable LCD (ORWLCD), only the spacers and the substrates need to be flexible because the driving unit and the display unit are separate and there are no electronics in the display part of ORWLCD. In this paper, three flexible-spacer methods are proposed to achieve this goal. A cholesteric liquid crystal colored mirror with a polarizer behind it is used as the colored reflective backboard of an ORWLCD. Polyethersulfone substrates and flexible spacers are used to make the optically re-writable cell insensitive to mechanical force.

  1. NMR and molecular dynamics of small solutes in liquid crystals

    International Nuclear Information System (INIS)

    Luyten, P.R.

    1984-01-01

    NMR relaxation measurements, using a wide variety of modern pulse techniques, can yield valuable information about molecular motions. In this thesis the applicability of theories developed to describe spin relaxation phenomena in partially ordered media is studied for small solutes in liquid crystals. 1 H, 2 H, 13 C and 14 N relaxation measurements are interpreted by means of a model, in which fast anisotropic re-orientational motion in an orienting potential combined with contributions from cooperative fluctuations in the surrounding liquid crystal molecules, induce the observed frequency dependent relaxation behavior. (orig.)

  2. Microchannel-flowed-plasma modification of octadecyltrichlorosilane self-assembled-monolayers for liquid crystal alignment

    International Nuclear Information System (INIS)

    Zheng, W.; Chiang, C.-Y.; Underwood, I.

    2013-01-01

    We report that a chemical patterning technique based on local plasma modification of self-assembled monolayers has been utilized to fabricate surfaces for domain liquid crystal alignment. Highly hydrophobic octadecyltrichlorosilane monolayers deposited on glass substrates coated with Indium-Tin-Oxide were brought into contact with elastomeric stamps comprising trenches on a micro scale, and then exposed to an oxygen plasma. In the regions exposed to the plasma the monolayer was etched away leaving a patterned surface that exhibited surface energy differences between surface domains. The surfaces that bear the micropatterns have been shown to be capable of producing patterned alignment of nematic liquid crystal. - Highlights: • Chemical surface-patterning is used to fabricate liquid crystal alignment surface. • Highly hydrophobic octadecyltrichlorosilane monolayer is deposited on substrate. • O 2 plasma flow is used to etch the monolayer to form patterned surface. • The patterned surface exhibits surface energy differences between surface domains. • The surface borne the micropatterns is capable of domain liquid crystal alignment

  3. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Characteristics of bulk liquid undercooling and crystallization behaviors ... cooling rate is fixed, the change of undercooling depends on the melt processing tem- ... solidification and a deep knowledge of undercooling of ... evolution, to obtain the information for the nucleation and ..... When cooling rate is fixed, the change.

  4. Nuclear magnetic resonance of liquid crystals

    National Research Council Canada - National Science Library

    Dong, Ronald Y

    1997-01-01

    ... operator in the small-step rotational diffusion model, while appendix D contains a list of liquid crystal abbreviations used in the book. A portion of this revision is carried out while the author is on leave at the University of Pisa. The author wishes to thank Professor C.A. Veracini for his kind hospitality and many authors for their preprints....

  5. Color Gamut of a Nematic Liquid Crystal Display

    Science.gov (United States)

    Shimomura, Teruo; Mada, Hitoshi; Kobayashi, Shunsuke

    1980-05-01

    The theoretical color gamut of a nematic liquid crystal display is described. The color gamut of a tunable birefringence mode and a guest host mode are revealed with the CIE chromaticity diagram and color solid. In order to account for the quantitative color gamut, color matching between the given chromaticity coordinates and those calculated is investigated. Color matching is performed by a combination of three liquid crystal subcells (A, B, C), where each subcell receives the voltage VA, VB, VC or contains the dye amount a, b, c. Calculation of the value of voltage or dye amount was executed by the matrix representation method. The calculated data are in good agreement with the given data within 0.50 CIE-UNIT color difference in the 1964 CIE (U*, V*, W*) color scale.

  6. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi

    2012-02-08

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  7. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi; Bennett, Alfonso Garcia; Han, Lu; Han, Yu; Xiao, Changhong; Fujita, Nobuhisa; Castle, Toen; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu

    2012-01-01

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  8. A Polarization Maintaining Filter based on a Liquid-Crystal-Photonic-Bandgap-Fiber

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Turchinovich, Dmitry

    2008-01-01

    A polarization maintaining filter based on a liquid-crystal-photonic-bandgap-fiber is demonstrated. Its polarization extinction ratio is 14 dB at 1550 nm. Its tunability is 150 nm.......A polarization maintaining filter based on a liquid-crystal-photonic-bandgap-fiber is demonstrated. Its polarization extinction ratio is 14 dB at 1550 nm. Its tunability is 150 nm....

  9. Polymorphism and mesomorphism of oligomeric surfactants: effect of the degree of oligomerization.

    Science.gov (United States)

    Jurašin, D; Pustak, A; Habuš, I; Šmit, I; Filipović-Vinceković, N

    2011-12-06

    A series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains. The increase in the degree of oligomerization increases the interlayer distance and decreases the ordering in the solid phase; whereas the dimer sample is fully crystalline with well-developed 3D ordering and the trimer and tetramer crystallize as highly ordered crystal smectic phases. The number of thermal phase transitions and sequence of phases are markedly affected by the number of dodecyl chains. Anhydrous samples exhibit polymorphism and thermotropic mesomorphism of the smectic type, with the exception of the tetramer that displays only transitions at higher temperature associated with decomposition and melting. All hydrated compounds form lyotropic mesophases showing reversible phase transitions upon heating and cooling. The sequence of liquid-crystalline phases for the dimer, typical of concentrated ionic surfactant systems, comprises a hexagonal phase at lower temperatures and a smectic phase at higher temperatures. In contrast, the trimer and tetramer reveal textures of the hexagonal phase. © 2011 American Chemical Society

  10. Relation between anchorings of liquid crystals and conformation changes in aligning agents by the Langmuir-Blodgett film technique investigation

    International Nuclear Information System (INIS)

    Zhu, Y.; Lu, Z.; Wei, Y.

    1995-01-01

    The anchoring direction of liquid crystals on a solid substrate surface depends upon many parameters characterizing the liquid-crystal--substrate interface, a variation of which may change this anchoring direction leading to the so-called anchoring transition. Here, based on the Langmuir-Blodgett film technique, we present two model systems to study the relation between anchoring directions and the conformation changes in aligning agents. A double-armed crown ether liquid crystal and a side chain polymer liquid crystal at an air-water interface both show phase transitions, accompanied by conformation changes. However, when the monolayers in different phases were transferred onto solid substrates to orient liquid crystals, we found that for the crown ether material the conformation change can alter the anchoring of liquid crystals between homeotropic and homogeneous alignments, while for the polymer liquid crystal, despite the conformation changes, the liquid crystals can only be aligned homeotropically. The involved mechanisms were briefly discussed in terms of the Landau-type phenomenological theory

  11. The ion capturing effect of 5° SiOx alignment films in liquid crystal devices

    Science.gov (United States)

    Huang, Yi; Bos, Philip J.; Bhowmik, Achintya

    2010-09-01

    We show that SiOx, deposited at 5° to the interior surface of a liquid crystal cell allows for a surprisingly substantial reduction in the ion concentration of liquid crystal devices. We have investigated this effect and found that this type of film, due to its surface morphology, captures ions from the liquid crystal material. Ion adsorption on 5° SiOx film obeys the Langmuir isotherm. Experimental results shown allow estimation of the ion capturing capacity of these films to be more than an order of 10 000/μm2. These types of materials are useful for new types of very low power liquid crystal devices such as e-books.

  12. Heat and electrical conductivity of thermotropic liquid crystals

    International Nuclear Information System (INIS)

    Saidov, N.S.; Majidov, H.; Saburov, B.S.; Safarov, M.M.

    1989-01-01

    A results of thermal conduction and electrical conduction of chemo tropic liquid crystals are brought in this article. An installation dependence formula of thermal conduction investigating things from the electrical conduction and temperatures is constructed

  13. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Middha, Manju; Kumar, Rishi; Raina, K. K.

    2014-01-01

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence

  14. Proton irradiation of liquid crystal based adaptive optical devices

    International Nuclear Information System (INIS)

    Buis, E.J.; Berkhout, G.C.G.; Love, G.D.; Kirby, A.K.; Taylor, J.M.; Hannemann, S.; Collon, M.J.

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10 10 p/cm 2 ). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  15. Proton irradiation of liquid crystal based adaptive optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Buis, E.J., E-mail: ernst-jan.buis@tno.nl [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Berkhout, G.C.G. [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Love, G.D.; Kirby, A.K.; Taylor, J.M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hannemann, S.; Collon, M.J. [cosine Research BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands)

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10{sup 10}p/cm{sup 2}). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  16. A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits

    Science.gov (United States)

    Lee, Sangrok

    Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.

  17. Liquid gallium cooling of silicon crystals in high intensity photon beams

    International Nuclear Information System (INIS)

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L.E.; Stefan, P.; Oversluizen, T.

    1989-01-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1--10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator

  18. Effect of a cationic surfactant on the volatilization of PAHs from soil.

    Science.gov (United States)

    Lu, Li; Zhu, Lizhong

    2012-06-01

    Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil. The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid-vapor and solid-vapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis. DDPB affects both liquid-vapor and solid-vapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas-liquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas-liquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid-vapor volatilization of PAHs. The overall effect of the two simultaneous effects of DDPB on liquid-vapor and solid-vapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.

  19. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  20. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  1. The Monte Carlo simulations of liquid crystal cell with bend distortions

    International Nuclear Information System (INIS)

    Zhou Xuan; Zhang Zhidong

    2010-01-01

    Strong anchoring nematic liquid crystal cell with bend distortions is studied, This liquid crystal cell has fast response in application prospects. The continuum theory has given that the surface elastic energy k 13 term causes surface discontinuities of the liquid crystal director. Study based on molecular theory, the pair potential parameters link directly to the surface elastic energy coefficient k 13 . The effect of finite temperature is studied by Monte Carlo simulation. The second rank ordering tensor is calculated, the largest eigenvalue gives the order parameter, and its corresponding eigenvector identifies the director in the continuum theory. It is shown that it doesn't present the surface discontinuities based on the molecular theory and the k 13 term in pair potential will increase the fluctuation in the middle of the cell. By inference, the boundary discontinuity caused by k 13 item in continuum theory is resulted from the neglecting of the higher items than the second rank of the elastic energy. (authors)

  2. Dual gauge field theory of quantum liquid crystals in three dimensions

    International Nuclear Information System (INIS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan

    2017-01-01

    The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.

  3. Dual gauge field theory of quantum liquid crystals in three dimensions

    Science.gov (United States)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan

    2017-10-01

    The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. We also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.

  4. Ultraweak azimuthal anchoring of a nematic liquid crystal on a planar orienting photopolymer

    International Nuclear Information System (INIS)

    Nespoulous, Mathieu; Blanc, Christophe; Nobili, Maurizio

    2007-01-01

    The search of weak anchoring is an important issue for a whole class of liquid crystal displays. In this paper we present an orienting layer showing unreached weak planar azimuthal anchoring for 4-n-pentyl-4 ' -cyanobiphenyl nematic liquid crystal (5CB). Azimuthal extrapolation lengths as large as 80 μm are easily obtained. Our layers are made with the commercial photocurable polymer Norland optical adhesive 60. The anisotropy of the film is induced by the adsorption of oriented liquid crystal molecules under a 2 T magnetic field applied parallel to the surfaces. We use the width of surface π-walls and a high-field electro-optical method to measure, respectively, the azimuthal and the zenithal anchorings. The azimuthal anchoring is extremely sensitive to the ultraviolet (UV) dose and it also depends on the magnetic field application duration. On the opposite, the zenithal anchoring is only slightly sensitive to the preparation parameters. All these results are discussed in terms of the adsorption/desorption mechanisms of the liquid crystal molecules on the polymer layer and of the flexibility of the polymer network

  5. Influence of RF power on performance of sputtered a-IGZO based liquid crystal cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.M., E-mail: wu@mail.cgu.edu.tw; Sahoo, A.K.; Liu, C.Y.

    2015-12-01

    The influence of radio-frequency (RF) power on sputter-deposited amorphous indium gallium zinc oxide (a-IGZO) films and the corresponding liquid crystal cell performances have been investigated. The inorganic films were used as alternative alignment layers for liquid crystal display cells. The columnar growth of film was achieved by non-contact, fixed oblique deposition using RF sputtering at the power of 50 W, 60 W and 70 W. The experiments have been carried out to compare the physical characteristics with those of the traditional polyimide (PI) alignment layers used for liquid crystal cells. The cell performances in voltage-transmittance, contrast ratio, and response time were all evaluated. The liquid crystal pretilt angle has been determined to be about 13° using 70 W power deposited a-IGZO film. It was 6° for the 60 W deposited film and only 1.5° for the PI alignment film. The experimental cell rise time and fall time was 1.25 ms and 2.96 ms, respectively. Thus, a very quick response time of 4.21 ms has been achieved. It was about 6.62 ms for the PI alignment control cell. - Highlights: • Radio-frequency power of indium gallium zinc oxide film deposition was studied. • The oblique deposition technique was used to prepare the alignment layers. • The liquid crystal pretilt angle was about 13° using 70 W. • The corresponding liquid crystal cells exhibited fast response time at 4.21 ms. • The cells showed low threshold voltage of 1.78 V and excellent contrast ratio.

  6. Regularity of solutions to the liquid crystals systems in R2 and R3

    International Nuclear Information System (INIS)

    Dai, Mimi; Qing, Jie; Schonbek, Maria

    2012-01-01

    In this paper, we establish regularity and uniqueness for solutions to density dependent nematic liquid crystals systems. The results presented extend the regularity and uniqueness for constant density liquid crystals systems, obtained by Lin and Liu (1995 Commun. Pure Appl. Math. XLVIII 501–37)

  7. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  8. Zero-charged catanionic lamellar liquid crystals doped with fullerene C60 for potential applications in tribology.

    Science.gov (United States)

    Chen, Mengjun; Liu, Baoyong; Wang, Xiaolin; Fu, Yanxu; Hao, Jingcheng; Li, Hongguang

    2017-09-20

    The formation of lamellar liquid crystals (LLCs) has been demonstrated in a few salt-free catanionic surfactant systems and their properties have been well documented. However, examples of their combination with other materials are relatively rare. Herein, a salt-free zero-charged catanionic surfactant with low chain melting temperature was prepared by mixing equimolar tetradecyltrimethylammonium oxide (TTAOH) and oleic acid (OA) in water, and its concentration-dependent aggregate transition was investigated. In the dilute region (c TTAO ≤ 5 wt%), fluorescence microscopy observations revealed the formation of vesicles (the L αv phase). Further increasing c TTAO induced a transition from the L αv phase to LLCs via a region where vesicles and lamellae coexist. With ordered hydrophobic domains, the LLCs can be used as hosts for the doping of fullerene C 60 (refers to C 60 hereafter) with the highest C 60 /TTAO weight ratio of 0.04. The doping of C 60 effectively improves the viscoelasticity of the LLCs confirmed by rheological characterization while only slight modifications on their matrixes have been detected using small angle X-ray scattering measurements. The LLC/C 60 hybrids with c TTAO = 80 wt% were then subjected to tribological measurements, and an obvious reduction in their friction coefficients and wear volumes was observed. The C 60 /TTAO weight ratio at which the best tribological performance appears was determined to be 0.01. Our results indicate that the combination of C 60 and catanionic LLCs could lead to the appearance of a new generation of environmentally-benign lubricants.

