WorldWideScience

Sample records for surfactant hydrocarbon chains

  1. Hydrocarbon chain conformation in an intercalated surfactant monolayer and bilayer

    Indian Academy of Sciences (India)

    N V Venkataraman; S Vasudevan

    2001-10-01

    Cetyl trimethyl ammonium (CTA) ions have been confined within galleries of layered CdPS3 at two different grafting densities. Low grafting densities are obtained on direct intercalation of CTA ions into CdPS3 to give Cd0.93PS3(CTA)0.14. Intercalation occurs with a lattice expansion of 4.8 Å with the interlamellar surfactant ion lying flat forming a monolayer. Intercalation at higher grafting densities was effected by a two-step ion-exchange process to give Cd0.83PS3(CTA)0.34, with a lattice expansion of 26.5 Å. At higher grafting densities the interlamellar surfactant ions adopt a tilted bilayer structure. 13C NMR and orientation-dependent IR vibrational spectroscopy on single crystals have been used to probe the conformation and orientation of the methylene ‘tail’ of the intercalated surfactant in the two phases. In the monolayer phase, the confined methylene chain adopts an essentially all-trans conformation with most of the trans chain aligned parallel to the gallery walls. On lowering the temperature, molecular plane aligns parallel, so that the methylene chain lies flat, rigid and aligned to the confining surface. In the bilayer phase, most bonds in the methylene chain are in trans conformation. It is possible to identify specific conformational sequences containing a gauche bond, in the interior and termini of the intercalated methylene. These high energy conformers disappear on cooling leaving all fifteen methylene units of the intercalated cetyl trimethyl ammonium ion in trans conformational registry at 40 K.

  2. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  3. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  4. In situ Fourier transform-infrared internal reflection spectroscopic analysis of hydrocarbon chain ordering of surfactants adsorbed at mineral oxide surfaces

    Science.gov (United States)

    Cross, William Murray

    The adsorption of surfactants at mineral oxide surfaces was investigated by in situ Fourier transform infrared internal reflection spectroscopy (FT-IR/IRS), and contact angle goniometry. FT-IR/IRS was used to determine both adsorption isotherms and the enthalpy of adsorption. Furthermore, the conformation and orientation of the hydrocarbon chain of SDS adsorbed at a sapphire internal reflection element (IRE) were determined. Contact angle goniometry was used to measure the effect of the surface phase of the surfactant on the hydrophobic character of sapphire surfaces in aqueous solutions. For SDS adsorbed by sapphire, in situ FT-IR/IRS experiments indicate that a surface phase transition occurs at an adsorption density of 2 to 3 x 10-10 mol/cm2 for both pD 2.9 and 6.9. This transition is characterized by a two to four wavenumber shift in the position of the asymmetric -CH2 stretching band. Based on solution spectroscopy studies, the surface phase was found to be similar to solution phase micelles and liquid crystals for adsorption densities less than the adsorption density of the surface phase transition. Whereas for adsorption densities in excess of the adsorption density of the surface phase transition, the surface phase resembled a solution phase coagel species. It was also found that the contact angle of an air bubble at the sapphire surface exhibited a sharp decrease at the adsorption density corresponding to the surface phase transition The effect of temperature on adsorption and phase behavior of SDS at the sapphire IRE surface was also determined. It was shown that a surface phase transition similar to that discussed occurred at approximately 298 K. The adsorption reaction was found to be exothermic, with a heat of adsorption of --1.3 kcal/mole for adsorption densities less than the adsorption density of the surface phase transition at 298 K and --4.1 kcal/mole for adsorption densities greater than the adsorption density of the surface phase transition

  5. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  6. Synthesis and Solution Properties of Adamantane Containing Quaternary Ammonium Salt-type Cationic Surfactants: Hydrocarbon-based, Fluorocarbonbased and Bola-type.

    Science.gov (United States)

    Yoshimura, Tomokazu; Okada, Mari; Matsuoka, Keisuke

    2016-10-01

    Quaternary ammonium salt-type cationic surfactants with an adamantyl group (hydrocarbon-type; CnAdAB, fluorocarbon-type; Cm(F)C3AdAB, bola-type; Ad-s-Ad, where n, m and s represent hydrocarbon chain lengths of 8-16, fluorocarbon chain lengths of 4-8, and spacer chain length of 10-12) were synthesized via quaternization of N, N-dimethylaminoadamantane and n-alkyl bromide or 1, n-dibromoalkane. Conductivity and surface tension were measured to characterize the solution properties of the synthesized adamantyl group-containing cationic surfactants. In addition, the effects of hydrocarbon and fluorocarbon chain lengths and spacer chain length between headgroups on the measured properties were evaluated by comparison with those of conventional cationic surfactants. The critical micelle concentration (CMC) of CnAdAB and Ad-s-Ad was 2/5 of that for the corresponding conventional surfactants CnTAB and bola-type surfactants with similar number of carbons in the alkyl or alkylene chain; this was because of the increased hydrophobicity due to the adamantyl group. A linear relationship between the logarithm of CMC and the hydrocarbon chain length for CnAdAB was observed, as well as for CnTAB. The slope of the linear correlation for both surfactants was almost the same, indicating that the adamantyl group does not affect the CMC with variations in the hydrocarbon chain length. Similar to conventional surfactants CnTAB, the hydrocarbon-type CnAdAB is highly efficient in reducing the surface tension of water, despite the large occupied area per molecule resulting from the relatively bulky structure of the adamantane skeleton. On the other hand, the bola-type Ad-s-Ad resulted in increased surface tension compared to CnAdAB, indicating that the curved chain between adamantyl groups leads to poor adsorption and orientation at the air-water interface.

  7. Nonionic surfactants with linear and branched hydrocarbon tails: compositional analysis, phase behavior, and film properties in bicontinuous microemulsions.

    Science.gov (United States)

    Frank, Christian; Frielinghaus, Henrich; Allgaier, Jürgen; Prast, Hartmut

    2007-06-05

    Nonionic alcohol ethoxylates are widely used as surfactants in many different applications. They are available in a large number of structural varieties as technical grade products. This variety is mainly based on the use of different alcohols, which can be linear or branched and contain primary, secondary, or tertiary OH groups. Technical grade products are poorly defined as they are composed of alcohol mixtures being different in chain length and structure. On the other hand, monodisperse alcohol ethoxylates are commercially available; however, these surfactants exist only with primary and linear alcohols. In the field of microemulsion research the monodisperse alcohol ethoxylates are widely used. The phase behavior and film properties of these surfactants were studied intensively with respect to the size of the hydrophilic and hydrophobic moieties. Due to the lack of appropriate model surfactants until now, there is little information on how the structure of the hydrocarbon tail influences the microemulsion behavior. To examine structural influences, we synthesized a series of surfactants with the composition C10E5 and having different linear and branched hydrocarbon tails. The surfactants were monodisperse with respect to the hydrocarbon tail but polydisperse with respect to the ethoxylation degree. However, a detailed characterization showed that they were similar concerning the average ethoxylation degree and EO chain length distribution. The phase behavior was investigated for bicontinuous microemulsions, and the film properties were analyzed by small-angle neutron scattering (SANS). Our results show that the structure of the hydrocarbon tail strongly influences the microemulsion behavior. The most efficient surfactant is obtained if the hydrocarbon tail is linear and the hydrophilic group is attached in the C-1 position. Surfactants having the hydrophilic group bound to the C-2 or C-4 position or which contain a branched hydrocarbon tail are less efficient

  8. Modeling transport effects of perfluorinated and hydrocarbon surfactants in groundwater by using micellar liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Rashad N. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States); McGuffin, Victoria L. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States)], E-mail: jgshabus@aol.com

    2007-11-05

    The effects of hydrocarbon and perfluorinated surfactants, above their critical micelle concentration (CMC), on the transport of neutral environmental pollutants are compared. Reversed-phase micellar liquid chromatography is used to model the groundwater system. The octadecylsilica stationary phase serves to simulate soil particles containing organic matter, whereas the aqueous surfactant mobile phases serve to simulate groundwater containing a surfactant at varying concentrations. Sodium dodecyl sulfate and lithium perfluorooctane sulfonate are used as representatives of the hydrocarbon and perfluorinated surfactants, respectively. Benzene, mono- and perhalogenated benzenes, and polycyclic aromatic hydrocarbons are used as models for environmental pollutants. Transport effects were elucidated from the retention factor, k, and the equilibrium constant per micelle, K{sub eq}, of the model pollutants in the individual surfactants. Based on k values, the transport of the model pollutants increased in both surfactant solutions in comparison to pure water. As the concentration of the surfactants increased, the transport of the pollutants increased as well. Notably, the K{sub eq} values of the pollutants in the perfluorinated surfactant were at least an order of magnitude less than those in the hydrocarbon surfactant. Overall, these results suggest that the presence of a perfluorinated surfactant, above its CMC, increases the transport of pollutants in a groundwater system. However, the perfluorinated surfactant exhibits a lesser transport effect than the hydrocarbon surfactant.

  9. The ability of single-chain surfactants to emulsify an aqueous-based liquid crystal oscillates with odd-even parity of alkyl-chain length.

    Science.gov (United States)

    Varghese, Nisha; Shetye, Gauri S; Yang, Sijie; Wilkens, Stephan; Smith, Robert P; Luk, Yan-Yeung

    2013-12-15

    The physical properties of many organic molecules often oscillate when the number of carbons in their aliphatic chains changes from odd to even. This odd-even effect for single-chain surfactants in solution is rarely observed. Here, we report the ability of single-chain surfactants to emulsify a class of non-amphiphilic organic salts, disodium cromoglycate (5'DSCG) oscillates as a function of the odd or even number of the aliphatic carbons. This system provides a water-in-oil-in-water emulsion, in which aqueous droplets of 5'DSCG in liquid crystal phases are coated with single-chain surfactants in a bulk carrying aqueous solution. For both surfactants of [Formula: see text] and CH3(CH2)nCOO(-)Na(+), the ability to emulsify 5'DSCG molecules in water is stronger for surfactants with an odd number of sp(3)-hybridized carbon atoms in the aliphatic chains than those with an even number. This observed odd-even effect is consistent with the notion that conventional micelles possess a core of randomly arranged surfactant hydrocarbon tails. However, this water-in-oil-in-water resembles a vesicle system in which the surfactants assemble in a highly ordered structure that separates two aqueous systems. These new self-assembled phases have potential application in the formulation and design of new organic soft materials.

  10. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants.

    OpenAIRE

    Tiehm, A

    1994-01-01

    The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation wa...

  11. Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons (PAH) biodegradation

    OpenAIRE

    A. C. Rodrigues; Nogueira, R; Melo, L. F.; A. G. Brito

    2013-01-01

    The present study is focused on the effect of synthetic surfactants, at low concentration, on the kinetics of polycyclic aromatic hydrocarbons (PAH) biodegradation by Pseudomonas putida ATCC 17514 and addresses the specific issue of the effect of the surfactant on bacterial adhesion to PAH, which is believed to be an important mechanism for the uptake of hydrophobic compounds. For that purpose, three surfactants were tested, namely, the nonionic Tween 20, the anionic sodium dodecyl sulphate (...

  12. Enhanced aqueous solubility of polycyclic aromatic hydrocarbons by green diester-linked cationic gemini surfactants and their binary solutions

    Science.gov (United States)

    Panda, Manorama; Fatma, Nazish; Kabir-ud-Din

    2016-07-01

    Three homologues of a novel biodegradable diester-linked cationic gemini surfactant series, CmH2m+1 (CH3)2N+(CH2COOCH2)2N+(CH3)2CmH2m+1.2Cl- (m-E2-m; m = 12, 14, 16), were used for investigation of the solubilization of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, anthracene and pyrene in single as well as binary surfactant solutions. Physicochemical parameters of the pure/mixed systems were derived by conductivity and surface tension measurements. Dissolution capacity of the equimolar binary surfactant solutions towards the PAHs was studied from the molar solubilization ratio (MSR), micelle-water partition coefficient (Km) and free energy of solubilization (ΔGs0) of the solubilizates. Influence of hydrophobic chain length of the dimeric surfactants on solubilization was characterized. Aqueous solubility of the PAHs was enhanced linearly with concentration of the surfactant in all the pure and mixed gemini-gemini surfactant systems.

  13. Removal of petroleum aromatic hydrocarbons by surfactant-modified natural zeolite: the effect of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Torabian, Ali; Seifi, Laleh; Bidhendi, Gholamreza Nabi; Azimi, Ali Akbar [Faculty of the Environment, University of Tehran (Iran); Kazemian, Hossein [SPAG Zeolite R and D Group, Technology Incubation Centre, Science and Technology Park of Tehran University, Tehran (Iran); Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario (Canada); Ghadiri, Seid Kamal [Department of Environmental Health Engineering, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran (Iran)

    2010-01-15

    Monoaromatic hydrocarbons including benzene, toluene, ethylbenzene and xylene isomers (BTEX) are a very important category of water pollutants. These volatile compounds are very hazardous because of their fast migration in soil and water bodies and their acute and chronic toxicities when inhaled or ingested, especially benzene which is a known carcinogenic molecule. In this study, a natural zeolite (i. e., clinoptilolite-rich tuffs) was modified by two cationic surfactants (i. e., hexadecyltrimethyl ammonium chloride (HDTMA-Cl), and N-cetylpyridinium bromide (CPB)). The prepared adsorbents were then characterized, and their adsorptive capabilities for BTEX examined at different experimental conditions. The results of adsorption tests at 24 h revealed that the adsorption capacity of the modified zeolites improved by increasing the surfactant loading (i. e., less than the critical micelle concentration (CMC), to higher than the CMC), which caused an increase in sorption capacity from 60 to 70% for HDTMA-modified samples, and from 47 to 99% for CPB-modified zeolite. Adsorption kinetic tests showed the optimum contact time was 48 h with an average BTEX removal of 90 and 93% for HDTMA-modified and CPB-modified zeolite, respectively. Results showed that by increasing of pH from 3 to 11, the sorption capacity of the adsorbent decreased markedly from 97 to 75%. Analyzing the influence of temperature showed that the adsorption efficiency of adsorbents for benzene reduced from 93% at 20 C to 10% at 4 C. However, the influence of temperature on other compounds was not remarkable. Overall, CPB-modified zeolite exhibited higher selectivity toward BTEX compounds at optimum experimental conditions. Although commercial powder activated carbon (PAC) showed a higher capacity for all BTEX compounds and faster adsorption kinetics, the adsorption capacity of the CPB-modified zeolite at optimized conditions was competitive with PAC results. (Abstract Copyright [2010], Wiley Periodicals

  14. A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling

    NARCIS (Netherlands)

    Banerjee, S.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    Surfactants soluble in liquid CO2 are rare and knowledge on interfacial and self-assembly behaviour is fragmented. We found that polyoxyethylene (5) isooctylphenyl ether is interfacially active at the water–liquid CO2 interface. Water–liquid CO2 interfacial tension was measured at various surfactant

  15. CHARMM36 united atom chain model for lipids and surfactants.

    Science.gov (United States)

    Lee, Sarah; Tran, Alan; Allsopp, Matthew; Lim, Joseph B; Hénin, Jérôme; Klauda, Jeffery B

    2014-01-16

    Molecular simulations of lipids and surfactants require accurate parameters to reproduce and predict experimental properties. Previously, a united atom (UA) chain model was developed for the CHARMM27/27r lipids (Hénin, J., et al. J. Phys. Chem. B. 2008, 112, 7008-7015) but suffers from the flaw that bilayer simulations using the model require an imposed surface area ensemble, which limits its use to pure bilayer systems. A UA-chain model has been developed based on the CHARMM36 (C36) all-atom lipid parameters, termed C36-UA, and agreed well with bulk, lipid membrane, and micelle formation of a surfactant. Molecular dynamics (MD) simulations of alkanes (heptane and pentadecane) were used to test the validity of C36-UA on density, heat of vaporization, and liquid self-diffusion constants. Then, simulations using C36-UA resulted in accurate properties (surface area per lipid, X-ray and neutron form factors, and chain order parameters) of various saturated- and unsaturated-chain bilayers. When mixed with the all-atom cholesterol model and tested with a series of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol mixtures, the C36-UA model performed well. Simulations of self-assembly of a surfactant (dodecylphosphocholine, DPC) using C36-UA suggest an aggregation number of 53 ± 11 DPC molecules at 0.45 M of DPC, which agrees well with experimental estimates. Therefore, the C36-UA force field offers a useful alternative to the all-atom C36 lipid force field by requiring less computational cost while still maintaining the same level of accuracy, which may prove useful for large systems with proteins.

  16. Heat evolution of micelle formation, dependence of enthalpy, and heat capacity on the surfactant chain length and head group.

    Science.gov (United States)

    Opatowski, Ella; Kozlov, Michael M; Pinchuk, Ilya; Lichtenberg, Dov

    2002-02-15

    Micelle formation by many surfactants is endothermic at low temperatures but exothermic at high temperatures. In this respect, dissociation of micelles (demicellization) is similar to dissolving hydrocarbons in water. However, a remarkable difference between the two processes is that dissolving hydrocarbons is isocaloric at about 25 degrees C, almost independently of the hydrocarbon chain length, whereas the temperature (T*) at which demicellization of different surfactants is athermal varies over a relatively large range. We have investigated the temperature dependence of the heat of demicellization of three alkylglucosides with hydrocarbon chains of 7, 8, and 9 carbon atoms. At about 25 degrees C, the heat of demicellization of the three studied alkylglucosides varied within a relatively small range (DeltaH=-7.8+/-0.4 kJ/mol). The temperature dependence of DeltaH(demic) indicates that within the studied temperature range the heat capacity of demicellization (DeltaC(P,demic)) is about constant. The value of DeltaC(P,demic) exhibited an apparently linear dependence on the surfactant's chain length (DeltaC(P,demic)/n(CH(2))=47+/-7 kJ/mol K). Our interpretation of these results is that (i) the transfer of the head groups from micelles to water is exothermic and (ii) the temperature dependence of the heat associated with water-hydrocarbon interactions is only slightly affected by the head group. This implies that the deviation of the value of T* from 25 degrees C results from the contribution of the polar head to the overall heat of demicellization. Calorimetric studies of other series of amphiphiles will have to be conducted to test whether the latter conclusion is general.

  17. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.

    Science.gov (United States)

    Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

    2012-06-26

    We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by

  18. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    Directory of Open Access Journals (Sweden)

    Roza Bouchal

    2016-02-01

    Full Text Available Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC, and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK, critical micelle concentration (CMC, minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH° were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.

  19. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants.

    Science.gov (United States)

    Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy

    2016-02-06

    Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of ¹H and (13)C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.

  20. Hydrocarbon recovery comprising injecting a slug comprising oil soluble alkoxylated surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; DaGue, M.G.; Dunn, N.G.

    1993-07-27

    A method is described of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of oil soluble surfactants produced from lignin, said oil soluble surfactants produced by placing lignin in contact with water, converting the lignin into relatively low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen, said reduction occurring at a temperature greater than about 200 C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reaction mixture, alkoxylating the lignin phenols by reacting the lignin phenols with an a-olefin epoxide having about 6 to about 20 carbon atoms at about 100 to about 200 C for about 1 to about 3 hours in an organic solvent, and changing the alkoxylated lignin phenols into oil soluble lignin surfactants by a reaction selected from the group consisting of sulfonation, sulfation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  1. Modification of nano-sized layered double hydroxides by long-chain organic aliphatic surfactants

    OpenAIRE

    RAMASAMY ANBARASAN; SEUNG SOON IM; WANDUC LEE

    2008-01-01

    The inter-layer anion of layered double hydroxides (LDH) with a hydrotalcite (HT)-like structure was ion-exchanged with various organic surfactants, particularly with long chain aliphatic surfactants. After the ion-exchange process, the basal spacing of the LDH was increased and the increase of the basal spacing depended on various factors, such as the intercalation capacity functionality and orientation capability of the surfactant. Of the employed surfactants, stearic acid intercalated LDH ...

  2. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil.

    Science.gov (United States)

    Zhu, Hongbo; Aitken, Michael D

    2010-10-01

    We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C(12)E(8)), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant's critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C(12)E(8) did not enhance PAH removal at any dose. In the absence of surfactant, PAH desorbed from the soil over an 18 day period. Brij 30 addition at the lowest dose significantly increased the desorption of most PAHs, whereas the addition of C(12)E(8) at the lowest dose actually decreased the desorption of all PAHs. These findings suggest that the effects of the two surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited.

  3. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  4. Features of the micellar solubility of metal-containing surfactants in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.B.; Zdobnova, O.L.; Zaichenko, L.P.; Proskuryakov, V.A.

    1988-03-10

    Metal-containing surfactants (SF) are now widely used as different additives to oils and fuels. The micellar solubility of a series of individual metal-containing SF and widely used additives was investigated as a function of the structure and polarity of the additive, type of hydrocarbon solvent, and presence of water in this study. Individual decyl benzenesulfonates (DBS) of different metals and samples of surfactant additives for oils of the alkylphenolate (VNII NP-370), sulfonate (PMSA, PMSya, S-150, S-300, Lubrizol 58, SB-3, PMSya (bariated), alkylsalicylate (ASK, MASK), and dialkyldithiophosphate (DF-11, VNII NP-354) types were investigated.

  5. Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants

    Science.gov (United States)

    Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.

    2013-03-01

    Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL

  6. Batch washing of saturated hydrocarbons and polycyclic aromatic hydrocarbons from crude oil contaminated soils using bio-surfactant

    Institute of Scientific and Technical Information of China (English)

    张文

    2015-01-01

    Desorption of total saturated fractions (i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions (i.e. PAH, defined as the summation of the concentrations of all polycyclic aromatic fractions including the 16 EPA priority PAH) in two types of soils subjected to the changes of pH and salinity and different bio-surfactant concentrations were investigated. In general, compared with the experiments without bio-surfactant addition, adding rhamnolipid to crude oil−water systems at concentrations above its critical micelle concentration (CMC) values benefits SAT and PAH desorption. The results indicate that the change of pH could have distinct effects on rhamnolipid performance concerning its own micelle structure and soil properties. For loam soil, the adsorption of non-aqueous phase liquid (NAPL) and rhamnolipid would be the principle limiting factors during the NAPL removal procedure. For sand soil, less amount of rhamnolipid is adsorbed onto soil. Thus, with the increase of salinity, the solubilization and desorption of rhamnolipid solution are more significant. In summary, the pH and salt sensitivity of the bio-surfactant will vary according to the specific structure of the surfactant characteristics and soil properties.

  7. 氟碳杂化表面活性剂的研究进展%Research Progress of Fluorocarbon-hydrocarbon Hybrid Surfactants

    Institute of Scientific and Technical Information of China (English)

    刘刚芝; 冯浦涌; 荣新明; 费晨洪; 王碧清; 王继宇; 冯玉军

    2013-01-01

    氟碳杂化表面活性剂是指分子结构中同时含有氟碳链和碳氢链的表面活性剂.从氟碳杂化表面活性剂的类型,合成路线,溶液性能及应用等方面系统地综述了其研究进展.参考文献46篇.%Fluorocarbon-hydrocarbon hybrid surfactants are amphiphilies in which fluorocarbon and hydrocarbon chains coexist.In this paper,the classification,synthesis,surface activities and application of fluorocarbon-hydrocarbon hybrid surfactants are reviewed with 46 references.

  8. Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants.

    Science.gov (United States)

    Adkins, Stephanie S; Chen, Xi; Chan, Isabel; Torino, Enza; Nguyen, Quoc P; Sanders, Aaron W; Johnston, Keith P

    2010-04-20

    The morphologies, stabilities, and viscosities of high-pressure carbon dioxide-in-water (C/W) foams (emulsions) formed with branched nonionic hydrocarbon surfactants were investigated by in situ optical microscopy and capillary rheology. Over two dozen hydrocarbon surfactants were shown to stabilize C/W foams with Sauter mean bubble diameters as low as 1 to 2 microm. Coalescence of the C/W foam bubbles was rare for bubbles larger than about 0.5 microm over a 60 h time frame, and Ostwald ripening became very slow. By better blocking of the CO(2) and water phases with branched and double-tailed surfactants, the interfacial tension decreases, the surface pressure increases, and the C/W foams become very stable. For branched surfactants with propylene oxide middle groups, the stabilities were markedly lower for air/water foams and decane-water emulsions. The greater stability of the C/W foams to coalescence may be attributed to a smaller capillary pressure, lower drainage rates, and a sufficient surface pressure and thus limiting surface elasticity, plus small film sizes, to hinder spatial and surface density fluctuations that lead to coalescence. Unexpectedly, the foams were stable even when the surfactant favored the CO(2) phase over the water phase, in violation of Bancroft's rule. This unusual behavior is influenced by the low drainage rate, which makes Marangoni stabilization of less consequence and the strong tendency of emerging holes in the lamella to close as a result of surfactant tail flocculation in CO(2). The high distribution coefficient toward CO(2) versus water is of significant practical interest for mobility control in CO(2) sequestration and enhanced oil recovery by foam formation.

  9. Superhydrophilic surfaces from short and medium chain solvo-surfactants

    Directory of Open Access Journals (Sweden)

    Valentin Romain

    2013-01-01

    Full Text Available Pure monoglycerides (GM-Cs and glycerol carbonate esters (GCE-Cs are two families of oleochemical molecules composed of a polar part, glycerol for GM-Cs, glycerol carbonate for GCE-Cs, and a fatty acid lipophilic part. From a chemical point of view, GM-Cs include two free oxygen atoms in the hydroxyl functions and one ester function between the fatty acid and the glycerol parts. GCE-Cs contain two blocked oxygen atoms in the cyclic carbonate backbone and three esters functions: two endocyclic in the five-membered cyclic carbonate function, one exocyclic between the fatty acid and glycerol carbonate parts. At the physico-chemical level, GMCs and GCE-Cs are multifunctional molecules with amphiphilic structures: a common hydrophobic chain to the both families and a polar head, glycerol for GMs and glycerol carbonate for GCE-Cs. Physicochemical properties depend on chain lengths, odd or even carbon numbers on the chain, and glyceryl or cyclocarbonic polar heads. The solvo-surfactant character of GM-Cs and overall GCE-Cs were discussed through the measurements of critical micellar concentration (CMC or critical aggregation concentration (CAC. These surface active glycerol esters/glycerol carbonate esters were classified following their hydrophilic/hydrophobic character correlated to their chain length (LogPoctanol/water = f(atom carbon number. Differential scanning calorimetry and optical polarized light microscopy allow us to highlight the selfassembling properties of the glycerol carbonate esters alone and in presence of water. We studied by thermal analysis the polymorphic behaviour of GCE-Cs, and the correlation between their melting points versus the chain lengths. Coupling the self-aggregation and crystallization properties, superhydrophilic surfaces were obtained by formulating GM-Cs and GCE-Cs. An efficient durable water-repellent coating of various metallic and polymeric surfaces was allowed. Such surfaces coated by self-assembled fatty acid

  10. Different behaviours in the solubilization of polycyclic aromatic hydrocarbons in water induced by mixed surfactant solutions.

    Science.gov (United States)

    Sales, Pablo S; de Rossi, Rita H; Fernández, Mariana A

    2011-09-01

    Water solubility of polycyclic aromatic hydrocarbons (PAHs), viz, naphthalene and phenanthrene, in micellar solutions at 25°C was investigated, using two series of different binary mixtures of anionic and nonionic surfactants. Tween 80 and Brij-35 were used as nonionic surfactants whereas fatty acids or amphiphilic cyclodextrins (Mod-β-CD) synthesized in our laboratory were used as anionic ones. Solubilization capacity has been quantified in terms of the molar solubilization ratio and the micelle-water partition coefficient, using UV-visible spectrophotometry. Anionic surfactants exhibited less solubilization capacity than nonionics. The mixtures between Tween 80 and Mod-β-CD did not show synergism to increase the solubilization of PAHs. On the other hand, the mixtures formed by Tween 80 and fatty acids at all mole fractions studied produced higher enhancements of the solubility of naphthalene than the individual surfactants. The critical micellar concentration of the mixtures of Tween 80/sodium laurate was determined by surface tension measurements and spectrofluorimetry using pyrene as probe. The system is characterized by a negative interaction parameter (β) indicating attractive interactions between both surfactants in the range of the compositions studied. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Synthesis of Bisphenols Carrying Long Hydrocarbon Side Chains

    Institute of Scientific and Technical Information of China (English)

    XU Jing-zhe; JIANG Nan-zhe; ZHANG Jian; JIANG Ri-shan

    2005-01-01

    Bisphenols containing long aliphatic hydrocarbon side chains were synthesized by the condensation of phenol with aldehyde or ketone in the presence of heteropolyacid. Their structures were characterized by IR, 1H NMR, 13C NMR and element analysis. The experiment results show that when heteropolyacid was used as a catalyst, these bisphenols were obtained in high selectivity and high yields.

  12. Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    Yi Jian CHEN; Gui Ying XU; Shi Ling YUAN; Hai Ying SUN

    2005-01-01

    Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems,the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. Theresults reveal that the surface activity of C12C2C12 suffactant is higher than DTAB surfactant.

  13. Monte Carlo properties of the hydrocarbon chains of phospholipid molecules

    Science.gov (United States)

    Zhurkin, D. V.; Rabinovich, A. L.

    2015-02-01

    Properties of 65 chain hydrocarbon molecules in the unperturbed state are investigated using the Monte Carlo method at temperatures of 293, 303, and 313 K. Chains with the general structure CH3-(CH2) a -(CH=CH-CH2) d -(CH2) b -CH3 are considered. The number of carbon atoms in a skeleton N = 16, 18, 20, and 22; the number of cis-double bonds d = 0, 1, ..., 6. Conformations are generated with continuous varying of the angles of internal rotation around simple C-C bonds in the range of 0°-360°, the interdependence of each three angles along the chain is allowed for, and essential sampling is performed. Different properties of molecules are considered: the average maximum projections of hydrocarbon chains on their main axes of inertia, average squares of the radii of inertia, and relative fluctuations in the squares of the radii of inertia. The dependence of the calculated characteristics on the structural parameters of the chains is investigated.

  14. Modification of nano-sized layered double hydroxides by long-chain organic aliphatic surfactants

    Directory of Open Access Journals (Sweden)

    RAMASAMY ANBARASAN

    2008-03-01

    Full Text Available The inter-layer anion of layered double hydroxides (LDH with a hydrotalcite (HT-like structure was ion-exchanged with various organic surfactants, particularly with long chain aliphatic surfactants. After the ion-exchange process, the basal spacing of the LDH was increased and the increase of the basal spacing depended on various factors, such as the intercalation capacity functionality and orientation capability of the surfactant. Of the employed surfactants, stearic acid intercalated LDH showed the highest increase of the basal spacing, which was confirmed by XRD analysis. FTIR results supported the interaction of the surfactants with the LDH. In addition, an increase in the thermal stability of the dodecanedioic acid intercalated HT was evidenced by the TGA method.

  15. Interactions of short chain phenylalkanoic acids within ionic surfactant micelles in aqueous media

    Directory of Open Access Journals (Sweden)

    Naeem Kashif

    2012-01-01

    Full Text Available % SDS KR nema Solubilization and interactions of phenylalkanoic acids induced by cationic surfactant, cetyltrimethylammonium bromide (CTAB and an anionic surfactant, sodium dodecyl sulfate (SDS was investigated spectrophotometrically at 25.0°C. The UV spectra of the additives (acids were measured with and without surfactant above and below critical micelle concentration (cmc of the surfactant. The presence of alkyl chain in phenylalkanoic acids is responsible for hydrophobic interaction resulting in shift of the spectra towards longer wavelength (red shift. The value of partition coefficient (Kx between the bulk water and surfactant micelles and in turn standard free energy change of solubilization (ΔGpº were also estimated by measuring the differential absorbance (ΔA of the additives in micellar solutions.

  16. Physicochemistry and percolation behavior of microemulsions as a function of chain length of cosurfactant and surfactant

    Directory of Open Access Journals (Sweden)

    Purva Thatai

    2015-03-01

    Full Text Available The study involved investigations on phase behavior and physicochemical characterization of microemulsions (MEs stabilized by mixture containing polysorbates (C12-C18 as surfactants and n-alkanols (C2-C6 as cosurfactant. Distribution coefficient and Gibbs free energy were also determined for systems containing Tween 20 as surfactant. ME having Tween 20 as surfactant and ethanol as cosurfactant was found to exhibit maximium ME region as well as water solubilization capacity (WSC. Values of both these parameters were found to decrease as chain length of surfactant increased in all cases of alkanols with exception of Tween 80. This could be attributed to unsaturated structure of Tween 80 which presumably caused folding of chain and lesser oil penetration. Furthermore, the transition of w/o MEs to o/w MEs via bicontinuous structure along the dilution line was confirmed by conductivity, viscosity and droplet size analysis.

  17. Hydrophobic, electrostatic, and dynamic polymer forces at silicone surfaces modified with long-chain bolaform surfactants.

    Science.gov (United States)

    Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Das, Saurabh; Kaufman, Yair; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N

    2015-05-06

    Surfactant self-assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic-water interfaces. Here, the range of structures and forces that are possible at surfactant-adsorbed hydrophobic surfaces are demonstrated: certain long-chain bolaform surfactants-containing a polydimethylsiloxane (PDMS) mid-block domain and two cationic α, ω-quarternary ammonium end-groups-readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer-like exploration behavior at the PDMS surface and give rise to a long-ranged, temperature- and rate-dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end-groups and negatively-charged mica result in a rate-dependent polymer bridging force during separation as the hydrophobic surfactant mid-blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self-assembled polymer layers is emphasized, and (iii) it is shown that long-chain surfactants can promote robust adhesion in aqueous solutions.

  18. New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture.

    Science.gov (United States)

    Sun, Minwei; Firoozabadi, Abbas

    2013-07-15

    Anti-agglomeration is a promising solution for gas hydrate risks in deepsea hydrocarbon flowlines and oil leak captures. Currently ineffectiveness at high water to oil ratios limits such applications. We present experimental results of a new surfactant in rocking cell tests, which show high efficiency at a full range of water to oil ratios; there is no need for presence of the oil phase. We find that our surfactant at a very low concentration (0.2 wt.% of water) keeps the hydrate particles in anti-agglomeration state. We propose a mechanism different from the established water-in-oil emulsion theory in the literature that the process is effective without the oil phase. There is no need to emulsify the water phase in the oil phase for hydrate anti-agglomeration; with oil-in-water emulsion and without emulsion hydrate anti-agglomeration is presented in our research. We expect our work to pave the way for broad applications in offshore natural gas production and seabed oil capture with very small quantities of an eco-friendly surfactant.

  19. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  20. Polymer gels with associating side chains and their interaction with surfactants

    Science.gov (United States)

    Gordievskaya, Yulia D.; Rumyantsev, Artem M.; Kramarenko, Elena Yu.

    2016-05-01

    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well.

  1. Effects of varying surfactant chain lengths on the magnetic, optical and hyperthermia properties of ferrofluids

    Science.gov (United States)

    Rablau, Corneliu; Vaishnava, Prem; Regmi, Rajesh; Sudakar, Chandran; Black, Correy; Lawes, Gavin; Naik, Ratna; Lavoie, Melissa; Kahn, David

    2009-03-01

    We report studies of the structural, magnetic, magneto-thermal and magneto-optic properties of dextran, oleic acid, lauric acid and myristic acid surfacted Fe3O4 nanoparticles of hydrodynamic sizes ranging from 32 nm to 92 nm. All the samples showed saturation magnetization of ˜50 emu/g, significantly smaller than the bulk value for Fe3O4, together with superparamagnetic behavior. The ac magnetization measurements on the dextran coated nanoparticles showed frequency dependent blocking temperature, consistent with superparamgnetic blocking. The ferrofluid heating rates in a 250 Gauss, 100 kHz ac magnetic field varied with the chain lengths of the surfactants, with higher heating rates for longer chains. DC-magnetic-field-induced light scattering patterns produced by two orthogonal He-Ne laser beams passing through the ferrofluid sample revealed different optical signatures for different surfactants.

  2. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction.

    Science.gov (United States)

    Goetzman, Eric S; Alcorn, John F; Bharathi, Sivakama S; Uppala, Radha; McHugh, Kevin J; Kosmider, Beata; Chen, Rimei; Zuo, Yi Y; Beck, Megan E; McKinney, Richard W; Skilling, Helen; Suhrie, Kristen R; Karunanidhi, Anuradha; Yeasted, Renita; Otsubo, Chikara; Ellis, Bryon; Tyurina, Yulia Y; Kagan, Valerian E; Mallampalli, Rama K; Vockley, Jerry

    2014-04-11

    Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.

  3. Effect of fat chain length of sorbitan surfactant on the porosity of mesoporous silica

    Directory of Open Access Journals (Sweden)

    Marco Antonio Utrera Martines

    2009-08-01

    Full Text Available The influence of the fat chain length of sorbitan surfactant was systematically explored, especially its influence on the material pore size. Then, mesoporous silica was synthesized according to a two-step process that provides intermediary stable hybrid micelles using ethoxylated derivative of fatty esters of sorbitan surfactants as the directing-structure agent and tetraethyl orthosilicate Si(OEt4 as the silica source. Finally, the materials’ porosity could be controlled by adjusting the preparation parameters during the two steps synthesis of mesoporous silica.

  4. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains.

    Science.gov (United States)

    Lee, Hwankyu

    2015-07-01

    Imidazolium-based ionic surfactants of different sizes were simulated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Regardless of the phospholipid type, larger surfactants at higher concentrations more significantly insert into the bilayer and increase the bilayer-surface size, in agreement with experiments and previous simulations. Insertion of surfactants only slightly decreases the bilayer thickness, as also observed in experiments. Although the surfactant insertion and its effect on the bilayer size and thickness are similar in different types of bilayers, the volume fractions of surfactants in the bilayer are higher for DMPC bilayers than for POPC and DOPC bilayers. In particular, ionic surfactants with four hydrocarbons yield their volume fractions of 4.6% and 8.7%, respectively, in POPC and DMPC bilayers, in quantitative agreement with experimental values of ∼5% and ∼10%. Also, the inserted surfactants increase the lateral diffusivity of the bilayer, which depends on the bilayer type. These findings indicate that although the surfactant insertion does not depend on the bilayer type, the effects of surfactants on the volume fraction and bilayer dynamics occur more significantly in the DMPC bilayer because of the smaller area per lipid and shorter saturated tails, which helps explain the experimental observations regarding different volume fractions of surfactants in POPC and DMPC bilayers.

  5. The polydispersity effect of distributed oxyethylene chains on the cloud points of nonionic surfactants.

    Science.gov (United States)

    Kim, Hui Chan; Kim, Jong-Duk

    2010-12-15

    The cloud points of aqueous solutions containing polyoxyethylene surfactant molecules with a distribution of chain lengths were studied for several nonionic surfactants. Experimentally, the cloud points increased as the oxyethylene chain lengths increased with a linear or logarithmic relation of the number of oxyethylates, as proposed by Schott. An experimental scale, the p-Po scale, was previously developed to correspond to the cloud points, where p is the average number of oxyethylene units per molecule and Po is the shortest chain length reference. However, no previous prediction methods of cloud point addressed systems containing a range of chain lengths. In this work, we propose a rescaling of the representative chain length as s-Po, where s is the cloud point-weighted mean ethylene oxide chain below p, and approximated as (p-Po)/PDI where PDI is the polydispersity index. Using the rescaled length, the experimental data for C(12)Es (lauryl alcohol ethoxylate, LAE), NPE-10 (nonyl phenol ethoxylate) and TDE-10 (tridecyl alcohol ethoxylate) were successfully predicted with no additional parameters, such as {(p-Po)/(PDI)}/CP=a+b{(p-Po)/(PDI)}, where PDI indicates the Broadness of the chain length distribution.

  6. Novel antifoam for fermentation processes: fluorocarbon-hydrocarbon hybrid unsymmetrical bolaform surfactant.

    Science.gov (United States)

    Calik, Pinar; Ileri, Nazar; Erdinç, Burak I; Aydogan, Nihal; Argun, Muharrem

    2005-09-13

    As foaming appears as a problem in chemical and fermentation processes that inhibits reactor performance, the eminence of a novel fluorocarbon-hydrocarbon unsymmetrical bolaform (FHUB: OH(CH2)11N+(C2H4)2(CH2)2(CF2)5CF3 I-) surfactant as an antifoaming agent as well as a foam-reducing agent was investigated and compared with other surfactants and a commercial antifoaming agent. The surface elasticity of FHUB was determined as 4 mN/m, indicating its high potential on thinning of the foam film. The interactions between FHUB and the microoganism were investigated in a model fermentation process related with an enzyme production by recombinant Escherichia coli, in V = 3.0 dm3 bioreactor systems with V(R) = 1.65 dm3 working volume at air inlet rate of Q(o)/V(R) = 0.5 dm3 dm(-3) min(-1) and agitation rate of N = 500 min(-1) oxygen transfer conditions, at T = 37 degrees C, pH(o) = 7.2, and C(FHUB) = 0 and 0.1 mM, in a glucose-based defined medium. As FHUB did not influence the metabolism, specific enzyme activity values obtained with and without FHUB were close to each other; however, because of the slight decrease in oxygen transfer coefficient, slightly lower volumetric enzyme activity and cell concentrations were obtained. However, when FHUB is compared with widely used silicon oil based Antifoam A, with the use of the FHUB, higher physical oxygen transfer coefficient (K(L)a) values are obtained. Moreover, as the amount required for the foam control is very low, minute changes in the working volume of the bioreactor were obtained indicating the high potential of the use of FHUB as an antifoaming agent as well as a foam-reducing agent.

  7. Novel Pyridinium Surfactants with Unsaturated Alkyl Chains : Aggregation Behavior and Interactions with Methyl Orange in Aqueous Solution

    NARCIS (Netherlands)

    Kuiper, Johanna M.; Buwalda, Rixt T.; Hulst, Ron; Engberts, Jan B.F.N.

    2001-01-01

    This paper presents the synthesis and a study of the aggregation behavior of 4-undecyl-1-methyl- and 4-undecenyl-1-methylpyridinium iodide surfactants. The effect of the position of the double bond in the alkyl chain of the surfactant on the critical micelle concentration (cmc), degree of counterion

  8. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes

    Directory of Open Access Journals (Sweden)

    Duangjit S

    2014-04-01

    Full Text Available Sureewan Duangjit,1,2 Boonnada Pamornpathomkul,1 Praneet Opanasopit,1 Theerasak Rojanarata,1 Yasuko Obata,2 Kozo Takayama,2 Tanasait Ngawhirunpat11Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; 2Department of Pharmaceutics, Hoshi University, Shinagawa-ku, Tokyo, JapanAbstract: The objective of this study was to investigate the influence of surfactant charge, surfactant carbon chain length, and surfactant content on the physicochemical characteristics (ie, vesicle size, zeta potential, elasticity, and entrapment efficiency, morphology, stability, and in vitro skin permeability of meloxicam (MX-loaded liposome. Moreover, the mechanism for the liposome-enhanced skin permeation of MX was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry. The model formulation used in this study was obtained using a response surface method incorporating multivariate spline interpolation (RSM-S. Liposome formulations with varying surfactant charge (anionic, neutral, and cationic, surfactant carbon chain length (C4, C12, and C16, and surfactant content (10%, 20%, and 29% were prepared. The formulation comprising 29% cationic surfactant with a C16 chain length was found to be the optimal liposome for the transdermal delivery of MX. The skin permeation flux of the optimal formulation was 2.69-fold higher than that of a conventional liposome formulation. Our study revealed that surfactants affected the physicochemical characteristics, stability, and skin permeability of MX-loaded liposomes. These findings provide important fundamental information for the development of liposomes as transdermal drug delivery systems.Keywords: optimal liposome, optimization, transdermal drug delivery, surfactant charge, surfactant carbon chain length, surfactant content

  9. Surfactants at the Design Limit.

    Science.gov (United States)

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  10. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    Science.gov (United States)

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation.

  11. Highly methyl-branched hydrocarbon surfactant as a CO₂-philic solubilizer for water/supercritical CO₂ microemulsion.

    Science.gov (United States)

    Sagisaka, Masanobu; Kudo, Kotaro; Nagoya, Shota; Yoshizawa, Atsushi

    2013-01-01

    To develop an efficient and fluorine-free solubilizer for a water/supercritical CO₂ microemulsion (W/CO₂ μE), in this study, a highly methyl-branched alkyl, isostearyl group was focused on as a CO₂-philic tail, and the custom-made isostearyl surfactant, sodium 2-(4,4-dimethylpentan-2-yl)-5,7,7-trimethyloctyl sulfate (SIS1) was synthesized. The surface tension (γ) of an aqueous SIS1 solution was measured at ambient pressure as a function of surfactant concentration, and it was found to be 25 mN/m at concentrations of > 1.5 mM. A low γ value can generally be reached only by a fluorocarbon surfactant, which implies that SIS1 has an excellent solubilizing power for the W/CO₂ μE, similar to some fluorocarbon surfactants reported previously. Visual observations of the SIS1/W/CO₂ mixtures revealed the formation of transparent single phases without separated water, identified as W/CO₂ μE. The μE was well-stabilized at pressures > 210 bar and temperatures > 55 °C. At 75 °C and 370 bar, SIS1 was found by spectral measurements using a water-soluble UV-light absorber to solubilize water contents up to a maximum water-to-surfactant molar ratio (W0) = 50. The achievement of W0 = 50 in a W/CO₂ μE system has not been reported previously in similar hydrocarbon surfactant/W/CO₂ systems, and this demonstrates that a highly methyl-branched alkyl group can act as a good CO₂-philic group for a W/CO₂ -type surfactant.

  12. Preparation of nanosize Cu-ZnO/Al{sub 2}O{sub 3} catalyst for methanol synthesis by phase transfer with metal surfactant. 2: Effect of additives and chain length of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Z.; Chen, S.; Peng, S. [Chinese Academy of Science, Taiyuan, Shanxi (China). Inst. of Coal Chemistry

    1996-09-25

    Nanosize Cu-ZnO/Al{sub 2}O{sub 3} catalysts for methanol synthesis were prepared by the metal surfactant phase transfer technique. The effects of chain length of surfactant and additives were studied. It was found that the longer the organic chain of surfactant, the more stable the sol particles and the larger the surface area of catalyst. The decomposition temperature of surfactants with longer chains was also higher. For the preparation of Cu-ZnO/Al{sub 2}O{sub 3} catalyst, the surfactant organic chain should not be longer than 11 carbon atoms. A synergist could be used to improve surfactant efficiency. A stabilizing agent was used to strength the stability of sol particles in water. The time needed for oil-water separation was reduced markedly by using a demulsifying agent. The optimal mole ratios of synergist, stabilizing agent, and demulsifying agent to surfactant were, respectively, 0.6, 0.6, and 1.

  13. New cationic vesicles prepared with double chain surfactants from arginine: Role of the hydrophobic group on the antimicrobial activity and cytotoxicity.

    Science.gov (United States)

    Pinazo, A; Petrizelli, V; Bustelo, M; Pons, R; Vinardell, M P; Mitjans, M; Manresa, A; Perez, L

    2016-05-01

    Cationic double chain surfactants have attracted much interest because they can give rise to cationic vesicles that can be used in biomedical applications. Using a simple and economical synthetic approach, we have synthesized four double-chain surfactants with different alkyl chain lengths (LANHCx). The critical aggregation concentration of the double chain surfactants is at least one order of magnitude lower than the CMC of their corresponding single-chain LAM and the solutions prepared with the LANHCx contain stable cationic vesicles. Encouragingly, these new arginine derivatives show very low haemolytic activity and weaker cytotoxic effects than conventional dialkyl dimethyl ammonium surfactants. In addition, the surfactant with the shortest alkyl chain exhibits good antimicrobial activity against Gram-positive bacteria. The results show that a rational design applied to cationic double chain surfactants might serve as a promising strategy for the development of safe cationic vesicular systems.

  14. Bending of the Flexible Spacer Chain of Gemini Surfactant Induced by Hydrophobic Interaction

    Institute of Scientific and Technical Information of China (English)

    YOU,Yi; JIANG,Rong; LING,Tingting; ZHAO,Jianxi

    2009-01-01

    In order to understand the special role of the flexible alkylene spacer of gemini surfactant in the self-assembly,three gemini surfactants,alkylene-α,ω-bis(didodecylmethylammonium bromide)that is designated as 2C12-s-2C12·2Br (s=3,6,8),were synthesized.When the spread films of 2C12-s-2C12·2Br on the surface of water were con-structed,they form the dense layer of the alkyl tails owing to four dodecyl chains per molecule.This induced the bending of the spacer chain toward the air-side at the s smaller than that of C12-s-C12·2Br adsorbed on the air/water interface owing to the enhanced hydrophobic interaction between the alkyl tails and the spacer chain, where C12-s-C12·2Br has only two alkyl tails per molecule. Conclusively.,the enhanced hydrophobic interaction between the alkyl tails and the spacer chain can effectively induce the bending of the latter toward the air-side.

