WorldWideScience

Sample records for surfactant film organization

  1. A novel approach to enhancement of surface properties of CdO films by using surfactant: dextrin

    Science.gov (United States)

    Sahin, Bünyamin; Bayansal, Fatih; Yüksel, Mustafa

    2015-12-01

    We studied the effect of an organic surfactant, dextrin, concentration on structural, morphological and optical properties of nanostructured CdO films deposited on glass substrates by using an easy and low-cost SILAR method. Microstructures of the nanostructured CdO films were optimized by adjusting dextrin concentration. XRD, SEM and UV-Vis Spectroscopy were used to study phase structure, surface morphology and optical properties of CdO films. Furthermore, effects of dextrin concentration on the surface roughness characteristics of CdO samples were reported. The results showed that the presence of organic surfactant highly affected the physical properties of CdO nanomaterials.

  2. Surfactant induced flows in thin liquid films : an experimental study

    NARCIS (Netherlands)

    Sinz, D.K.N.

    2012-01-01

    The topic of the experimental work summarized in my thesis is the flow in thin liquid films induced by non-uniformly distributed surfactants. The flow dynamics as a consequence of the deposition of a droplet of an insoluble surfactant onto a thin liquid film covering a solid substrate where

  3. Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells.

    Science.gov (United States)

    Gärtner, Stefan; Clulow, Andrew J; Howard, Ian A; Gilbert, Elliot P; Burn, Paul L; Gentle, Ian R; Colsmann, Alexander

    2017-12-13

    Nanoparticle dispersions open up an ecofriendly route toward printable organic solar cells. They can be formed from a variety of organic semiconductors by using miniemulsions that employ surfactants to stabilize the nanoparticles in dispersion and to prevent aggregation. However, whenever surfactant-based nanoparticle dispersions have been used to fabricate solar cells, the reported performances remain moderate. In contrast, solar cells from nanoparticle dispersions formed by precipitation (without surfactants) can exhibit power conversion efficiencies close to those of state-of-the-art solar cells processed from blend solutions using chlorinated solvents. In this work, we use small-angle neutron scattering measurements and transient absorption spectroscopy to investigate why surfactant-free nanoparticles give rise to efficient organic solar cells. We show that surfactant-free nanoparticles comprise a uniform distribution of small semiconductor domains, similar to that of bulk-heterojunction films formed using traditional solvent processing. This observation differs from surfactant-based miniemulsion nanoparticles that typically exhibit core-shell structures. Hence, the surfactant-free nanoparticles already possess the optimum morphology for efficient energy conversion before they are assembled into the photoactive layer of a solar cell. This structural property underpins the superior performance of the solar cells containing surfactant-free nanoparticles and is an important design criterion for future nanoparticle inks.

  4. Antioxidant Microemulsion-based Ethylene Vinyl Acetate Film Containing Mangiferin and Surfactants

    Directory of Open Access Journals (Sweden)

    Boonnattakorn Rungkan

    2016-01-01

    Full Text Available Mangiferin, a natural antioxidant additive, was incorporated into an ethylene vinyl acetate copolymer (EVA containing 18% vinyl acetate (VA using the emulsion solvent evaporation technique. Sorbitan ester (Span®20 and polymeric surfactant (Pluronic®P−123 were compared. Mangiferin was finely dispersed in the suspension with the addition of surfactants studied. Span®20 was chosen as the surfactant for film preparation in the next step due to the dispersing and film forming properties. Effects of vinyl acetate (VA contents on the film properties were investigated. The EVA films with 12% VA had the highest tensile strength and oxygen barrier, followed by 18, 25 and 40% VA, respectively. Addition of Span®20 had only a slight effect on mechanical and barrier properties of the films, but markedly increased the release of mangiferin from the EVA matrices except in the 40% VA films. The maximum concentrations of mangiferin released from the 40, 25, 18 and 12% VA films into 95% ethanol were 83.30, 66.84, 51.77 and 34.57 μg·mL−11, respectively. The release concentrations from the 40 and 25% VA films was 2.4 and 1.9 folds of that from the 12% VA film, respectively. The antioxidant activity of the EVA films containing mangiferin and Span®20 was 80% radical-scavenging capacity (RSC for the 40 and 25% VA and 60% RSC for the 18 and 12% VA. The release of mangiferin from the EVA matrices may be controlled by appropriate selection of the surfactants and vinyl acetate contents.

  5. The Roll of NaPSS Surfactant on the Ceria Nanoparticles Embedding in Polypyrrole Films

    Directory of Open Access Journals (Sweden)

    Simona Popescu

    2016-01-01

    Full Text Available Cerium oxide nanoparticles (CeO2 NPs in crystalline form have been synthesized by a coprecipitation method. CeO2 nanoparticles were then embedded in polypyrrole (PPy films during the electropolymerization of pyrrole (Py on titanium substrate. The influence of poly(sodium 4-styrenesulfonate (NaPSS surfactant used during polymerization on the embedding of CeO2 NPs in polypyrrole films was investigated. The new films were characterized in terms of surface analysis, wettability, electrochemical behaviour, and antibacterial effect. The surface and electrochemical characterization revealed the role of surfactant on PPy doping process cerium oxide incorporation. In the presence of surfactant, CeO2 NPs are preferentially embedded in the polymeric film while, without surfactant, the ceria nanoparticles are quasiuniformly spread as agglomerates onto polymeric films. The antibacterial effect of studied PPy films was substantially improved in the presence of cerium oxide and depends by the polymerization conditions.

  6. Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.

    Science.gov (United States)

    Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi

    2009-08-04

    We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).

  7. Organized mesoporous silica films as templates for the elaboration of organized nanoparticle networks

    International Nuclear Information System (INIS)

    Gacoin, T; Besson, S; Boilot, J P

    2006-01-01

    Tremendous work achieved in the last 20 years on nanoparticle synthesis has allowed us to study many new physical properties that are found in the nanometre size range. New developments are now expected when considering assemblies of nanoparticles such as 2D or 3D organized arrays. These systems are indeed expected to exhibit original physical properties resulting from particle-particle interactions. Studies in this field are clearly dependent on the elaboration of materials with controlled particle size, organization and interparticle distance. This paper presents a strategy of elaboration that is based on the use of organized mesoporous silica films as templates. These films are made by sol-gel polymerization around surfactant assemblies and further elimination of the surfactant. This provides porous matrices with a pore organization that is the almost perfect replica of the initial micellar structure. The use of such films for the elaboration of organized arrays of nanoparticles is detailed in the case of CdS and Ag particles. The formation of particles inside the pores is achieved through impregnation with precursors that are allowed to diffuse inside the pores. This leads to particles with a size and a spatial arrangement that is directly related to the initial pore structure of the films. This process opens a wide range of investigations due to the relative ease of fabrication over large surfaces and the numerous possibilities offered by the elaboration of porous films with different pore sizes and organizations

  8. The influence of surfactant on mass transfer coefficients in evaporation of volatile organic compound from water basin

    Directory of Open Access Journals (Sweden)

    Bunyakan, C.

    2002-04-01

    Full Text Available Volatile organic compounds (VOCs have been found in wastewater of many chemical industries. Evaporation of VOCs from open water basin in waste treatment facilities causes air-pollution and has been regulated in many countries. Reduction or prevention of VOCs evaporation from open water basin is then necessary. The aim of this research was to investigate the influence of surface film generated by an insoluble surfactant on the mass transfer coefficient of VOCs evaporating from water. Hexadecanol and octadecanol were used as surfactant in this investigation with the amount in the range of 0 to 35 μg/cm2 and 0 to 25 μg/cm2, respectively. The VOCs used in this study were methanol, acetone, methyl ethyl ketone and toluene. The experimental results showed that the surfactant film can reduce the gas film and liquid coefficients by 56 and 80 %, respectively. The suitable amounts of the surfactant were 25 μg/cm2 for hexadecanol and 15 μg/cm2 for octadecanol. From this investigation we can conclude that covering the water surface with a film of hexadecanol or octadecanol could significantly reduce the VOCs evaporation rate.Finally, the empirical equations correlating gas film and liquid film coefficient to amount of surfactants were developed and verified against the experimental data. The predicted values of the overall mass transfer coefficients, obtained by using these empirical equations, were in good agreement with the measured values. Thus the empirical equations of mass transfer coefficients developed in this work can be used to predict the evaporation rates of VOCs from water surface covered by hexadecanol or octadecanol film.

  9. Nonionic Fluorinated Surfactant Removal from Mesoporous Film Using sc-CO2.

    Science.gov (United States)

    Chavez Panduro, Elvia A; Assaker, Karine; Beuvier, Thomas; Blin, Jean-Luc; Stébé, Marie-José; Konovalov, Oleg; Gibaud, Alain

    2017-01-25

    Surfactant templated silica thin films were self-assembled on solid substrates by dip-coating using a partially fluorinated surfactant R 8 F (EO) 9 as the liquid crystal template. The aim was 2-fold: first we checked which composition in the phase diagram was corresponding to a 2D rectangular highly ordered crystalline phase and second we exposed the films to sc-CO 2 to foster the removal of the surfactant. The films were characterized by in situ X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS) under CO 2 pressure from 0 to 100 bar at 34 °C. GISAXS patterns reveal the formation of a 2-D rectangular structure at a molar ratio R 8 F (EO) 9 /Si equal to 0.1. R 8 F (EO) 9 micelles have a cylindrical shape, which have a core/shell structure ordered in a hexagonal system. The core contains the R 8 F part and the shell is a mixture of (EO) 9 embedded in the silica matrix. We further evidence that the extraction of the template using supercritical carbon dioxide can be successfully achieved. This can be attributed to both the low solubility parameter of the surfactants and the fluorine and ethylene oxide CO 2 -philic groups. The initial 2D rectangular structure was well preserved after depressurization of the cell and removal of the surfactant. We attribute the very high stability of the rinsed film to the large value of the wall thickness relatively to the small pore size.

  10. Surfactant-mediated growth of ultrathin Ge and Si films and their interfaces: Interference-enhanced Raman study

    OpenAIRE

    Kanakaraju, S; Sood, AK; Mohan, S

    2000-01-01

    We report on the growth and interfaces of ultrathin polycrystalline Ge and Si films when they are grown on each other using ion beam sputter deposition with and without surfactant at different growth temperatures, studied using interference enhanced Raman spectroscopy. Ge films grown on Si without surfactant show Ge segregation at the interfaces forming an alloy of GexSi1-x as indicated by the Ge-Si Raman mode. However, use of Sb as surfactant strongly suppresses the intermixing. Also Si film...

  11. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Denayer, Jessica [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Bister, Geoffroy [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Simonis, Priscilla [Laboratory LPS, University of Namur, rue de bruxelles 61, 5000 Namur (Belgium); Colson, Pierre; Maho, Anthony [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Aubry, Philippe [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Vertruyen, Bénédicte [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Lardot, Véronique; Cambier, Francis [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Cloots, Rudi [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium)

    2014-12-01

    Highlights: • Surfactant-assisted USP: a novel and low cost process to obtain high quality nickel oxide films, with or without lithium dopant. • Increased uniformity and reduced light scattering thanks to the addition of a surfactant. • Improved electrochromic performance (coloration efficiency and contrast) for lithium-doped films by comparison with the undoped NiO film. - Abstract: Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  12. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants

    Directory of Open Access Journals (Sweden)

    Tae-Jung Ha

    2011-01-01

    Full Text Available Materials with nanosized and well-arranged pores have been researched actively in order to be applied to new technology fields. Especially, mesoporous material containing various pore structures is expected to have different pore structure. To form a mixed pore structure, ordered mesoporous silica films were prepared with a mixture of surfactant; Brij-76 and P-123 block copolymer. In mixed surfactant system, mixed pore structure was observed in the region of P-123/(Brij-76 + P-123 with about 50.0 wt.% while a single pore structure was observed in regions which have large difference in ratio between Brij-76 and P-123 through the X-ray diffraction analysis. Regardless of surfactant ratio, porosity was retained almost the same. It is expected that ordered mesoporous silica film with mixed pore structure can be one of the new materials which has distinctive properties.

  13. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films

    DEFF Research Database (Denmark)

    Ortiz, Elisa Parra; Perez-Gil, Jesús

    2015-01-01

    of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant...... biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension...

  14. Adsorption of anionic surfactant on porous and nonporous polyethylene terephthalate films

    International Nuclear Information System (INIS)

    Yamauchi, Yu.; Apel, P.Yu.

    2016-01-01

    We study the adsorption of anionic surfactant, sodium dodecyl diphenyloxide disulfonate (SDDD) on three types of polyethylene terephthalate (PET) substrates from aqueous solutions of SDDD of different concentrations. Neutral electrolyte (KCl) was added to the solutions to vary the ionic strength. Three types of substrates were used: 1) original PET film; 2) etched nonporous film, obtained from pristine film by chemical etching and bearing negative charge on the surface; 3) etched porous membranes, fabricated from pristine film by ion irradiation and subsequent chemical etching. The membranes have negative charge on the flat surface and on the inner pore walls. The comparison shows that the negative charge on the flat surface has weak effect on adsorption of the anionic surfactant, and the SDDD adsorption on the inner walls of pores is much weaker than on flat surface, even if the pore radius is significantly larger than the Debye length. This «exclusion» effect strongly depends on ionic strength of solution. [ru

  15. Dewetting acrylic polymer films with water/propylene carbonate/surfactant mixtures - implications for cultural heritage conservation.

    Science.gov (United States)

    Baglioni, M; Montis, C; Brandi, F; Guaragnone, T; Meazzini, I; Baglioni, P; Berti, D

    2017-09-13

    The removal of hydrophobic polymer films from surfaces is one of the top priorities of modern conservation science. Nanostructured fluids containing water, good solvents for polymers, either immiscible or partially miscible with water, and surfactants have been used in the last decade to achieve controlled removal. The dewetting of the polymer film is often an essential step to achieve efficient removal; however, the role of the surfactant throughout the process is yet to be fully understood. We report on the dewetting of a methacrylate/acrylate copolymer film induced by a ternary mixture of water, propylene carbonate (PC) and C 9-11 E 6 , a nonionic alcohol ethoxylate surfactant. The fluid microstructure was characterised through small angle X-ray scattering and the interactions between the film and water, water/PC and water/PC/C 9-11 E 6 , were monitored through confocal laser-scanning microscopy (CLSM) and analised both from a thermodynamic and a kinetic point of view. The presence of a surfactant is a prerequisite to induce dewetting of μm-thick films at room temperature, but it is not a thermodynamic driver. The amphiphile lowers the interfacial energy between the phases and favors the loss of adhesion of the polymer on glass, decreasing, in turn, the activation energy barrier, which can be overcome by the thermal fluctuations of polymer film stability, initiating the dewetting process.

  16. Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates.

    Science.gov (United States)

    Bhamla, M Saad; Balemans, Caroline; Fuller, Gerald G

    2015-07-01

    We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show that these surfactant layers extend the lifetime of the aqueous films. The films eventually "dewet" by the nucleation and growth of dry areas and the onset of this dewetting can be controlled by the surface rheology of the DPPC layer. We thus demonstrate that increasing the interfacial rheology of the DPPC layer leads to stable films that delay dewetting. We also show that dewetting can be exploited to controllably pattern the underlying curved SiHy substrates with DPPC layers. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Surfactant assisted electrodeposition of MnO2 thin films: Improved supercapacitive properties

    International Nuclear Information System (INIS)

    Dubal, D.P.; Kim, W.B.; Lokhande, C.D.

    2011-01-01

    Highlights: → Effect of Triton X-100 on physico-chemical properties of MnO 2 films. → High supercapacitance of 345 F g -1 . → Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO 2 thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO 2 films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO 2 in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO 2 film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO 2 thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO 2 films deposited in presence of Triton X-100 is 345 F g -1 .

  18. Effect of surfactants on the morphology of FeSe films fabricated from ...

    Indian Academy of Sciences (India)

    All the films were prepared via similar experimental conditions (temperature, flow rate, concentration, solvent system and reactor type) except the use of three different concentrations of two different surfactants i.e., triton and span. Seven thin films were characterized with PXRD, SEM, AFM, EDS and EDS mapping.

  19. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.

    Science.gov (United States)

    Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F

    2016-03-01

    The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Thickness-Dependent Surfactant Behavior in Trilayer Polymer Films

    Science.gov (United States)

    Sun, Yan; Shull, Kenneth; Wang, Jin

    2010-03-01

    The ability for thin liquid films to wet and remain thermodynamically stable on top of one another is a fundamental challenge in developing high quality paints, coatings, adhesives, and other industrial products. Since intermolecular interactions and interfacial energies dominate in the film thickness regime from tens to hundreds of nanometers, it is desirable to tune these long-range and short-range forces in a simple, controllable manner. Starting from an unstable model homopolymer bilayer (poly(styrene)/poly(4-vinylpyridine)), we demonstrate that sandwiching an additional homopolymer layer (poly(4-bromostyrene)) between the two layers can provide needed surfactancy. As the thickness of this center layer is increased, the full trilayer transitions from unstable (thin) to stable (moderate) to unstable (thick). We experimentally show using x-ray standing waves generated via total external reflection (TER-XSW), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) that this behavior can be directly attributed to the autophobic dewetting phenomenon, in which the surfactant layer is thin enough to remain stable but thick enough to shield the neighboring layers, highlighting a general approach to stabilizing multilayer systems.

  1. Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films

    International Nuclear Information System (INIS)

    Arasu, Velu; Reddy Dugasani, Sreekantha; Son, Junyoung; Gnapareddy, Bramaramba; Ha Park, Sung; Jeon, Sohee; Jeong, Jun-Ho

    2017-01-01

    Although the preparation of DNA thin films with well-defined thicknesses controlled by simple physical parameters is crucial for constructing efficient, stable, and reliable DNA-based optoelectronic devices and sensors, it has not been comprehensively studied yet. Here, we construct DNA and surfactant-modified DNA thin films by drop-casting and spin-coating techniques. The DNA thin films formed with different control parameters, such as drop-volume and spin-speed at given DNA concentrations, exhibit characteristic thickness, surface roughness, surface potential, and absorbance, which are measured by a field emission scanning electron microscope, a surface profilometer, an ellipsometer, an atomic force microscope, a Kelvin probe force microscope, and an UV–visible spectroscope. From the observations, we realized that thickness significantly affects the physical properties of DNA thin films. This comprehensive study of thickness-dependent characteristics of DNA and surfactant-modified DNA thin films provides insight into the choice of fabrication techniques in order for the DNA thin films to have desired physical characteristics in further applications, such as optoelectronic devices and sensors. (paper)

  2. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    Science.gov (United States)

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  3. Model Lung Surfactant Films: Why Composition Matters

    Energy Technology Data Exchange (ETDEWEB)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf; DeWolf, Christine E.

    2016-10-18

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

  4. Polymer/surfactant assisted self-assembly of nanoparticles into Langmuir–Blodgett films

    International Nuclear Information System (INIS)

    Alejo, T.; Merchán, M.D.; Velázquez, M.M.; Pérez-Hernández, J.A.

    2013-01-01

    We studied the ability of poly(octadecene-co-maleic anhydride) (PMAO) and a Gemini surfactant [C 18 H 37 (CH 3 ) 2 N + Br − –(CH 2 ) 2 –N + Br − (CH 3 ) 2 C 18 H 37 ] (18-2-18) to assist in the self-assembly process of CdSe quantum dots (QDs) at the air–water interface. Results show that, while QD agglomeration is generally inhibited by the addition of these components to the Langmuir monolayer of QDs, structure of the film transferred onto mica by the Langmuir–Blodgett method is strongly affected by the dewetting process. Nucleation-and-growth of holes and spinodal-like dewetting were respectively observed in the presence of either PMAO or 18-2-18. When PMAO/18-2-18 mixtures were used, both mechanisms were allowed; nevertheless, even in films prepared with mixtures of low polymer contents, characteristic morphology from the polymer dewetting route prevailed. Highlights: ► Effect of the composition on the LB films of QDs/polymer. ► Effect of the composition on the LB films of QDs/Gemini surfactant. ► Dewetting mechanisms

  5. Monitoring the thinning dynamics of soap films by phase shift interferometry. The case of perfluoropolyether surfactants.