  9. Blue Shifting Tuning of the Selective Reflection of Polymer Stabilized Cholesteric Liquid Crystals (Postprint)

    Science.gov (United States)

    2017-08-08

    crystal (MLC-2079, Merck). The polymer stabi- lizing network was formed within the samples by photoinitiated polymerization with 50–700 mW cm2 of 365...AFRL-RX-WP-JA-2017-0347 BLUE-SHIFTING TUNING OF THE SELECTIVE REFLECTION OF POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS (POSTPRINT...BLUE-SHIFTING TUNING OF THE SELECTIVE REFLECTION OF POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-16-F

  10. Charging and Screening in Nonpolar Solutions of Nonionizable Surfactants

    Science.gov (United States)

    Behrens, Sven

    2010-03-01

    Nonpolar liquids do not easily accommodate electric charges, but surfactant additives are often found to dramatically increase the solution conductivity and promote surface charging of suspended colloid particles. Such surfactant-mediated electrostatic effects have been associated with equilibrium charge fluctuations among reverse surfactant micelles and in some cases with the statistically rare ionization of individual surfactant molecules. Here we present experimental evidence that even surfactants without any ionizable group can mediate charging and charge screening in nonpolar oils, and that they can do so at surfactant concentrations well below the critical micelle concentration (cmc). Precision conductometry, light scattering, and Karl-Fischer titration of sorbitan oleate solutions in hexane, paired with electrophoretic mobility measurements on suspended polymer particles, reveal a distinctly electrostatic action of the surfactant. We interpret our observations in terms of a charge fluctuation model and argue that the observed charging processes are likely facilitated, but not limited, by the presence of ionizable impurities.

  11. Macroscopic chirality of a liquid crystal from nonchiral molecules

    International Nuclear Information System (INIS)

    Jakli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-01-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment

  12. New structural studies of liquid crystal by reflectivity and resonant X-ray diffraction

    International Nuclear Information System (INIS)

    Fernandes, P.

    2007-04-01

    This memory presents three structural studies of smectic Liquid Crystals by reflectivity and resonant diffraction of X-rays. It is divided in five chapters. In the first a short introduction to Liquid Crystals is given. In particular, the smectic phases that are the object of this study are presented. The second chapter is consecrated to the X-ray experimental techniques that were used in this work. The three last chapters present the works on which this thesis can be divided. Chapter three demonstrates on free-standing films of MHPOBC (historic liquid crystal that possesses the antiferroelectric sub-phases) the possibility to extend the technique of resonant X-ray diffraction to liquid crystals without resonant element. In the fourth chapter the structure of the B 2 liquid crystal phase of bent-core molecules (or banana molecules) is elucidated by using resonant X-ray diffraction combined with polarization analysis of the diffracted beam. A model of the polarization of the resonant beam diffracted by four different structures proposed for the B 2 phase is developed in this chapter. In the fifth chapter a smectic binary mixture presenting a very original critical point of phase separation is studied by X-ray reflectivity and optical microscopy. A concentration gradient in the direction perpendicular to the plane of the film seems to be induced by the free-standing film geometry. The results of a simplified model of the system are compatible with this interpretation

  13. Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis.

    Science.gov (United States)

    McHale, Glen; Hardacre, Chris; Ge, Rile; Doy, Nicola; Allen, Ray W K; MacInnes, Jordan M; Bown, Mark R; Newton, Michael I

    2008-08-01

    Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.

  14. Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks

    NARCIS (Netherlands)

    Chang, C.; Bastiaansen, C.W.M.; Broer, D.J.; Kuo, H.-L.

    2012-01-01

    Hydrogen-bridged, cholesteric liquid-crystal (CLC) polymer networks are adopted as an optical sensor material to distinguish between ethanol and methanol. Fast uptake of the alcohols is facilitated by an incorporated porosity created by breaking the hydrogen bridges and by a previously removed

  15. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    OpenAIRE

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders Overgaard

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability ...

  16. Surfactant-thermal syntheses, structures, and magnetic properties of Mn-Ge-sulfides/selenides

    KAUST Repository

    Zhang, Guodong

    2014-10-06

    Although either surfactants or amines have been investigated to direct the crystal growth of metal chalcogenides, the synergic effect of organic amines and surfactants to control the crystal growth has not been explored. In this report, several organic bases (hydrazine monohydrate, ethylenediamine (en), 1,2-propanediamine (1,2-dap), and 1,3-propanediamine (1,3-dap)) have been employed as structure-directing agents (SDAs) to prepare four novel chalcogenides (Mn3Ge2S7(NH3)4 (1), [Mn(en)2(H2O)][Mn(en)2MnGe3Se9] (2), (1,2-dapH)2{[Mn(1,2-dap)2]Ge2Se7} (3), and (1,3-dapH)(puH)MnGeSe4(4) (pu = propyleneurea) under surfactant media (PEG-400). These as-prepared new crystalline materials provide diverse metal coordination geometries, including MnS3N tetrahedra, MnGe2Se7 trimer, and MnGe3Se10 T2 cluster. Compounds 1-3 have been fully characterized by single-crystal X-ray diffraction (XRD), powder XRD, UV-vis spectra, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Moreover, magnetic measurements for compound 1 showed an obvious antiferromagnetic transition at ∼9 K. Our research not only enriches the structural chemistry of the transitional-metal/14/16 chalcogenides but also allows us to better understand the synergic effect of organic amines and surfactants on the crystallization of metal chalcogenides.

  17. Electric-field responsive contrast agent based on liquid crystals and magnetic nanoparticles

    Science.gov (United States)

    Mair, Lamar O.; Martinez-Miranda, Luz J.; Kurihara, Lynn K.; Nacev, Aleksandar; Hilaman, Ryan; Chowdhury, Sagar; Jafari, Sahar; Ijanaten, Said; da Silva, Claudian; Baker-McKee, James; Stepanov, Pavel Y.; Weinberg, Irving N.

    2018-05-01

    The properties of liquid crystal-magnetic nanoparticle composites have potential for sensing in the body. We study the response of a liquid crystal-magnetic nanoparticle (LC-MNP) composite to applied potentials of hundreds of volts per meter. Measuring samples using X-ray diffraction (XRD) and imaging composites using magnetic resonance imaging (MRI), we demonstrate that electric potentials applied across centimeter scale LC-MNP composite samples can be detected using XRD and MRI techniques.

  18. Effects of Surfactant on Geotechnical Characteristics of Silty Soil

    International Nuclear Information System (INIS)

    Rahman, Z.A.; Sahibin, A.R.; Lihan, T.; Idris, W.M.R.; Sakina, M.

    2013-01-01

    Surfactants are often used as a cleaning agent for restoration of oil-contaminated soil. However the effect of surfactant on the geotechnical properties of soil is not clearly understood. In this study, the effects of surfactant on silty soil were investigated for consistency index, compaction, permeability and shear strength. Sodium dodecyl sulfate (SDS) was used in this study to prepare the surfactant-treated soil. Our results showed that the soil with added surfactant exhibited a decrease in liquid and plastic limit values. Maximum dry densities increased and optimum moisture contents decreased as contents of added surfactant were increased. The presence of surfactant assists the soil to achieve maximum density at lower water content. The addition of surfactant decreased the permeability of soil from 6.29 x 10 -4 to 1.15 x 10 -4 ms -1 . The shear strength of soil with added surfactant was examined using the undrained unconsolidated triaxial tests. The results showed that the undrained shear strength, Cu was significantly affected, decreased from 319 kPa to 50 kPa for soil with 20 % of added surfactant. The results of this study showed that the presence of surfactant in soil can modify the mechanical behaviour of the soil. (author)

  19. A new method of liquid crystal thermometry excluding human color sensation

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Akino, Norio; Ueda, Masaharu.

    1987-01-01

    Some choresteric liquid crystals can be used as a thermometer because of their color changes with varying temperatures. However, it is impossible to employ human color sensation for precise quantitative evaluation of temperature from their color. Therefore, a new method of liquid crystal thermometry is developed using narrow band optical filters and an image processor to exclude the employment of human color sensation. Relations between filter wavelength and temperature were determined by calibration tests. Two dimensional temperature distributions on a heated plate were successfully measured by the present method. (author)

  20. Memory effect of polymer dispersed liquid crystal by hybridization with nanoclay

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available The electro-optical performances of polymer dispersed liquid crystal (PDLC were investigated in the presence of organically modified clays. With the addition and increasing amount of modified clay, driving voltage and memory effect, viz. transparent state of the film after the electricity is off simultaneously increased due most likely to the increased viscosity. Among the two types of modifier, 4-(4-aminophenyl benzonitrile having greater chemical affinity with LC than hexylamine, gave finer dispersion of clay in liquid crystal, greater viscosity, larger driving voltage and response time, and greater memory effect.

  1. Local structural ordering in surface-confined liquid crystals

    Science.gov (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  2. A theory of the nematic liquid crystals

    International Nuclear Information System (INIS)

    Hazoume, R.P.

    1980-09-01

    A theory of the nematic phase of liquid crystals is presented, taking explicit account of the geometry of the molecule. The three broad peaks of the neutron scattering structure factor are explained. Expressions of the order parameters (average value of Psub(2L)) are given and they can be extracted by comparison with scattering experiments. (author)

  3. Supramolecular Liquid Crystal Displays Construction and Applications

    OpenAIRE

    Hoogboom, J.T.V.

    2004-01-01

    This thesis describes chemical methodologies, which can be ued to construct alignment layers for liquid crystal display purposes in a non-clean room environment, by making use of supramolecular chemistry. These techniques are subsequently used to attain control over LCD-properties, both pre- and post-LCD construction. In addition, the thesis describes the application of LCD technology in biosensors.

  4. Recent advances in IR liquid crystal spatial light modulators

    Science.gov (United States)

    Peng, Fenglin; Twieg, Robert J.; Wu, Shin-Tson

    2015-09-01

    Liquid crystal (LC) is an amazing class of electro-optic media; its applications span from visible to infrared, millimeter wave, and terahertz regions. In the visible and short-wavelength infrared (SWIR) regions, most LCs are highly transparent. However, to extend the electro-optic application of LCs into MWIR and LWIR, several key technical challenges have to be overcome: (1) low absorption loss, (2) high birefringence, (3) low operation voltage, and (4) fast response time. In the MWIR and LWIR regions, several fundamental molecular vibration bands and overtones exist, which contribute to high absorption loss. The absorbed light turns to heat and then alters the birefringence locally, which in turns causes spatially non-uniform phase modulation. To suppress the optical loss, several approaches have been investigated: (1) Employing thin cell gap by choosing a high birefringence LC mixture; (2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination, or chlorination; (3) Reducing the overtone absorption by using a short alkyl chain. In this paper, we report some recently developed chlorinated LC compounds and mixtures with low absorption loss in the SWIR and MWIR regions. To achieve fast response time, we demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms. Approaches to extend such a liquid crystal spatial light modulator to long-wavelength infrared will be discussed.

  5. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    Science.gov (United States)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  6. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

    Science.gov (United States)

    Nguyen, Thanh-Son; Selinger, Jonathan V

    2017-09-01

    In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

  7. Electrotransport in ionic crystals: Pt. 1. Application of liquid electrolyte theory

    International Nuclear Information System (INIS)

    Janek, J.

    1994-01-01

    Transport of matter and charge in ionic crystals is only possible by the existence of irregular structure elements (defects) which are often charged relative to the crystal lattice. A comparison between the transport behaviour of a crystalline matrix containing such charged defects and a liquid electrolyte containing dissolved ions shows a lot of similarities. As is well known the transport properties of liquid electrolytes are strongly affected by interactions between the dissolved ions. We have applied the well elaborated concept of mixed electrolytes by Onsager and Fuoss which was originally devoted to liquid electrolytes to ionic crystals containing charged point defects. The equations of Onsager and Fuoss allow in principle the calculation of the concentration dependence of the phenomenological transport coefficients L ij of all charge carriers of n-component electrolytes. We will use these equations to predict the transport behaviour of ionic crystals containing differently charged point defects. As examples we have calculated transport coefficients for electrolyte systems which can be regarded as models for the transition metal oxides Co 1-δ O and Cu 2-δ O. One major result concerns the magnitude of the cross effect between the ionic and electronic fluxes in those materials. The implications of these results with respect to experimental observations are discussed. (orig.)

  8. Some problems of the statistical theory of polymeric lyotropic liquid crystals

    International Nuclear Information System (INIS)

    Grosberg, A.Yu.; Khokhlov, A.R.

    1980-06-01

    In this article we consider some topics of the statistical physics of liquid-crystalline phase in the solutions of stiff chain macromolecules. Among these topics are: the problem of the phase diagram for the liquid-crystalline transition in the solutions of completely stiff macromolecules (rigid rods); conditions of formation of the liquid-crystalline phase in the solutions of semiflexible macromolecules; possibility of the intramolecular liquid-crystalline ordering in semiflexible macromolecules; structure of intramolecular liquid crystals and dependence of the properties of the liquid-crystalline phase on the microstructure of the polymer chain. (author)

  9. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...... laser was coupled into the fiber together with the pulsed pump laser of 2.3 mW and we have demonstrated a modulation frequency of up to 2 kHz....

  10. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    OpenAIRE

    Potisk, Tilen; Mertelj, Alenka; Sebastian, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals t...

  11. Geometrical optics approach in liquid crystal films with three-dimensional director variations.

    Science.gov (United States)

    Panasyuk, G; Kelly, J; Gartland, E C; Allender, D W

    2003-04-01

    A formal geometrical optics approach (GOA) to the optics of nematic liquid crystals whose optic axis (director) varies in more than one dimension is described. The GOA is applied to the propagation of light through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeotropic to multidomainlike transition (HMD cell). Properties of the GOA solution are explored, and comparison with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct computer calculation and a previously developed simplified model, are in good agreement.

  12. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  13. Mean flow produced by small-amplitude vibrations of a liquid bridge with its free surface covered with an insoluble surfactant

    Science.gov (United States)

    Carrión, Luis M.; Herrada, Miguel A.; Montanero, José M.; Vega, José M.

    2017-09-01

    As is well known, confined fluid systems subject to forced vibrations produce mean flows, called in this context streaming flows. These mean flows promote an overall mass transport in the fluid that has consequences in the transport of passive scalars and surfactants, when these are present in a fluid interface. Such transport causes surfactant concentration inhomogeneities that are to be counterbalanced by Marangoni elasticity. Therefore, the interaction of streaming flows and Marangoni convection is expected to produce new flow structures that are different from those resulting when only one of these effects is present. The present paper focuses on this interaction using the liquid bridge geometry as a paradigmatic system for the analysis. Such analysis is based on an appropriate post-processing of the results obtained via direct numerical simulation of the system for moderately small viscosity, a condition consistent with typical experiments of vibrated millimetric liquid bridges. It is seen that the flow patterns show a nonmonotone behavior as the Marangoni number is increased. In addition, the strength of the mean flow at the free surface exhibits two well-defined regimes as the forcing amplitude increases. These regimes show fairly universal power-law behaviors.