  15. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  16. Progress of research work on blending of surfactants based upon hydrocarbon group%碳氢表面活性剂复配研究的进展

    Institute of Scientific and Technical Information of China (English)

    鲍艳; 吴成兰; 马建中

    2011-01-01

    Classification and characteristics of surfactants based upon hydrocarbon group were presented. Principles with respect to the blending of surfactants based upon hydrocarbon group were introduced, which includes the blending of surfactants of same type as well as surfactants of different types. At the same time,the effects of inorganic electrolytes and polar organics on the blended system of surfactants based upon hydrocarbon group were summarized. Future development of surfactants based upon hydrocarbon group was outlooked.%介绍了碳氢表面活性剂的分类及性能,综述了各类碳氢表面活性剂的复配规律,包括同类型表面活性剂之间的复配及不同类型表面活性剂之间的复配,并介绍了无机电解质及极性有机物对碳氢表面活性剂复配的影响.最后,对碳氢表面活性剂的发展趋势进行了展望.

  17. Surfactant-assisted liquefaction of particulate carbonaceous substances

    Science.gov (United States)

    Hsu, G. C. (Inventor)

    1978-01-01

    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  18. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    Science.gov (United States)

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  19. Chain architecture and micellization: A mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants

    Energy Technology Data Exchange (ETDEWEB)

    García Daza, Fabián A.; Mackie, Allan D., E-mail: allan.mackie@urv.cat [Department d’Enginyeria Química, ETSEQ, Universitat Rovira i Virgili, Avinguda dels Països Catalans 26, 43007 Tarragona (Spain); Colville, Alexander J. [Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000 (United States)

    2015-03-21

    Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determined from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.

  20. Polymer-grafted lignin surfactants prepared via reversible addition-fragmentation chain-transfer polymerization.

    Science.gov (United States)

    Gupta, Chetali; Washburn, Newell R

    2014-08-12

    Kraft lignin grafted with hydrophilic polymers has been prepared using reversible addition-fragmentation chain-transfer (RAFT) polymerization and investigated for use as a surfactant. In this preliminary study, polyacrylamide and poly(acrylic acid) were grafted from a lignin RAFT macroinitiator at average initiator site densities estimated to be 2 per particle and 17 per particle. The target degrees of polymerization were 50 and 100, but analysis of cleaved polyacrylamide was consistent with a higher average molecular weight, suggesting not all sites were able to participate in the polymerization. All materials were readily soluble in water, and dynamic light scattering data indicate polymer-grafted lignin coexisted in isolated and aggregated forms in aqueous media. The characteristic size was 15-20 nm at low concentrations, and aggregation appeared to be a stronger function of degree of polymerization than graft density. These species were surface active, reducing the surface tension to as low as 60 dyn/cm at 1 mg/mL, and a greater decrease was observed than for polymer-grafted silica nanoparticles, suggesting that the lignin core was also surface active. While these lignin surfactants were soluble in water, they were not soluble in hexanes. Thus, it was unexpected that water-in-oil emulsions formed in all surfactant compositions and solvent ratios tested, with average droplet sizes of 10-20 μm. However, although polymer-grafted lignin has structural features similar to nanoparticles used in Pickering emulsions, its interfacial behavior was qualitatively different. While at air-water interfaces, the hydrophilic grafts promote effective reductions in surface tension, we hypothesize that the low grafting density in these lignin surfactants favors partitioning into the hexanes side of the oil-water interface because collapsed conformations of the polymer grafts improve interfacial coverage and reduce water-hexanes interactions. We propose that polymer-grafted lignin

  1. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  2. Electrokinetic investigation of surfactant adsorption.

    Science.gov (United States)

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  3. Transesterification reaction between medium- and long-chain fatty acid triglycerides using surfactant-modified lipase.

    Science.gov (United States)

    Mogi, K; Nakajima, M; Mukataka, S

    2000-03-05

    Transesterification between medium-chain fatty acid triglycerides (MCT) and long-chain fatty acid triglycerides (LCT) in a nonsolvent system was investigated using surfactant modified lipase which is a complex of lipase, Rhizopus japonicus and surfactant, sorbitan monostearate. 74% conversion of was obtained after a 48-h reaction period, and the triglyceride composition was well described by the 1, 3-random 2-random stochastic model. The transesterification reaction between MCT and LCT closely followed the simple kinetic model, and the change in MCT and LCT contents could be simulated using one parameter. The effects of the water activity (A(w)) of modified lipase, the water content of the reaction system and the reaction temperature on the reaction rate were studied. A modified lipase A(w) of 0.35 and a water content of the reaction system at 0.09 wt % showed the highest activity. Inactivation did not occur below 60 degrees C, however, the activity decreased at temperatures over 70 degrees C. Copyright 2000 John Wiley & Sons, Inc.

  4. The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngwoo; Lee, Woo-Hyung; Sorial, George [Department of Civil and Environmental Engineering, University of Cincinnati, 765 Baldwin Hall, PO Box 210071, Cincinnati, OH 45221-0071 (United States); Bishop, Paul L. [Department of Civil and Environmental Engineering, University of Cincinnati, 765 Baldwin Hall, PO Box 210071, Cincinnati, OH 45221-0071 (United States)], E-mail: Paul.Bishop@UC.edu

    2009-01-15

    Lab scale mulch biofilm barriers were constructed and tested to evaluate their performance for preventing the migration of aqueous and surfactant solubilized PAHs. The spatial distribution of viable PAH degrader populations and resultant biofilm formation were also monitored to evaluate the performance of the biobarrier and the prolonged surfactant effect on the PAH degrading microorganism consortia in the biobarrier. Sorption and biodegradation of PAHs resulted in stable operation of the system for dissolved phenanthrene and pyrene during 150 days of experimentation. The nonionic surfactant could increase the solubility of phenanthrene and pyrene significantly. However, the biobarrier itself couldn't totally prevent the migration of micellar solubilized phenanthrene and pyrene. The presence of surfactant and the resultant highly increased phenanthrene or pyrene concentration didn't appear to cause toxic effects on the attached biofilm in the biobarrier. However, the presence of surfactant did change the structural composition of the biofilm. - Mulch biofilm barrier showed potential for surfactant enhanced bioremediation, and the presence of surfactant changed the structural composition of the biofilm.

  5. Structure and dynamics of surfactant and hydrocarbon aggregates on graphite: a molecular dynamics simulation study.

    Science.gov (United States)

    Sammalkorpi, Maria; Panagiotopoulos, Athanassios Z; Haataja, Mikko

    2008-03-13

    We have examined the structure and dynamics of sodium dodecyl sulfate (SDS) and dodecane (C12) molecular aggregates at varying surface coverages on the basal plane of graphite via classical molecular dynamics simulations. Our results suggest that graphite-hydrocarbon chain interactions favor specific molecular orientations at the single-molecule level via alignment of the tail along the crystallographic directions. This orientational bias is reduced greatly upon increasing the surface coverage for both molecules due to intermolecular interactions, leading to very weak bias at intermediate surface coverages. Interestingly, for complete monolayers, we find a re-emergent orientational bias. Furthermore, by comparing the SDS behavior with C12, we demonstrate that the charged head group plays a key role in the aggregate structures: SDS molecules display a tendency to form linear file-like aggregates while C12 forms tightly bound planar ones. The observed orientational bias for SDS molecules is in agreement with experimental observations of hemimicelle orientation and provides support for the belief that an initial oriented layer governs the orientation of hemimicellar aggregates.

  6. A coacervative extraction based on single-chain and double-chain cationic surfactants.

    Science.gov (United States)

    Kukusamude, Chunyapuk; Quirino, Joselito P; Srijaranai, Supalax

    2016-11-11

    A coacervative extraction (CAE) with the common cationic surfactants dodecyltrimethylammonium bromide (DTAB) and didodecyldimethylammonium bromide (DDAB) was firstly developed. Notable characteristics of the CAE was the use of low concentration of salt (0.1molL(-1) NaBr) at ambient temperature and without the requirement of organic solvent. The CAE was based on phase separation due to the neutralization of the surface charge of the micelle by electrostatic interaction with the predominant common counter ion (bromide). The coacervative phase was subjected to an optimized micellar liquid chromatography with UV (MLC-UV) method without any treatments. The method was applied to the determination of penicillins including amoxicillin, ampicillin, penicillin-G, oxacillin, and cloxacillin in milk samples. Method detection limits (MDLs) from standard were 0.5-2ngmL(-1), and 40-80-fold analyte enrichment were obtained. The CAE-MLC-UV has shown to be of high potential for the analysis of five penicillins in milk with recoveries >90%.

  7. THE ADSORPTION OF LINEAR POLY(N-ISOPROPYLACRYLAMIDE) CHAINS ON SURFACTANT-FREE POLYSTYRENE NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Jun Gao; Tengjiao Hu; Yubao Zhang; Pei Li; Chi Wu

    1999-01-01

    The adsorption of linear poly(N-isopropylacrylamide) (PNIPAM) chains on surfactant-free polystyrene (PS) nanoparticles was used as a model system to study the hydrophobic adsorption of polymer on the surface, because the hydrophobility of PNIPAM can be continuously varied by a small temperature change. The adsorption was investigated by a combination of static and dynamic laser light scattering (LLS)measurements. In static LLS, the absolute excess scattered light intensity led to the amount of PNIPAM adsorbed on the surface. In dynamic LLS, the hydrodynamic thickness of the adsorbed PNIPAM layer was accurately measured. For a given particle concentration, the adsorption increases as the PNIPAM concentration and the incubation temperature increase. The average density of the adsorbed PNIPAM layer is reciprocally proportional to the number of the PNIPAM chains on the surface, revealing a simple scaling of the chain density distribution. The adsorption follows the Langmuir's isotherm. The enthalpy change estimated from the adsorption at 25℃ and 30℃ is slightly positive, indicating that the adsorption involves the coil-to-globule transition of the chains on the surface.

  8. Flexible polyelectrolyte conformation in the presence of cationic and anionic surfactants

    Science.gov (United States)

    Passos, C. B.; Kuhn, P. S.; Diehl, A.

    2015-11-01

    In this work we have studied the conformation of flexible polyelectrolyte chains in the presence of cationic and anionic surfactant molecules. We developed a simple theoretical model for the formation of the polyelectrolyte-cationic surfactant complexes and mixed micelles formed by cationic and anionic surfactant molecules, in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, with the hydrophobic interaction included explicitly as an effective short-ranged attraction between the surfactant hydrocarbon tails. This simple model allows us to calculate the extension of the polyelectrolyte-cationic surfactant complexes as a function of the anionic surfactant concentration, for different types of cationic and anionic surfactant molecules. A discrete conformational transition from a collapsed state to an elongated coil was found, for all surfactant chain lengths we have considered, in agreement with the experimental observations for the unfolding of ​DNA-cationic surfactant complexes.

  9. Regarding the effect that different hydrocarbon/fluorocarbon surfactant mixtures have on their complexation with HSA.

    Science.gov (United States)

    Blanco, Elena; Messina, Paula; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix

    2006-06-15

    The complexations between human serum albumin (HSA) and the sodium perfluorooctanoate/sodium octanoate and sodium perfluorooctanoate/sodium dodecanoate systems have been studied by a combination of electrical conductivity, ion-selective electrode, electrophoresis, and spectroscopy measurements. The binary mixtures of the surfactants deviated slightly from ideality. Binding plots revealed the existence of two specific binding sites, the first site being more accessible than the second. Positive cooperative binding has been found, thus revealing the importance of the hydrophobic interactions in both kinds of surfactants. The Gibbs energies of binding per mole of surfactant (DeltaG(nu)) were calculated from the Wyman binding potential where, on the basis of the elevated number of binding sites, a statistical contribution has been included. Initially these energies are large and negative, gradually decreasing as saturation is approached. Changes in the slope of Gibbs energies have been identified with the saturation of the first binding set. These facts denote that the surfactants under study have different favorite adsorption sites along the protein and that the adsorption process of perfluorooctanoate is more closely followed by dodecanoate than by octanoate. Finally, electrophoresis and spectroscopy measurements suggest induced conformational changes on HSA depending on the surfactant mixture as well as the mixed ratio.

  10. Synthesis, surface-active properties, and antimicrobial activities of new double-chain gemini surfactants.

    Science.gov (United States)

    Murguía, Marcelo C; Vaillard, Victoria A; Sánchez, Victoria G; Conza, José Di; Grau, Ricardo J

    2008-01-01

    A novel series of neutral and cationic dimeric surfactants were prepared involving ketalization reaction, Williamson etherification, and regioselective oxirane ring opening with primary and tertiary alkyl amines. The critical micelle concentration (CMC), effectiveness of surface tension reduction (gamma(CMC)), surface excess concentration (Gamma), and area per molecule at the interface (A) were determined and values indicate that the cationic series is characterized by good surface-active and self-aggregation properties. For the first time, we reported the antimicrobial activities against representative bacteria and fungi for dimeric compounds. The antimicrobial activity was found to be dependent on the target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as both the neutral or ionic nature (cationic > neutral) and alkyl chain length (di-C(12) > di-C(18) > di-C(8)) of the compounds. The cationic di-C(12) derivative was found to have equipotent activity to that of benzalkonium chloride (BAC) used as standard.

  11. Distinct changes in pulmonary surfactant homeostasis in common beta-chain-and GM-CSF-deficient mice

    NARCIS (Netherlands)

    Reed, JA; Ikegami, M; Robb, L; Begley, CG; Ross, G; Whitsett, JA

    Pulmonary alveolar proteinosis (PAP) is caused by inactivation of either granulocyte-macrophage colony-stimulating factor (GMCSF) or GM receptor common beta-chain (beta(c)) genes in mice [GM(-/-), beta(c)(-/-)], demonstrating a critical role of GM-CSF signaling in surfactant homeostasis. To

  12. Crystalline structures of polymeric hydrocarbon with 3,4-fold helical chains.

    Science.gov (United States)

    Lian, Chao-Sheng; Li, Han-Dong; Wang, Jian-Tao

    2015-01-12

    Molecular hydrocarbons are well-known to polymerize under pressure to form covalently bonded frameworks. Here we predict by ab initio calculations two distinct three-dimensional hydrocarbon crystalline structures composed of 3-fold and 4-fold helical CH chains in rhombohedral (R3) and tetragonal (I4₁/a) symmetry, respectively. Both structures with 1:1 stoichiometry are found to be energetically more favorable than solid acetylene and cubane, and even more stable than benzene II solid at high pressure. The calculations on vibrational, electronic, and optical properties reveal that the new chiral hydrocarbons are dynamically stable with large bulk moduli around 200 GPa, and exhibit a transparent insulating behavior with indirect band gaps of 5.9 ~ 6.7 eV and anisotropic adsorption spectra. Such forms of hydrocarbon, once synthesized, would have wide applications in mechanical, optoelectronic, and biological materials.

  13. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    Liang, Xujun; Guo, Chuling; Liao, Changjun; Liu, Shasha; Wick, Lukas Y; Peng, Dan; Yi, Xiaoyun; Lu, Guining; Yin, Hua; Lin, Zhang; Dang, Zhi

    2017-06-01

    Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future. Copyright © 2017. Published by Elsevier Ltd.

  14. Small-angle neutron scattering study of aggregate structures of multi-headed pyridinium surfactants in aqueous solution

    Indian Academy of Sciences (India)

    J Haldar; V K Aswal; P S Goyal; S Bhattacharya

    2004-08-01

    The aggregate structures of a set of novel single-chain surfactants bearing one, two and three pyridinium headgroups have been studied using small-angle neutron scattering (SANS). It is found that the nature of aggregate structures of these cationic surfactants depend on the number of headgroups present in the surfactants. The single-headed pyridinium surfactant forms the lamellar structure, whereas surfactants with double and triple headgroups form micelles in water. The aggregates shrink in size with increase in the number of headgroups in the surfactants. The aggregation number () continually decreases and the fractional charge () increases with more number of headgroups on the surfactants. The semimajor axis () and semiminor axis ( = ) of the micelle also decrease with the increase in the number of headgroups in the surfactants. This indicates that hydrocarbon chains in such micelles prepared from multiheaded surfactants adopt bent conformation and no longer stay in extended conformation.

  15. Solubilisation of different medium chain esters in zwitterionic surfactant solutions--effects on phase behaviour and structure.

    Science.gov (United States)

    Barth, A; Prévost, S; Popig, J; Dzionara, M; Hedicke, G; Gradzielski, M

    2011-12-01

    We studied the effect of solubilisation of methyl esters with different chains of medium length into the binary surfactant system tetradecyldimethylamine oxide/water at constant surfactant concentration of 200 mM. As esters we employed valeric, capronic, enanthic, and pelargonic methyl ester, thereby decreasing the polarity. Always a phase sequence L(1)-L(α)-L(1) is observed with increasing ester concentration, where the L(α)-phase increases in extent and goes to much lower temperatures with increasing chain length of the ester. Viscosity measurements show a maximum at intermediate concentrations of additive that is independent of the type of ester. From SANS measurements detailed information about the structural changes occurring during the rod-to-sphere transition in the system of the shortest additive is deduced, which proceeds first through a pronounced rod growth. Interestingly, for the different esters an almost constant value of the volumic solubilisation capacity is observed, in agreement with the relatively constant interfacial tension. For the different esters no effect on the radius and the area requirement at the amphiphilic interface is observed at the solubilisation boundary. The microemulsions present here are spherical aggregates where the ester is partitioned between core and shell. From the SANS and interfacial tension data the effective bending constants of the surfactant monolayers were deduced and they show that the extension of the L(α)-phase is directly related to a corresponding increase in the bending constants of the surfactant/ester monolayers. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Effect of surfactants on the fluorescence spectra of water-soluble MEHPPV derivatives having grafted polyelectrolyte chains

    Indian Academy of Sciences (India)

    Nagesh Kolishetti; S Ramakrishnan

    2007-03-01

    Poly(2-methoxy-5-[2'-ethylhexyoxy]-1,4-phenylenevinylene) (MEHPPV) derivatives with polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhibited a dramatic increase in their fluorescence intensity in the presence of a variety of surfactants, even at concentrations far below their critical micelle concentrations (CMC). This increase was accompanied by a blue-shift in the emission maximum. These observations are rationalized based on the postulate that the backbone conformation of the conjugated polymer is modulated upon interaction of the surfactant molecules with the polyelectrolytic tethers, which in turn results in a significant depletion of intra-chain interchromophore interactions that are known to cause red-shifted emission bands with significantly lower emission yields.

  17. Preparation, stability and two-dimensional ordered arrangement of gold nanoparticles capped by surfactants with different chain lengths

    Institute of Scientific and Technical Information of China (English)

    周学华; 李津如; 刘春艳; 江龙

    2002-01-01

    Gold nanoparticles modified with C10NH2, C12NH2, C16NH2 and C18NH2 respectively have been prepared by the reverse micelle method. Nanoparticles stability and their two-dimensional (2D) ordered arrangement were studied by UV-Vis absorption spectra and LB technique. The factors, such as the chain length and the size distribution of particles, which affect the 2D ordered arrangement formation, are discussed. Experimental results show that the longer the chain length of surfactants capping the gold nanoparticles, the more stable the nanoparticles, and the more ordered 2D arrangement of gold nanoparticles.

  18. Inactivation of Protein Tyrosine Phosphatases by Peracids Correlates with the Hydrocarbon Chain Length

    OpenAIRE

    Alicja Kuban-Jankowska; Magdalena Gorska; Tuszynski, Jack A; Cassandra D M Churchill; Philip Winter; Mariusz Klobukowski; Michal Wozniak

    2015-01-01

    Background/Aims: Protein tyrosine phosphatases are crucial enzymes controlling numerous physiological and pathophysiological events and can be regulated by oxidation of the catalytic domain cysteine residue. Peracids are highly oxidizing compounds, and thus may induce inactivation of PTPs. The aim of the present study was to evaluate the inhibitory effect of peracids with different length of hydrocarbon chain on the activity of selected PTPs. Methods: The enzymatic activity of human CD45, PTP...

  19. Inactivation of Protein Tyrosine Phosphatases by Peracids Correlates with the Hydrocarbon Chain Length

    Directory of Open Access Journals (Sweden)

    Alicja Kuban-Jankowska

    2015-06-01

    Full Text Available Background/Aims: Protein tyrosine phosphatases are crucial enzymes controlling numerous physiological and pathophysiological events and can be regulated by oxidation of the catalytic domain cysteine residue. Peracids are highly oxidizing compounds, and thus may induce inactivation of PTPs. The aim of the present study was to evaluate the inhibitory effect of peracids with different length of hydrocarbon chain on the activity of selected PTPs. Methods: The enzymatic activity of human CD45, PTP1B, LAR, bacterial YopH was assayed under the cell-free conditions, and activity of cellular CD45 in human Jurkat cell lysates. The molecular docking and molecular dynamics were performed to evaluate the peracids binding to the CD45 active site. Results: Here we demonstrate that peracids reduce enzymatic activity of recombinant CD45, PTP1B, LAR, YopH and cellular CD45. Our studies indicate that peracids are more potent inhibitors of CD45 than hydrogen peroxide (with an IC50 value equal to 25 nM for peroctanoic acid and 8 µM for hydrogen peroxide. The experimental data show that the inactivation caused by peracids is dependent on hydrocarbon chain length of peracids with maximum inhibitory effect of medium-chain peracids (C8-C12 acyl chain, which correlates with calculated binding affinities to the CD45 active site. Conclusion: Peracids are potent inhibitors of PTPs with the strongest inhibitory effect observed for medium-chain peracids.

  20. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  1. Switchable Surfactants

    National Research Council Canada - National Science Library

    Yingxin Liu; Philip G. Jessop; Michael Cunningham; Charles A. Eckert; Charles L. Liotta

    2006-01-01

    .... We report that long-chain alkyl amidine compounds can be reversibly transformed into charged surfactants by exposure to an atmosphere of carbon dioxide, thereby stabilizing water/alkane emulsions...

  2. Synthesis of novel cationic lipids with fully or partially non-scissile linkages between the hydrocarbon chains and pseudoglyceryl backbone

    Indian Academy of Sciences (India)

    Santanu Bhattacharya; Saubhik Haldar

    2002-06-01

    Five novel cationic lipids with fully or partially non-scissile linkage regions between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. The membrane-forming properties of these new lipids are briefly presented.

  3. Effect of alkyl chain asymmetry on catanionic mixtures of hydrogenated and fluorinated surfactants.

    Science.gov (United States)

    Blanco, Elena; Rodriguez-Abreu, Carlos; Schulz, Pablo; Ruso, Juan M

    2010-01-15

    In this work we studied and compared the physicochemical properties of the catanionic mixtures cetyltrimethyl-ammonium bromide-sodium dodecanoate, cetyltrimethyl-ammonium bromide-sodium perfluorodacanoate, octyltrimethylammonium bromide-sodium perfluorodacanoate and cetyltrimethyl-ammonium bromide-sodium octanoate by a combination of rheological, transmission electron microscopy (TEM) and polarized optical microscopy measurements. The binary mixtures of the surfactants have been analyzed at different mixed ratios and total concentration of the mixture. Mixtures containing a perfluorinated surfactant are able to form lamellar liquid crystals and stable spontaneous vesicles. Meanwhile, system containing just hydrogenated surfactants form hexagonal phases or they are arranged in elongated aggregates.

  4. Adsorption of polynuclear aromatic hydrocarbons from aqueous solution: Agrowaste-modified kaolinite vs surfactant modified bentonite

    Directory of Open Access Journals (Sweden)

    E. I. Unuabonah

    2017-01-01

    Full Text Available The adsorption efficiency of a new hybrid clay adsorbent for polynuclear aromatic hydrocarbons (PAHs is compared with known modified clay adsorbents. The new hybrid clay adsorbent (HYCA showed far higher adsorption capacities for the adsorption of various PAH molecules compared with sodium dodecyl sulfate modified and humic acid modified Bentonite clay adsorbents. With the new hybrid clay adsorbent (HYCA, the adsorption of some of the larger PAH molecules was complete in the first 1 h as compared with ≈ 62% and ≈ 76% observed for both humic acid modified and sodium dodecyl sulfate modified Bentonite clay adsorbents respectively. In 24 h adsorption of the PAHs was complete for all adsorbents with HYCA adsorbent showing better efficiency in the removal of the PAH molecules from aqueous solutions. No significant change was observed with increase in time up to 48 h. The adsorption was observed to be more spontaneous with HYCA adsorbent than with either modified Bentonite adsorbents. The enthalpy of adsorption did not follow any specific order and were not consistent for all PAH molecules considered.

  5. Stimulating in situ surfactant production to increase contaminant bioavailability and augment bioremediation of petroleum hydrocarbons

    Science.gov (United States)

    Haws, N. W.; Bentley, H. W.; Yiannakakis, A.; Bentley, A. J.; Cassidy, D. P.

    2006-12-01

    The effectiveness of a bioremediation strategy is largely dependent on relationships between contaminant sequestration (geochemical limitations) and microbial degradation potential (biological limitations). As contaminant bioavailability becomes mass transfer limited, contaminant removal will show less sensitivity to biodegradation enhancements without concurrent enhancements to rates of mass transfer into the bioavailable phase. Implementing a strategy that can simultaneously address geochemical and biological limitations is motivated by a subsurface zone of liquid petroleum hydrocarbons (LPH) contamination that is in excess of 10 acres (40,000 sq. meters). Biodegradation potential at the site is high; however, observed biodegradation rates are generally low, indicative of bioavailability limitations (e.g., low aqueous solubilities, nutrient deficiencies, and/or mass transfer limitations), and estimates indicate that bioremediation (i.e., biosparging/bioventing) with unaugmented biodegradation may be unable to achieve the remedial objectives within an acceptable time. Bench-scale experiments using soils native to the site provide evidence that, in addition to nutrient additions, a pulsed oxygen delivery can increase biodegradation rates by stimulating the microbial production of biosurfactants (rhamnolipids), leading to a reduction in surface tension and an increase in contaminant bioavailability. Pilot-scale tests at the field site are evaluating the effectiveness of stimulating in situ biosurfactant production using cyclic biosparging. The cyclic sparging creates extended periods of alternating aerobic and oxygen-depleted conditions in the submerged smear zone. The increased bioavailability of LPH and the resulting biodegradation enhancements during the test are evaluated using measurements of surface tension (as confirmation of biosurfactant accumulation) and nitrate concentrations (as substantiation of anaerobic biodegradation during shut-off periods). The

  6. The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of Pseudomonas aeruginosa W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain

    OpenAIRE

    Campos-García, Jesús; Esteve, Abraham; Vázquez-Duhalt, Rafael; Ramos, Juán Luis; Soberón-Chávez, Gloria

    1999-01-01

    Pseudomonas aeruginosa W51D is able to grow by using branched-chain dodecylbenzene sulfonates (B-DBS) or the terpenic alcohol citronellol as a sole source of carbon. A mutant derived from this strain (W51M1) is unable to degrade citronellol but still grows on B-DBS, showing that the citronellol degradation route is not the main pathway involved in the degradation of the surfactant alkyl moiety. The structures of the main B-DBS isomers and of some intermediates were identified by gas chromatog...

  7. The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of Pseudomonas aeruginosa W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain

    Science.gov (United States)

    Campos-García, Jesús; Esteve, Abraham; Vázquez-Duhalt, Rafael; Ramos, Juán Luis; Soberón-Chávez, Gloria

    1999-01-01

    Pseudomonas aeruginosa W51D is able to grow by using branched-chain dodecylbenzene sulfonates (B-DBS) or the terpenic alcohol citronellol as a sole source of carbon. A mutant derived from this strain (W51M1) is unable to degrade citronellol but still grows on B-DBS, showing that the citronellol degradation route is not the main pathway involved in the degradation of the surfactant alkyl moiety. The structures of the main B-DBS isomers and of some intermediates were identified by gas chromatography-mass spectrometric analysis, and a possible catabolic route is proposed. PMID:10427075

  8. Single chain structure of a poly(N-isopropylacrylamide) surfactant in water.

    Science.gov (United States)

    Abbott, Lauren J; Tucker, Ashley K; Stevens, Mark J

    2015-03-01

    We present atomistic simulations of a single PNIPAM-alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer-polymer and polymer-water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water. The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. The atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems.

  9. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    OpenAIRE

    Marijanović-Rajčić, M.; Senta, A.

    2008-01-01

    The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1). The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašna...

  10. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Low density polyethylene/layered double hydroxide (LDH composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20. It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain intercalation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermodynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant.

  11. Emulsion of aqueous-based nonspherical droplets in aqueous solutions by single-chain surfactants: templated assembly by nonamphiphilic lyotropic liquid crystals in water.

    Science.gov (United States)

    Varghese, Nisha; Shetye, Gauri S; Bandyopadhyay, Debjyoti; Gobalasingham, Nemal; Seo, JinAm; Wang, Jo-Han; Theiler, Barbara; Luk, Yan-Yeung

    2012-07-24

    Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants. The droplets, stabilized against coalescence by encapsulated in a layer (or layers) of single chain surfactants, are of both nonspherical tactoid (elongated ellipsoid with pointy ends) and spherical shapes. The tactoids have an average long axis of ∼9 μm and a short axis of ∼3.5 μm with the liquid crystal aligning parallel to the droplet surface. The spherical droplets are 5-10 μm in diameter and have the liquid crystal aligning perpendicular to the droplet surface and a point defect in the center. Cationic and zwitterionic surfactants studied in this work did not promote the organic salt to form droplets. These results illustrate the complex interplay of self-association and thermodynamic incompatibility of molecules in water, which can cause new assembly behavior, including potential formation of vesicles or other assemblies, from surfactants that usually form only micelles. These unprecedented tactoidal shaped droplets also provide potential for the fabrication of new soft organic microcapsules.

  12. Influence of dispersants on trophic transfer of petroleum hydrocarbons in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, M.; Tjeerdema, R. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry; Sowby, M. [California Dept. of Fish and Game, Sacramento, CA (United States)

    1995-12-31

    When crude oil is accidentally released into the ocean, it threatens many levels of marine life. Intervention, in the form of chemical dispersing agents, alters the normal behavior of petroleum hydrocarbons (PH) by increasing their functional water solubility and the extent of their exposure to sub-surface organisms. Dispersing agents may modify bioavailability as a result of altered interactions between dispersed PH droplets and organismal cell membranes.The objective of this research was to determine the impact of dispersing agents on PH bioavailability and trophic transfer in primary levels of a marine food chain. Uptake, bioaccumulation, depuration, and metabolic transformation of a model PH, {sup 14}C-naphthalene, were measured and compared for Prudhoe Bay Crude Oil (PBCO) dispersed with Corexit 9527 and undispersed preparations of the water-accommodated fractions (WAF) of PBCO at two salinities and temperatures. The model food chain consisted of Isochrysis galbana and Brachionus plicatilis. Direct aqueous exposure was compared with combined aqueous and dietary exposure. Fractionation and identification of metabolites was done by HPLC co-chromatography with analytical standards, and quantitation was done by liquid scintillation counting. GC-FID characterization of WAF and dispersed oil (DO) preparations shows higher concentrations of petroleum hydrocarbons and a greater number of individual constituents in the dispersed oil preparations.

  13. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Jin Danyue; Jiang Xia [State Environmental Protect Key Laboratory of Lake Eutrophication Control, Research Center of Lake Environment, Chinese Research Academy of Environmental Science, No. 8 Dayangfang, An Wai Bei Yuan, Beijing 100012 (China)]. E-mail: jiangxia@craes.org.cn; Jing Xin [State Environmental Protect Agency of China (China); Ou Ziqing [Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016 (China)

    2007-06-01

    The effects of concentration, polar/ionic head group, and structure of surfactants on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase, as well as their effects on the bacterial activity were investigated. The toxicity ranking of studied surfactants is: non-ionic surfactants (Tween 80, Brij30, 10LE and Brij35) < anionic surfactants (LAS) < cationic surfactants (TDTMA). For the same head group and similar molecular structure, the toxicity to the bacteria is due to the chain length, in which the toxicity becomes lower as the chain length increases. The bacterial growth increased slightly when phenanthrene and LAS ({<=}10 mg L{sup -1}) served the sole carbon and energy resource. However, the degradation of {sup 14}C-phenanthrene showed either a decrease or no obvious change with the surfactants present at all tested concentrations (5-40 mg L{sup -1}). Thus, the surfactant addition is not beneficial to the removal of phenanthrene or other PAH contaminants due presumably to the preferential utilization of surfactants at low levels as the non-toxic nutrient resource and to the high toxicity of the surfactants at high levels to the microorganism activity. Biodegradation of phenanthrene was also influenced by the surfactant concentration, head group type, and structure. Much more research has yet to be completed on the use of surfactants for soil remediation due to the surfactant toxicity or biodegradation effect.

  14. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery.

    Science.gov (United States)

    Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao

    2016-05-01

    A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment.

    Science.gov (United States)

    Adrion, Alden C; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-04-05

    A total of five nonionic surfactants (Brij 30, Span 20, Ecosurf EH-3, polyoxyethylene sorbitol hexaoleate, and R-95 rhamnolipid) were evaluated for their ability to enhance PAH desorption and biodegradation in contaminated soil after treatment in an aerobic bioreactor. Surfactant doses corresponded to aqueous-phase concentrations below the critical micelle concentration in the soil-slurry system. The effect of surfactant amendment on soil (geno)toxicity was also evaluated for Brij 30, Span 20, and POESH using the DT40 B-lymphocyte cell line and two of its DNA-repair-deficient mutants. Compared to the results from no-surfactant controls, incubation of the bioreactor-treated soil with all surfactants increased PAH desorption, and all except R-95 substantially increased PAH biodegradation. POESH had the greatest effect, removing 50% of total measured PAHs. Brij 30, Span 20, and POESH were particularly effective at enhancing biodegradation of four- and five-ring PAHs, including five of the seven carcinogenic PAHs, with removals up to 80%. Surfactant amendment also significantly enhanced the removal of alkyl-PAHs. Most treatments significantly increased soil toxicity. Only the no-surfactant control and Brij 30 at the optimum dose significantly decreased soil genotoxicity, as evaluated with either mutant cell line. Overall, these findings have implications for the feasibility of bioremediation to achieve cleanup levels for PAHs in soil.

  16. Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling.

    Science.gov (United States)

    Hojo, Keiko; Hossain, Mohammed Akhter; Tailhades, Julien; Shabanpoor, Fazel; Wong, Lilian L L; Ong-Pålsson, Emma E K; Kastman, Hanna E; Ma, Sherie; Gundlach, Andrew L; Rosengren, K Johan; Wade, John D; Bathgate, Ross A D

    2016-08-25

    Structure-activity studies of the insulin superfamily member, relaxin-3, have shown that its G protein-coupled receptor (RXFP3) binding site is contained within its central B-chain α-helix and this helical structure is essential for receptor activation. We sought to develop a single B-chain mimetic that retained agonist activity. This was achieved by use of solid phase peptide synthesis together with on-resin ruthenium-catalyzed ring closure metathesis of a pair of judiciously placed i,i+4 α-methyl, α-alkenyl amino acids. The resulting hydrocarbon stapled peptide was shown by solution NMR spectroscopy to mimic the native helical conformation of relaxin-3 and to possess potent RXFP3 receptor binding and activation. Alternative stapling procedures were unsuccessful, highlighting the critical need to carefully consider both the peptide sequence and stapling methodology for optimal outcomes. Our result is the first successful minimization of an insulin-like peptide to a single-chain α-helical peptide agonist which will facilitate study of the function of relaxin-3.

  17. Analysis of hydrocarbon chain conformation using double quantum coherence /sup 13/C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Phillippi, M.A. (Clorox Technical Center, Pleasanton, CA); Wiersema, R.J.; Brainard, J.R.; London, R.E.

    1982-12-15

    The recent development of a double quantum coherence method for the observation of /sup 13/C-/sup 13/C scalar coupling constants without the need for isotopic labeling provides an alternative approach to the hydrocarbon chain conformation problem. The method is particularly suitable for this application since one-, two-, and three-bond carbon-carbon coupling constant values in hydrocarbons are typically of significantly different magnitudes, and observation of coupling constants of selected magnitude may be enhanced by the appropriate choice of pulse intervals. Consequently, J/sub CC/ values, which are dependent on the subtended dihedral angle, can be selectively observed. In order to evaluate the potential of this approach, studies on a 90% octanol-10% benzene-d/sub 6/ solution, with the latter serving for the deuterium lock were carried out. A representative /sup 13/C double quantum coherence spectrum of the region containing the octanol C-7 resonances with pulse intervals chosen to optimize couplings with magnitude close to 4.0 Hz is illustrated.

  18. Determination of Diffusion Coefficients of Selected Long Chain Hydrocarbons using Reversed- Flow Gas Chromatographic Technique

    Directory of Open Access Journals (Sweden)

    Khalisanni Khalid

    2011-01-01

    Full Text Available The reversed-flow gas chromatography (RF-GC technique was used to study the evaporation rate and estimating the diffusion coefficient of samples. The RF-GC system comprises of six-port valve, sampling and diffusion column, detector and modified commercial gas chromatography machine. Selected long chain of hydrocarbons (99.99% purity was used as samples. The solute (stationary phase were carried out by carrier gas (mobile phase to the detector. The data obtained from the RF-GC analysis were analysed by deriving the elution curve of the sample peaks using mathematical expression to find the diffusion coefficients values of respective liquids. The values obtained were compared with theoretical values to ensure the accuracy of readings. The interesting findings of the research showed the theoretical values of equilibrium at liquid-gas interphase lead to profound an agreement with the experimental evidence, which contributes for the references of future studies.

  19. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    Science.gov (United States)

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition.

  20. Molecular Assembly and Micellization of Molybdenum(V, IV) Thiolate and Selenolate Complexes with Long Hydrocarbon Chains

    National Research Council Canada - National Science Library

    Okamura, Taka-aki; Taniuchi, Kaku; Ueyama, Norikazu; Nakamura, Akira

    1999-01-01

    Molybdenum(IV, V) thiolate and selenolate complex with four long bundling hydrocarbon chains connected to the amide group, (Ph4P)[MoVO{S-2-CH3(CH2)10CONHC6H4}4] and (NEt4)2[MoIVO{Se-2-CH3(CH2)10CONHC6H4}4] were synthesized...

  1. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.

    Science.gov (United States)

    Sakthipriya, N; Doble, Mukesh; Sangwai, Jitendra S

    2016-03-01

    The use of microorganisms has been researched extensively for possible applications related to hydrocarbon degradation in the petroleum industry. However, attempts to improve the effect of microorganisms on the viscosity of hydrocarbons, which find potential use in the development of robust models for biodegradation, have been rarely documented. This study investigates the degradation of long chain hydrocarbons, such as hexadecane and eicosane using Pseudomonas fluorescens PMMD3 (P. fluorescens) and Pseudomonas aeruginosa CPCL (P. aeruginosa). P. aeruginosa used here is isolated from petroleum contaminated sediments and the P. fluorescens is from the coastal area, and both have hydrocarbon degrading genes. The degradation of hydrocarbons is studied using carbon profiling and reduction in viscosity pre- and post-degradation of hydrocarbons. The carbon profiling has been obtained using gas chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared spectrometer (FTIR) results. GC-MS results have indicated an improved biodegradation of hydrocarbons by 77-93% in one day. The yield coefficients of biomass (YX/S) for P. aeruginosa and P. fluorescens using hexadecane as a carbon source are 1.35 and 0.81 g g(-1), and the corresponding values with eicosane are 0.84 and 0.88 g g(-1). The viscosity of hexadecane is reduced by the order of 53 and 47%, while that of eicosane was reduced by 53 and 65%, using P. aeruginosa and P. fluorescens, respectively. This study also presents information on the activity of enzymes responsible for the hydrocarbon degradation. Pseudomonas species have shown their use in potential applications for bioremediation, oil-spill treatment, and flow assurance. We believe that this study will also provide stringent tests for possible model development for the bioremediation of long chain paraffins suitable for oilfield applications.

  2. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    Directory of Open Access Journals (Sweden)

    Marijanović-Rajčić, M.

    2008-01-01

    Full Text Available The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1. The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašnak spring that is contaminated with volatile chlorinated short-chain hydrocarbons.Drinking water samples were taken from 3 private wells and 1 public water-supply system situated in 3 Zagreb suburbs - Pešćenica, Trnje, and Trešnjevka. The sampling was carried out during 2003 and was undertaken on a seasonal basis. Short-chain chlorinated hydrocarbons - 1,1,1-trichloroethane, carbon tetrachloride, 1,1,2-trichloroethene and 1,1,2,2-tetrachloroethene - were determined by gas chromatography, following "liquid-liquid extraction" in pentane. For that purpose, we applied the gas chromatograph equipped with an electron-capture detector, thermo-programmable operations, and a suitable capillary column. The technique applied was that of split-injection.The groundwater of the City of Zagreb was found to be contaminated with volatile chlorinated hydrocarbons. The concentration level of 1,1,1-trichloroethane, determined in most of the samples, was found to be low (Fig. 2. On the other hand, 1,1,2-trichloroethene was present in all samples in concentrations of about 1 µg l-1- (Fig. 3. Only the drinking water samples taken from private wells in the suburb of Trnje contained somewhat higher mass concentrations of 1,1,1-trichloroethane, with the peak value of 19.03 µg l-1, measured in the winter season. In the samples taken from private wells in Trnje, the mass concentrations of 1,1,2,2-tetrachloroethene rangedfrom 15.30 µg l-1 to 18.65 µg l-1, as measured in autumn

  3. Polycondensation of dicarboxylic acids and diols in water catalyzed by surfactant-combined catalysts and successive chain extension.

    Science.gov (United States)

    Takasu, Akinori; Takemoto, Aki; Hirabayashi, Tadamichi

    2006-01-01

    Direct dehydration polycondensation of dicarboxylic acids and alcohols was carried out by surfactant-combined Brønsted and Lewis acids. This procedure did not require the removal of water, because the esterification was established at the interface of the emulsion in water. Emulsion polycondensations of 1,9-nonanediol (1,9-ND) and dodecanedioic acid (DDA) (the molar ratio of dicarboxylic acid to diol = 1:1) were carried out at 80 degrees C for 48 h in the presence of 16 wt % DBSA. The corresponding polyester (M(w) = 10.1 x 10(3)) was obtained in an excellent yield (99%). Chain extension in the emulsion was carried out using hexamethylene diisocyanate as the chain extender. SEC measurements indicated the expected shift to higher molecular weight region (M(w) = 11.4 x 10(3), M(w)/M(n) = 3.4) compared with parent polyester (M(w) = 4.5 x 10(3), M(w)/M(n) = 2.2).

  4. Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems.

    Science.gov (United States)

    Komaiko, Jennifer; McClements, David Julian

    2014-07-01

    Nanoemulsions can be fabricated using either high-energy or low-energy methods, with the latter being advantageous because of ease of implementation, lower equipment and operation costs, and higher energy efficiency. In this study, isothermal low-energy methods were used to spontaneously produce nanoemulsions using a model system consisting of oil (hexadecane), non-ionic surfactant (Brij 30) and water. Rate and order of addition of surfactant, oil and water into the final mixture were investigated to identify optimal conditions for producing small droplets. The emulsion phase inversion (EPI) and spontaneous emulsion (SE) methods were found to be the most successful, which both require the surfactant to be mixed with the oil phase prior to production. Order of addition and surfactant-to-oil ratio (SOR) influenced the particle size distribution, while addition rate and stirring speed had a minimal effect. Emulsion stability was strongly influenced by storage temperature, with droplet size increasing rapidly at higher temperatures, which was attributed to coalescence near the phase inversion temperature. Nanoemulsions with a mean particle diameter of approximately 60 nm could be produced using both EPI and SE methods at a final composition of 5% hexadecane and 1.9% Brij 30, and were relatively stable to droplet growth at temperatures <25 °C.

  5. Vesicle formation and stability in the surfactant sodium 4-(1'-heptylnonyl) benzenesulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I.; Talmon, Y.; Scriven, L.E.; Davis, H.T.; Miller, W.G.

    1982-04-01

    Surfactants composed of a hydrophilic moiety covalently attached to the end of a hydrocarbon chain (e.g., sodium dodecyl sulfate), spontaneously form micelles, equilibrium aggregates, in solution if the surfactant concentration exceeds a critical value called the CMC. Naturally occurring double-tail surfactants (e.g., phospholipids) are not known to form micelles. Over a considerable range in surfactant concentration, 2 phases coexist in equilibrium: a hydrated, multilamellar (smectic) surfactant phase and an aqueous phase saturated with surfactant. In this report the preparation of vesicles, their direct, unstained visualization by electron microscopy, and investigation of their stability and structure by turbidimetry, conductimetry, light microscopy, densitometry, scanning calorimetry, and nuclear magnetic resonance spectroscopy are discussed. Dispersed liquid crystal was studied by the same means. For comparison, parallel studies on bovine lecithin are presented. From the results, it is concluded that these vesicles may be stable for many months, but eventually revert to multilamellar liquid crystals.

  6. Dynamics of interfacial reactions between O(3 P) atoms and long-chain liquid hydrocarbons

    Science.gov (United States)

    Allan, Mhairi; Bagot, Paul A. J.; Köhler, Sven P. K.; Reed, Stewart K.; Westacott, Robin E.; Costen, Matthew L.; McKendrick, Kenneth G.

    2007-09-01

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O(3P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  7. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.

    Science.gov (United States)

    Halfmann, Charles; Gu, Liping; Gibbons, William; Zhou, Ruanbao

    2014-12-01

    Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L(-1)·O.D.(-1)·d(-1). Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals.

  8. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  9. Surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardana, U.R.; Christian, S.D.; Tucker, E.E.; Taylor, R.W.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))

    1993-09-01

    A new method has been developed for determining binding constants of complexes of cyclodextrins with surface-active compounds, including water-soluble ionic surfactants. The technique requires measuring the change in surface tension caused by addition of a cyclodextrin (CD) to aqueous solutions of the surfactant; the experimental results lead directly to inferred values of the thermodynamic activity of the surfactant. Surface tension results are reported for three different surfactants sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and cetyltrimethylammonium bromide (CTAB) in the presence and in the absence of added [beta]-CD. Data for CPC have been obtained at surfactant concentrations below and above the critical micelle concentration. Correlations between surface tension and surfactant activity are expressed by the Szyszkowski equation, which subsumes the Langmuir adsorption model and the Gibbs equation. It is observed that the surface tension increases monotonically as [beta]-cyclodextrin is added to ionic surfactant solutions. At concentrations of CD well in excess of the surfactant concentration, the surface tension approaches that of pure water, indicating that neither the surfactant-CD complexes nor CD itself are surface active. Binding constants are inferred from a model that incorporates the parameters of the Szyszkowski equation and mass action constants relating to the formation of micelles from monomers of the surfactant and the counterion. Evidence is given that two molecules of CD can complex the C-16 hydrocarbon chain of the cetyl surfactants. 30 refs., 5 figs., 1 tab.

  10. Self-Aggregation of Amphiphilic Dendrimer in Aqueous Solution: The Effect of Headgroup and Hydrocarbon Chain Length.

    Science.gov (United States)

    Zhang, Pei; Xu, Xiaohui; Zhang, Minghui; Wang, Jinben; Bai, Guangyue; Yan, Haike

    2015-07-28

    The self-aggregation of amphiphilic dendrimers G1QPAMCm based on poly(amidoamine) PAMAM possessing the same hydrophilic group but differing in alkyl chain length in aqueous solution was investigated. Differences in the chemical structures lead to significant specificities in the aggregate building process. A variety of physicochemical parameters presented monotonous regularity with the increase in alkyl chain length in multibranched structure, as traditional amphiphilic molecules. A significant difference, however, existed in the morphology and the microenvironment of the microdomain of the aggregates, with G1QPAMCm with an alkyl chain length of 16 intending to form vesicles. To obtain supporting information about the aggregation mechanism, the thermodynamic parameters of micellization, the free Gibbs energy ΔGmic, and the entropy ΔSmic were derived subsequently, of which the relationship between the hydrophobic chain length and the thermodynamic properties indicated that the self-assembly process was jointly driven by enthalpy and entropy. Other than traditional surfactants, the contribution of enthalpy has not increased identically to the increase in hydrophobic interactions, which depends on the ratio of the alkyl chain length to the radius in the headgroup. Continuous increases in the hydrophobic chain length from 12 to 16 lead to the intracohesion of the alkyl chain involved in the process of self-assembly, weakening the hydrophobic interactions, and the increase in -ΔHmic, which offers an explanation of the formation of vesicular structures.