    Science.gov (United States)

    Gambi, Cecilia M C; Vannoni, Maurizio; Sordini, Andrea; Molesini, Giuseppe

    2014-02-01

    An interferometric method to monitor the thinning process of vertical soap films from a water solution of surfactant materials is reported. Raw data maps of optical path difference introduced by the film are obtained by conventional phase shift interferometry. Off-line re-processing of such raw data taking into account the layered structure of soap films leads to an accurate measurement of the geometrical thickness. As an example of data acquisition and processing, the measuring chain is demonstrated on perfluoropolyether surfactants; the section profile of vertical films is monitored from drawing to black film state, and quantitative data on the dynamics of the thinning process are presented. The interferometric method proves effective to the task, and lends itself to further investigate the physical properties of soap films.

  6. Surfactant assisted electrodeposition of MnO{sub 2} thin films: Improved supercapacitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Dubal, D.P. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S.) (India); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, W.B. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (M.S.) (India)

    2011-10-13

    Highlights: > Effect of Triton X-100 on physico-chemical properties of MnO{sub 2} films. > High supercapacitance of 345 F g{sup -1}. > Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO{sub 2} thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO{sub 2} films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO{sub 2} in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO{sub 2} film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO{sub 2} thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO{sub 2} films deposited in presence of Triton X-100 is 345 F g{sup -1}.

  7. Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates

    NARCIS (Netherlands)

    Bhamla, M.S.; Balemans, C.; Fuller, G.G.

    2015-01-01

    We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show

  8. Polymer/surfactant assisted self-assembly of nanoparticles into Langmuir–Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T.; Merchán, M.D. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos s/n, E-37008 Salamanca (Spain); Velázquez, M.M., E-mail: mvsal@usal.es [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos s/n, E-37008 Salamanca (Spain); Pérez-Hernández, J.A. [Centro de Láseres Pulsados Ultraintensos (CLPU), E-37008 Salamanca (Spain)

    2013-02-15

    We studied the ability of poly(octadecene-co-maleic anhydride) (PMAO) and a Gemini surfactant [C{sub 18}H{sub 37} (CH{sub 3}){sub 2}N{sup +}Br{sup −}–(CH{sub 2}){sub 2}–N{sup +}Br{sup −}(CH{sub 3}){sub 2} C{sub 18}H{sub 37}] (18-2-18) to assist in the self-assembly process of CdSe quantum dots (QDs) at the air–water interface. Results show that, while QD agglomeration is generally inhibited by the addition of these components to the Langmuir monolayer of QDs, structure of the film transferred onto mica by the Langmuir–Blodgett method is strongly affected by the dewetting process. Nucleation-and-growth of holes and spinodal-like dewetting were respectively observed in the presence of either PMAO or 18-2-18. When PMAO/18-2-18 mixtures were used, both mechanisms were allowed; nevertheless, even in films prepared with mixtures of low polymer contents, characteristic morphology from the polymer dewetting route prevailed. Highlights: ► Effect of the composition on the LB films of QDs/polymer. ► Effect of the composition on the LB films of QDs/Gemini surfactant. ► Dewetting mechanisms.

  9. Emulsion stability and properties of fish gelatin-based films as affected by palm oil and surfactants.

    Science.gov (United States)

    Nilsuwan, Krisana; Benjakul, Soottawat; Prodpran, Thummanoon

    2016-05-01

    Gelatin films exhibit the poor water vapour barrier properties. The use of palm oil, which is abundant and available in Thailand, can be a means to lower water vapour migration. To disperse oil in film-forming dispersion (FFD), a surfactant along with appropriate homogenization is required. The study aimed to investigate the influence of palm oil level and surfactants in the absence or presence of glycerol on characteristics of FFD and resulting gelatin films. Similar oil droplet sizes, both d32 and d43 values, of FFD containing soy lecithin were observed, regardless of palm oil level used (P > 0.05). FFD with Tween-20 had larger droplet size as the levels of oil increased (P palm oil level increased (P 0.05). FFD containing 500 or 750 g kg(-1) palm oil using soy lecithin as a surfactant in the presence of 300 g kg(-1) glycerol had the enhanced homogeneity and stability of oil droplets. The resulting gelatin film had the improved water vapour barrier properties. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering.

    Science.gov (United States)

    Yan, Ci; Sagisaka, Masanobu; James, Craig; Rogers, Sarah; Alexander, Shirin; Eastoe, Julian

    2014-12-01

    The formation, stability and structural properties of normal liquid phase microemulsions, stabilized by hydrocarbon surfactants, comprising water and hydrocarbon oils can be interpreted in terms of the film bending rigidity (energy) model. Here, this model is tested for unusual water-in-CO2 (w/c) microemulsions, formed at high pressure with supercritical CO2 (sc-CO2) as a solvent and fluorinated surfactants as stabilizers. Hence, it is possible to explore the generality of this model for other types of microemulsions. High Pressure Small-Angle Neutron Scattering (HP-SANS) has been used to study w/c microemulsions, using contrast variation to highlight scattering from the stabilizing fluorinated surfactant films: these data show clear evidence for spherical core-shell structures for the microemulsion droplets. The results extend understanding of w/c microemulsions since previous SANS studies are based only on scattering from water core droplets. Here, detailed structural parameters for the surfactant films, such as thickness and film bending energy, have been extracted from the core-shell SANS profiles revealed by controlled contrast variation. Furthermore, at reduced CO2 densities (∼0.7gcm(-3)), elongated cylindrical droplet structures have been observed, which are uncommon for CO2 microemulsions/emulsions. The implications of the presence of cylindrical micelles and droplets for applications of CO2, and viscosity enhancements are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Surfactant-Mediated Growth Revisited

    International Nuclear Information System (INIS)

    Meyerheim, H. L.; Sander, D.; Popescu, R.; Pan, W.; Kirschner, J.; Popa, I.

    2007-01-01

    The x-ray structure analysis of the oxygen-surfactant-mediated growth of Ni on Cu(001) identifies up to 0.15 monolayers of oxygen in subsurface octahedral sites. This questions the validity of the general view that surfactant oxygen floats on top of the growing Ni film. Rather, the surfactant action is ascribed to an oxygen-enriched zone extending over the two topmost layers. Surface stress measurements support this finding. Our results have important implications for the microscopic understanding of surfactant-mediated growth and the change of the magnetic anisotropy of the Ni films

  12. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xianglin [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074 (China); Toh, Yong Siang [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Zhao, Jun [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Nie, Lina [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ye, Kaiqi; Wang, Yue [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Li, Dongsheng [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA){sub 3}[Co{sub 3}(BTC){sub 3}] (NTU-Z33) and (HTEA)[Co{sub 3}(HBTC){sub 2}(BTC)] (NTU-Z34) (H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co{sub 3}(COO){sub 9}] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) have been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.

  13. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    International Nuclear Information System (INIS)

    Yu, Xianglin; Toh, Yong Siang; Zhao, Jun; Nie, Lina; Ye, Kaiqi; Wang, Yue; Li, Dongsheng; Zhang, Qichun

    2015-01-01

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA)_3[Co_3(BTC)_3] (NTU-Z33) and (HTEA)[Co_3(HBTC)_2(BTC)] (NTU-Z34) (H_3BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co_3(COO)_9] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) have been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.

  14. Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Khan, Malik Dilshad [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Akhtar, Javeed [Department of Physics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2014-09-30

    This article presents the synthesis and characterization (multinuclear nuclear magnetic resonance, Fourier transform infrared spectroscopy, carbon–hydrogen–nitrogen–sulfur analyzer, atomic absorption spectrometry and thermogravimetric analysis) of a single source organometallic precursor namely 1-acetyl-3-(4-ferrocenylphenyl)selenourea for the fabrication of iron selenide (FeSe) films on glass substrates using aerosol assisted chemical vapor deposition (AACVD). The changes in the morphologies of the films have been monitored by the use of two different surfactants i.e. triton X-100 and tetraoctylphosphonium bromide during AACVD. The role of surfactant has been evaluated by examining the interaction of the surfactants with the precursor by using UV–vis spectroscopy and cyclic voltammetry. The fabricated FeSe films have been characterized with powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. - Highlights: • Ferrocene incorporated selenourea (FIS) has been synthesized and characterized. • FeSe thin films have been fabricated from FIS. • Mechanism of film growth was studied with cyclic voltammetry and UV–vis spectroscopy.

  15. Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K., E-mail: sanjeevlrs732000@yahoo.co.in [Department of Information and Communication, Cheju Halla College, Jeju City 690 708 (Korea, Republic of); Inamdar, A.I.; Im, Hyunsik [Department of Semiconductor Science, Dongguk University, Seoul 100 715 (Korea, Republic of); Kim, B.G. [Department of Information and Communication, Cheju Halla College, Jeju City 690 708 (Korea, Republic of); Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2011-02-03

    Research highlights: > Nano-crystalline zinc oxide thin films were electrosynthesized from an aqueous zinc acetate [Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O] solution onto FTO coated conducting glass substrates using two different electrochemical routes, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) or SDS (sodium dodecyl sulfate). > The reproducibility of the catalytic activity of the SDS and PVA surfactants in the modification of the morphologies was observed. > Vertically aligned nest-like and compact structures were observed from the SDS and PVA mediated films, respectively, while the grain size in the ZnO thin films without an organic surfactant was observed to be {approx}150 nm. > The dye sensitized ZnO electrodes displayed excellent properties in the conversion process from light to electricity. The efficiencies of the surfactant mediated nanocrystalline ZnO thin films, viz. ZnO:SDS and ZnO:PVA, sensitized with ruthenium-II (N3) dye were observed to be 0.49% and 0.27%, respectively. - Abstract: Nano-crystalline zinc oxide thin films were electrosynthesized with an aqueous zinc acetate [Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O] solution on to FTO coated glass substrates. Two different electrochemical baths were used, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) and SDS (sodium dodecyl sulfate). The organic surfactants played an important role in modifying the surface morphology, which influenced the size of the crystallites and dye-sensitized solar cell (DSSC) properties. The vertically aligned thin and compact hexagonal crystallites were observed with SDS mediated films, while the grain size in the films without an organic surfactant was observed to be {approx}150 nm. The conversion efficiencies of the ZnO:SDS:Dye and ZnO:PVA:Dye thin films were observed to be 0.49% and 0.27%, respectively.

  16. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  17. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    Science.gov (United States)

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Foam flow and liquid films motion: role of the surfactants properties

    Science.gov (United States)

    Cantat, Isabelle

    2011-11-01

    Liquid foams absorb energy in a much more efficient way than each of its constituents, taken separately. However, the local process at the origin of the energy dissipation is not entirely elucidated yet, and several models may apply, thus making worth local studies on simpler systems. We investigate the motion through a wet tube of transverse soap films, or lamellae, combining local thickness and velocity measurements in the wetting film. For foaming solution with a high dilatational surface modulus, we reveal a zone of several centimeters in length, the dynamic wetting film, which is significantly influenced by a moving lamella. The dependence of this influence length on lamella velocity and wetting film thickness provides an accurate discrimination among several possible surfactants models. In collaboration with B. Dollet.

  19. The Biophysical Function of Pulmonary Surfactant

    OpenAIRE

    Rugonyi, Sandra; Biswas, Samares C.; Hall, Stephen B.

    2008-01-01

    Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a three-dimensional bulk phase....

  20. Effect of an insoluble surfactant on the dynamics of a thin liquid film flowing over a non-uniformly heated substrate.

    Science.gov (United States)

    Srivastava, Ashna; Tiwari, Naveen

    2018-05-07

    The stability analysis of a gravity-driven thin liquid film with an insoluble surfactant flowing over a surface with embedded, regularly spaced heaters is investigated. At the leading edge of a heater, the presence of a temperature gradient induces an opposing Marangoni stress at the interface leading to the formation of a capillary ridge. This ridge has been shown to be susceptible to thermocapillary (oscillating in the flow direction) and rivulet (spanwise periodic pattern) instabilities. The presence of an insoluble surfactant is shown to have a stabilizing effect on this system. The governing equations for the evolution of the film thickness and surfactant concentration are obtained within the lubrication approximation. The coupled two-dimensional base solutions for the film thickness and surfactant concentration show that there is no significant change in the height of the capillary ridge at the subsequent heaters downstream. The height of the capillary ridge is reduced by the presence of the surfactant. For very small Peclet number, the presence of multiple heaters has almost no significant effect on the film stability as compared to a single heater and similar trends are observed between the two configurations in the presence of the surfactant as for the case of a clean interface. However, for large Peclet number, the effect was observed on both types of instabilities for certain heater configurations. The Biot number is shown to have a strong effect on the stability results wherein the dominant mode of instability is altered (from rivulet to thermocapillary instability) for a passive or no surfactant case with increase in the Biot number. For an active surfactant thermocapillary instability is found to remain the dominant mode of instability for all the values of the Biot number. It is shown that increasing the number of heaters beyond a couple does not further affect the stability results.

  1. A "Tandem" Strategy to Fabricate Flexible Graphene/Polypyrrole Nanofiber Film Using the Surfactant-Exfoliated Graphene for Supercapacitors.

    Science.gov (United States)

    Shu, Kewei; Chao, Yunfeng; Chou, Shulei; Wang, Caiyun; Zheng, Tian; Gambhir, Sanjeev; Wallace, Gordon G

    2018-06-19

    The surfactant-assisted liquid-phase exfoliation of expanded graphite can produce graphene sheets in large quantities with minimal defects. However, it is difficult to completely remove the surfactant from the final product, thus affecting the electrochemical properties of the produced graphene. In this article, a novel approach to fabricate flexible graphene/polypyrrole film was developed: using surfactant cetyltrimethylammonium bromide as a template for growth of polypyrrole nanofibers (PPyNFs) instead of removal after the exfoliation process; followed by a simple filtration method. The introduction of PPyNF not only increases the electrochemical performance, but also ensures flexibility. This composite film electrode offers a capacitance up to 161 F g -1 along with a capacitance retention rate of over 80% after 5000 cycles.

  2. Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Junkuo [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ye, Kaiqi [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (China); He, Mi [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Xiong, Wei-Wei; Cao, Wenfang; Lee, Zhi Yi [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Yue [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (China); Wu, Tom [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Huo, Fengwei [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Xiaogang [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore); Institute of Materials Research Engineering, Agency for Science, Technology and Research, Singapore 117602 (Singapore); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2013-10-15

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal–organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D) MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η{sup 1} mode to tetra-donor coordination µ{sub 3}-η{sup 1}:η{sup 2}:η{sup 1} mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (T{sub c}) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. - Graphical abstract: Surfactants have been used as reaction media to grow MOF single crystals for the first time. Eight new two-dimensional or three-dimensional MOFs were successfully synthesized in surfactant polyethylene glycol-200 (PEG-200). Coordination modes of carboxylates up to eight were founded. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. Display Omitted - Highlights: • Surfactant-thermal synthesis of crystalline metal–organic frameworks. • Eight new 2-D or 3-D metal–organic frameworks

  3. Surfactant-assisted synthesis of Ag nanostructures and their self-assembled films on copper and aluminum substrate

    International Nuclear Information System (INIS)

    Zhuo Yujiang; Sun Wendong; Dong Lihong; Chu Ying

    2011-01-01

    In this paper, silver nanostructures with controlled morphologies, such as plates, rods, belts, sheets and their self-assembled films have been prepared on copper and aluminum substrates by a surfactant-assisted colloidal chemical method. The X-ray powder diffraction (XRD) and the selected area electron diffraction (SAED) patterns indicated that the Ag nanostructures grew on the substrates with cubic symmetry and single-crystalline in nature. An oriented attachment with surfactant-assisted mechanism and a cooperative effect of surfactant and chloride ion on the morphology of Ag nanostructures were investigated systematically and synthetically.

  4. Surfactant properties of human meibomian lipids.

    Science.gov (United States)

    Mudgil, Poonam; Millar, Thomas J

    2011-03-25

    Human meibomian lipids are the major part of the lipid layer of the tear film. Their surfactant properties enable their spread across the aqueous layer and help maintain a stable tear film. The purpose of this study was to investigate surfactant properties of human meibomian lipids in vitro and to determine effects of different physical conditions such as temperature and increased osmolarity, such as occur in dry eye, on these properties. Human meibomian lipids were spread on an artificial tear solution in a Langmuir trough. The lipid films were compressed and expanded to record the surface pressure-area (Π-A) isocycles. The isocycles were recorded under different physical conditions such as high pressure, increasing concentration and size of divalent cations, increasing osmolarity, and varying temperature. Π-A isocycles of meibomian lipids showed that they form liquid films that are compressible and multilayered. The isocycles were unaffected by increasing concentration or size of divalent cations and increasing osmolarity in the subphase. Temperature had a marked effect on the lipids. Increase in temperature caused lipid films to become fluid, an expected feature, but decrease in temperature unexpectedly caused expansion of lipids and an increase in pressure suggesting enhanced surfactant properties. Human meibomian lipids form highly compressible, non-collapsible, multilayered liquid films. These lipids have surfactants that allow them to spread across an aqueous subphase. Their surfactant properties are unaffected by increasing divalent cations or hyperosmolarity but are sensitive to temperature. Cooling of meibomian lipids enhances their surfactant properties.

  5. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    International Nuclear Information System (INIS)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-01-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch–glycerol and potato starch–glycerol–surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films. The starch was irradiated with a dose of 30 kGy. The films were prepared by casting from solutions with addition of 0, 20 and 30 wt% of glycerol. Two endotherms attributed to glass transitions were observed in water or glycerol plasticised samples, the first one shifting to higher temperature after irradiation. A similar shift was observed after irradiation of films prepared from starch–sodium laurate and starch–sodium palmitate systems, while a decrease in glass transition temperature was observed in the case of starch–cetyltrimethylammonium bromide films. Small differences in the content of the volatile fraction reached after the appropriate conditioning had no impact on the direction of temperature shift of Tg observed after irradiation. - Highlights: • The films were prepared basing starch, surfactant and glycerol. • Two glass transitions were observed showing an existence of two phase system. • The first Tg of the starch–CTAB films shifts after irradiation to lower temperature. • In all the other cases it shifts after irradiation to higher temperature. • Differences in volatile fractions content are not important for the temperature shift

  6. The influence of surfactant on mass transfer coefficients in evaporation of volatile organic compound from water basin

    OpenAIRE

    Bunyakan, C.; Malakarn, S.; Tongurai, C.

    2002-01-01

    Volatile organic compounds (VOCs) have been found in wastewater of many chemical industries. Evaporation of VOCs from open water basin in waste treatment facilities causes air-pollution and has been regulated in many countries. Reduction or prevention of VOCs evaporation from open water basin is then necessary. The aim of this research was to investigate the influence of surface film generated by an insoluble surfactant on the mass transfer coefficient of VOCs evaporating from water. Hexadeca...

  7. Adsorption of quantum dots onto polymer and Gemini surfactant films: a quartz crystal microbalance study.

    Science.gov (United States)

    Alejo, T; Merchán, M D; Velázquez, M M

    2014-08-26

    We used quartz crystal microbalance with dissipation to study the mechanical properties, the kinetics of adsorption, and the amount of CdSe quantum dots (QDs) adsorbed onto a SiO2 sensor, referred as bare sensor, onto the sensor modified with a film of the polymer poly(maleic anhydride-alt-1-octadecene), PMAO, or with a film of the Gemini surfactant ethyl-bis(dimethyl octadecyl ammonium bromide), abbreviated as 18-2-18. Results showed that when the sensor is coated with polymer or surfactant molecules, the coverage increases compared with that obtained for the bare sensor. On the other hand, rheological properties and kinetics of adsorption of QDs are driven by QD nanoparticles. Thus, the QD films present elastic behavior, and the elasticity values are independent of the molecule used as coating and similar to the elasticity value obtained for QDs films on the bare sensor. The QD adsorption is a two-step mechanism in which the fastest process is attributed to the QD adsorption onto the solid substrate and the slowest one is ascribed to rearrangement movements of the nanoparticles adsorbed at the surface.