  14. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.

    Science.gov (United States)

    Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won

    2017-03-15

    The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.

  15. Dichroic Liquid Crystal Displays

    Science.gov (United States)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  16. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    OpenAIRE

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-01-01

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidi...

  17. Alignment of carbon nanotubes in nematic liquid crystals

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.; Popa-Nita, V.; Kralj, S.

    2008-01-01

    The self-organizing properties of nematic liquid crystals can be used to align carbon nanotubes dispersed in them. Because the nanotubes are so much thinner than the elastic penetration length, the alignment is caused by the coupling of the unperturbed director field to the anisotropic interfacial

  18. Optical monitoring of gases with cholesteric liquid crystals

    NARCIS (Netherlands)

    Han, Y.; Pacheco Morillo, K.B.; Bastiaansen, C.W.M.; Broer, D.J.; Sijbesma, R.P.

    2010-01-01

    A new approach to optical monitors for gases is introduced using cholesteric liquid crystals doped with reactive chiral compounds. The approach is based on cholesteric pitch length changes caused by a change in helical twisting power (HTP) of the chiral dopants upon reaction with the analyte. The

  19. The study of the elasticity of spider dragline silk with liquid crystal model

    International Nuclear Information System (INIS)

    Cui Linying; Liu Fei; Ouyang Zhongcan

    2009-01-01

    Spider dragline silk is an optimal biomaterial with a combination of high tensile strength and high elasticity, and it has long been suggested to belong to liquid crystalline materials. However, a satisfactory liquid crystal description for the mechanical properties of the dragline is still missing. To solve the long existing problem, we generalized the Maier-Saupe theory of nematics to construct a liquid crystal model of the deformation mechanism of the dragline silk. We show that the remarkable elasticity of the dragline can be understood as the isotropic-nematic phase transition of the chain network with the beginning of the transition corresponding to the yield point. The calculated curve fits well with the measurements and the yield point is obtained self-consistently within our framework. The present theory can also qualitatively account for the drop of stress in supercontracted spider silk. All these comprehensive agreements between theory and experiments strongly indicate the dragline to belong to liquid crystal materials.

  20. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations.

    Science.gov (United States)

    Quevillon, Michael J; Whitmer, Jonathan K

    2018-01-02

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

  1. Les polymères auto-renforcés à cristaux liquides Self-Reinforcing Liquid-Crystal Polymers

    Directory of Open Access Journals (Sweden)

    Dorbon M.

    2006-11-01

    Full Text Available Les polymères auto-renforcés à cristaux liquides (PARCL sont des matériaux dont les molécules, des polymères organiques, sont susceptibles de s'auto-orienter les unes par rapport aux autres. Cette propriété leur confère des caractéristiques mécaniques proches de celles des acier: pour des poids plus faibles sans qu'il soit nécessaire d'avoir recours à des fibres renforçantes. Il existe deux types de PARCL: ceux pouvant s'orienter en solution, qualifiés de lyotropiques, et ceux pouvant s'orienter à l'état fondu, appelés thermotropiques. Des fibres en poly (p-phénylène térephtalamide PPT, PARCL de type lyotropique, sont disponibles commercialement et connaissent déjà de nombreuses applications. Les PARCL thermotropiques n'existent pas encore sur le marché mais sont porteurs de nombreux espoirs car ils sont susceptibles d'être moulés et donc de prendre les formes les plus diverses, ce qui n'est pas le cas de ceux de type lyotropique. Self-reinforcing liquid-crystal polymers are materials in which the molecules, i. e. organic polymers, are capable of orienting themselves in relation to one another. This property gives them mechanical characteristics close to those of steels yet of much less weight without having to use reinforcing fibers. There are two types of self-reinforcing liquid-crystal polymers: (i those capable of orienting themselves in solution, called Iyotropic, and (ii those capable of orienting themselves in a molten state, called thermotropic. Poly (p-phenylene terephthalamide fibers, self-reinforcing liquid-crystal polymers of the Iyotropic type, are commercially available and have already found numerous applications. Thermotropic self-reinforcing liquid-crystal polymers are not yet on the market but seem to be very promising because they are capable of being molded and hence of taking on a wide variety of shapes, which is not the case of those of the lyotropic type.

  2. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    Science.gov (United States)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  3. Thermodynamic properties of a liquid crystal carbosilane dendrimer

    Science.gov (United States)

    Samosudova, Ya. S.; Markin, A. V.; Smirnova, N. N.; Ogurtsov, T. G.; Boiko, N. I.; Shibaev, V. P.

    2016-11-01

    The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6-370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions C p ° ( T), H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) are calculated from the obtained experimental data for the region of T → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at T = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.

  4. A new polymer electrolyte based on a discotic liquid crystal triblock copolymer

    International Nuclear Information System (INIS)

    Stoeva, Zlatka; Lu, Zhibao; Ingram, Malcolm D.; Imrie, Corrie T.

    2013-01-01

    A discotic liquid crystal triblock copolymer consisting of a central main chain triphenylene-based liquid crystal block capped at both ends by blocks of poly(ethylene oxide) (PEO) (M W = 2000 g mol −1 ) has been doped with lithium perchlorate in an EO:Li 6:1 ratio. The polymer electrolyte exhibits a phase separated morphology consisting of a columnar hexagonal liquid crystal phase and PEO-rich regions. The polymer electrolyte forms self-supporting, solid-like films. The ionic conductivity on initial heating of the sample is very low below ca. 60 °C but increases rapidly above this temperature. This is attributed to the melting of crystalline PEO-rich regions. Crystallisation is suppressed on cooling, and subsequent heating cycles exhibit higher conductivities but still less than those measured for the corresponding lithium perchlorate complex in poly(ethylene glycol) (M W = 2000 g mol −1 ). Instead the triblock copolymer mimics the behaviour of high molecular weight poly(ethylene oxide) (M W = 300,000 g mol −1 ). This is attributed, in part, to the anchoring of the short PEG chains to the liquid crystal block which prevents their diffusion through the sample. Temperature and pressure variations in ion mobility indicate that the ion transport mechanism in the new material is closely related to that in the conventional PEO-based electrolyte, opening up the possibility of engineering enhanced conductivities in future

  5. NATO Advanced Study Institute on Advances in the Computer Simulations of Liquid Crystals

    CERN Document Server

    Zannoni, Claudio

    2000-01-01

    Computer simulations provide an essential set of tools for understanding the macroscopic properties of liquid crystals and of their phase transitions in terms of molecular models. While simulations of liquid crystals are based on the same general Monte Carlo and molecular dynamics techniques as are used for other fluids, they present a number of specific problems and peculiarities connected to the intrinsic properties of these mesophases. The field of computer simulations of anisotropic fluids is interdisciplinary and is evolving very rapidly. The present volume covers a variety of techniques and model systems, from lattices to hard particle and Gay-Berne to atomistic, for thermotropics, lyotropics, and some biologically interesting liquid crystals. Contributions are written by an excellent panel of international lecturers and provides a timely account of the techniques and problems in the field.

  6. Electrically switchable photonic liquid crystal devices for routing of a polarized light wave

    Science.gov (United States)

    Rushnova, Irina I.; Melnikova, Elena A.; Tolstik, Alexei L.; Muravsky, Alexander A.

    2018-04-01

    The new mode of LC alignment based on photoalignment AtA-2 azo dye where the refractive interface between orthogonal orientations of the LC director exists without voltage and disappeared or changed with critical voltage has been proposed. The technology to fabricate electrically controlled liquid crystal elements for spatial separation and switching of linearly polarized light beams on the basis of the total internal reflection effect has been significantly improved. Its distinctive feature is the application of a composite alignment material comprising two sublayers of Nylon-6 and AtA-2 photoalignment azo dye offering patterned liquid crystal director orientation with high alignment quality value q = 0 . 998. The fabricated electrically controlled spatially structured liquid crystal devices enable implementation of propagation directions separation for orthogonally polarized light beams and their switching with minimal crosstalk.

  7. Atomistic simulations of surfactant adsorption kinetics at interfaces

    Science.gov (United States)

    Iskrenova, Eugeniya; Patnaik, Soumya

    2014-03-01

    Heat transfer control and enhancement is an important and challenging problem in a variety of industrial and technological applications including aircraft thermal management. The role of additives in nucleate boiling and phase change in general has long been recognized and studied experimentally and modeled theoretically but in-depth description and atomistic understanding of the multiscale processes involved are still needed for better prediction and control of the heat transfer efficiency. Surfactant additives have been experimentally observed to either enhance or inhibit the boiling heat transfer depending on the surfactant concentration and chemistry and, on a molecular level, their addition leads to dynamic surface tension and changes in interfacial and transfer properties, thus contributing to the complexity of the problem. We present our atomistic modeling study of the interfacial adsorption kinetics of aqueous surfactant (sodium dodecyl sulfate) systems at a range of concentrations at room and boiling temperatures. Classical molecular dynamics and Umbrella Sampling simulations were used to study the surfactant transport properties and estimate the adsorption and desorption rates at liquid-vacuum and liquid-solid interfaces. The authors gratefully acknowledge funding from AFOSR Thermal Science Program and the Air Force Research Laboratory DoD Supercomputing Resource Center for computing time and resources.

  8. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    Science.gov (United States)

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  9. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Guzmán, Orlando [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, DF 09340, México (Mexico); Hernández-Ortiz, Juan P. [Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Pablo, Juan J. de, E-mail: depablo@uchicago.edu [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  10. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  11. Enhanced removal of radioactive particles by fluorocarbon surfactant solutions

    International Nuclear Information System (INIS)

    Kaiser, R.; Harling, O.K.

    1993-08-01

    The proposed research addressed the application of ESI's particle removal process to the non-destructive decontamination of nuclear equipment. The cleaning medium used in this process is a solution of a high molecular weight fluorocarbon surfactant in an inert perfluorinated liquid which results in enhanced particle removal. The perfluorinated liquids of interest, which are recycled in the process, are nontoxic, nonflammable, and environmentally compatible, and do not present a hazard to the ozone layer. The information obtained in the Phase 1 program indicated that the proposed ESI process is technically effective and economically attractive. The fluorocarbon surfactant solutions used as working media in the ESI process survived exposure of up to 10 Mrad doses of gamma rays, and are considered sufficiently radiation resistant for the proposed process. Ultrasonic cleaning in perfluorinated surfactant solutions was found to be an effective method of removing radioactive iron (Fe 59) oxide particles from contaminated test pieces. Radioactive particles suspended in the process liquids could be quantitatively removed by filtration through a 0.1 um membrane filter. Projected economics indicate a pre-tax pay back time of 1 month for a commercial scale system

  12. Smart window using a thermally and optically switchable liquid crystal cell

    Science.gov (United States)

    Oh, Seung-Won; Kim, Sang-Hyeok; Baek, Jong-Min; Yoon, Tae-Hoon

    2018-02-01

    Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.

  13. Liquid Photonic Crystals for Mesopore Detection.

    Science.gov (United States)

    Zhu, Biting; Fu, Qianqian; Chen, Ke; Ge, Jianping

    2018-01-02

    Nitrogen adsorption-desorption for mesopore characterization requires the using of expensive instrumentation, time-consuming processes, and the consumption of liquid nitrogen. Herein, a new method is developed to measure the pore parameters through mixing a mesoporous substance with a supersaturated SiO 2 colloidal solution at different temperatures, and subsequent rapid measurement of reflection changes of the precipitated liquid photonic crystals. The pore volumes and diameters of mesoporous silica were measured according to the positive correlation between unit mass reflection change (Δλ/m) and pore volume (V), and the negative correlation between average absorption temperature (T) and pore diameter (D). This new approach may provide an alternative method for fast, convenient and economical characterization of mesoporous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Prediction of EPR Spectra of Lyotropic Liquid Crystals using a Combination of Molecular Dynamics Simulations and the Model-Free Approach.

    Science.gov (United States)

    Prior, Christopher; Oganesyan, Vasily S

    2017-09-21

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Temperature-Frequency Converter Using a Liquid Crystal Cell as a Sensing Element

    Directory of Open Access Journals (Sweden)

    José Isidro Santos

    2012-03-01

    Full Text Available A new temperature-frequency converter based on the variation of the dielectric permittivity of the Liquid Crystal (LC material with temperature has been demonstrated. Unlike other temperature sensors based on liquid crystal processing optical signals for determining the temperature, this work presents a system that is able to sense temperature by using only electrical signals. The variation of the dielectric permittivity with temperature is used to modify the capacitance of a plain capacitor using a LC material as non-ideal dielectric. An electric oscillator with an output frequency depending on variable capacitance made of a twisted-nematic (TN liquid crystal (LC cell has been built. The output frequency is related to the temperature of LC cell through the equations associated to the oscillator circuit. The experimental results show excellent temperature sensitivity, with a variation of 0.40% of the initial frequency per degree Celsius in the temperature range from −6 °C to 110 °C.

  16. Molecular reorientation of dye doped nematic liquid crystals in the laser illumination

    International Nuclear Information System (INIS)

    San, S. E.; Koeysal, O.; Ecevit, F. N.

    2002-01-01

    In this study it is investigated how dye doped nematic liquid crystals reorient under the illumination of laser beam whose wavelength is appropriate to absorbance characteristics of the doping dye. Nematic liquid crystal E7 is used with anthraquinone dye 1% wt/wt in the preparation of the sample and this material is filled in homegenously aligned measurement cell having 15 μm thickness. Mechanism of molecular reorientation includes the absorbance effects of the energy of laser by doping dye and this reorientation causes the refractive index of the material to be changed. There are potential application possibilities of such molecular reorientation based effects in nonlinear optics such as real time holography whose basis is grating diffraction that is observed and investigated in the frame of fundamentals of molecule light interaction mechanisms. Experimental analyses allowed finding characteristic values of diffraction signals depending on physical parameters of set up for a dye doped liquid crystal system and this system provided a 20 % diffraction efficiency under the optimum circumstances

  17. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    Science.gov (United States)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  18. Liquid crystal-based hydrophone arrays

    Science.gov (United States)

    Brodzeli, Zourab; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir G.; Guo, Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.; Ladouceur, Francois

    2012-09-01

    We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

  19. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  20. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    Science.gov (United States)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  1. Evidence for several dipolar quasi-invariants in liquid crystals

    Science.gov (United States)

    Bonin, C. J.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    The quasi-equilibrium states of an observed quantum system involve as many constants of motion as the dimension of the operator basis which spans the blocks of all the degenerate eigenvalues of the Hamiltonian that drives the system dynamics, however, the possibility of observing such quasi-invariants in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several quasi-invariants, in the proton NMR of small spin clusters, like nematic liquid crystal molecules, in which the use of thermodynamic arguments is not justified. We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks, solids, and liquid crystals. We observe that the signals can be explained with two dipolar quasi-invariants only within a range of short preparation times, however at longer times liquid crystal signals show an echo-like behaviour whose description requires assuming more quasi-invariants. We study the multiple quantum coherence content of such signals on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Therefore, we show that the NMR signals within the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple quasi-invariants which we experimentally isolate.

  2. Effect of elastic constants of liquid crystals in their electro-optical properties

    Science.gov (United States)

    Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.

    Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.