  11. Coupled Transport of PAH and Surfactants in Natural Aquifer Material

    Science.gov (United States)

    Danzer, J.; Grathwohl, P.

    1998-03-01

    Surfactants in aqueous solution adsorb onto mineral surfaces and form micelles above the critical micelle concentration (CMC) due to their physico-chemical properties. Hydrophobic organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have a high affinity for the adsorbed surfactant layers (monomers, hemimicelles and admicelles) and to the micelles in the mobile aqueous phase. The transport of PAHs is controlled by the concentration of the surfactant and the partition coefficients, of the PAHs between water and admicelles (adsolubilization: K adm) and water and micelles (solubilization: K mic), respectively. These partition coefficients were measured in laboratory batch and column experiments using phenanthrene as a chemical probe for the PAHs, a non-ionic surfactant (Terrasurf G50), natural aquifer sand (River Neckar Alluvium: RNA) and its petrographic subcomponents. The sorption of the surfactant can be described by a linear isotherm for concentrations below the CMC and a sorption maximum above the CMC, which both depend on the grain size and the surfactant accessible internal surface area of the particles. K adm was found to be higher than K mic. Both depend on the surfactant's properties, such as alkyl chain length, polar headgroup or ethoxylation. In column experiments an increasing retardation of phenanthrene was observed up to the CMC followed by a facilitated transport at surfactant concentration several times the CMC.

  12. DNA association-enhanced physical stability of catanionic vesicles composed of ion pair amphiphile with double-chain cationic surfactant.

    Science.gov (United States)

    Lee, Jung; Chang, Chien-Hsiang

    2014-09-01

    Physical stability control of vesicle/DNA complexes is a key issue for the development of catanionic vesicles composed of ion pair amphiphile (IPA) as DNA carriers. In this work, physical stability characteristics of the complexes of DNA with positively charged catanionic vesicles composed of an IPA and a double-chain cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), were explored. It was found that in water, the mixed IPA/DHDAB catanionic vesicles became stable when the mole fraction of DHDAB (xDHDAB) was increased up to 0.5. The improved physical stability of the vesicles with a high xDHDAB could be related to the enhanced electrostatic interaction between the vesicles. When the catanionic vesicles interacted with DNA, excellent physical stability was detected for the vesicle/DNA complexes especially with a high xDHDAB. However, this could not be fully explained by the electrostatic interaction effect, and the role of molecular packing within the vesicular bilayers was apparently important. The corresponding Langmuir monolayer study demonstrated that the molecular packing of mixed IPA/DHDAB layers became ordered with DNA association due to inhibited desorption of the positively charged moiety of the IPA. Moreover, the DNA association-induced improvement in the molecular packing of the mixed IPA/DHDAB layers became pronounced with increased xDHDAB. The results imply that one can fabricate catanionic vesicle/DNA complexes with excellent physical stability through the improved molecular packing in the IPA vesicular bilayers with DHDAB addition and DNA association.

  13. Gemini ester quat surfactants and their biological activity.

    Science.gov (United States)

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  14. In vitro analysis of the effect of alkyl-chain length of anionic surfactants on the skin by using a reconstructed human epidermal model.

    Science.gov (United States)

    Yamaguchi, Fumiko; Watanabe, Shin-Ichi; Harada, Fusae; Miyake, Miyuki; Yoshida, Masaki; Okano, Tomomichi

    2014-01-01

    We investigated the effect of the alkyl-chain length of anionic surfactants on the skin using an in vitro model. The evaluated anionic surfactants were sodium alkyl sulfate (AS) and sodium fatty acid methyl ester sulfonate (MES), which had different alkyl-chain lengths (C8-C14). Skin tissue damage and permeability were examined using a reconstructed human epidermal model, LabCyte EPI-MODEL24. Skin tissue damage was examined by measuring cytotoxicity with an MTT assay. Liquid chromatography/tandem mass spectrometry (LC/MS-MS) and liquid chromatography/mass spectrometry (LC/MS) were used to detect surfactants that permeated into the assay medium through an epidermal model. To assess the permeation mechanism and cell damage caused by the surfactants through the epidermis, we evaluated the structural changes of Bovine Serum Albumin (BSA), used as a simple model protein, and the fluidity of 1,2-dipalmitoyl-sn-glycero-3-phosphpcholine (DPPC) liposome, which serves as one of the most abundant phospholipid models of living cell membranes in the epidermis. The effects of the surfactants on the proteins were measured using Circular Dichroism (CD) spectroscopy, while the effects on membrane fluidity were investigated by electron spin resonance (ESR) spectroscopy. ET50 (the 50% median effective time) increased as follows: C10 C12 > C14, for both AS and MES. For both AS and MES, the order parameter, which is the criteria for the microscopic viscosity of lipid bilayers, increased as follows: C10 C12 > C14. It was determined that the difference in skin tissue damage in the LabCyte EPI-MODEL24 with C10 to C14 AS and MES was caused by the difference in permeation and cell membrane fluidity through the lipid bilayer path in the epidermis.

  15. Compounds and methods for the production of long chain hydrocarbons from biological sources

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Cameron; Silks, Louis A; Sutton, Andrew D; Wu, Ruilian; Schlaf, Marcel; Waldie, Fraser; West, Ryan; Collias, Dimitris Ioannis

    2016-08-23

    The present invention is directed to the preparation of oxygenated, unsaturated hydrocarbon compounds, such as derivatives of furfural or hydroxymethyl furfural produced by aldol condensation with a ketone or a ketoester, as well as methods of deoxidatively reducing those compounds with hydrogen under acidic conditions to provide saturated hydrocarbons useful as fuels.

  16. Compounds and methods for the production of long chain hydrocarbons from biological sources

    Science.gov (United States)

    Gordon, John Cameron; Silks, Louis A; Sutton, Andrew D; Wu, Ruilian; Schlaf, Marcel; Waldie, Fraser; West, Ryan; Collias, Dimitris Ioannis

    2016-08-23

    The present invention is directed to the preparation of oxygenated, unsaturated hydrocarbon compounds, such as derivatives of furfural or hydroxymethyl furfural produced by aldol condensation with a ketone or a ketoester, as well as methods of deoxidatively reducing those compounds with hydrogen under acidic conditions to provide saturated hydrocarbons useful as fuels.

  17. Evaluating Samgor petroleum kerosene fractions for content of n-paraffin hydrocarbons (for production of surfactants and cleaning substances)

    Energy Technology Data Exchange (ETDEWEB)

    Benashvili, Ye.M.; Uchaneyshvili, T.G.

    1980-01-01

    This paper investigates content and formation of n-alkanes (NA) of very high purity in Samgor petroleum for the purpose of surfactant production. Distillates of 185-275/sup 0/C and 190-260/sup 0/C were utilized. Production of NA was carried out with the aid of synthetic zeolite TK-58 type SaA, with dynamic activity in pairs of n-heptane 59 mg/cm/sup 3/. Adsorption temperature was 250-275/sup 0/C; volume flow rate 0.2 hour/sup -1/; ratio of raw materials: adsorbent 1:5. Desorption of NA was carried out with aqueous steam at 350-370/sup 0/C. After removing traces of heterocompounds, NA was subjected to adsorption cleaning using natural clinoptilolite at 20/sup 0/ temp. via percolation. Individual composition of NA was investigated via GLC (gas liquid chromatography). The tested fractions contained 52.3-55.5% alkanes, including NA C/sub 10/-C/sub 15/ 17.6-18.2%. The latter are utilized for production of surfactants and synthetic detergents; the refined petroleum serves as a component for diesel and jet fuels.

  18. 有机硅表面活性剂对水体中多环芳烃的浊点萃取研究%Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Silicone Surfactants

    Institute of Scientific and Technical Information of China (English)

    姚炳佳; 杨立; 胡琼; Shigendo Akita

    2007-01-01

    Cloud point extraction (CPE) processes with two silicone suffactants, Dow Corning DC-190 and DC-193, were studied as preconcentration and treatment for the water polluted by three trace polycyclic aromatic hydrocarbons (PAHs): anthracene, phenanthrene and pyrene. For all cases, the volumes of suffactant-rich phase obtained by two silicone suffactants were very small, i.e. a lower water content in the surfactant-rich phase was obtained. For example, less than 3% of the initial solution was obtained in a 1% (by mass) surfactant solution, which was much smaller than that of TX-114 in the same surfactant concentration. And TX-114 is known as a high compact surfactant-rich phase among most nonionic surfactants, thus the comparison showed that an excellent enrichment was ensured in the analysis application by the CPE process with the silicone surfactants, and the lower water content obtained in the surfactant-rich phase is also important in the large scale water treatment. The influences of additives and phase separation methodology on the recovery of PAHs were discussed. Comparing with DC-193,DC-190 has a lower cloud point and a higher recovery (near 100%) of all the three PAHs in same surfactant concentration, which was required for application as a preconcentration process prior to HPLC system. However the DC-190 solution is hard to be phase separated only by heating, whereas DC-193 has a relative higher phase separating speed by heating, but a high cloud point (around 360K) limits its application. Due to the phase separation by heating is the only method of CPE suitable to the large scale water treatment, the mixtures of two silicone surfacrants solutions were investigated in this study. A solution containing 1% of mixed DC-190 and DC-193 (in the ratio of 90∶10) removed anthracene, phenanthrene and pyrene near 100% with a relative low cloud point and quick phase separating speed.

  19. A novel high-performance thin layer chromatography method for quantification of long chain aliphatic hydrocarbons from Cissus quadrangularis

    Directory of Open Access Journals (Sweden)

    Vandana Jain

    2016-08-01

    Full Text Available Context: A high-performance thin layer chromatography (HPTLC is an analytical technique, which can be used for the determination of constituents or marker components in various parts of the plants. Earlier studies have estimated phytoconstituents from the stem and other aerial plant parts of Cissus quadrangularis Linn. Estimation of hydrocarbons can also be successfully done using HPTLC technique using suitable derivatization. Aims: To develop and validate a simple and rapid method for the estimation of long chain aliphatic hydrocarbons from the leaves of C. quadrangularis using HPTLC technique. Methods: Precoated silica gel 60 F254 plates were used as stationary phase. The mobile phase used was hexane (100 %. The detection of spots was carried out using berberine sulphate as detecting reagent. Results: The method was validated in terms of linearity, sensitivity, accuracy, and precision. Linearity range was found to be 2-10 µg/mL, limit of detection 0.127 µg/mL, and limit of quantification 0.384 µg/mL. Conclusions: A novel, simple, accurate, precise and sensitive HPTLC method has been developed and validated for the estimation of long chain aliphatic hydrocarbons obtained from the leaves of C. quadrangularis Linn.

  20. The physicochemistry and percolation behavior of microemulsions as a function of chain length of cosurfactant and surfactant

    National Research Council Canada - National Science Library

    Purva Thatai; Ashok K. Tiwary; Bharti Sapra

    2016-01-01

    ...) stabilized by mixtures containing polysorbates (C12-C18) as surfactants and n-alkanols (C2-C6) as cosurfactants. Distribution coefficients and Gibbs free energy were also determined for the systems containing polyoxyethylene sorbitan monolaurate...

  1. Ion Specificity and Micellization of Ionic Surfactants: A Monte Carlo Study

    CERN Document Server

    Santos, Alexandre P dos; Levin, Yan

    2014-01-01

    We develop a simulation method which allows us to calculate the critical micelle concentrations for ionic surfactants in the presence of different salts. The results are in good agreement with the experimental data. The simulations are performed on a simple cubic lattice. The anionic interactions with the alkyl chains are taken into account based on the previously developed theory of the interfacial tensions of hydrophobic interfaces: the kosmotropic anions do not interact with the hydrocarbon tails of ionic surfactants, while chaotropic anions interact with the alkyl chains through a dispersion potential proportional to the anionic polarizability.

  2. Effect of amide bonds on the self-assembly of gemini surfactants.

    Science.gov (United States)

    Hoque, Jiaul; Gonuguntla, Spandhana; Yarlagadda, Venkateswarlu; Aswal, Vinod K; Haldar, Jayanta

    2014-06-21

    This study provides an insight into the micellar aggregation properties in aqueous solutions of various gemini surfactants bearing one or more amide groups at the side chains and/or in the spacer by conductivity and small angle neutron scattering (SANS) studies. The amide functionality was found to enhance the surfactant aggregation properties as compared to the surfactants having no amide bond. Furthermore, the aggregation properties of the gemini surfactants bearing amide groups were found to strongly depend on the position and number of amide bonds. With the increase in the number of amide bonds, the aggregation number (N) and the size of the micelles increased. Additionally, the size and shape of the micelles were also found to depend both on the hydrocarbon chain length and the spacer chain length. It was also found that the aggregation number and the size of the micelles increased with an increase in concentration and decreased with an increase in temperature. The critical micellar concentration (CMC) values of the gemini surfactants obtained by a conductometric method were found to vary greatly with variation in the hydrocarbon chain.

  3. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K.; Cai, Hao; Dunn, Jennifer B.; Hartley, Damon; Searcy, Erin; Tan, Eric; Jones, Sue; Snowden-Swan, Lesley

    2016-03-31

    This report describes the supply chain sustainability analysis (SCSA) of renewable gasoline and diesel produced via fast pyrolysis of a blended woody feedstock. The metrics considered in this analysis include supply chain greenhouse gas (GHG) emissions and water consumption.

  4. α-Gel formation by amino acid-based gemini surfactants.

    Science.gov (United States)

    Sakai, Kenichi; Ohno, Kiyomi; Nomura, Kazuyuki; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2014-07-08

    Ternary mixtures being composed of surfactant, long-chain alcohol, and water sometimes form a highly viscous lamellar gel with a hexagonal packing arrangement of their crystalline hydrocarbon chains. This molecular assembly is called "α-crystalline phase" or "α-gel". In this study, we have characterized α-gels formed by the ternary mixtures of amino acid-based gemini surfactants, 1-hexadecanol (C16OH), and water. The surfactants used in this study were synthesized by reacting dodecanoylglutamic acid anhydride with alkyl diamines and abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). An amino acid-based monomeric surfactant, dodecanoylglutamic acid (12-Glu), was also used for comparison. At a fixed water concentration the melting point of the α-gel increased with increasing C16OH concentration, and then attained a saturation level at the critical mole ratio of 12-GsG-12/C16OH = 1/2 under the normalization by the number of hydrocarbon chains of the surfactants. This indicates that, to obtain the saturated α-gel, a lesser amount of C16OH is required for the gemini surfactants than for the monomeric one (the critical mole ratio of 12-Glu/C16OH = 1/3). Small- and wide-angle X-ray scattering measurements demonstrated an increase in the long-range d-spacing of the saturated α-gels in the order 12-Glu gels at a given water concentration. This is caused by the decreased amount of excess water being present outside the α-gel structure (or the increased amount of water incorporated between the surfactant-alcohol bilayers). To the best of our knowledge, this is the first report focusing on the formation of α-gel in gemini surfactant systems.

  5. I. Enabling Single-Chain Surfactants to Form Vesicles by Nonamphiphilic Liquid Crystals in Water II. Controlling Attachment and Ligand-Mediated Adherence of Candida albicans on Monolayers

    Science.gov (United States)

    Varghese, Nisha

    This dissertation describes a fundamental study of weak noncovalent interactions and surface forces that exist at the interfaces of various interacting moieties (small molecules or microbes), and its relevance to colloidal and material chemistry. Chapter 1 presents an emulsion system that enables single-chain anionic or nonionic surfactants to sequester and encapsulate certain water-soluble organic salts, leading to the formation of vesicles in water. The water-soluble organic salt in the system comprises of disodium cromoglycate crystals that are emulsified by surfactants in water to form stable liquid crystal droplets. The work provides an exception to the rule of geometric packing factor that dictates formation of micelles by the surfactants in water. Chapter 2 shows that the odd or even number of carbon atoms present in the aliphatic chain of surfactants affect the ability of surfactants to emulsify aqueous-based liquid crystals of disodium cromoglycate. Such an odd-even effect is frequently observed for solid state properties like melting point, heat of fusion and refractive index but is rarely observed for molecules present in solution. When mixed in water, anionic single-chain surfactants with odd number of carbon atoms emulsifies disodium cromoglycate to form liquid crystal droplets, while surfactants with even number of carbon atoms fail to emulsify disodium cromoglycate. Chapter 3 Bolaamphiphiles usually form vesicles only in extreme conditions or in the presence of surfactants. Here, we explore the co-assembly system of synthesized bolaamphiphiles and disodium cromoglycate in water. The combination of the self-assembly forces of the bolaamphiphile and self-associating property of disodium cromoglycate liquid crystals act together at the interface form a unique microemulsion of liquid crystal droplets of disodium cromoglycate embedded in liquid crystal phase. Chapter 4 describes a key event (adhesion) that precedes infections caused by Candida albicans

  6. Cloud point phenomena for POE-type nonionic surfactants in a model room temperature ionic liquid.

    Science.gov (United States)

    Inoue, Tohru; Misono, Takeshi

    2008-10-15

    The cloud point phenomenon has been investigated for the solutions of polyoxyethylene (POE)-type nonionic surfactants (C(12)E(5), C(12)E(6), C(12)E(7), C(10)E(6), and C(14)E(6)) in 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), a typical room temperature ionic liquid (RTIL). The cloud point, T(c), increases with the elongation of the POE chain, while decreases with the increase in the hydrocarbon chain length. This demonstrates that the solvophilicity/solvophobicity of the surfactants in RTIL comes from POE chain/hydrocarbon chain. When compared with an aqueous system, the chain length dependence of T(c) is larger for the RTIL system regarding both POE and hydrocarbon chains; in particular, hydrocarbon chain length affects T(c) much more strongly in the RTIL system than in equivalent aqueous systems. In a similar fashion to the much-studied aqueous systems, the micellar growth is also observed in this RTIL solvent as the temperature approaches T(c). The cloud point curves have been analyzed using a Flory-Huggins-type model based on phase separation in polymer solutions.

  7. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants.

    Science.gov (United States)

    Zhou, Chengcheng; Wang, Fengyan; Chen, Hui; Li, Meng; Qiao, Fulin; Liu, Zhang; Hou, Yanbo; Wu, Chunxian; Fan, Yaxun; Liu, Libing; Wang, Shu; Wang, Yilin

    2016-02-17

    This work reports that cationic micelles formed by cationic trimeric, tetrameric, and hexameric surfactants bearing amide moieties in spacers can efficiently kill Gram-negative E. coli with a very low minimum inhibitory concentration (1.70-0.93 μM), and do not cause obvious toxicity to mammalian cells at the concentrations used. With the increase of the oligomerization degree, the antibacterial activity of the oligomeric surfactants increases, i.e., hexameric surfactant > tetrameric surfactant > trimeric surfactant. Isothermal titration microcalorimetry, scanning electron microscopy, and zeta potential results reveal that the cationic micelles interact with the cell membrane of E. coli through two processes. First, the integrity of outer membrane of E. coli is disrupted by the electrostatic interaction of the cationic ammonium groups of the surfactants with anionic groups of E. coli, resulting in loss of the barrier function of the outer membrane. The inner membrane then is disintegrated by the hydrophobic interaction of the surfactant hydrocarbon chains with the hydrophobic domains of the inner membrane, leading to the cytoplast leakage. The formation of micelles of these cationic oligomeric surfactants at very low concentration enables more efficient interaction with bacterial cell membrane, which endows the oligomeric surfactants with high antibacterial activity.

  8. Post-mating shift towards longer-chain cuticular hydrocarbons drastically reduces female attractiveness to males in a digger wasp.

    Science.gov (United States)

    Polidori, Carlo; Giordani, Irene; Wurdack, Mareike; Tormos, José; Asís, Josep D; Schmitt, Thomas

    2017-07-01

    Females of most aculeate Hymenoptera mate only once and males are therefore under a strong competitive pressure which is expected to favour the evolution of rapid detection of virgin females. In several bee species, the cuticular hydrocarbon (CHC) profile exhibited by virgin females elicits male copulation attempts. However, it is still unknown how widespread this type of sexual communication is within Aculeata. Here, we investigated the use of CHCs as mating cues in the digger wasp Stizus continuus, which belongs to the family (Crabronidae) from within bees arose. In field experiments, unmanipulated, recently emerged virgin female dummies promptly elicit male copulation attempts, whereas 1-4days old mated females dummies were still attractive but to a much lesser extent. In contrast, old (10-15days) mated female dummies did not attract males at all. After hexane-washing, attractiveness almost disappeared but could be achieved by adding CHC extracts from virgin females even on hexane-washed old mated females. Thus, the chemical base of recognition of females as appropriate mating partner by males is coded in their CHC profile. Accordingly, differences in CHC profiles can be detected between sexes, with males having larger amounts of alkenes and exclusive long-chain alkanes, and within females specially according to their mating status. Shortly after mating, almost all of the major hydrocarbons found on the cuticle of females undergo significant changes in their abundance, with a clear shift from short-chain to long-chain linear and methyl-branched alkanes. The timely detection of virgin females by males in S. continuus could be advantageous within the narrow period of female emergence, when male-male competition is strongest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A rotating disk apparatus for assessing the biodegradation of polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to solutions of surfactant Brij 35

    OpenAIRE

    Bernardez, Letícia Alonso

    2009-01-01

    Texto completo: acesso restrito. p. 415-424 A rotating disk apparatus was used to investigate the biodegradation of PAHs from non-aqueous phase liquids to solutions of Brij 35. The mass transfer of PAHs in absence of surfactant solution was not large enough to replenish the degraded PAHs. The addition of surfactant resulted in an overall enhancement of biodegradation rates compared to that observed in pure aqueous solution. This is because surfactant partition significant amount of PAHs in...

  10. Synthesis and crystal structures of gold nanowires with Gemini surfactants as directing agents.

    Science.gov (United States)

    Xu, Feng; Hou, Hao; Gao, Zhinong

    2014-12-15

    The preparation of crystalline gold nanowires (NWs) by using gemini surfactants as directing agents through a three-step seed-mediated method is reported. Unlike the nanorods with relatively low aspect ratios (typically below 20) obtained by using cetyltrimethylammonium bromide as a directing agent, the NWs obtained in this investigation can reach up to 4.4 μm, and the largest aspect ratio is calculated to be 210. For this, each of seven different gemini surfactants are utilized as directing agents, and the length and/or aspect ratio of the NWs can be tuned by varying the hydrocarbon chain lengths of the gemini surfactants. Both single and twinned crystalline structures are elucidated by selected-area electron diffraction and high-resolution transmission electron microscopy studies. The use of gemini surfactants not only advances the synthesis of gold nanostructures, but improves the understanding of the growth mechanism for seed-mediated growth.

  11. Modeling vibrational resonance in linear hydrocarbon chain with a mixed quantum-classical method.

    Science.gov (United States)

    Gelman, David; Schwartz, Steven D

    2009-04-07

    The quantum dynamics of a vibrational excitation in a linear hydrocarbon model system is studied with a new mixed quantum-classical method. The method is suited to treat many-body systems consisting of a low dimensional quantum primary part coupled to a classical bath. The dynamics of the primary part is governed by the quantum corrected propagator, with the corrections defined in terms of matrix elements of zeroth order propagators. The corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The ability of the method to describe dynamics of multidimensional systems has been tested. The results obtained by the method have been compared to previous quantum simulations performed with the quasiadiabatic path integral method.

  12. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    Science.gov (United States)

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature.

  13. Theoretical and Experimental Studies on Interactions of Cationic-Anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    王大喜; 杜永顺; 岳长涛; 侯建国; 栗秀刚; 杨文杰

    2003-01-01

    Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394 kJ·mol-1 and 0.1204 kJ·mol-1 for the molecular pairs with fluocarbon and hydrocarbon chain: C4H10/C5H12, C4F10/C5H12, and C4F10 /C5F12, respectively.When hydrophilic group with cationic and anionicions is introduced, interaction energies are -287.40kJ·mol-1,-311.18 kJ·mo1-1 and -345.83 kJ·mo1-1. The results show that there is strong static interaction between cationic and anionic surfactants. It has been predicted that mixed monolayer may be formed and surface activity is enhanced favorably, especially for mixtures of cationic and anionic surfactants with fluocarbon and hydrocarbon chains. The anionic surfactants, sodium octadecylbenzenesulfonate perfluopolyetherbenzenesulonate(ANF-I) was synthesized, mixture effects of ANF-I with sodium octadecylbenzenesulfonate or dodecyldimethyl benzylammonium bromide were studied. The results indicate that the efficiency of mixing increased and the theoretical prediction was testified. These results can provide useful information for the design of new surfactants.

  14. Effect of presence of benzene ring in surfactant hydrophobic chain on the transformation towards one dimensional aggregate

    Directory of Open Access Journals (Sweden)

    Rabah A. Khalil

    2015-07-01

    Full Text Available The formation of wormlike micelle and the following significant changes in rheological properties suffer misunderstanding from both theoretical and fundamental aspects. Recently, we have introduced a theory for interpreting such important phenomenon which is referred to as critical intermolecular forces (CIF. The theory has stated that the hydrophobic effect is the main factor for the formation of worm-like aggregates. Therefore, it seems interesting to check out the validity of this new physical insight through investigating the presence of benzene ring as less hydrophobic group in contrast to that of alkyl in surfactant tail. The mixture of anionic sodium dodecylbenzenesulphonate (SDBS and cationic cetyltrimethylammonium bromide (CTAB shows a high dynamic viscosity peak at the ratio of 80/20 of 3 wt.% CTAB/SDBS indicating the formation of wormlike micelles. The thermodynamic properties have been evaluated for this mixture exhibiting good agreement with the rheological changes. Interestingly, the results show the presence of benzene ring (in SDBS causing a negative effect towards the formation of one dimensional aggregate in contrast to previous results which support the proposed CIF theory. The presence of nonionic surfactant TritonX-100 in binary and ternary systems of SDBS and CTAB prohibits the formation of wormlike micelles.

  15. Chain length estimation of hydrocarbons in fluid inclusions by Raman spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pironon, J. (Centre de Recherches sur la Geologie de l' Uranium (CREGU), 54 - Vandoeuvre-les-Nancy (France))

    1993-04-22

    The analysis by conventional Raman spectroscopy of synthetic n-alkane inclusions allows an estimation of the chain length coefficient. This coefficient varies with the dilution of the n-alkanes. The estimate was applied to both synthetic and natural inclusions, and then refined by comparing the Raman and infrared data. Therefore, the complex aliphatic mixture of natural inclusions can be assimilated to an average alkane. The objective of this pseudoization is to model the thermobarometric conditions of trapping of the organic fluids in inclusion. 17 refs., 3 figs. 1 tab.

  16. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  17. Structural basis for the discrepancy of spectral behavior in C-H stretching band between steroids and long chain hydrocarbon compounds

    Institute of Scientific and Technical Information of China (English)

    徐怡庄; 陶靖; 许振华; 翁诗甫; 徐建平; 吴瑾光; 徐端夫; 徐光宪

    1999-01-01

    The discrepancies of the spectral behavior for the C-H stretching band between some long chain hydrocarbon compounds and steroids were investigated. At low temperature, the C-H stretching bands exhibit complex fine structure in steroids but remain simple in long chain hydrocarbon compounds. MM3 molecular mechanics calculation indicates that, for long chain hydrocarbon compounds, the C-H groups vibrate with large scale coupling. There exist a few bands where the C-H groups vibrate in synchronous and inphase mode. Thus the variations of dipole moment for these bands are enhanced and the intensities are obviously stronger than others and cover other band in the spectra. This is just the reason why the C-H stretching bands are simple even at low temperature environment. Nevertheless, for the steroids, the C-H stretching bands vibrate with local coupling mode. The synchronous enhancement effect does not occur, the differences of intensities for various modes are not as large as those in long chain hydrocarbo

  18. Dynamics of interfacial reactions between O({sup 3} P) atoms and long-chain liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Mhairi [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bagot, Paul A J [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Koehler, Sven P K [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Reed, Stewart K [Department of Physics and Astronomy, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JZ (United Kingdom); Westacott, Robin E [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Costen, Matthew L [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); McKendrick, Kenneth G [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2007-09-15

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O({sup 3}P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  19. 低能离子诱变烃降解菌所产表面活性剂的研究%Surfactant Produced by Hydrocarbon Degrading Bacteria Mutated with Low Energy Ion

    Institute of Scientific and Technical Information of China (English)

    向廷生; 郭晓博; 张祥胜

    2013-01-01

    菌株产表面活性剂的能力直接影响其对石油烃的降解和利用,大量的研究表明,生物表面活性剂可以通过胶束来渗透、润湿、乳化、增溶、发泡、消泡等作用促进石油的利用,有效提高石油烃的降解,加快油污土壤的生物修复过程.对菌株23产表面活性剂和菌株生长的关系,发酵液中表面活性剂的提取鉴定,以及生物表面活性剂的临界胶束浓度,对温度、pH、盐度的稳定性,对石蜡的乳化活性等理化性质进行了初步分析研究,为该菌株进一步的研究以及今后实际应用提供较多的资料和信息,为其应用领域提供理论依据,以便更好的发挥其在实际生产中的功能.%The ability of surfactant produced by strains directly affects its degradation and utilization of petroleum hydrocarbons , much of study showed that the biosurfactants could permeate through the micelle, wetting, emulsification, solubilization, foaming, and defoaming actions to promote the use of petroleum, effectively improve the degradation of petroleum hydrocarbons, and to speed up the oil-spilled soil bioremediation process. The relationship between the production of surfactant and the growth of strain 23, the extraction and identification of the surfactant in the fermentation broth, as well as bio-surfactant critical micelle concentration, the stability to temperature, pH, salinity, paraffin e-mulsificalion activity and other physical and chemical properties were preliminarily analyzed and studied in this paper; more data and information of this strain were provided for further studies and practical applications, and provide theoretical basis in their applications fields, in order to play their function in the actual production better.

  20. Molecular Dynamics Simulation for the Effect of Chain Length of Spacer and Tail of Cationic Gemini Surfactant on the Complex with Anionic Polyelectrolyte%连接基团与尾链长度对阳离子Gemini表面活性剂与阴离子聚电解质复合物影响的分子动力学模拟

    Institute of Scientific and Technical Information of China (English)

    徐毅; 冯剑; 尚亚卓; 刘洪来

    2007-01-01

    Interaction of anionic polyelectrolyte with cationic gemini surfactant has been investigated by coarse-grained molecular dynamics simulation. Polyelectrolyte facilitates the oppositely charged ionic surfactants to aggregate by suppressing the electrostatic repulsion between ionic head groups leading to the formation of micellar complex. With addition of surfactant, the conformation of polyion chain changes from stretched to random coiled to spherical, and at the same time more free micelles are formed by surfactants in mixtures. Increasing the length of spacer or tail chain in gemini surfactant will weaken its interaction with polyelectrolyte and simultaneously strengthen its tendency to self-assemble. The simulation results are consistent with experimental observations and reveal that the electrostatic interaction plays an important role in the interaction of polyelectrolyte with gemini surfactant.

  1. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  2. Effect of the Unsaturation of the Hydrocarbon Chain of Fatty-Amides on the CO2 Corrosion of Carbon Steel Using EIS and Real-Time Corrosion Measurement

    Directory of Open Access Journals (Sweden)

    J. Porcayo-Calderon

    2015-01-01

    Full Text Available Fatty-amide derivatives were evaluated to study the effect of the double bonds into the hydrocarbon chain (C18 on the corrosion behavior of carbon steel. Electrochemical impedance spectroscopy (EIS and real-time corrosion measurements were used to evaluate the inhibition mechanism of the fatty-amides on carbon steel in CO2-saturated (3% NaCl + 10% diesel emulsion at 50°C. EIS results demonstrated that the unsaturation present into the hydrocarbon chain contributes to the efficiency of fatty-amides, because they can be adsorbed on the metal surface by a flat-adsorption process reducing the presence of active sites and blocking the corrosion process and preventing the diffusion of corrosive species, such as H2O, H+, Cl−, and HCO3-. Real-time corrosion measurements also indicated that the effectiveness of the inhibitors is dependent on the unsaturation into the hydrocarbon chain, being also a good technique to determine the stability of the adsorption process of the inhibitors.

  3. Soap opera : polymer-surfactant interactions on thin film surfaces /

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, B. H. (Byram H.); Johal, M. S. (Malkiat S.); Wang, H. L. (Hsing-Lin); Robinson, J. M. (Jeanne M.)

    2001-01-01

    Surfactants are macromolecules with unique properties. They commonly contain a polar head group with a nonpolar hydrocarbon chain. These properties allow surfactants to solubilize greases and other nonpolar molecules. One particular way that this is accomplished is through the formation of micelles. Micelles are formed at the critical micelle concentration (cmc), which varies depending upon the nature of the surfactant and also the media in which the surfactant resides. These micelles can take a variety of shapes, but are generally characterized by surrounding the grease with the nonpolar hydrocarbon chains, exposing only the polarized head groups to the media, usually water. This property of easy solubilization has made surfactants a very attractive industrial agent, They are used most conventionally as industrial cleaning agents and detergents. However, they also have lesser-known applications in conjunction with polymers and other macromolecular mixtures, often creating a system with novel properties, such as increased solubilization and smoother mixture consistency. A recently developed field has investigated the self-assembly of polymers and polyelectrolytes onto thin film surfaces. There are many reasons for studying this process, such as for second harmonic generation purposes and bioassays. In this study, the interaction between the anionic polyelectrolyte poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and two surfactants of opposite charge, Sodium Dodecyl Sulfate (SDS) and Dodecyl Trimethyl Ammonium Bromide (DTAB), in their assembly onto thin film surfaces was investigated. The kinetics of adsorbance onto the thin films was examined, followed by construction of 10-bilayer films using an alternating layer of the cationic polyelectrolyte poly(ethylenimine) (PEI) to provide the electrostatic means for the PAZO/surfactant combination to assemble onto the thin film. The kinetics of adsorption is being

  4. Methanol to olefin Conversion on HSAPO-34 zeolite from periodic density functional theory calculations: a complete cycle of side chain hydrocarbon pool mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.M.; Wang, Y.D.; Xie, Z.K.; Liu, Z.P. [SINOPEC, Shanghai (China)

    2009-03-15

    For its unique position in the coal chemical industry, the methanol to olefin (MTO) reaction has been a hot topic in zeolite catalysis. Due to the complexities of catalyst structure and reaction networks, many questions such as how the olefin chain is built from methanol remain elusive. On the basis of periodic density functional theory calculations, this work establishes the first complete catalytic cycle for MTO reaction via hexamethylbenzene (HMB) trapped in HSAPO-34 zeolite based on the so-called side chain hydrocarbon pool mechanism. The cycle starts from the methylation of HMB that leads to heptamethylbenzenium ion (heptaMB{sup +}) intermediate. This is then followed by the growth of side chain via repeated deprotonation of benzenium ions and methylation of the exocyclic double bond. Ethene and propene can finally be released from the side ethyl and isopropyl groups of benzenium ions by deprotonation and subsequent protonation steps. We demonstrate that (i) HMB/HSAPO-34 only yields propene as the primary product based on the side chain hydrocarbon pool mechanism and (ii) an indirect proton-shift step mediated by water that is always available in the system is energetically more favorable than the traditionally regarded internal hydrogen-shift step. Finally, the implications of our results toward understanding the effect of acidity of zeolite on MTO activity are also discussed.

  5. Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes.

    Science.gov (United States)

    El Khoury, Elsy; Patra, Digambara

    2016-05-01

    Using fluorescence quenching of curcumin in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes by brominated derivatives of fatty acids, the location of curcumin has been studied, which indicates length of hydrocarbon chain has an effect on the location of curcumin in liposomes. Change of fluorescence intensity of curcumin with temperature in the presence of liposomes helps to estimate the phase transition temperature of these liposomes, thus, influence of cholesterol on liposome properties has been studied using curcumin as a molecule probe. The cooperativity due to the interactions between the hydrocarbon chains during melting accelerates the phase transition of DPPC liposomes in the presence of high percentage of cholesterol whereas high percentage of cholesterol generates a rather rigid DMPC liposome over a wide range of temperatures. We used ethanol to induce interdigitation between the hydrophobic chains of the lipids and studied this effect using curcumin as fluorescence probe. As a result of interdigitation, curcumin fluorescence is quenched in liposomes. The compact arrangement of the acyl chains prevents curcumin from penetrating deep near the midplane. In the liquid crystalline phase ethanol introduces a kind of order to the more fluid liposome, and does not leave space for curcumin to be inserted away from water.

  6. Hydrocarbons depending on the chain length and head group adopt different conformations within a water-soluble nanocapsule: 1H NMR and molecular dynamics studies.

    Science.gov (United States)

    Choudhury, Rajib; Barman, Arghya; Prabhakar, Rajeev; Ramamurthy, V

    2013-01-10

    In this study we have examined the conformational preference of phenyl-substituted hydrocarbons (alkanes, alkenes, and alkynes) of different chain lengths included within a confined space provided by a molecular capsule made of two host cavitands known by the trivial name "octa acid" (OA). One- and two-dimensional (1)H NMR experiments and molecular dynamics (MD) simulations were employed to probe the location and conformation of hydrocarbons within the OA capsule. In general, small hydrocarbons adopted a linear conformation while longer ones preferred a folded conformation. In addition, the extent of folding and the location of the end groups (methyl and phenyl) were dependent on the group (H(2)C-CH(2), HC═CH, and C≡C) adjacent to the phenyl group. In addition, the rotational mobility of the hydrocarbons within the capsule varied; for example, while phenylated alkanes tumbled freely, phenylated alkenes and alkynes resisted such a motion at room temperature. Combined NMR and MD simulation studies have confirmed that molecules could adopt conformations within confined spaces different from that in solution, opening opportunities to modulate chemical behavior of guest molecules.

  7. Adsorption of hydrocarbons on organo-clays--implications for oil spill remediation.

    Science.gov (United States)

    Carmody, Onuma; Frost, Ray; Xi, Yunfei; Kokot, Serge

    2007-01-01

    Organo-clays synthesised by the ion exchange of sodium in Wyoming Na-montmorillonite (SWy-2-MMT) with three surfactants: (a) octadecyltrimethylammonium bromide (ODTMA), formula C(21)H(46)NBr; (b) dodecyldimethylammonium bromide (DDDMA), formula C(22)H(48)BrN; and (c) di(hydrogenated tallow)dimethylammonium chloride were tested for hydrocarbon adsorption. Using diesel, hydraulic oil, and engine oil an evaluation was made of the effectiveness of the sorbent materials for a range of hydrocarbon products that are likely to be involved in land-based oil spills. It was found that the hydrocarbon sorption capacity of the organo-clays depended upon the materials and surfactants used in the organo-clay synthesis. Greater adsorption was obtained if the surfactant contained two or more hydrocarbon long chains. Extensive utilisation of chemometrics principally with the aid of MCDM methods, produced models which consistently ranked the organo-clays well above any of the competitors including commercial benchmark materials. Thus, the use of organo-clays for cleaning up oil spills is feasible due to its many desirable properties such as high hydrocarbon sorption and retention capacities, hydrophobicity. The negative effects of the use of organo-clays for oil-spill cleanup are the cost, the biodegradability, and recyclability of the organo-clays.

  8. BINDING ISOTHERMS SURFACTANT-PROTEINS

    Directory of Open Access Journals (Sweden)

    Elena Irina Moater

    2011-12-01

    Full Text Available The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ion-selective electrode method and surface tension. High affinity isotherms which are typical of an anionic surfactant - protein bonding, exhibit an initial increase steep followed by a slow growth region and then a vertical growth above a certain concentration. This isotherm is typical of ionic surfactant to protein binding. Often the high affinity initial bond appears at very low concentrations of surfactant and therefore in some protein-surfactant systems, the exact shape of the isotherm in this region may be missing. The surfactant - protein binding is influenced by a number of variables such as the nature and chain length of surfactant, pH, ionic strength, temperature, nature of this protein and additives.

  9. Effect of alkyl chain functionalization of ionic liquid surfactants on the complexation and self-assembling behavior of polyampholyte gelatin in aqueous medium.

    Science.gov (United States)

    Singh, Gagandeep; Singh, Gurbir; Kang, Tejwant Singh

    2016-09-21

    The complexation behaviour of an imidazolium based ionic liquid surfactant (ILS) 3-methyl-1-dodecylimidazolium chloride, [C12mim][Cl], and its amide and ester functionalized counterparts 3-(2-(dodecylamino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium chloride, [C12Amim][Cl], and 3-methyl-1-dodecyloxycarbonylmethylimidazolium chloride, [C12Emim][Cl], with a model protein gelatin (G) in aqueous solution has been investigated. Complexation of G with ILSs at the air-solution interface has been monitored by tensiometry, whereas complexation and ILS mediated self-assembly of G-ILS complexes in the bulk have been followed by dynamic light scattering (DLS), zeta-potential measurements, conductivity, and fluorescence techniques. The morphology of different self-assembled architectures has been monitored by scanning electron microscopy (SEM). Different transitions observed from various techniques in different concentration regimes of ILSs have been assigned to the varying extent of complexation and ILS mediated self-assembly of G-ILS complexes. The functionalization of the alkyl chain of the ILS [C12mim][Cl] with an amide ([C12Amim][Cl]) or ester ([C12Emim][Cl]) moiety owing to their additional hydrogen bonding (H-bonding) ability along with rigidity ([C12Amim][Cl]) or flexibility ([C12Emim][Cl]) near the imidazolium head group has been found to exert great influence on their complexation with G. This influence is fashioned as self-assembled structures of G-ILS complexes into discrete large hexagonal sheet-like or near spherical architectures, depending on the concentration and type of functionality of the alkyl chain of ILSs. The thermodynamic forces behind the complexation and self-assembly processes have been monitored by isothermal titration calorimetry (ITC) measurements and are discussed in detail. As both the nature of the ILS and protein (charge and structure) could affect their interactional behavior, the present results are expected to be very useful in deeply

  10. Thermodynamic Investigation on Micellization of Cationic Gemini Surfactants with Nitrophenoxy Groups in Hydrophobic Chains%尾链含对硝基苯醚基团的阳离子Gemini表面活性剂的胶束化热力学

    Institute of Scientific and Technical Information of China (English)

    黄旭; 韩玉淳; 王毅琳

    2013-01-01

    is akin to a separate phase-precipitation.Based on these two models,an ITC curve of observed enthalpy change versus surfactant concentration allows the determination of CMC and the enthalpy of micellization (△Hrmic)of a surfactant.Other thermodynamic parameters related to micellization,namely the free energy (△Gmic),the entropy (△Smic)and the heat capacity of micellization (△Cp.mic) can be calculated from the experimentally determined CMC and △Hmic.In this paper,ITC and electrical conductivity were employed to investigate the micellization process of cationic gemini surfactants,N,N,N',N'-tetramethyl-N,N'-bis[10-(4-nitrophenoxy)alkyl]-l,6-hexanediammonium dibromide (Nm-6-mN,with m=8,10 and 12,which are the numbers of carbon in the hydrocarbon chains),in aqueous solutions.Both phase separation model and mass action model were used to obtain a series of thermodynamic parameters.The results show that the obtained△Hmic values based on the two models are very close,however,the obtained △Gmic values based on the two models are not consistent.In addition,the △Cp,mic of the micellization process is mainly from the dehydration contribution of hydrophobic alkyl chains of the surfactants,which means the nitrophenoxy group located in the hydrophobic chain still contacts with water after the micellization.Furthermore,the micellar aggregation number n can be obtained by employing the mass action model.The micellar aggregation number n decreases with the increase of the hydrophobic chain length.The reason is that the surfactant with longer hydrophobic chains prefers to form premicelles,leading to the decrease of the average aggregation number.

  11. Coarse-graining MARTINI model for molecular-dynamics simulations of the wetting properties of graphitic surfaces with non-ionic, long-chain and T-shaped surfactants

    CERN Document Server

    Sergi, Danilo; Ortona, Alberto

    2012-01-01

    We report on a molecular dynamics investigation of the wetting properties of graphitic surfaces by various solutions at concentrations 1-8 wt% of commercially available non-ionic surfactants with long hydrophilic chains, linear or T-shaped. These are surfactants of length up to 160 [\\AA]. It turns out that molecular dynamics simulations of such systems ask for a number of solvent particles that can be reached without seriously compromising computational efficiency only by employing a coarse-grained model. The MARTINI force field with polarizable water offers a framework particularly suited for our problem. In general, its advantages over other coarse-grained models are the possibility to explore faster long time scales and the wider range of applicability. Although the accuracy is sometimes put under question, the results for the wetting properties by pure water are in good agreement with those for the corresponding atomistic systems and theoretical predictions. On the other hand, the bulk properties of vario...

  12. Pediatric tea tree oil aspiration treated with surfactant in the emergency department.

    Science.gov (United States)

    Richards, David B; Wang, George S; Buchanan, Jennie A

    2015-04-01

    Tea tree oil is an essential oil containing a mixture of aromatic hydrocarbons. We describe an 18-month-old male patient who ingested tea tree oil, developed central nervous system depression, respiratory distress, and received early emergency department treatment with surfactant. Early treatment of hydrocarbon pneumonitis with surfactant has not been previously described. Early administration of surfactant should be further evaluated for treatment of hydrocarbon aspiration.

  13. Behavior of cationic surfactants and short-chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability II. Wettability of polymers.

    Science.gov (United States)

    Zdziennicka, Anna; Jańczuk, Bronisław

    2010-10-15

    The wettability of polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) by aqueous solutions of cetyltrimethylammonium bromide (CTAB) mixtures with short-chain alcohols such as methanol, ethanol, and propanol, as well as for 1-hexadecylpyridinium bromide (CPyB) with the same alcohols, was studied on the basis of advancing contact-angle measurements by the sessile drop method over a wide range of alcohol and cationic surfactant concentrations where they can be present in solution in monomeric or aggregated form. It should be noted that the contact angles for aqueous solution mixtures of cationic surfactants with propanol on PTFE surfaces were measured earlier and presented in our previous paper. From the obtained contact-angle values the relationships between cos theta and surface tension of the solutions (gamma(LV)) and that between adhesion tension and gamma(LV) were considered. The relationship between the cos theta and the reciprocal of gamma(LV) was also discussed. From these relationships the critical surface tension of PTFE and PMMA wetting and the correlation between the adsorption of cationic surfactant and alcohol mixtures at water-air and polymer-water interfaces were deduced. On the basis of the contact angles and components and parameters of the surface tension of surfactants, alcohols, and polymers also the Gibbs and Guggenheim-Adam isotherm of adsorption and the effective concentration of alcohols and surfactants at polymer-water interfaces were calculated. Next, the work of adhesion of solution to polymer surface with regard to the surface monolayer composition was discussed. The analysis of the contact angles with regard to adsorption of surfactants and alcohols at polymer-water and water-air interfaces allowed us to conclude that the PTFE wetting depends only on the contribution of the acid-base interactions to the surface tension of aqueous solutions of cationic surfactant and alcohol mixtures, and the adhesion work of solution to its

  14. Biodegradation of Medium Chain Hydrocarbons by Acinetobacter venetianus 2AW Immobilized to Hair-Based Adsorbent Mats (Postprint)

    Science.gov (United States)

    2010-09-01

    McDonagh M. Field evaluations of marine oil spill bioremediation . Microbiol Rev. 1996;60:342–365. 12. Reisfeld A, Rosenberg E, Gutnick D. Microbial...adsorbent, for in situ degradation of hydrocarbons, has practical application in the bioremediation of oil in water emulsions. acinetobacter...the rest comes from human activ- ities.1 Oil spills that occur as a result of accidents or envi- ronmental disturbances create significant economic

  15. Industrial applications of fluorinated surfactants%氟表面活性剂的工业应用

    Institute of Scientific and Technical Information of China (English)

    王涛; 李峰

    2011-01-01

    Classification, structure and properties of fluorinated surfactants were introduced. Due to their unique properties, such as high surface activity, high thermal stability and high chemical stability as well as both hydrophobic and lipophobic properties, fluorinated surfactants are widely used in various industrial sectors such as fire - fighting, leather, petroleum, paper making, textile dyeing and printing as well as metal processing et al. In some cases,they can display performance that is beyond the capability of common hydrocarbon chain based surfactants. According to requirement with respect to different application fields, new varieties of fluorinated surfactants and new preparation technology should be developed based on molecular design for special targets and purpose, to expand their application fields. Attentions are worth to be paid to the performance of blend of fluorinated surfactants with hydrocarbon chain based surfactants.%介绍了氟表面活性剂的分类、结构及性质;主要综述了由于氟表面活性剂具有“三高”、“两憎”的独特性能,广泛应用于消防、皮革、石油、造纸、纺织印染及金属材料加工等工业领域,起到普通碳氢表面活性剂所不能的作用;指出了根据应用领域的不同,应从分子结构设计人手,有针对性地、有目的地研发氟表面活性剂新品种新工艺,拓展应用领域,注重氟表面活性剂与普通表面活性剂的复配研究.