  8. QDs Supported on Langmuir-Blodgett Films of Polymers and Gemini Surfactant

    Directory of Open Access Journals (Sweden)

    T. Alejo

    2013-01-01

    Full Text Available Different LB films of poly(octadecene-co-maleic anhydride, PMAO, poly(styrene-co-maleic anhydride partial 2 butoxy ethyl ester cumene terminated, PS-MA-BEE, and Gemini surfactant ethyl-bis(dimethyl octadecylammonium bromide, 18-2-18, have been used to study the effect of the substrate coating on the surface self-assembly of CdSe quantum dots (QDs. Results show that all the “coating molecules” avoid the 3D aggregation of QDs observed when these nanoparticles are directly deposited on mica. Different morphologies were observed depending on the molecules used as coatings, and this was related to the surface properties, such as wetting ability, and the morphology of the coating LB films.

  9. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    International Nuclear Information System (INIS)

    Khun Khun, Kamalpreet; Mahajan, Aman; Bedi, R.K.

    2011-01-01

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  10. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Khun Khun, Kamalpreet [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Mahajan, Aman, E-mail: dramanmahajan@yahoo.co.in [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Bedi, R.K. [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2011-01-15

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  11. Role of surfactant on thermoelectric behaviors of organic-inorganic composites

    Science.gov (United States)

    Shin, Sunmi; Roh, Jong Wook; Kim, Hyun-Sik; Chen, Renkun

    2018-05-01

    Hybrid organic/inorganic composites have recently attracted intensive interests as a promising candidate for flexible thermoelectric (TE) devices using inherently soft polymers as well as for increasing the degree of freedom to control TE properties. Experimentally, however, enhanced TE performance in hybrid composites has not been commonly observed, primarily due to inhomogeneous mixing between the inorganic and organic components which leads to limited electrical conduction in the less conductive component and consequently a low power factor in the composites compared to their single-component counterparts. In this study, we investigated the effects of different surfactants on the uniformity of mixing and the TE behaviors of the hybrid composites consisting of Bi0.5Sb1.5Te3 (BST) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). We found that compared to dimethyl sulfoxide, which is the most widely used surfactant, Triton X-100 (TX-100) can lead to homogenous dispersion of BST in PEDOT:PSS. By systematically studying the effects of the surfactant concentration, we can attribute the better mixing capability of TX-100 to its non-ionic property, which results in homogenous mixing with a lower critical micelle concentration. Consequently, we observed simultaneous increase in electrical conductivity and Seebeck coefficient in the BST/PEDOT:PSS composites with the TX-100 surfactant.

  12. The critical mission of glycine as a surfactant in the improvement of structural, morphological and optoelectronic features of CdO films

    Science.gov (United States)

    Aydin, Raşit

    2018-05-01

    The main aim of this study is to examine the effect of glycine as a surfactant agent on the physical properties of CdO films. For this purpose nanostructured CdO films with and without different glycine aggregations (0.5, 1.0 and 2.0 M %) were synthesized on glass bases by SILAR technique. The morphological, structural and optical characteristics of these films have been investigated using MM, SEM, XRD and UV-visible spectroscopy respectively. The MM results showed homogeneous and smooth all films. The SEM graphs showed that by using different glycine concentrations as surfactant, the particle thickness decreased from 366.25 nm to 241.10 nm. XRD results showed that the all CdO films with glycine display a (111) and (200) preferential orientations similar to that of the CdO film without glycine. The direct band gap energy of these films is found to increase from 2.05 to 2.35 eV with increasing the glycine concentration in the bath solution.

  13. Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments.

    Science.gov (United States)

    Court, Richard W; Sims, Mark R; Cullen, David C; Sephton, Mark A

    2014-09-01

    Life-detection instruments on future Mars missions may use surfactant solutions to extract organic matter from samples of martian rocks. The thermal and radiation environments of space and Mars are capable of degrading these solutions, thereby reducing their ability to dissolve organic species. Successful extraction and detection of biosignatures on Mars requires an understanding of how degradation in extraterrestrial environments can affect surfactant performance. We exposed solutions of the surfactants polysorbate 80 (PS80), Zonyl FS-300, and poly[dimethylsiloxane-co-[3-(2-(2-hydroxyethoxy)ethoxy)propyl]methylsiloxane] (PDMSHEPMS) to elevated radiation and heat levels, combined with prolonged storage. Degradation was investigated by measuring changes in pH and electrical conductivity and by using the degraded solutions to extract a suite of organic compounds spiked onto grains of the martian soil simulant JSC Mars-1. Results indicate that the proton fluences expected during a mission to Mars do not cause significant degradation of surfactant compounds. Solutions of PS80 or PDMSHEPMS stored at -20 °C are able to extract the spiked standards with acceptable recovery efficiencies. Extraction efficiencies for spiked standards decrease progressively with increasing temperature, and prolonged storage at 60°C renders the surfactant solutions ineffective. Neither the presence of ascorbic acid nor the choice of solvent unequivocally alters the efficiency of extraction of the spiked standards. Since degradation of polysorbates has the potential to produce organic compounds that could be mistaken for indigenous martian organic matter, the polysiloxane PDMSHEPMS may be a superior choice of surfactant for the exploration of Mars.

  14. A surfactant-thermal method to prepare four new three-dimensional heterometal-organic frameworks

    KAUST Repository

    Gao, Junkuo; He, Mi; Lee, Zhiyi; Cao, Wenfang; Xiong, Weiwei; Li, Yongxin; Ganguly, Rakesh; Wu, Tao; Zhang, Qichun

    2013-01-01

    Here, we report on a surfactant-thermal method to prepare four new 3-D crystalline heterometal-organic frameworks (HMOFs). The results indicate that our new strategy for growing crystalline materials in surfactant media has great potential

  15. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films

    DEFF Research Database (Denmark)

    Plasencia, Inés; Keough, Kevin M W; Perez-Gil, Jesus

    2005-01-01

    Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is ins......Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP...... or anionic phospholipid monolayers. The peptide expands the pi-A compression isotherms of interfacial phospholipid/peptide films, and perturbs the lipid packing of phospholipid films during compression-driven liquid-expanded to liquid-condensed lateral transitions, as observed by epifluorescence microscopy....... These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been...

  16. A PIV Study of Drop-interface Coalescence with Surfactants

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Dong, Teng; Angeli, Panagiota

    2017-11-01

    In this work, the coalescence of a drop with an aqueous-organic interface was studied by Particle Image Velocimetry (PIV). The effect of surfactants on the drop surface evolution, the vorticity field and the kinetic energy distribution in the drop during coalescence were investigated. The coalescence took place in an acrylic rectangular box with 79% glycerol solution at the bottom and Exxsol D80 oil above. The glycerol solution drop was generated through a nozzle fixed at 2cm above the aqueous/oil interface and was seeded with Rhodamine particles. The whole process was captured by a high-speed camera. Different mass ratios of non-ionic surfactant Span80 to oil were studied. The increase of surfactant concentration promoted deformation of the interface before the rupture of the trapped oil film. At the early stages after film rupture, two counter-rotating vortices appeared at the bottom of the drop which then travelled to the upper part. The propagation rates, as well as the intensities of the vortices decreased at high surfactant concentrations. At early stages, the kinetic energy was mainly distributed near the bottom part of the droplet, while at later stages it was distributed near the upper part of the droplet. Programme Grant MEMPHIS, Chinese Scholarship Council (CSC).

  17. Spectrophotometric studies of marine surfactants in the southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Violetta Drozdowska

    2015-04-01

    Full Text Available It is well known that surfactants in the southern Baltic Sea constitute the organic matter from riverine waters discharges as well as the secondary degradation products of marine phytoplankton excretion. They reach the surface microlayer by the upwellings and turbulent motions of water and in the membranes of the vesicles as well as from the atmosphere. To assess concentration and spatial distribution of marine surfactants in the southern Baltic Sea, the steady-state spectrophotometric and spectrofluorometric measurements of water samples taken from a surface film and a depth of 0.5 m were carried out. Water samples were collected during windless days of the cruise of r/v ‘Oceania’ in November 2012, from the open and the coastal waters having regard to the vicinity of the Vistula and Łeba mouths. In the present paper, fractions of dissolved organic matter having chromophores (CDOM or fluorophores (FDOM are recognized through their specific spectroscopic behavior, i.e., steady-state absorption, fluorescence excitation and fluorescence spectra. The steady-state spectroscopic measurements revealed the CDOM and FDOM molecules characteristic to both the land and marine origin. Moreover, the concentration and spatial distribution of marine surfactants significantly depend on the distance from the river mouth. Finally, higher values of absorbance and fluorescence intensity observed in a surface film in comparison to these values in a depth of 0.5 m clearly suggest the higher concentration of organic matter in a marine film. On the other hand, our results revealed that a surface microlayer is composed of the same CDOM and FDOM as bulk water.

  18. Manipulation and control of instabilities for surfactant-laden liquid film flowing down an inclined plane using a deformable solid layer

    Science.gov (United States)

    Tomar, Dharmendra S.; Sharma, Gaurav

    2018-01-01

    We analyzed the linear stability of surfactant-laden liquid film with a free surface flowing down an inclined plane under the action of gravity when the inclined plane is coated with a deformable solid layer. For a flow past a rigid incline and in the presence of inertia, the gas-liquid (GL) interface is prone to the free surface instability and the presence of surfactant is known to stabilize the free surface mode when the Marangoni number increases above a critical value. The rigid surface configuration also admits a surfactant induced Marangoni mode which remains stable for film flows with a free surface. This Marangoni mode was observed to become unstable for a surfactant covered film flow past a flexible inclined plane in a creeping flow limit when the wall is made sufficiently deformable. In view of these observations, we investigate the following two aspects. First, what is the effect of inertia on Marangoni mode instability induced by wall deformability? Second, and more importantly, whether it is possible to use a deformable solid coating to obtain stable flow for the surfactant covered film for cases when the Marangoni number is below the critical value required for stabilization of free surface instability. In order to explore the first question, we continued the growth rates for the Marangoni mode from the creeping flow limit to finite Reynolds numbers (Re) and observed that while the increase in Reynolds number has a small stabilizing effect on growth rates, the Marangoni mode still remains unstable for finite Reynolds numbers as long as the wall is sufficiently deformable. The Marangoni mode remains the dominant mode for zero and small Reynolds numbers until the GL mode also becomes unstable with the increase in Re. Thus, for a given set of parameters and beyond a critical Re, there is an exchange of dominant mode of instability from the Marangoni to free surface GL mode. With respect to the second important aspect, our results clearly demonstrate

  19. Thickness-Dependent Order-to-Order Transitions of Bolaform-like Giant Surfactant in Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Hao; Yue, Kan; Wang, Jing; Dong, Xue-Hui; Xia, Yanfeng; Jiang, Zhang [X-ray; Thomas, Edwin L. [Department; Cheng, Stephen Z. D.

    2017-09-07

    Controlling self-assembled nanostructures in thin films allows the bottom-up fabrication of ordered nanoscale patterns. Here we report the unique thickness-dependent phase behavior in thin films of a bolaform-like giant surfactant, which consists of butyl- and hydroxyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS and DPOSS) cages telechelically located at the chain ends of a polystyrene (PS) chain with 28 repeating monomers on average. In the bulk, BPOSS-PS28-DPOSS forms a double gyroid (DG) phase. Both grazing incidence small angle X-ray scattering and transmission electron microscopy techniques are combined to elucidate the thin film structures. Interestingly, films with thicknesses thinner than 200 nm exhibit an irreversible phase transition from hexagonal perforated layer (HPL) to compressed hexagonally packed cylinders (c-HEX) at 130 °C, while films with thickness larger than 200 nm show an irreversible transition from HPL to DG at 200 °C. The thickness-controlled transition pathway suggests possibilities to obtain diverse patterns via thin film self-assembly.

  20. Fluorescent visualization of a spreading surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2010-07-15

    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  1. Oxygen surfactant-assisted growth and dewetting of Co films on O-3 × 3/W(111)

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Kun-Jen; Tsai, Cheng-Jui; Lin, Wen-Chin, E-mail: wclin@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Wu, Shih-Yu; Chou, Hsin-Lei; Kuo, Chien-Cheng, E-mail: cckuo@faculty.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Bisio, Francesco [CNR-SPIN, C.so Perrone 24, I-16152 Genova (Italy)

    2013-11-28

    Following the cyclic heating in oxygen and annealing, an oxygen-induced 3 × 3 reconstruction was found on the W(111) surface. The growth, crystalline structure, thermal stability, and magnetism of Co ultrathin films deposited on the O-3 × 3/W(111) surface were investigated. The Auger signal of the oxygen was always observable and nearly invariant after either Co deposition or annealing, indicating the role of the surfactant played by oxygen. Auger electron spectroscopy and scanning tunneling microscopy measurements revealed the 2-dimensional growth of Co on O-3 × 3/W(111). Following the annealing procedures, the surfactant oxygen was always observed to float on the film surface while the Co film transformed to 3-dimensional islands with a wetting layer. In contrast to the thermodynamically stable wetting layer of 1 physical monolayer (PML) Co on clean W(111) between 700 and 1000 K, the oxygen surfactant led to a reduction of the wetting layer to ≈1/3 PML after thermal annealing. The 6 and 9.6 PML Co/O-3 × 3/W(111) revealed a stable in-plane magnetic anisotropy. A 6-fold symmetry corresponding to the crystalline structure was observed in the in-plane angle-dependent magneto-optical Kerr effect measurement.

  2. Oxygen surfactant-assisted growth and dewetting of Co films on O-3 × 3/W(111)

    International Nuclear Information System (INIS)

    Hsueh, Kun-Jen; Tsai, Cheng-Jui; Lin, Wen-Chin; Wu, Shih-Yu; Chou, Hsin-Lei; Kuo, Chien-Cheng; Bisio, Francesco

    2013-01-01

    Following the cyclic heating in oxygen and annealing, an oxygen-induced 3 × 3 reconstruction was found on the W(111) surface. The growth, crystalline structure, thermal stability, and magnetism of Co ultrathin films deposited on the O-3 × 3/W(111) surface were investigated. The Auger signal of the oxygen was always observable and nearly invariant after either Co deposition or annealing, indicating the role of the surfactant played by oxygen. Auger electron spectroscopy and scanning tunneling microscopy measurements revealed the 2-dimensional growth of Co on O-3 × 3/W(111). Following the annealing procedures, the surfactant oxygen was always observed to float on the film surface while the Co film transformed to 3-dimensional islands with a wetting layer. In contrast to the thermodynamically stable wetting layer of 1 physical monolayer (PML) Co on clean W(111) between 700 and 1000 K, the oxygen surfactant led to a reduction of the wetting layer to ≈1/3 PML after thermal annealing. The 6 and 9.6 PML Co/O-3 × 3/W(111) revealed a stable in-plane magnetic anisotropy. A 6-fold symmetry corresponding to the crystalline structure was observed in the in-plane angle-dependent magneto-optical Kerr effect measurement

  3. The Effect Of Organic Surfactants On The Properties Of Common Hygroscopic Particles: Effective Densities, Reactivity And Water Evaporation Of Surfactant Coated Particles

    Science.gov (United States)

    Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.

    2006-12-01

    Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a

  4. A surfactant-thermal method to prepare four new three-dimensional heterometal-organic frameworks

    KAUST Repository

    Gao, Junkuo

    2013-01-01

    Here, we report on a surfactant-thermal method to prepare four new 3-D crystalline heterometal-organic frameworks (HMOFs). The results indicate that our new strategy for growing crystalline materials in surfactant media has great potential for the synthesis of novel MOFs with various structures. © 2013 The Royal Society of Chemistry.

  5. Anionic Polyelectrolyte-Cationic Surfactant Interactions in Aqueous Solutions and Foam Films Stability Interactions entre polyélectrolytes anioniques et tensioactifs cationiques en solutions aqueuses et stabilité des films de mousses

    Directory of Open Access Journals (Sweden)

    Langevin D.

    2006-12-01

    Full Text Available The objective of this work is to study polymer/surfactant interactions in aqueous solution and at the air/water interface. These interations are involved in many physicochemical phenomena, such as colloidal stabilization and wettability which are of major importance in oil application as for exemple drilling muds. More precisely, we have attempted to characterize interactions between a non surface active anionic copolymer (acrylamide/acrylamide sulfonate and an oppositely charged cationic surfactant (C12 TAB. Our results show a synergestic surface tension lowering (coadsorption at extremely low surfactant concentrations (10 to the power of (-3 to 10 to the power of (-1 CMC. At higher concentrations, namely above the so called Critical Aggregation Concentration (CAC, polymer-surfactant complexes form in the bulk and the macromolecules precipitate out of the solution. Foam films made from these mixed solutions are stable while C12TAB films are unstable. Disjoining pressure measurements on mixed films with surfactant concentration two orders of magnitude below the CAC show the existence of long range repulsive forces and a discrete film thickness transition. At the CAC, we obtain mixed films with gel-like networks that are strongly affected by the film thinning rate. L'objectif de cette étude est d'étudier les interactions polymère/tensioactif en solution aqueuse et à l'interface eau/air. Ces interactions interviennent dans de nombreux phénomènes physico-chimiques tels que la stabilisation de suspensions colloïdales et la mouillabilité qui sont d'une importance majeure dans les applications pétrolières comme, par exemple, les boues de forage. Plus précisément, nous avons essayé de caractériser les interactions entre un copolymère anionique n'ayant pas d'activité de surface (acrylamide/acrylamide sulfoné avec un tensioactif de charge opposée cationique (C12TAB. Nos résultats montrent une diminution synergique de la tension

  6. Mesoporous film of WO{sub 3}–the “sunlight” assisted decomposition of surfactant in wastewater for voltammetric determination of Pb

    Energy Technology Data Exchange (ETDEWEB)

    Krasnodębska-Ostręga, Beata, E-mail: bekras@chem.uw.edu.pl; Bielecka, Agnieszka; Biaduń, Ewa; Miecznikowski, Krzysztof, E-mail: kmiecz@chem.uw.edu.pl

    2016-12-01

    Highlights: • The “sun light” decomposed of surfactants: Sodium dodecyl sulfate and Triton™X-114 in the presence of WO{sub 3}. • Mesoporous WO{sub 3} films use for the degradation of surfactant without any reagents. • The developed procedure is suggested to be a no-reagents method of decomposition of added SDS leads to 100% recovery of added Pb (II). - Abstract: In this paper we present the application of “sunlight” assisted digestion in the presence of WO{sub 3} to the decomposition of dissolved organic matter, using the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant (1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton™X-114) in natural water samples, prior to the determination of traces residues of lead by stripping voltammetry methods. The results of the study showed firstly that the preparation of reproducible WO{sub 3} layers characterized by high mechanical and chemical resistance was possible, and secondly that it was also possible to obtain a high efficiency of decomposition, equal in efficiency to that of the reference method, which was the hydrogen peroxide oxidation assisted by UV, with evaporation nearly to dryness. The developed procedure is suggested to be a no-reagents method for the decomposition of added SDS, leading to 100% recovery of added Pb (II). The anodic stripping voltammetric curves recorded in solution after 4 h irradiation with UV assisted by WO{sub 3} were repeatable and increased linearly with standard additions, but the data finally obtained were incorrect. The curves recorded in solution after “sunlight” assisted digestion in the presence of WO{sub 3} were repeatable, and increased linearly with an increasing of concentration of standard additions (100% recovery of Pb). In the case of a nonionic surfactant, the decomposition time is at least 6 h. The advantage of the proposed method is the fact that the digestion process does not need the addition of any chemicals for the

  7. Effect of organic complexing compounds and surfactants on coprecipitation of cesium radionuclides with nickel ferrocyanide precipitate

    International Nuclear Information System (INIS)

    Milyutin, V.V.; Gelis, V.M.; Ershov, B.G.; Seliverstov, A.F.