  3. Stability of equilibrium states in finite samples of smectic C* liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W

    2005-01-01

    Equilibrium solutions for a sample of ferroelectric smectic C (SmC*) liquid crystal in the 'bookshelf' geometry under the influence of a tilted electric field will be presented. A linear stability criterion is identified and used to confirm stability for typical materials possessing either positive or negative dielectric anisotropy. The theoretical response times for perturbations to the equilibrium solutions are calculated numerically and found to be consistent with estimates for response times in ferroelectric smectic C liquid crystals reported elsewhere in the literature for non-tilted fields

  4. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    Science.gov (United States)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  5. Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guo J.

    2015-06-01

    Full Text Available Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.

  6. Controlling chirality with helix inversion in cholesteric liquid crystals

    NARCIS (Netherlands)

    Katsonis, Nathalie Hélène; Lacaze, E.; Ferrarini, A.

    2012-01-01

    The helical organization of cholesteric liquid crystals is omnipresent in living matter. Achieving control over the structure of the cholesteric helix consequently holds great potential for developing stimuli-responsive materials matching the level of sophistication of biological systems. In

  7. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes

    Science.gov (United States)

    Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.

    2016-05-01

    Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.

  8. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    Science.gov (United States)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  9. Growth Mechanism of Gold Nanorods in Binary Surfactant System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Mi; Seo, Sun-Hwa; Joe, Ara; Shim, Kyu-Dong; Jang, Eue-Soon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    In order to reveal the growth mechanism of gold nanorods (GNRs) in a binary surfactant system, we synthesized various GNRs by changing the concentration of the surfactants, AgNO{sub 3}, and HBr in the growth solution. We found that the benzyldime thylhexadecylammoniumchloride surfactant had weak interaction with the gold ions, but it could reduce the membrane fluidity. In addition, we could dramatically decrease the cetyltrimethylammonium bromide concentration required for GNR growth by adding an HBr solution. Notably, Ag{sup +} ions were necessary to break the symmetry of the seed crystals for GNR growth, but increasing the concentration of Ag{sup +} and Br{sup -} ions caused a decrease in the template size.

  10. Crystal habit prediction - Including the liquid as well as the solid side

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, C.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/ TVT, 06099 Halle (Saale) (Germany)

    2012-06-15

    Commercially available methods of morphology prediction utilize molecular dynamics to estimate the crystal growth rates but predominantly consider the solid side. For the extension of these methods to a multi-component solid-liquid system the diffusion coefficient is required. Since, the diffusion coefficient enables the calculation of crystal growth rates and the morphology in presence of additives and solvents. Modeling the diffusion coefficient is achieved by conducting MD on a system consisting of the crystal surface and the liquid phase. The achieved results match very well with the calculated diffusion coefficient (Wilke-Chang). In this case study benzoic acid is used as model substance with water as solvent. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Liquid gallium cooling of silicon crystals in high intensity photon beam

    International Nuclear Information System (INIS)

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.

    1988-11-01

    The high-brilliance, insertion-device-based, photon beams of the next generation of synchrotron sources will deliver large thermal loads (1 kW to 10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and new cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in uhv conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium cooled silicon diffraction crystals with water cooled crystals. 2 refs., 16 figs., 1 tab

  12. Geometric methods in the elastic theory of membranes in liquid crystal phases

    CERN Document Server

    Ji Xing Liu; Yu Zhang Xie

    1999-01-01

    This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic - A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations

  13. Stability of equilibrium states in finite samples of smectic C* liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, I W [Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH (United Kingdom)

    2005-03-04

    Equilibrium solutions for a sample of ferroelectric smectic C (SmC*) liquid crystal in the 'bookshelf' geometry under the influence of a tilted electric field will be presented. A linear stability criterion is identified and used to confirm stability for typical materials possessing either positive or negative dielectric anisotropy. The theoretical response times for perturbations to the equilibrium solutions are calculated numerically and found to be consistent with estimates for response times in ferroelectric smectic C liquid crystals reported elsewhere in the literature for non-tilted fields.

  14. Scanning conoscopy measurement of the optical properties of chiral smectic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bitri, N. [Laboratoire de Physique de la Matiere Molle Faculte des Sciences de Tunis, 2092 El Manar TUNIS (Tunisia); Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France)], E-mail: bitri@crpp-bordeaux.cnrs.fr; Gharbi, A. [Laboratoire de Physique de la Matiere Molle Faculte des Sciences de Tunis, 2092 El Manar TUNIS (Tunisia); Marcerou, J.P. [Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France)

    2008-11-30

    We report on a new scanning conoscopic method which, by rotating the sample and analyzing the ellipticity of transmitted light, provides an accurate tool to measure the temperature dependence of the two indices n{sub e}, n{sub o} and of the optical activity for uniaxial liquid crystals. Their determination is useful to give informations about the tilt angle {theta} and the macroscopic helicity in the different phases and then on the structures of the liquid crystal phases. We tested the method with the reference compound (99% S, 1% R)MHPOBC.

  15. HOLOGRAPHIC GRATING RECORDING IN “LYOTROPIC LIQUID CRYSTAL – VIOLOGEN” SYSTEM

    Directory of Open Access Journals (Sweden)

    Hanna Bordyuh

    2013-12-01

    Full Text Available This work presents the results of nonlinear optical experiment run on the samples of lyotropic liquid crystal (LLC with viologen admixtures. During the experiment we obtained dynamic grating recording on bilayered LLC-viologen samples and determined main characteristics of recoded gratings. It was found out that the recording takes place in a thin near-cathode coloured viologen layer. The analysis of kinetics of thermal gratings erasing showed that contribution of a thermal nonlinearity into general diffraction efficiency is negligible small. The last fact is connected with a separation of LLC-viologen samples under the action of an electric field and heat sink into the liquid crystal layer

  16. The mathematics of instabilities in smectic C liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.A

    2001-07-01

    The theoretical effects of applying a magnetic or electric field to samples of smectic A and smectic C{sup *} liquid crystals are studied in this thesis. In Chapter 2 general background material on liquid crystals is introduced as well as the continuum theory which we shall use in subsequent chapters. We consider a planar sample of ferroelectric smectic C{sup *} liquid crystal in Chapter 3, where an electric field is applied perpendicular to the smectic layers. In particular, we obtain an exact solution to a dynamic equation which governs director reorientation (within a sample which is bounded in the z direction) which appears in the literature. We then consider the linear stability of this solution by applying a perturbation, in both space and time, and examine its growth. In Chapter 4 we again consider the stability of a planar sample of ferroelectric smectic C{sup *} when an electric field is applied perpendicular to the smectic planes. However, unlike in Chapter 3, we derive the relevant governing equation. After having introduced the relevant theory, the linear and nonlinear stability of a constant equilibrium state in both finite and infinite domains is examined. We then obtain information upon the relaxation times for each of these cases. The relaxation time gives an indication of how quickly the director relaxes back to equilibrium. The dynamic equation which is derived in Chapter 4 is extended in Chapter 5 to include the effects of lilting the applied electric field. The equilibrium equation which we then obtain is not tractable explicitly due to the form of the sinusoidal nonlinearity which appears in it. We therefore solve a simplified approximating dynamic equation as well as the full sinusoidal nonlinearity case numerically. In both cases the linear stability of the equilibrium solution is examined. Finally, in Chapter 6 we consider the layer deformations in a cylindrical sample of smectic A liquid crystal when a magnetic field is applied across the

  17. The mathematics of instabilities in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Anderson, D.A.

    2001-01-01

    The theoretical effects of applying a magnetic or electric field to samples of smectic A and smectic C * liquid crystals are studied in this thesis. In Chapter 2 general background material on liquid crystals is introduced as well as the continuum theory which we shall use in subsequent chapters. We consider a planar sample of ferroelectric smectic C * liquid crystal in Chapter 3, where an electric field is applied perpendicular to the smectic layers. In particular, we obtain an exact solution to a dynamic equation which governs director reorientation (within a sample which is bounded in the z direction) which appears in the literature. We then consider the linear stability of this solution by applying a perturbation, in both space and time, and examine its growth. In Chapter 4 we again consider the stability of a planar sample of ferroelectric smectic C * when an electric field is applied perpendicular to the smectic planes. However, unlike in Chapter 3, we derive the relevant governing equation. After having introduced the relevant theory, the linear and nonlinear stability of a constant equilibrium state in both finite and infinite domains is examined. We then obtain information upon the relaxation times for each of these cases. The relaxation time gives an indication of how quickly the director relaxes back to equilibrium. The dynamic equation which is derived in Chapter 4 is extended in Chapter 5 to include the effects of lilting the applied electric field. The equilibrium equation which we then obtain is not tractable explicitly due to the form of the sinusoidal nonlinearity which appears in it. We therefore solve a simplified approximating dynamic equation as well as the full sinusoidal nonlinearity case numerically. In both cases the linear stability of the equilibrium solution is examined. Finally, in Chapter 6 we consider the layer deformations in a cylindrical sample of smectic A liquid crystal when a magnetic field is applied across the circular cross

  18. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    Cervantes-MartInez, Alfredo; Maldonado, Amir

    2007-01-01

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  19. Advances in chemical physics advances in liquid crystals

    CERN Document Server

    Prigogine, Ilya; Vij, Jagdish K

    2009-01-01

    Prigogine and Rice's highly acclaimed series, Advances in Chemical Physics, provides a forum for critical, authoritative reviews of current topics in every area of chemical physics. Edited by J.K. Vij, this volume focuses on recent advances in liquid crystals with significant, up-to-date chapters authored by internationally recognized researchers in the field.

  20. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  1. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.

    Science.gov (United States)

    Roach, L Spencer; Song, Helen; Ismagilov, Rustem F

    2005-02-01

    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require

  2. Ultrabroadband terahertz spectroscopy of a liquid crystal

    DEFF Research Database (Denmark)

    Vieweg, N.; Fischer, B. M.; Reuter, M.

    2012-01-01

    Liquid crystals (LCs) are becoming increasingly important for applications in the terahertz frequency range. A detailed understanding of the spectroscopic parameters of these materials over a broad frequency range is crucial in order to design customized LC mixtures for improved performance. We p...... show that the spectra are dominated by multiple strong spectral features mainly at frequencies above 4 THz, originating from intramolecular vibrational modes of the weakly LC molecules....

  3. Crystallization of glass-forming liquids: Specific surface energy

    International Nuclear Information System (INIS)

    Schmelzer, Jürn W. P.; Abyzov, Alexander S.

    2016-01-01

    A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbull relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.

  4. Angular dependences of the luminescence and density of photon states in a chiral liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Umanskii, B A; Blinov, L M; Palto, S P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation)

    2013-11-30

    Luminescence spectra of a laser dye-doped chiral liquid crystal have been studied in a wide range of angles (up to 60°) to the axis of its helical structure using a semicylindrical quartz prism, which made it possible to observe the shift and evolution of the photonic band gap in response to changes in angle. Using measured spectra and numerical simulation, we calculated the spectral distributions of the density of photon states in such a cholesteric crystal for polarised and unpolarised light, which characterise its structure as that of a chiral one-dimensional photonic crystal. (optics of liquid crystals)

  5. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  6. Electrically controlled liquid crystal fiber

    Science.gov (United States)

    Corella-Madueño, A.; Reyes, J. Adrián

    2006-08-01

    We consider a cylindrical fiber whose core is a liquid crystal (LC) subject to the action of a low frequency field applied parallel to the axis of the cylinder and having initially the escaped configuration. We find the distorted textures of the nematic inside the cylinder by assuming arbitrary anchoring boundary conditions. In the optical limit we calculate the ray trajectories followed by a low intensity beam along the fiber parametrized by a low frequency electric field. Finally, we calculate exactly the spatial dependence of the transverse magnetic modes distribution in the guide, on the electric field, by using a numerical scheme. We summarize our paper and discuss our results.

  7. Liquid crystal foil for the detection of breast cancer

    Science.gov (United States)

    Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk

    2016-09-01

    Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.

  8. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    Science.gov (United States)

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  9. Static and dynamic continuum theory liquid crystals a mathematical introduction

    CERN Document Server

    Stewart, Iain W

    2004-01-01

    Providing a rigorous, clear and accessible text for graduate students regardless of scientific background, this text introduces the basic continuum theory for nematic liquid crystals in equilibria, and details its various simple applications.

  10. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  11. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  12. Liquid crystal designs for high-contrast field sequential color liquid crystal on silicon (LCoS) microdisplays (Invited Paper)

    Science.gov (United States)

    Anderson, James; Chen, Cheng; Bos, Philip J.

    2005-04-01

    Single or dual panel microdisplay systems are becoming more popular in the marketplace. Consequently, Liquid Crystal on Silicon (LCoS) microdisplays are constantly being pushed to achieve faster switching times as well as higher contrast, while becoming simpler and allowing simpler optics engine design. Currently, most products use a Twisted Nematic (TN) mode with a retardation film. The most promising solution in research now is the Vertically Aligned Nematic (VAN) mode, which does not require a retarder.

  13. Neutron scattering studies of molecular conformations in liquid crystal polymers

    Science.gov (United States)

    Noirez, L.; Moussa, F.; Cotton, J. P.; Keller, P.; Pépy, G.

    1991-03-01

    A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.

  14. New methods of highly efficient controlled generation of radiation by liquid crystal nanostructures in a wide spectral range

    International Nuclear Information System (INIS)

    Bagayev, S N; Klementyev, V M; Nyushkov, B N; Pivtsov, V S; Trashkeev, S I

    2012-01-01

    We report the recent results of research focused on a new kind of soft matter-the liquid-crystal nanocomposites with controllable mechanical and nonlinear optical properties. These are promising media for implementation of ultra-compact photonic devices and efficient sources of coherent radiation in a wide spectral range. We overview the technology of preparation of nematic-liquid-crystal media saturated with disclination defects. The defects were formed in different ways: by embedding nanoparticles and molecular objects, by exposure to alpha-particle flux. The defect locations were controlled by applying an electric field. We also present and discuss the recently discovered features of nematic-liquid-crystal media: a thermal orientation effect leading to the fifth-order optical nonlinearity, enormous second-order susceptibility revealed by measurements, and structural changes upon exposure to laser radiation. We report on efficient generation of harmonics, sum and difference optical frequencies in nematic-liquid-crystal media. In addition, transformation of laser radiation spectra to spectral supercontinua, and filamentation of laser beams were also observed in nematic-liquid-crystal media. We conclude that most nonlinear optical effects result from changes of the orientational order in the examined nematic liquid crystals. These changes lead to the symmetry breaking and disclination appearances.

  15. Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display

    Science.gov (United States)

    Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.

    1999-07-01

    In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.

  16. Dynamics of topological solitons, knotted streamlines, and transport of cargo in liquid crystals

    Science.gov (United States)

    Sohn, Hayley R. O.; Ackerman, Paul J.; Boyle, Timothy J.; Sheetah, Ghadah H.; Fornberg, Bengt; Smalyukh, Ivan I.

    2018-05-01

    Active colloids and liquid crystals are capable of locally converting the macroscopically supplied energy into directional motion and promise a host of new applications, ranging from drug delivery to cargo transport at the mesoscale. Here we uncover how topological solitons in liquid crystals can locally transform electric energy to translational motion and allow for the transport of cargo along directions dependent on frequency of the applied electric field. By combining polarized optical video microscopy and numerical modeling that reproduces both the equilibrium structures of solitons and their temporal evolution in applied fields, we uncover the physical underpinnings behind this reconfigurable motion and study how it depends on the structure and topology of solitons. We show that, unexpectedly, the directional motion of solitons with and without the cargo arises mainly from the asymmetry in rotational dynamics of molecular ordering in liquid crystal rather than from the asymmetry of fluid flows, as in conventional active soft matter systems.