  16. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells. - Highlights: • Surfactants could be used to modify the dispersing state of MTX/LDHs hybrids. • Surfactants have great effect on the morphology of MTX/LDHs hybrids. • MTX/LDHs with good monodisperse degree are more efficient in the suppression of the tumor cells.

  17. Vapor pressure studies of the solubilization of hydrocarbons by surfactant micelles. Final report, April 1, 1984-December 31, 1984. [Solubilization data for system benzene/sodium octylsulfate/sodium chloride/water at 15/sup 0/, 25/sup 0/, 35/sup 0/ and 45/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Christian, S.D.; Tucker, E.E.

    1985-04-01

    This final report describes vapor pressure studies of the solubilization of hydrocarbons and hydrocarbon derivatives by aqueous micellar solutions. An automated vapor pressure apparatus and a manual apparatus incorporating a mercury-covered sintered-glass disk inlet valve were used to obtain highly precise data for the solubilization of hydrocarbons and aliphatic alcohols into aqueous solutions of the ionic surfactants sodium octylsulfate and n-hexadecylpyridinium chloride (cetylpyridinium chloride). A mass-action model based on a modification of the Poisson distribution equations has been developed and applied to data for the system benzene/sodium octylsulfate/sodium chloride/water at 15/sup 0/, 25/sup 0/, 35/sup 0/, and 45/sup 0/C. An excellent goodness of fit is achieved with the model. Tabulated experimental results (485 sets of activity and concentration data) are included in this report. 12 references, 2 figures.

  18. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    Science.gov (United States)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional

  19. Adsorption of anionic and nonionic surfactant mixtures from synthetic detergents on soils.

    Science.gov (United States)

    Rao, Pinhua; He, Ming

    2006-05-01

    Adsorption of anionic surfactant (sodium dodecylbenzenesulfonate, SDBS) and nonionic surfactant (an alcohol ethoxylates with 12 carbons and 9 oxyethyl groups, A12E9) mixtures, widely used as the major constituents of synthetic detergents in China and become the most common pollutants in the environment, on soils was conducted to investigate the behavior of mixed surfactants in soils. The effects of addition order and mixing ratios of two surfactants, associated with pH and ion strength in solutions, on adsorptions were considered. The results show that saturated adsorption amount of SDBS and A12E9 on soils decreased respectively when A12E9 was added into soils firstly compared with that secondly, possibly resulting from the screening of A12E9 to part adsorption sites on soils and the hydrocarbon chain-chain interactions between SDBS and A12E9. The adsorption of SDBS and A12E9 on soils was enhanced each other at pre-plateau region of isotherms. At plateau region of isotherms, the adsorption of SDBS on soils decreased with the increase of molar fraction of A12E9 in mixed surfactant solutions, while that of A12E9 increased except the molar ratio of SDBS to A12E9 0.0:1.0. With the increase of pH in mixed surfactant solutions, adsorption amount of SDBS and A12E9 on soils decreased, respectively. The reduction of ion strength in soils resulted in the decrease of adsorption amount of SDBS and A12E9 on soils, respectively.

  20. Novel serine-based gemini surfactants as chemical permeation enhancers of local anesthetics: A comprehensive study on structure-activity relationships, molecular dynamics and dermal delivery.

    Science.gov (United States)

    Teixeira, Raquel S; Cova, Tânia F G G; Silva, Sérgio M C; Oliveira, Rita; do Vale, M Luísa C; Marques, Eduardo F; Pais, Alberto A C C; Veiga, Francisco J B

    2015-06-01

    This work aims at studying the efficacy of a series of novel biocompatible, serine-based surfactants as chemical permeation enhancers for two different local anesthetics, tetracaine and ropivacaine, combining an experimental and computational approach. The surfactants consist of gemini molecules structurally related, but with variations in headgroup charge (nonionic vs. cationic) and in the hydrocarbon chain lengths (main and spacer chains). In vitro permeation and molecular dynamics studies combined with cytotoxicity profiles were performed to investigate the permeation of both drugs, probe skin integrity, and rationalize the interactions at molecular level. Results show that these enhancers do not have significant deleterious effects on the skin structure and do not cause relevant changes on cell viability. Permeation across the skin is clearly improved using some of the selected serine-based gemini surfactants, namely the cationic ones with long alkyl chains and shorter spacer. This is noteworthy in the case of ropivacaine hydrochloride, which is not easily administered through the stratum corneum. Molecular dynamics results provide a mechanistic view of the surfactant action on lipid membranes that essentially corroborate the experimental observations. Overall, this study suggests the viability of these serine-based surfactants as suitable and promising delivery agents in pharmaceutical formulations.

  1. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  2. Metathesis depolymerization for removable surfactant templates.

    Energy Technology Data Exchange (ETDEWEB)

    Zifer, Thomas (Sandia National Laboratories, Livermore, CA); Wheeler, David Roger; Rahimian, Kamayar; McElhanon, James Ross (Sandia National Laboratories, Livermore, CA); Long, Timothy Michael; Jamison, Gregory Marks; Loy, Douglas Anson (Los Alamos National Laboratories, Los Alamos, NM); Kline, Steven R. (National Institute of Standards and Technology, Gaithersburg, MD); Simmons, Blake Alexander (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

  3. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes.

    Science.gov (United States)

    Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A

    1999-06-01

    This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.

  4. Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Xiang F., E-mail: gengxiangfei1988111@126.com [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500 (China); Hu, Xing Q.; Xia, Ji J. [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500 (China); Jia, Xue C. [Institute of Resources and Environmental, Southwest Petroleum University, Chengdu 610500 (China)

    2013-04-15

    A series of novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants of 1,2-bis[N-ethyl-N-(2-hydroxyl-3-sulfopropyl)-alkylammonium] alkyl betaines (DBA{sub s–n}, where s and n represent the spacer length of 2, 4 and 6 and the hydrocarbon chain length of 8, 12, 14, 16 and 18, respectively) were synthesized by reacting alkylamine with sodium 3-chloro-2-hydroxypropanesulfonate (the alternative sulphonated agent), followed by the reactions with a,ω-dibromoalkyl and then ethyl bromide. Their adsorption and aggregation properties were investigated by means of equilibrium surface tension, dynamic light-scattering (DLS) and transmission electron microscopy (TEM). DBA{sub s–n} gemini surfactants showed excellent surface activities and packed tightly at the interface. For example, the minimum CMC value for DBA{sub s–n} series was of the order of 10{sup −5} M and the surface tension of water can be decreased as low as 22.2 mN/m. It was also found that the aggregates of DBA{sub s–n} solutions were significantly dependent on their hydrocarbon chain lengths. The aggregates changed from vesicles to entangled fiber-like micelles as the chain length increased from dodecyl to tetradecyl.

  5. Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants

    Science.gov (United States)

    Geng, Xiang F.; Hu, Xing Q.; Xia, Ji J.; Jia, Xue C.

    2013-04-01

    A series of novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants of 1,2-bis[N-ethyl-N-(2-hydroxyl-3-sulfopropyl)-alkylammonium] alkyl betaines (DBAs-n, where s and n represent the spacer length of 2, 4 and 6 and the hydrocarbon chain length of 8, 12, 14, 16 and 18, respectively) were synthesized by reacting alkylamine with sodium 3-chloro-2-hydroxypropanesulfonate (the alternative sulphonated agent), followed by the reactions with а,ω-dibromoalkyl and then ethyl bromide. Their adsorption and aggregation properties were investigated by means of equilibrium surface tension, dynamic light-scattering (DLS) and transmission electron microscopy (TEM). DBAs-n gemini surfactants showed excellent surface activities and packed tightly at the interface. For example, the minimum CMC value for DBAs-n series was of the order of 10-5 M and the surface tension of water can be decreased as low as 22.2 mN/m. It was also found that the aggregates of DBAs-n solutions were significantly dependent on their hydrocarbon chain lengths. The aggregates changed from vesicles to entangled fiber-like micelles as the chain length increased from dodecyl to tetradecyl.

  6. Theoretical and Experimental Studies on Interactions of Cationic-Anionic Surfactants%正负离子表面活性剂相互作用的理论和实验研究

    Institute of Scientific and Technical Information of China (English)

    王大喜; 杜永顺; 岳长涛; 侯建国; 栗秀刚; 杨文杰

    2003-01-01

    Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum ular pairs with fluocarbon and hydrocarbon chain: C4H10/C5H12, C4F10/C5H12, and C4F10 /C5F12, respectively.When hydrophilic group with cationic and anionicions is introduced, interaction energies are -287.40kJ.mol-1,-311.18 kJ.mol-1 and -345.83 kJ.mol-1. The results show that there is strong static interaction between cationic and anionic surfactants. It has been predicted that mixed monolayer may be formed and surface activity is enhanced favorably, especially for mixtures of cationic and anionic surfactants with fluocarbon and hydrocarbon chains. The anionic surfactants, sodium octadecylbenzenesulfonate perfluopolyetherbenzenesulonate(ANF-Ⅰ) was synthesized, mixture effects of ANF-Ⅰ with sodium octadecylbenzenesulfonate or dodecyldimethyl benzylammonium bromide were studied. The results indicate that the efficiency of mixing increased and the theoretical prediction was testified. These results can provide useful information for the design of new surfactants.

  7. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  8. Structure Effect of Some New Anticancer Pt(II) Complexes of Amino Acid Derivatives with Small Branched or Linear Hydrocarbon Chains on Their DNA Interaction.

    Science.gov (United States)

    Kantoury, Mahshid; Eslami Moghadam, Mahboube; Tarlani, Ali Akbar; Divsalar, Adeleh

    2016-07-01

    The aim of this study was to investigate the structure effect and identify the modes of binding of amino acid-Pt complexes to DNA molecule for cancer treatment. Hence, three novel water soluble platinum complexes, [Pt(phen)(R-gly)]NO3 (where phen is 1,10-phenanthroline, R-gly is methyl, amyl, and isopentyl-glycine), have been synthesized and characterized by spectroscopic methods, conductivity measurements, and chemical analysis. The anticancer activities of synthesized complexes were investigated against human breast cancer cell line of MDA-MB 231. The 50% cytotoxic concentration values were determined to be 42.5, 58, and 70 μm for methyl-, amyl-, and isopentyl-gly complexes, respectively. These complexes were interacted with calf thymus DNA (ct-DNA) via positive cooperative interaction. The modes of binding of the complexes to DNA were investigated by fluorescence spectroscopy and circular dichroism in combination with a molecular docking study. The result indicates that complexes with small or branched hydrocarbon chains can intercalate with DNA. This is while amyl complexes with linear chains interacted additionally via groove binding. The results of the negative value of Gibbs energy for binding of isopentyl-platinum to DNA and those of the molecular docking were coherent. Furthermore, the docking results demonstrated that hydrophobic interaction plays an important role in the complex-DNA interaction.

  9. Effects of stereochemistry, saturation, and hydrocarbon chain length on the ability of synthetic constrained azacyclic sphingolipids to trigger nutrient transporter down-regulation, vacuolation, and cell death.

    Science.gov (United States)

    Perryman, Michael S; Tessier, Jérémie; Wiher, Timothy; O'Donoghue, Heather; McCracken, Alison N; Kim, Seong M; Nguyen, Dean G; Simitian, Grigor S; Viana, Matheus; Rafelski, Susanne; Edinger, Aimee L; Hanessian, Stephen

    2016-09-15

    Constrained analogs containing a 2-hydroxymethylpyrrolidine core of the natural sphingolipids sphingosine, sphinganine, N,N-dimethylsphingosine and N-acetyl variants of sphingosine and sphinganine (C2-ceramide and dihydro-C2-ceramide) were synthesized and evaluated for their ability to down-regulate nutrient transporter proteins and trigger cytoplasmic vacuolation in mammalian cells. In cancer cells, the disruptions in intracellular trafficking produced by these sphingolipids lead to cancer cell death by starvation. Structure activity studies were conducted by varying the length of the hydrocarbon chain, the degree of unsaturation and the presence or absence of an aryl moiety on the appended chains, and stereochemistry at two stereogenic centers. In general, cytotoxicity was positively correlated with nutrient transporter down-regulation and vacuolation. This study was intended to identify structural and functional features in lead compounds that best contribute to potency, and to develop chemical biology tools that could be used to isolate the different protein targets responsible for nutrient transporter loss and cytoplasmic vacuolation. A molecule that produces maximal vacuolation and transporter loss is expected to have the maximal anti-cancer activity and would be a lead compound.

  10. The binding and insertion of imidazolium-based ionic surfactants into lipid bilayers: the effects of the surfactant size and salt concentration.

    Science.gov (United States)

    Lee, Hwankyu; Jeon, Tae-Joon

    2015-02-28

    Imidazolium-based ionic surfactants with hydrocarbon tails of different sizes were simulated with lipid bilayers at different salt concentrations. Starting with the random position of ionic surfactants outside the bilayer, surfactants with long tails mostly insert into the bilayer, while those with short tails show the insertion of fewer surfactant molecules, indicating the effect of the tail length. In particular, surfactants with a tail of two or four hydrocarbons insert and reversibly detach from the bilayer, while the inserted longer surfactants cannot be reversibly detached because of the strong hydrophobic interaction with lipid tails, in quantitative agreement with experiments. Longer surfactants insert more deeply and irreversibly into the bilayer and thus increase lateral diffusivities of the bilayer, indicating that longer surfactants more significantly disorder lipid bilayers, which also agrees with experiments regarding the effect of the tail length of ionic surfactants on membrane permeability and toxicity. Addition of NaCl ions weakens the electrostatic interactions between headgroups of surfactants and lipids, leading to the binding of fewer surfactants into the bilayer. In particular, our simulation findings indicate that insertion of ionic surfactants can be initiated by either the hydrophobic interaction between tails of surfactants and lipids or the electrostatic binding between imidazolium heads and lipid heads, and the strength of hydrophobic and electrostatic interactions depends on the tail length of surfactants.

  11. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  12. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl

    Science.gov (United States)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen

    2017-09-01

    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  13. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  14. Synthesis of Branch Fluorinated Cationic Surfactant and Surface Properties

    Directory of Open Access Journals (Sweden)

    Hongke Wu

    2014-01-01

    Full Text Available A novel fluorinated quaternary ammonium salt cationic surfactant N,N,N-trimethyl-2-[[4-[[3,4,4,4-tetrafluoro-2-[1,2,2,2-tetrafluoro-1-(trifluoromethylethyl]-1,3-bis(tri-fluoromethyl-1-buten-1-yl]oxy]-benzoyl]amino]-iodide (FQAS was synthesized successfully, and its structure was characterized by FTIR, 1H-NMR, 19F-NMR, and MS. The surface activities of FQAS and the effect of temperature, electrolyte, and combination with hydrocarbon surfactant were investigated. The results showed that FQAS exhibited excellent surface activity and combination with hydrocarbon surfactant.

  15. Investigation of DNA-cationic bolaform surfactants interaction with different spacer length.

    Science.gov (United States)

    Sohrabi, Beheshteh; Khani, Vahid; Moosavi-Movahedi, Ali Akbar; Moradi, Parviz

    2013-10-01

    In this paper interaction of DNA with cationic bolaform surfactants is investigated. The structural formula for synthesized bolaforms is as follows: bolaform B1 with structural formula Br(-)(CH3)3N(+)(CH2)3N(+)(CH3)Br(-) and bolaform B2 with structural formula of Br(-)(CH3)3N(+)(CH2)12N(+)(CH3)Br(-). There are stronger electrostatic interactions in bolaform B1 due to shorter spacer length, while there are stronger hydrophobic interactions in bolaform B2 compared to bolaform B1 due to existence of 12 carbons in hydrocarbonic chain. The structure of bolaforms consists of two polar head groups which play important role in DNA compaction. Surface tension change in aqueous solution of bolaform surfactants is measured using tensiometer. Electrical conductivity of surfactants aqueous solution is examined with and without DNA. DNA compaction is tracked in the presence of bolaforms by dynamic light scattering (DLS) technique. Results of DLS indicate bolaforms with shorter spacer length (dominant electrostatic interactions) are more influential in compressing DNA compared to bolaforms with longer spacer length (stronger hydrophobic interactions). UV-vis and fluorescence spectroscopies specify the binding mechanism of bolaform surfactants to DNA.

  16. Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems.

    Science.gov (United States)

    Loh, Watson; Brinatti, César; Tam, Kam Chiu

    2016-05-01

    Isothermal titration calorimetry (ITC) is a general technique that allows for precise and highly sensitive measurements. These measurements may provide a complete and accurate thermodynamic description of association processes in complex systems such as colloidal mixtures. This review will address uses of ITC for studies of surfactant aggregation to form micelles, with emphasis on the thermodynamic studies of homologous surfactant series. We will also review studies on surfactant association with polymers of different molecular characteristics and with colloidal particles. ITC studies on the association of different homologous series of surfactants provide quantitative information on independent contribution from their apolar hydrocarbon chains and polar headgroups to the different thermodynamic functions associated with micellization (Gibbs energy, enthalpy and entropy). Studies on surfactant association to polymers by ITC provide a comprehensive description of the association process, including examples in which particular features revealed by ITC were elucidated by using ancillary techniques such as light or X-ray scattering measurements. Examples of uses of ITC to follow surfactant association to biomolecules such as proteins or DNA, or nanoparticles are also highlighted. Finally, recent theoretical models that were proposed to analyze ITC data in terms of binding/association processes are discussed. This review stresses the importance of using direct calorimetric measurements to obtain and report accurate thermodynamic data, even in complex systems. These data, whenever possible, should be confirmed and associated with other ancillary techniques that allow elucidation of the nature of the transformations detected by calorimetric results, providing a complete description of the process under scrutiny. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Liquid-expanded-liquid-condensed phase transition in amphiphilic monolayers: A renormalization-group approach to chiral-symmetry breaking of hydrocarbon-chain defects

    Science.gov (United States)

    Legré, J.-P.; Albinet, G.; Firpo, J.-L.; Tremblay, A.-M. S.

    1984-11-01

    This paper is concerned with the liquid-expanded (LE) -liquid-condensed (LC) transition in monolayers of amphiphilic molecules at the air-water interface. A model, which can be mapped into the Blume-Emery-Griffiths Hamiltonian, has been considered before within the (mean-field) Bragg-Williams approximation and it gave results which could be successfully compared with experiment. The LE-LC transition has been associated with a chiral-symmetry breaking of the hydrocarbon-chain defects. This model is treated here with a Migdal-Kadanoff approximate position-space renormalization group. Renormalization-group flows are consistent with those obtained by previous authors. The connection between experimental and Hamiltonian parameters is easiest for a particular choice of ensemble, which turns out to be rather subtle for this problem. As in the work of Lavis, Southern, and Bell, isotherms in the surface-pressure-molecular-area plane do not show a signature of the LE-LC transition. The better agreement between experiments (showing a compressibility jump at the LE-LC transition) and mean-field theory suggests that in these cases long-range forces depending on the nature of the polar head and on the water substrate pH are responsible for the jump.

  18. Biomimicry of surfactant protein C.

    Science.gov (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    considerations but makes use of a non-natural, poly-N-substituted glycine or "peptoid" scaffold to circumvent the difficulties associated with SP-C. By incorporating unique biomimetic side chains in a non-natural backbone, the peptoid mimic captures both SP-C's hydrophobic patterning and its helical secondary structure. Despite the differences in structure, both SP-C33 and the SP-C peptoid mimic capture many requisite features of SP-C. In a surfactant environment, these analogues also replicate many of the key surface activities necessary for a functional biomimetic surfactant therapy while overcoming the difficulties associated with the natural protein. With improved stability, greater production potential, and elimination of possible pathogenic contamination, these biomimetic surfactant formulations offer not only the potential to improve the treatment of respiratory distress syndrome but also the opportunity to treat other respiratory-related disorders.

  19. Remobilization of Polycyclic Aromatic Hydrocarbons (PAH) contaminated soils with a new bio-surfactant; Remobilisation d'Hydrocarbures Aromatiques Polycycliques (HAP) presents dans les sols contamines a l'aide d'un tensioactif d'origine biologique

    Energy Technology Data Exchange (ETDEWEB)

    Gabet, S.

    2004-07-01

    Polycyclic aromatic Hydrocarbons (PAH) are organic pollutants released into the environment by combustion processes; Due to their high sorption capacity, soils constitute their main environmental sink. PAH are hydrophobic and weakly biodegradable, moreover they are toxic and considered as potent human carcinogen. Various technologies are used for the remediation of PAH-contaminated soils, but they are not cost effective and may be hazardous for the environment. Some recent studies suggest that the use of bio-surfactants is a promising method that enhances the removal of PAHs from soils. This study investigates the properties and the impact of a new bio-surfactant, on the mobilization of three PAH (fluorene, fluoranthene and pyrene). The bio-surfactant seems to be weakly sorbed on the soil studied. Solubilizing effects have been studied by the Molar Solubilization Ratio (MSR). In the ternary mixture, the less hydrophobic PAH (fluorene) favors the micellar solubilization of the most hydrophobic one by decreasing interfacial tensions. The soil column studies revealed that the bio-surfactant was rapidly efficient. Results obtained in dynamic studies were consistent with those obtained in static studies. This work also investigated the effect of the contamination level on PAH remobilization. The study reveals that PAH solubilization increases with the contamination level until micelle saturation. The percentage re-mobilized depends on the contaminant studied and the content of organic matter rate. As a matter of fact, for the soil containing the higher OM rate, remobilization follows physico-chemical properties of the PAH. For the soil containing less OM, the mineral fraction seems to play a significant role on PAH adsorption. (author)

  20. 2-DE using hemi-fluorinated surfactants.

    Science.gov (United States)

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.

  1. Gemini surfactants from natural amino acids.

    Science.gov (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  2. STRUCTURE AND MORPHOLOGY CHANGES OF HYDROBIOTITES MODIFIED BY CATIONIC SURFACTANTS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) together with Scanning probe microscopy (SPM) were used to characterize the structure and morphology of the complexes, where the hydrobiotites (Xinjiang) were modified by single-chain surfactants octyltrimethylammonium bromide (OTMA) and octadecyltrimethylammonium bromide (ODTMA). XRD patterns showed that the structure of complexes was significantly influenced by the surfactant concentration and the alkyl chain length, because obvious changes took place in the basal spacing. Furthermore, according to the XRD results, several arrangements of surfactant molecules within the hydrobiotite interlayer space were deduced. The FTIR spectrum indicated that the surfactant contents in complexes dramatically increased with the alkyl chain length. The SPM micrographs demonstrated that the surfaces of complexes prepared at lower surfactant concentration were relatively flat compared with that prepared at higher concentration, while those with higher surfactant concentration had much steeper surface due to the alkyl chain length. It was concluded that structure and morphology of surfactant/hydrobiotite complexes depend not only on the surfactant concentration, but also strongly on the surfactant species.

  3. Diversifying the solid state and lyotropic phase behavior of nonionic urea-based surfactants.

    Science.gov (United States)

    Fong, Celesta; Wells, Darrell; Krodkiewska, Irena; Weerawardeena, Asoka; Booth, Jamie; Hartley, Patrick G; Drummond, Calum J

    2007-09-13

    The solid state and lyotropic phase behavior of 10 new nonionic urea-based surfactants has been characterized. The strong homo-urea interaction, which can prevent urea surfactants from forming lyotropic liquid crystalline phases, has been ameliorated through the use of isoprenoid hydrocarbon tails such as phytanyl (3,7,11,15-tetramethyl-hexadecyl) and hexahydrofarnesyl (3,7,11-trimethyl-dodecyl) or the oleyl chain (cis-octadec-9-enyl). Additionally, the urea head group was modified by attaching either a hydroxy alkyl (short chain alcohol) moiety to one of the nitrogens of the urea or by effectively "doubling" the urea head group by replacing it with a biuret head group. The solid state phase behavior, including the liquid crystal-isotropic liquid, polymorphic, and glass transitions, is interpreted in terms of molecular geometries and probable hydrogen-bonding interactions. Four of the modified urea surfactants displayed ordered lyotropic liquid crystalline phases that were stable in excess water at both room and physiological temperatures, namely, 1-(2-hydroxyethyl)-1-oleyl urea (oleyl 1,1-HEU) with a 1D lamellar phase (Lalpha), 1-(2-hydroxyethyl)-3-phytanyl urea (Phyt 1,3-HEU) with a 2D inverse hexagonal phase (HII), and 1-(2-hydroxyethyl)-1-phytanyl urea (Phyt 1,1-HEU) and 1-(2-hydroxyethyl)-3-hexahydrofarnesyl urea (Hfarn 1,3-HEU) with a 3D bicontinuous cubic phase (QII). Phyt 1,1-HEU exhibited rich mesomorphism (QII1, QII2, Lalpha, LU, and HII), as did one other surfactant, oleyl 1,3-HEU (QII1, QII2, Lalpha, LU, and HII), in the study group. LU is an unusual phase which is mobile and isotropic but possesses shear birefringence, and has been very tentatively assigned as an inverse sponge phase. Three other surfactants exhibited a single lyotropic liquid crystalline phase, either Lalpha or HII, at temperatures >50 degrees C. The 10 new surfactants are compared with other recently reported nonionic urea surfactants. Structure-property correlations are examined for

  4. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    Science.gov (United States)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)

    2001-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which

  5. Single well surfactant test to evaluate surfactant floods using multi tracer method

    Science.gov (United States)

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  6. Molecular dynamics of dibenz[a,h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers.

    Science.gov (United States)

    Padilla-Chavarría, Helmut I; Guizado, Teobaldo R C; Pimentel, Andre S

    2015-08-28

    The interaction of dibenz[a,h]anthracene and its ultimate carcinogenic 3,4-diol-1,2-epoxide with lung surfactant phospholipid bilayers was successfully performed using molecular dynamics. The DPPC/DPPG/cholesterol bilayer (64 : 64 : 2) was used as the lung surfactant phospholipid bilayer model and compared with the DPPC bilayer as a reference. Dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide were inserted in water and lipid phases in order to investigate their interactions with the lung surfactant phospholipid bilayers. The radial distribution function between two P atoms in polar heads shows that the 3,4-diol-1,2-epoxide affects the order between the P atoms in the DPPC/DPPG/cholesterol model more than dibenz[a,h]anthracene, which is a consequence of its preference for the polar heads and dibenz[a,h]anthracene prefers to be located in the hydrocarbon chain of the phospholipid bilayers. Dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide may form aggregates in water and lipid phases, and in the water-lipid interface. The implications for the possible effect of dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide in the lung surfactant phospholipid bilayers are discussed.

  7. Effect of lipophilic tail architecture and solvent engineering on the structure of trehalose-based nonionic surfactant reverse micelles.

    Science.gov (United States)

    Shrestha, Lok Kumar; Sato, Takaaki; Dulle, Martin; Glatter, Otto; Aramaki, Kenji

    2010-09-23

    We use small-angle X-ray scattering and dynamic light scattering to investigate the structural and dynamical properties of trehalose polyisostearate, abbreviated as TQ-n (n = 3, 5, and 7), in different organic solvents, where n represents the number of isosterate chains per surfactant molecule. TQ-n spontaneously assembles into reverse micelles without addition of water at 25 °C. We found that for TQ-5 and TQ-7, steric hindrance of the lipophilic surfactant tail causes significant reduction of the aggregation number, whose scheme is clearly distinguished from the modification of the critical packing parameter. Increasing the hydrocarbon chain length of oils from octane to hexadecane favors one-dimensional micellar growth, leading to the formation of rodlike micelles due to different penetration tendencies of oils into the lipophilic shell of the surfactant. Subtle differences in solvent polarity also plays a crucial role in the micellar size, which is decreased when liquid paraffin is replaced with squalene. A further decrease is attained in more polar mixed triglyceride oils. A rising temperature also results in the same direction. The extrapolated structure factor to the zero scattering vector, S(q → 0), for the TQ-3/decane systems almost exactly follows that predicted for hard spheres, demonstrating that osmotic compressibility of the system is well explained if accounting for the excluded volume. However, we found that the effective diffusion coefficient decreases with surfactant concentration, which is an opposite trend to what is expected for hard spheres. This apparent contradiction is likely to be due to the occurrence of transient interdigitation between the lipophilic tails of neighboring reverse micelles at higher concentration. Our data highlight the relevance of the concept of "tunable reverse micellar geometry" in the novel trehalose-based nonionic surfactant binary mixtures, in which lipophilic tail architecture, solvent engineering, concentration

  8. Thermally cleavable surfactants

    Science.gov (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  9. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  10. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  11. Oligomannuronates from Seaweeds as Renewable Sources for the Development of Green Surfactants

    Science.gov (United States)

    Benvegnu, Thierry; Sassi, Jean-François

    The development of surfactants based on natural renewable resources is a concept that is gaining recognition in detergents, cosmetics, and green chemistry. This new class of biodegradable and biocompatible products is a response to the increasing consumer demand for products that are both "greener", milder, and more efficient. In order to achieve these objectives, it is necessary to use renewable low-cost biomass that is available in large quantities and to design molecular structures through green processes that show improved performance, favorable ecotoxicological properties and reduced environmental impact. Within this context, marine algae represent a rich source of complex polysaccharides and oligosaccharides with innovative structures and functional properties that may find applications as starting materials for the development of green surfactants or cosmetic actives. Thus, we have developed original surfactants based on mannuronate moieties derived from alginates (cell-wall polyuronic acids from brown seaweeds) and fatty hydrocarbon chains derived from vegetable resources. Controlled chemical and/or enzymatic depolymerizations of the algal polysaccharides give saturated and/or unsaturated functional oligomannuronates. Clean chemical processes allow the efficient transformation of the oligomers into neutral or anionic amphiphilic molecules. These materials represent a new class of surface-active agents with promising foaming/emulsifying properties.

  12. Trace elements and petroleum hydrocarbons in the aquatic bird food chain of process water evaporation ponds at the Little America Refinery, Casper, Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This study determined the nature and extent of trace elements, metals, and petroleum hydrocarbons in evaporation ponds used for the disposal of process water from...

  13. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study

    Science.gov (United States)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek

    2010-01-01

    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  14. New Y-shaped surfactants from renewable resources.

    Science.gov (United States)

    Ali, Tammar Hussein; Hussen, Rusnah Syahila Duali; Heidelberg, Thorsten

    2014-11-01

    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Perfluoroalkyl Epoxides: Synthesis and Conversion into Ionic Surfactants

    Directory of Open Access Journals (Sweden)

    Abdelhamid Ayari

    2014-07-01

    Full Text Available Perfluoroalkylated surfactants having a quaternary ammonium surrounded by three hydroxyl groups as hydrophilic moiety and a perfluoroalkyl chain as tail were obtained by coupling diethanolamine with perfluoroalkylated epoxide followed by quaternisation. The amphiphilic properties of these surfactants were investigated by measuring their surface and interfacial tensions.

  16. New mechanisms for phase separation in polymer-surfactant mixtures

    NARCIS (Netherlands)

    Currie, E.P.K.; Cohen Stuart, M.A.; Borisov, O.V.

    2000-01-01

    The cooperative association of ionic surfactants with polymer chains leads to quite novel features in the phase behaviour of polymer solutions. Using an analytic mean-field model, we analyze phase equilibria in solutions of neutral polymers mixed with ionic surfactants. We predict the possibilities

  17. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity.

  18. Hybrid Lipid as Biological Surfactants

    Science.gov (United States)

    Brewster, Robert; Pincus, Phil; Safran, Sam

    2009-03-01

    Systems capable of forming finite-sized, equilibrium domains are of biological interest in the context of membrane rafts where it has been observed that certain cellular functions are mediated by small (nanometric to tens of nanometers) domains with specific lipid composition that differs from the average composition of the membrane. These small domains are composed mainly of lipids with completely saturated hydrocarbon tails that show good orientational order in the membrane. The surrounding phase consists mostly of lipids with at least one unsaturated bond in the hydrocarbon tails which forces a ``kink'' in the chain and inhibits ordering. In vitro, this phase separation can be replicated; however, the finite domains coarsen into macroscopic domains with time. We have extended a model for the interactions of lipids in the membrane, akin to that developed in the group of Schick (Elliott et al., PRL 2006 and Garbes Putzel and Schick, Biophys. J. 2008), which depends entirely on the local ordering of hydrocarbon tails. We generalize this model to an additional species and identify a biologically relevant component, a lipid with one fully saturated hydrocarbon chain and one chain with at least one unsaturated bond, that may serve as a line-active component, capable of reducing the line tension between domains to zero, thus stabilizing finite sized domains in equilibrium.

  19. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    Directory of Open Access Journals (Sweden)

    Sagarika Mohanty

    2013-01-01

    Full Text Available Surfactant enhanced bioremediation (SEB of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs. Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review.

  20. MICROORGANISMS’ SURFACE ACTIVE SUBSTANCES ROLE IN HYDROCARBONS BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    Оlga Vasylchenko

    2012-09-01

    Full Text Available  Existing data and publications regarding oil, hydrocarbon biodegradation, metabolism, and bioremediation were analyzed. Search of hydrocarbon degrading bacteria which are producers of biosurfactants was provided, types of microbial surfactants and their physiological role were analyzed and ordered. The study of factors affecting the surface active properties of producers’ cultures was done.

  1. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  2. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    Science.gov (United States)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible.

  3. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge.

    Science.gov (United States)

    Petkova, R; Tcholakova, S; Denkov, N D

    2012-03-20

    Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.

  4. Mixing Effect of Polyoxyethylene-Type Nonionic Surfactants on the Liquid Crystalline Structures.

    Science.gov (United States)

    Kunieda; Umizu; Yamaguchi

    1999-10-01

    An effective cross-sectional area per surfactant molecule at hydrophobic interfaces of aggregates, a(S), in hexagonal (H(1)) and lamellar (L(alpha)) liquid crystals was calculated in homogeneous and mixed polyoxyethylene dodecyl ether systems as a function of polyoxyethylene (EO) chain length by means of small-angle X-ray scattering. The a(S) increases with increasing the EO chain length. The a(S) in the mixed surfactant system is considerably smaller than that in the single surfactant system, even if the average EO chain length is the same. The reduction of a(S) is larger than that predicted by ideal mixing of the surfactants. Moreover, if the EO chain lengths of the surfactants are more separated, the a(S) is smaller. The shapes of surfactant self-organizing structures may be governed by the balance of the attractive and the repulsive forces acting at the hydrophobic interfaces of the aggregates. According to this consideration, the mixing effect of surfactants with the different EO chain lengths on the a(S) in the L(alpha) phase was discussed. It is considered that the surfactant molecules are tightly packed in the aggregates since the reduction in repulsion force takes place in the excess EO chain part of the hydrophilic surfactant longer than the short EO chain of the lipophilic one. The lower surface tensions and the better stability of macroemulsions and the large solubilizing capacity of microemulsions result from the mixing effect. Copyright 1999 Academic Press.

  5. Synthesis of organic rectorite with novel Gemini surfactants for copper removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guocheng; Han, Yang [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Xiaoying, E-mail: xyw@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Shijie, E-mail: sjliu@163.com [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Department of Paper and Bioprocess Engineering, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 (United States); Sun, Runcang [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); China Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-30

    Graphical abstract: Three Gemini surfactants showed stronger rapid intercalation capacity into rectorite and behaved better on Cu{sup 2+} removal than two single-chain surfactants, which were positive to their increasing amount and chain length. - Highlights: • Modification of rectorite (REC) with several surfactants was performed in 1 h. • The arrangement of Gemini surfactants in REC layers was discussed. • All ORECs displayed better adsorption capacities on Cu{sup 2+} than pure REC. • Gemini-REC behaved better than single-chain surfactant modified REC on Cu{sup 2+} removal. • The adsorption capacity was positive to the amount and chain length of surfactant. - Abstract: Three novel Gemini surfactants were used to prepare organic rectorite (OREC) under microwave irradiation, in comparison with single-chain surfactant ester quaternary ammonium salt (EQAS) and cetyltrimethyl ammonium bromide (CTAB). The structure and morphology of OREC were characterized by XRD, BET, FT-IR, TEM and TGA. The removal of Cu{sup 2+} on OREC from aqueous solution was performed. The results reveal that Gemini surfactants modified REC had larger interlayer distance and higher surface area than single-chain surfactants EQAS and CTAB, and the increasing amount or chain length of Gemini surfactants led to larger layer spacing and higher adsorption capacities. The adsorption behavior of Gemini surfactant modified REC can be better described by Freundlich adsorption isotherm model, with a maximum adsorption capacity of 15.16 mg g{sup −1}. The desorption and regeneration experiments indicate good reuse property of Gemini modified REC adsorbent. Therefore, this study may widen the utilization of Gemini surfactants modified layered silicates.

  6. Effect of alkyl length of cationic surfactants on desorption of Cs from contaminated clay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hyun; Park, Chan Woo; Yang, Hee Man; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, So Jin [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    In this study, desorption characteristics of Cs from clay according to the hydrophobic alkyl chain length of the cationic surfactant were investigated. Alkyltrimethylammonium bromide was used as a cationic surfactant, and the length of the hydrophobic alkyl chain of the cationic surfactant was varied from –octyl to –cetyl. The adsorbed amount of the cationic surfactant on montmorillonite increased with the length of the hydrophobic alkyl chain, and intercalation of the cationic surfactant into the clay interlayer increased the interlayer distances. The Cs removal efficiency was also enhanced with increasing alkyl chain length, and the cationic surfactant with the cetyl group showed a maximum Cs removal efficiency of 99±2.9%.

  7. Performance of some surfactants as wetting agents

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, M.N.; El-Shanny, O.A.A. [Egyptian Petroleum Research Institute (EPRI), Cairo (Egypt). Evaluation and Analysis Dept.

    2005-12-01

    The wetting power of anionic surfactant: sodium dodecyl sulfate (SDS), and nonionic surfactants: polyoxyethelene(14)monolaurate [La(EO){sub 14}] and polyoxyethelene(14)monoeleate [OI(EO){sub 14}] has been studied to determine their performance as wetting agents. The study reveals that the nonionic compound with a long hydrophobic chain exhibits higher wettability than the shorter one when used at very low cocentrations (below CMC) and the reverse is shown with high concentrations (above CMC). the wetting power of the investigated surfactants increases as the CMC values increases. In case of the nonionic compounds and at surfactant concentrations equal their CMC values, OI(EO){sub 14} shows a higher wetting power than La(EO){sub 14} while is possesses a lower HLB value. The anionic surfactant shows an optimum wetting in comparison with the tested nonionic one. The wettability of all the investigated samples increases as the surface tension of their solutions increases to the allowed limit that can be reached in the presence of surfactant. (orig.)

  8. Superlattice configurations in linear chain hydrocarbon binary mixtures - Case of -C28H58: -CH2+2 ( = 10, 12, 14, 16)

    Indian Academy of Sciences (India)

    P B V Prasad; P B Shashikanth; P Neelima

    2005-01-01

    Powder XRD data of mixtures of title compounds are interpreted in terms of superlattices (SL). It is suggested that SL configurations (orthorhombic-orthorhombic, orthorhombic-monoclinic, monoclinic-monoclinic) are realizable, because of discrete orientational changes in the alignment of molecules of -C28H58 hydrocarbon, through an angle , where = 1, 2, 3 $\\ldots$ and angle has an average value of 3.3°. Supporting literature evidence on the inclinations are discussed.

  9. Chemoenzymatic synthesis and properties of novel lactone-type anionic surfactants.

    Science.gov (United States)

    Mori, Keisuke; Matsumura, Shuichi

    2012-01-01

    Two series of lactone-type surfactants with and without a hexyl side chain were prepared by the cyclocondensation of dimethyl alkanedioates with unsaturated diols, such as cis-2-butene-1,4-diol and ricinoleyl alcohol, using a lipase, followed by the addition of hydrophilic 3-mercaptopropionic acid in the presence of triethylamine. The lactone-type surfactants showed clear cmc values and surface tension lowering in aqueous solution irrespective of the hexyl side chain. It was found that the cmc values of lactone-type surfactants were lower than that of typical anionics, e.g., sodium laurate, and the cmc value became lower with increasing size of the lactone ring. The adsorption area at the surface of the aqueous lactone-type surfactant solution was larger when compared to the corresponding non-lactone-type surfactants. Lactone-type surfactants without the hexyl side chain aggregated quickly, forming 3-10 nm micelles; on the other hand, lactone-type surfactants with the hexyl side chain formed significantly larger micelles. This is due to the steric hindrance of the hexyl group on the lactone ring. The solubilization ability of the lactone-type surfactants with a hexyl side chain was superior to those without a hexyl side chain. The lactone-type surfactants showed a high foaming power and low foaming stability. They were also biodegraded by activated sludge.

  10. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  11. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  12. Dendrimer-surfactant interactions.

    Science.gov (United States)

    Cheng, Yiyun; Zhao, Libo; Li, Tianfu

    2014-04-28

    In this article, we reviewed the interactions between dendrimers and surfactants with particular focus on the interaction mechanisms and physicochemical properties of the yielding dendrimer-surfactant aggregates. In order to provide insight into the behavior of dendrimers in biological systems, the interactions of dendrimers with bio-surfactants such as phospholipids in bulk solutions, in solid-supported bilayers and at the interface of phases or solid-states were discussed. Applications of the dendrimer-surfactant aggregates as templates to guide the synthesis of nanoparticles and in drug or gene delivery were also mentioned.

  13. Surfactant Sector Needs Urgent Readjustment

    Institute of Scientific and Technical Information of China (English)

    Huang Hongzhou

    2007-01-01

    @@ Surfactant industrial system has been basically established After 50 years' development, China has already established a surfactant industrial system with a relatively complete product portfolio and can produce 4714 varieties of surfactants in cationic,anionic, nonionic and amphoteric categories.

  14. Synthesis and catalysis property of Gemini surfactants with ester based long-chain fatty alcohol%含长链脂肪醇酯基双子表面活性剂合成及催化性能

    Institute of Scientific and Technical Information of China (English)

    丁效明; 潘忠稳; 何领; 李凯波; 刘玉莹

    2012-01-01

    Three Gemini surfactants (C12, C14, C16) with ester based long-chain fatty alcohol were prepared by reacting bis ( ( dimethylamino) methyl) phthalate with dodecyl 2 - chloroacetate, tetradecyl 2 -chloroacetate and hexadecyl 2-chloroacetate respectively with 80% yield in acetone for refluxing 36 h . The purity was measured by two-phase chemical titration analysis, and the critical micelle concentration (CMC) values were 2.6×l0-4, 3.6×l0-5, 8.02×l0-6 by measuring the electrical conductivity. The phase transfer catalysis property of (C16) was studied by reaction of 4-methyl benzyl chloride with sodium acetate. It was founded that C16 had good catalysis property when reaction activation energy ( Ea) was 18. 59 kJ · mol-1 lower than the blank at C b =0.004 394 mol · L-1.%以丙酮为溶剂,二(二甲基胺基乙基)邻苯二甲酸酯分别与氯乙酸正十二醇酯、氯乙酸正十四醇酯及氯乙酸正十六醇酯回流反应36 h,得到3种含长链脂肪醇酯基季铵盐双子表面活性剂C12、C14、C16,收率80%.采用两相滴定法测定了其纯度,采用电导法测定了其CMC值分别是2.6× 10-4、3.6×10-5,8.02× 10-6.在无水乙酸钠与对甲基氯苄反应中,研究了C16的催化性能.当其浓度为0.004 394 mol·L-1,该反应活化能(Ea)相对于不加催化剂降低了18.59 kJ·mol-1,具有良好的催化性能.

  15. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: hakbas34@yahoo.com [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)

    2011-12-15

    Highlights: > Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. > Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. > Dimeric surfactants have attracted increasing attention due to their superior surface activity. > The positive values of {Delta}G{sub cp}{sup 0} indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-{alpha}-{omega}-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C{sub 16} alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy ({Delta}G{sub cp}{sup 0}), the enthalpy ({Delta}H{sub cp}{sup 0}) and the entropy ({Delta}S{sub cp}{sup 0}) of the clouding phenomenon were found positive in all cases. The standard free energy ({Delta}G{sub cp}{sup 0}) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic

  16. SURFACTANTS IN LUBRICATION

    Science.gov (United States)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  17. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo. Re

  18. Fate and effects of amphoteric surfactants in the aquatic environment.

    Science.gov (United States)

    Garcia, M Teresa; Campos, Encarna; Marsal, Agustí; Ribosa, Isabel

    2008-10-01

    Amphoteric surfactants form part of specialty surfactants available for formulators to improve or design new formulations in response to environmental, toxicity, safety and performance demands. Nevertheless, limited information on the ecological properties of amphoterics is available. In the present work, the aerobic and anaerobic biodegradability and the aquatic toxicity of different types of amphoteric surfactants (three alkyl betaines, one alkylamido betaine and three alkyl imidazoline derivatives) were studied. The amphoteric surfactants tested were readily biodegradable under aerobic conditions (CO2 headspace test) and alkylamido betaines and alkyl imidazoline derivatives were also easily biodegradable under anaerobic conditions (test based on the ECETOC method). Toxicity to Photobacterium phosphoreum and Daphnia magna increased with the fatty chain length of the surfactant. The EC50 toxicity values of the amphoterics tested were higher than 5 mg/L, and alkyl imidazoline derivatives, with EC50 values from 20 to > 200 mg/L, showed the lowest aquatic toxicity.

  19. CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lebone T. Moeti; Ramanathan Sampath

    2001-09-28

    this project. The M/B and B/M morphologies and their inversion hysteresis lines conformed to the previously postulated dispersion morphology diagram; that is, within experimental uncertainties, the two emulsion inversion lines in phase volume-temperature space met at a critical point that coincided with the upper critical end point for the phases. Coreflooding measurements were performed by our industrial partner in this project, Surtek, Golden, CO which showed poor hydrocarbon recovery (38.1%) for NEODOX 23-4. It was also found that NEODOX 23-4 surfactant adsorbed too much to the rock (97.1% surfactant loss to the core), a characteristic of the non-ionic part of the surfactant.

  20. Surfactants in the environment.

    Science.gov (United States)

    Ivanković, Tomislav; Hrenović, Jasna

    2010-03-01

    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  1. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of th

  2. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  3. Influence of anionic surfactants on the electric percolation of AOT/isooctane/water microemulsions.

    Science.gov (United States)

    García-Río, L; Mejuto, J C; Pérez-Lorenzo, M; Rodríguez-Alvarez, A; Rodríguez-Dafonte, P

    2005-07-05

    A study was carried out concerning the influence of sodium alkyl sulfonates on the electric percolation of AOT/isooctane/water microemulsions ([AOT] = 0.5 M and W = [H2O]/[AOT] = 22.2). An important effect was observed with regard to the percolation temperature caused by the addition of small quantities of alkyl sulfonates (rho = [alkyl sulfonate]/[AOT] = 0.01). The short chain alkyl sulfonates (C3-C5) cause an increase in the percolation temperature, which in turn is reduced as we increase the chain length of the additive until we obtain a percolation temperature which is lower than that which is observed in the absence of an additive (C6-C8). For hydrocarbon chains of a greater length we can observe a new increase in the percolation temperature (C10-C18). This behavior has been explained as a consequence of (i) the incorporation of the additives at the interphase of the microemulsion and (ii) the geometric parameters of the different surfactants added to the microemulsion.

  4. Phosphine oxide surfactants revisited.

    Science.gov (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  5. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level.

    Science.gov (United States)

    Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping

    2014-11-25

    Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants.

  6. Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp.

    Science.gov (United States)

    Tiwari, Bhagyashree; Manickam, N; Kumari, Smita; Tiwari, Akhilesh

    2016-09-01

    The aim of this work was to study the biodegradation capabilities of a locally isolated bacterium, Stenotrophomonas sp. strain IITR87 to degrade the polycyclic aromatic hydrocarbons and also check the preferential biodegradation of polycyclic aromatic hydrocarbons (PAHs). From preferential substrate degradation studies, it was found that Stenotrophomonas sp. strain IITR87 first utilized phenanthrene (three membered ring), followed by pyrene (four membered ring), then benzo[α]pyrene (five membered ring). Dissolution study of PAHs with surfactants, rhamnolipid and tritonX-100 showed that the dissolution of PAHs increased in the presence of surfactants.