    2008-01-01

    One studied the effect of the organic complexing compounds and of the surfactants on the coprecipitation of Cs trace amounts with the nickel ferrocyanide precipitate. The presence of the oxalate- and ethylenediamin-tetraacetate-ions in the solutions is shown to result in the abrupt reduction of Cs coprecipitation degree. The effect of the various surfactants manifested itself not so explicitly. To reduce the negative effect of the organic compounds on the intimacy of Cs coprecipitation one tried out the procedure of their chemical destruction by ozon. Pre-ozonization of the solutions enabled to prevent the negative effect of the organic complexing compounds and of the surfactants on Cs coprecipitation with nickel ferrocyanide precipitate [ru

  8. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mindroiu, Mihaela [University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061, Bucharest (Romania); Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest (Romania); Pirvu, Cristian [University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest (Romania)

    2013-08-01

    In this study, polypyrrole (PPy) films were successfully synthesized on Ti6Al7Nb alloy by potentiostatic polymerization in the presence of poly(sodium 4-styrenesulfonate) (NaPSS), t-octylphenoxy polyethoxyethanol (Triton X-100) and N-dodecyl-β-D-maltoside (DM) surfactants. Atomic force microscopy (AFM) analysis of the PPy/surfactant composite films revealed a granular structure characterized by a lower surface roughness than un-modified PPy films. The results demonstrated that addition of surfactants, namely Triton X-100 and DM, can improve electrochemical film stability and corrosion resistance. Further, Triton X-100 enhanced the adhesive strength of PPy films to the substrate. The surfactant type also showed a great influence on the surface wettability, the highest hydrophilic character being observed in the case of PPy/PSS film. Few studies have been devoted to the elucidation of inflammatory cell response to PPy-based materials. Therefore, RAW 264.7 macrophages were cultured on PPy-surfactant films to determine whether they elicit a differential cell behavior in terms of cell adhesion, proliferation, cellular morphology and cytokine secretion. Our results highlight the dependence of macrophage response on the surfactants used in the pyrrole polymerization process and suggest that the immune response to biomaterials coated with PPy films might be controlled by the choice of surfactant molecules. Highlights: • We electrodeposited polypyrrole films on Ti6Al7Nb alloy using three surfactants. • Differences in electrostability and wettability of polypyrrole films were found. • Triton X increased and NaPSS decreased the adhesion of polypyrrole films to Ti6Al7Nb. • Cytoskeletal architecture and macrophage activation were affected by surfactants. • The hydrophilic PPy/PSS coating elicited the lowest inflammatory response.

  9. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy

    International Nuclear Information System (INIS)

    Mindroiu, Mihaela; Ion, Raluca; Pirvu, Cristian; Cimpean, Anisoara

    2013-01-01

    In this study, polypyrrole (PPy) films were successfully synthesized on Ti6Al7Nb alloy by potentiostatic polymerization in the presence of poly(sodium 4-styrenesulfonate) (NaPSS), t-octylphenoxy polyethoxyethanol (Triton X-100) and N-dodecyl-β-D-maltoside (DM) surfactants. Atomic force microscopy (AFM) analysis of the PPy/surfactant composite films revealed a granular structure characterized by a lower surface roughness than un-modified PPy films. The results demonstrated that addition of surfactants, namely Triton X-100 and DM, can improve electrochemical film stability and corrosion resistance. Further, Triton X-100 enhanced the adhesive strength of PPy films to the substrate. The surfactant type also showed a great influence on the surface wettability, the highest hydrophilic character being observed in the case of PPy/PSS film. Few studies have been devoted to the elucidation of inflammatory cell response to PPy-based materials. Therefore, RAW 264.7 macrophages were cultured on PPy-surfactant films to determine whether they elicit a differential cell behavior in terms of cell adhesion, proliferation, cellular morphology and cytokine secretion. Our results highlight the dependence of macrophage response on the surfactants used in the pyrrole polymerization process and suggest that the immune response to biomaterials coated with PPy films might be controlled by the choice of surfactant molecules. Highlights: • We electrodeposited polypyrrole films on Ti6Al7Nb alloy using three surfactants. • Differences in electrostability and wettability of polypyrrole films were found. • Triton X increased and NaPSS decreased the adhesion of polypyrrole films to Ti6Al7Nb. • Cytoskeletal architecture and macrophage activation were affected by surfactants. • The hydrophilic PPy/PSS coating elicited the lowest inflammatory response

  10. Instability of two-layer film flows due to the interacting effects of surfactants, inertia, and gravity

    Science.gov (United States)

    Kalogirou, Anna

    2018-03-01

    We consider a two-fluid shear flow where the interface between the two fluids is coated with an insoluble surfactant. An asymptotic model is derived in the thin-layer approximation, consisting of a set of nonlinear partial differential equations describing the evolution of the film and surfactant disturbances at the interface. The model includes important physical effects such as Marangoni forces (caused by the presence of surfactant), inertial forces arising in the thick fluid layer, as well as gravitational forces. The aim of this study is to investigate the effect of density stratification or gravity—represented through the Bond number Bo—on the flow stability and the interplay between the different (de)stabilisation mechanisms. It is found that gravity can either stabilise or destabilise the interface (depending on fluid properties) but not always as intuitively anticipated. Different traveling-wave branches are presented for varying Bo, and the destabilising mechanism associated with the Marangoni forces is discussed.

  11. Plastic relaxation of GeSi/Si(001) films grown by molecular-beam epitaxy in the presence of the Sb surfactant

    International Nuclear Information System (INIS)

    Bolkhovityanov, Yu. B.; Deryabin, A. S.; Gutakovskii, A. K.; Kolesnikov, A. V.; Sokolov, L. V.

    2007-01-01

    Plastically relaxed GeSi films with the Ge fraction equal to 0.29-0.42 and thickness as large as 0.5 μm were grown on Si (001) substrates using the low-temperature (350 deg. C) buffer Si layer and Sb as a surfactant. It is shown that introduction of Sb that smoothens the film surface at the stage of pseudomorphic growth lowers the density of threading dislocations in the plastically relaxed heterostructure by 1-1.5 orders of magnitude and also reduces the final roughness of the surface. The root-mean-square value of roughness smaller than 1 nm was obtained for a film with the Ge content of 0.29 and the density of threading dislocations of about 10 6 cm -2 . It is assumed that the effect of surfactant is based on the fact that the activity of surface sources of dislocations is reduced in the presence of Sb

  12. Giant surfactants of poly(ethylene oxide)- b-polystyrene-(molecular nanoparticle): nanoparticle-driven self-assembly with sub-10-nm nanostructures in thin films

    Science.gov (United States)

    Hsu, Chih-Hao; Lin, Zhiwei; Dong, Xue-Hui; Hsieh, I.-Fan; Cheng, Stephen Z. D.

    2014-03-01

    Giant surfactants are built upon precisely attaching shape- and volume-persistent molecular nanoparticles (MNP) to polymeric flexible tails. The unique class of self-assembling materials, giant surfactants, has been demonstrated to form self-assembled ordered nanostructures, and their self-assembly behaviors are remarkably sensitive to primary chemical structures. In this work, two sets of giant surfactants with functionalized MNP attached to diblock copolymer tails were studied in thin films. Carboxylic acid-functionalized [60]fullerene (AC60) tethered with PEO- b-PS (PEO-PS-AC60) represents an ABA' (hydrophilic-hydrophobic-hydrophilic) giant surfactant, and fluoro-functionalized polyhedral oligomeric silsesquioxane (FPOSS) tethered with PEO- b-PS (PEO-PS-FPOSS) represents an ABC (hydrophilic-hydrophobic-omniphobic) one. The dissimilar chemical natures of the MNPs result in different arrangement of MNPs in self-assembled structures, the dispersion of AC60 in PEO domain and the single domain of FPOSS. Moreover, the chemically bonded MNPs could induce the originally disordered small molecular PEO- b-PS to form ordered cylindrical and lamellar structure, as evidenced by TEM and GISAXS, leading to sub-10-nm nanostructures of copolymer in the thin film state.

  13. Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Wang, Min-Jyle

    2010-10-07

    Nickel oxide film with open macropores prepared by anodic deposition in the presence of surfactant shows a very high capacitance of 1110 F g(-1) at a scan rate of 10 mV s(-1), and the capacitance value reduces to 950 F g(-1) at a high scan rate of 200 mV s(-1).

  14. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    International Nuclear Information System (INIS)

    Bowman, R.S.; Sullivan, E.J.

    1995-01-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost (∼$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs + or Ca 2+ ), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb 2+ ) via ion exchange and surface complexation, and inorganic anions (CrO 4 2- , SeO 4 2- , SO 4 2- ) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants

  15. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy

    International Nuclear Information System (INIS)

    Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P.

    2011-01-01

    Films made of nanofibrils were modified by adsorption of a cationic surfactant directly on the film surfaces. The nanofibrils were prepared by 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation and mechanical fibrillation, and were relatively homogeneous in size. The average nanofibril diameter and surface porosity was quantified based on computer-assisted field-emission scanning electron microscopy (FE-SEM). The cationic surfactant used in the adsorption was n-hexadecyl trimethylammonium bromide (cetyltrimethylammonium bromide, CTAB). The adsorption of CTAB was confirmed by Fourier transform infrared (FTIR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses. It was shown that the adsorbed layer of CTAB increased the hydrophobicity, without affecting the tensile index significantly. This capability, combined with the antiseptic properties of CTAB, may be a major advantage for several applications.

  16. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    International Nuclear Information System (INIS)

    Chernova, R.K.; Shtykov, S.N.; Beloliptseva, G.M.; Sukhova, L.K.; Amelin, V.G.; Kulapina, E.G.

    1984-01-01

    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H 2 SO 4 -pH14 acidity range and the 1x10 -3 -5x10 -6 M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection

  17. Lessons from the biophysics of interfaces: Lung surfactant and tear fluid

    DEFF Research Database (Denmark)

    Rantamaki, A.; Telenius, J.; Koivuniemi, A.

    2011-01-01

    The purpose of this review is to provide insight into the biophysical properties and functions of tear fluid and lung surfactant - two similar fluids covering the epithelium of two distinctive organs. Both fluids form a layer-like structure that essentially comprise of an aqueous layer next......-active function of the fluid film. The lipid layer of lung surfactant comprises mainly of phospholipids, especially phosphatidylcholines, and only small amounts of non-polar lipids, mainly cholesterol. In contrast, tear fluid lipid layer comprises of a mixture of polar and non-polar lipids. However, the relative...... proportion and the spectrum of different polar and non-polar lipids seem to be more extensive in tear fluid than in lung surfactant. The differing lipid compositions generate distinctive lipid layer structures. Despite the structural differences, these lipid layers decrease the surface tension of the air...

  18. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    Energy Technology Data Exchange (ETDEWEB)

    Chernova, R K; Shtykov, S N; Beloliptseva, G M; Sukhova, L K; Amelin, V G; Kulapina, E G [Saratovskij Gosudarstvennyj Univ. (USSR)

    1984-06-01

    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H/sub 2/SO/sub 4/-pH14 acidity range and the 1x10/sup -3/-5x10/sup -6/ M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection.

  19. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    Science.gov (United States)

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  20. Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2008-06-01

    The adsorption of hydrophobic organic compounds (HOCs; atrazine and diuron) onto lampblack was studied in the presence of nonionic, cationic, and anionic surfactants (Triton(R) X-100), benzalkonium chloride [BC], and linear alkylbenzene sulfonate [LAS]) to determine the effect of the surfactant on HOC adsorption onto a hydrophobic carbonaceous geosorbent. Linear alkylbenzene sulfonate showed an adsorption capacity higher than that of BC but similar to that of Triton X-100, implying the charge property of a surfactant is not a useful indicator for predicting the surfactant's adsorption onto a hydrophobic medium. The results also indicated that the octanol-water partition coefficient (K(OW)) of a surfactant is not a good predictor of that surfactant's sorption onto a hydrophobic medium. Under subsaturation adsorption conditions (i.e., before sorption saturation is reached), surfactant adsorption reduced HOC adsorption to a significant extent, with the reduction in HOC adsorption increasing monotonically with the amount of surfactant adsorbed. Among the three surfactants, Triton X-100 was the most effective in reducing HOC adsorption, whereas BC and LAS showed similar effectiveness in this regard. Under the same amount of the surfactant sorbed, the reduction in atrazine adsorption was consistently greater than that for diuron because of atrazine's lower hydrophobicity. No significant difference was observed in the amount of the HOC adsorbed under different adsorption sequences. Our results showed that the presence of surfactant can significantly decrease HOC adsorption onto hydrophobic environmental media and, thus, is important in predicting HOC fate and transport in the environment.

  1. Use of surfactants to control island size and density

    Science.gov (United States)

    Merrell, Jason; Liu, Feng; Stringfellow, Gerald B.

    2017-08-15

    Methods of controlling island size and density on an OMVPE growth film may comprise adding a surfactant at a critical concentration level, allowing a growth phase for a first period of time, and ending the growth phase when desired island size and density are achieved. For example, the island size and density of an OMVPE grown InGaN thin film may be controlled by adding an antimony surfactant at a critical concentration level.

  2. Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent.

    Science.gov (United States)

    Al-Saiedy, Mustafa; Pratt, Ryan; Lai, Patrick; Kerek, Evan; Joyce, Heidi; Prenner, Elmar; Green, Francis; Ling, Chang-Chun; Veldhuizen, Ruud; Ghandorah, Salim; Amrein, Matthias

    2018-04-01

    Pulmonary surfactant forms a cohesive film at the alveolar air-lung interface, lowering surface tension, and thus reducing the work of breathing and preventing atelectasis. Surfactant function becomes impaired during inflammation due to degradation of the surfactant lipids and proteins by free radicals. In this study, we examine the role of reactive nitrogen (RNS) and oxygen (ROS) species on surfactant function with and without physiological cholesterol levels (5-10%). Surface activity was assessed in vitro in a captive bubble surfactometer (CBS). Surfactant chemistry, monolayer fluidity and thermodynamic behavior were also recorded before and after oxidation. We report that physiologic amounts of cholesterol combined with oxidation results in severe impairment of surfactant function. We also show that surfactant polyunsaturated phospholipids are the most susceptible to oxidative alteration. Membrane thermodynamic experiments showed significant surfactant film stiffening after free radical exposure in the presence of cholesterol. These results point to a previously unappreciated role for cholesterol in amplifying defects in surface activity caused by oxidation of pulmonary surfactant, a finding that may have implications for treating several lung diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Solubilisation of a host molecule in a surfactant film: thermodynamic and structural approach in the case of lindane

    International Nuclear Information System (INIS)

    Testard, Fabienne

    1996-01-01

    In this research thesis, the author aimed at understanding the main aspects of solubilisation in the specific case of a pesticide, the lindane, which is a hydrophobic molecule, poorly soluble in water. She first proposes a review of some existing models of solubilisation, and presents the only existing predictive model for the prediction of solubilisation in water-ionic surfactant binary systems. She addresses these systems and tries to characterise disruptions induced by the presence of the solute for lindane-saturated solutions (study of phase diagrams, of structure for different surfactant concentrations and different temperatures). Then she focuses on a part of the ternary diagram which allows micro emulsions to be reached at the point of spontaneous null curvature. She reports the study (by neutron and X ray scattering at small angles) of structural information on the surfactant film in different aggregates of ternary solutions in presence of solute. She finally proposes a more chemical approach to solubilisation [fr

  4. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    Science.gov (United States)

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  5. General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals.

    Science.gov (United States)

    Gryszel, Maciej; Sytnyk, Mykhailo; Jakešová, Marie; Romanazzi, Giuseppe; Gabrielsson, Roger; Heiss, Wolfgang; Głowacki, Eric Daniel

    2018-04-25

    Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H 2 O 2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O 2 to H 2 O 2 , with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H 2 O to O 2 . We found increased H 2 O 2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O 2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.

  6. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  7. Green analytical chemistry - the use of surfactants as a replacement of organic solvents in spectroscopy

    Science.gov (United States)

    Pharr, Daniel Y.

    2017-07-01

    This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.

  8. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    International Nuclear Information System (INIS)

    Azad, Uday Pratap; Ganesan, Vellaichamy; Pal, Manas

    2011-01-01

    Gold nanoparticles (Au NPs) in three different silica based sol–gel matrixes with and without surfactants are prepared. They are characterized by UV–vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol–gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200–280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5–15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  9. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Uday Pratap; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Pal, Manas [Banaras Hindu University, Department of Chemistry, Faculty of Science (India)

    2011-09-15

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  10. Transparent nanocrystalline ZnO films prepared by spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Berber, M. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany)]. E-mail: mete.berber@sustech.de; Bulto, V. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Kliss, R. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Hahn, H. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Forschungszentrum Karlsruhe, Institute for Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Joint Research Laboratory Nanomaterials, TU Darmstadt, Institute of Materials Science, Petersenstr. 23, 64287 Darmstadt (Germany)

    2005-09-15

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents.

  11. Transparent nanocrystalline ZnO films prepared by spin coating

    International Nuclear Information System (INIS)

    Berber, M.; Bulto, V.; Kliss, R.; Hahn, H.

    2005-01-01

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents

  12. Metal organic framework synthesis in the presence of surfactants : Towards hierarchical MOFs?

    NARCIS (Netherlands)

    Seoane, B.; Dikhtiarenko, A.; Mayoral, A.; Tellez, C.; Coronas, J.; Kapteijn, F.; Gascon, J.

    2015-01-01

    The effect of synthesis pH and H2O/EtOH molar ratio on the textural properties of different aluminium trimesate metal organic frameworks (MOFs) prepared in the presence of the well-known cationic surfactant cetyltrimethylammonium bromide (CTAB) at 120 °C was studied with the purpose of obtaining a

  13. Partitioning of hexachlorobenzene in a kaolin/humic acid/surfactant/water system: Combined effect of surfactant and soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jinzhong; Wang, Lingling [Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Xiaohua, E-mail: hust-esri2009@hotmail.com [Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074 (China); Lin, Yusuo; Zhang, Shengtian [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer We study HCB partitioning in a kaolin/humic acid/TX100/water system. Black-Right-Pointing-Pointer We reveal influence of TX100-HA interaction on TX100 and HA sorption to kaolin. Black-Right-Pointing-Pointer We verify combined effect of TX100 and HA on HCB desorption from clay. - Abstract: Understanding the combined effect of soil organic matter (SOM) and surfactants on the partitioning of hydrophobic organic compounds in soil/water systems is important to predict the effectiveness of surfactant-enhanced remediation (SER). In the present study we investigate the partitioning of hexachlorobenzene (HCB) within a humic acid (HA)-coated kaolin/Triton X-100 (TX100)/water system, with special emphasis on the interaction between TX100 and HA, and their combined effect on HCB sorption. HA firstly enhanced then suppressed TX100 sorption to kaolin as the amounts of HA increased, while the addition of TX100 led to a consistent reduction in HA sorption. In the HA-coated kaolin/TX100/water system, TX100 played a primary role in enhancing desorption of HCB, while the role could be suppressed and then enhanced as HA coating amounts increased. Only at HA coating above 2.4%, dissolved HA outcompeted clay-bound HA for HCB partitioning, resulting in dissolved HA enhanced desorption. The presence of dissolved HA at these conditions further promoted the effectiveness of TX100 enhanced desorption. Despite a reduced TX100 sorption to clay was achieved due to the presence of dissolved HA, the effect on HCB desorption was comparatively slight. A reliable cumulative influence of HA and TX100 on HCB desorption was observed, although HCB desorption by HA/TX100 mixed was less than the sum of HA and TX100 individually. Our study suggests that for soils of high organic contents, the combined effect of SOM and surfactants on HOCs desorption can be applied to improve the performance of SER.