  17. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    Science.gov (United States)

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  18. Liquid-metal-cooled, curved-crystal monochromator for Advanced Photon Source bending-magnet beamline 1-BM

    International Nuclear Information System (INIS)

    Brauer, S.; Rodricks, B.; Assoufid, L.; Beno, M.A.; Knapp, G.S.

    1996-06-01

    The authors describe a horizontally focusing curved-crystal monochromator that invokes a 4-point bending scheme and a liquid-metal cooling bath. The device has been designed for dispersive diffraction and spectroscopy in the 5--20 keV range, with a predicted focal spot size of ≤ 100 microm. To minimize thermal distortions and thermal equilibration time, the 355 x 32 x 0.8 mm crystal will be nearly half submerged in a bath of Ga-In-Sn-Zn alloy. The liquid metal thermally couples the crystal to the water-cooled Cu frame, while permitting the required crystal bending. Calculated thermal profiles and anticipated focusing properties are discussed

  19. Light-emitting liquid-crystal displays constructed from AIE luminogens

    Science.gov (United States)

    Zhao, Dongyu; Qin, Anjun; Tang, Ben Zhong; Leung, Chris Wai Tung

    2014-10-01

    Liquid crystal displays (LCDs) are widely used for diverse purposes in many aspects in daily life from handle personal devices to professional applications and large-panel LCD televisions. Since LCD is a passive emission display device, it usually shows narrow viewing angle and reduced brightness. Nowadays, LCDs with light-emitting properties is suggested as a less energy consuming displays. To date, fluorescent materials with dichroic properties and strong fluorescence emission are required. However, many molecular emitters, which are highly efficient in solution, will suffer from heavy aggregation-caused quenching (ACQ) effect in the aggregate state, which has greatly limited their applications. In order to overcome these weaknesses, we have designed and synthesized a novel luminescent liquid crystalline compound consisting of a tetraphenylethene (TPE) core, TPE-PPE, as a luminogen with mesogenic moieties. As a result, the TPE-PPE exhibits both the aggregate-induced emission (AIE) and thermotropic liquid crystalline characteristics. By dissolving 1 weight% (wt%) of TPE-PPE into the nematic LC host PA0182, a linearly polarized emission was obtained on the unidirectional orientated LC cell. The photoluminescence polarization ratio of the LC cell has reached to 4.16 between the directions perpendicular and parallel to the rubbing direction. Utilizing the emissive anisotropic TPE-PPE, we have fabricated the photoluminescent liquid crystal display (PL-LCD). This approach has simplified the device design, lowered the energy consumption and increased brightness of the LCD.

  20. MICROBIAL SURFACTANTS. I. GLYCOLIPIDS

    Directory of Open Access Journals (Sweden)

    Pirog T. Р.

    2014-02-01

    Full Text Available The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates are summarized. It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.

  1. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  2. Two-Dimensional Spatial Solitons in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Zhong Weiping; Xie Ruihua; Goong Chen; Belic, Milivoj; Yang Zhengping

    2009-01-01

    We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Gaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.

  3. Surface dynamics and mechanics in liquid crystal polymer coatings

    NARCIS (Netherlands)

    Liu, D.; Broer, D.J.; Chien, L.-C.; Coles, H.J.; Kikuchi, H.; Smalyukh, I.I.

    2015-01-01

    Based on liquid crystal networks we developed 'smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that

  4. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  5. Angular selectivity asymmetry of holograms recorded in near infrared sensitive liquid crystal photopolymerizable materials

    Science.gov (United States)

    Harbour, Steven; Galstian, Tigran; Akopyan, Rafik; Galstyan, Artur

    2004-08-01

    We have experimentally observed and theoretically explained the angular selectivity asymmetry in polymer dispersed liquid crystal holograms. Experiments are conducted in compounds with near infrared sensitivity. The coupled-wave theory is used to describe the diffraction properties of obtained anisotropic holographic gratings. Furthermore, the comparison of theory and experiments provides information about the optical axis direction that is defined by the average molecular orientation of the liquid crystal in the polymer matrix.

  6. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals

    Science.gov (United States)

    Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-06-01

    Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.

  7. On Regularity Criteria for the Two-Dimensional Generalized Liquid Crystal Model

    Directory of Open Access Journals (Sweden)

    Yanan Wang

    2014-01-01

    Full Text Available We establish the regularity criteria for the two-dimensional generalized liquid crystal model. It turns out that the global existence results satisfy our regularity criteria naturally.

  8. Dynamics of cylindrical domain walls in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Wigham, E J

    2009-01-01

    An analysis of the dynamics of cylindrical domain walls in planar aligned samples of smectic C liquid crystals is presented. A circular magnetic field, induced by an electric current, drives a time-dependent reorientation of the corresponding radially dependent director field. Nonlinear approximations to the relevant nonlinear dynamic equation, derived from smectic continuum theory, are solved in a comoving coordinated frame: exact solutions are found for a π-wall and numerical solutions are calculated for π/2-walls. Each calculation begins with an assumed initial state for the director that is a prescribed cylindrical domain wall. Such an initial wall will proceed to expand or contract as its central core propagates radially inwards or outwards, depending on the boundary conditions for the director, the elastic constants, the magnitude of the field and the sign of the magnetic anisotropy of the liquid crystal

  9. A numerical method for eigenvalue problems in modeling liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Baglama, J.; Farrell, P.A.; Reichel, L.; Ruttan, A. [Kent State Univ., OH (United States); Calvetti, D. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1996-12-31

    Equilibrium configurations of liquid crystals in finite containments are minimizers of the thermodynamic free energy of the system. It is important to be able to track the equilibrium configurations as the temperature of the liquid crystals decreases. The path of the minimal energy configuration at bifurcation points can be computed from the null space of a large sparse symmetric matrix. We describe a new variant of the implicitly restarted Lanczos method that is well suited for the computation of extreme eigenvalues of a large sparse symmetric matrix, and we use this method to determine the desired null space. Our implicitly restarted Lanczos method determines adoptively a polynomial filter by using Leja shifts, and does not require factorization of the matrix. The storage requirement of the method is small, and this makes it attractive to use for the present application.

  10. Liquid crystal elastomer coatings with programmed response of surface profile

    NARCIS (Netherlands)

    Babakhanova, G.; Turiv, T.; Guo, Y.; Hendrikx, M.; Wei, Q.H.; Schenning, A.P.H.J.; Broer, D.J.; Lavrentovich, O.D.

    2018-01-01

    Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated

  11. Liquid crystal europium(III) β-diketonato complex with 5,5'-di(heptadecyl)-2,2'-bipyridine

    International Nuclear Information System (INIS)

    Knyazev, A.A.; Lobkov, V.S.; Galyametdinov, Yu.G.

    2004-01-01

    Liquid crystal europium(III) complex containing β-diketone and 5,5-di(heptadecyl)-2,2'-bipyridine as ligands was prepared in ethanol solution and was isolated as a yellow precipitate with 62% yield. The product was characterized by data of elementary analysis, thermography, IR spectroscopy and luminescence spectra. Temperatures of crystal-mesophase and mesophase-isotropic liquid phase transitions amount to 95 and 130 Deg C respectively [ru

  12. Theoretical study of the slow neutron coherent scattering by nemanic liquid crystals

    International Nuclear Information System (INIS)

    Sugakov, V.I.; Shiyanovskij, S.V.

    1982-01-01

    An exact expression is obtained for neutron coherent quasielastic scattering cross section in nematic liquid crystals. Expressions are analyzed or big and small values of scattering wave vector. In the first case scattering is occured on the separate molecules and the account of the molecule form noncylindricity is to be essential. In the second case an intermolecular correlations contribute greatly to cross sections. A connection is found for pair correlation function with fluctuation for density, dipole moment and order parameters. The performed cross section analysis allow to determine the significant microscopic parameters of the nematic liquid crystal from the experimental data of slow neutron scattering

  13. High-resolution bistable nematic liquid crystal device realized on orientational surface patterns

    International Nuclear Information System (INIS)

    Kim, Jong-Hyun; Yoneya, Makoto; Yokoyama, Hiroshi

    2003-01-01

    The four-fold symmetry of a checkerboard-like surface alignment consisted of square domains arrived at the macroscopic orientational bistability of nematic liquid crystals. Switching between the two orientations took place with an appropriate electric field. Here the threshold field of bistable switching decreased as temperature increased, and the light could heat only the selected region in the cell including a light-absorbing medium. Irradiating the laser concurrently with an electric field, we addressed a selected region in the alignment pattern without the disturbance of neighboring regions. Extending this process, we realized an extremely fine bistable device of nematic liquid crystal with a pixel size down to about 2 μm

  14. A finite element beam propagation method for simulation of liquid crystal devices.

    Science.gov (United States)

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  15. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Pérez-Gil, Jesús

    2014-06-01

    Pulmonary surfactant is an essential lipid-protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air-liquid interface to stabilise the lungs against physical forces operating along the compression-expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Preparation and properties of PMMA nanoparticles as 3 dimensional photonic crystals and its thin film via surfactant-free emulsion polymerization

    Science.gov (United States)

    Tahrin, Rabiatul Addawiyah Azwa; Azma, Nur Syafiqa; Kassim, Syara; Harun, Noor Aniza

    2017-09-01

    3-dimensional (3D) photonic crystals have been extended use in wide research and application from material to sensor. Nanoparticles of poly (methyl methacrylate) (PMMA) latex beads have been successfully prepared by green-chemistry approach where no surfactant, linking agent and solvent were involved. Regardless of the effect of initiator in polymerization reaction, this study presents the effect of temperature, monomer concentration, stirring speed and reaction period in order to tune the particle size. Its morphology of uniformity sized-tuned was confirming by using particle size analyzer (PSA) and scanning electron microscopy (SEM). The fabrication of 3D photonic crystals film by using self-assembly method to pattern the desired PMMA layers which is the most feasible, low cost method are also presented. The detailed properties of PMMA nanoparticles from this experimental study will be discussed and its potential used in photonic application will be explained.

  17. Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals

    International Nuclear Information System (INIS)

    Geng Yu; Sun Jiatong; Kwok Hoi Sing; Murauski Anatoli; Chigrinov Vladimir

    2012-01-01

    The effect of interaction between liquid crystal (LC) and photoalignment material on the speed of optical rewriting process is investigated. The theoretical analysis shows that a smaller frank elastic constant K 22 of liquid crystal corresponds to a larger twist angle, which gives rise to a larger rewriting speed. Six different LC cells with the same boundary conditions (one substrate is covered with rubbed polyimide (PI) and the other with photo sensitive rewritable sulfuric dye 1(SD1)) are tested experimentally under the same illumination intensity (450 nm, 80 mW/cm 2 ). The results demonstrate that with a suitable liquid crystal, the LC optical rewriting speed for e-paper application can be obviously improved. For two well known LC materials E7 (K 22 is larger) and 5CB (K 22 is smaller), they require 11 s and 6 s corresponding to change alignment direction for generating image information. (general)

  18. The liquid membrane for extraction of Yttrium and Dysprosium from Acid Nitric

    International Nuclear Information System (INIS)

    Johny, W.S.; Raldi-Artono-Koestoer; Kris-Tri-Basuki; Sudibyo

    1996-01-01

    The determination of surfactant in liquid membrane has been done. The surfactant is span-80 (sorbitol-monooleate), the liquid membrane phase was the organic phase (O), the internal liquid phase (W) with ratio O/W = 1, and surfactant. The organic phase using D 2 EHPA in the kerosene and the internal liquid phase using aqua des or acid nitric. The determination of surfactant with variation of span-80 (0,25 - 2%) in the liquid membrane volume. The speed of stirrer was 3500 rpm in 20 minute. The ratio of liquid membrane phase form and external phase (aqua des or acid nitric) was 1, the speed of stirrer was 350 rpm in 10 minute (permeation process). The liquid phase and the liquid membrane phase was separated and then determinated the volume of liquid membrane, the result of percentage of span-80 was 0,25 % volume. The extraction of yttrium and dysprosium in 2 M HNO 3 was Kd y = 2.945 and Kd D y = 0.019

  19. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    2007-01-01

    We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide...... array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response....

  20. Electromagnetic numerical characterization of the laser-induced liquid crystal lens by finite-difference time domain method

    International Nuclear Information System (INIS)

    Morisaki, T.; Ono, H.

    2005-01-01

    A laser-induced liquid-crystal lens is formed by large optical non-linearity and anisotropic complex refractive indices in guest-host liquid crystals. We obtained light wave propagation characteristics of the laser-induced LC lens. Three analytical methods were used to obtain light wave propagation characteristics. Analysis by 3-dimensional heat conduction was applied to determine the refractive index in the liquid-crystal layer. Another method used was to determine light wave propagation characteristics in the laser-induced lens by means of the finite-difference tune domain (FDTD) method and diffraction theory. In this study, we draw a parallel between the experimental results and FDTD. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  1. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  2. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  3. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim

    2012-01-01

    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  4. Controlling statics and dynamics of colloids by photo-patterned liquid crystals (Conference Presentation)

    Science.gov (United States)

    Lavrentovich, Oleg D.; Peng, Chenhui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo

    2016-09-01

    Transport of fluids and particles at the microscale is an important theme both in fundamental and applied science. We demonstrate how an advanced approach to photo-induced alignment of liquid crystals can be used to generate nonlinear electrokinetics. The photoalignment technique is based on irradiation of a photosensitive substrate with light through nanoaperture arrays in metal films. The resulting pattern of surface alignment induces predesigned 2D and 3D distortions of local molecular orientation. In presence of a static electric field, these distortions generate spatial charge and drive electrokinetic flows of the new type, in which the velocities depend on the square of the applied electric field. The patterned liquid crystal electrolyte converts the electric energy into the flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned liquid crystal electrolyte induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications.

  5. Nonlinear dynamics in experimental devices with compressed/expanded surfactant monolayers

    International Nuclear Information System (INIS)

    Higuera, M; Perales, J M; Vega, J M

    2014-01-01

    A theory is provided for a common experimental set up that is used to measure surface properties in surfactant monolayers. The set up consists of a surfactant monolayer (over a shallow liquid layer) that is compressed/expanded in a periodic fashion by moving in counter-phase two parallel, slightly immersed solid barriers, which vary the free surface area and thus the surfactant concentration. The simplest theory ignores the fluid dynamics in the bulk fluid, assuming spatially uniform surfactant concentration, which requires quite small forcing frequencies and provides reversible dynamics in the compression/expansion cycles. In this paper, we present a long-wave theory for not so slow oscillations that assumes local equilibrium but takes the fluid dynamics into account. This simple theory uncovers the physical mechanisms involved in the surfactant behavior and allows for extracting more information from each experimental run. The conclusion is that the fluid dynamics cannot be ignored, and that some irreversible dynamics could well have a fluid dynamic origin. (paper)

  6. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  7. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

    Science.gov (United States)

    Yang, Jun; Xia, Tianyu; Jing, Shuaicheng; Deng, Guangsheng; Lu, Hongbo; Fang, Yong; Yin, Zhiping

    2018-02-01

    We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

  8. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.