  7. Perfluorinated Alcohols Induce Complex Coacervation in Mixed Surfactants.

    Science.gov (United States)

    Jenkins, Samuel I; Collins, Christopher M; Khaledi, Morteza G

    2016-03-15

    Recently, we reported a unique and nearly ubiquitous phenomenon of inducing simple and complex coacervation in solutions of a broad variety of individual and mixed amphiphiles and over a wide range of concentrations and mole fractions. This paper describes a novel type of biphasic separation in aqueous solutions of mixed cationic-anionic (catanionic) surfactants induced by hexafluoroisopropanol (HFIP). The test cases included mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) (surfactants with different carbon chain lengths) as well as dodecyltrimethylammonium bromide (DTAB) with SDS (surfactants with the same carbon chain lengths). The CTAB-SDS-HFIP coacervate systems can be produced at many different mole ratios of surfactant, but DTAB-SDS-HFIP formed only coacervates at equimolar (1:1) mole ratios of DTAB and SDS. The phase-transition behavior of both systems was studied over a wide range of surfactant and HFIP concentrations at the stoichiometric (1:1) mole ratio of cationic/anionic surfactants. The chemical compositions of each of the two phases (aqueous-rich and coacervate phases) were studied with regard to the concentrations of HFIP, water, and individual surfactants. It is revealed that the surfactant-rich phase (coacervate phase) contains a large percentage of fluoroalcohol relative to the aqueous phase and is enriched in both surfactants but contains a small percentage of water. Surprisingly, the concentration of water in the coacervate phase increases as the total HFIP concentration is increased while the concentration of HFIP in the coacervate phase remains relatively constant, which means a larger amount of water associated with HFIP molecules is extracted into the coacervate phase, which results in the growth of the phase. The volume of the coacervate phase increases with an increase in surfactant concentration and total HFIP %. The coacervate phase is highly enriched in the two amphiphilic ions (DTA(+) and DS

  8. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.

    Science.gov (United States)

    Wagner, Olaf; Thiele, Julian; Weinhart, Marie; Mazutis, Linas; Weitz, David A; Huck, Wilhelm T S; Haag, Rainer

    2016-01-07

    In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.

  9. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Moeti, Lebone T.; Sampath, Ramanathan

    2002-03-13

    Electrical conductivity measurements for middle, bottom, and top phases, as well as bottom/middle, and middle/bottom conjugate pair phases of the NEODOX 23-4/dodecane/10mM water system were continued from the previous reporting period. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. Following this, more emulsion studies at various temperatures were progresses. A theoretical model to predict the conductivity measurements using Maxwell equations was developed and sensitivity analyses to test the performance of the model was completed. Surtek, Golden, CO, our industrial partner in this project, investigated the suitability of the surfactant for enhanced oil recovery employing coreflooding techniques and observed lower surfactant and hydrocarbon recovery for NEODOX 23-4.

  10. Interaction of hydrocarbon monolayer surfaces across n-alkanes: A steric repulsion

    Science.gov (United States)

    Herder, Christina E.; Ninham, Barry W.; Christenson, Hugo K.

    1989-05-01

    We present results of force measurements between hydrocarbon monolayer surfaces across n-alkanes (hexane, decane, and tetradecane). The interaction is qualitatively different from that of any previously studied system and, in particular, bears no resemblance to an oscillatory solvation force. Instead, the force is repulsive from about 2.5 nm, with the exception of a shallow minimum just outside a force maximum at 0.8-0.9 nm. At smaller separations the force becomes attractive and there is a weak adhesion at contact. We suggest that the force law is due to a steric effect—a repulsive interaction originating in restrictions on chain conformations of the alkanes at small surface separations. This interaction is accessible via simple mean-field theories. The similarity of the liquid-liquid and liquid-surface interactions allows this to dominate over solvation effects. The results are of significance for interaggregate interactions in lamellar liquid crystals, microemulsions, and surfactant-stabilized dispersions.

  11. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  12. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  13. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2015-08-01

    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  14. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; Krumm, Christoph; Ren, Limin; Damen, Jonathan N.; Shete, Meera H.; Lee, Han Seung; Zuo, Xiaobing; Lee, Byeongdu; Fan, Wei; Vlachos, Dionisios G.; Lobo, Raul F.; Tsapatsis, Michael; Dauenhauer, Paul J.

    2016-11-23

    An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water while simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.

  15. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    Directory of Open Access Journals (Sweden)

    Maciej Kozak

    2013-04-01

    Full Text Available Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3-decyloxymethyl pentane chloride (gemini surfactant on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR and circular dichroism (CD spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase.

  16. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  17. Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, P.A. (National Environmental Research Institute, Roskilde (Denmark). Dept. of Marine Ecology and Microbiology); Arvin, E. (Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Environmental Science and Engineering)

    1999-08-01

    To achieve a better quantitative understanding of the stimulating or inhibiting effect of surfactants on the metabolism of polycyclic aromatic hydrocarbons (PAHs), a biodegradation model describing solubilization, bioavailability, and biodegradation of crystalline fluoranthene is proposed and used to model experimental data. The degradation was investigated in batch systems containing the PAH-degrading bacterium Sphingomonas paucimobilis strain EPA505, the nonionic surfactant Triton X-100, and a fluoranthene-amended liquid mineral salts medium. Surfactant-enhanced biodegradation is complex; however, the biodegradation model predicted fluoranthene disappearance and the initial mineralization well. Surfactant-amendment did increase fluoranthene mineralization rates by strain EPA505; however, the increases were not proportional to the rates of fluoranthene solubilization. The surfactant clearly influenced the microbial PAH metabolism as indicated by a rapid accumulation of colored products and by a surfactant -related decreased in the overall extent of fluoranthene mineralization. Model estimations of the bioavailability of micelle-solubilized fluoranthene, the relatively fast fluoranthene disappearance, and the accumulation of extracellular compounds in the degradation system suggest that low availability of micellar fluoranthene is not the only factor controlling surfactant-enhanced biodegradation. Also factors such as the extent of accumulation and bioavailability of the PAH metabolites and the crystalline solubilization rate in the presence of surfactants may determine the overall effect of surfactant-enhanced biodegradation of high molecular weight PAHs.

  18. Pyrene removal from contaminated soil using electrokinetic process combined with surfactant

    Directory of Open Access Journals (Sweden)

    Seyed Enayat Hashemi

    2015-07-01

    Full Text Available Background: Pyrene is one of the stable polycyclic aromatic hydrocarbons that is considered as an important pollutants, because of extensive distribution in the environment and carcinogenic and mutagenic properties. Among the various treatment techniques, electrokinetic method is an environmental- friendly process for organic and mineral pollutants adsorbed to soil with fine pore size the same as clay and low hydraulic conductivity soils. For improving the efficiency of pyrene removal from soil, soulobilization of pyrene from soil could be used by surfactants. Materials and Methods : In this study, clay soil was selected as model because of the specific properties. Combined method using surfactant and electrokinetic was applied for pyrene removal from soil. Experiments were designed using response surface methodology (RSM, and effect of three variables includes surfactant concentration, voltage and surfactant type were evaluated for pyrene removal from contaminated soil. Results: Pyrene removal using anionic surfactants(SDS and nonionic surfactants(TX100 as a solubilizing agents has high removal efficiency. In the optimum condition with 95% confidence coefficient, utilizing mixed surfactants of sodium dodecyl sulfate and triton X-100 with the same volume, induced of 18.54 volt and 6.53 percent surfactant concentration have 94.6% pyrene removal efficiency. Conclusion:: Results of this study shows that electrokinetic process combined with surfactant as solubilizing agent could be applied as an efficient method for treating the pyrene-contaminated soils.

  19. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution.

    Science.gov (United States)

    Inoue, Tohru; Ebina, Hayato; Dong, Bin; Zheng, Liqiang

    2007-10-01

    Electrical conductivity was measured for aqueous solutions of long-chain imidazolium ionic liquids (IL), 1-alkyl-3-methylimidazolium bromides with C(12)-C(16) alkyl chains. The break points appeared in specific conductivity (kappa) vs concentration (c) plot indicates that the molecular aggregates, i.e., micelles, are formed in aqueous solutions of these IL species. The critical micelle concentration (cmc) determined from the kappa vs c plot is somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micellar solution, and the aggregation number, n, and the degree of counter ion binding, beta, were estimated. The n values of the present ILs are somewhat smaller than those reported for alkyltrimethylammonium bromides, which may be attributed to bulkiness of the cationic head group of the IL species. The thermodynamic parameters for micelle formation of the present ILs were estimated using the values of cmc and beta as a function of temperature. The contribution of entropy term to the micelle formation is superior to that of enthalpy term below about 30 degrees C, and it becomes opposite at higher temperature. This coincides with the picture drawn for the micelle formation of conventional ionic surfactants.

  20. Screening of mixed surfactant systems: Phase behavior studies and CT imaging of surfactant-enhanced oil recovery experiments

    Energy Technology Data Exchange (ETDEWEB)

    Llave, F.M.; Gall, B.L.; Lorenz, P.B.; Cook, I.M.; Scott, L.J.

    1993-11-01

    A systematic chemical screening study was conducted on selected anionic-nonionic and nonionic-nonionic systems. The objective of the study was to evaluate and determine combinations of these surfactants that would exhibit favorable phase behavior and solubilization capacity. The effects of different parameters including (a) salinity, (b) temperature, (c) alkane carbon number, (c) hydrophilic/lipophilic balance (HLB) of nonionic component, and (d) type of surfactant on the behavior of the overall chemical system were evaluated. The current work was conducted using a series of ethoxylated nonionic surfactants in combinations of several anionic systems with various hydrocarbons. Efforts to correlate the behavior of these mixed systems led to the development of several models for the chemical systems tested. The models were used to compare the different systems and provided some guidelines for formulating them to account for variations in salinity, oil hydrocarbon number, and temperature. The models were also evaluated to determine conformance with the results from experimental measurements. The models provided good agreement with experimental results. X-ray computed tomography (CT) was used to study fluid distributions during chemical enhanced oil recovery experiments. CT-monitored corefloods were conducted to examine the effect of changing surfactant slug size injection on oil bank formation and propagation. Reducing surfactant slug size resulted in lower total oil production. Oil recovery results, however, did not correlate with slug size for the low-concentration, alkaline, mixed surfactant system used in these tests. The CT measurements showed that polymer mobility control and core features also affected the overall oil recovery results.

  1. Interaction between DNA and Trimethyl-Ammonium Bromides with Different Alkyl Chain Lengths

    Directory of Open Access Journals (Sweden)

    Chao Cheng

    2014-01-01

    Full Text Available The interaction between λ—DNA and cationic surfactants with varying alkyl chain lengths was investigated. By dynamic light scattering method, the trimethyl-ammonium bromides-DNA complex formation was shown to be dependent on the length of the surfactant’s alkyl chain. For surfactants with sufficient long alkyl chain (CTAB, TTAB, DTAB, the compacted particles exist with a size of ~60–110 nm at low surfactant concentrations. In contrast, high concentration of surfactants leads to aggregates with increased sizes. Atomic force microscope scanning also supports the above observation. Zeta potential measurements show that the potential of the particles decreases with the increase of surfactant concentration (CTAB, TTAB, DTAB, which contributes much to the coagulation of the particles. For OTAB, the surfactant with the shortest chain in this study, it cannot fully neutralize the charges of DNA molecules; consequently, the complex is looser than other surfactant-DNA structures.

  2. Partition of polycyclic aromatic hydrocarbons on organobentonites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of organobentonites synthesized by exchanging organiccation such as dodecyltri-methylammonium (DTMA),benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene,anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on Foundation item: the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd)between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene,naphthalene, acenaphthene were 2.621x105, 2.106x105, 2.247x104,5.085x104, respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between lgKoc and 1gkow, 1gKoc and 1gS for PAHs in the system of water

  3. Thermodynamic and kinetic characterization of host-guest association between bolaform surfactants and alpha- and beta-cyclodextrins.

    Science.gov (United States)

    Nilsson, Markus; Valente, Artur J M; Olofsson, Gerd; Söderman, Olle; Bonini, Massimo

    2008-09-11

    The thermodynamics and kinetics of formation of host-guest complexes between a series of bolaform surfactants of type C n Me 6 (2+)2Br (-) ( n = 8, 10, and 12) and alpha-cyclodextrin and beta-cyclodextrin were studied with the aid of isothermal titration calorimetry (ITC) at 298.15 and 308.20 K. The association constant, the enthalpy, and the entropy of formation were determined. The obtained thermodynamic parameters are compared with parameters for the micelle formation of a related cationic surfactant. The difference in magnitude and sign between the parameters of the alpha-CD and beta-CD complexes is discussed based on the curvature of the cavity of the CD. We suggest that the water molecules inside the alpha-CD cavity are not able to maintain their hydrogen bond network. Upon complex formation these water molecules are expelled and reform their hydrogen bond network. The situation is different in the larger beta-CD cavity where water has the possibility of a more extensive hydrogen bonding. The kinetics for alpha-CD is slow, associated with high activation energies for both association and dissociation of the complex. The rates increased with a decrease in the number of methylene groups in the hydrocarbon chain. The slow kinetics is argued to originate from the fact that the charged headgroup needs to be pushed through a relative nonpolar cavity. A comparison is made with the Born energy.

  4. Tuning of protein-surfactant interaction to modify the resultant structure.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  5. Sizing up surfactant synthesis.

    Science.gov (United States)

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  6. Evaluation of surfactant flushing for remediating EDC-tar contamination

    Science.gov (United States)

    Liang, Chenju; Hsieh, Cheng-Lin

    2015-06-01

    Ethylene dichloride tar (EDC-tar) is a dense non-aqueous phase liquid (DNAPL) waste originated from the process of vinyl chloride production, with major constituents including chlorinated aliphatic and aromatic hydrocarbons. This study investigated the feasibility of Surfactant Enhanced Aquifer Remediation (SEAR) for treating EDC-tar contaminated aquifers. Initial experiments explored the potential to enhance the apparent solubility of EDC-tar using single or mixed surfactants. The results showed that an aqueous solution mixed anionic and non-ionic surfactants (i.e., SDS/Tween 80) exhibited higher EDC-tar apparent solubility and lower surface tension than other surfactant systems tested. Additionally, alkaline pH aids in increasing the EDC-tar apparent solubility. In column flushing experiments, it was seen that the alkaline mixed SDS/Tween 80 solution showed better removal of pure EDC-tar from silica sand porous media. Furthermore, separation of EDC-tar in the surfactant solution was conducted employing a salting-out effect. Significant separation of DNAPL was observed when 13 wt.% or more NaCl was added to the solution. Overall, this study evaluates the feasibility of using SEAR for remediating EDC-tar contaminated subsurface soil and groundwater.

  7. Solution behaviour of new cationic surfactants derived from Guerbet alcohols and their use in hair conditioners.

    Science.gov (United States)

    Yahagi, K; Hoshino, N; Hirota, H

    1991-10-01

    Summary The solution behaviour of new cationic surfactants, synthesized by using long-chain Guerbet alcohols, in water was investigated by a polarizing microscopic technique, differential scanning calorimetry, and electric conductivity measurements. These surfactants show the gel-liquid crystalline phase transition to be lower than 0 degrees C and form lamellar liquid crystals even in cold water and at low concentrations of surfactants. The sorption of cationic surfactants from aqueous solutions onto hair was determined as a function of temperature. The effect of adsorbed cationic surfactants on the critical surface tension and kinetic frictional coefficients of hair surface have been investigated. These surface characteristics of hair treated with quaternary ammonium compounds derived from Guerbet alcohols were found to be significantly improved. These results can be explained by the high ability of sorption onto hair. Hair rinses and conditioners having excellent ease of combing or brushing for wet and dry hair can be formulated by the application of these cationic surfactants.

  8. Microbial production of surfactants and their commercial potential.

    Science.gov (United States)

    Desai, J D; Banat, I M

    1997-03-01

    Many microorganisms, especially bacteria, produce biosurfactants when grown on water-immiscible substrates. Biosurfactants are more effective, selective, environmentally friendly, and stable than many synthetic surfactants. Most common biosurfactants are glycolipids in which carbohydrates are attached to a long-chain aliphatic acid, while others, like lipopeptides, lipoproteins, and heteropolysaccharides, are more complex. Rapid and reliable methods for screening and selection of biosurfactant-producing microorganisms and evaluation of their activity have been developed. Genes involved in rhamnolipid synthesis (rhlAB) and regulation (rhlI and rhlR) in Pseudomonas aeruginosa are characterized, and expression of rhlAB in heterologous hosts is discussed. Genes for surfactin production (sfp, srfA, and comA) in Bacillus spp. are also characterized. Fermentative production of biosurfactants depends primarily on the microbial strain, source of carbon and nitrogen, pH, temperature, and concentration of oxygen and metal ions. Addition of water-immiscible substrates to media and nitrogen and iron limitations in the media result in an overproduction of some biosurfactants. Other important advances are the use of water-soluble substrates and agroindustrial wastes for production, development of continuous recovery processes, and production through biotransformation. Commercialization of biosurfactants in the cosmetic, food, health care, pulp- and paper-processing, coal, ceramic, and metal industries has been proposed. However, the most promising applications are cleaning of oil-contaminated tankers, oil spill management, transportation of heavy crude oil, enhanced oil recovery, recovery of crude oil from sludge, and bioremediation of sites contaminated with hydrocarbons, heavy metals, and other pollutants. Perspectives for future research and applications are also discussed.

  9. Fluidizing and Solidifying Effects of Perfluorooctylated Fatty Alcohols on Pulmonary Surfactant Monolayers.

    Science.gov (United States)

    Nakahara, Hiromichi

    2016-01-01

    Pulmonary surfactant (PS) preparations based mainly on bovine or porcine extracts are commonly administered to patients with neonatal respiratory distress syndrome (NRDS) for therapy. The preparations are sufficiently effective to treat NRDS; however, they are associated with a risk of infection and involve costly purification procedures to achieve batch-to-batch reproducibility. Therefore, we investigated the mechanism and interfacial behavior of synthetic PS preparations containing a mimicking peptide (KLLKLLLKLWLKLLKLLL, Hel 13-5). In particular, a hybrid PS formulation with fluorinated amphiphiles is reported from the perspective of surface chemistry. Fluorinated amphiphiles are characterized by exceptional chemical and biological inertness, high oxygen-dissolving capacity, low surface tension, excellent spreading ability, and high fluidity. These properties are superior to those for the corresponding hydrocarbon analogs. Indeed, a small amount of fluorinated long-chain alcohols enhances the effectiveness of the model PS preparation for in vitro pulmonary functions. Moreover, the mode of the improved efficacy differs depending on the hydrophobic chain length in the alcohols. For alcohols with a short fluorocarbon (FC) chain, the monolayer phase of the model PS preparation remains disordered (fluidization). However, the addition of alcohols containing a long FC chain reduces the disordered/ordered phase transition pressure and the growth of ordered domains of the monolayer (condensation). Furthermore, repeated compression-expansion isotherms of the monolayers, which can simulate respiration in the lung, suggest irreversible elimination of the short-FC alcohol into the subphase and enhancement of the squeeze-out phenomenon of certain PS components by solid-like monolayer formation induced by the long-FC alcohol. We demonstrated that fluorinated amphiphiles may be used as additives for synthetic or commercial PS preparations for RDS treatment.

  10. Determination of alkylbenzenesulfonate surfactants in groundwater using macroreticular resins and carbon-13 nuclear magnetic resonance spectrometry

    Science.gov (United States)

    Thurman, E.M.; Willoughby, T.; Barber, L.B.; Thorn, K.A.

    1987-01-01

    Alkylbenzenesulfonate surfactants were determined in groundwater at concentrations as low as 0.3 mg/L. The method uses XAD-8 resin for concentration, followed by elution with methanol, separation of anionic and nonionic surfactants by anion exchange, quantitation by titration, and identification by 13C nuclear magnetic resonance spectrometry. Laboratory standards and field samples containing straight-chain and branched-chain alkylbenzenesulfonates, sodium dodecyl sulfate, and alkylbenzene ethoxylates were studied. The XAD-8 extraction of surfactants from groundwater was completed in the field, which simplified sample preservation and reduced the cost of transporting samples.

  11. Small angle neutron scattering studies on the interaction of cationic surfactants with bovine serum albumin

    Indian Academy of Sciences (India)

    Nuzhat Gull; S Chodankar; V K Aswal; Kabir-Ud-Din

    2008-11-01

    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant molecules aggregate along the unfolded polypeptide chain of the protein resulting in the formation of a fractal structure representing a necklace model of micelle-like clusters randomly distributed along the polypeptide chain. The fractal dimension as well as the size and number of micelles attached to the complex have been determined.

  12. Use of amine oxide surfactants for chemical flooding EOR (enhanced oil recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.K.

    1989-11-01

    The use of amine oxides with and without alcohols as cosolvents, and in combination with other surfactants as mixed micellar formulations for enhanced oil recovery by surfactant flooding was investigated. Amine oxides are a salt-tolerant class of surfactants that produce low interfacial tension and can develop viscosity without the addition of polymers. These salt-tolerant formulations generate three-phase regions with hydrocarbons over a broad salinity range, develop moderate solubilization, and produce low interfacial tensions, however oil recovery from amine oxide-alcohol phase behavior optimized formulations was directly dependent upon the quantity of surfactant injected. The large pore volume and high concentration of surfactant required prohibits their economic use as the primary surfactant in chemical flooding EOR. Dimethylalkylamine oxides are useful as cosurfactants and viscosifiers in formulations with other surfactants for chemical flooding EOR but the use of ethoxylated and propoxylated amine oxides should be avoided due to the decomposition of these amine oxides under reservoir conditions. Phase behavior, phase inversion temperatures, and viscosity scans have been correlated with surfactant structures to provide a guide for amine oxide applications in chemical flooding. 36 refs., 5 figs., 6 tabs.

  13. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.

    Science.gov (United States)

    Ni, Hewei; Zhou, Wenjun; Zhu, Lizhong

    2014-05-01

    The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (Tween 80. These results may be explained by the lower sorption loss and reduced interfacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation.

  14. Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel.

    Science.gov (United States)

    Wyrwas, Bogdan; Chrzanowski, Łukasz; Ławniczak, Łukasz; Szulc, Alicja; Cyplik, Paweł; Białas, Wojciech; Szymański, Andrzej; Hołderna-Odachowska, Aleksandra

    2011-12-15

    The hypothesis regarding preferential biodegradation of surfactants applied for enhancement of microbial hydrocarbons degradation was studied. At first the microbial degradation of sole Triton X-100 by soil isolated hydrocarbon degrading bacterial consortium was confirmed under both full and limited aeration with nitrate as an electron acceptor. Triton X-100 (600 mg/l) was utilized twice as fast for aerobic conditions (t(1/2)=10.3h), compared to anaerobic conditions (t(1/2)=21.8h). HPLC/ESI-MS analysis revealed the preferential biodegradation trends in both components classes of commercial Triton X-100 (alkylphenol ethoxylates) as well as polyethylene glycols. The obtained results suggest that the observed changes in the degree of ethoxylation for polyethylene glycol homologues occurred as a consequence of the 'central fission' mechanism during Triton X-100 biodegradation. Subsequent experiments with Triton X-100 at approx. CMC concentration (150 mg/l) and diesel oil supported our initial hypothesis that the surfactant would become the preferred carbon source even for hydrocarbon degrading bacteria. Regardless of aeration regimes Triton X-100 was utilized within 48-72 h. Efficiency of diesel oil degradation was decreased in the presence of surfactant for aerobic conditions by approx. 25% reaching 60 instead of 80% noted for experiments without surfactant. No surfactant influence was observed for anaerobic conditions.

  15. Electronic structure and mesoscopic simulations of nonylphenol ethoxylate surfactants. a combined DFT and DPD study.

    Science.gov (United States)

    Valencia, Diego; Aburto, Jorge; García-Cruz, Isidoro

    2013-08-07

    The aim of this work was to gain insight into the effect of ethylene oxide (EO) chains on the properties of a series of nonylphenol ethoxylate (NPE) surfactants. We performed a theoretical study of NPE surfactants by means of density functional theory (DFT) and dissipative particle dynamics (DPD). Both approximations were used separately to obtain different properties. Four NPEs were selected for this purpose (EO = 4, 7, 11 and 15 length chains). DFT methods provided some electronic properties that are related to the EO units. One of them is the solvation Gibbs energy, which exhibited a linear trend with EO chain length. DPD calculations allow us to observe the dynamic behavior in water of the NPE surfactants. We propose a coarse-grained model which properly simulates the mesophases of each surfactant. This model can be used in other NPEs applications.

  16. Electronic Structure and Mesoscopic Simulations of Nonylphenol Ethoxylate Surfactants. A Combined DFT and DPD Study

    Directory of Open Access Journals (Sweden)

    Isidoro García-Cruz

    2013-08-01

    Full Text Available The aim of this work was to gain insight into the effect of ethylene oxide (EO chains on the properties of a series of nonylphenol ethoxylate (NPE surfactants. We performed a theoretical study of NPE surfactants by means of density functional theory (DFT and dissipative particle dynamics (DPD. Both approximations were used separately to obtain different properties. Four NPEs were selected for this purpose (EO = 4, 7, 11 and 15 length chains. DFT methods provided some electronic properties that are related to the EO units. One of them is the solvation Gibbs energy, which exhibited a linear trend with EO chain length. DPD calculations allow us to observe the dynamic behavior in water of the NPE surfactants. We propose a coarse-grained model which properly simulates the mesophases of each surfactant. This model can be used in other NPEs applications.

  17. MICROBIAL SURFACTANTS. I. GLYCOLIPIDS

    Directory of Open Access Journals (Sweden)

    Pirog T. Р.

    2014-02-01

    Full Text Available The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates are summarized. It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.

  18. MICROBIAL SURFACTANTS. II. LIPOPEPTIDES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2014-04-01

    Full Text Available The classification and the chemical structure of the lipopeptides and their producers (bacteria of the genera Bacillus and Pseudomonas are given. The role of the lipopeptides in cells motility, biofilm formation, metal binding and xenobiotics degradation and their action on the cells of pro- and eukaryotes is summarized. The stages of the nonribosomal lipopeptides synthesis and the role of two-component (GacA/GacS, ComA/ComP and the quorum system regulation of this process are shown. The potential of lactic acid bacteria and marine microorganisms as alternative surfactants producers (glycolipids, lipopeptides, phospholipids and fatty acids, glycolipopeptides are discussed. Their productivity and advantages over traditional producers are given as well. The properties of surfactants synthesized by lactic acid bacteria (the reduction of the surface tension, the critical micelle concentration, the stability in a wide range of pH, the temperature, the biological activity are summarized. Surfactants of nonpathogenic probiotic bacteria could be used as effective antimicrobial agents and antiadhesive and marine producers which able to synthesize unique metabolites that are not produced by other microorganisms.

  19. Novel Piperazine-based Gemini and Bola Surfactants

    Institute of Scientific and Technical Information of China (English)

    Qing Shan ZHANG; Hui Miao ZHANG; Bing Nan GUO

    2006-01-01

    A series of piperazine-based Gemini and Bola surfactants were synthesized. Gemini 1and 5 have well surface activities. Their critical micelle concentrations (cmc) is 6.47×10-4 mol/L and 1.17×10-3 mol/L, respectively. Bola surfactants 2 and compound 3, possessing better water solubility, have lower surface activities. Calculation, carried out by MM2 energy minimization,showed that compound with more hydrophobic chains in a spacer of limited length is difficult to be synthesized.

  20. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  1. Adsorptive removal of naphthalene induced by structurally different Gemini surfactants in a soil-water system.

    Science.gov (United States)

    Wei, Jia; Li, Jun; Huang, Guohe; Wang, Xiujie; Chen, Guanghui; Zhao, Baihang

    2016-09-01

    A new generation of surfactant, Gemini surfactants, have been synthesized and have attracted the attention of various industrial and academic research groups. This study focused on the use of symmetric and dissymmetric quaternary ammonium Gemini surfactants to immobilize naphthalene onto soil particles, and is used as an example of an innovative application to remove HOC in situ using the surfactant-enhanced sorption zone. The sorption capacity of modified soils by Gemini surfactant and natural soils was compared and the naphthalene sorption efficiency, in the absence and presence of Gemini surfactants with different alkyl chain lengths, was investigated in the soil-water system. The results have shown that the increased added Gemini surfactant formed admicelles at the interface of soil/water having superior capability to retard contaminant. Symmetric and dissymmetric Gemini surfactants have opposite effect on the aspect of removing of PAH attributing to their solubilization and sorption behavior in soil-water system. Compared with the natural soil, sorption of naphthalene by Gemini-modified soil is noticeably enhanced following the order of C12-2-16 < C12-2-12 < C12-2-8. However, the symmetric Gemini surfactant C12-2-12 is the optimized one for in situ barrier remediation, which is not only has relative high retention ability but also low dosage.

  2. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  3. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each polyelectrolyte-surfactant particle in the region of the CAC, and just beyond, contains many polyelectrolyte chains, held together essentially by micelle bridges. These particles, however, remain net positively charged, and therefore stable. At the other end of the binding range of the surfactant, so many internal micelles are present that the polymer-surfactant particles are now net negatively charged. Indeed binding stops since no further micelles can be accommodated. Again, the particles are stable. However, there exists a range of surfactant concentrations, lying within the range referred to above, where the net charge is reduced sufficiently that the polymer-surfactant particles will flocculate to form much larger structures. The onset of this second range might be termed the 'critical flocculation concentration' (CFC), and the end, the 'critical stabilisation concentration' (CSC). In this work, the CFC and

  4. Transient exposure of pulmonary surfactant to hyaluronan promotes structural and compositional transformations into a highly active state.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Cruz, Antonio; Richter, Ralf P; Taeusch, H William; Pérez-Gil, Jesús

    2013-10-11

    Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations.

  5. Measurement of cytotoxicity and irritancy potential of sugar-based surfactants on skin-related 3D models.

    Science.gov (United States)

    Lu, Biao; Miao, Yong; Vigneron, Pascale; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Pezron, Isabelle; Egles, Christophe; Vayssade, Muriel

    2017-04-01

    Sugar-based surfactants present surface-active properties and relatively low cytotoxicity. They are often considered as safe alternatives to currently used surfactants in cosmetic industries. In this study, four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or a maltose headgroup through an amide linkage, were synthesized and compared to two standard surfactants. The cytotoxic and irritant effects of surfactants were evaluated using two biologically relevant models: 3D dermal model (mouse fibroblasts embedded in collagen gel) and reconstituted human epidermis (RHE, multi-layered human keratinocytes). Results show that three synthesized surfactants possess lower cytotoxicity compared to standard surfactants as demonstrated in the 3D dermal model. Moreover, the IC50s of surfactants against the 3D dermal model are higher than IC50s obtained with the 2D dermal model (monolayer mouse fibroblasts). Both synthesized and standard surfactants show no irritant effects after 48h of topical application on RHE. Throughout the study, we demonstrate the difficulty to link the physico-chemical properties of surfactants and their cytotoxicity in complex models. More importantly, our data suggest that, prior to in vivo tests, a complete understanding of surfactant cytotoxicity or irritancy potential requires a combination of cellular and tissue models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interaction of nonionic surfactant AEO9 with ionic surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo; YIN Hong

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, αAEO9 =0.5. The surface properties of the surfactants, critical micelle concentration (CMC),effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Гmax) and minimum area per molecule at the air/solution interface (Amin) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.

  7. Solution properties and emulsification properties of amino acid-based gemini surfactants derived from cysteine.

    Science.gov (United States)

    Yoshimura, Tomokazu; Sakato, Ayako; Esumi, Kunio

    2013-01-01

    Amino acid-based anionic gemini surfactants (2C(n)diCys, where n represents an alkyl chain with a length of 10, 12, or 14 carbons and "di" and "Cys" indicate adipoyl and cysteine, respectively) were synthesized using the amino acid cysteine. Biodegradability, equilibrium surface tension, and dynamic light scattering were used to characterize the properties of gemini surfactants. Additionally, the effects of alkyl chain length, number of chains, and structure on these properties were evaluated by comparing previously reported gemini surfactants derived from cystine (2C(n)Cys) and monomeric surfactants (C(n)Cys). 2C(n)diCys shows relatively higher biodegradability than does C(n)Cys and previously reported sugar-based gemini surfactants. Both critical micelle concentration (CMC) and surface tension decrease when alkyl chain length is increased from 10 to 12, while a further increase in chain length to 14 results in increased CMC and surface tension. This indicates that long-chain gemini surfactants have a decreased aggregation tendency due to the steric hindrance of the bulky spacer as well as premicelle formation at concentrations below the CMC and are poorly packed at the air/water interface. Formation of micelles (measuring 2 to 5 nm in solution) from 2C(n)diCys shows no dependence on alkyl chain length. Further, shaking the mixtures of aqueous 2C(n)diCys surfactant solutions and squalane results in the formation of oil-in-water type emulsions. The highly stable emulsions are formed using 2C₁₂diCys or 2C₁₄diCys solution and squalane in a 1:1 or 2:1 volume ratio.

  8. Surfactant media for constant-current coulometry. Application for the determination of antioxidants in pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Ziyatdinova, Guzel, E-mail: Ziyatdinovag@mail.ru [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation); Ziganshina, Endzhe; Budnikov, Herman [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation)

    2012-09-26

    Highlights: Black-Right-Pointing-Pointer Applicability of surfactants in constant-current coulometry is shown for the first time. Black-Right-Pointing-Pointer Reactions of antioxidants with electrogenerated titrants in surfactant media are investigated. Black-Right-Pointing-Pointer Water insoluble antioxidants can be determined in water media with addition of surfactants. Black-Right-Pointing-Pointer Coulometric determination of antioxidants in pharmaceutical dosage forms using surfactants media is developed. - Abstract: Effect of surfactant presence on electrochemical generation of titrants has been evaluated and discussed for the first time. Cationic (1-dodecylpyridinium and cetylpyridinium bromide), anionic (sodium dodecyl sulfate) and nonionic (Triton X100 and Brij{sup Registered-Sign} 35) surfactants as well as nonionic high molecular weight polymer (PEG 4000) do not react with the electrogenerated bromine, iodine and hexacyanoferrate(III) ions. The electrogenerated chlorine chemically interact with Triton X100 and Brij{sup Registered-Sign} 35. The allowable range of surfactants concentrations providing 100% current yield has been found. Chain-breaking low molecular weight antioxidants (ascorbic acid, rutin, {alpha}-tocopherol and retinol) were determined by reaction with the electrogenerated titrants in surfactant media. Nonionic and cationic surfactants can be used for the determination of antioxidants by reaction with the electrogenerated halogens. On contrary, cationic surfactants gives significantly overstated results of antioxidants determination with electrogenerated hexacyanoferrate(III) ions. The use of surfactants in coulometry of {alpha}-tocopherol and retinol provides their solubilization and allows to perform titration in water media. Simple, express and reliable coulometric approach for determination of {alpha}-tocopherol, rutin and ascorbic acid in pharmaceuticals using surfactant media has been developed. The relative standard deviation of the

  9. Anomalous diffusion and stress relaxation in surfactant micelles

    Science.gov (United States)

    Dhakal, Subas; Sureshkumar, Radhakrishna

    2017-07-01

    We investigate the mechanisms of anomalous diffusion in cationic surfactant micelles using molecular dynamics simulations in the presence of explicit salt and solvent-mediated interactions. Simulations show that when the counterion density increases, saddle-shaped branched interfaces manifest. In experiments, branched structures exhibit lower viscosity as compared to linear and wormlike micelles. This has long been attributed to stress relaxation arising from the sliding motion of branches along the main chain. Our simulations reveal a mechanism of branch motion resulting from an enhanced counterion condensation at the branched interfaces and provide quantitative evidence of stress relaxation facilitated by branched sliding. Furthermore, depending on the surfactant and salt concentrations, which in turn determine the microstructure, we observe normal, subdiffusive, and superdiffusive motions of surfactants. Specifically, superdiffusive behavior is associated with branch sliding, breakage and recombination of micelle fragments, as well as constraint release in entangled systems.

  10. Solubilization of trichloroethylene by polyelectrolyte/surfactant complexes

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Hirotaka; Christian, S.D.; Tucker, E.E.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))

    1994-12-01

    An automated vapor pressure method is used to obtain solubilization isotherms for trichloroethylene (TCE) in polyelectrolyte/surfactant complexes throughout a wide range of solute activities at 20 and 25 C. The polyelectrolyte chosen is sodium poly(styrenesulfonate), PSS< and the surfactant is cetylpyridinium chloride or N-hexadecylpyridinium chloride, CPC. Data are fitted to the quadratic equation K = K[sub 0](1[minus][alpha]X + [beta]X[sup 2]), which correlates the solubilization equilibrium constant (K) with the mole fraction of TCE (X) in the micelles or complexes at each temperature. Activity coefficients are also obtained for TCE in the PSS/CPC complexes as a function of X. The general solubilization of TCE in PSS/CPC complexes resembles that of TCE in CPC micelles, as well as that of benzene or toluene in CPC micelles, suggesting that TCE solubilizes in ionic micelles both within the hydrocarbon micellar interior and near the micellar surface. The presence of the polyelectrolyte causes a small decrease in the ability of the cationic surfactant to solubilize TCE, while greatly reducing the concentration of the surfactant present in monomeric form. PSS/CPC complexes may be useful in colloid-enhanced ultrafiltration processes to purify organic-contaminated water.

  11. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H2O, and CO2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  12. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  13. Surfactant monitoring by foam generation

    Science.gov (United States)

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  14. Surfactant adsorption kinetics in microfluidics

    Science.gov (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  15. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    Science.gov (United States)

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  16. Effect of a commercial alcohol ethoxylate surfactant (C11-15E7) on biodegradation of phenanthrene in a saline water medium by Neptunomonas naphthovorans.

    Science.gov (United States)

    Li, Jing-Liang; Bai, Renbi

    2005-02-01

    Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.

  17. Technical and economic feasibility of soil flushing with non-ionic surfactant to remediate gas well condensate

    Energy Technology Data Exchange (ETDEWEB)

    Felske, D.; Morton, P.R. [EBA Engineering Consultants Ltd., Calgary, AB (Canada)

    2005-07-01

    The results of a feasibility study to assess the technical and economic viability of remediating condensate-impacted soils surrounding a main gas pipeline in northern Alberta by in situ flushing with non-ionic surfactant were presented. A commercially available non-ionic surfactant was evaluated for its solubility increasing properties as an economic means of solubilizing soil-bonded condensate. An injection-recovery well configuration was situated within the condensate spill pathway and was selected for a series of inter-well tests using surfactant injection and its recovery from a nearby pumped recovery well. Sodium bromide was used as a conservative tracer to assist in the selection of surfactant and solubilized hydrocarbon samples from the recovery well for laboratory analysis. Surfactant, hydrocarbon and tracer breakthrough curves were plotted for the recovered groundwater. Results enabled the quantification of surfactant effects on recovered groundwater. Findings demonstrated that the non-ionic surfactant achieved a significant solubilization and soil remediation of condensate at a more economic rate than bioventing, biosparging or soil vapour extraction when considered over the projected time, and attained all regulatory soil and groundwater quality remediation objectives.

  18. Methane Conversion to C2 Hydrocarbons Using Glow Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Miao; CHEN Jierong

    2007-01-01

    The infrared emission spectra of methane, H', CH and C2 hydrocarbons in natural gas were measured. The process of methane decomposition and C2 hydrocarbons formation was investigated. The experiment showed that the time and conditions of methane decomposition and C2 hydrocarbons formation were different. Methane conversion rate increased with the increase in the current and decrease in the amount of methane. Furthermore, an examination of the reaction mechanisms revealed that free radicals played an important role in the chain reaction.

  19. Enhanced molecular order in polythiophene films electropolymerized in a mixed electrolyte of anionic surfactants and boron trifluoride diethyl etherate.

    Science.gov (United States)

    Santoso, Handoko T; Singh, Virendra; Kalaitzidou, Kyriaki; Cola, Baratunde A

    2012-03-01

    We synthesized polythiophene (PTh) films on stainless steel electrodes using chronoamperometry in boron trifluoride diethyl etherate (BFEE) electrolyte with anionic surfactants. The presence of the anionic surfactants in BFEE reduced the oxidation potential of thiophene and increased the oxidation current during electropolymerization. The measured in-plane electrical conductivity of PTh films synthesized in the presence of anionic surfactants was up to 300% higher than that of films synthesized under similar conditions without surfactants. The observed increase in conductivity reflects the improved order and packing of polymer chains revealed by X-ray diffraction.

  20. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH.

    Science.gov (United States)

    Ríos, Francisco; Lechuga, Manuela; Fernández-Serrano, Mercedes; Fernández-Arteaga, Alejandro

    2017-03-01

    The present study was designed to provide information regarding the effect of the molecular structure of amphoteric amine-oxide-based surfactants and the initial surfactant concentration on their ultimate biodegradation. Moreover, given this parameter's pH-dependence, the effect of pH was also investigated. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R12), Myristamine oxide (AO-R14) and Cocamidopropylamine oxide (AO-Cocoamido). We studied the ultimate biodegradation using the Modified OECD Screening Test at initial surfactant concentrations ranged from 5 to 75 mg L(-1) and at pH levels from 5 to 7.4. The results demonstrate that at pH 7.4, amine-oxide-based surfactants are readily biodegradable. In this study, we concluded that ω-oxidation can be assumed to be the main biodegradation pathway of amine-oxides and that differences in the biodegradability between them can be explained by the presence of an amide group in the alkyl chain of AO-Cocoamido; the CN fission of the amide group slows down their mineralization process. In addition, the increase in the concentration of the surfactant from 5 to 75 mg L(-1) resulted in an increase in the final biodegradation of AO-R12 and AO-R14. However, in the case of AO-Cocoamido, a clear relationship between the concentration and biodegradation cannot be stated. Conversely, the biodegradability of AO-R12 and AO-R14 was considerably lower in an acid condition than at a pH of 7.4, whereas AO-Cocoamido reached similar percentages in acid conditions and at a neutral pH. However, microorganisms required more time to acclimate.

  1. Innovation in surfactant therapy II: surfactant administration by aerosolization.

    Science.gov (United States)

    Pillow, J Jane; Minocchieri, S

    2012-01-01

    Instilled bolus surfactant is the only approved surfactant treatment for neonatal respiratory distress syndrome. However, recent trends towards increased utilization of noninvasive respiratory support for preterm infants with surfactant deficiency have created a demand for a similarly noninvasive means of administering exogenous surfactant. Past approaches to surfactant nebulization met with varying success due to inefficient aerosol devices resulting in low intrapulmonary delivery doses of surfactant with variable clinical effectiveness. The recent development of vibrating membrane nebulizers, coupled with appropriate positioning of the interface device, indicates that efficient delivery of aerosolized surfactant is now a realistic goal in infants. Evidence of clinical effect despite low total administered dose in pilot studies, together with suggestions of enhanced homogeneity of pulmonary distribution indicate that this therapy may be applied in a cost-effective manner, with minimal patient handling and disruption. These studies need to be subjected to appropriately designed randomized controlled trials. Further work is also required to determine the optimum delivery route (mask, intranasal prong, nasopharyngeal or laryngeal), dosing amount and redosing interval.

  2. Stabilization of emulsions using polymeric surfactants based on inulin.

    Science.gov (United States)

    Tadros, Th F; Vandamme, A; Levecke, B; Booten, K; Stevens, C V

    2004-05-20

    The use of polymeric surfactants for stabilization of emulsions is described. A brief account of general classification and description of polymeric surfactants is given. This is followed by a description of the adsorption and conformation of polymeric surfactants at interfaces. The theoretical approaches for studying polymer adsorption are briefly described. This is followed by a section on the experimental techniques that can be applied to study adsorption and conformation of polymers at the interface. Examples are given to illustrate the experimental techniques. A section is devoted to the interaction between droplets containing adsorbed polymer layers (steric stabilization). The last section gives results on oil-in-water (O/W) emulsions stabilised with a novel graft copolymeric surfactant based on inulin that has been modified by introducing alkyl groups. Two oils were used, namely Isopar M (isoparaffinic oil) and cyclomethicone. Emulsions prepared using the inulin-based surfactant have large droplets, but this could be significantly reduced by addition of a cosurfactant in the oil phase, namely Span 20. The stability of the emulsions was investigated in water, in 0.5, 1.0, 1.5 and 2 mol dm(-3) NaCl and in 0.5, 1.0, 1.5 and 2 mol dm(-3) MgSO(4). These emulsions were stable for more than 1 year up to 50 degrees C in NaCl concentrations up to 2 mol dm(-3) and 1 mol dm(-3) MgSO(4). This high stability in high electrolyte concentrations could be attributed to the nature of the hydrophilic (stabilizing) polyfructose chain. This was confirmed using cloud point measurements, which showed high hydration of the polyfructose chain in such high electrolyte concentrations. This ensured the long-term physical stability resulting from the strong steric repulsion between the polyfructose chains.

  3. Synthesis and properties of new bolaform and macrocyclic galactose-based surfactants obtained by olefin metathesis.

    Science.gov (United States)

    Satgé, Céline; Granet, Robert; Verneuil, Bernard; Champavier, Yves; Krausz, Pierre

    2004-05-17

    A series of galactose-based surfactants with various structures likely to display new interesting properties were synthesized. Four monocatenary surfactants were elaborated by microwave-assisted galactosylation of undecanol or 10-undecenol. These compounds were slightly soluble in water. Their tensioactive properties were determined at 45 degrees C. Olefin metathesis was used to synthesize the two single-chain bolaforms from undec-10-enyl galactopyranosides; two pseudomacrocyclic bolaforms were prepared by grafting two carbamates at O-4 and O-4' sugar positions of the single-chain bolaforms. These four surfactants are insoluble in water and undergo monolayer compression. Cyclization of these bolaforms by olefin metathesis led to macrocyclic surfactant analogues of archaeobacterial membrane components.

  4. Spontaneous surface self-assembly in protein-surfactant mixtures: interactions between hydrophobin and ethoxylated polysorbate surfactants.

    Science.gov (United States)

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Cox, Andrew R; Hedges, Nick; Webster, John R P

    2014-05-01

    The synergistic interactions between certain ethoxylated polysorbate nonionic surfactants and the protein hydrophobin result in spontaneous self-assembly at the air-water interface to form layered surface structures. The surface structures are characterized using neutron reflectivity. The formation of the layered surface structures is promoted by the hydrophobic interaction between the polysorbate alkyl chain and the hydrophobic patch on the surface of the globular hydrophobin and the interaction between the ethoxylated sorbitan headgroup and hydrophilic regions of the protein. The range of the ethoxylated polysorbate concentrations over which the surface ordering occurs is a maximum for the more hydrophobic surfactant polyoxyethylene(8) sorbitan monostearate. The structures at the air-water interface are accompanied by a profound change in the wetting properties of the solution on hydrophobic substrates. In the absence of the polysorbate surfactant, hydrophobin wets a hydrophobic surface, whereas the hydrophobin/ethoxylated polysorbate mixtures where multilayer formation occurs result in a significant dewetting of hydrophobic surfaces. The spontaneous surface self-assembly for hydrophobin/ethoxylated polysorbate surfactant mixtures and the changes in surface wetting properties provide a different insight into protein-surfactant interactions and potential for manipulating surface and interfacial properties and protein surface behavior.

  5. Interaction of nonionic surfactant AEO9 with ionic surfactants*

    OpenAIRE

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, α AEO9=0.5. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γ CMC), maximum surface excess concentration (Γ max) and minimum area per...

  6. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  7. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  8. Hydrocarbon processing

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S.G.; Seddon, D.

    1989-06-28

    A process for the catalytic conversion of synthesis-gas into a product which comprises naphtha, kerosene and distillate is characterized in that the catalyst is a Fischer-Tropsch catalyst also containing a zeolite, the naphtha fraction contains 60% or less linear paraffins and the kerosene and distillated fractions contain more linear paraffins and olefins than found in the naphtha fraction. Reduction of the relative amount of straight chain material in the naphtha fraction increases the octane number and so enhances the quality of the gasoline product, while the high quality of the kerosene and distillate fractions is maintained.

  9. Soil microbial communities: Influence of geographic location and hydrocarbon pollutants

    CSIR Research Space (South Africa)

    Maila, MP

    2006-02-01

    Full Text Available (CLPP) and Polymerase Chain Reaction–Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Hydrocarbon contaminated and uncontaminated soils from different geographical locations were used in the study. In addition, the influence or relevance...