  14. Preparation and property of UV-curable polyurethane acrylate film filled with cationic surfactant treated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinghong; Cai, Xia; Shen, Fenglei, E-mail: shenfenglei@suda.edu.cn

    2016-08-30

    Highlights: • The non-covalent modification of graphene maintains the intrinsic structure of graphene compared with the covalent functionalization of graphene. • The initial degradation temperature of nanocomposite film increases by 57 °C which is much higher than that of PUA nanocomposite previously reported. • The nanocomposite film exhibits improved dielectric property and electrical conductivity. • The outstanding performance of CTAB-G/PUA films will open up enormous opportunities for applications in various regions such as high temperature or electrical field. - Abstract: The preparation of nanocomposite films composed of UV-curable polyurethane acrylate (PUA) and modified graphene were demonstrated in this paper. Cetyl trimethyl ammonium bromide modified graphene (CTAB-G) was prepared via intercalation of cationic surfactant and subsequently incorporated into PUA by UV curing technology. Fourier transform infrared spectra, wide-angle X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to characterize the structure and morphology of CTAB-G, as well as CTAB-G/PUA nanocomposite films. The results revealed that the CTAB-G sheets were layer-by-layer structure and dispersed uniformly in PUA matrix. Thermal gravimetric analysis showed that the thermal stabilities of UV-curable PUA nanocomposite films in this work were much higher than that of PUA nanocomposites previously reported. Dynamic mechanical analysis indicated that the dynamic mechanical properties of nanocomposite films were greatly enhanced in the presence of modified graphene sheets. In addition, the CTAB-G/PUA nanocomposite films exhibited improved dielectric properties and electrical conductivities compared with the pure PUA.

  15. The Accelerated Late Adsorption of Pulmonary Surfactant

    Science.gov (United States)

    2011-01-01

    Adsorption of pulmonary surfactant to an air−water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value. PMID:21417351

  16. Investigations of the kinetics of surfactant-assisted growth of cobalt/copper multilayers

    Science.gov (United States)

    Peterson, Brennan Lovelace

    Surfactants---a term given to a broad family of surface additives used in thin film growth---provide a potentially useful tool for the deposition engineer. A long history of work on the field has produced a sometimes conflicting view of what surfactants do, and while their efficacy in improving magnetic films is well established, the attendant structural changes remain unclear. Early work on surfactant-assisted growth was generally confined to deposition at near equilibrium conditions: high temperature and very slow deposition rates on very smooth (single crystal) substrates. In the case of low temperature sputter deposition, the kinetic phenomena differ greatly from the near-equilibrium case: high rate, more interlayer diffusive pathways, high grain boundary density, and few well defined atomic steps. There are two major ideas which underlie and explain the use of surfactants. First, they are used to alter growth kinetics of a single material by changing the diffusion barriers on the growing surface. Second, surfactants alter the initial nucleation parameters in heteroepitaxial growth, which is often explained with reference to changes in the surface energy, gamma. Changes to these parameters result, in turn, to variations of the roughness and conformality of thin films grown with the assistance of surfactants. Finally, the roughness and conformality are critical for determining the performance of modern thin film magnetic sensors. As surfactants offer a way to alter the nucleation and growth kinetics, they offer tremendous potential benefits. However, before surfactants are trustworthy deposition tool, a better understanding of their structural effects and underlying surface energy and kinetic changes is necessary. In order to investigate these phenomena, DC magnetron sputtered [Co/Cu] multilayers were deposited on Si/SiO2 substrates using O2 , Ag, Pb, and In as surfactants. Oxygen was introduced during growth at partial pressures ranging from 10-9 to 10-6 Torr

  17. Organized organic ultrathin films fundamentals and applications

    CERN Document Server

    Ariga, Katsuhiko

    2012-01-01

    This handy reference is the first comprehensive book covering both fundamentals and recent developments in the field with an emphasis on nanotechnology. Written by a highly regarded author in the field, the book details state-of-the-art preparation, characterization and applications of thin films of organic molecules and biomaterials fabricated by wet processes and also highlights applications in nanotechnology The categories of films covered include monomolecular films (monolayers) both on a water surface and on a solid plate, Langmuir-Blodgett films (transferred multilayer films on a solid plate from a water surface), layer-by-layer films (adsorbed multilayer films on a solid support), and spontaneously assembled films in solution.

  18. Latex imaging by environmental STEM: application to the study of the surfactant outcome in hybrid alkyd/acrylate systems.

    Science.gov (United States)

    Faucheu, Jenny; Chazeau, Laurent; Gauthier, Catherine; Cavaillé, Jean-Yves; Goikoetxea, Monika; Minari, Roque; Asua, José M

    2009-09-01

    Among other uses, latexes are a successful alternative to solvent-borne binders for coatings. Efforts are made to produce hybrid nanostructured latexes containing an acrylic phase and an alkyd phase. However, after the film-forming process, the surfactant used to stabilize these latexes remains in the film, and its location can have a drastic effect on the application properties. Among the processing parameters, the alkyd hydrophobicity can strongly influence this location. This article aims at the imaging of these surfactant molecules in two hybrid latexes with different hydrophobicity level of the alkyd resin. A first part of this paper is dedicated to the understanding of the contrast provided by the surfactant in environmental STEM imaging of latexes. Then, the influence of surfactant-polymer affinity on the surfactant location after film-forming of those hybrid alkyd/acrylate latexes is studied by this technique. It is shown that in the hybrid latex with an alkyd shell (obtained with the most hydrophilic resin), the surfactant molecules tend to remain buried in the alkyd phase. Conversely, in the hybrid latex with an acrylate shell (in the case of the most hydrophobic resin), the surfactant molecules tend to gather into islands like in pure acrylate latex films.

  19. Substrate and surfactant effects on the glass-liquid transition of thin water films.

    Science.gov (United States)

    Souda, Ryutaro

    2006-09-07

    Temperature-programmed time-of-flight secondary ion mass spectrometry (TP-TOF-SIMS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption, desorption, and glass-liquid transition of water on the graphite and Ni(111) surfaces in the temperature range 13-200 K. Water wets the graphite surface at 100-120 K, and the hydrogen-bonded network is formed preferentially in the first monolayer to reduce the number of nonbonding hydrogens. The strongly chemisorbed water molecules at the Ni(111) surface do not form such a network and play a role in stabilizing the film morphology up to 160 K, where dewetting occurs abruptly irrespective of the film thickness. The surface structure of the water film formed on graphite is fluctuated considerably, resulting in deweting at 150-160 K depending on the film thickness. The dewetted patches of graphite are molecularly clean, whereas the chemisorbed water remains on the Ni(111) surface even after evaporation of the film. The abrupt drop in the desorption rate of water molecules at 160 K, which has been attributed to crystallization in the previous TPD studies, is found to disappear completely when a monolayer of methanol is present on the surface. This is because the morphology of supercooled liquid water is changed by the surface tension, and it is quenched by termination of the free OH groups on the surface. The surfactant methanol desorbs above 160 K since the hydrogen bonds of the water molecules are reconstructed. The drastic change in the properties of supercooled liquid water at 160 K should be ascribed to the liquid-liquid phase transition.

  20. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  1. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Man [Auburn University, Auburn, Alabama; He, Feng [ORNL; Zhao, Dongye [Auburn University, Auburn, Alabama; Hao, Xiaodi [Beijing University of Civil Engineering and Architecture

    2011-01-01

    Zero valent iron (ZVI) nanoparticles have been studied extensively for degradation of chlorinated solvents in the aqueous phase, and have been tested for in-situ remediation of contaminated soil and groundwater. However, little is known about its effectiveness for degrading soil-sorbed contaminants. This work studied reductive dechlorination of trichloroethylene (TCE) sorbed in two model soils (a potting soil and Smith Farm soil) using carboxymethyl cellulose (CMC) stabilized Fe-Pd bimetallic nanoparticles. Effects of sorption, surfactants and dissolved organic matter (DOC) were determined through batch kinetic experiments. While the nanoparticles can effectively degrade soil-sorbed TCE, the TCE degradation rate was strongly limited by desorption kinetics, especially for the potting soil which has a higher organic matter content of 8.2%. Under otherwise identical conditions, {approx}44% of TCE sorbed in the potting soil was degraded in 30 h, compared to {approx}82% for Smith Farm soil (organic matter content = 0.7%). DOC from the potting soil was found to inhibit TCE degradation. The presence of the extracted SOM at 40 ppm and 350 ppm as TOC reduced the degradation rate by 34% and 67%, respectively. Four prototype surfactants were tested for their effects on TCE desorption and degradation rates, including two anionic surfactants known as SDS (sodium dodecyl sulfate) and SDBS (sodium dodecyl benzene sulfonate), a cationic surfactant hexadecyltrimethylammonium (HDTMA) bromide, and a non-ionic surfactant Tween 80. All four surfactants were observed to enhance TCE desorption at concentrations below or above the critical micelle concentration (cmc), with the anionic surfactant SDS being most effective. Based on the pseudo-first-order reaction rate law, the presence of 1 x cmc SDS increased the reaction rate by a factor of 2.5 when the nanoparticles were used for degrading TCE in a water solution. SDS was effective for enhancing degradation of TCE sorbed in Smith Farm

  2. Release of nanoclay and surfactant from polymer-clay nanocomposites into a food simulant.

    Science.gov (United States)

    Xia, Yining; Rubino, Maria; Auras, Rafael

    2014-12-02

    Release assessment of organo-modified montmorillonite (O-MMT) nanoclay and the organo-modifiers (surfactants) was performed on two types of polymer–clay nanocomposites: polypropylene (PP) and polyamide 6 (PA6) with O-MMT. In accordance with ASTM D4754-11, nanocomposite films were exposed to ethanol as a fatty-food simulant at 70 °C. The release of O-MMT, with Si and Al used as the nanoclay markers, was evaluated by graphite furnace atomic absorption spectrometry. The nanoclay particles released in ethanol were visualized by transmission electron microscopy (TEM). More nanoclay particles were released from PP–clay films (0.15 mg L(–1)) than from PA6–clay films (0.10 mg L(–1)), possibly due to the lack of interaction between the nanoclay and PP as indicated by the structure and morphology in the TEM images. The surfactant release was quantified by a liquid chromatography tandem mass spectrometry (LC-MS/MS) method. A substantial amount of surfactant was released into ethanol (3.5 mg L(–1) from PP–clay films and 16.2 mg L(–1) from PA6–clay films), indicating changes in the nanoclay structure within the nanocomposite while it was exposed to ethanol. This research has provided information for the determination of exposure doses of nanoclay and surfactant in biosystems and the environment, which enabled the risk assessment.

  3. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study

    International Nuclear Information System (INIS)

    Hane, Francis; Moores, Brad; Amrein, Matthias; Leonenko, Zoya

    2009-01-01

    The air-lung interface is covered by a molecular film of pulmonary surfactant (PS). The major function of the film is to reduce the surface tension of the lung's air-liquid interface, providing stability to the alveolar structure and reducing the work of breathing. Earlier we have shown that function of bovine lipid extract surfactant (BLES) is related to the specific molecular architecture of surfactant films. Defined molecular arrangement of the lipids and proteins of the surfactant film also give rise to a local highly variable electrical surface potential of the interface. In this work we investigated a simple model of artificial lung surfactant consisting of DPPC, eggPG, and surfactant protein C (SP-C). Effects of surface compression and the presence of SP-C on the monolayer structure and surface potential distribution were investigated using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We show that topography and locally variable surface potential of DPPC-eggPG lipid mixture are similar to those of pulmonary surfactant BLES in the presence of SP-C and differ in surface potential when SP-C is absent.

  4. Polymer Film Dewetting by Water/Surfactant/Good-Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage.

    Science.gov (United States)

    Baglioni, Michele; Montis, Costanza; Chelazzi, David; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2018-06-18

    Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the T g of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Control of stain geometry by drop evaporation of surfactant containing dispersions.

    Science.gov (United States)

    Erbil, H Yildirim

    2015-08-01

    Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Fundamentals of a liquid (soap) film tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Beizaie, M. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Applied Mechanics and Engineering Science; Gharib, M. [Graduate Aeronautical Laboratory, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125 (United States)

    1997-06-13

    The continuously running liquid film tunnel is a novel device suitable for the study of two-dimensional flows. In this innovation, the films start from a reservoir, run over a horizontal or non-horizontal wire frame and get pulled/washed by a water sheet or by gravity of liquid film. How-ever, despite the simple design and widespread application of LFT, its working mechanisms are not well understood. In the present work, an experimental effort for explaining these mechanisms is reported. The results show that both film velocities and film flow rates increase with water sheet velocity up to a saturation level. This behavior is described via a force balance between the shear force produced by the water sheet and the opposing pulling force of reservoir and boundary layer frictions. The results also show that the average film thickness depends on the surfactant concentration. This is as predicted by a model based on Langmuir`s adsorption theory, in which the liquid film contains two external monolayers of surfactant and a slab of surfactant solution in between. When a film is drawn from the reservoir to the water sheet, the surfactant molecules start migrating from the former to the latter. To restore the thermodynamic equilibrium, the dragged film pulls more surfactant due to Marangoni elasticity, and thus a flow is established. The film flow soon reaches an equilibrium rate as required by the force balance mentioned above. (orig.). With 18 figs.

  7. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  8. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.-A.

    1992-01-01

    At one installation in California, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, resulting in contamination at depths from 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. This paper summarizes a surfactant screening/surfactant flooding research program in which 22 surfactants were screened for their effectiveness in mobilizing the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on contaminated soil samples obtained from the site

  9. Preparation of mesoporous silica films SBA-15 over different substrates

    International Nuclear Information System (INIS)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A.

    2010-01-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  10. Nanosheets of Nonlayered Aluminum Metal-Organic Frameworks through a Surfactant-Assisted Method

    KAUST Repository

    Pustovarenko, Alexey

    2018-05-18

    During the last decade, the synthesis and application of metal-organic framework (MOF) nanosheets has received growing interest, showing unique performances for different technological applications. Despite the potential of this type of nanolamellar materials, the synthetic routes developed so far are restricted to MOFs possessing layered structures, limiting further development in this field. Here, a bottom-up surfactant-assisted synthetic approach is presented for the fabrication of nanosheets of various nonlayered MOFs, broadening the scope of MOF nanosheets application. Surfactant-assisted preorganization of the metallic precursor prior to MOF synthesis enables the manufacture of nonlayered Al-containing MOF lamellae. These MOF nanosheets are shown to exhibit a superior performance over other crystal morphologies for both chemical sensing and gas separation. As revealed by electron microscopy and diffraction, this superior performance arises from the shorter diffusion pathway in the MOF nanosheets, whose 1D channels are oriented along the shortest particle dimension.

  11. Stable perovskite solar cells by surface modification with surfactant molecules

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia, E-mail: mholandabsb@outlook.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH{sub 3}NH{sub 3}PbI{sub 3} was prepared by single step method using a solution containing PbI{sub 2} and CH{sub 3}NH{sub 3}I on DMF:DMSO (2:1) on a concentration of 0.88 mol L{sup -1}. The film was deposited over a planar film of TiO{sub 2}, previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL{sup -1} solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple

  12. Stable perovskite solar cells by surface modification with surfactant molecules

    International Nuclear Information System (INIS)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia

    2016-01-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH 3 NH 3 PbI 3 was prepared by single step method using a solution containing PbI 2 and CH 3 NH 3 I on DMF:DMSO (2:1) on a concentration of 0.88 mol L -1 . The film was deposited over a planar film of TiO 2 , previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL -1 solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple preparation method to improve the stability of

  13. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  14. Influence of organoclay type on morphology of polymer films

    International Nuclear Information System (INIS)

    Gama, D.B.; Tavares, A.A.; Silva, D.F.A; Silva, S.M.L; Andrade, D.L.A.C.S.

    2011-01-01

    In this work, bentonite clay from Paraiba has been purified (removed organic matter) and then modified with the surfactants, cetyl trimethyl ammonium bromide (Cetremide) and hexadecyl tributyl phosphonium bromide (phosphonium) to obtain organoclays to be incorporated into polymer films. The clays were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and infrared spectroscopy (FTIR) and films by X-ray diffraction (XRD). The results showed that the interplanar basal distance of the bentonite modified with salts, and phosphonium Cetremide, showed higher values than the natural bentonite, thus confirming the intercalation of organic cations between the clay galleries and thus to obtain organoclays and that the type of organoclay influence the morphology of the films obtained. (author)

  15. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    Science.gov (United States)

    Kyle, Erin C. H.; Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5-6 × 1019 cm-3 as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 1018 cm-3. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  16. Shampooing the reservoir : organic surfactant could increase Suffield oil recovery by 10 per cent

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2009-10-15

    EnCana is testing a new tertiary recovery technology in the Suffield area of southeastern Alberta which is known primarily for shallow natural gas. EnCana Corporation has approximately 1 billion barrels of original heavy oil in place in the Suffield area. Oil densities range from about 10 to 18 degrees API gravity. Viscosities range from 100 to 10,000 centipoise. Drilling began about 30 years ago. The primary productive formation is consolidated Mannville Glauconite sandstone which produces very little sand with the oil. About 15 per cent of the oil in place has been produced by primary production and waterfloods. In 2007, EnCana began testing an alkaline surfactant polymer flood operation in the Suffield heavy oil field that consists of 2 injector wells and 5 producers. Tests will continue until 2011. The surfactant acts as a detergent and reduces the interfacial tension between water and oil, thus mobilizing residual oil and increasing the displacement efficiency. In addition to the physical sweeping of a straight polymer flood, a surfactant polymer also washes oil from the rock. EnCana buys an alkaline chemical that is less expensive than surfactant. The alkaline injectant reacts with the organic acids in the oil to create a natural surfactant. EnCana was granted experimental scheme status by the Alberta Energy Resources Conservation Board. Instead of using fresh water, the pilot mixes its chemicals with saline water from a deep formation. EnCana will consider the pilot a commercial success if it recovers at least 10 per cent of the original oil in place. Thus far, the pilot is meeting that threshold. 1 fig.

  17. Langmuir-Blodgett films of molecular organic materials

    International Nuclear Information System (INIS)

    Talham, Daniel R; Yamamoto, Takashi; Meisel, Mark W

    2008-01-01

    Langmuir-Blodgett methods are perhaps the original approach for achieving controlled deposition of organic thin films. Molecules are first organized into a monolayer array on the surface of water before transfer as a monolayer onto solid supports. Molecular monolayers, multilayers, and multilayered heterostructures can be achieved. The capability of exercising such control over thin film assemblies has attracted materials chemists and physicists to develop Langmuir-Blodgett films for studies on organic conductors, magnets, non-linear optics, rectifiers, and intermolecular electron transfer. This article reviews objectives in each of these areas and selects some specific examples from the literature to highlight the state of the art, mostly from the point of view of the chemical systems that are studied. Mixed organic/inorganic hybrid films represent a new direction for Langmuir-Blodgett films in materials science, combining conventional inorganic solid-state phenomena with the properties of the organic networks, and recent examples, taken principally from the authors' work, are highlighted

  18. Influences of Scavenging and Removal of Surfactants by Bubble Processing on Primary Marine Aerosol Production from North Atlantic Seawater

    Science.gov (United States)

    Duplessis, P.; Chang, R.; Frossard, A. A.; Keene, W. C.; Maben, J. R.; Long, M. S.; Beaupre, S. R.; Kieber, D. J.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    Primary marine aerosol particles (PMA) are produced by bursting bubbles from breaking waves at the air-sea interface and significantly modulate atmospheric chemical transformations and cloud properties. Surfactants in bulk seawater rapidly (seconds) adsorb onto fresh bubble surfaces forming organic films that influence size, rise velocity, bursting behavior, and associated PMA emissions. During a cruise on the R/V Endeavor in September and October 2016, PMA production from biologically productive and oligotrophic seawater was investigated at four stations in the western North Atlantic Ocean. PMA were produced in a high-capacity generator via turbulent mixing of seawater and clean air in a Venturi nozzle. When the flow of fresh seawater through the generator was turned off, surfactant depletion via bubble processing resulted in greater PMA mass production efficiencies per unit air detrained but had no consistent influence on number production efficiencies. The greater (factor of 3) production efficiencies of organic matter associated with PMA generated with the Venturi relative to those generated with frits during previous campaigns contributed to a faster depletion of surfactants from the seawater reservoir and corresponding divergence in response.