    Science.gov (United States)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Bos, Philip J

    2013-04-08

    A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

  9. Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.

    Science.gov (United States)

    Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A

    2017-07-05

    The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.

  10. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  11. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  12. Investigation of a polymer-dispersed liquid crystal system by NMR diffusometry and relaxometry

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingxue

    2013-02-26

    Polymer-dispersed liquid crystals (PDLCs) are polymer composites containing a dispersion of liquid crystal droplets in polymer networks. PDLCs have attracted much attention due to their unique properties and potential usage. The properties of PDLCs depend on the degree of phase separation and the size of liquid crystal droplets. To investigate the structure will help us to better understand and optimize PDLCs.The main aim of this PhD thesis was to investigate PDLCs by NMR techniques. Diffusion constants and spin-lattice relaxation times in the laboratory (T{sub 1}) and rotating frame (T{sub 1{rho}}) were measured for PDLCs as well as precursor mixtures based on the trifunctional monomer trimethylolpropane triacrylate (TMPTA) and the commercial nematic mixture E7. The variation of the main dipolar splitting of {sup 1}H spectra with increasing temperature was analyzed to obtain the nematic-to-isotropic phase transition temperature and the nematic order parameter of E7 and, for comparison, the nematic liquid crystal 5CB.Diffusion constants in TMPTA/E7 mixtures, measured by pulsed-field gradient NMR, increase for both E7 and TMPTA as the mass fraction of E7 increases, due to the lower viscosity of E7. E7 in the PDLC diffuses more slowly than in the bulk because of the hindrance by the polymer matrix. T{sub 1} and T{sub 1{rho}} relaxation times in the liquid or liquid-crystalline phases of TMPTA and bulk E7 are higher than in the PDLC and the pure polymer, due to the lower mobility in the polymer samples. T{sub 1{rho}} in the PDLC is even shorter than in the pure polymer, indicating an anti-softening effect caused by E7 molecules. In bulk E7, the well-ordered rod-like molecules exhibit a unique H-C dipolar coupling, which leads to oscillations in the cross-polarization curve. However, in the PDLC, the anchoring effect at the boundary between the polymer and LC droplets disturbs the molecular order resulting in a smooth cross polarization curve.

  13. Investigation of a polymer-dispersed liquid crystal system by NMR diffusometry and relaxometry

    International Nuclear Information System (INIS)

    Tang, Mingxue

    2013-01-01

    Polymer-dispersed liquid crystals (PDLCs) are polymer composites containing a dispersion of liquid crystal droplets in polymer networks. PDLCs have attracted much attention due to their unique properties and potential usage. The properties of PDLCs depend on the degree of phase separation and the size of liquid crystal droplets. To investigate the structure will help us to better understand and optimize PDLCs.The main aim of this PhD thesis was to investigate PDLCs by NMR techniques. Diffusion constants and spin-lattice relaxation times in the laboratory (T 1 ) and rotating frame (T 1ρ ) were measured for PDLCs as well as precursor mixtures based on the trifunctional monomer trimethylolpropane triacrylate (TMPTA) and the commercial nematic mixture E7. The variation of the main dipolar splitting of 1 H spectra with increasing temperature was analyzed to obtain the nematic-to-isotropic phase transition temperature and the nematic order parameter of E7 and, for comparison, the nematic liquid crystal 5CB.Diffusion constants in TMPTA/E7 mixtures, measured by pulsed-field gradient NMR, increase for both E7 and TMPTA as the mass fraction of E7 increases, due to the lower viscosity of E7. E7 in the PDLC diffuses more slowly than in the bulk because of the hindrance by the polymer matrix. T 1 and T 1ρ relaxation times in the liquid or liquid-crystalline phases of TMPTA and bulk E7 are higher than in the PDLC and the pure polymer, due to the lower mobility in the polymer samples. T 1ρ in the PDLC is even shorter than in the pure polymer, indicating an anti-softening effect caused by E7 molecules. In bulk E7, the well-ordered rod-like molecules exhibit a unique H-C dipolar coupling, which leads to oscillations in the cross-polarization curve. However, in the PDLC, the anchoring effect at the boundary between the polymer and LC droplets disturbs the molecular order resulting in a smooth cross polarization curve.

  14. Liquid-crystal laser optics: design, fabrication, and performance

    International Nuclear Information System (INIS)

    Jacobs, S.D.; Cerqua, K.A.; Marshall, K.L.; Schmid, A.; Guardalben, M.J.; Skerrett, K.J.

    1988-01-01

    We describe the development of laser optics utilizing liquid crystals. Devices discussed constitute passive optical elements for both low-power and high-power laser systems, operating in either the pulsed or cw mode. Designs and fabrication methods are given in detail for wave plates, circular polarizers, optical isolators, laser-blocking notch filters, and soft apertures. Performance data in the visible to near infrared show these devices to be useful alternatives to other technologies based on conventional glasses, crystals, or thin films. The issue of laser damage is examined on the basis of off-line threshold testing and daily use in OMEGA, the 24-beam Nd:glass laser system at the Laboratory for Laser Energetics. Results demonstrate that long-term survivability has been achieved

  15. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Agata Siarkowska

    2017-12-01

    Full Text Available Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs, 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic–isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  16. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    Science.gov (United States)

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  17. A roadmap to uranium ionic liquids: anti-crystal engineering.

    Science.gov (United States)

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber.

    Science.gov (United States)

    Rativa, Diego; Vohnsen, Brian

    2011-02-11

    We introduce a liquid-filled photonic crystal fiber to simulate a retinal cone photoreceptor mosaic and the directionality selective mechanism broadly known as the Stiles-Crawford effect. Experimental measurements are realized across the visible spectrum to study waveguide coupling and directionality at different managed waveguide parameters. The crystal fiber method is a hybrid tool between theory and a real biological sample and a valuable addition as a retina model for real eye simulations.

  19. Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yablonskii, S. V., E-mail: yablonskii2005@yandex.ru; Bondarchuk, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Soto-Bustamante, E. A.; Romero-Hasler, P. N. [Universidad de Chile (Chile); Ozaki, M. [Osaka University, Department of Electronic Engineering, Faculty of Engineering (Japan); Yoshino, K. [Shimane Institute for Industrial Technology (Japan)

    2015-04-15

    In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.

  20. Hydrocarbon-degrading bacteria isolation and surfactant influence ...

    African Journals Online (AJOL)

    Hydrocarbons are substantially insoluble in water, often remaining partitioned in the non-aqueous phase liquid (NAPL). However, there had been little or no attempts to advance the bioavailability of hydrocarbons through the use of surfactants. This study was conducted based on the need to isolate hydrocarbon degrading ...

  1. Nonlinear absorption of fullerene- and nanotubes-doped liquid crystal systems

    Czech Academy of Sciences Publication Activity Database

    Kamanina, N.; Reshak, Ali H; Vasiliev, P.Y.; Vangonen, A. I.; Studeonov, V. I.; Usanov, Y. E.; Ebothe, J.; Gondek, E.; Wojcik, W.; Danel, A.

    2009-01-01

    Roč. 41, č. 3 (2009), s. 391-394 ISSN 1386-9477 Institutional research plan: CEZ:AV0Z60870520 Keywords : nonlinear absorption properties * organic electrooptical systems * liquid crystal * fullerene s * nanotubes * PVK-derivatives Subject RIV: BO - Biophysics Impact factor: 1.177, year: 2009

  2. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    Science.gov (United States)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  3. Active shape-morphing elastomeric colloids in short-pitch cholesteric liquid crystals.

    Science.gov (United States)

    Evans, Julian S; Sun, Yaoran; Senyuk, Bohdan; Keller, Patrick; Pergamenshchik, Victor M; Lee, Taewoo; Smalyukh, Ivan I

    2013-05-03

    Active elastomeric liquid crystal particles with initial cylindrical shapes are obtained by means of soft lithography and polymerization in a strong magnetic field. Gold nanocrystals infiltrated into these particles mediate energy transfer from laser light to heat, so that the inherent coupling between the temperature-dependent order and shape allows for dynamic morphing of these particles and well-controlled stable shapes. Continuous changes of particle shapes are followed by their spontaneous realignment and transformations of director structures in the surrounding cholesteric host, as well as locomotion in the case of a nonreciprocal shape morphing. These findings bridge the fields of liquid crystal solids and active colloids, may enable shape-controlled self-assembly of adaptive composites and light-driven micromachines, and can be understood by employing simple symmetry considerations along with electrostatic analogies.

  4. Electrically tunable Fabry-Péerot resonator based on microstructured Si containing liquid crystal

    KAUST Repository

    Tolmachev, Vladimir A.; Melnikov, Vasily; Baldycheva, Anna V.; Berwick, Kevin; Perova, Tatiana S.

    2012-01-01

    We have built Fabry-Perot resonators based on microstructured silicon and a liquid crystal. The devices exhibit tuning of the resonance peaks over a wide range, with relative spectral shifts of up to Delta lambda/lambda = 10%. In order to achieve this substantial spectral shift, cavity peaks of high order were used. Under applied voltages of up to 15 V, a variation in the refractive index of the nematic liquid crystal E7 from Delta n(LC) = 0.12 to Delta n(LC) = 0.17 was observed. These results may have practical applications in the near-, mid and far-infrared range.

  5. Ultrasonic absorption and velocity dispersion of binary mixture liquid crystal MBBA/EBBA

    International Nuclear Information System (INIS)

    Choi, K.

    1979-01-01

    The effect of phase transitions and the partial magnetic alignment for liquid crystal molecules on the ultrasonic absorption and velocity dispersion has been investigated. The binary mixture of Shiff base liquid crystals MBBA/EBBA (55:45 mole %) showed anomalous ultrasonic absorption and velocity dispersion at eutectic (Tsub(m) = -20 0 C) and clearing point (Tsub(c) = 50 0 C) at the frequency range of 5 MHz, 10MHz, 15MHz and 30 MHz. The experimental data were analyzed in terms of relaxation time and Fixman theory. The anisotropy of the propagation velocity due to the magnetic alignment was about 0.9% (the deviation between velocities propagating parallel and perpendicular to the applied field). (author)

  6. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  7. Deuteron NMR resolved mesogen vs. crosslinker molecular order and reorientational exchange in liquid single crystal elastomers

    Czech Academy of Sciences Publication Activity Database

    Milavec, J.; Domenici, V.; Zupančič, B.; Rešetič, A.; Bubnov, Alexej; Zalar, B.

    2016-01-01

    Roč. 18, č. 5 (2016), s. 4071-4077 ISSN 1463-9076 R&D Projects: GA ČR GA15-02843S; GA MŠk(CZ) LD14007 Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : liquid single crystal elastomer * NMR * liquid crystal * molecular order * monomers Subject RIV: JJ - Other Materials Impact factor: 4.123, year: 2016

  8. Large Three-Dimensional Photonic Crystals Based on Monocrystalline Liquid Crystal Blue Phases (Postprint)

    Science.gov (United States)

    2017-09-28

    a pair of glass slides with plastic spacers to determine the cell gap: 100 and 300 μm for the polymer-free BPLCs and 12 μm for the polymer-stabilized...Nissan) and rubbed with cloth to induce uniform planar alignment. Measurements. Reflection and transmission spectra were taken using a spectro- meter...thermal recycles . Opt. Mater. Express 2, 1149–1155 (2012). 34. Onusseit, H. & Stegemeyer, H. Liquid single crystals of cholesteric blue phases. Z

  9. On a hyperbolic system arising in liquid crystals modeling

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Rocca, E.; Schimperna, G.; Zarnescu, A.

    2018-01-01

    Roč. 15, č. 1 (2018), s. 15-35 ISSN 0219-8916 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : dissipative solution * liquid crystal * weak-strong uniqueness Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.940, year: 2016 https://www.worldscientific.com/doi/abs/10.1142/S0219891618500029

  10. Characterization and quantitative analysis of surfactants in textile wastewater by liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    González, Susana; Petrović, Mira; Radetic, Maja; Jovancic, Petar; Ilic, Vesna; Barceló, Damià

    2008-05-01

    A method based on the application of ultra-performance liquid chromatography (UPLC) coupled to hybrid quadrupole-time-of-flight mass spectrometry (QqTOF-MS) with an electrospray (ESI) interface has been developed for the screening and confirmation of several anionic and non-ionic surfactants: linear alkylbenzenesulfonates (LAS), alkylsulfate (AS), alkylethersulfate (AES), dihexyl sulfosuccinate (DHSS), alcohol ethoxylates (AEOs), coconut diethanolamide (CDEA), nonylphenol ethoxylates (NPEOs), and their degradation products (nonylphenol carboxylate (NPEC), octylphenol carboxylate (OPEC), 4-nonylphenol (NP), 4-octylphenol (OP) and NPEO sulfate (NPEO-SO4). The developed methodology permits reliable quantification combined with a high accuracy confirmation based on the accurate mass of the (de)protonated molecules in the TOFMS mode. For further confirmation of the identity of the detected compounds the QqTOF mode was used. Accurate masses of product ions obtained by performing collision-induced dissociation (CID) of the (de)protonated molecules of parent compounds were matched with the ions obtained for a standard solution. The method was applied for the quantitative analysis and high accuracy confirmation of surfactants in complex mixtures in effluents from the textile industry. Positive identification of the target compounds was based on accurate mass measurement of the base peak, at least one product ion and the LC retention time of the analyte compared with that of a standard. The most frequently surfactants found in these textile effluents were NPEO and NPEO-SO4 in concentrations ranging from 0.93 to 5.68 mg/L for NPEO and 0.06 to 4.30 mg/L for NPEO-SO4. AEOs were also identified.

  11. Role of a non-ionic surfactant in direct electron transfer-type bioelectrocatalysis by fructose dehydrogenase

    International Nuclear Information System (INIS)

    Kawai, Shota; Yakushi, Toshiharu; Matsushita, Kazunobu; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji

    2015-01-01

    Highlights: • Addition of Triton ® X-100 (1%) completely quenches the FDH-catalyzed current at hydrophobic electrode, but causes only small competitive effect at hydrophilic electrode. • Quartz crystal microbalance measurements support the adsorption of FDH and Triton ® X-100 on both of the electrodes. • The surfactant forms a monolayer on the hydrophobic electrode and FDH adsorbs on the surfactant monolayer. • The surfactant forms a bilayer on the hydrophilic electrode and FDH is embedded in the bilayer to communicate with the electrode. - ABSTRACT: A heterotrimeric membrane-bound fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260 contains FAD in subunit I and three heme C moieties in subunit II as the redox centers, and is one of the direct electron transfer (DET)-type redox enzymes. FDH-catalyzed current density of fructose oxidation at hydrophilic mercaptoethanol (MEtOH)-modified Au electrode is much larger than that at hydrophobic mercaptoethane (MEtn)-modified Au electrode. Addition of a non-ionic surfactant Triton ® X-100 (1%) completely quenches the catalytic current at the MEtn-modified Au electrode, while only small competitive effect is observed at the MEtOH-modified Au electrode. Quartz crystal microbalance measurements support the adsorption of FDH and Triton ® X-100 on both of the modified electrodes. We propose a model to explain the phenomenon as follows. The surfactant forms a monolayer on the hydrophobic MEtn-modified electrode with strong hydrophobic interaction, and FDH adsorbs on the surface of the surfactant monolayer. The monolayer inhibits the electron transfer from FDH to the electrode. On the other hand, the surfactant forms a bilayer on the hydrophilic MEtOH-modified electrode. The interaction between the surfactant bilayer and the hydrophilic electrode is relatively weak so that FDH replaces the surfactant and is embedded in the bilayer to communicate electrochemically with the hydrophilic electrode

  12. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Science.gov (United States)

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  13. Free-surface entrainment into a rimming flow containing surfactants

    Science.gov (United States)

    Thoroddsen, S. T.; Tan, Y.-K.