  10. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  11. Antibacterial Activity, in Vitro Cytotoxicity, and Cell Cycle Arrest of Gemini Quaternary Ammonium Surfactants.

    Science.gov (United States)

    Zhang, Shanshan; Ding, Shiping; Yu, Jing; Chen, Xuerui; Lei, Qunfang; Fang, Wenjun

    2015-11-10

    Twelve gemini quaternary ammonium surfactants have been employed to evaluate the antibacterial activity and in vitro cytotoxicity. The antibacterial effects of the gemini surfactants are performed on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with minimum inhibitory concentrations (MIC) ranging from 2.8 to 167.7 μM. Scanning electron microscopy (SEM) analysis results show that these surfactants interact with the bacterial cell membrane, disrupt the integrity of the membrane, and consequently kill the bacteria. The data recorded on C6 glioma and HEK293 human kidney cell lines using an MTT assay exhibit low half inhibitory concentrations (IC50). The influences of the gemini surfactants on the cell morphology, the cell migration ability, and the cell cycle are observed through hematoxylin-eosin (HE) staining, cell wound healing assay, and flow cytometric analyses, respectively. Both the values of MIC and IC50 decrease against the growth of the alkyl chain length of the gemini surfactants with the same spacer group. In the case of surfactants 12-s-12, the MICs and IC50s are found to decrease slightly with the spacer chain length changing from 2 to 8 and again to increase at higher spacer length (s = 10-12). All of the gemini surfactants show great antibacterial activity and cytotoxicity, and they might exhibit potential applications in medical fields.

  12. In Vitro Cytotoxicity and Phototoxicity Assessment of Acylglutamate Surfactants Using a Human Keratinocyte Cell Line

    OpenAIRE

    Abhay Kyadarkunte; Milind Patole; Varsha Pokharkar

    2014-01-01

    In the current study, human keratinocyte cell line was used as in vitro cell culture model to elucidate the effects of the fatty acid chain length of acylglutamate (amino acid-based surfactant) namely, sodium cocoyl glutamate, sodium lauroyl glutamate, and sodium myristoyl glutamate on their cytotoxicity and the ultraviolet B induced phototoxicity. The endpoint used to assess toxicity was a tetrazolium-based assay whereas, the phototoxic potential of acylglutamate surfactants was predicted u...

  13. Effect of surfactant structure on catalysis of microemulsion for photoisomerization of trans-stilbene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, the photoisomerization of trans-stilbene was carried out in water in oil (W/O) microemulsions by using sodium dodecyl sulfate (SDS), dodecyl trimethyl ammonium bromide (DTAB) and cetyl trimethyl ammonium bromide (CTAB) as surfactant, respectively. The catalytic effect of microemulsion on this reaction is closely related to the structure of surfactanz. When there is no photosensitizer 9,10-dicyanoanthracene (DCA), the surfactant with shorter hydrophobic chain is preferred, while in the presence of DCA, the surfactant with anionic polar group is preferred.

  14. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); School of Chemistry and Chemical Engineering, Engineering Research Center for Fine Chemicals of Ministry of Education, Shanxi University, Shanxi Province, VIC 030006 (China); Kang, Wenpei [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Shandong Province, VIC 250100 (China); Sun, Dezhi [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); Liu, Jie, E-mail: liujie@lcu.edu.cn [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); Wei, Xilian, E-mail: weixilian@126.com [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China)

    2013-08-15

    The interaction between long-chain imidazolium ionic liquid (C{sub 14}mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PS{sub S}) and the formation of polymer/surfactant aggregate in bulk solution (PS{sub M}) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  15. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.

    Science.gov (United States)

    Colomer, A; Pinazo, A; Manresa, M A; Vinardell, M P; Mitjans, M; Infante, M R; Pérez, L

    2011-02-24

    Three different sets of cationic surfactants from lysine have been synthesized. The first group consists of three monocatenary surfactants with one lysine as the cationic polar head with one cationic charge. The second consists of three monocatenary surfactants with two amino acids as cationic polar head with two positive charges. Finally, four gemini surfactants were synthesized in which the spacer chain and the number and type of cationic charges have been regulated. The micellization process, antimicrobial activity, and hemolytic activity were evaluated. The critical micelle concentration was dependent only on the hydrophobic character of the molecules. Nevertheless, the antimicrobial and hemolytic activities were related to the structure of the compounds as well as the type of cationic charges. The most active surfactants against the bacteria were those with a cationic charge on the trimethylated amino group, whereas all of these surfactants showed low hemolytic character.

  16. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen

    2009-03-01

    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  17. Composition of the saturated hydrocarbons from males, females, and eggs of the millipede, Graphidostreptus tumuliporus

    NARCIS (Netherlands)

    Oudejans, R.C.H.M.

    The total hydrocarbons of the millipede Graphidostreptus tumuliporus contain 10 per cent saturated components. The composition of the saturated hydrocarbons from males, females, and eggs is reported. Straight-chain alkanes (n-C15–n-C36) constitute 59 to 75 per cent of the saturated hydrocarbons

  18. Surfactants and Desensitizing Wax Substitutes for TNT-Based Systems.

    Science.gov (United States)

    1994-10-01

    36 esters, 25% long chain acids and 10% long chain alcohols, ketones, and hydrocarbons. The resin portion contains terpenes and resinic acids, while...aliphatic and aromatic resins and turpentine for terpene resins (i.e. polymerized B-pinene). The most important commercial products today are the resins...Wax desensitizes by suppressing these processes by: Filling voids that otherwise contain gases Separating individual crystals of explosive Absorbing

  19. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant metabol

  20. Electrochemical Oscillations Induced by Surfactants

    Institute of Scientific and Technical Information of China (English)

    翟俊红; 贺占博

    2003-01-01

    A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO4 aqueous and an aluminum rod in Al(NO3)3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg2SO4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.

  1. The effects of surfactants on penetration across the skin*.

    Science.gov (United States)

    Walters, K A; Bialik, W; Brain, K R

    1993-12-01

    Synopsis Many of the properties of surfactants can be related to their ability to concentrate at phase interfaces, leading to a reduction in interracial tension. In biological systems the effects of surfactants are complex, particularly their effect on cell and other membranes, and this can lead to alterations in permeability characteristics. This is of particular relevance when considering the stratum corneum which has long been recognized as the major barrier to skin permeation. The magnitude of skin barrier function alteration is dependent on surfactant structure, both the hydrophobic alkyl chain and the hydropnilic ethylene oxide chain demonstrating some structure-activity behaviour. In many biological systems, including skin, surfactants with a similar hydrophilic group will show maximum membrane activity if they possess a decyl or dodecyl alkyl chain. It is difficult to rationalise this phenomenon, given that such solution properties as partition coefficients and CMCs do not show maxima or minima at these chain lengths. It may be that the physical parameters and molecular dimensions of the decyl/dodecyl chain provide the optimal ability to intercalate with the lipid bilayer structure. There is little doubt that once the surfactant has intercalated with the lipid bilayers in the lamellar liquid crystals of the stratum corneum, fluidity in the hydrophobic regions is increased. Effectively, this leads to a looser, more permeable structure. The significance of data obtained using commercially available surfactants, however, can be questioned on the grounds of purity. The purpose of this review is to describe some of the methods used to evaluate the effects of surfactants on the skin barrier and to discuss recent attempts to predict surfactant action on the skin using various biological and physical techniques. Résumé La plupart des propriétés des surfactants dépend de leur facilitéà se concentrer aux interfaces, menant ainsi à la réduction de la tension

  2. Persurf, a New Method to Improve Surfactant Delivery: A Study in Surfactant Depleted Rats

    OpenAIRE

    2012-01-01

    PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary di...

  3. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Akiba, Kazuki

    2016-01-01

    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.

  4. Effect of surfactant and oil additions in the biodegradation of hexane and toluene vapours in batch tests.

    Science.gov (United States)

    Galindo, H; Revah, S; Cervantes, F J; Arriaga, S

    2011-01-01

    The biological treatment of gaseous emissions of hydrophobic volatile organic compounds (VOCs) results in low rates of elimination partially because of the low solubility of VOCs in water. Recently, the use of two-phase partition bioreactors (TPPBs) was proposed to increase the bioavailability and consequently the elimination capacities of this kind of VOC. In the present study, TPPBs operating in a batch feed mode were tested for biodegradation of hexane and toluene vapours with a microbial consortium. The results obtained were compared with single-phase systems (control experiments). The liquid phase used was silicone oil (organic phase) with the surfactant Pluronic F-68. Experiments were named F1 and F2 for one and two phases, respectively, and F(1S) and F(2S) when the surfactant was included. The maximum specific rates (S(rates)) of hydrocarbon consumption for hexane and toluene were 539 and 773 mg(hydrocarbon)/(g(protein) x h), respectively. For both substrates, the systems that showed the highest S(rates) of hydrocarbon consumption were F2 and F(2S). In experiment F(1S) the surfactant Pluronic F-68 increased the solubility of hydrocarbons in the liquid phase, but did not increase the S(rates). The maximum percentages of mineralization were 51% and 72% for hexane and toluene, respectively. The results showed that simultaneous addition of silicone oil and surfactant favours the mineralization, but not the rate ofbiodegradation, of toluene and hexane vapours.

  5. Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed?

    Energy Technology Data Exchange (ETDEWEB)

    Lippold, H.; Gottschalch, U.; Kupsch, H. [Inst. of Interdisziplinare Isotopeforschung, Leipzig (Germany)

    2008-02-15

    Mobilization of polycyclic aromatic hydrocarbons (PAH) by surfactants, present at contaminated sites or deliberately introduced for remediation purposes, is inevitably associated with the influence of humic substances, which are ubiquitous in natural systems. Therefore, the solubilizing effects of anthropogenic and natural amphiphiles must be considered in their combined action since synergistic or antagonistic effects may be expected, for instance, as a consequence of mixed micellization. In this paper, solubilization of {sup 14}C-labeled pyrene in single-component and mixed solutions of surfactants and humic acid (coal-derived) was investigated up to the micellar concentration range. At low concentrations, antagonistic effects were observed for systems with cationic as well as anionic surfactants. Solubility enhancements in the presence of humic acid were canceled on addition of a cationic surfactant (DTAB) since charge compensation at humic colloids entailed precipitation. Solubility was also found to be decreased in the presence of an anionic surfactant (SDS), which was attributed to a competitive effect in respect of pyrene-humic interaction. This explanation is based on octanol-water partitioning experiments with radiolabeled humic acid, yielding evidence of different interaction modes between humic colloids and cationic/anionic surfactants. At higher concentrations, the effects of humic acid and SIDS were found to be additive. Thus, a formation of mixed micelles is very unlikely, which was confirmed by size exclusion chromatography of mixed systems. It can be concluded that remediation measures on the basis of micellar solubilization are not significantly affected by the presence of natural amphiphilic compounds.

  6. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    Science.gov (United States)

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  7. Microbial surfactant activities from a petrochemical landfarm in a humid tropical region of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, B.M.; Dias, J.C.T.; Santos, A.C.F.; Argolo-Filho, R.C.; Fontana, R.; Loguercio, L.L.; Rezende, R.P. [Univ. Estadual de Santa Cruz, Santa Cruz (Brazil). Dept. de Ciencias Biologicas

    2007-08-15

    Studies have suggested that biosurfactants can enhance the biodegradation of almost insoluble organics by increasing cell uptake availability. In this study, micro-organisms were isolated from a soil sample from a Brazilian petrochemical waste landfarm and grown in petroleum as a carbon source in order to assess their surfactant potential. Isolated colonies were inoculated into tubes, and a drop-collapse method was used to select micro-organisms with surfactant activity. Surfactant activity of the isolates was assessed when the activity was detected for the first time in each culture. The supernatant of each micro-organism was then diluted. The surfactant activity of each dilution was then observed via micelles formation. DNA was then extracted from the samples. A total of 60 microbial strains were selected. Results showed that a variety of petroleum-grown micro-organisms obtained from the landfarm soil showed surfactant activity. Results showed that the micro-organisms were able to use petroleum as a sole carbon source. The production of surfactant compounds occurred during the declining stages of microbial culture curves, which suggested that the nutritional stress achieved on the fourth day of the culture induced the synthesis and secretion of biosurfactants by the isolates. It was concluded that micro-organisms derived from soils polluted with hydrocarbons can be used in bioremediation processes. 21 refs., 1 tab., 3 figs.

  8. Metabolic engineering for the production of hydrocarbon fuels.

    Science.gov (United States)

    Lee, Sang Yup; Kim, Hye Mi; Cheon, Seungwoo

    2015-06-01

    Biofuels have been attracting increasing attention to provide a solution to the problems of climate change and our dependence on limited fossil oil. During the last decade, metabolic engineering has been performed to develop superior microorganisms for the production of so called advanced biofuels. Among the advanced biofuels, hydrocarbons possess high-energy content and superior fuel properties to other biofuels, and thus have recently been attracting much research interest. Here we review the recent advances in the microbial production of hydrocarbon fuels together with the metabolic engineering strategies employed to develop their production strains. Strategies employed for the production of long-chain and short-chain hydrocarbons derived from fatty acid metabolism along with the isoprenoid-derived hydrocarbons are reviewed. Also, the current limitations and future prospects in hydrocarbon-based biofuel production are discussed.

  9. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  10. Phase behaviors and self-assembly properties of two catanionic surfactant systems: C(8)F(17)COOH/TTAOH/H(2)O and C(8)H(17)COOH/TTAOH/H(2)O.

    Science.gov (United States)

    Zhang, Juan; Song, Aixin; Li, Zhibo; Xu, Guiying; Hao, Jingcheng

    2010-10-21

    Two fatty acids, perfluorononanoic acid (C(8)F(17)COOH) and nonanoic acid (C(8)H(17)COOH), were mixed with a cationic hydrocarbon surfactant, tetradecyltrimethylammonium hydroxide (TTAOH), in aqueous solutions for comparative investigation. Phase behaviors of the two systems are quite different because of the special properties of the fluorocarbon chains. For the C(8)H(17)COOH/TTAOH/H(2)O system, a single L(α) phase region with phase transition from planar lamellar phase (L(αl) phase) to vesicle phase (L(αv) phase) was observed. For the C(8)F(17)COOH/TTAOH/H(2)O system, two single phases consisting of vesicles were obtained at room temperature. One is a high viscoelastic gel phase consisting of vesicles with crystalline state bialyers at the C(8)F(17)COOH-rich side, which was confirmed by freeze-fracture transmission electron microscope (FF-TEM) and differential scanning calorimetry (DSC) measurements. With the increase of TTAOH proportion, another vesicle phase consisting of liquid state bilayers was observed after the two-phase region. The fluorosurfactant systems prefer to form vesicle bilayers than the corresponding hydrocarbon ones because of the rigid structure, the stronger hydrophobicity, and the larger volume of fluorocarbon chains.

  11. Effect of surfactants on the properties of hydrotalcites prepared by the reverse micelle method

    Energy Technology Data Exchange (ETDEWEB)

    Holgado, Patricia H., E-mail: h.holgado@usal.es; Holgado, María J., E-mail: holgado@usal.es; San Román, María S., E-mail: sanroman@usal.es; Rives, Vicente, E-mail: vrives@usal.es

    2015-02-01

    Layered double hydroxides with the hydrotalcite-type structure have been prepared by the reverse micelles method. The layer cations were Ni{sup 2+} and Fe{sup 3+} in all cases and the interlayer anion was carbonate. We have studied the effect of the surfactant used (with linear chains of different lengths, or cyclic) and the effect of the pH on the properties of the solids formed. These have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric analysis, temperature-programmed reduction, FT-IR and Vis–UV spectroscopies and scanning electron microscopy. It has been found that the samples prepared at pH 9 are more crystalline than those prepared at pH 11 and their crystallite sizes are always larger than for samples prepared by the conventional precipitation method. Surfactants with cyclic organic chains lead to a larger crystallite size, probably because the water pool vesicle where the crystallite grows is larger due to sterical hindrance of the organic chains. - Graphical abstract: Layered double hydroxides with the hydrotalcite-type structure with Ni{sup 2+} and Fe{sup 3+} cations in the layers have been prepared by the reverse micelles method. Different surfactants were used at different pH synthesis. Samples prepared at pH 9 are higher crystalline than those prepared at pH 11. Surfactants with cyclic organic chains lead to a larger crystallite size. - Highlights: • Hydrotalcites were prepared by the micelles reverse method. • Straight alkyl or cyclic chain surfactants were used. • All hydrotalcites are well crystallized at pH = 9 and 11. • The crystallite size depends on the linear/cyclic nature of the surfactant chain.

  12. Surfactant for pediatric acute lung injury.

    Science.gov (United States)

    Willson, Douglas F; Chess, Patricia R; Notter, Robert H

    2008-06-01

    This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.

  13. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media.

    Science.gov (United States)

    Pęziak, Daria; Piotrowska, Aleksandra; Marecik, Roman; Lisiecki, Piotr; Woźniak, Marta; Szulc, Alicja; Ławniczak, Łukasz; Chrzanowski, Łukasz

    2013-01-01

    The aim of our study was to investigate the effect of Triton X-100 on the biodegradation efficiency of hexadecane and phenanthrene carried out by two bacterial consortia. It was established that the tested consortia were not able to directly uptake compounds closed in micelles. It was observed that in micellar systems the nonionic synthetic surfactant was preferentially degraded (the degradation efficiency of Triton X-100 after 21 days was 70% of the initial concentration - 500 mg/l), followed by a lesser decomposition of hydrocarbon released from the micelles (30% for hexadecane and 20% for phenanthrene). However, when hydrocarbons were used as the sole carbon source, 70% of hexadecane and 30% of phenanthrene were degraded. The degradation of the surfactant did not contribute to notable shifts in bacterial community dynamics, as determined by Real-Time PCR. The obtained results suggest that if surfactant-supplementation is to be used as an integral part of a bioremediation process, then possible bioavailability decrease due to entrapment of the contaminant into surfactant micelles should also be taken into consideration, as this phenomenon may have a negative impact on the biodegradation efficiency. Surfactant-induced mobilization of otherwise recalcitrant hydrocarbons may contribute to the spreading of contaminants in the environment and prevent their biodegradation.

  14. Comparison of DPPC and DPPG environments in pulmonary surfactant models.

    Science.gov (United States)

    Morrow, Michael R; Temple, Sara; Stewart, June; Keough, Kevin M W

    2007-07-01

    Deuterium nuclear magnetic resonance was used to monitor lipid acyl-chain orientational order in suspensions of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) containing Ca(2+) and the lung surfactant proteins SP-A and SP-B separately and together. To distinguish between protein-lipid interactions involving the PC and PG lipid headgroups and to examine whether such interactions might influence spatial distribution of lipids within the bilayer, acyl chains on either the DPPC or the DPPG component of the mixture were deuterated. The lipid components of the resulting mixtures were thus either DPPC-d(62)/DPPG (7:3) or DPPC/DPPG-d(62) (7:3), respectively. SP-A had little effect on DPPC-d(62) chain order but did narrow the temperature range over which DPPG-d(62) ordered at the liquid-crystal-to-gel transition. No segregation of lipid components was seen for temperatures above or below the transition. Near the transition, though, there was evidence that SP-A promoted preferential depletion of DPPG from liquid crystalline domains in the temperature range over which gel and liquid crystal domains coexist. SP-B lowered average chain order of both lipids both above and below the main transition. The perturbations of chain order by SP-A and SP-B together were smaller than by SP-B alone. This reduction in perturbation of the lipids by the additional presence of SP-A likely indicated a strong interaction between SP-A and SP-B. The competitive lipid-lipid, lipid-protein, and protein-protein interactions suggested by these observations presumably facilitate the reorganization of surfactant material inherent in the transformation from lamellar bodies to a functional surfactant layer.

  15. Synthesis and aggregation behavior of 2-(4-butyloctyl) malonic acid in aqueous solution. The formation of physically and colloidally stable vesicles by a branched-chain malonate

    NARCIS (Netherlands)

    Groot, Rimke W. de; Wagenaar, Anno; Sein, Arjen; Engberts, Jan B.F.N.

    1995-01-01

    A new surfactant with a branched monoalkyl chain and a malonate headgroup has been synthesized: 2-(4-butyloctyl)malonic acid (BOMA). From the geometry of the surfactant, reflected in a packing parameter (P), it was anticipated that the surfactant would preferably aggregate in bilayers. This expectat

  16. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    Science.gov (United States)

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups.

  17. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.

    Science.gov (United States)

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar

    2012-08-14

    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  18. pH-Sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior.

    Science.gov (United States)

    Colomer, Aurora; Pinazo, Aurora; García, Maria Teresa; Mitjans, Montserrat; Vinardell, M Pilar; Infante, Maria Rosa; Martínez, Verónica; Pérez, Lourdes

    2012-04-10

    The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna . All surfactants yielded EC(50) values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO(2) headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as "readily biodegradable compounds".

  19. New thermo-sensitive chelating surfactants for selective solvent-free extraction of uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, S.; Larpent, C.; Testard, F.; Coulombeau, H.; Baczko, K.; Berthon, L.; Desvaux, H.; Madic, C.; Zemb, T

    2004-07-01

    Functional surfactants were synthesised by grafting a chelating group (amino-acid residue) to the tip of a poly-ethoxylated nonionic surfactant chain (C{sub i}E{sub j}: C{sub i}H{sub 2i}+1(OCH{sub 2}CH{sub 2}){sub j}OH)) or in a branched position. C{sub i}E{sub j} nonionic surfactants are known to be thermo-reversible and to exhibit a clouding phenomenon associated to phase separation of micelles. The functional surfactants retain both surface-active properties, characteristic thermo-reversible behaviour and have efficient complexing properties toward uranyl. In the presence of uranyl nitrate, small micelles are formed at ambient temperature and the de-mixing leads to a separation of the target ion trapped by the functional surfactant (cloud point extraction). Those surfactants are more efficient than mixture of classical C{sub i}E{sub j} and complexing agent solubilized in the micelles. This reveals a synergistic effect of the covalent bond between the chelating group and the nonionic surfactant C{sub i}E{sub j}. This paper presents a systematic study of the extraction and aggregation properties and the influence of the nature of the ions. (authors)

  20. Impact of cationic surfactant on the self-assembly of sodium caseinate.

    Science.gov (United States)

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija

    2014-08-27

    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  1. First-order phase transition during displacement of amphiphilic biomacromolecules from interfaces by surfactant molecules.

    Science.gov (United States)

    Ettelaie, Rammile; Dickinson, Eric; Pugnaloni, Luis

    2014-11-19

    The adsorption of surfactants onto a hydrophobic interface, already laden with a fixed number of amphiphilic macromolecules, is studied using the self consistent field calculation method of Scheutjens and Fleer. For biopolymers having unfavourable interactions with the surfactant molecules, the adsorption isotherms show an abrupt jump at a certain value of surfactant bulk concentration. Alternatively, the same behaviour is exhibited when the number of amphiphilic chains on the interface is decreased. We show that this sudden jump is associated with a first-order phase transition, by calculating the free energy values for the stable and the metastable states at both sides of the transition point. We also observe that the transition can occur for two approaching surfaces, from a high surfactant coverage phase to a low surfactant coverage one, at sufficiently close separation distances. The consequence of this finding for the steric colloidal interactions, induced by the overlap of two biopolymer + surfactant films, is explored. In particular, a significantly different interaction, in terms of its magnitude and range, is predicted for these two phases. We also consider the relevance of the current study to problems involving the competitive displacement of proteins by surfactants in food colloid systems.

  2. Effect of surfactants on shear-induced gelation and gel morphology of soft strawberry-like particles.

    Science.gov (United States)

    Xie, Delong; Arosio, Paolo; Wu, Hua; Morbidelli, Massimo

    2011-06-07

    The role of surfactant type in the aggregation and gelation of strawberry-like particles induced by intense shear without any electrolyte addition is investigated. The particles are composed of a rubbery core, partially covered by a plastic shell, and well stabilized by fixed (sulfate) charges in the end group of the polymer chains originating from the initiator. In the absence of any surfactant, after the system passes through a microchannel at a Peclet number equal to 220 and a particle volume fraction equal to 0.15, not only shear-induced gelation but also partial coalescence among the particles occurs. The same shear-induced aggregation/gelation process has been carried out in the presence of an ionic (sulfonate) surfactant or a nonionic (Tween 20) steric surfactant. It is found that for both surfactants shear-induced gelation does occur at low surfactant surface density but the conversion of the primary particles to the clusters constituting the gel decreases as the surfactant surface density increases. When the surfactant surface density increases above certain critical values, shear-induced gelation and eventually even aggregation do not occur any longer. For the sulfonate surfactant, this was explained in the literature by the non-DLVO, short-range repulsive hydration forces generated by the adsorbed surfactant layer. In this work, it is shown that the steric repulsion generated by the adsorbed Tween 20 layer can also protect particles from aggregation under intense shear. Moreover, the nonionic steric surfactant can also protect the strawberry-like particles from coalescence. This implies a decrease in the fractal dimension of the clusters constituting the gel from 2.76 to 2.45, which cannot be achieved using the ionic sulfonate surfactant.

  3. Synthesis and bio-physicochemical properties of amide-functionalized N-methylpiperazinium surfactants.

    Science.gov (United States)

    Chauhan, Vinay; Singh, Sukhprit; Mishra, Rachana; Kaur, Gurcharan

    2014-12-15

    Four new amide functionalized N-methylpiperazinium amphiphiles having tetradecyl, hexadecyl alkyl chain lengths and counterions; chloride or bromide have been synthesized and characterized by various spectroscopic techniques. These new surfactants have been investigated in detail for their self-assembling behavior by surface tension, conductivity and fluorescence measurements. The thermodynamic parameters of these surfactants indicate that micellization is exothermic and entropy-driven. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) experiments have been performed to insight the aggregate size of these cationics. Thermal degradation of these new surfactants has also been evaluated by thermal gravimetric analysis (TGA). These new surfactants form stable complexes with DNA as acknowledged by agarose gel electrophoresis, ethidium bromide exclusion and zeta potential measurements. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.

  4. Interactions of a zwitterionic thiophene-based conjugated polymer with surfactants

    DEFF Research Database (Denmark)

    Costa, Telma; De Azevedo, Diego; Stewart, Beverly

    2015-01-01

    In this paper we investigate the optical and structural properties of a zwitterionic poly[3-(N-(4-sulfonato-1-butyl)-N,N-diethylammonium)hexyl-2,5-thiophene] (P3SBDEAHT) conjugated polyelectrolyte (CPE) and its interaction in water with surfactants, using absorption, photoluminescence (PL......), electrical conductivity, molecular dynamics simulations (MDS) and small-angle X-ray scattering (SAXS). Different surfactants were studied to evaluate the effect of the head group and chain length on the self-assembly. PL data emphasize the importance of polymer-surfactant electrostatic interactions...... in the formation of complexes. Nevertheless, conductivity and MDS data have shown that nonspecific interactions also play an important role. These seem to be responsible for the spatial position of the surfactant tail in the complex and, eventually, for breaking-up P3SBDEAHT aggregates. SAXS measurements on P3...

  5. A SURFACTANT-ASSISTED APPROACH FOR PREPARING COLLOIDAL AZO POLYMER SPHERES WITH NARROW SIZE DISTRIBUTION

    Institute of Scientific and Technical Information of China (English)

    Xiao-lan Tong; Yao-bang Li; Ya-ning He; Xiao-gong Wang

    2006-01-01

    A surfactant-assisted method for preparing colloidal spheres with narrow size distribution from a polydispersed azo polymer has been developed in this work. The colloidal spheres were formed through gradual hydrophobic aggregation of the polymeric chains in THF-H2O dispersion media, which was induced by a steady increase in the water content. Results showed that the addition of a small amount of surfactant (SDBS) could significantly narrow the size distribution of the colloidal spheres. The size distribution of the colloidal spheres was determined by the concentrations of azo polymer and the amount of surfactant in the systems. When the concentrations of polymer and surfactant amount were in a proper range,colloidal spheres with narrow size distribution could be obtained. The colloidal spheres formed by this method could be elongated along the polarization direction of the laser beams upon Ar+ laser irradiation. The colloidal spheres are considered to be a new type of the colloid-based functional materials.

  6. Effect of hydro-oleophobic perfluorocarbon chain on interfacial behavior and mechanism of perfluorooctane sulfonate in oil-water mixture

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2017-01-01

    Perfluorocarbon chain of perfluorooctane sulfonate (PFOS) is not only hydrophobic but also oleophobic, and its effect on PFOS distribution in oil-water mixture and underlying mechanism are unclear. For the first time, we propose that PFOS can emulsify oil-water mixture only in the presence of air, completely different from hydrocarbon surfactants. The perfluorocarbon chain repels hydrophobic compounds and its oleophobicity increases with decreasing polarity of organic solvents. The formed emulsion in oil phase contains high concentrations of PFOS, resulting in PFOS decrease in water. The increase of shaking speed and time as well as oil and air volume all increase the emulsification and decrease PFOS concentrations in water. During the settling process, the emulsion gradually disappears and the concentrated PFOS is released into water. The emulsification mechanism of PFOS based on air bubbles is proposed, and PFOS partitions to the interfaces of air bubbles with the hydro-oleophobic perfluorocarbon chain stretching into air bubbles and the polar head in water. This study clarifies the ambiguous understanding of the oleophobicity of perfluorocarbon chain in PFOS, and it is helpful for the understanding of the transport and fate of PFOS at oil-water interfaces in aquatic environments as well as the enhanced removal of PFOS from wastewater. PMID:28300199

  7. Effect of hydro-oleophobic perfluorocarbon chain on interfacial behavior and mechanism of perfluorooctane sulfonate in oil-water mixture.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2017-03-16

    Perfluorocarbon chain of perfluorooctane sulfonate (PFOS) is not only hydrophobic but also oleophobic, and its effect on PFOS distribution in oil-water mixture and underlying mechanism are unclear. For the first time, we propose that PFOS can emulsify oil-water mixture only in the presence of air, completely different from hydrocarbon surfactants. The perfluorocarbon chain repels hydrophobic compounds and its oleophobicity increases with decreasing polarity of organic solvents. The formed emulsion in oil phase contains high concentrations of PFOS, resulting in PFOS decrease in water. The increase of shaking speed and time as well as oil and air volume all increase the emulsification and decrease PFOS concentrations in water. During the settling process, the emulsion gradually disappears and the concentrated PFOS is released into water. The emulsification mechanism of PFOS based on air bubbles is proposed, and PFOS partitions to the interfaces of air bubbles with the hydro-oleophobic perfluorocarbon chain stretching into air bubbles and the polar head in water. This study clarifies the ambiguous understanding of the oleophobicity of perfluorocarbon chain in PFOS, and it is helpful for the understanding of the transport and fate of PFOS at oil-water interfaces in aquatic environments as well as the enhanced removal of PFOS from wastewater.

  8. Surfactant recovery from water using foam fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Tharapiwattananon, N.; Osuwan, S. [Chulalongkorn Univ., Bangkok (Thailand); Scamehorn, J.F. [Inst. of Oklahoma, Norman, OK (United States)] [and others

    1996-05-01

    The purpose of this study was to investigate the use of foam fractionation to recover surfactant from water. A simple continuous mode foam fractionation was used and three surfactants were studied (two anionic and one cationic). The effects of air flow rate, foam height, liquid height, liquid feed surfactant concentration, and sparger porosity were studied. This technique was shown to be effective in either surfactant recovery or the reduction of surfactant concentration in water to acceptable levels. As an example of the effectiveness of this technique, the cetylpyridinium chloride concentration in water can be reduced by 90% in one stage with a liquid residence time of 375 minutes. The surfactant concentration in the collapsed foam is 21.5 times the feed concentration. This cationic surfactant was easier to remove from water by foam fractionation than the anionic surfactants studied.

  9. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  10. Photoactivation and perturbation of photoluminescent properties of aqueous ZnS nanoparticles: Probing the surfactant-semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, S.K., E-mail: skmehta@pu.ac.in [Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014 (India); Kumar, Sanjay [Department of Chemistry, Government College, Chowari, Chamba, H.P. 176302 (India)

    2011-12-15

    Graphical abstract: The variation in PL emission intensity of growing ZnS NPs during first hour of their growth depends upon the nature of surfactants used for their stabilization. Highlights: Black-Right-Pointing-Pointer Photoluminescence (PL) intensity of growing ZnS NPs increases linearly with time. Black-Right-Pointing-Pointer Significant PL enhancement in anionic surfactant stabilized ZnS NPs on irradiation. Black-Right-Pointing-Pointer PL decay with delay time after removing from UV-irradiation in all the surfactants. Black-Right-Pointing-Pointer Better PL stability of ZnS NPs stabilized in anionic surfactants than cationic ones. - Abstract: The in situ photochemistry of aqueous colloidal ZnS has been studied in relation to variety of the surfactants as surface passivating agents. The photoluminescence (PL) intensity of ZnS nanoparticles (NPs) has been drastically enhanced as compared to their bare counterparts due to surface passivation by surfactants depending upon their molecular structure. Cationic surfactants of alkyltrimethylammonium bromide series with different chain lengths (C{sub 16}, C{sub 14} and C{sub 12}) have been tested. The PL emission of ZnS NPs decreases with decrease in chain length because of ineffective stabilization and passivation of surface because the larger sized NPs were produced in the surfactant with smaller chain length. On the other hand, three anionic surfactants with C{sub 12} chain length with different head groups have been capable of comparatively effective passivation to produce stable NPs with better luminescence. The changing nature of surface states during growth and long time ripening of ZnS NPs has also been monitored by comparing time evolution PL emission in different surfactants. The influence of UV-light irradiation in enhancing the PL emission has been found to be surfactant structure dependent with maximum enhancement observed with the surfactants having {pi}-electrons in their head group functionalities. The

  11. Impact of the degree of ethoxylation of the ethoxylated polysorbate nonionic surfactant on the surface self-assembly of hydrophobin-ethoxylated polysorbate surfactant mixtures.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Petkov, Jordan T; Tucker, Ian; Cox, Andrew R; Hedges, Nick; Webster, John R P; Skoda, Maximilian W A

    2014-08-19

    Neutron reflectivity measurements have been used to study the surface adsorption of the polyethylene sorbitan monostearate surfactant, with degrees of ethoxylation varying from 3 to 20 ethylene oxide groups, with the globular protein hydrophobin. The surface interaction between the ethoxylated polysorbate nonionic surfactants and the hydrophobin results in self-assembly at the air-solution interface in the form of a well-defined layered surface structure. The surface interaction arises from a combination of the hydrophobic interaction between the surfactant alkyl chain and the hydrophobic patch on the surface of the hydrophobin, and the hydrophilic interaction between the ethoxylated sorbitan headgroup and the hydrophilic regions on the surface of the hydrophobin. The results presented show that varying the degree of ethoxylation of the polysorbate surfactant changes the interaction between the surfactant and the hydrophobin and the packing, and hence the evolution in the resulting surface structure. The optimal degree of ethoxylation for multilayer formation is over a broad range, from of order 6 to 17 ethylene oxide groups, and for degrees of ethoxylation of 3 and 20 only monolayer adsorption of either the surfactant or the hydrophobin is observed.

  12. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    Science.gov (United States)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  13. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳

    2004-01-01

    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  14. Complex Formation Between Polyelectrolytes and Ionic Surfactants

    OpenAIRE

    1998-01-01

    The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and biology. In this paper we present a theory of polyelectrolyte ionic-surfactant solutions. The new theory successfully explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic-surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic polymer-sur...

  15. The effect of fatty acid surfactants on the uptake of ozone to aqueous halogenide particles

    Directory of Open Access Journals (Sweden)

    A. Rouvière

    2010-06-01

    Full Text Available The reactive uptake of ozone to deliquesced potassium iodide aerosol particles coated with linear saturated fatty acids (C9, C12, C15, C18 and C20 as surfactants was studied. The experiments were performed in an aerosol flow tube at 293 K and atmospheric pressure. The uptake coefficient on pure deliquesced KI aerosol was γ=(1.10±0.20×10−2 at 72–75% relative humidity. In presence of organic coatings, the uptake coefficient decreased significantly for long straight chain surfactants (>C15, while it was only slightly reduced for the short ones (C9, C12. We linked the kinetic results to the monolayer properties of the surfactants, and specifically to the phase state of the monolayer formed (liquid expanded or liquid condensed state. We also investigated the effect of organic films to mixed deliquesced aerosol composed of a variable mixture of KI and NaCl, which allowed determining the resistance exerted to O3 at the aqueous surface by the two longer chained surfactants pentadecanoic acid (C15 and stearic acid (C18. Finally, the effect of two-component coatings, consisting of a mixture of long and short chained surfactants, was also studied.

  16. Surfactant-cobalt(III) complexes: The impact of hydrophobicity on interaction with HSA and DNA - insights from experimental and theoretical approach.

    Science.gov (United States)

    Veeralakshmi, Selvakumar; Sabapathi, Gopal; Nehru, Selvan; Venuvanalingam, Ponnambalam; Arunachalam, Sankaralingam

    2017-05-01

    To develop surfactant-based metallodrugs, it is very important to know about their hydrophobicity, micelle forming capacity, their interaction with biomacromolecules such as proteins and nucleic acids, and biological activities. Here, diethylenetriamine (dien) and tetradecylamine ligand (TA) based surfactant-cobalt(III) complexes with single chain domain, [Co(dien)(TA)Cl2]ClO4 (1) and double chain domain [Co(dien)(TA)2Cl](ClO4)2 (2) were chosen to study the effect of hydrophobicity on the interaction with human serum albumin and calf thymus DNA. The obtained results showed that (i) single chain surfactant-cobalt(III) complex (1) interact with HSA and DNA via electrostatic interaction and groove binding, respectively; (ii) double chain surfactant-cobalt(III) complex (2) interact with HSA and DNA via hydrophobic interaction and partial intercalation, respectively, due to the play of hydrophobicity by single and double chain domains. Further it is noted that, double chain surfactant-cobalt(III) complex interact strongly with HSA and DNA, compared single chain surfactant-cobalt(III) complex due to their more hydrophobicity nature. DFT and molecular docking studies offer insights into the mechanism and mode of binding towards the molecular target CT-DNA and HSA. Hence, the present findings will create new avenue towards the use of hydrophobic metallodrugs for various therapeutic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Poly(methyl methacrylate) Surface Modification for Surfactant-Free Real-Time Toxicity Assay on Droplet Microfluidic Platform.

    Science.gov (United States)

    Ortiz, Raphael; Chen, Jian Lin; Stuckey, David C; Steele, Terry W J

    2017-04-19

    Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process involving sequential reagents injection, and multiplexed droplet fluorescence intensity monitoring is carried out on chip. Metabolic inhibition of the anaerobe Enterococcus faecalis by 30 mg L(-1) of NiCl2 was detected in 5 min.

  18. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    Science.gov (United States)

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  19. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the cati

  20. Surfactant analysis in oil-containing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gronsveld, J.; Faber, M.J. (Koninklijke Shell Exploratie en Produktie Laboratorium, Rijswijk (Netherlands))

    The total surfactant concentration in aqueous phase samples can be analysed with a potentiometric titration. In enhanced oil recovery research, however, the surfactant is produced not only in aqueous phase samples but also in oleic phase samples. The oleic constituents in the oliec phase samples interfere in the surfactant analysis and, therefore, the titration method has been adapted. (orig.).

  1. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  2. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    Science.gov (United States)

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  3. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.

    2011-01-01

    In this article, we discuss the structure and composition of mixed DNA-cationic surfactant adsorption layers on both hydrophobic and hydrophilic solid surfaces. We have focused on the effects of the bulk concentrations, the surfactant chain length, and the type solid surface on the interfacial...... layer structure (the location, coverage, and conformation the e DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA...... with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant DNA ratio determined by the surface coverage of the underlying...

  4. DNA-surfactant complexes: self-assembly properties and applications.

    Science.gov (United States)

    Liu, Kai; Zheng, Lifei; Ma, Chao; Göstl, Robert; Herrmann, Andreas

    2017-08-14

    Over the last few years, DNA-surfactant complexes have gained traction as unique and powerful materials for potential applications ranging from optoelectronics to biomedicine because they self-assemble with outstanding flexibility spanning packing modes from ordered lamellar, hexagonal and cubic structures to disordered isotropic phases. These materials consist of a DNA backbone from which the surfactants protrude as non-covalently bound side chains. Their formation is electrostatically driven and they form bulk films, lyotropic as well as thermotropic liquid crystals and hydrogels. This structural versatility and their easy-to-tune properties render them ideal candidates for assembly in bulk films, for example granting directional conductivity along the DNA backbone, for dye dispersion minimizing fluorescence quenching allowing applications in lasing and nonlinear optics or as electron blocking and hole transporting layers, such as in LEDs or photovoltaic cells, owing to their extraordinary dielectric properties. However, they do not only act as host materials but also function as a chromophore itself. They can be employed within electrochromic DNA-surfactant liquid crystal displays exhibiting remarkable absorptivity in the visible range whose volatility can be controlled by the external temperature. Concomitantly, applications in the biological field based on DNA-surfactant bulk films, liquid crystals and hydrogels are rendered possible by their excellent gene and drug delivery capabilities. Beyond the mere exploitation of their material properties, DNA-surfactant complexes proved outstandingly useful for synthetic chemistry purposes when employed as scaffolds for DNA-templated reactions, nucleic acid modifications or polymerizations. These promising examples are by far not exhaustive but foreshadow their potential applications in yet unexplored fields. Here, we will give an insight into the peculiarities and perspectives of each material and are confident to

  5. Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs.

    Science.gov (United States)

    Kapoor, Yash; Thomas, Justin C; Tan, Grace; John, Vijay T; Chauhan, Anuj

    2009-02-01

    Eye drops are inefficient means of delivering ophthalmic drugs because of limited bioavailability and these can cause significant side effects due to systemic uptake of the drug. The bioavailability for ophthalmic drugs can be increased significantly by using contact lenses. This study focuses on the development of surfactant-laden poly-hydroxy ethyl methacrylate (p-HEMA) contact lenses that can release Cyclosporine A (CyA) at a controlled rate for extended periods of time. We focus on various Brij surfactants to investigate the effects of chain length and the presence of an unsaturated group on the drug release dynamics and partitioning inside the surfactant domains inside the gel. The gels were imaged by cryogenic scanning electron microscopy (cryo-SEM) to obtain direct evidence of the presence of surfactant aggregates in the gel, and to investigate the detailed microstructure for different surfactants. The images show a distribution of nano pores inside the surfactant-laden hydrogels which we speculate are regions of surfactant aggregates, possibly vesicles that have a high affinity for the hydrophobic drug molecule. The gels are further characterized by studying their mechanical and physical properties such as transparency, surface contact angle and equilibrium water content to determine their suitability as extended wear contact lenses. Results show that Brij surfactant-laden p-HEMA gels provide extended release of CyA, and possess suitable mechanical and optical properties for contact lens applications. The gels are not as effective for extended release of two other hydrophobic ophthalmic drugs, dexamethasone (DMS) and dexamethasone 21 acetate (DMSA) because of insufficient partitioning inside the surfactant aggregates.

  6. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  7. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  8. Physical properties of botanical surfactants.

    Science.gov (United States)

    Müller, Lillian Espíndola; Schiedeck, Gustavo

    2017-08-24

    Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or used fresh and chopped. The neutral bar soap was used as a positive control. The drying and grinding of samples were the preparation method that resulted in higher foam column height in both species but Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756 and 1017 respectively. Critical micelle concentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40mNm(-1) while neutral bar soap was 0.15% with 34.96mNm(-1). Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Interactions of Ovalbumin with Ionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; YAN Hui; GUO Rong

    2008-01-01

    The interactions of ovalbumin (OVA) with one anionic surfactant,sodium dodecyl sulfate (SDS),and two cationic surfactants,dodecyl trimethylammonium bromide (DTAB) and cetyl trimethylammonium bromide (CTAB),in water have been studied through fluorescence and UV-Vis spectroscopies and transmission electronic microscopy,combined with the measurement of conductivity.OVA can increase the critical micelle concentrations (cmc) of SDS and CTAB but has little effect on that of DTAB.The interaction between surfactant monomer and OVA is greater than that between surfactant micelles and OVA.Moreover,SDS can make OVA unfolded while cationic surfactants cannot.

  10. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  11. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability.

    Science.gov (United States)

    Ghebremeskel, Alazar N; Vemavarapu, Chandra; Lodaya, Mayur

    2007-01-10

    Formation of solid dispersions as a means to enhance the dissolution rate of poorly soluble Active pharmaceutical ingredients (APIs) typically employs hydrophilic polymer systems and surfactants. While the utility of the surfactant systems in solubilization is well known, the secondary effects of the same on processing and subsequent physical stability of the solid dispersions needs to be studied further. Physical blends of the poorly soluble API and hydrophilic polymers such as PVP-K30, Plasdone-S630, HPMC-E5, HPMCAS, and Eudragit L100 with mass ratio 1:1 were prepared. The surfactants tested in this study included Tween-80, Docusate sodium, Myrj-52, Pluronic-F68 and SLS. Thermal analysis of the API-polymer-surfactant blends suggested that the surfactants caused solvation/plasticization, manifesting in reduction of (i) the melting (T(m)) of API (ii) T(g) of the polymers and (iii) the combined T(g) of the solid dispersion formed from quench cooling. Explanation of these effects of surfactants is attempted based on their physical state (at the temperature of interest), HLB values and similarity of their solubility parameter values with respect to drug-polymer systems. Furthermore, extruded matrices containing different API-polymer (PVP-K30, Plasdone-S630, and HPMC-E5) mixtures prepared with and without surfactants, were produced by feeding the powder blend through a hot-melt extruder. The melt viscosity of the polymer blends was assessed by torque rheometry using a Haake Rheomix. The physicochemical properties of the extruded API-polymer-surfactant were characterized by differential scanning calorimetry, X-ray diffraction, Raman spectroscopy, and polarized microscopy. The results demonstrated that the glass transition temperature of the carrier polymers decreased as direct result of the surfactants in the extrudate, due to an increase in the chain mobility of polymers. A decrease in the melt viscosity was seen due to a plasticization of the polymer. The drug release

  12. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    Science.gov (United States)

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej

    2015-01-01

    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).

  13. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Zuzanna Pietralik

    Full Text Available The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration, they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp and siRNA (21 bp. The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16. On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain.

  14. Solubility limits and phase diagrams for fatty alcohols in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions.

    Science.gov (United States)

    Tzocheva, Sylvia S; Danov, Krassimir D; Kralchevsky, Peter A; Georgieva, Gergana S; Post, Albert J; Ananthapadmanabhan, Kavssery P

    2015-07-01

    By analysis of experimental data, a quantitative theoretical interpretation of the solubility limit of medium- and long-chain fatty alcohols in micellar solutions of water-soluble surfactants is presented. A general picture of the phase behavior of the investigated systems is given in the form of phase diagrams. The limited solubility of the fatty alcohols in the micelles of conventional surfactants is explained with the precipitation of their monomers in the bulk, rather than with micelle phase separation. The long chain fatty alcohols (with n=14, 16 and 18 carbon atoms) exhibit an ideal mixing in the micelles of the anionic surfactant sodium laurylethersulfate (SLES) and the zwitterionic surfactant cocamidopropyl betaine (CAPB) at temperatures of 25, 30, 35 and 40 °C. Deviations from ideality are observed for the alcohols of shorter chain (n=10 and 12), which can be explained by a mismatch with the longer chains of the surfactant molecules. Using the determined thermodynamic parameters of the systems, their phase diagrams are constructed. Such a diagram consists of four domains, viz. mixed micelles; coexistent micelles and precipitate (dispersed crystallites or droplets); precipitate without micelles, and molecular solution. The four boundary lines intersect in a quadruple point, Q. For ionic surfactants (like SLES), a detailed theory for calculating the boundary lines of the phase diagrams is developed and verified against data for the positions of the kinks in surface tension isotherms. The theory takes into account the electrostatic interactions in the micellar solutions and the effect of counterion binding. The results can be useful for a quantitative interpretation and prediction of the phase behavior of mixed solutions of two (or more) surfactants, one of them being water soluble and forming micelles, whereas the other one has a limited water solubility, but readily forms mixed micelles with the former surfactant.