  19. Micellization behaviour and thermodynamic parameters of 12-2-12 gemini surfactant in (water + organic solvent) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: hakbas34@yahoo.com [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)

    2011-09-15

    Highlights: > The cmc and {alpha} values of surfactant increased with increasing solvent content and temperature. > The values of ({Delta}G{sub m}{sup 0}) are negative in all cases for the micelle formation becomes less favourable. > The values of negative enthalpy indicate importance of the London dispersion forces for the micellization. > The positive entropy is due to a contribution supplied from the solvent. - Abstract: The effect of organic solvents on micellization behaviour and thermodynamic parameters of a cationic gemini (dimeric) surfactant, C{sub 12}H{sub 25}(CH{sub 3}){sub 2}N{sup +}-(CH{sub 2}){sub 2}-N{sup +}(CH{sub 3}){sub 2}C{sub 12}H{sub 25}.2Br{sup -}, (12-2-12) was studied in aqueous solutions over the range of T = (293.15 to 323.15) K using the conductometric technique. Ethylene glycol (EG), dimethylsulfoxide (DMSO) and 1,4-dioxan (DO) were used as organic solvents with three different contents. The critical micelle concentration (cmc) and the degree of counter ion dissociation ({alpha}) of micelles in the water and in the (water + organic solvent) mixtures including 10%, 20%, and 30% solvent contents were determined. The standard Gibbs free energy ({Delta}G{sub m}{sup 0}), enthalpy ({Delta}H{sub m}{sup 0}) and entropy ({Delta}S{sub m}{sup 0}) of micellization were estimated from the temperature dependence of the cmc values. It was observed that the critical micelle concentration of the gemini surfactant and the degree of counter ion dissociation of the micelle increased as the volume percentage of organic solvent, and temperature increased. The standard Gibbs free energy of micellization was found to be less negative with the increase in the organic solvent content and temperature.

  20. Surfactant protein A and surfactant protein D variation in pulmonary disease

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Husby, Steffen; Holmskov, Uffe

    2007-01-01

    Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding...... lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential...... in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic...

  1. ASSOCIATION OF BRANCHED POLYETHYLENE IMINE WITH SURFACTANTS IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Ismael C. Bellettini

    2015-07-01

    Full Text Available Three polymer-surfactant systems comprised of branched polyethylene imine (PEI with an anionic surfactant (sodium dodecylsulfate; SDS, a cationic surfactant (tetradecyltrimethylammonium bromide; TTAB, and a zwitterionic surfactant (N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate; SB3-14 were studied based on the properties of surface tension, pyrene fluorescence emission, dynamic light scattering, pH, and zeta potential measurements. The critical aggregation concentration (cac and polymer saturation point (psp were determined for all three systems. The effect of these surfactants on the physico-chemical characteristics (diameter and surface charge of the complexes formed was determined. Polymer-surfactant interactions occurred in all of the systems studied, with the strongest interactions, electrostatic in nature, occurring in the SDS-PEI system. After the neutralization of the polymer charges with the addition of the surfactant, the hydrophobic effect started to control the interlacing of the polymer chains. For the PEI-TTAB system, a very dense film was formed at surfactant concentrations above 2.0 mmol L-1. In this case, the bromide counter-ion interacted with both the positively-charged PEI and the head of the surfactant, which is responsible for the formation of double layer coordination complexes. For the system composed of PEI and the zwitterionic surfactant, less cooperative associations occurred in comparison with the other systems.

  2. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Erin C. H., E-mail: erinkyle@engineering.ucsb.edu; Kaun, Stephen W.; Young, Erin C.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5–6 × 10{sup 19} cm{sup −3} as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 10{sup 18} cm{sup −3}. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  3. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.; Montemagno, C.D.; Lewis, B.

    1991-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which 21 surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site

  4. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  5. Surfactant-induced layered growth in homoepitaxy of Fe on Fe(100)-c(2 x 2)O reconstruction surface

    International Nuclear Information System (INIS)

    Kamiko, Masao; Mizuno, Hiroyuki; Chihaya, Hiroaki; Xu, Junhua; Kojima, Isao; Yamamoto, Ryoichi

    2007-01-01

    In this study, the effects of several surfactants (Pb, Bi, and Ag) on the homoepitaxial growth of Fe(100) were studied and compared. The reflection high-energy electron diffraction measurements clearly reveal that these surfactants enhance the layer-by-layer growth of Fe on an Fe(100)-c(2 x 2)O reconstruction surface. The dependence of growth on the surfactant layer thickness suggests that there exists a suitable amount of surfactant layer that induces a smoother layer-by-layer growth. Comparisons between the atomic force microscopy images reveal that the root-mean-square surface roughness of Fe films mediated by Pb and Bi surfactants are considerably smaller than those of the films mediated by Ag surfactant. The Auger electron spectra show that Pb and Bi segregate at the top of the surface. It has been concluded that Pb and Bi are effective surfactants for enhancing layer-by-layer growth in Fe homoepitaxy. Ag has the same effect, but it is less efficient due to the weak surface segregation of Ag

  6. The effect of nanoparticle aggregation on surfactant foam stability.

    Science.gov (United States)

    AlYousef, Zuhair A; Almobarky, Mohammed A; Schechter, David S

    2018-02-01

    The combination of nanoparticles (NPs) and surfactant may offer a novel technique of generating stronger foams for gas mobility control. This study evaluates the potential of silica NPs to enhance the foam stability of three nonionic surfactants. Results showed that the concentration of surfactant and NPs is a crucial parameter for foam stability and that there is certain concentrations for strong foam generation. A balance in concentration between the nonionic surfactants and the NPs can enhance the foam stability as a result of forming flocs in solutions. At fixed surfactant concentration, the addition of NPs at low to intermediate concentrations can produce a more stable foam compared to the surfactant. The production of small population of flocs as a result of mixing the surfactant and NPs can enhance the foam stability by providing a barrier between the gas bubbles and delaying the coalescence of bubbles. Moreover, these flocs can increase the solution viscosity and, therefore, slow the drainage rate of thin aqueous film (lamellae). The measurements of foam half-life, bubble size, and mobility tests confirmed this conclusion. However, the addition of more solid particles or surfactant might have a negative impact on foam stability and reduce the maximum capillary pressure of coalescence as a result of forming extensive aggregates. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Edge-wave-driven durable variations in the thickness of the surfactant film and concentration of surface floats

    Energy Technology Data Exchange (ETDEWEB)

    Averbukh, Elena [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); Kurkina, Oksana, E-mail: okurkina@hse.ru [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); National Research University Higher School of Economics, 25/12 Bol' shaya Pecherskaya St., 603155 Nizhny Novgorod (Russian Federation); Kurkin, Andrey [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); Soomere, Tarmo, E-mail: soomere@cs.ioc.ee [Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn (Estonia)

    2014-01-03

    By employing a simple model for small-scale linear edge waves propagating along a homogeneous sloping beach, we demonstrate that certain combinations of linear wave components may lead to durable changes in the thickness of the surfactant film, equivalently, in the concentration of various substances (debris, litter) floating on the water surface. Such changes are caused by high-amplitude transient elevations that resemble rogue waves and occur during dispersive focusing of wave fields with a continuous spectrum. This process can be treated as an intrinsic mechanism of production of patches in the surface layer of an otherwise homogeneous coastal environment impacted by linear edge waves.

  8. Hydrazine-based synergistic Ti(III)/N doping of surfactant-templated TiO{sub 2} thin films for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Syed Z.; Rankin, Stephen E., E-mail: srankin@engr.uky.edu

    2016-10-01

    lattice of surfactant-templated TiO{sub 2} films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. - Highlights: • Photocatalysis by surfactant-templated ordered mesoporous TiO{sub 2} films measured. • Hydrazine treatment was performed for co-doping of Ti{sup 3+} and N. • Visible light absorption increases with Ti{sup 3+} and N co-doping. • Visible-light driven water splitting enhanced up to 4× over undoped titania. • Optimal time of hydrazine exposure found due to pore texture coarsening.

  9. Filmes compostos de gelatina, triacetina, ácido esteárico ou capróico: efeito do pH e da adição de surfactantes sobre a funcionalidade dos filmes Composite films made with gelatin, tracetin, stearic and caproic acids: effect of pH and surfactants addition on the functionality of films

    Directory of Open Access Journals (Sweden)

    Taciana Davanço

    2007-06-01

    homogeneously. Thus, to improve the incorporation of hydrophobic substances in the protein matrix of the film, surfactants (SDS and Tween 80 were added. They are compounds that improve the interaction between the protein and the fatty acids, producing a less heterogeneous filmogenic matrix. The effect of pH was also studied, with the purpose of observing if it influences the homogeneity of the filmogenic matrix. The addition of stearic acid to the gelatin-based films was more efficient in reducing the water vapor permeability than the caproic acid. Adding surfactant SDS reduced water vapor permeability of both films, with stearic acid or caproic acid. Adjusting the pH to the films with no surfactants produced more homogeneous matrices.

  10. Nighttime oxidation of surfactants at the air-water interface: effects of chain length, head group and saturation

    Science.gov (United States)

    Sebastiani, Federica; Campbell, Richard A.; Rastogi, Kunal; Pfrang, Christian

    2018-03-01

    losses vary massively between species that are closely related in structure: NO3 reacts ca. 400 times faster than O3 with the common model surfactant oleic acid, but only ca. 60 times faster with its methyl ester MO. It is therefore necessary to perform a case-by-case assessment of the relative contributions of the different degradation routes for any specific surfactant. The overall impact of NO3 on the fate of saturated surfactants is slightly less clear given the lack of prior kinetic data for comparison, but NO3 is likely to contribute significantly to the loss of saturated species and dominate their loss during nighttime. The retention of the organic character at the air-water interface differs fundamentally between the different surfactant species: the fatty acids studied (OA and POA) form products with a yield of ˜ 20 % that are stable at the interface while NO3-initiated oxidation of the methyl ester MO rapidly and effectively removes the organic character ( ≤ 3 % surface-active products). The film-forming potential of reaction products in real aerosol is thus likely to depend on the relative proportions of saturated and unsaturated surfactants as well as the head group properties. Atmospheric lifetimes of unsaturated species are much longer than those determined with respect to their reactions at the air-water interface, so they must be protected from oxidative attack, for example, by incorporation into a complex aerosol matrix or in mixed surface films with yet unexplored kinetic behaviour.

  11. Effects of gamma radiation from 60Co on dilute aqueous solutions of Linear Alkyl Sulfonate Surfactants and other organic pollutants

    International Nuclear Information System (INIS)

    Rohrer, D.M.

    1975-01-01

    This study is the result of research findings and operational experiences gained by the author in over four years of work associated with the use of 60 Co for the treatment of waste-water. The effects of 60 Co are discussed with regard to radiochemical destruction of specific organic pollutant species. The study deals specifically with the effects of gamma radiation from a 30,000 Ci 60 Co source upon aqueous solutions of Linear Alkyl Sulfonate Surfactants. The new Linear Alkyl Sulfonate (LAS) Surfactants, the major surfactant produced in the United States of America since June 1965, was developed to replace the old Alkyl Benzene Sulfonate (ABS) Surfactants. The reason for the removal of Alkyl Benzene Sulfonate Surfactants was their extreme environmental stability and the associated appearance of foam in waste-water treatment plants and receiving streams. Although the Linear Alkyl Sulfonate Surfactants are considered 'bio-degradable', the time required for 'bio-degradation' is impractical within the present environmental guidelines. This led to research into alternate techniques of treatment for the destruction of Linear Alkyl Sulfonate Surfactants. Consideration is also given to similar effects of gamma radiation upon pesticides and to the practical aspects of the use of gamma radiation for the treatment of waste-water. Included are discussions of the general experimental procedures used, the sources and their calibration, and sampling techniques to ensure the accuracy of the data. (author)

  12. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Science.gov (United States)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  13. Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots

    KAUST Repository

    Zhang, Haitao

    2011-12-14

    A novel method is reported to create inorganically connected nanocrystal (NC) assemblies for both II-VI and IV-VI semiconductors by removing surfactant ligands using (NH 4) 2S. This surface modification process differs from ligand exchange methods in that no new surfactant ligands are introduced and the post-treated NC surfaces are nearly bare. The detailed mechanism study shows that the high reactivity between (NH 4) 2S and metal-surfactant ligand complexes enables the complete removal of surfactant ligands in seconds and converts the NC metal-rich shells into metal sulfides. The post-treated NCs are connected through metal-sulfide bonding and form a larger NCs film assembly, while still maintaining quantum confinement. Such "connected but confined" NC assemblies are promising new materials for electronic and optoelectronic devices. © 2011 American Chemical Society.

  14. Surfactant-directed synthesis of mesoporous films made single-step by a tandem photosol-gel/photocalcination route

    Energy Technology Data Exchange (ETDEWEB)

    De Paz-Simon, Héloïse; Chemtob, Abraham, E-mail: abraham.chemtob@uha.fr; Croutxé-Barghorn, Céline [Laboratory of Macromolecular Photochemistry and Engineering, ENSCMu, University of Haute-Alsace, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex (France); Rigolet, Séverinne; Michelin, Laure; Vidal, Loïc; Lebeau, Bénédicte [Institut de Science des Matériaux de Mulhouse, UMR-CNRS 7361, University of Haute-Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex (France)

    2014-11-01

    In view of their technological impact in materials chemistry, a simplified and more efficient synthetic route to mesoporous films is highly sought. We report, herein, a smart UV-mediated approach coupling in a one-stage process sol-gel photopolymerization and photoinduced template decomposition/ablation to making mesoporous silica films. Performed at room temperature with a solvent-free solution of silicate precursor and amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer, the synthesis relies on photoacid generation to induce the fast formation (≈10 min) of mesostructured silica/surfactant domains. Continuation of UV exposure for three additional hours enables subsequent and complete photodegradation of the polyether copolymer, resulting in ordered or disordered mesoporous silica film. One of the most attractive features is that the one-step procedure relies on a continuous illumination provided by the same conventional medium-pressure Hg-Xe arc lamp equipped with a 254 nm reflector to enhance the emission of energetic photons <300 nm. In addition to X-ray diffraction and transmission electron microscopy, time-resolved Fourier transform infrared spectroscopy has proved to be a powerful in situ technique to probe the different chemical transformations accompanying irradiation. Photocalcination strengthens the inorganic network, while allowing to preserve a higher fraction of residual silanol groups compared with thermal calcination. A polyether chain degradation mechanism based on oxygen reactive species-mediated photo-oxidation is proposed.

  15. Study on the surfactants present in atmospheric aerosols collected in the Okinawa Japan

    Science.gov (United States)

    Kamegawa, A.; Kasaba, T.; Shimabukuro, W.; Arakaki, T.

    2017-12-01

    The main constituent of atmospheric aerosols is organic substances, which occupy 20 to 70% of the mass. Organic matters in the aerosols contain organic acids, protein and humic acid, which behave similar to surfactants. Since surfactants contain both hydrophobic and hydrophilic functional groups in the molecule, they can play important roles in cloud formation and can affect climate change, but detailed mechanisms and magnitude are not well understood. In addition, surfactants can cause asthma, allergy, dry eye and so on. In this study, our aim is to characterize surfactants in the aerosols collected in different seasons in Okinawa, Japan. Atmospheric aerosols were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) during Sep. 2013 and July 2014. Surfactants in the environment are comprised of artificially synthesized compounds and naturally derived organics so we only differentiate them into anionic and cationic surfactants. Colorimetric methods were used to determine the concentrations of anionic surfactants as methylene blue active substance (MBAS). Cationic surfactants were also measured by colorimetric method as disulfine blue active substance (DBAS) and showed always below detection limit. Thus, we only discuss anionic surfactants measured as MBAS. Water soluble organic carbon (WSOC) and metal concentrations were also measured for the same aerosol samples. Concentrations of MBAS in the studied samples were 2-3 times higher in spring, fall and winter than those collected in summer. MBAS concentration in the aerosols showed strong correlation with sulfate ion and WSOC, and slightly weaker correlation with nss-sulfate ion. Among the metals, only sodium ion showed a relatively strong correlation with MBAS concentrations. It is suggested that the anionic surfactants in the studied aerosols are mainly derived from marine sources.

  16. Fundamentals of laser-assisted fabrication of inorganic and organic films

    DEFF Research Database (Denmark)

    Schou, Jørgen

    2008-01-01

    The standard method for producing films by laser-assisted methods, Pulsed Laser Deposition (PLD) will be reviewed. The films considered are usually inorganic films, but also films of organic materials have been produced. Also the deposition of organic films by MAPLE (Matrix Assisted Pulsed Laser...

  17. Layered Zinc Hydroxide Salts Intercalated with Anionic Surfactants and Adsolubilized with UV Absorbing Organic Molecules

    OpenAIRE

    Cursino,Ana C. T.; Rives,Vicente; Carlos,Luís D.; Rocha,João; Wypych,Fernando

    2015-01-01

    Two anionic surfactants, dodecylsulfate (DDS) and dodecylbenzenesulfonate (DBS), were intercalated into layered zinc hydroxide salts (LHS) using the direct alkaline co-precipitation method, and characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) and thermogravimetric analysis/differential thermal analysis (TGA/DTA). Different UV-absorbing organic molecules, like salicylates, cinnamates and benzophenones, were adsolubilized in the LHS interlayer following two di...

  18. Size influences the effect of hydrophobic nanoparticles on lung surfactant model systems.

    Science.gov (United States)

    Dwivedi, Mridula V; Harishchandra, Rakesh Kumar; Koshkina, Olga; Maskos, Michael; Galla, Hans-Joachim

    2014-01-07

    The alveolar lung surfactant (LS) is a complex lipid protein mixture that forms an interfacial monolayer reducing the surface tension to near zero values and thus preventing the lungs from collapse. Due to the expanding field of nanotechnology and the corresponding unavoidable exposure of human beings from the air, it is crucial to study the potential effects of nanoparticles (NPs) on the structural organization of the lung surfactant system. In the present study, we investigated both, the domain structure in pure DPPC monolayers as well as in lung surfactant model systems. In the pure lipid system we found that two different sized hydrophobic polymeric nanoparticles with diameter of ~12 nm and ~136 nm have contrasting effect on the functional and structural behavior. The small nanoparticles inserted into fluid domains at the LE-LC phase transition are not visibly disturbing the phase transition but disrupting the domain morphology of the LE phase. The large nanoparticles led to an expanded isotherm and to a significant decrease in the line tension and thus to a drastic disruption of the domain structures at a much lower number of nanoparticles with respect to the lipid. The surface activity of the model LS films again showed drastic variations due to presence of different sized NPs illustrated by the film balance isotherms and the atomic force microscopy. AFM revealed laterally profuse multilayer protrusion formation on compression but only in the presence of 136 nm sized nanoparticles. Moreover we investigated the vesicle insertion process into a preformed monolayer. A severe inhibition was observed only in the presence of ~136 nm NPs compared to minor effects in the presence of ~12 nm NPs. Our study clearly shows that the size of the nanoparticles made of the same material determines the interaction with biological membranes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  20. The use of Nile Red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems

    NARCIS (Netherlands)

    Stuart, MCA; van de Pas, JC; Engberts, JBFN; Pas, John C. van de

    Ternary systems of surfactants, water and organic solvents were studied by monitoring the steady-state fluorescence of the versatile solvatochromic probe Nile Red. We found not only that Nile Red can be used throughout the whole isotropic regions in the phase diagram, but also that subtle changes in

  1. Interfacial polarization phenomena in organic molecular films

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Manaka, Takaaki

    2006-01-01

    Electrostatic phenomena occurring at the interface between metal/organic and organic/organic materials are discussed from the viewpoint of dielectrics physics. Focusing on two important origins of surface polarization phenomena, orientational ordering of polar molecules and displacement of excess charges at the interface, surface polarization phenomena of organic thin films are discussed. To define the orientational order of polar molecules, orientational order parameters are introduced, and surface polarization due to the alignment of dipoles is expressed. The generation of Maxwell displacement current (MDC) and optical second harmonic generation (SHG) that are specific for surface organic monomolecular films are discussed, and some experimental evidence are shown. As an extension of the concept of surface Fermi level introduced to discuss the electrostatic phenomena due to electron transfer at the interface between metal-organic insulators, the surface Fermi level is extended to the discussion on the electrostatic phenomena of organic semiconductor materials on metals. In this paper, some experimental evidence of surface polarization originating from polar molecules and displacement of excess charges are shown. After that, with consideration of these surface phenomena, single electron tunneling of organic films are briefly discussed in association with surface polarization phenomena

  2. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    Science.gov (United States)

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  3. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  4. Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds.