    2004-02-01

    We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.

  14. Numerical study of liquid crystal elastomers by a mixed finite element method

    KAUST Repository

    LUO, C.

    2011-08-22

    Liquid crystal elastomers present features not found in ordinary elastic materials, such as semi-soft elasticity and the related stripe domain phenomenon. In this paper, the two-dimensional Bladon-Terentjev-Warner model and the one-constant Oseen-Frank energy expression are combined to study the liquid crystal elastomer. We also impose two material constraints, the incompressibility of the elastomer and the unit director norm of the liquid crystal. We prove existence of minimiser of the energy for the proposed model. Next we formulate the discrete model, and also prove that it possesses a minimiser of the energy. The inf-sup values of the discrete linearised system are then related to the smallest singular values of certain matrices. Next the existence and uniqueness of the Lagrange multipliers associated with the two material constraints are proved under the assumption that the inf-sup conditions hold. Finally numerical simulations of the clamped-pulling experiment are presented for elastomer samples with aspect ratio 1 or 3. The semi-soft elasticity is successfully recovered in both cases. The stripe domain phenomenon, however, is not observed, which might be due to the relative coarse mesh employed in the numerical experiment. Possible improvements are discussed that might lead to the recovery of the stripe domain phenomenon. © Copyright Cambridge University Press 2011.

  15. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    Science.gov (United States)

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  16. Applicability of geometrical optics to in-plane liquid-crystal configurations

    NARCIS (Netherlands)

    Sluijter, M.; Xu, M.; Urbach, H.P.; De Boer, D.K.G.

    2010-01-01

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices no=1.5 and ne=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations

  17. A review of shampoo surfactant technology: consumer benefits, raw materials and recent developments.

    Science.gov (United States)

    Cornwell, P A

    2018-02-01

    Surfactants form the core of all shampoo formulations, and contribute to a wide range of different benefits, including cleansing, foaming, rheology control, skin mildness and the deposition of benefit agents to the hair and scalp. The purpose of this review was to assist the design of effective, modern, shampoo surfactant technologies. The mechanisms through which surfactants help deliver their effects are presented, along with the appraisal techniques through which surfactant options can be tested and screened for product development. The steps that should be taken to select the most appropriate blend of surfactants are described, and useful information on the most widely used surfactants is provided. The review concludes with an examination of recent developments in 'greener' surfactants, 'sulphate-free' technologies and structured liquid phases for novel sensory properties and for suspending benefit agents. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Optics of Confined Liquid Crystals for Gas Detection

    Science.gov (United States)

    Charles, William; Carrozzi, Daniel; Vigilia, Lee Anne; Wang, Xiaoyurui; Guzman, Violet; Shibayev, Petr; Fordham University Students of Undergraduate Physics Team

    Cholesteric liquid crystals (CLCs) of a wide range of viscosities were studied experimentally in relation to their use as gas sensors and sensors of volatile organic compounds (VOCs), specifically ethanol, cyclohexane, toluene, acetic acid, and pyridine. CLCs were obtained by mixing low molar mass liquid crystals (MBBA and cholesterol derivatives with siloxane based oligomers). The droplets of CLCs were placed in containers with controlled atmospheres. The shift of the selective reflection band, predominantly from shorter to longer wavelengths, and the color changes were observed in the CLC illuminated by light coming from the various directions. Visible optical changes were observed in droplets with viscosities of CLCs ranging from c.a. 4 Pa*s to 105 Pa*s. The most responsive droplets in which the shift of the selective reflection band occurs at lower concentrations of VOCs were prepared from CLC mixtures with the lowest viscosities. Higher viscosities of CLCs lead to a slower response to VOCs, but the rate of response is different for each pair of VOC and CLC with a certain viscosity. This finding opens a possibility for selective detection of VOCs by CLCs with different viscosities. The mechanism of VOCs diffusion, interaction with CLC matrix and optical changes is discusse

  19. Surfactant-enhanced recovery of dissolved hydrocarbons at petroleum production facilities

    International Nuclear Information System (INIS)

    Freeman, J.T.; Mayes, M.; Wassmuth, F.; Taylor, K.; Rae, W.; Kuipers, F.

    1997-01-01

    The feasibility and cost effectiveness of surfactant-enhanced pumping to reduce source concentrations of petroleum hydrocarbons from contaminated soils was discussed. Light non-aqueous phase liquids (LNAPL) hydrocarbons are present beneath many petroleum production processing facilities in western Canada. Complete removal of LNAPLs from geologic materials is difficult and expensive. Treatment technologies include costly ex-situ methods such as excavation and in-situ methods such as physical extraction by soil venting and pumping, bioremediation, and combination methods such as bioventing, bioslurping or air sparging. Surfactant-aided pumping can reduce source hydrocarbon concentrations when used in conjunction with traditional pump and treat, or deep well injection. This study involved the selection of an appropriate surfactant from a wide variety of commercially available products. A site contaminated by hydrocarbons in Turner Valley, Alberta, was used for field scale testing. One of the major problems was quantifying the increase in the dissolved hydrocarbon concentrations in the recovered water once a surfactant was added. From the 30 surfactants screened in a series of washing and oil solubilization tests, two surfactants, Brij 97 and Tween 80, were selected for further evaluation. Increased hydrocarbon recovery was observed within 10 days of the introduction of the first surfactant. 2 refs., 7 figs

  20. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  1. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  2. Respiratory Mechanics and Gas Exchange: The Effect of Surfactants

    Science.gov (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    The purpose of the lung is to exchange gases, primarily oxygen and carbon dioxide, between the atmosphere and the circulatory system. To enable this exchange, the airways in the lungs terminate in some 300 million alveoli that provide adequate surface area for transport. During breathing, work must be done to stretch various tissues to accommodate a greater volume of gas. Considerable work must also be done to expand the liquid lining (hypophase) that coats the interior surfaces of the alveoli. This is enabled by a surface active lipo-protein complex, known as pulmonary surfactant, that modifies the surface tension at the hypophase-air interface. Surfactants also serve as physical barriers that modify the rate of gas transfer across interfaces. We develop a mathematical model to study the action of pulmonary surfactant and its determinative contributions to breathing. The model is used to explore the influence of surfactants on alveolar mechanics and on gas exchange: it relates the work of respiration at the level of the alveolus to the gas exchange rate through the changing influence of pulmonary surfactant over the breathing cycle. This work is motivated by a need to develop improved surfactant replacement therapies to treat serious medical conditions.

  3. Effect of Surfactants on the Deformation and Detachment of Oil Droplets in a Model Laminar Flow Cell

    Directory of Open Access Journals (Sweden)

    Fréville V.

    2013-10-01

    Full Text Available Sugar-based surfactants are increasingly present in the development of eco-friendly detergents due to current regulations and consumer demand. In order to assess the degreasing performance of these new surfactants, the behavior of model oil droplets subjected to the action of a flow of surfactant solutions of different concentrations was studied in a laminar flow cell and related to the physico-chemical properties measured at the liquid/liquid (interfacial tension and solid/liquid/liquid interfaces (contact angle. With the surfactant solutions and the model oils employed in this study, three main behaviors were observed when a critical flow rate was reached: elongation, fragmentation or spontaneous detachment of the droplet. The analysis of the results leads to a correlation between the droplet behavior and the balance of the forces applied on the droplet in its initial position, in particular the gravity force Fg, which tends to move the oil droplet upwards (given the density difference, and the capillary force Fc, which tends to keep the droplet spherical. A state diagram could be established, based on the dimensionless Bond number (Fg/Fc and cosθ, θ being the initial contact angle of the drop on the surface before the establishment of the flow. One can thus predict the droplet behavior as a function of the system initial characteristics. The results allowed the comparison of degreasing performance of the different surfactants used and illustrated the potential of AlkylPolyPentosides (APP for detergent formulations.

  4. Validation of high-performance liquid chromatographic method for analysis of fluconazole in microemulsions and liquid crystals

    Directory of Open Access Journals (Sweden)

    Hilris Rocha e Silva

    2014-04-01

    Full Text Available In recent decades, there has been a significant increase in the incidence of fungal diseases. Certain fungal diseases cause cutaneous lesions and in the usual treatment, generally administred orally, the drug reaches the site of action with difficulty and its concentration is too low. An approach much explored in recent years is the development of nanotechnology-based drug delivery systems, and microemulsions (ME and liquid crystals (LC are promising. ME and LC were developed with oleic acid or copaiba oil as the oil phase, propoxyl (5OP ethoxyl (20 OE cetyl alcohol as surfactant and water. An analytical method to assess the incorporation of fluconazole (FLU in the systems under study was validated according to guidelines of the International Conference on Harmonization (ICH guidelines and the Brazilian Food, Drug and Sanitation Agency (ANVISA. The method was conducted on a C18-RP column (250 × 4.6 mm i.d., maintained at room temperature. The mobile phase consisted of acetonitrile and water (50:50, v/v, run at a flow rate of 1.0mL/min and using ultraviolet detection at 210nm. The chromatographic separation was obtained with a retention time of 6.3min, and was linear in the range of 20-400 µg/mL (r2=0.9999. The specificity showed no interference of the excipients. The accuracy was 100.76%. The limits of detection and quantitation were 0.057 and 0.172 µg.mL-1, respectively. Moreover, method validation demonstrated satisfactory results for precision and robustness. The proposed method was applied for the analysis of the incorporation of FLU in ME and LC, contributing to improve the quality control and to assure the therapeutic efficacy.

  5. Extraction and Characterization of Surfactants from Atmospheric Aerosols.

    Science.gov (United States)

    Nozière, Barbara; Gérard, Violaine; Baduel, Christine; Ferronato, Corinne

    2017-04-21

    Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed.

  6. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    Science.gov (United States)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  7. Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density

    Science.gov (United States)

    Hu, Xianpeng; Liu, Qiao

    2018-04-01

    In this paper, we investigate the global existence and uniqueness of solution to the 3D inhomogeneous incompressible nematic liquid crystal flows with variable density in the framework of Besov spaces. It is proved that there exists a global and unique solution to the nematic liquid crystal flows if the initial data (ρ0 - 1 ,u0 ,n0 -e3) ∈ M (B˙p,1 3/p - 1 (R3)) × B˙p,1 3/p - 1 (R3) × B˙p,1 3/p (R3) with 1 ≤ p < 6, and satisfies

  8. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine

    2016-01-01

    and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition......We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  9. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Infra-Red Gas Analysers of Liquid Crystal Type for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2004-01-01

    Full Text Available The paper reveals an opportunity to use infra-red gas analysers on the basis of the developed dichroic liquid crystal cells for investigation of absorption bands of various gases in the near infrared spectral region.

  11. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    Science.gov (United States)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  12. Variation along liquid isomorphs of the driving force for crystallization

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Adrjanowicz, Karolina; Niss, Kristine

    2017-01-01

    at a reference temperature. More general analysis allows interpretation of experimental data for molecular liquids such as dimethyl phthalate and indomethacin, and suggests that the isomorph scaling exponent γ in these cases is an increasing function of density, although this cannot be seen in measurements......We investigate the variation of the driving force for crystallization of a supercooled liquid along isomorphs, curves along which structure and dynamics are invariant. The variation is weak, and can be predicted accurately for the Lennard-Jones fluid using a recently developed formalism and data...

  13. Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range

    Science.gov (United States)

    Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin

    2013-12-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.

  14. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.

    Science.gov (United States)

    Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes

    2018-04-03

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.

  15. Formulation of electroclinic, ferroelectric and antiferroelectric liquid crystal mixtures suitable for display devices

    Science.gov (United States)

    Debnath, Asim; Goswami, Debarghya; Mandal, Pradip Kumar

    2018-04-01

    Most of the liquid crystal display (LCD) devices starting from simplest wrist watches or calculators to complex laptops or flat TV sets are based on nematics. Although a tremendous improvement in the quality of display as well as reduction of manufacturing cost has taken place over the years, there are many issues which the LC industry is trying hard to address. Ferroelectric liquid crystals (FLC) are of current interest in the LCD industry since among various other advantages FLC based displays have micro-second order switching compared to milli-second order switching in nematic based displays. To meet the market demand much effort has been made to optimize the physical parameters of FLCs, such as temperature range, spontaneous polarization (PS), helical pitch (p), switching time (τ), tilt angle (θ) and rotational viscosity (γ). Multicomponent mixtures are, therefore, formulated to optimize all the required properties for practical applications since no single FLC compound can satisfy the above requirements. To the best of our knowledge electroclinic, ferroelectric and antiferroelectric liquid crystal mixtures have been formulated first time by any Indian group which have properties suitable for FLC based display devices and at par with mixtures used in the industry.

  16. Effects of monoclinic symmetry on the properties of biaxial liquid crystals

    Science.gov (United States)

    Solodkov, Nikita V.; Nagaraj, Mamatha; Jones, J. Cliff

    2018-04-01

    Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

  17. Metric approach for sound propagation in nematic liquid crystals

    Science.gov (United States)

    Pereira, E.; Fumeron, S.; Moraes, F.

    2013-02-01

    In the eikonal approach, we describe sound propagation near topological defects of nematic liquid crystals as geodesics of a non-Euclidian manifold endowed with an effective metric tensor. The relation between the acoustics of the medium and this geometrical description is given by Fermat's principle. We calculate the ray trajectories and propose a diffraction experiment to retrieve information about the elastic constants.

  18. Crystallization from microemulsions ? a novel method for the preparation of new crystal forms of aspartame

    Science.gov (United States)

    Füredi-Milhofer, Helga; Garti, N.; Kamyshny, A.

    1999-03-01

    Solubilization and crystallization of the artificial sweetener aspartame (APM), in water/isooctane microemulsions stabilized with sodium diisooctyl sulfosuccinate (AOT) has been investigated. The amount of aspartame that could be solubilized depended primarily on the amount of surfactant and on the temperature. The maximum AOT/aspartame molar ratio at the w/o interface is shown to be 6.2 at 25°C. It was concluded that the dipeptide is located at the w/o interface interspersed between surfactant molecules and that it acts as a cosurfactant. A new crystal form, APM III, was obtained by cooling of hot w/isooctane/AOT microemulsions containing solubilized aspartame. The new crystal form exhibits a distinct X-ray diffraction powder pattern, as well as changes in the FTIR spectra, thermogravimetric and DSC patterns. H-NMR spectra of APM III dissolved in D 2O were identical to the spectrum of commercial aspartame recorded under the same conditions. The new crystal form has greatly improved dissolution kinetics.