  15. Synthesis of a Novel Surfactant with Two Alkyl Tail-Chains (DDOBA) and Fabrication of Hydrophobic Gold Nanoparticles with High Monodispersity%新型双链表面活性剂DDOBA的合成与高单分散性憎水纳米金的制备

    Institute of Scientific and Technical Information of China (English)

    韩莹; 朱露; 沈明; 李恒恒

    2013-01-01

    3,4-Didodecyloxybenzylamine (DDOBA), a novel surfactant with two alkyl tail-chains, was designed and synthesized. DDOBA-capped hydrophobic gold nanoparticles were successful y fabricated using formic acid as a reducing agent in a DDOBA/n-butanol/n-heptane/formic acid/HAuCl4·4H2O water/oil (W/O) microemulsion system under microwave irradiation. DDOBA-stabilized gold nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). The experimental results showed that DDOBA not only participated in the formation of a stable W/O microemulsion system, but also became a good protecting agent for gold nanoparticles. Within an appropriate concentration range of components in the W/O microemulsion system, hydrophobic gold nanoparticles with high monodispersity can be obtained using this experimental method and automatical y form large areas of ordered monolayer built with DDOBA-capped gold nanoparticles at the air/water interface.%  自行设计合成了新颖的苄胺型双链表面活性剂3,4-双十二烷氧基苄胺(DDOBA)。利用DDOBA/正丁醇/正庚烷/甲酸/HAuCl4·4H2O自发形成的水/油(W/O)型微乳液作为微反应器,通过微波辐射下的甲酸还原法成功制备了DDOBA保护的憎水性金纳米粒子,并通过紫外-可见(UV-Vis)光谱、透射电镜(TEM)、高分辨透射电镜(HR-TEM)和X射线衍射(XRD)等方法进行了表征和分析。结果显示, DDOBA既可参与形成稳定的W/O型(油包水型)微乳液,又可作为金纳米粒子的良好保护剂。在合适的微乳液体系组成范围内,用本实验方法可以获得高单分散性的憎水性金纳米粒子,并能在空气/水界面上自动形成大面积短程有序的纳米金二维自组装膜。

  16. An anionic surfactant for EOR applications

    Science.gov (United States)

    Sagir, Muhammad; Tan, Isa M.; Mushtaq, Muhammad

    2014-10-01

    This work is to investigate the new anionic surfactants for the Enhanced Oil Recovery (EOR) application. Sulfonated anionic surfactant was produced by attaching SO3 to an ethoxylated alcohol to increase the performance of the surfactant. Methallyl chloride and ethoxylated alcohol was reacted followed by the reaction with sodium bisulfite to produce anionic sulfonated surfactant in 80.3 % yield. The sulfonation reaction parameters such as reactants mole ratio, reaction temperature and catalyst amount were optimized. The generation and stability of foam from the synthesized surfactant is also tested and results are reported. The synthesized novel surfactant was further investigated for the effect on the CO2 mobility in porous media and the findings are presented here. This in house developed surfactant has a great potential for CO2- EOR applications.

  17. Phase behaviour of an ionic microemulsion system as a function of the cosurfactant chain length

    NARCIS (Netherlands)

    Kegel, W.K.; Lekkerkerker, H.N.W.

    1993-01-01

    The phase behaviour of a microemulsion system consisting of equal volumes of brine and oil, sodium dodecyl sulphate (SDS) as surfactant and alcohols of different chain lengths (pentanol, hexanol and heptanol) as cosurfactant was studied. In the case of pentanol, at low surfactant concentrations and

  18. Phase behaviour of an ionic microemulsion system as a function of the cosurfactant chain length

    NARCIS (Netherlands)

    Kegel, W.K.; Lekkerkerker, H.N.W.

    1993-01-01

    The phase behaviour of a microemulsion system consisting of equal volumes of brine and oil, sodium dodecyl sulphate (SDS) as surfactant and alcohols of different chain lengths (pentanol, hexanol and heptanol) as cosurfactant was studied. In the case of pentanol, at low surfactant concentrations and

  19. Synthesis, surface properties and oil solubilisation capacity of cationic gemini surfactants

    NARCIS (Netherlands)

    Dam, Th.; Engberts, J.B.F.N.; Karthäuser, J.; Karaborni, S.; Os, N.M. van

    1996-01-01

    The critical micelle concentration (CMC) and the surface tension at the CMC have been determined for the gemini surfactants alkanediyl-u,w-bis(dimethyla1kylammoniubmr omide) by means of dynamic surface tension measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic

  20. The Effects of Surfactants on the Desorption of Organic Contaminants from Aquifer Materials

    Science.gov (United States)

    1989-08-01

    Wilmington Delaware, April 11, 1989. Cox, M. F. and K. L. Matheson. "Interactions between Linear Alkylbenzene Sulfonates and Water Hardness Ions. II. Reducing...Between Linear Alkylbenzene Sulfonates and Water Hardness Ions. I. Effect of Calcium Ion on Surfactant Solubility and Implications for Detergency...Fatty acids Sulfonate Paraffins Sulfate Olefins Carboxylate Alkylbenzenes Quaternary ammonium Long chain alcohols Protonated amine Alkyl Phenols

  1. Synthesis, surface properties and oil solubilisation capacity of cationic gemini surfactants

    NARCIS (Netherlands)

    Dam, Th.; Engberts, J.B.F.N.; Karthäuser, J.; Karaborni, S.; Os, N.M. van

    1996-01-01

    The critical micelle concentration (CMC) and the surface tension at the CMC have been determined for the gemini surfactants alkanediyl-u,w-bis(dimethyla1kylammoniubmr omide) by means of dynamic surface tension measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic

  2. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  3. Interactions and hybrid complex formation of anionic algal polysaccharides with a cationic glycine betaine-derived surfactant.

    Science.gov (United States)

    Covis, Rudy; Vives, Thomas; Gaillard, Cédric; Benoit, Maud; Benvegnu, Thierry

    2015-05-01

    The interaction between anionic algal polysaccharides ((κ)-, (ι)-, (λ)-carrageenans, alginate and ulvan) and a cationic glycine betaine (GB) amide surfactant possessing a C18:1 alkyl chain has been studied using isothermal titration calorimetry (ITC), zeta-potential measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and surface tension measurements. It was observed that this cationic surfactant derived from renewable raw materials induced cooperative binding with the anionic polymers at critical aggregation concentration (CAC) and the CAC values are significantly lower than the corresponding critical micelle concentration (CMC) for the surfactant. The CMC of cationic GB surfactant was obtained at higher surfactant concentration in polysaccharide solution than in pure water. More interestingly, the presence of original polysaccharide/surfactant hybrid complexes formed above the CMC value was evidenced from (κ)-carrageenan by microscopy (TEM and AFM). Preliminary investigations of the structure of these complexes revealed the existence of surfactant nanoparticles surrounded with polysaccharide matrix, probably resulting from electrostatic attraction. In addition, ITC measurements clearly showed that the interactions of the κ-carrageenan was stronger than for other polysaccharides ((ι)-, (λ)-carrageenans, alginate and ulvan). These results may have important impact on the use of the GB amide surfactant in formulations based on algal polysaccharides for several applications such as in food, cosmetics, and detergency fields.

  4. Microbial Hydrocarbon and ToxicPollutant Degradation Method

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Dietrich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Janabi, Mustafa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); O' Neil, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-08-16

    The goal of this project is to determine optimum conditions for bacterial oxidation of hydrocarbons and long-chain alkanes that are representative of petroleum contamination of the environment. Polycyclic Aromatic Hydrocarbons (PAHs) are of concern because of their toxicity, low volatility, and resistance to microbial degradation, especially under anaerobic conditions. The uniqueness of our approach is to use carbon-11 in lieu of the traditional use of carbon-14.

  5. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    OpenAIRE

    2016-01-01

    The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the sep...

  6. Oxygenated Derivatives of Hydrocarbons

    Science.gov (United States)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  7. Hydrocarbon Spectral Database

    Science.gov (United States)

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  8. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  9. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization

    Science.gov (United States)

    Duval-Terrié, Caroline; Cosette, Pascal; Molle, Gérard; Muller, Guy; Dé, Emmanuelle

    2003-01-01

    The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C10) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C10). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C10-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (α or β), 18C10 did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies. PMID:12649425

  10. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  11. Hierarchical Structure from the Self-Assembly of Giant Gemini Surfactants in Condensed State

    Science.gov (United States)

    Su, Hao; Wang, Zhao; Li, Yiwen; Cheng, Stephen

    2013-03-01

    In the past a few years, a new class of amphiphiles with both asymmetrical shapes and interactions named ``shape amphiphiles'' has been significantly intensified. Recently, a new kind of shape amphiphiles called ``Giant Gemini Surfactants'' consisting of two hydrophilic carboxylic acid-functionalized polyhedral oligomeric silsesquioxane (APOSS) heads and two hydrophobic polystyrene (PS) tails covalently linked via rigid spacers (p-phenylene versus biphenylene) has been successful behavior of giant gemini surfactants. We currently continue to investigate the spacer effects on the self-assembly behaviors of giant gemini surfactants in condensed state by utilizing DCS, SAXS and TEM. Preliminary results showed that giant gemini surfactants with different spacers have diverse phase behaviors. As we use the same 3.2k PS chains, the giant gemini surfactant with p-phenylene spacer showed double gyroid morphology, while the one with biphenylene spacer revealed cylindrical morphology. This study expands the scope of giant gemini surfactants and contributes a lot to the basic physical principles in self-assembly behavior.

  12. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying.

    Science.gov (United States)

    Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro

    2014-06-01

    Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Mixed micelle formation between amino acid-based surfactants and phospholipids.

    Science.gov (United States)

    Faustino, Célia M C; Calado, António R T; Garcia-Rio, Luís

    2011-07-15

    The mixed micelle formation in aqueous solutions between an anionic gemini surfactant derived from the amino acid cystine (C(8)Cys)(2), and the phospholipids 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC, a micelle-forming phospholipid) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, a vesicle-forming phospholipid) has been studied by conductivity and the results compared with the ones obtained for the mixed systems with the single-chain surfactant derived from cysteine, C(8)Cys. Phospholipid-surfactant interactions were found to be synergistic in nature and dependent on the type of phospholipid and on surfactant hydrophobicity. Regular solution theory was used to analyse the gemini surfactant-DHPC binary mixtures and the interaction parameter, β(12), has been evaluated, as well as mixed micelle composition. The results have been interpreted in terms of the interplay between reduction of the electrostatic repulsions among the ionic head groups of the surfactants and steric hindrances arising from incorporation of the zwitterionic phospholipids in the mixed micelles.

  14. Quantitative determination of trisiloxane surfactants in beehive environments based on liquid chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Chen, Jing; Mullin, Christopher A

    2013-08-20

    Organosilicone surfactants are increasingly being applied to agricultural agro-ecosystems as spray adjuvants, and were recently shown to impact the learning ability of honey bees. Here we developed a method for analyzing three trisiloxane surfactants (single polyethoxylate (EO) chain and end-capped with methyl, acetyl, or hydroxyl groups; TSS-CH3, TSS-COCH3, or TSS-H) in beehive matrices based on liquid chromatography coupled to mass spectrometry (LC-MS) and the QuEChERS (quick, easy, cheap, effective, rugged, and safe) approach from less than 2 g of honey, pollen, or beeswax. Recoveries for each oligomer (2-13 EO) were between 66 and 112% in all matrices. Average method detection limits (MDL) were 0.53, 0.60, 0.56 ng/g in honey, 0.63, 0.81, 0.78 ng/g in pollen, and 0.51, 0.69, 0.63 ng/g in beeswax. Five honey, 10 pollen, and 10 beeswax samples were analyzed. Trisiloxane surfactants were detected in every beeswax and 60% of the pollen samples. Total trisiloxane surfactant concentrations were up to 390 and 39 ng/g in wax and pollen. The described method is proved suitable for analyzing trisiloxane surfactants in beehive samples. The presence of trisiloxane surfactants in North American beehives calls for renewed effort to investigate the consequence of these adjuvants to bee health and the ongoing global bee decline.

  15. Micellization of alkyl-propoxy-ethoxylate surfactants in water-polar organic solvent mixtures.

    Science.gov (United States)

    Sarkar, Biswajit; Lam, Stephanie; Alexandridis, Paschalis

    2010-07-06

    The effects of cosolvents (glycerol, ethanol, and isopropanol) on the self-assembly of novel alkyl-propoxy-ethoxylate surfactants in aqueous solutions have been investigated with a focus on the (i) quantification of solvent effects on the critical micelle concentration (cmc), (ii) free-energy contributions to micellization, (iii) local environment in the micellar solution, and (iv) structure of the micelles. The introduction of the polar organic solvents considered in this work into water decreases cohesive forces in the solvent mixture, resulting in an increase in the solubility of the surfactant molecules. As a result, micelle formation becomes less favorable and the cmc increases. The contribution of the cosolvent to the free energy of micellization is positive, and the data for different mixed solvents collapse onto a single straight line when plotted versus a function of the solubility parameters of the surfactant alkyl chains and the mixed solvents. The behavior of the poly(propylene oxide) part of the alkyl-propoxy-ethoxylate surfactants is hydrophilic, albeit less so in the ethanol-water mixed solvent than in plain water. Pyrene fluorescence emission I(1)/I(3) data suggest that the microenvironment in micellar solutions is affected mainly by the cosolvent concentration, not the surfactant degree of ethoxylation. Small-angle X-ray scattering data for both water and ethanol-water surfactant solutions are consistent with oblate ellipsoid micelles and reveal that the introduction of 20% ethanol decreases the micelle long axis by 10-15%.

  16. Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey.

    Science.gov (United States)

    Liang, D; Blomquist, G J; Silverman, J

    2001-07-01

    Argentine ants, Linepithema humile, were attacked by their nestmates following contact with a particular prey item, the brown-banded cockroach, Supella longipalpa. Contact with prey, as brief as 2 min, provoked nestmate aggression. Argentine ants contaminated with hydrocarbons extracted from S. longipalpa also released nestmate aggression behavior similar to that released by the whole prey item, confirming the involvement of hydrocarbons. In contrast to S. longipalpa, little or no nestmate aggression was induced by other ant prey from diverse taxa. A comparison of prey hydrocarbon profiles revealed that all hydrocarbons of S. longipalpa were very long chain components with 33 or more carbons, while other prey had either less, or none, of the very long chain hydrocarbons of 33 carbons or greater. We identified the hydrocarbons of S. longipalpa and some new groups of long chain hydrocarbons of L. humile. The majority of S. longipalpa hydrocarbons were 35 and 37 carbons in length with one to three methyl branches, and closely resembled two previously unidentified groups of compounds from L. humile of similar chain length. The hydrocarbons of S. longipalpa and L. humile were compared and their role in the Argentine ant nestmate recognition is discussed.

  17. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  18. SYNTHESIS AND AGGREGATION BEHAVIOR OF 2-(4-BUTYLOCTYL) MALONIC-ACID IN AQUEOUS-SOLUTION - THE FORMATION OF PHYSICALLY AND COLLOIDALLY STABLE VESICLES BY A BRANCHED-CHAIN MALONATE

    NARCIS (Netherlands)

    de Groot, R.W.; Wagenaar, A.; Sein, A; Engberts, J.B.F.N.

    1995-01-01

    A new surfactant with a branched monoalkyl chain and a malonate headgroup has been synthesized: 2-(4-butyloctyl)malonic acid (BOMA). From the geometry of the surfactant, reflected in a packing parameter (P), it was anticipated that the surfactant would preferably aggregate in bilayers. This expectat

  19. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    Science.gov (United States)

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels.

  20. Temperature Triggered Structural Transitions in Surfactant organized Self Assemblies

    Science.gov (United States)

    Rose, J. Linet; Balamurugan, S.; Sajeevan, Ajin C.; Sreejith, Lisa

    2011-10-01

    Preparation & characterization of tunable fluids is an emerging area with potential application in many fields. Surfactants self assemble in aqueous solution to give a rich variety of phase structures, the size and shape of which can be tuned by additives like salts, alcohols, amines, aromatics etc or external stimuli such as light, temperature etc. The addition of long chain aliphatic alcohol has significant influence on the surfactant aggregation, as it promotes morphological growth of micelles. The cationic surfactant, Cetyl Trimethyl Ammonium Bromide (CTAB) with nonanol in presence of potassium bromide (KBr) shows thermo tunable viscosity behaviour and optical switching behaviour. The solution is visually observed to transform from a turbid and less viscous phase at low temperature to clear and considerably viscous phase at high temperature. Temperature induced changes in turbidity and viscosity are consistent with the transition from vesicle to worm like micelle. It is also worth emphasizing that the transition is thermo reversible, so that vesicles that are disrupted into micelles upon heating can be reformed upon cooling. The thermo tunable transition from turbid to transparent state and the concomitant changes in viscosity are promising for the use in smart windows, monitoring of tumor growth or in other stimuli based application.

  1. 应用表面活性剂-生物柴油微乳液去除污染土壤中多环芳烃%Application of microemulsion synthesized by surfactant and biodiesel to remove polycyclic aromatic hydrocarbons from contaminated soil

    Institute of Scientific and Technical Information of China (English)

    孙翼飞; 巩宗强; 苏振成; 王晓光; 图影

    2012-01-01

    It has been an issue that remediation of soils with high concentrations of PAHs will spend too much.Four kinds of solutions,non-edible plant oil,biodiesel,surfactants and microemulsion which was synthesized by surfactant and biodiesel or vegetable oil,were selected as the washing agents to study the PAH removal.Results showed that microemulsion got a higher total PAH removal than surfactact addition alone,which indicated that biodiesel and non-edible plant oil could enhance desorption of PAHs from MGP soil in the presence of surfactants.2.5% tween 80 solution resulted in more obvious enhancement of PAH desorption from the contaminated soil compared to 1% tween 80,the PAH removals were 14% and 11% individually.Microemulsion from 2.5% tween 80 induced a higher PAH removal than microemulsion from 1% tween 80,PAH removal ranged from 15% and 11% to 30% and 18%,separately.Addition bidiesel to surfactant obtained higher PAH removals compared to vegetable oil addition,the PAH removals were ranged from 17% and 15% to 30% and 23%,respectively,and a good correlation was found between removals of individual PAHs and their logKow.%针对修复焦化厂高浓度多环芳烃污染土壤高成本的现实,采用以非食用性植物油、生物柴油、表面活性剂及其乳化合成的微乳液为淋洗剂,比较不同淋洗剂的淋洗效果。结果表明乳化合成的微乳液对焦化厂土壤中多环芳烃的总去除率高于单独使用表面活性剂为淋洗剂对土壤中多环芳烃的总去除率,说明生物柴油及植物油与表面活性剂乳化形成的微乳液对原污染土壤中的多环芳烃具有显著的增溶作用。1%TW-80和2.5%TW-80对土壤中多环芳烃总去除率分别为11%和14%;以2.5%TW-80为原料乳化合成的微乳液的淋洗去除率较以1%TW-80为原料乳化合成的微乳液高,总去除率分别为15%~30%和11%~18%;以生物柴油为原料乳化合成的微乳液的淋洗去除率较以植物油为原料乳化合

  2. Surfactants in tribology, v.3

    CERN Document Server

    Biresaw, Girma

    2013-01-01

    The manufacture and use of almost every consumer and industrial product rely on application of advanced knowledge in surface science and tribology. These two disciplines are of critical importance in major economic sectors, such as mining, agriculture, manufacturing (including metals, plastics, wood, computers, MEMS, NEMS, appliances), construction, transportation, and medical instruments, transplants, and diagnostic devices. An up-to-date reference with contributions by experts in surface science and tribology, Surfactants in Tribology, Volume 3 discusses some of the underlying tribological a

  3. Anaerobic Biodegradation of Detergent Surfactants

    OpenAIRE

    Erich Jelen; Ute Merrettig-Bruns

    2009-01-01

    Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have str...

  4. Synthesis and Characterization of a Novel Addition-Fragmentation Reactive Surfactant (TRANSURF) for Use in Free-Radical Emulsion Polymerizations.

    Science.gov (United States)

    Wilkinson, Terence S.; Boonstra, Armin; Montoya-Goñi, Amaia; van Es, Steven; Monteiro, Michael J.; German, Anton L.

    2001-05-01

    The synthesis and characterization of a new type of chain-transfer-active surfactant (i.e., TRANSURF) is reported. The compound was designed on the basis of the chemistry of macromers, which undergo free-radical chain-transfer addition-fragmentation reactions. In effect this allows incorporation of the surfactant molecule into the polymer backbone, and thus reduces the influence of surfactant migration during film formation. Surfactants of this type, containing two hydrophilic head groups, can have a marked influence on the polymer and latex properties (e.g., molecular weight distributions and particle size). Characterization of the physical properties of this surfactant was therefore carried out using surface tension, conductivity, and fluorescence techniques. Because of the surfactant's unusual "bolaform" (alpha, omega) (Zana, R., in "Structure-Performance Relationships in Surfactants" (K. Esumi and M. Ueno, Eds.), Surfactant Science Series 70, Dekker, New York, 1997) structure the micelle formation process has been found to be quite different from that of the conventional surfactant, sodium dodecyl sulfate (SDS). From the surface tension data a flat molecular conformation was evident at 1x10(-3) mol dm(-3) (131 Å(2) surface area), which we assumed to correspond to the low aggregation number of premicellar aggregates. There is evidence to suggest formation of a larger volume of the microdomains in these micelles compared to that in SDS. At higher TRANSURF concentrations, however, we find no clear indication of a switch to a "wicket"-type conformation, although such conformational changes cannot be ruled out. Copyright 2001 Academic Press.

  5. Perfluoro surfactants in soils, waters, waste waters and sewage sludges in Niedersachsen; Perfluorierte Tenside in Boeden, Gewaessern, Abwaessern und Klaerschlaemmen in Niedersachsen

    Energy Technology Data Exchange (ETDEWEB)

    Ast, Martin; Heitefuss, Stefan; Ribbeck, Friederike [Niedersaechsisches Ministerium fuer Umwelt und Klimaschutz, Hannover (Germany)

    2010-07-01

    Totally fluoridated hydrocarbons are called perfluoro surfactants. Due to their hygienic precarious characteristics, its release into the environment is not wanted. Their employment already is no longer permissible in individual ranges of application. However, representatives of this group of materials already are in all environmental media provable world-wide.

  6. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid.

    Science.gov (United States)

    Kang, Seok-Whan; Kim, Young-Bum; Shin, Jae-Dong; Kim, Eun-Ki

    2010-03-01

    Effectiveness of a microbial biosurfactant, sophorolipid, was evaluated in washing and biodegradation of model hydrocarbons and crude oil in soil. Thirty percent of 2-methylnaphthalene was effectively washed and solubilized with 10 g/L of sophorolipid with similar or higher efficiency than that of commercial surfactants. Addition of sophorolipid in soil increased biodegradation of model compounds: 2-methylnaphthalene (95% degradation in 2 days), hexadecane (97%, 6 days), and pristane (85%, 6 days). Also, effective biodegradation method of crude oil in soil was observed by the addition of sophorolipid, resulting in 80% biodegradation of saturates and 72% aromatics in 8 weeks. These results showed the potentials of the microbial biosurfactant, sophorolipid, as an effective surfactant for soil washing and as an in situ biodegradation enhancer.

  7. Surfactants as additives for NO{sub x} reduction during SNCR process with urea solution as reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Muhammad [Department of Environmental Engineering, Kwangwoon University (Korea, Republic of); Irfan, Muhammad Faisal, E-mail: muhammadfipk@um.edu.my [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yoo, Kyung-Seun [Department of Environmental Engineering, Kwangwoon University (Korea, Republic of)

    2011-09-15

    Highlights: {yields} We study SNCR process using urea as a reducing agent for NO{sub x} reduction. {yields} We improve NO{sub x} reduction efficiency by adding the different types of additives. {yields} We introduce new additives: surfactants and blends of alkali metal with organic group. {yields} Anionic surfactants give maximum efficiency and max. range for temperature window. - Abstract: NO{sub x} reduction from gas stream by selective non-catalytic reduction (SNCR) using urea as a reducing agent was performed in this study. A Pilot-scale experimental system was designed and constructed to evaluate the NO{sub x} reduction efficiency and temperature window of the process. Particularly, different types of additives were added during SNCR process to improve NO{sub x} reduction efficiency and enlarge temperature window. The addition of additives was based on organic compounds like alcoholic group (CH{sub 3}OH, C{sub 2}H{sub 5}OH and C{sub 3}H{sub 7}OH) and metallic compounds like alkali metals (NaOH, KOH and LiOH). Some newly introduced additives, such as surfactants and different blends of alkali metal NaOH (1%) with organic group or surfactants were also added to assess the effect of these mixed additives on NO{sub x} reduction efficiency and reaction temperature window during SNCR process. Main focus was laid on surfactants as an additive because of their cost effectiveness and availability. Basically, surfactants have both organic and metallic parts which provide -OH free radicals from both ends (organic and metallic) to enhance the reaction mechanism and improve the NO{sub x} reduction at low temperature. Different types of surfactants (anionic, cationic, amphitricha, long chain, short chain and with different functional groups attached to chains) were tested as an additive during SNCR process. Anionic surfactants (SPES, APS, LAS and SPS) gave maximum efficiency for NO{sub x} reduction and provided maximum range for the temperature window.

  8. Surfactant inhibition in acute respiratory failure : consequences for exogenous surfactant therapy

    NARCIS (Netherlands)

    E.P. Eijking (Eric)

    1993-01-01

    textabstractThe neonatal respiratory distress syndrome (RDS) is characterized by immaturity of the lung, resulting in relative or absolute absence of pulmonary surfactant. Worldwide, neonates suffering from RDS have been treated successfully with exogenous surfactant preparations. Currently, exogeno

  9. Molecular thermodynamics for micellar branching in solutions of ionic surfactants.

    Science.gov (United States)

    Andreev, Vasily A; Victorov, Alexey I

    2006-09-26

    We develop an analytical molecular-thermodynamic model for the aggregation free energy of branching portions of wormlike ionic micelles in 1:1 salt solution. The junction of three cylindrical aggregates is represented by a combination of pieces of the torus and bilayer. A geometry-dependent analytical solution is obtained for the linearized Poisson-Boltzmann equation. This analytical solution is applicable to saddle-like structures and reduces to the solutions known previously for planar, cylindrical, and spherical aggregates. For micellar junctions, our new analytical solution is in excellent agreement with numerical results over the range of parameters typical of ionic surfactant systems with branching micelles. Our model correctly predicts the sequence of stable aggregate morphologies, including a narrow bicontinuous zone, in dependence of hydrocarbon tail length, head size, and solution salinity. For predicting properties of a spatial network of wormlike micelles, our aggregation free energy is used in the Zilman-Safran theory. Our predictions are compared with experimental data for branching micelles of ionic surfactants.

  10. Modification of cell surface properties of Pseudomonas alcaligenes S22 during hydrocarbon biodegradation.

    Science.gov (United States)

    Kaczorek, Ewa; Moszyńska, Sylwia; Olszanowski, Andrzej

    2011-04-01

    Biodegradation of water insoluble hydrocarbons can be significantly increased by the addition of natural surfactants one. Very promising option is the use of saponins. The obtained results indicated that in this system, after 21 days, 92% biodegradation of diesel oil could be achieved using Pseudomonas alcaligenes. No positive effect on the biodegradation process was observed using synthetic surfactant Triton X-100. The kind of carbon source influences the cell surface properties of microorganisms. Modification of the surface cell could be observed by control of the sedimentation profile. This analytical method is a new approach in microbiological analysis.

  11. Learning and perceptual similarity among cuticular hydrocarbons in ants.

    Science.gov (United States)

    Bos, Nick; Dreier, Stephanie; Jørgensen, Charlotte G; Nielsen, John; Guerrieri, Fernando J; d'Ettorre, Patrizia

    2012-01-01

    Nestmate recognition in ants is based on perceived differences in a multi-component blend of hydrocarbons that are present on the insect cuticle. Although supplementation experiments have shown that some classes of hydrocarbons, such as methyl branched alkanes and alkenes, have a salient role in nestmate recognition, there was basically no information available on how ants detect and perceive these molecules. We used a new conditioning procedure to investigate whether individual carpenter ants could associate a given hydrocarbon (linear or methyl-branched alkane) to sugar reward. We then studied perceptual similarity between a hydrocarbon previously associated with sugar and a novel hydrocarbon. Ants learnt all hydrocarbon-reward associations rapidly and with the same efficiency, regardless of the structure of the molecules. Ants could discriminate among a large number of pairs of hydrocarbons, but also generalised. Generalisation depended both on the structure of the molecule and the animal's experience. For linear alkanes, generalisation was observed when the novel molecule was smaller than the conditioned one. Generalisation between pairs of methyl-alkanes was high, while generalisation between hydrocarbons that differed in the presence or absence of a methyl group was low, suggesting that chain length and functional group might be coded independently by the ant olfactory system. Understanding variations in perception of recognition cues in ants is necessary for the general understanding of the mechanisms involved in social recognition processes based on chemical cues.

  12. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M. [Research Centre for Toxicology and Hygienic Regulation of Biopreparations, Moscow region (Russian Federation); Ortega-Calvo, J.J. [Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla (Spain)

    2005-07-01

    Aliphatic, aromatic and polycyclic aromatic oil hydrocarbons are structurally complicated man-caused pollutants that are constantly brought into biosphere. Oil production in Russia, so as all over the world, is connected with pollution of biotopes, ecosystems and agro-landscapes. Presently large funds are allocated either for oil leak prevention or for discharged oil gathering. At the same time, in spite of large necessity in technologies for efficient reconstruction of soil bio-productivity, reliable regional systems of their remediation in situ have not been developed yet. One such method is rhizosphere remediation, a biotechnology, based on the functioning of plant-microbial complexes. Little is known about bioavailability in phyto-remediation systems. Specific bioavailability-promoting mechanisms, operating in soil with hydrocarbon-degrading populations, may be responsible for increased rates of pollutant transformation (increased bacterial adherence to the pollutants, production of bio-surfactants by bacteria or by plants, possible role of chemotaxis). In the course of work collection of 42 chemo-tactically active bio-surfactant producing strain-degraders of petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) was created. Two representative strains were selected for detailed chemotaxis studies with PAHs (naphthalene, phenanthrene, anthracene, and pyrene), bacterial lipopolysaccharide and root exudates from seven different plants. These strains are produce the bio-surfactants (rhamno-lipid). The chemotactic response was quantified with a capillary and densitometric chemotaxis assay. Surface tension of cultural liquid was measured after cultivation of strains in the presence of hexadecane or phenanthrene with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. Total petroleum Hydrocarbons (TPH) in soil were analyzed by infra-red spectroscopy method. PAHs

  13. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    Science.gov (United States)

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  14. Using biologically soft surfactants for dust suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Kolodiichak, V.K.; Motrii, A.E.; Severin, V.D.

    1982-07-01

    This article discusses environmental aspects of using surfactants in coal mines for dust suppression. Surfactants for underground black coal mines in the USSR are divided into three classes: so-called soft surfactants with a decomposition period from 1 to 3 days, hard surfactants with decomposition exceeding a month and an intermediary group. The decomposition process is analyzed; the role played by fermentation is stressed. Environmental effects of surfactant decomposition are evaluated. Selected surfactants tested in Soviet laboratories are described. The results of experimental use of diethanolamide as a surfactant for water injection in coal seams are evaluated. Wetting time amounts to 1 s when a 0.2% concentration is used. When surfactant concentration in water is reduced to 0.05% wetting time does not change; when concentration decreases to 0.025% wetting time increases to 3 s. Surfactant efficiency is investigated under operational conditions in a Donbass mine. Specifications of the working face, mining system and air pollution caused by a shearer loader are discussed. When diethanolamide is used dust suppression efficiency ranges from 86.4 to 90.4%. During the tests diethanolamide concentration in water was 0.05%.

  15. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  16. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  17. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  18. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  19. Biodegradation of pyrene and phenanthrene by bacterial consortium and evaluation of role of surfactant.

    Science.gov (United States)

    Kumari, B; Rajput, S; Gaur, P; Singh, S N; Singh, D P

    2014-12-24

    High molecular weight poly aromatic hydrocarbons (HMW PAHs) are well known for their hydrophobicity and they get strongly adsorbed onto the soil particles. Generally, surfactants facilitate the biodegradation of PAH by enhancing their solubility and desorption of hydrophobic compounds from soil particles. To investigate the role of synthetic surfactant in biodegradation of PAHs, two bacterial strains BP10 and P2 were incubated in soil spiked with pyrene and phenantherene (100 μg g-1of soil each) in isolation and in combination with/without Tween 80. After 14 days of incubation, pyrene and phenantherene were degraded by a combination of BP10 and P2 to the extent of 98% and 99%, respectively. Addition of tween 80 reduced the degradation of pyrene and phenantherene by 35 and 10%, respectively. Biosurfactant produced by selected strains i.e. BP10 and P2 could enhance desorption of pyrene (100 μg g-1of soil) by about 27% and 12%, respectively. However, desorption activity was relatively higher (32 and 29%, respectively) in case of phenanthrene (100 μg g-1of soil) from the spiked soil. Present study showed that in spite of additional chemical surfactant, bioaugmentation of highly petroleum hydrocarbon degrading bacterial combination was very effective in boosting the bioremediation of PAHs- contaminated sites.

  20. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    Although thraustochytrid protists are known to be of widespread occurrence in the sea, their hydrocarbon-degrading abilities have never been investigated. We isolated thraustochytrids from coastal waters and sediments of Goa coast by enriching MPN...

  1. Neutron scattering applications in hydrocarbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min Y.; Peiffer, Dennis G. [ExxonMobil Research and Engineering Company, Annandale, NJ (United States); Zhang, Yimin; Rafailovich, Miriam [Dept. of Materials Sci. and Eng., State University of New York, NY (United States)

    2001-03-01

    Neutron scattering methods are a powerful probe to complex fluids, soft matters as well as solid materials of nano- and micro-structures and their related dynamic properties. They complement other microstructural probing tools, such as microscopes, x-ray and light scattering techniques. Because neutron does not carry charges, it interacts only with nuclei of the matter, therefore not only can it penetrate a longer length into matters, it can also see' many features other methods can't due to their lack of proper contrast or heavy absorption. One of the largest contrasts in neutron methods is from hydrogen/deuterium (H/D) difference. Therefore, hydrocarbons can be easily studied by neutrons when H/D isotope substitution is applied. Here at National Institute of Standards and Technology's Center for Neutron Research (NCNR) in Gaithersburg, Maryland, one of the USA's premier neutron scattering facilities, we have been using neutron scattering techniques to study microstructures of asphaltenes, waxes, gas hydrates, porous media, surfactant solutions, engine oils, polymers, nanocomposites, fuel cell element and other hydrocarbon materials. With the completion of a new Neutron Spin Echo instrument, we can also look at the dynamics of the above mentioned systems. (author)

  2. Falling chains

    Science.gov (United States)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  3. Synthesis and Properties of Gemini Cationic Surfactants with Amide Spacers

    Institute of Scientific and Technical Information of China (English)

    DENG Qi-gang; YU Hong-wei; LIN Hong; JIA Li-hua; GUO Xiang-feng; ZHOU De-rui

    2005-01-01

    Four gemini cationic surfactants {N,N'-di[2-(lauryldimethylamino)acetyl]polymethylenediamine dichloride, LAA-s-LAA, s=2,3,4,6} were synthesized by using four bis(α-chloroacetamide)s and N,N-dimethyllaurylamine, respectively. The molecular structures were characterized by means of IR, 1H NMR, 13C NMR and MS, and the behavior of their aqueous solutions was studied. The critical micell concentrations(CMC) of LAA-s-LAA were one order of magnitude lower than that of dodecyltrimethyl ammonium chloride(DTAC). With the change of the length of spacer chain(s), their CMC values change, and CMC reaches the top value at s=4.

  4. Ice Nucleation Near the Surfactant-Water Interface

    Science.gov (United States)

    Carlin, Caleb; Cantrell, Will; Taylor, Caroline

    2008-03-01

    Ice nucleation is a fundamental component of the atmospheric mechanisms driving the formation of clouds. Atmospheric nucleation occurs with a variety of compounds and conditions, but understanding the behavior of water is key in all cases. We have used multiscale molecular simulations to study heterogeneous nucleation in clouds, probing the influence of long-chain alcohols on the freezing of water droplets. Ice nucleation occurs at a finite distance from the heterogeneous surface, due to the disruption of the hydrogen bond network in response to the surfactant-water interface. The penetration depth of the disturbance is found to be dependent upon the chain length and surface organization, as well as the acidity of the terminal alcohol group.

  5. Hemolysis by surfactants--A review.

    Science.gov (United States)

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.

  6. Silicone-based surfactant degradation in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Laubie, Baptiste, E-mail: baptiste.laubie@insa-lyon.fr [Université de Lyon, INSA-Lyon, Laboratoire de Génie Civil et d' Ingénierie Environnementale LGCIE, F-69621, Villeurbanne (France); Bonnafous, Emilie, E-mail: emily.bonnafous@gmail.com [Université de Lyon, INSA-Lyon, Laboratoire de Génie Civil et d' Ingénierie Environnementale LGCIE, F-69621, Villeurbanne (France); Desjardin, Valérie, E-mail: valerie.desjardin@insa-lyon.fr [Université de Lyon, INSA-Lyon, Laboratoire de Génie Civil et d' Ingénierie Environnementale LGCIE, F-69621, Villeurbanne (France); Germain, Patrick, E-mail: patrick.germain@insa-lyon.fr [Université de Lyon, INSA-Lyon, Laboratoire de Génie Civil et d' Ingénierie Environnementale LGCIE, F-69621, Villeurbanne (France); Fleury, Etienne, E-mail: etienne.fleury@insa-lyon.fr [Université de Lyon, INSA Lyon, UMR CNRS 5223, Ingénierie des Matériaux Polymères, F-69621, Villeurbanne (France)

    2013-06-01

    The increasing use of surfactants, such as modified polydimethylsiloxane-graft-polyethylene oxide (PDMS-g-PEO), requires studies on the fate of these compounds in the environment, and in particular in wastewater systems. A kinetic study, performed under three different pH conditions (pH 2, 5.3 and 11) and using {sup 1}H NMR (Nuclear Magnetic Resonance), proves that hydrolysis of the siloxane chain takes place in all cases, with higher rates for the two extreme conditions. Steric exclusion chromatography (SEC) clearly showed a decrease in the average molecular weight of the copolymer leading to a new molecular weight distribution, especially in acidic conditions. Degradation products, analyzed by {sup 29}Si NMR, were found to be similar whatever the degradation pathway, namely silanediols and cyclic volatile compounds (degradation products of PDMS) and also PEO-modified silanediols and cyclic compounds. After one year, the siloxane chain completely disappeared under acidic conditions. Real wastewater medium has a strong effect on polymer stability, indicating that pH is not the only parameter which influences degradation rate. Highlights: ► {sup 1}H NMR highlights silicone-based surfactant hydrolysis under various pH conditions. ► {sup 29}Si NMR reveals main degradation products: water soluble silanediols and volatile siloxanes. ► Real wastewater medium has a strong and negative effect on polymer stability.

  7. [Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance].

    Science.gov (United States)

    Wang, Shi-jie; Wang, Xiang; Lu, Gui-lan; Wang, Qun-hui; Li, Fa-sheng; Guo, Guan-lin

    2011-04-01

    Cold-adapted microorganisms such as psychrotrophs and psychrophiles widely exist in the soils of sub-Arctic, Arctic, Antarctic, alpine, and high mountains, being the important microbial resources for the biodegradation of petroleum hydrocarbons at low temperature. Using the unique advantage of cold-adapted microorganisms to the bioremediation of petroleum hydrocarbon-contaminated soils in low temperature region has become a research hotspot. This paper summarized the category and cold-adaptation mechanisms of the microorganisms able to degrade petroleum hydrocarbon at low temperature, biodegradation characteristics and mechanisms of different petroleum fractions under the action of cold-adapted microorganisms, bio-stimulation techniques for improving biodegradation efficiency, e. g., inoculating petroleum-degrading microorganisms and adding nutrients or bio-surfactants, and the present status of applying molecular biotechnology in this research field, aimed to provide references to the development of bioremediation techniques for petroleum hydrocarbon-contaminated soils.

  8. Interactions of a zwitterionic thiophene-based conjugated polymer with surfactants

    DEFF Research Database (Denmark)

    Costa, Telma; De Azevedo, Diego; Stewart, Beverly;

    2015-01-01

    In this paper we investigate the optical and structural properties of a zwitterionic poly[3-(N-(4-sulfonato-1-butyl)-N,N-diethylammonium)hexyl-2,5-thiophene] (P3SBDEAHT) conjugated polyelectrolyte (CPE) and its interaction in water with surfactants, using absorption, photoluminescence (PL......), electrical conductivity, molecular dynamics simulations (MDS) and small-angle X-ray scattering (SAXS). Different surfactants were studied to evaluate the effect of the head group and chain length on the self-assembly. PL data emphasize the importance of polymer-surfactant electrostatic interactions...... CAPB molecules are associated with the polymer. For molar ratios (in terms of the polymer repeat unit) >1 the SAXS interference maximum of the complexes resembles that of pure CAPB thus suggesting ongoing phase segregation in the formation of a "pure" CAPB phase....

  9. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  10. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yu-Ting; Wu, Shian-chee; Yang, Shi-Wei; Che, Choi-Hong [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan, ROC (China); Lien, Hsing-Lung, E-mail: lien.sam@nuk.edu.tw [Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, Taiwan, ROC (China); Huang, De-Huang [Chinese Petroleum Corporation, Kaohsiung, Taiwan, ROC (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Biodegradable surfactant stabilized nanoscale zero-valent iron (NZVI) is tested. Black-Right-Pointing-Pointer Vinyl chloride and 1,2-dichloroethane are remediated by NZVI in the field. Black-Right-Pointing-Pointer Multiple functions of biodegradable surfactants are confirmed. Black-Right-Pointing-Pointer Biodegradable surfactants stabilize NZVI and facilitate the bioremediation. Black-Right-Pointing-Pointer NZVI creates reducing conditions beneficial to an anaerobic bioremediation. - Abstract: Nanoscale zero-valent iron (NZVI) stabilized with dispersants is a promising technology for the remediation of contaminated groundwater. In this study, we demonstrated the use of biodegradable surfactant stabilized NZVI slurry for successful treatment of vinyl chloride (VC) and 1,2-dichloroethane (1,2-DCA) in a contaminated site in Taiwan. The biodegradable surfactant stabilized NZVI was coated with palladium and synthesized on-site. From monitoring the iron concentration breakthrough and distribution, it was found that the stabilized NZVI is capable of transporting in the aquifer at the test plot (200 m{sup 2}). VC was effectively degraded by NZVI while the 1,2-DCA degradation was relatively sluggish during the 3-month field test. Nevertheless, as 1,2-DCA is known to resist abiotic reduction by NZVI, the observation of 1,2-DCA degradation and hydrocarbon production suggested a bioremediation took place. ORP and pH results revealed that a reducing condition was achieved at the testing area facilitating the biodegradation of chlorinated organic hydrocarbons. The bioremediation may be attributed to the production of hydrogen gas as electron donor from the corrosion of NZVI in the presence of water or the added biodegradable surfactant serving as the carbon source as well as electron donor to stimulate microbial growth.

  11. Innovation in surfactant therapy I: surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques.

    Science.gov (United States)

    Dargaville, Peter A

    2012-01-01

    Innovation in the field of exogenous surfactant therapy continues more than two decades after the drug became commercially available. One such innovation, lung lavage using dilute surfactant, has been investigated in both laboratory and clinical settings as a treatment for meconium aspiration syndrome (MAS). Studies in animal models of MAS have affirmed that dilute surfactant lavage can remove meconium from the lung, with resultant improvement in lung function. In human infants both non-randomised studies and two randomised controlled trials have demonstrated a potential benefit of dilute surfactant lavage over standard care. The largest clinical trial, performed by our research group in infants with severe MAS, found that lung lavage using two 15-ml/kg aliquots of dilute surfactant did not reduce the duration of respiratory support, but did appear to reduce the composite outcome of death or need for extracorporeal membrane oxygenation. A further trial of lavage therapy is planned to more precisely define the effect on survival. Innovative approaches to surfactant therapy have also extended to the preterm infant, for whom the more widespread use of continuous positive airway pressure (CPAP) has meant delaying or avoiding administration of surfactant. In an effort to circumvent this problem, less invasive techniques of bolus surfactant therapy have been trialled, including instillation directly into the pharynx, via laryngeal mask and via brief tracheal catheterisation. In a recent clinical trial, instillation of surfactant into the trachea using a flexible feeding tube was found to reduce the need for subsequent intubation. We have developed an alternative method of brief tracheal catheterisation in which surfactant is delivered via a semi-rigid vascular catheter inserted through the vocal cords under direct vision. In studies to date, this technique has been relatively easy to perform, and resulted in rapid improvement in lung function and reduced need for

  12. Surfactant Adsorption: A Revised Physical Chemistry Lab

    Science.gov (United States)

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  13. Surfactant effects on soil aggregate tensile strength

    Science.gov (United States)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  14. Novel strategy involving surfactant-polymer combinations for enhanced stability of aqueous teflon dispersions.

    Science.gov (United States)

    Sharma, Mukesh; Bharatiya, Bhavesh; Mehta, Krupali; Shukla, Atindra; Shah, Dinesh O

    2014-06-24

    Among various polymers, the Teflon surface possesses extreme hydrophobicity (low surface energy), which is of great interest to both industry and academia. In this report, we discuss the stability of aqueous Teflon dispersions (particle size range of 100-3000 nm) formulated by a novel strategy that involves distinct combinations of surfactant and polymer mixtures for dispersion stabilization. As a first step, the hydrophobic Teflon particles were wetted using a range of surfactants (ionic, Triton, Brij, Tween, and Pluronic series) bearing different hydrophobic-lipophilic balance (HLB) and further characterized by contact angle and liquid penetration in packed powder measurements. The interaction between hydrophobic chains of surfactants and the Teflon particle surface is the driving force resulting in wetting of the Teflon particle surface. Further, these wetted particles in aqueous solutions were mixed with various polymers, for example, poly(vinyl alcohol) (PVA), polyvinylpyrrolidone (PVP), hydroxyethyl cellulose (HEC), and hydroxypropyl methyl cellulose (HPMC). The rate of sedimentation for the final dispersions was measured using a pan suspended into the dispersion from a transducer recording the increase in weight with time. A significant stability was noticed for Teflon particles suspended in surfactant + polymer mixtures, which was linearly proportional to the concentration of added polymer. The observed phenomenon can be possibly explained by molecular interactions between the hydrophobic chains of surfactant molecules and polar groups in the polymer architecture. Brij-O10 + HEC mixture was found to be the best surfactant-polymer combination for decreasing the sedimentation of the Teflon particles in the final dispersion. As measured by dynamic light scattering (DLS), the hydrodynamic volume of the Teflon particles increases up to ∼55% in the final formulation. These dispersions could be further explored for various technological applications such as

  15. Wettability of a quartz surface in the presence of four cationic surfactants.

    Science.gov (United States)

    Zhang, Lei; Wang, Zeng-Lin; Li, Zhen-Quan; Zhang, Lu; Xu, Zhi-Cheng; Zhao, Sui; Yu, Jia-Yong

    2010-12-21

    Advancing contact angle (θ) measurements were carried out for aqueous solutions of four cationic surfactants, hexadecanol glycidyl ether ammonium chloride (C(16)PC), guerbet alcohol hexadecyl glycidyl ether ammonium chloride (C(16)GPC), hexadecanol polyoxyethylene(3) glycidyl ether ammonium chloride (C(16)(EO)(3)PC), and guerbet alcohol hexadecyl polyoxyethylene(3) glycidyl ether ammonium chloride (C(16)G(EO)(3)PC), on the quartz surface using the sessile drop analysis. The influences of surfactant type and bulk concentration on contact angle were expounded, and the changes in adhesional tension and adhesion work were discussed. The contact angle increases up to a maximum with the increasing concentration for all cationic surfactants. Surfactants with branched chain have more hydrophobic group density on the quartz surface, which results in higher values of maxima in contact angle curves. When ethylene oxide groups CH(2)CH(2)O were incorporated in the hydrophobic group, the decrease in contact angle maximum was observed for C(16)(EO)(3)PC and C(16)G(EO)(3)PC. Moreover, an increase in quartz-water interfacial free energy (γ(SL)) has been observed due to the adsorption of four cationic surfactants. The four cationic surfactants can form a monolayer with alignment structure on the quartz surface through electrostatic interaction and then form the bilayer with increasing bulk concentration. In contrast with literature, the maximal contact angles may not necessarily correspond to the beginning of the formation of bilayer for cationic surfactants at the quartz-water interface. Moreover, the concentrations corresponding to maximal contact angles for C(16)PC and C(16)(EO)(3)PC were much lower than their CMC. The contact angle passes through a maximum at a concentration obviously higher than CMC for C(16)G(EO)(3)PC.