    Science.gov (United States)

    Brüggemann, Martin; Hayeck, Nathalie; Bonnineau, Chloé; Pesce, Stéphane; Alpert, Peter A; Perrier, Sébastien; Zuth, Christoph; Hoffmann, Thorsten; Chen, Jianmin; George, Christian

    2017-08-24

    Films of biogenic compounds exposed to the atmosphere are ubiquitously found on the surfaces of cloud droplets, aerosol particles, buildings, plants, soils and the ocean. These air/water interfaces host countless amphiphilic compounds concentrated there with respect to in bulk water, leading to a unique chemical environment. Here, photochemical processes at the air/water interface of biofilm-containing solutions were studied, demonstrating abiotic VOC production from authentic biogenic surfactants under ambient conditions. Using a combination of online-APCI-HRMS and PTR-ToF-MS, unsaturated and functionalized VOCs were identified and quantified, giving emission fluxes comparable to previous field and laboratory observations. Interestingly, VOC fluxes increased with the decay of microbial cells in the samples, indicating that cell lysis due to cell death was the main source for surfactants and VOC production. In particular, irradiation of samples containing solely biofilm cells without matrix components exhibited the strongest VOC production upon irradiation. In agreement with previous studies, LC-MS measurements of the liquid phase suggested the presence of fatty acids and known photosensitizers, possibly inducing the observed VOC production via peroxy radical chemistry. Up to now, such VOC emissions were directly accounted to high biological activity in surface waters. However, the results obtained suggest that abiotic photochemistry can lead to similar emissions into the atmosphere, especially in less biologically-active regions. Furthermore, chamber experiments suggest that oxidation (O 3 /OH radicals) of the photochemically-produced VOCs leads to aerosol formation and growth, possibly affecting atmospheric chemistry and climate-related processes, such as cloud formation or the Earth's radiation budget.

  5. Effect of filling surface-treated pyrolytic char on resistivity of rubber films

    Directory of Open Access Journals (Sweden)

    Pattraporn Yamkaya

    2015-03-01

    Full Text Available In this research, natural rubber (NR films filled with pyrolytic tire char, carbon black N234 and N330 were compared for their electrical resistivity. The filler loading was varied to be 5, 10, 15, 20 and 25% of dry rubber content. The effect of surfactant which is 2 %w/v sodium dodecyl sulfate (SDS was also investigated. In the experiments, it was necessary to disperse the pyrolytic char in ethyl alcohol while disperse carbon black (CB in ammonium hydroxide solution prior to mixing with the rubber latex and the filled NR film was prepared by casting the mixture on a plate. It was found that increasing the amount of pyrolytic char in the NR film could lower its resistivity. The surfactant, SDS, could help better dispersion of both CB and pyrolytic char, thereby decreasing the resistivity. In a separate experiment where hexane vapor was absorbed in NR film without surfactant, in the first 30 seconds, the rate of increasing resistivity of the CB-filled film was not seen as clearly as that of pyrolytic-char-filled film. For the films with surfactant, the slow increase in resistivity of the NR films filled with N330 and pyrolytic char during adsorbing hexane vapor was observed.

  6. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    Science.gov (United States)

    Ge, Wangyao

    emulsion-based RIR-MAPLE is still missing, which increases the difficulty of using rational design to improve the performance of initial RIR-MAPLE devices that have been demonstrated. As a result, it is important to study the fundamentals of emulsion-based RIR-MAPLE in order to provide insight into the long-term prospects for this thin film deposition technique. This dissertation explores the fundamental deposition mechanisms of emulsion-based RIR-MAPLE by considering the effects of the emulsion target composition (namely, the primary solvent, secondary solvent, and surfactant) on the properties of deposited polymer films. The study of primary solvent effects on hydrophobic polymer deposition helps identify the unique method of film formation for emulsion-based RIR-MAPLE, which can be described as cluster-by-cluster deposition of emulsified particles that yields two levels of ordering (i.e., within the clusters and among the clusters). The generality of this film formation mechanism is tested by applying the lessons learned to hydrophilic polymer deposition. Based on these studies, the deposition design rules to achieve smooth polymer films, which are important for different device applications, are identified according to the properties of the polymer. After discussion of the fundamental deposition mechanisms, three applications of emulsion-based RIR-MAPLE, namely thin film deposition of organic solar cells, polymer/nanoparticle hybrid solar cells, and antimicrobial/fouling-release multifunctional films, are studied. The work on organic solar cells identifies the ideal deposition mode for blended films with nanoscale domain sizes, as well as demonstrates the relationships among emulsion target composition, film properties, and corresponding device performance. The studies of polymer/nanoparticle hybrid solar cells demonstrate precise control of colloidal nanoparticle deposition, in which the integrity of nanoparticles is maintained and a distinct film morphology is

  7. Surfactant media to grow new crystalline cobalt 1,3,5-benzenetricarboxylate metal-organic frameworks

    KAUST Repository

    Lu, Haisheng

    2014-08-18

    In this report, three new metal-organic frameworks (MOFs), [Co 3(μ3-OH)(HBTC)(BTC)2Co(HBTC)]·(HTEA) 3·H2O (NTU-Z30), [Co(BTC)] ·HTEA·H2O (NTU-Z31), [Co3(BTC) 4]·(HTEA)4 (NTU-Z32), where H3BTC = 1,3,5-benzenetricarboxylic acid, TEA = triethylamine, and NTU = Nanyang Technological University, have been successfully synthesized under surfactant media and have been carefully characterized by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis, and IR spectromtry. NTU-Z30 has an unusual trimeric [Co3(μ3-OH)(COO) 7] secondary building unit (SBU), which is different from the well-known trimeric [Co3O(COO)6] SBU. The topology studies indicate that NTU-Z30 and NTU-Z32 possess two new topologies, 3,3,6,7-c net and 2,8-c net, respectively, while NTU-Z31 has a known topology rtl type (3,6-c net). Magnetic analyses show that all three materials have weak antiferromagnetic behavior. Furthermore, NTU-Z30 has been selected as the heterogeneous catalyst for the aerobic epoxidation of alkene, and our results show that this material exhibits excellent catalytic activity as well as good stability. Our success in growing new crystalline cobalt 1,3,5- benzenetricarboxylate MOFs under surfactant media could pave a new road to preparing new diverse crystalline inorganic materials through a surfactant-thermal method. © 2014 American Chemical Society.

  8. Microbial surfactant activities from a petrochemical landfarm in a humid tropical region of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, B.M.; Dias, J.C.T.; Santos, A.C.F.; Argolo-Filho, R.C.; Fontana, R.; Loguercio, L.L.; Rezende, R.P. [Univ. Estadual de Santa Cruz, Santa Cruz (Brazil). Dept. de Ciencias Biologicas

    2007-08-15

    Studies have suggested that biosurfactants can enhance the biodegradation of almost insoluble organics by increasing cell uptake availability. In this study, micro-organisms were isolated from a soil sample from a Brazilian petrochemical waste landfarm and grown in petroleum as a carbon source in order to assess their surfactant potential. Isolated colonies were inoculated into tubes, and a drop-collapse method was used to select micro-organisms with surfactant activity. Surfactant activity of the isolates was assessed when the activity was detected for the first time in each culture. The supernatant of each micro-organism was then diluted. The surfactant activity of each dilution was then observed via micelles formation. DNA was then extracted from the samples. A total of 60 microbial strains were selected. Results showed that a variety of petroleum-grown micro-organisms obtained from the landfarm soil showed surfactant activity. Results showed that the micro-organisms were able to use petroleum as a sole carbon source. The production of surfactant compounds occurred during the declining stages of microbial culture curves, which suggested that the nutritional stress achieved on the fourth day of the culture induced the synthesis and secretion of biosurfactants by the isolates. It was concluded that micro-organisms derived from soils polluted with hydrocarbons can be used in bioremediation processes. 21 refs., 1 tab., 3 figs.

  9. Nighttime oxidation of surfactants at the air–water interface: effects of chain length, head group and saturation

    Directory of Open Access Journals (Sweden)

    F. Sebastiani

    2018-03-01

    than that of O3. Furthermore, the relative contributions of NO3 and O3 to the oxidative losses vary massively between species that are closely related in structure: NO3 reacts ca. 400 times faster than O3 with the common model surfactant oleic acid, but only ca. 60 times faster with its methyl ester MO. It is therefore necessary to perform a case-by-case assessment of the relative contributions of the different degradation routes for any specific surfactant. The overall impact of NO3 on the fate of saturated surfactants is slightly less clear given the lack of prior kinetic data for comparison, but NO3 is likely to contribute significantly to the loss of saturated species and dominate their loss during nighttime. The retention of the organic character at the air–water interface differs fundamentally between the different surfactant species: the fatty acids studied (OA and POA form products with a yield of  ∼ 20 % that are stable at the interface while NO3-initiated oxidation of the methyl ester MO rapidly and effectively removes the organic character ( ≤ 3 % surface-active products. The film-forming potential of reaction products in real aerosol is thus likely to depend on the relative proportions of saturated and unsaturated surfactants as well as the head group properties. Atmospheric lifetimes of unsaturated species are much longer than those determined with respect to their reactions at the air–water interface, so they must be protected from oxidative attack, for example, by incorporation into a complex aerosol matrix or in mixed surface films with yet unexplored kinetic behaviour.

  10. Surfactant Effect on the Average Flow Generation Near Curved Interface

    Science.gov (United States)

    Klimenko, Lyudmila; Lyubimov, Dmitry

    2018-02-01

    The present work is devoted to the average flow generation near curved interface with a surfactant adsorbed on the surface layer. The investigation was carried out for a liquid drop embedded in a viscous liquid with a different density. The liquid flows inside and outside the drop are generated by small amplitude and high frequency vibrations. Surfactant exchange between the drop surface and the surrounding liquid is limited by the process of adsorption-desorption. It was assumed that the surfactant is soluble in the surrounding liquid, but not soluble in the liquid drop. Surrounding liquid and the liquid in the drop are considered incompressible. Normal and shear viscous stresses balance at the interface is performed under the condition that the film thickness of the adsorbed surfactant is negligible. The problem is solved under assumption that the shape of the drop in the presence of adsorbed surfactant remains spherical symmetry. The effective boundary conditions for the tangential velocity jump and shear stress jump, describing the above generation have been obtained by matched asymptotic expansions method. The conditions under which the drop surface can be considered as a quasi-solid are determined. It is shown that in the case of the significant effect of surfactant on the surface tension, the dominant mechanism for the generation is the Schlichting mechanisms under vibrations.

  11. Surfactant-enhanced alkaline flooding for light oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1996-05-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12. 0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are discussed.

  12. Room temperature deposition of magnetite thin films on organic substrate

    International Nuclear Information System (INIS)

    Arisi, E.; Bergenti, I.; Cavallini, M.; Murgia, M.; Riminucci, A.; Ruani, G.; Dediu, V.

    2007-01-01

    We report on the growth of magnetite films directly on thin layers of organic semiconductors by means of an electron beam ablation method. The deposition was performed at room temperature in a reactive plasma atmosphere. Thin films show ferromagnetic (FM) hysteresis loops and coercive fields of hundreds of Oersted. Micro Raman analysis indicates no presence of spurious phases. The morphology of the magnetite film is strongly influenced by the morphology of the underlayer of the organic semiconductor. These results open the way for the application of magnetite thin films in the field of organic spintronics

  13. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    Science.gov (United States)

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  14. Laser-Printed Organic Thin-Film Transistors

    KAUST Repository

    Diemer, Peter J.

    2017-09-20

    Solution deposition of organic optoelectronic materials enables fast roll-to-roll manufacturing of photonic and electronic devices on any type of substrate and at low cost. But controlling the film microstructure when it crystallizes from solution can be challenging. This represents a major limitation of this technology, since the microstructure, in turn, governs the charge transport properties of the material. Further, the solvents typically used are hazardous, which precludes their incorporation in large-scale manufacturing processes. Here, the first ever organic thin-film transistor fabricated with an electrophotographic laser printing process using a standard office laser printer is reported. This completely solvent-free additive manufacturing method allows for simultaneous deposition, purification, and patterning of the organic semiconductor layer. Laser-printed transistors using triisopropylsilylethynyl pentacene as the semiconductor layer are realized on flexible substrates and characterized, making this a successful first demonstration of the potential of laser printing of organic semiconductors.

  15. Photoconductivity of thin organic films

    International Nuclear Information System (INIS)

    Tkachenko, Nikolai V.; Chukharev, Vladimir; Kaplas, Petra; Tolkki, Antti; Efimov, Alexander; Haring, Kimmo; Viheriaelae, Jukka; Niemi, Tapio; Lemmetyinen, Helge

    2010-01-01

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C 60 ), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C 60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 x 10 3 Ω m and 3 x 10 4 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 x 10 8 Ω m in dark to 3.1 x 10 6 Ω m under the light.

  16. Use of surfactants for the remediation of contaminated soils: a review.

    Science.gov (United States)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    Science.gov (United States)

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  18. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  19. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    Science.gov (United States)

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  20. The Equilibrium Spreading Tension of Pulmonary Surfactant

    OpenAIRE

    Dagan, Maayan P.; Hall, Stephen B.

    2015-01-01

    Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γe) with the bulk phase from which they form. For individual phospholipids, γe is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γe therefo...

  1. Doped organic films for OLEDs probed with neutron reflectometry

    International Nuclear Information System (INIS)

    Smith, Arthur R. G.; Lo, Shih-Chun; Gentle, Ian R.

    2009-01-01

    Full text: Conjugated organic semiconductors form an exciting class of materials that can be used in a variety of cutting edge technologies including organic light-emitting diodes, solar cells and transistors. In all these technologies the thin film morphology and interfacial interactions are key areas for their operation. In order to optimise the materials and devices it is critical to understand the structural property relationships for the organic semiconductors by relating the 'molecular' structure to the film morphology and correlating these to the photophysical and device characteristics. Organic light emitting diodes (OLEO) have gained interest for their superior performance compared to current display technologies. Optimising the active emissive layer remains a challenge which can significantly affect the final performance of the device [1]. We have investigated the layering behaviour of small molecule co-evaporated films of deuterated 4,4'-bis(9-carbazolyl)-1, 1 '-biphenyl doped with tris-phenylpyridine iridium(llI) using neutron reflectometry The behaviour of doped emissive layers is dependent on the ratio between dopant and host material. The morphology and internal structure of such films have not yet been investigated, leading to questions about the phase separation and ordering of layers within the film.

  2. Use of surfactants for the remediation of contaminated soils: A review

    International Nuclear Information System (INIS)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-01-01

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation

  3. Use of surfactants for the remediation of contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xuhui, E-mail: clab@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Jiang, Rui; Xiao, Wei [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2015-03-21

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  4. Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaIn Nanodroplets.

    Science.gov (United States)

    Finkenauer, Lauren R; Lu, Qingyun; Hakem, Ilhem F; Majidi, Carmel; Bockstaller, Michael R

    2017-09-26

    A methodology based on light scattering and spectrophotometry was developed to evaluate the effect of organic surfactants on the size and yield of eutectic gallium/indium (EGaIn) nanodroplets formed in organic solvents by ultrasonication. The process was subsequently applied to systematically evaluate the role of headgroup chemistry as well as polar/apolar interactions of aliphatic surfactant systems on the efficiency of nanodroplet formation. Ethanol was found to be the most effective solvent medium in promoting the formation and stabilization of EGaIn nanodroplets. For the case of thiol-based surfactants in ethanol, the yield of nanodroplet formation increased with the number of carbon atoms in the aliphatic part. In the case of the most effective surfactant system-octadecanethiol-the nanodroplet yield increased by about 370% as compared to pristine ethanol. The rather low overall efficiency of the reaction process along with the incompatibility of surfactant-stabilized EGaIn nanodroplets in nonpolar organic solvents suggests that the stabilization mechanism differs from the established self-assembled monolayer formation process that has been widely observed in nanoparticle formation.

  5. Surfactant-enhanced solubilization of residual dodecane in soil columns. 2. Mathematical modeling

    International Nuclear Information System (INIS)

    Abriola, L.M.; Dekker, T.J.; Pennell, K.D.

    1993-01-01

    A mathematical model is developed to describe surfactant-enhanced solubilization of nonaqueous-phase liquids (NAPLs) in porous media. The model incorporates aqueous-phase transport equations for organic and surfactant components as well as a mass balance for the organic phase. Rate-limited solubilization and surfactant sorption are represented by a linear driving force expression and a Langmuir isotherm, respectively. The model is implemented in a one-dimensional Galerkin finite element simulator which idealizes the entrapped residual organic as a collection of spherical globules. Soil column data for the solubilization of residual dodecane by an aqueous solution of polyoxyethylene (20) sorbitan monooleate are used to evaluate the conceptual model. Input parameters were obtained, where possible, from independent batch experiments. Calibrated model simulations exhibit good agreement with measured effluent concentrations, supporting the utility of the conceptual modeling approach. Sensitivity analyses explore the influence of surfactant concentration and flushing strategy on NAPL recovery. 45 refs., 6 figs., 3 tabs

  6. Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol

    International Nuclear Information System (INIS)

    Hernandez, Maria; Fernandez, Lenys; Borras, Carlos; Mostany, Jorge; Carrero, Hermes

    2007-01-01

    The characteristics of hydrotalcite (HT)-like clay films containing ionic and nonionic surfactants and their ability to oxidize phenol have been examined. The HT clay (Co/Al-NO 3 ) was synthesized by coprecipitation techniques and then modified with surfactants such as sodium dodecylbenzenesulfonate (SDBS), octylphenoxypolyethoxyethanol (TX100) or cetylpyridinium bromide (CPB). X-ray diffraction analysis revealed that the interlayer basal spacing varied depending on the type of surfactant retained by the HT. The presence of SDBS and CPB expanded the HT interlayer, which in the presence of TX100 did not show an appreciable change. Phenol oxidation is favored at surfactant-HT-GC modified electrodes, after a preconcentration time, compared to phenol oxidation at HT-GC or GC electrodes. Surfactant-HT-GC modified electrodes display good stability in continuous electrochemical phenol oxidation. At pH values between 6 and 10.8, both SDBS-HT-GC and TX100-HT-GC modified electrodes seem to be promising electrodes for the detection of phenol in water; while the CPB-HT-GC modified electrode should be affected by the inorganic anions

  7. Self-standing chitosan films as dielectrics in organic thin-film transistors

    Directory of Open Access Journals (Sweden)

    J. Morgado

    2013-12-01

    Full Text Available Organic thin film transistors, using self-standing 50 µm thick chitosan films as dielectric, are fabricated using sublimed pentacene or two conjugated polymers deposited by spin coating as semiconductors. Field-effect mobilities are found to be similar to values obtained with other dielectrics and, in the case of pentacene, a value (0.13 cm2/(V•s comparable to high performing transistors was determined. In spite of the low On/Off ratios (a maximum value of 600 was obtained for the pentacene-based transistors, these are promising results for the area of sustainable organic electronics in general and for biocompatible electronics in particular.