  19. Optical security devices using nonuniform schlieren texture of UV-curable nematic liquid crystal.

    Science.gov (United States)

    Nakayama, Keizo; Ohtsubo, Junji

    2016-02-10

    We proposed and quantitatively evaluated an optical security device that provides nonuniform or random patterns of schlieren texture in nematic liquid crystal as unique identification information with a design by employing computer image processing and normalized cross correlation. Using the same photomask as the first author's university logo, the written patterns, which were composed of polymerized isotropic areas and polymerized nematic areas, were stable among different cells. Judging from the maximum correlation coefficient of 0.09, the patterns of the schlieren texture were unique in different cells. These results indicate that photocurable nematic liquid crystal materials have the potential to be applied to security devices for anticounterfeiting measures.

  20. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    International Nuclear Information System (INIS)

    Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A.

    2006-01-01

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results

  1. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, A. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia)]. E-mail: asma_abderrahmen@yahoo.fr; Romdhane, F.F. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ben Ouada, H. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia); Gharbi, A. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia)

    2006-03-15

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results.

  2. Optical Manipulation of Shape-Morphing Elastomeric Liquid Crystal Microparticles Doped with Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. R.; Evans, J. S.; Lee, T.; Senyuk, B.; Keller, P.; He, S. L.; Smalyukh, I. I.

    2012-06-11

    We demonstrate facile optical manipulation of shape of birefringent colloidal microparticles made from liquid crystal elastomers. Using soft lithography and polymerization, we fabricate elastomeric microcylinders with weakly undulating director oriented on average along their long axes. These particles are infiltrated with gold nanospheres acting as heat transducers that allow for an efficient localized transfer of heat from a focused infrared laser beam to a submicrometer region within a microparticle. Photothermal control of ordering in the liquid crystal elastomer using scanned beams allows for a robust control of colloidal particles, enabling both reversible and irreversible changes of shape. Possible applications include optomechanics, microfluidics, and reconfigurable colloidal composites with shape-dependent self-assembly.

  3. Confinement effects on strongly polar alkylcyanobiphenyl liquid crystals probed by dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leys, Jan; Glorieux, Christ; Thoen, Jan [Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D-bus 2416, B-3001 Leuven (Belgium)], E-mail: jan.leys@fys.kuleuven.be, E-mail: jan.thoen@fys.kuleuven.be

    2008-06-18

    Dielectric spectroscopy has often been used to study confinement effects in alkylcyanobiphenyl liquid crystals. In this paper, we highlight some of the effects that have been discovered previously and add new data and interpretation. Aerosil nanoparticles form a hydrogen bonded random porous network. In dispersions of alkylcyanobiphenyls with aerosils, an additional slow process arises, that we ascribe to the relaxation of liquid crystal molecules in close interaction with these nanoparticles. Their relaxation is retarded by a hydrogen bond interaction between the cyano group of the liquid crystals and an aerosil surface hydroxyl group. A similar surface process is also observed in Vycor porous glass, a random rigid structure with small pores. A comparison of the temperature dependence of the relaxation times of the surface processes in decylcyanobiphenyl and isopentylcyanobiphenyl is made, both for Vycor and aerosil confinement. In decylcyanobiphenyl, the temperature dependence for the bulk and surface processes is Arrhenius (in a limited temperature range above the melting point), except in Vycor, where it is a Vogel-Fulcher-Tamman dependence (over a much broader temperature range). In bulk and confined isopentylcyanobiphenyl, the molecular processes have a Vogel-Fulcher-Tamman dependence, whereas the surface processes have an Arrhenius one. Another effect is the acceleration of the rotation around the short molecular axis in confinement, and particularly in aerosil dispersions. This is a consequence of the disorder introduced in the liquid crystalline phase. The disorder drives the relaxation time towards a more isotropic value, resulting in an acceleration for the short axis rotation.

  4. Decontamination by cleaning with fluorocarbon surfactant solutions

    International Nuclear Information System (INIS)

    Kaiser, R.; Benson, C.E.; Meyers, E.S.; Vaughen, V.C.A.

    1994-02-01

    In the nuclear industry, facilities and their components inevitably become contaminated with radioactive materials. This report documents the application of a novel particle-removal process developed by Entropic Systems, Inc. (ESI), to decontaminate critical instruments and parts that are contaminated with small radioactive particles that adhere to equipment surfaces. The tests were performed as a cooperative effort between ESI and the Chemical Technology Division of the Oak Ridge National Laboratory (ORNL). ESI developed a new, environmentally compatible process to remove small particles from solid surfaces that is more effective than spraying or sonicating with CFC-113. This process uses inert perfluorinated liquids as working media; the liquids have zero ozone-depleting potential, are nontoxic and nonflammnable, and are generally recognized as nonhazardous materials. In the ESI process, parts to be cleaned are first sprayed or sonicated with a dilute solution of a high-molecular-weight fluorocarbon surfactant in an inert perfluorinated liquid to effect particle removal. The parts are then rinsed with the perfluorinated liquid to remove the fluorocarbon surfactant applied in the first step, and the residual rinse liquid is then evaporated from the parts into an air or nitrogen stream from which it is recovered. Nuclear contamination is inherently a surface phenomenon. The presence of radioactive particles is responsible for all ''smearable'' contamination and, if the radioactive particles are small enough, for some of the fixed contamination. Because radioactivity does not influence the physical chemistry of particle adhesion, the ESI process should be just as effective in removing radioactive particles as it is in removing nonradioactive particles

  5. Hydrogen Surfactant Effect on ZnO/GaN Heterostructures Growth

    Science.gov (United States)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi

    To grow high quality heterostructures based on ZnO and GaN, growth conditions that favor the layer by layer (Frank-Van der Merwe) growth mode have to be applied. However, if A wets B, B would not wet A without special treatments. A famous example is the epitaxial growth of Si/Ge/Si heterostructure with the help of arsenic surfactant in the late 1980s. It has been confirmed by the previous experiments and our calculations that poor crystal quality and 3D growth mode were obtained when GaN grown on ZnO polar surfaces while high quality ZnO was achieved on (0001) and (000-1)-oriented GaN. During the standard OMVPE growth processes, hydrogen is a common impurity and hydrogen-involved surface reconstructions have been well investigated experimentally and theoretically elsewhere. Due to the above facts, we proposed key growth strategies by using hydrogen as a surfactant to achieve ideal growth mode for GaN on ZnO (000-1) surface. This novel strategy may for the first time make the growth of high quality GaN single crystal on ZnO substrate possible. This surfactant effect is expected to largely improve the crystal quality and the efficiency of ZnO/GaN super lattices or other heterostructure devices. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 and 3132748 at CUHK.

  6. A roadmap to uranium ionic liquids: Anti-crystal engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yaprak, Damla; Spielberg, Eike T.; Baecker, Tobias; Richter, Mark; Mallick, Bert [Inorganic Chemistry III, Ruhr-University Bochum (Germany); Klein, Axel [Institut fuer Anorganische Chemie, Koeln Univ. (Germany); Mudring, Anja-Verena [Inorganic Chemistry III, Ruhr-University Bochum (Germany); Materials Science and Engineering, Iowa State University and Critical Materials Institute, Ames Laboratory, Ames, IA (United States)

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C{sub 4}mim) cation. As dithiocarbamate ligands binding to the UO{sub 2}{sup 2+} unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. A roadmap to uranium ionic liquids: Anti-crystal engineering

    International Nuclear Information System (INIS)

    Yaprak, Damla; Spielberg, Eike T.; Baecker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-01-01

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C_4mim) cation. As dithiocarbamate ligands binding to the UO_2"2"+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Self-Assembling, Stable Photonic Bend-Gap Phases in Emulsions of Chiral Nematics with Isotropic Fluids

    Science.gov (United States)

    Huang, Chien-Yueh; Petschek, R. G.

    1998-03-01

    We investigate the possible mesophases in emulsions of chiral nematic liquid crystals with immiscible isotropic fluids and surfactants. The interactions between the orientational fields of the chiral nematics and the surfactant membranes together with the topological constraints affect stability of micellar geometries and produce a new phase diagram. We compare the free energies of various candidate phases. Appropriate, likely realizable conditions on the surfactant and the pitch of the liquid crystal result in thermodynamically stable blue-phase like phases for a relatively wide range of parameters. Processing such emulsions may result in materials with photonic band gaps.

  9. Ionic Liquid as Surfactant Agent of Hydrotalcite: Influence on the Final Properties of Polycaprolactone Matrix

    Directory of Open Access Journals (Sweden)

    Luanda Chaves Lins

    2018-01-01

    Full Text Available This paper reports the surface treatment of layered double hydroxide (LDH by using ionic liquid (IL composed of phosphonium cation combined with 2-ethylhexanoate (EHT counter anion as surfactant agent. Then, different amounts (1, 3, 5 and 7 wt % of thermally stable organically modified LDH (up to 350 °C denoted LDH-EHT were incorporated into polycaprolactone (PCL matrix by mechanical milling. The influence of LDH-EHT loading has been investigated on the physical properties, such as the thermal and barrier properties, as well as the morphologies of the resulting nanocomposites. Thus, intercalated or microcomposite morphologies were obtained depending on the LDH-EHT loading, leading to significant reduction of the diffusion coefficient respect to water vapor. The modulation of barrier properties, using low functionalized filler amount, is a very important aspect for materials in packaging applications.

  10. Enhancing the Drag Reduction Phenomenon within a Rotating Disk Apparatus Using Polymer-Surfactant Additives

    Directory of Open Access Journals (Sweden)

    Musaab K. Rashed

    2016-12-01

    Full Text Available Pipelines and tubes play important roles in transporting economic liquids, such as water, petroleum derivatives, and crude oil. However, turbulence reduces the initial flow rate at which liquids are pumped, thereby making liquid transportation through pipelines inefficient. This study focuses on enhancing the drag reduction (DR phenomenon within a rotating disk apparatus (RDA using polymer-surfactant additives. The complex mixture of polyisobutylene (PIB and sodium dioctyl sulfosuccinate (SDS was used. These materials were tested individually and as a complex mixture in RDA at various concentrations and rotational speeds (rpm. The morphology of this complex was investigated using transmission electronic microscopy (TEM. The reduction of the degradation level caused by the continuous circulation of surfactant additives in RDA could improve the long-term DR level. Experimental result shows that the maximum %DR of the complex mixture was 21.455% at 3000 rpm, while the PIB and SDS were 19.197% and 8.03%, respectively. Therefore, the complex mixture had better performance than these substances alone and were highly dependent on the alkyl chain of the surfactant.

  11. Measurement of the Jones matrix of liquid crystal displays using a common path interferometer

    International Nuclear Information System (INIS)

    Sarkadi, Tamás; Koppa, Pál

    2011-01-01

    We propose a robust interferometric method to measure the Jones matrix of polarization components, especially liquid crystal displays. Phase values are measured by a simple common path interferometer containing a birefringent crystal as beam splitter and a polarizer as beam combiner. This solution eliminates the sensitivity of traditional interferometric techniques to vibration, temperature variation or wavefront distortion. The proposed phase measurement method is applicable to the measurement of both spatially homogeneous and binary modulated states, thus the modulation transfer function and inter-pixel interference can also be studied. We demonstrate this technique by the measurement of a liquid crystal on silicon display. The resulting Jones matrix, as a function of displayed gray level, can be efficiently embedded in any numeric model of an optical system containing the analyzed spatial light modulator

  12. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Preidel, V., E-mail: veit.preidel@helmholtz-berlin.de; Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Division Renewable Energy, Kekuléstr. 5, 12489 Berlin (Germany)

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  13. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, U. B.; Pandey, M. B., E-mail: mbpandey@gmail.com [Department of Physics, Vikramajit Singh Sanatan Dharama College, Kanpur-208002 (India); Dhar, R; Pandey, A. S. [Centre of Material Sciences, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad-211002 (India); Kumar, S. [Raman Research Institute, C. V. Raman Avenue, Bangalore-560080 (India); Dabrowski, R. [Institute of Applied Sciences and Chemistry, Military University of Technology, 00-908-Warswa (Poland)

    2014-11-15

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature.

  14. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    International Nuclear Information System (INIS)

    Singh, U. B.; Pandey, M. B.; Dhar, R; Pandey, A. S.; Kumar, S.; Dabrowski, R.

    2014-01-01

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature

  15. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    Science.gov (United States)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  16. Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Orava, J., E-mail: jo316@cam.ac.uk [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Greer, A.L., E-mail: alg13@cam.ac.uk [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2015-03-10

    Highlights: • Study of ultra-fast DSC applied to the crystallization of glass-forming liquids. • Numerical modeling of DSC traces at heating rates exceeding 10 orders of magnitude. • Identification of three regimes in Kissinger plots. • Elucidation of the effect of liquid fragility on the Kissinger method. • Modeling to study the regime in which crystal growth is thermodynamically limited. - Abstract: Numerical simulation of DSC traces is used to study the validity and limitations of the Kissinger method for determining the temperature dependence of the crystal-growth rate on continuous heating of glasses from the glass transition to the melting temperature. A particular interest is to use the wide range of heating rates accessible with ultra-fast DSC to study systems such as the chalcogenide Ge{sub 2}Sb{sub 2}Te{sub 5} for which fast crystallization is of practical interest in phase-change memory. Kissinger plots are found to show three regimes: (i) at low heating rates the plot is straight, (ii) at medium heating rates the plot is curved as expected from the liquid fragility, and (iii) at the highest heating rates the crystallization rate is thermodynamically limited, and the plot has curvature of the opposite sign. The relative importance of these regimes is identified for different glass-forming systems, considered in terms of the liquid fragility and the reduced glass-transition temperature. The extraction of quantitative information on fundamental crystallization kinetics from Kissinger plots is discussed.

  17. Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry

    International Nuclear Information System (INIS)

    Orava, J.; Greer, A.L.

    2015-01-01

    Highlights: • Study of ultra-fast DSC applied to the crystallization of glass-forming liquids. • Numerical modeling of DSC traces at heating rates exceeding 10 orders of magnitude. • Identification of three regimes in Kissinger plots. • Elucidation of the effect of liquid fragility on the Kissinger method. • Modeling to study the regime in which crystal growth is thermodynamically limited. - Abstract: Numerical simulation of DSC traces is used to study the validity and limitations of the Kissinger method for determining the temperature dependence of the crystal-growth rate on continuous heating of glasses from the glass transition to the melting temperature. A particular interest is to use the wide range of heating rates accessible with ultra-fast DSC to study systems such as the chalcogenide Ge 2 Sb 2 Te 5 for which fast crystallization is of practical interest in phase-change memory. Kissinger plots are found to show three regimes: (i) at low heating rates the plot is straight, (ii) at medium heating rates the plot is curved as expected from the liquid fragility, and (iii) at the highest heating rates the crystallization rate is thermodynamically limited, and the plot has curvature of the opposite sign. The relative importance of these regimes is identified for different glass-forming systems, considered in terms of the liquid fragility and the reduced glass-transition temperature. The extraction of quantitative information on fundamental crystallization kinetics from Kissinger plots is discussed

  18. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic-analysis/asy1348

  19. Chiral HPLC and physical characterisation of orthoconic antiferroelectric liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Vojtylová, Terézia; Żurowska, M.; Milewska, K.; Hamplová, Věra; Sýkora, D.

    2016-01-01

    Roč. 43, č. 9 (2016), s. 1244-1250 ISSN 0267-8292 R&D Projects: GA MŠk(CZ) LD14007; GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : liquid crystals * chiral HPLC * orthoconic antiferroelectric LC Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.661, year: 2016

  20. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic- analysis /asy1348