  16. Surfactants as microbicides and contraceptive agents: a systematic in vitro study.

    Directory of Open Access Journals (Sweden)

    Otilia V Vieira

    Full Text Available BACKGROUND: The urgent need for cheap and easy-to-use protection against both unwanted pregnancies and sexually transmitted diseases has stimulated considerable interest in the use of surfactants as microbicides, anti-viral, and contraceptive agents in recent years. In the present study we report a systematic in vitro evaluation of the microbicidal, anti-viral and contraceptive potential of cationic, anionic, zwitterionic, and non-ionic surfactants. METHODOLOGY/PRINCIPAL FINDINGS: Toxicity was evaluated in mammalian columnar epithelial (MDCK cells, human sperm cells, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Streptococcus agalactiae and Enterococcus faecalis. The inhibition of adenovirus and lentivirus infection of MDCK cells was also tested. A homologous series of cationic surfactants, alkyl-N,N,N-trimethylammonium bromides (C(nTAB, with varying alkyl chains were shown to be bactericidal and fungicidal at doses that were related to the surfactant critical micelle concentrations (CMC, all of them at concentrations significantly below the CMC. In general, bacteria were more susceptible to this surfactant group than C. albicans and this organism, in turn, was more susceptible than MDCK cells. This suggests that the C(nTAB may be useful as vaginal disinfectants only in so far as bacterial and fungal infections are concerned. None of the surfactants examined, including those that have been used in pre-clinical studies, showed inhibition of adenovirus or lentivirus infection of MDCK cells or spermicidal activity at doses that were sub-toxic to MDCK cells. CONCLUSIONS/SIGNIFICANCE: The results of this study lead us to propose that systematic analysis of surfactant toxicity, such as we report in the present work, be made a mandatory pre-condition for the use of these substances in pre-clinical animal and/or human studies.

  17. Effect of double quaternary ammonium groups on micelle formation of partially fluorinated surfactant.

    Science.gov (United States)

    Matsuoka, Keisuke; Chiba, Nagisa; Yoshimura, Tomokazu; Takeuchi, Emi

    2011-04-15

    To investigate the effect of divalency on the micelle properties, we synthesized divalent cationic surfactants composed of fluorocarbons and double quaternary ammonium groups N,N-dimethyl-N-[2-(N'-trimethylammonium)ethyl]-1-(3-perfluoroalkyl-2-hydroxypropyl) ammonium bromide [C(n)(F)C(3)-2Am; where n (=8 or 10) represents the number of carbon atoms in the fluorocarbon chain]. The double quaternary ammonium groups are continuously combined by the ethylene spacer in the surfactant head group, which clearly distinguishes the molecular design of the surfactant from those of the other typical divalent surfactants, bolaform and gemini types. The presence of the divalent head group results in an advantageous increase in their solubility [i.e., rise in the critical micelle concentration (cmc)]; however, the extra electrostatic repulsion between divalent cations decreases the surface activity in comparison with monovalent homologous fluorinated surfactants. The cmc, surface tension at cmc, and area occupied by a surfactant molecule in aqueous solution at 298.2K are 4.32 mM, 30.6 mN m(-1), and 0.648 nm(2 )molecule(-1), respectively, for C(8)(F)C(3)-2Am, and 1.51 mM, 30.4 mN m(-1), and 0.817 nm(2) molecule(-1), respectively, for C(10)(F)C(3)-2Am. The micellar size and shape were investigated by dynamic light scattering and freeze-fracture transmission electron microscopy (TEM). The TEM micrographs show that C(n)(F)C(3)-2Am (n=8 and 10) mainly forms ellipsoidal micelles approximately 10-100 nm in size for n=8 and approximately 10-20 nm in size for n=10. The degree of counterion binding to micelle was determined by selective electrode potential measurements, and the results of 0.7-0.8 agree with the average values for conventional monovalent ionic surfactants.

  18. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...... both for complex surfactant systems as well as for oil and brine systems. It is widely accepted that an increase in oil recovery can be obtained through flooding, whether it is simple waterflooding, waterflooding where the salinity has been modified by the addition or removal of specific ions (socalled...... “smart” waterflooding) or surfactant flooding. High pressure experiments have been carried out in this work on a surfactant system (surfactant/ oil/ brine) and on oil/ seawater systems (oil/ brine). The high pressure experiments were carried out on a DBR JEFRI PVT cell, where a glass window allows...

  19. Falling chains

    CERN Document Server

    Wong, C W; Wong, Chun Wa; Yasui, Kosuke

    2006-01-01

    The one-dimensional falling motion of a bungee chain suspended from a rigid support and of a chain falling from a resting heap on a table is studied. Their Lagrangians are found to contain no explicit time dependence. As a result, these falling chains are conservative systems. Each of their Lagrange's equations of motion is shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show in particular that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when the transferred link is emitted by the emitting subchain. The maximum chain tension measured by Calkin and March for the falling bungee chain is given a simple if rough interpretation. In the simplified one-dimensional treatment, the kinetic energy of the center of mass of the falling bungee chain is found to be converted by the chain tension at the rigid support into the internal kinetic energy of the chain. However, as t...

  20. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing

    Energy Technology Data Exchange (ETDEWEB)

    Torres, L. g.; Belloc, C.; Iturbe, R.; Bandala, E.

    2009-07-01

    A wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. the wastewater treatment in this work continued petroleum hydrocarbons, a surfactant, i. e., sodium dodecyl sulphate (SDS) as well as salts, humic acids and other constituents that were lixiviated rom the soil during the washing process. The aim of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and at the end of the cleaning up, the waters could be disposed properly. (Author)

  1. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Science.gov (United States)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-05-01

    All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55-80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of oleylamine (OLAm), but only flat nanoplates are observed in the products in the presence of OTAm at 120 °C. The results indicate that the lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr3 NCs. This work opens up an alternative approach to controllable-synthesis of perovskite NCs through varying the carbon chain length of organic surfactants, and enlightens

  2. Fibrinogen stability under surfactant interaction.

    Science.gov (United States)

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Research on the Influence of the Type of Surfactant and Concentrator in Aqueous Dispersion of Pigments.

    Science.gov (United States)

    Makarewicz, Edwin; Michalik, Agnieszka

    2014-01-01

    This work reports tests performed to evaluate the stability of aqueous dispersions of inorganic oxide pigments with different specific surface areas, with the use of anionic and non-ionic surfactants and concentrators. Color mixtures of oxide compounds of blue, green, olive and brown with the unit cell spinel structure were used as pigments. The sodium salt of sulfosuccinic acid monoester, oxyethylenated nonylphenol and ethoxylated derivatives of lauryl alcohol, fatty alcohol and fatty amine were used as surfactants. The concentrators used were: poly(vinyl alcohol), the sodium salt of carboxymethyl cellulose as well as a water-based polyurethane oligomer. The highest dispersion efficiency was found for dispersed systems in which surfactant and concentrator were incorporated in the formula. The one containing the sodium salt of carboxymethyl cellulose or polyurethane oligomer with ethoxylated saturated fatty alcohol or fatty amine was found to be the most efficient. It was discovered that a higher dispersion efficiency corresponds to pigments with larger specific surface. The efficiency is also found to improve when the concentrator is an acrylic polymer or copolymer made up of two acrylic species. In this case, the concentrator interaction with the surfactant is more effective if the value of its boundary viscosity number is higher. This observation confirms the existence of interactions between macro-chains of the concentrator and surfactant molecules forming micelles with the pigment particles.

  4. ESR Studies on the Micellization Behaviors of a Series of Novel Asymmetric Gemini Surfactants

    Institute of Scientific and Technical Information of China (English)

    WU,Yi-Tian(吴一天); WANG,Jin-Ben(王金本); LIU,Ming-Hua(刘鸣华); LIANG,Wen-Ping(梁文平)

    2002-01-01

    The synthesis of a new series of asymmetric cationic gemini surfactant and the investigation of their miccellization behaviors by electronic spin resonance (ESR) as well as the surface tension measurements were reported. 4-Oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (4-oxo-TEMPO) is used as the spin probe. The surfactants studied have the general formula [CnH2n+1 N+(CH3)2C6H12N+(CH3)2Cm H2m,1]Br2- , referred to as dimeric n-6-m surfactants, in which n and m are the numbers of carbon atoms in the asymmetric side alkyl chains. From the experimental data, rotational correlation time τc, surface tension and critical micelle concentration (cac) ,values, the physical properties of these new surfactants have preliminarily been evaluated. It is shown that this new series of asymmetric gmini surfactants has interesting micellization behaviors, and they are very different in aggregating tendency from their asymmetric analogues.

  5. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    Science.gov (United States)

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products.

  6. Mechanical and thermodynamic properties of surfactant aggregates at the solid-liquid interface.

    Science.gov (United States)

    Rabinovich, Yakov I; Vakarelski, Ivan U; Brown, Scott C; Singh, Pankaj K; Moudgil, Brij M

    2004-02-01

    Surfactants are widely used to stabilize colloidal systems in a variety of industrial applications through the formation of self-assembled aggregates at the solid-liquid interface. Previous studies have reported that the control of surfactant-mediated slurry stability can be achieved through the manipulation of surfactant chain length and concentration. However, a fundamental understanding of the mechanical and energetic properties of these aggregates, which may aid in the molecular-level design of these systems, is still lacking. In this study, experimentally measured force/distance curves between an atomic force microscope (AFM) tip and self-assembled surfactant aggregates on mica or silica substrates at concentrations higher than the bulk critical micelle concentration (CMC) were used to determine their mechanical and thermodynamic properties. The experimental curves were fitted to a model which describes the interaction between a hard sphere (tip) and a soft substrate (surfactant structures) based on a modified Hertz theory for the case of a thin elastic layer on a rigid substrate. The calculated mechanical properties were found to be in the same order of magnitude as those reported for rubber-like materials (e.g., polydimethylsiloxane (PDMS)). By integrating the force/distance curves, the energy required for breaking the surface aggregates was also calculated. These values are close to those reported for bulk-micelle formation.

  7. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.

    Science.gov (United States)

    Fong, Celesta; Weerawardena, Asoka; Sagnella, Sharon M; Mulet, Xavier; Krodkiewska, Irena; Chong, Josephine; Drummond, Calum J

    2011-03-15

    The neat and lyotropic phase behavior of eight new ethylene oxide amphiphiles (EO = 1-8) with a hexahydrofarnesyl chain (3,7,11-trimethyldodecyl) and narrow polydispersity (>98.5% purity) is reported. Below five EO units the behavior of the neat surfactants show only a glass transition, Tg ∼ -90 °C. Above four EO units, crystallization (Tcrys) and crystal-isotropic liquid (Tm) transitions are also observed that increase with degree of ethoxylation of the surfactant headgroup. The lyotropic liquid crystalline phase behavior spans a complex spectrum of surfactant-water interfacial curvatures. Specifically, inverse phases are present below ambient temperatures for EO ethoxylation, with the crossover to normal phases occurring at HFarn(EO)(7-8) which exhibits normal hexagonal (H(I)) and cubic (Q(I)) phases at ambient temperatures. The toxicity of colloidal dispersions of these EO amphiphiles was assayed against normal breast epithelial (HMEpiC) and breast cancer (MCF7) cell lines. The IC50 of the EO amphiphiles was similar in both cell lines with moderate toxicity ranging from ca. <5 to 140 μM in an in vitro cell viability assay. Observations are qualitatively rationalized in terms of the molecular geometry of the surfactant. The physicochemical behavior of the HFarnesyl ethylene oxide amphiphiles is compared to other ethylene oxide surfactants.

  8. Role of spacer lengths of gemini surfactants in the synthesis of silver nanorods in micellar media.

    Science.gov (United States)

    Bhattacharya, Santanu; Biswas, Joydeep

    2011-07-01

    In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter ~7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer -(CH(2))(n)- (n = 2 or 4) to stabilize the Ag-nanorods, the λ(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer -(CH(2))(n)- (n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.

  9. Synthesis and Monolayer Behaviors of Succinic Acid-Type Gemini Surfactants Containing Semifluoroalkyl Groups.

    Science.gov (United States)

    Kawase, Tokuzo; Nagase, Youhei; Oida, Tatsuo

    2016-01-01

    In this work, novel succinic acid-type gemini surfactants containing semifluoroalkyl groups, dl- and meso-2,3-bis[Rf-(CH2)n]-succinic acids (Rf = C4F9, C6F13, C8F17; n = 2, 9), were successfully synthesized, and the effects of Rf, methylene chain length (n), and stereochemistry on their monolayer behaviors were studied. Critical micelle concentrations (CMC) of dl- and meso-2,3-bis[C4F9(CH2)9]-succinic acids were one order of magnitude smaller than that of the corresponding 1+1 type surfactant, C4F9(CH2)9COOH. From surface pressure-area (π-A) measurements, the lift-off areas of the geminis were found to decrease in the order C4F9 ≥ C6F13 > C8F17, regardless of methylene chain length and stereochemistry. The zero-pressure molecular areas of the geminis were twice those of the corresponding 1+1 type surfactants. Based on Gibbs compression modulus analysis, it was clarified that 2,3-bis[C8F17(CH2)n]-succinic gemini with short methylene chains (n = 2) would form more rigid monolayers than those having long methylene chains (n = 9). Unlike for 2,3-bis(alkyl)-succinic acids, the effects of stereochemistry on the monolayer behavior of semifluoroalkylated geminis were small.

  10. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  11. Degradation of surfactant-modified montmorillonites in HCl

    Energy Technology Data Exchange (ETDEWEB)

    Madejova, Jana, E-mail: jana.madejova@savba.sk [Institute of Inorganic Chemistry, SAS, Dubravska cesta 9, SK-845 36 Bratislava (Slovakia); Palkova, Helena, E-mail: helena.palkova@savba.sk [Institute of Inorganic Chemistry, SAS, Dubravska cesta 9, SK-845 36 Bratislava (Slovakia); Jankovic, Lubos, E-mail: lubos.jankovic@savba.sk [Institute of Inorganic Chemistry, SAS, Dubravska cesta 9, SK-845 36 Bratislava (Slovakia)

    2012-06-15

    The effect of surfactant size on the extent of montmorillonites decomposition in HCl was investigated. Na-SAz montmorillonite and tetraalkylammonium salts of alkyl-chains length increasing from methyl- Me{sub 4}N to pentyl- Pe{sub 4}N were used for organo-montmorillonites preparation. Decreasing intensity of d{sub 001} diffraction proved destruction of montmorillonite structure connected with gradual surfactant release. A shift of the SiO stretching band to 1097 cm{sup -1} confirmed formation of amorphous silica phase. A new band near 7315 cm{sup -1} corresponding to SiOH overtone revealed creation of protonated silica. This band was observed in the spectra of all acid-treated samples, also in those with minor decomposition of the structure. The size of the cations significantly affected decomposition of montmorillonites in HCl. The less stable were Na-SAz and Me{sub 4}N-SAz in which the content of octahedral atoms dropped to {approx}5% of their original values upon 8 h treatments. Et{sub 4}N-SAz and Pr{sub 4}N-SAz were slightly more resistant mainly at short times. Bu{sub 4}N-SAz and Pe{sub 4}N-SAz showed the least structural modifications, only 50% and 35% of octahedral atoms, respectively, were released into solution within 8 h treatments. This observation proves that bulky alkylammonium cations covering the inner and outer surfaces of montmorillonite prevent effectively the access of protons to the layers protecting the mineral from degradation in the acid. - Highlights: Black-Right-Pointing-Pointer Hybrid materials were prepared from montmorillonite and alkylammonium cations with short alkyl chains. Black-Right-Pointing-Pointer The effect of surfactant on organo-montmorillonites dissolution in HCl was studied. Black-Right-Pointing-Pointer With increasing size of cation the extent of montmorillonite decomposition decreased. Black-Right-Pointing-Pointer Bulky surfactants prevent the access of protons to the layers and thus protect montmorillonite from

  12. Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups.

    Science.gov (United States)

    Mohamed, Azmi; Anas, Argo Khoirul; Bakar, Suriani Abu; Ardyani, Tretya; Zin, Wan Manshol W; Ibrahim, Sofian; Sagisaka, Masanobu; Brown, Paul; Eastoe, Julian

    2015-10-01

    Here is presented a systematic study of the dispersibility of multiwall carbon nanotubes (MWCNTs) in natural rubber latex (NR-latex) assisted by a series of single-, double-, and triple-sulfosuccinate anionic surfactants containing phenyl ring moieties. Optical polarising microscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy have been performed to obtain the dispersion-level profiles of the MWCNTs in the nanocomposites. Interestingly, a triple-chain, phenyl-containing surfactant, namely sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3-phenylpropoxy)carbonyl) pentane-2-sulfonate (TCPh), has a greater capacity the stabilisation of MWCNTs than a commercially available single-chain sodium dodecylbenzenesulfonate (SDBS) surfactant. TCPh provides significant enhancements in the electrical conductivity of nanocomposites, up to ∼10(-2) S cm(-1), as measured by a four-point probe instrument. These results have allowed compilation of a road map for the design of surfactant architectures capable of providing the homogeneous dispersion of MWCNTs required for the next generation of polymer-carbon-nanotube materials, specifically those used in aerospace technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. In Vitro Cytotoxicity and Phototoxicity Assessment of Acylglutamate Surfactants Using a Human Keratinocyte Cell Line

    Directory of Open Access Journals (Sweden)

    Abhay Kyadarkunte

    2014-07-01

    Full Text Available In the current study, human keratinocyte cell line was used as in vitro cell culture model to elucidate the effects of the fatty acid chain length of acylglutamate (amino acid-based surfactant namely, sodium cocoyl glutamate, sodium lauroyl glutamate, and sodium myristoyl glutamate on their cytotoxicity and the ultraviolet B induced phototoxicity. The endpoint used to assess toxicity was a tetrazolium-based assay whereas, the phototoxic potential of acylglutamate surfactants was predicted using two models namely, the Photo-Irritation Factor and Mean Photo Effect. The results of this study showed that the fatty acid chain length of acylglutamate greatly influences toxic effects on human keratinocyte cells. In addition, all the acylglutamate surfactants tested on human keratinocyte cells demonstrated significantly less cytotoxicity (when irradiated and non-irradiated with ultraviolet B light; p < 0.05 and no phototoxic potential was observed in any of the acylglutamate surfactants, when compared with the positive control chlorpromazine. In conclusion, the in vitro studies confirm the suitability of sodium lauroyl glutamate destined for the synthesis and stabilization of lipid nanoparticles.

  14. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun X; Petkov, Jordan T; Tucker, Ian; Webster, John R P; Terry, Ann E

    2015-03-17

    The Tween nonionic surfactants are ethoxylated sorbitan esters, which have 20 ethylene oxide groups attached to the sorbitan headgroup and a single alkyl chain, lauryl, palmityl, stearyl, or oleyl. They are an important class of surfactants that are extensively used in emulsion and foam stabilization and in applications associated with foods, cosmetics and pharmaceuticals. A range of ethoxylated polysorbate surfactants, with differing degrees of ethoxylation from 3 to 50 ethylene oxide groups, have been synthesized and characterized by neutron reflection, small-angle neutron scattering, and surface tension. In conjunction with different alkyl chain groups, this provides the opportunity to modify their surface properties, their self-assembly in solution, and their interaction with macromolecules, such as proteins. Adsorption at the air-water and oil-water interfaces and solution self-assembly of the range of ethoxylated polysorbate surfactants synthesized are presented and discussed.

  15. Surfactant replacement therapy--economic impact.

    Science.gov (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  16. Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review.

    Science.gov (United States)

    Laha, Shonali; Tansel, Berrin; Ussawarujikulchai, Achara

    2009-01-01

    Surfactants are amphiphilic molecules that reduce aqueous surface tension and increase the solubility of hydrophobic organic compounds (HOCs). Surfactant-amended remediation of HOC-contaminated soils and aquifers has received significant attention as an effective treatment strategy - similar in concept to using soaps and detergents as washing agents to remove grease from soiled fabrics. The proposed mechanisms involved in surfactant-amended remediation include: lowering of interfacial tension, surfactant solubilization of HOCs, and the phase transfer of HOC from soil-sorbed to pseudo-aqueous phase. However, as with any proposed chemical countermeasures, there is a concern regarding the fate of the added surfactant. This review summarizes the current state of knowledge regarding nonionic micelle-forming surfactant sorption onto soil, and serves as an introduction to research on that topic. Surfactant sorption onto soil appears to increase with increasing surfactant concentration until the onset of micellization. Sorbed-phase surfactant may account for the majority of added surfactant in surfactant-amended remediation applications, and this may result in increased HOC partitioning onto soil until HOC solubilization by micellar phase surfactant successfully competes with increased HOC sorption on surfactant-modified soil. This review provides discussion of equilibrium partitioning theory to account for the distribution of HOCs between soil, aqueous phase, sorbed surfactant, and micellar surfactant phases, as well as recently developed models for surfactant sorption onto soil. HOC partitioning is characterized by apparent soil-water distribution coefficients in the presence of surfactant.

  17. Isolation of biosurfactant producing microorganisms and lipases from wastewaters from slaughterhouses and soils contaminated with hydrocarbons

    OpenAIRE

    Becerra, Lizzie; Horna, María

    2016-01-01

    Surfactants are amphipathic molecules which reduce stress at the interface, thereby increasing water solubility and availability of organic compounds are produced by bacteria, fungi, and yeasts. For the isolation of biosurfactant producing bacteria and lipases, was plant in inducing means 10% of sewage effluent from slaughterhouses and soils contaminated with hydrocarbons Province taps Trujillo - Peru. Isolates were seed in agar cultures lecithin and rhodamine agar for determination of lipase...

  18. Different effects of surfactant proteins B and C - implications for development of synthetic surfactants.

    Science.gov (United States)

    Curstedt, Tore; Johansson, Jan

    2010-06-01

    Treatment of premature newborn rabbits with synthetic surfactants containing a surfactant protein C analogue in a simple phospholipid mixture gives similar tidal volumes as treatment with poractant alfa (Curosurf(R)) but ventilation with a positive end-expiratory pressure (PEEP) is needed for this synthetic surfactant to stabilize the alveoli at end-expiration. The effect on lung gas volumes seems to depend on the structure of the peptide since treatment with a synthetic surfactant containing the 21-residue peptide (LysLeu(4))(4)Lys (KL(4)) gives low lung gas volumes in experiments also performed with PEEP. Surfactant preparations containing both surfactant proteins B and C or their analogues prevent alveolar collapse at end-expiration even if ventilated without PEEP. Treatment of premature newborn rabbits with different natural surfactants indicates that both the lipid composition and the proteins are important in order to stabilize the alveoli at end-expiration. Synthetic surfactants containing two peptides may be able to replace natural surfactants within the near future but more trials need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants.

  19. Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

    Directory of Open Access Journals (Sweden)

    Alexei Birkun

    2014-01-01

    Full Text Available Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium in vitro and to identify appropriate combination(s for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa. Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia.

  20. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  1. Miscellaneous hydrocarbon solvents.

    Science.gov (United States)

    Bebarta, Vikhyat; DeWitt, Christopher

    2004-08-01

    The solvents discussed in this article are common solvents not categorized as halogenated, aromatic, or botanical. The solvents discussed are categorized into two groups: hydrocarbon mixtures and single agents. The hydrocarbon mixtures discussed are Stoddard solvent, naphtha, and kerosene. The remaining solvents described are n-hexane, methyl n-butyl ketone, dimethylformamide, dimethyl sulfoxide, and butyl mercaptans. Effects common to this group of agents and their unique effects are characterized. Treatment of exposures and toxic effects of these solvents is described, and physiochemical properties and occupational exposure levels are listed.

  2. Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs.

    Science.gov (United States)

    Hahladakis, John N; Lekkas, Nikolaos; Smponias, Andreas; Gidarakos, Evangelos

    2014-06-01

    This study focused on the sequential application of a chelating agent (citric acid) followed by a surfactant in the simultaneous electroremediation of real contaminated sediments from toxic metals and Polycyclic Aromatic Hydrocarbons (PAHs). Furthermore, the efficiency evaluation of two innovative non-ionic surfactants, commercially known as Poloxamer 407 and Nonidet P40, was investigated. The results indicated a removal efficacy of approximately 43% and 48% for the summation of PAHs (SUM PAHs), respectively for the aforementioned surfactants, much better than the one obtained by the use of Tween 80 (nearly 21%). Individual PAHs (e.g. fluorene) were removed in percentages that reached almost 84% and 92% in the respective electrokinetic experiments when these new surfactants were introduced. In addition, the combined-enhanced sequential electrokinetic treatment with citric acid improved dramatically the removal of Zn and As, compared to the unenhanced run, but did not favor the other toxic metals examined. Since no improvement in metal removal percentages occurred when Tween 80 was used, significant contribution to this matter should also be attributed to the solubilization capacity of these innovative, in electrokinetic remediation, non-ionic surfactants.

  3. Fluorescence emission of pyrene in surfactant solutions.

    Science.gov (United States)

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih

    2015-01-01

    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  4. A study of surfactant-assisted waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  5. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  6. Influence of surfactants in forced dynamic dewetting.

    Science.gov (United States)

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s(-1) the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  7. Use of two-surfactants mixtures to attain specific HLB values for assisted TPH-diesel biodegradation

    Institute of Scientific and Technical Information of China (English)

    Luis G. Torres; Neftalí Rojas; Rosario Iturbe

    2004-01-01

    In a surfactant assisted biodegradation process, the choice of surfactant(s) is of crucial importance. The question is: does the type of surfactant (i.e. chemical family) affect the biodegradation process at fixed hidrophillic-lypofillic balance HLB values? Microcosm assessments were developed using contaminated soil, with around of 5000 mg/kg of hydrocarbons as TPH-diesel. Mixtures of three nonionic surfactants were employed to get a wide range of specific HLB values. Tween20 and Span20 were mixed in the appropriate proportions to get HLB values between 8.6 and 16.7. Tween/Span60 mixtures reached HLB values between 4.7 and 14.9. Finally, Tween/Span80 combinations yielded HLB values between 4.3 and 15. TPH-diesel biodegradation was measured at the beginning, and after 8 weeks, as well as the FCU/grsoil, as a measure of microorganisms′ development during the biodegradation period. A second aim of this work was to assess the use of guar gum as a biodegradation enhancer instead of synthetic products. The conclusions of this work are that surfactant chemical family, and not only the HLB value clearly affects the assisted biodegradation rate. Surfactant's synergism was clearly observed. Regarding the use of guar gum, no biodegradation enhancement was observed for the three assessed concentrations i.e., 2, 20, and 200 mg/kg, respectively. On the contrary, TPH-diesel removal was lower as the gum concentration increased. It is quite possible that guar gum was used as a microbial substrate.

  8. Surfactant-Assisted Coal Liquefaction

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  9. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)

    1997-07-01

    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  10. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  11. Studies on the electrocapillary curves of anionic surfactants in presence of non-ionic surfactants.

    Science.gov (United States)

    Bembi, R; Goyal, R N; Malik, W U

    1976-09-01

    Polyoxyethylated non-ionic surfactants such as Tween 20, Tween 40, Nonidet P40 and Nonex 501 have been supposed to be associated with cationic characteristics. Studies on the effect of these surfactants on the electrocapillary curves of the anionic surfactants Aerosol IB, Manaxol OT and sodium lauryl sulphate (SLS), show that the electrocapillary maxima shift towards positive potentials. The order of adsorption of the anionic surfactants is SLS > Manaxol OT > Aerosol IB while the shift in maxima is in the order Aerosol IB ~ Manaxol OT > SLS which confirms association of cationic characteristics with the micelles of these non-ionic surfactants. The magnitude of the shift in electrocapillary maxima is Nonex 501 > Nonidet P40 > Tween 20 > Tween 40 which may be the order of magnitude of the positive charge carried by these non-ionic surfactants.

  12. Apparatus and methods for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  13. Rapid Capacity Growth of Long Chain Fatty Alcohols

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Long chain fatty alcohols here are referring to those alcohols with more than six carbon atoms per molecular.They are basic chemical raw materials for the synthesis of surfactants,detergents, plasticizers and various other fine chemicals and are extensively used in textile, household chemicals, papermaking, foodstuffs,pharmaceuticals and leather manufacturing sectors.

  14. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  15. Compartmentalisation Strategies for Hydrocarbon-based Biota on Titan

    Science.gov (United States)

    Norman, L.; Fortes, A. D.; Skipper, N.; Crawford, I.

    2013-05-01

    The goal of our study is to determine the nature of compartimentalisation strategies for any organisms inhabiting the hydrocarbon lakes of Titan (the largest moon of Saturn). Since receiving huge amounts of data via the Cassini-Huygens mission to the Saturnian system astrobiologists have speculated that exotic biota might currently inhabit this environment. The biota have been theorized to consume acetylene and hydrogen whilst excreting methane (1,2) leading to an anomalous hydrogen depletion near the surface; and there has been evidence to suggest this depletion exists (3). Nevertheless, many questions still remain concerning the possible physiological traits of biota in these environments, including whether cell-like structures can form in low temperature, low molecular weight hydrocarbons. The backbone of terrestrial cell membranes are vesicular structures composed primarily of a phospholipid bilayer with the hydrophilic head groups arranged around the periphery and are thought to be akin to the first protocells that terrestrial life utilised (4). It my be possible that reverse vesicles composed of a bilayer with the hydrophilic head groups arranged internally and a nonpolar core may be ideal model cell membranes for hydrocarbon-based organisms inhabiting Titan's hydrocarbon lakes (5). A variety of different surfactants have been used to create reverse vesicles in nonpolar liquids to date including; non-ionic ethers (7) and esters (6, 8); catanionic surfactant mixtures (9); zwitterionic gemini surfactants (10); coblock polymer surfactants (11); and zwitterionic phospholipid surfactants (12). In order to discover whether certain phospholipids can exhibit vesicular behaviour within hydrocarbon liquids, and to analyse their structure, we have carried out experimental studies using environmental conditions that are increasing comparable to those found on the surface of Titan. Experimental methods that have been used to determine the presence of vesicles include the

  16. Study of conformation and dynamic of surfactant molecules in graphite oxide via NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ai, X.Q. [Jiangsu Second Normal University, College of Physics and Electronic Engineering, Nanjing (China); Ma, L.G. [Nanjing Xiaozhuang University, School of Electronic Engineering, Nanjing (China)

    2016-08-15

    The conformation and dynamic of surfactant in graphite oxide (GO) was investigated by solid-state {sup 13}C magic-angle-spinning NMR and {sup 1}H-{sup 13}C cross-polarization/magic-angle-spinning NMR spectra. The conformation ordering of the alkyl chains in the confined system shows strong dependence on its orientation. While the alkyl chains parallel to the GO layer in lateral monolayer arrangement are in gauche conformation in addition to a small amount of all-trans conformation, those with orientation radiating away from the GO in paraffin bilayer arrangement is in all-trans conformation in addition to some gauche conformation even though high-order diffraction peaks appears. NMR results suggest that the least mobile segment is located at the GO-surfactant interface corresponding to the N-methylene group. Further from it, the mobility of the alkyl chain increases. The terminal methyl and N-methyl carbon groups have the highest mobile. The chains in all-trans conformational state are characterized as more rigid than chains with gauche conformation; each segment of the confined alkyl chains with the lateral monolayer arrangement exhibits less mobility as compared to that with the paraffin bilayer arrangement. (orig.)

  17. Synthesis of novel quaternary ammonium surfactants containing adamantane

    Institute of Scientific and Technical Information of China (English)

    Jian Wei Guo; Xing Zhong; Hua Zhu; Li Juan Feng; Ying De Cui

    2012-01-01

    A series of novel quaternary ammonium surfactants containing adamantane were designed and synthesized from 1-adamantanecarboxylic acid.The structures of target surfactants were confirmed by 1H NMR,elements analysis and FTIR.Surface properties of these surfactants were investigated.Due to the lipophilicity of adamantane,the critical micelle concentration (CMC) and C20 values of the synthesized quaternary ammonium surfactants are lower than that of conventional quaternary ammonium surfactants.

  18. Spectroscopic investigation on the interaction of some surfactant-cobalt(III) complexes with serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, Gopalaswamy; Nehru, Selvan; Manojkumar, Yesaiyan; Arunachalam, Sankaralingam, E-mail: arunasurf@yahoo.com

    2014-01-15

    The interaction of HSA/BSA with single and double chain surfactant-cobalt(III) complexes, cis-[Co(phen){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (1), cis-[Co(phen){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (2), cis-[Co(en){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (3), cis-[Co(en){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (4), were investigated by steady state fluorescence, UV–vis absorption, synchronous, three dimensional fluorescence and circular dichroism spectroscopy. The results reveal that the quenching of HSA/BSA by all the four complexes takes place through static mechanism. The binding constant, binding sites and thermodymamic parameter were calculated. The results illustrate that the double chain surfactant-cobalt(III) complexes bind more strongly than the corresponding single chain complexes. The distance between donor (HSA/BSA) and acceptor (surfactant-cobalt(III) complexes) was obtained according to FRET. The results of synchronous, three dimensional and circular dichroism spectroscopy studies show that all the complexes caused considerable amount of conformational and some amount of environment changes in HSA/BSA. -- Highlights: • Binding of single and double chain surfactant-cobalt(III) complexes with serum albumins. • Hydrophobic attraction plays a major role in the binding process. • Binding induces considerable amount of conformational changes in the protein.

  19. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    Science.gov (United States)

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  20. Markov chains

    CERN Document Server

    Revuz, D

    1984-01-01

    This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.

  1. Mantle hydrocarbons: abiotic or biotic?

    Science.gov (United States)

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  2. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  3. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Science.gov (United States)

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+) and Ig-Hepta(-/-) mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space.

  4. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.

    Science.gov (United States)

    Goldsipe, Arthur; Blankschtein, Daniel

    2007-05-22

    In article 1 of this series, we developed a molecular-thermodynamic (MT) theory to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. In this article, we extend the MT theory to model mixtures containing a pH-sensitive surfactant. The MT theory was validated by examining mixtures containing both a pH-sensitive surfactant and a conventional surfactant, which effectively behave like ternary surfactant mixtures. We first compared the predicted micellar titration data to experimental micellar titration data that we obtained for varying compositions of mixed micelles containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) mixed with either a cationic surfactant (dodecyltrimethylammonium bromide, C12TAB), a nonionic surfactant (dodecyl octa(ethylene oxide), C12E8), or an anionic surfactant (sodium dodecyl sulfate, SDS) surfactant. The MT theory accurately modeled the titration behavior of C12DAO mixed with C12E8. However, C12DAO was observed to interact more favorably with SDS and with C12TAB than was predicted by the MT theory. We also compared predictions to data from the literature for mixtures of C12DAO and SDS. Although the pH values of solutions with no added acid were modeled with only qualitative accuracy, the MT theory resulted in quantitatively accurate predictions of solution pH for mixtures containing added acid. In addition, the predicted degree of counterion binding yielded a lower bound to the experimentally measured value. Finally, we predicted the critical micelle concentration (cmc) of solutions of two pH-sensitive surfactants, tetradecyldimethylamine oxide (C14DAO) and hexadecyldimethyl betaine (C16Bet), at varying solution pH and surfactant composition. However, at the pH values considered, the pH sensitivity of C16Bet could be neglected, and it was equivalently modeled as a zwitterionic surfactant. The cmc's predicted using the MT theory agreed well with the experimental

  5. Effects of Interactions Among Surfactants,Water and Oil on Equilibrium Configuration of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Yin-quan; SUN Zhi-bo; XIE Yun; ZOU Xian-wu

    2004-01-01

    The distribution and configuration of surfactants at interface in surfactant-water-oil systems have been investigated using discontinuous molecular dynamic simulations. There exists a certain equilibrium concentration of surfactants at interface for the systems with certain interactions among surfactant, water and oil. The interface length and equilibrium morphology of the systems are dependent on the equilibrium concentration of surfactants at interface and the total amount of surfactants. The interaction strengths among surfactant, water and oil determine the equilibrium concentration of surfactants at interface. Three typical configurations of surfactants at interface have been observed: ① surfactant molecules are perpendicular to the interface and arranged closely; ② perpendicular to the interface and arranged at interval of two particles; ③ lie down in the interface partly.

  6. THE EFFECT OF CHARGE AND CHEMICAL STRUCTURE OF CATIONIC SURFACTANTS ON LASER TONER AGGLOMERATION UNDER ALKALINE PULPING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jie Jiang,

    2012-02-01

    Full Text Available Laboratory-scale agglomeration experiments followed by image analysis were used to evaluate the effectiveness of different cationic surfactants on the 1-octadecanol agglomeration of a negatively charged laser toner. Various types of surfactants with different geometric structures were investigated. It was found that this toner became agglomerated under neutral pulping conditions, but it did not agglomerate under alkaline conditions at all. A small amount of the cationic surfactant compensated for the agglomeration disruption caused by the negative surface charge of the toner and made this toner agglomerate very well. These cationic surfactants consist of a chemical structure of C12 to C18 saturated alkyl hydrophobic chains. The positive charge of these surfactants played the major role in alleviating agglomeration disruption. Additionally, an extra phenol group on these surfactants contributed only minor advantages for toner agglomeration in the presence of 1-octadecanol. The best co-agglomeration performance occurred within a very narrow range of similar total positive charge densities based on the total toner weight. It was also found that this positive charge effect could not be applied to the chemical compounds of high molecular weight polymeric materials.

  7. Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers.

    Science.gov (United States)

    Liu, Kai; Zheng, Lifei; Liu, Qing; de Vries, Jan Willem; Gerasimov, Jennifer Y; Herrmann, Andreas

    2014-10-08

    DNA-incorporating hydrophobic moieties can be synthesized by either solid-phase or solution-phase coupling. On a solid support the DNA is protected, and hydrophobic units are usually attached employing phosphoramidite chemistry involving a DNA synthesizer. On the other hand, solution coupling in aqueous medium results in low yields due to the solvent incompatibility of DNA and hydrophobic compounds. Hence, the development of a general coupling method for producing amphiphilic DNA conjugates with high yield in solution remains a major challenge. Here, we report an organic-phase coupling strategy for nucleic acid modification and polymerization by introducing a hydrophobic DNA-surfactant complex as a reactive scaffold. A remarkable range of amphiphile-DNA structures (DNA-pyrene, DNA-triphenylphosphine, DNA-hydrocarbon, and DNA block copolymers) and a series of new brush-type DNA side-chain homopolymers with high DNA grafting density are produced efficiently. We believe that this method is an important breakthrough in developing a generalized approach to synthesizing functional DNA molecules for self-assembly and related technological applications.

  8. Bacterial sources for phenylalkane hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, L.; Winans, R.E. [Argonne National Lab., IL (United States); Langworthy, T. [Univ. of South Dakota, Vermillion, SD (United States)

    1996-10-01

    The presence of phenylalkane hydrocarbons in geochemical samples has been the source of much controversy. Although an anthropogenic input from detergent sources always appears likely, the distribution of phenylalkane hydrocarbons in some cases far exceeding that attributed to detergent input has led to a reappraisal of this view. Indeed, recent work involving analysis of the lipid hydrocarbon extracts from extant Thermoplasma bacteria has revealed the presence of phenylalkane hydrocarbons. The presence of phenylalkane hydrocarbons in sedimentary organic matter may therefore represent potential biological markers for thermophilic bacteria.

  9. Aggregation of sulfosuccinate surfactants in water

    Energy Technology Data Exchange (ETDEWEB)

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.

    1983-12-22

    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  10. Investigation of a polyether trisiloxane surfactant

    OpenAIRE

    Michel, Amandine

    2016-01-01

    Thanks to their adaptability and high efficiency compared to traditional carbon based surfactants, silicone surfactants are a success in many different applications, from pesticides to cosmetics, polyurethane foam, textile and car care products. In spite of those numerous applications, no analytical method existed for their trace determination in environmental samples and no data have been available regarding their environmental occurrence and fate. An analytical method for the trace ana...

  11. Surfactant apoprotein in nonmalignant pulmonary disorders.

    OpenAIRE

    Singh, G.; Katyal, S. L.

    1980-01-01

    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to l...

  12. Microbial degradation of petroleum hydrocarbons.

    Science.gov (United States)

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.

    2000-07-07

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  14. Light color, low softening point hydrocarbon resins

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.L.; Hentges, S.G.

    1990-06-12

    This patent describes a hydrocarbon resin having a softening point of from 0{degrees} C to about 40{degrees} C, a Gardner color of about 7 or less, a number average molecular weight (Mn) of from about 100 to about 600, and a M{sub {ital w}}/M{sub {ital n}} ratio of from about 1.1 to about 2.7, prepared by Friedel Crafts polymerization of a hydrocarbon feed. It comprises: from about 5% to about 75% by weight of a C{sub 8} to C{sub 10} vinyl aromatic hydrocarbon stream; up to about 35% by weight of a piperylene stream; and from about 25% to about 70% by weight of a stream containing C{sub 4} to C{sub 8} monoolefin chain transfer agent of the formula RR{prime}C {double bond} CR{double prime}R triple{prime} where R and R{prime} are C{sub 1} to C{sub 5} alkyl, R{double prime} and R triple{prime} are independently selected from H and a C{sub 1} to C{sub 4} alkyl group.

  15. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Moura Leila

    2016-03-01

    Full Text Available The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the separation of gaseous hydrocarbons – either by improving the capacity of the ionic liquid to absorb a given gas or by increasing the selectivity towards a particular hydrocarbon. Original results concerning the usage of olefin-complexing metal salts of lithium (I, nickel (II and copper (II dissolved in ionic liquids for selectively absorbing light olefins are presented. It is observed that the absorption capacity of an imidazolium-based ionic liquid is doubled by the addition of a copper (II salt. This result is compared with the effect of the functionalization of the ionic liquid and the advantages and difficulties of the two approaches are analyzed.

  16. Recent progress of the characterization of oppositely charged polymer/surfactant complex in dilution deposition system.

    Science.gov (United States)

    Miyake, M

    2017-01-01

    A mixture of oppositely charged polymer and surfactants changes the solubilized state, having a complex precipitation region at the composition of electric neutralization. This complex behavior has been applied to surface modification in the fields of health care and cosmetic products such as conditioning shampoos, as a dilution-deposition system in which the polymer/surfactant mixture at the higher surfactant concentration precipitates the insoluble complex by dilution. A large number of studies over many years have revealed the basic coacervation behavior and physicochemical properties of complexes. However, the mechanism by which a precipitated complex performs surface modification is not well understood. The precipitation region and the morphology of precipitated complex that are changed by molecular structure and additives affect the performance. Hydrophilic groups such as the EO unit in polymers and surfactants, the mixing of nonionic or amphoteric surfactant and nonionic polymer, and the addition of low polar solvent influence the complex precipitation region. Furthermore, the morphology of precipitated complex is formed by crosslinking and aggregating among polymers in the dilution process, and characterizes the performance of products. The polymer chain density in precipitated complex is determined by the charges of both the polymer and surfactant micelle and the conformation of polymer. As a result, the morphology of precipitated complexes is changed from a closely packed film to looser meshes, and/or to small particles, and it is possible for the morphology to control the rheological properties and the amount of adsorbed silicone. In the future, further investigation of the relationships between the morphology and performance is needed.

  17. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  18. Evaluation of Surfactant Effects on Newborns

    Directory of Open Access Journals (Sweden)

    N. Khalessi

    2006-10-01

    Full Text Available Introduction & Objective: One of the standard therapies in neonates with severe respiratory distress syndrome (RDS is surfactant administration in early course of therapy that cause reduction in mortality, pneumothorax and need to mechanical ventilation. In this study that was carried out in Aliasghar Hospital NICU in 1994-1995 & 2001-2002, the goal was to compare two groups of neonates with severe RDS that had been ventilated in the first 24 hours but one group had received surfactant and the other group (7 years ago was deprived of this substance. Materials & Methods: In our study, 36 neonates that received surfactant and 52 neonates with only mechanical ventilation therapy were compared. Data collected and analyzed using SPSS.Results: We found that mortality in patients with surfactant administration was significantly lower compared to the second group who did not receive surfactant. There were not any significant differences in incidences of HIV, pneumothorax, sepsis, and PDA and also course of hospitalization and need to ventilation between two groups. Conclusion: As a result, all of these findings reflect obligatory surfactant administration in sever RDS in NICU under observation of an educated expert.

  19. Nonlinear water waves with soluble surfactant

    Science.gov (United States)

    Lapham, Gary; Dowling, David; Schultz, William

    1998-11-01

    The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.

  20. Spinodal Decomposition in Mixtures Containing Surfactants

    Science.gov (United States)

    Melenekvitz, J.

    1998-03-01

    Spinodal decomposition in mixtures containing two immiscible liquids (A and B) plus surfactant was investigated using a recently developed (J. Melenkevitz and S. H. Javadpour, J. Chem. Phys., 107, 623 (1997).) 3-component Ginzburg-Landau model. The time dependent Ginzburg-Landau (TDGL) equations governing the evolution of structure were numerically integrated in 2-dimensions. We found the growth rate of the average domain size, R(t), decreased with increasing surfactant concentration over a wide range of relative amounts of A and B. This can be attributed to the surfactant accumulating at the growing interface between the immiscible liquids, which leads to a reduction in the surface tension. At late times, the growth rate was noticeably altered when thermal fluctuations were added to the numerical simulations. In this case, power law behavior was observed for R(t) at late times, R(t) ~ t^α, with the exponent α decreasing as the amount of surfactant increased. The dynamics at early times were determined by linearizing the TDGL equations about a uniformly mixed state. The growth rate at ealry times was found to be strongly dependent on the model parameters describing the surfactant miscibility in A and B and the surfactant strength. Comparison with recent measurements on SBR / PB mixtures with added PB-SBR diblock copolymer will also be presented.

  1. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2005-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Imbibition in an originally oil-wet 2D capillary is the fastest in the case of Alf-38 and slowest in the case of DTAB (among the surfactants studied). Force of adhesion studies and contact angle measurements show that greater wettability alteration is possible with these anionic surfactants than the cationic surfactant studied. The water imbibition rate does not increase monotonically with an increase in the surfactant concentration. A numerical model has been developed that fits the rate of imbibition. Plans for the next quarter include conducting simulation and imbibition studies.

  2. On the Difference between Self-Assembling Process of Monomeric and Dimeric Surfactants with the Same Head to Tail Ratio: A Lattice Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Reza Behjatmanesh-Ardakani

    2013-01-01

    Full Text Available Experimental data show that gemini surfactants have critical micelle concentrations that are almost tenfold lower than the CMCs of single chain ones. It is believed that the spacer groups play an important role in this subject. Short hydrophilic or long hydrophobic spacers can reduce CMC dramatically. In this paper, self-assembling processes of double-chain and one-chain surfactants with the same head to tail ratio are compared. Dimeric chain structure is exactly double of single chain. In other words, hydrophilic-lyophilic balances of two chain models are the same. Two single chains are connected head-to-head to form a dimeric chain, without introducing extra head or tail beads as a spacer group. Premicellar, micellar, and shape/phase transition ranges of both models are investigated. To do this, lattice Monte Carlo simulation in canonical ensemble has been used. Results show that without introducing extra beads as spacer group, the CMC of (H3T32 as a dimeric surfactant is much lower than the CMC of its similar single chain, H3T3. For dimeric case of study, it is shown that bolaform aggregates are formed.

  3. Membrane separation of hydrocarbons

    Science.gov (United States)

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  4. Silicone antifoam performance enhancement by nonionic surfactants in potato medium.

    Science.gov (United States)

    Christiano, Steven P; Fey, Kenneth C

    2003-01-01

    The ability of a silicone antifoam to retard foaming in a liquor prepared from potatoes is enhanced by the addition of ethoxylated nonionic surfactants. The enhancement is non-linear for surfactant concentration, with all 12 surfactants tested possessing a concentration at which foam heights strongly diminish, referred to as the surfactant critical antifoaming concentration (SCAFC). SCAFCs vary between surfactants, with lower values indicating better mass efficiency of antifoaming enhancement. SCAFCs decrease with degree of ethoxylation and decrease with the hydrophilic-lipophilic balance for ethoxylated nonionic surfactants. Surfactant addition produces a mixed water-surface layer containing surfactant and surface-active components in the potato medium. Surface tension reduction does not correlate well with antifoam performance enhancement. A model is proposed where surfactant adsorption promotes desorption of surface-active potato medium components from the water surface. At the SCAFC, desorption is not complete, yet the rate of bubble rupture is sufficiently enhanced to provide excellent foam control.

  5. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01