  8. Quality improvement of organic thin films deposited on vibrating substrates

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Y.A.; Caldas, P.G.; Prioli, R.; Cremona, M., E-mail: cremona@fis.puc-rio.br

    2011-12-30

    Most of the Organic Light-Emitting Diodes (OLEDs) have a multilayered structure composed of functional organic layers sandwiched between two electrodes. Thin films of small molecules are generally deposited by thermal evaporation onto glass or other rigid or flexible substrates. The interface state between two organic layers in OLED device depends on the surface morphology of the layers and affects deeply the OLED performance. The morphology of organic thin films depends mostly on substrate temperature and deposition rate. Generally, the control of the substrate temperature allows improving the quality of the deposited films. For organic compounds substrate temperature cannot be increased too much due to their poor thermal stability. However, studies in inorganic thin films indicate that it is possible to modify the morphology of a film by using substrate vibration without increasing the substrate temperature. In this work, the effect of the resonance vibration of glass and silicon substrates during thermal deposition in high vacuum environment of tris(8-quinolinolate)aluminum(III) (Alq{sub 3}) and N,N Prime -Bis(naphthalene-2-yl)-N,N Prime -bis(phenyl)-benzidine ({beta}-NPB) organic thin films with different deposition rates was investigated. The vibration used was in the range of hundreds of Hz and the substrates were kept at room temperature during the process. The nucleation and subsequent growth of the organic films on the substrates have been studied by atomic force microscopy technique. For Alq{sub 3} and {beta}-NPB films grown with 0.1 nm/s as deposition rate and using a frequency of 100 Hz with oscillation amplitude of some micrometers, the results indicate a reduction of cluster density and a roughness decreasing. Moreover, OLEDs fabricated with organic films deposited under these conditions improved their power efficiency, driven at 4 mA/cm{sup 2}, passing from 0.11 lm/W to 0.24 lm/W with an increase in their luminance of about 352 cd/m{sup 2

  9. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    Science.gov (United States)

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  10. Adsorption of sugar surfactants at the air/water interface.

    Science.gov (United States)

    Varga, Imre; Mészáros, Róbert; Stubenrauch, Cosima; Gilányi, Tibor

    2012-08-01

    The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Stabilization of liquid crystal dispersion by nonionic surfactant/acrylamide copolymer containing hydrophobic moieties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, M.H.; Lee, J.R. [Korea Research Institute of Chemical Technology, Taejon (Korea)

    1999-07-01

    The effect of nonionic surfactant (H(OCH){sub 2}-OC{sub 6}H{sub 4}-C{sub 9}H{sub 19}, NP-8) and acrylamide copolymer containing nonylphenyl groups as hydrophobic moieties on the stabilization of liquid crystal (LC)-in-water dispersion has been studied. According to cloud point and adsorption measurements, the hydrophobically strong interaction between NP-8 and the nonylphenol moieties is formed. And the addition of surfactant increases the stability of LC dispersion and improve the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. It is due to the presence of surfactant which allows the formation of nonpolar microenvironment in the round of LC droplet and finally reduces the anchoring effect between LC and the polymeric wall. 21 refs., 8 figs.

  12. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  13. Fabrication of the tricontinuous mesoporous IBN-9 structure with surfactant CTAB

    KAUST Repository

    Zhao, Yunfeng

    2011-12-13

    IBN-9 is the first tricontinuous mesoporous material, consisting of three identical interpenetrating channels that are separated by a single continuous silica wall. It was originally synthesized using a specially designed surfactant as template. The need of special surfactant in the synthesis inhibits extensive investigation of this novel structure and its applications. We demonstrate in this study that such a complicated tricontinuous mesostructure can also be fabricated from the most common and commercially available surfactant cetyltrimethylammonium bromide (CTAB) with the help of polar organic additives, e.g., n-butanol. The role of n-butanol is to finely tune the surface curvature of the organic/inorganic interface during the cooperative self-assembly process. Electron microscopic techniques are employed to identify different mesostructures from the mixture. This study reveals the possibility of discovering unprecedented mesostructures from conventional surfactant-water- silicates systems. © 2011 American Chemical Society.

  14. Surfactant-promoted Prussian Blue-modified carbon electrodes: enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences.

    Science.gov (United States)

    Salazar, P; Martín, M; O'Neill, R D; Roche, R; González-Mora, J L

    2012-04-01

    We report here for the first time a comparison of the beneficial effects of different cationic surfactants - cetyl trimethyl ammonium bromide (CTAB), benzethonium chloride (BZT) and cetylpyridinium chloride (CPC) - for the electrochemical synthesis of Prussian Blue (PB) films, using cyclic voltammetry (CV), on screen-printed carbon electrodes (SPCEs). Their electrochemical properties were investigated, paying special attention to parameters such as the amount of PB deposited, film thickness, charge transfer rate, permeability, reversibility, stability and sensitivity to hydrogen peroxide detection. All surfactant-enhanced PB-modified SPCEs displayed a significant improvement in their electrochemical properties compared with PB-modified SPCEs formed in the absence of surfactants. Surfactant-modified electrodes displayed a consistently higher PB surface concentration value of 2.1±0.4×10(-8) mol cm(-2) (mean±SD, n=3) indicating that PB deposition efficiency was improved 2-3 fold. K(+) and Na(+) permeability properties of the films were also studied, as were kinetic parameters, such as the surface electron transfer rate constant (k(s)) and the transfer coefficient (α). The hydrogen peroxide sensitivity of surfactant-modified PB films generated by 10 electro-deposition CV cycles gave values of 0.63 A M(-1) cm(-2), which is higher than those reported previously for SPCEs by other authors. Finally, the first lactate microbiosensor described in the literature based on BZT-modified PB-coated carbon fiber electrodes is presented. Its very small cross-section (~10 μm diameter) makes it particularly suitable for neuroscience studies in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  16. The effect of surfactant on stratified and stratifying gas-liquid flows

    Science.gov (United States)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  17. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    Science.gov (United States)

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  18. Zeta-potential of fouled thin film composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Hachisuka, H.; Nakamura, T. [Nitto denko Corp., Ibaraki, (Japan); Kimura, S. [Kogakuin University, Tokyo (Japan). Dept. of Environ. Chemical Engineering; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering

    1999-10-01

    The surface zeta-potential of a cross-linked polyamide thin film composite reverse osmosis membrane was measured using an electrophoresis method. It was confirmed that this method could be effectively applied to analyze the fouling of such membranes. It is known that the water flux of membranes drastically decreases as a result of fouling by surfactants. Although the surfactants adsorbed on reverse osmosis membranes could not be detected by conventional methods such as SEM, EDX and FT-IR, their presence could be clarified by the profile measurements of the surface zeta-potential. The profiles of the membrane surface zeta-potentials changed to more positive values in the measured pH range as a result of fouling by cationic or amphoteric surfactants. This measuring method of surface zeta-potentials allowed us to analyze a very small amount of fouling of a thin film composite reverse osmosis membrane. This method could be used to analyze the fouled surface of the thin film composite reverse osmosis membrane which is used for production of ultrapure water and shows a remarkable decrease in flux. It also became clear that this method is easy and effective for the reverse osmosis membrane surface analysis of adsorbed materials such as surfactants. (author)

  19. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Paulo, Pedro M.R. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Merchán, M.D. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Garcia-Fernandez, Emilio; Costa, Sílvia M.B. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Velázquez, M.M., E-mail: mvsal@usal.es [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain)

    2017-03-15

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  20. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    International Nuclear Information System (INIS)

    Alejo, T.; Paulo, Pedro M.R.; Merchán, M.D.; Garcia-Fernandez, Emilio; Costa, Sílvia M.B.; Velázquez, M.M.

    2017-01-01

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  1. Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes

    2017-04-01

    This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.

  2. Surfactant-enhanced alkaline flooding for light oil recovery. Final report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1995-12-01

    In this report, the authors present the results of their experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are summarized.

  3. Novel epoxy-benzoxazine water-based emulsions with reactive benzoxazine surfactants for coatings

    Directory of Open Access Journals (Sweden)

    M. Krajnc

    2014-08-01

    Full Text Available Novel epoxy-benzoxazine emulsions designed for water-based coatings were prepared and investigated. Bisphenol A-based epoxy resins with molar weights of 340, 377 and 1750 g/mol along with epoxidized soybean oil were emulsified using mono- and bi-functional benzoxazine surfactants, which are able to react with epoxy resins at their cure temperature. The structure of synthesized surfactants carrying one or two polyether chains was confirmed using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance and differential scanning calorimetry. Stability of emulsions was verified by particle diameters measurements. Coatings, made directly from emulsions, were dried and cured at elevated temperature using 3,3'-dimetoxybenzidine as curing agent to ensure a highly cross-linked structure of thermosetting films. Curing process, thermal properties and hardness of cured films were investigated. It was found that benzoxazine molecules were well incorporated into the epoxy network upon curing, which ensures no void structure of cured copolymer and enhanced coating properties.

  4. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    International Nuclear Information System (INIS)

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-01-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs

  5. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  6. PERBAIKAN SIFAT MEKANIK DAN LAJU TRANSMISI UAP AIR EDIBLE FILM DARI PATI GANYONG TERMODIFIKASI DENGAN MENGGUNAKAN LILIN LEBAH DAN SURFAKTAN Improving the Mechanical and Water Vapour Transmission Rate Properties of Edible Film from Modified Ganyong Starc

    Directory of Open Access Journals (Sweden)

    Budi Santoso

    2012-05-01

    Full Text Available Edible film from ganyong starch without and with modification were incorporated by CMC and lecithin as surfactants. Edible film were characterized with respect to water vapor transmission rate and mechanical properties. Incorporation of CMC 2 % and lecithin 1 % as surfactants decreased water vapor transmission rate. Puncture strength decreased but still fulfill Japanese Industrial Standard (JIS 1975 min 50 gf.  Elongation of edible film increased and not fulfill JIS 1975 min 70 %.   Keywords: Carboxymethyl cellulose, lecithin, modification, starch, surfactants   ABSTRAK Edible film pati ganyong sebelum dan setelah dimodifikasi ditambahkan surfaktan CMC dan lesitin. Karakteristik edible film yang diamati adalah laju transmisi uap air dan sifat mekanik (kuat tekan dan persen pemanjangan. Penambahan CMC dengan konsentrasi 2 % dan lesitin 1 % menurunkan laju transmisi uap air edible film pati ganyong. Kuat tekan edible film pati ganyong mengalami penurunan, namun masih memenuhi standar JIS 1975 minimal 50gf. Nilai persen pemanjangan edible film pati ganyong meningkat tetapi belum memenuhi standar JIS 1975. Kata kunci: Carboxymethyl cellulose, lesitin, modifikasi, pati, surfaktan

  7. Study of neural cells on organic semiconductor ultra thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bystrenova, Eva; Tonazzini, Ilaria; Stoliar, Pablo; Greco, Pierpaolo; Lazar, Adina; Dutta, Soumya; Dionigi, Chiara; Cacace, Marcello; Biscarini, Fabio [ISMN-CNR, Bologna (Italy); Jelitai, Marta; Madarasz, Emilia [IEM- HAS, Budapest (Hungary); Huth, Martin; Nickel, Bert [LMU, Munich (Germany); Martini, Claudia [Dept. PNPB, Univ. of Pisa (Italy)

    2008-07-01

    Many technological advances are currently being developed for nano-fabrication, offering the ability to create and control patterns of soft materials. We report the deposition of cells on organic semiconductor ultra-thin films. This is a first step towards the development of active bio/non bio systems for electrical transduction. Thin films of pentacene, whose thickness was systematically varied, were grown by high vacuum sublimation. We report adhesion, growth, and differentiation of human astroglial cells and mouse neural stem cells on an organic semiconductor. Viability of astroglial cells in time was measured as a function of the roughness and the characteristic morphology of ultra thin organic film, as well as the features of the patterned molecules. Optical fluorescence microscope coupled to atomic force microscope was used to monitor the presence, density and shape of deposited cells. Neural stem cells remain viable, differentiate by retinoic acid and form dense neuronal networks. We have shown the possibility to integrate living neural cells on organic semiconductor thin films.

  8. Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams.

    Science.gov (United States)

    Vecitis, Chad D; Wang, Yajuan; Cheng, Jie; Park, Hyunwoong; Mader, Brian T; Hoffmann, Michael R

    2010-01-01

    Aqueous film-forming foams (AFFFs) are fire extinguishing agents developed by the Navy to quickly and effectively combat fires occurring close to explosive materials and are utilized today at car races, airports, oil refineries, and military locations. Fluorochemical (FC) surfactants represent 1-5% of the AFFF composition, which impart properties such as high spreadability, negligible fuel diffusion, and thermal stability to the foam. FC's are oxidatively recalcitrant, persistent in the environment, and have been detected in groundwater at AFFF training sites. Ultrasonic irradiation of aqueous FCs has been reported to degrade and subsequently mineralize the FC surfactants perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS). Here we present results of the sonochemical degradation of aqueous dilutions of FC-600, a mixture of hydrocarbon (HC) and fluorochemical components including cosolvents, anionic hydrocarbon surfactants, fluorinated amphiphilic surfactants, anionic fluorinated surfactants, and thickeners such as starch. The primary FC surfactant in FC-600, PFOS, was sonolytically degraded over a range of FC-600 aqueous dilutions, 65 ppb or = 1, indicating that bubble-water interfacial pyrolytic cleavage of the C-S bond in PFOS is the initial degradation step, in agreement with previous studies done in Milli-Q water. Sonochemical fluoride production is significantly below quantitative expectations, delta[F-]/delta[PFOS] 4 vs 17, suggesting that in the AFFF matrix, PFOS' fluorochemical tail is not completely degraded, whereas Milli-Q studies yielded quantitative F- production. Measurements of time-dependent methylene blue active substances and total organic carbon indicate that the other FC-600 components were also sonolytically decomposed.

  9. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong; Whited, Matthew T.; Steiner, Andrew; Tassone, Christopher J.; Toney, Michael F.; Thompson, Mark E.

    2012-01-01

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz

  10. Laser-Printed Organic Thin-Film Transistors

    KAUST Repository

    Diemer, Peter J.; Harper, Angela F.; Niazi, Muhammad Rizwan; Petty, Anthony J.; Anthony, John E.; Amassian, Aram; Jurchescu, Oana D.

    2017-01-01

    their incorporation in large-scale manufacturing processes. Here, the first ever organic thin-film transistor fabricated with an electrophotographic laser printing process using a standard office laser printer is reported. This completely solvent-free additive

  11. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  12. Naturally occurring surfactants and their functional design. Seitai yurai safakutanto to kinoka sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Ishigami, Y [National Inst. of Materials and Chemical Research, Tsukuba (Japan)

    1994-04-20

    An active use of the natural materials replaced the petroleum chemical products and an attempt for a development of the organism imitation materials are not limited only on the surfactants, but become a great trend also widely over the dyestuff, plastics material, food, cosmetics, agricultural chemicals and so forth. In addition, an institution of the recognition system for an 'eco-mark' is done, and a development of the environment conformity materials (eco-material) is advanced. In Japan since around 1950, a practical application and a research and development of new surfactants have been rapidly progressed making the derivatives originated in a petroleum chemistry as an axis. In this paper, including a viewpoint of the ecotechnology, a chemical structure and function of the surfactant being derived from the organisms, a molecule design and attempt for functional material making of the biomimetic surfactants are described. The author considers the biomimetic surfactants as one of the approaches to develop a new functional surfactant as the new raw materials, and is performing a development of the admixtures for improving a defect the soap has and so forth. 80 refs., 3 figs., 5 tabs.

  13. Determination and analysis of dispersive optical constants of some organic thin films

    International Nuclear Information System (INIS)

    Kaya, Y.; Taysioglu, A. A.; Peksoez, A.; Irez, G.; Derebasi, N.; Kaynak, G.

    2010-01-01

    Schiff bases are an important class of ligands in coordination chemistry and find extensive application in different fields. Recently, increased interest in organic thin film materials has arisen due to their extensive applications in the fields of mechanics, flexible electronics and optics. Optoelectronics is the area in which organic films and organic-inorganic nanostructures have found their main applications in the last decade. These organic thin films have been also used in a wide variety of applications such as Schottky diodes, solid state devices and optical sensors. The optical constants (refractive index, n; extinction coefficient, k and dielectric constant, e) of some organic thin films were determined using reflectance and transmittance spectra. Analysis of the basis absorption spectra was also carried out to determine optical band gap (Eg) and Urbach parameter (E0). A surface observation of these thin films was also carried out by an Atomic Force Microscope.

  14. Specific ion effects on the properties of cationic Gemini surfactant monolayers

    International Nuclear Information System (INIS)

    Alejo, T.; Merchan, M.D.; Velazquez, M.M.

    2011-01-01

    The effects of some anions of the Hofmeister series and different divalent cations of alkaline earth metals on the properties of Langmuir monolayers of the cationic Gemini surfactant ethyl-bis (dimethyl octadecylammonium bromide) have been investigated. Surface pressure and potential isotherms at the air-water interface were obtained on aqueous subphases containing sodium salts with several anions of the Hofmeister series (Cl - , NO 3 - , Br - , I - , ClO 4 - , and SCN - ). The influence of the investigated anions on the monolayer properties can be ordered according to the Hofmeister series with a change in the order between bromide and nitrate anions. On the other hand, for a given anion, the cation of the salt also influences the surface properties of the Langmuir films. The monolayers can be transferred onto mica by the Langmuir-Blodgett technique and then the Langmuir-Blodgett films were characterized by atomic force microscopy (AFM). The AFM images show that the molecules become more closely packed and nearly vertical to the surface when anions screen the electric charge of the surfactant molecules.

  15. Specific ion effects on the properties of cationic Gemini surfactant monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T.; Merchan, M.D.; Velazquez, M.M., E-mail: mvsal@usal.es

    2011-06-01

    The effects of some anions of the Hofmeister series and different divalent cations of alkaline earth metals on the properties of Langmuir monolayers of the cationic Gemini surfactant ethyl-bis (dimethyl octadecylammonium bromide) have been investigated. Surface pressure and potential isotherms at the air-water interface were obtained on aqueous subphases containing sodium salts with several anions of the Hofmeister series (Cl{sup -}, NO{sub 3}{sup -}, Br{sup -}, I{sup -}, ClO{sub 4}{sup -}, and SCN{sup -}). The influence of the investigated anions on the monolayer properties can be ordered according to the Hofmeister series with a change in the order between bromide and nitrate anions. On the other hand, for a given anion, the cation of the salt also influences the surface properties of the Langmuir films. The monolayers can be transferred onto mica by the Langmuir-Blodgett technique and then the Langmuir-Blodgett films were characterized by atomic force microscopy (AFM). The AFM images show that the molecules become more closely packed and nearly vertical to the surface when anions screen the electric charge of the surfactant molecules.

  16. Graphene-based LbL deposited films: further study of electrical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Nabok A.

    2017-01-01

    Full Text Available Graphene-surfactant composite materials obtained by the ultrasonic exfoliation of graphite powder in the presence of ionic surfactants (either CTAB or SDS were utilised to construct thin films using layer-by-layer (LbL electrostatic deposition technique. A series of graphene-based thin films were made by alternating layers of either graphene-SDS with polycations (PEI or PAH or graphene-CTAB with polyanions (PSS. Also, graphene-phthalocyanine composite films were produced by alternating layers of graphene-CTAB with tetrasulfonated nickel phthalocyanine. Graphene-surfactant LbL films exhibited good electric conductivity (about 0.1 S/cm of semiconductor type with a band gap of about 20 meV. Judging from UV-vis spectra measurements, graphene-phthalocyanine LbL films appeared to form joint π-electron system. Gas sensing testing of such composite films combining high conductivity of graphene with the gas sensing abilities of phthalocyanines showed substantial changes (up to 10% in electrical conductivity upon exposure to electro-active gases such as HCl and NH3.

  17. Partitioning of hydrophobic pesticides within a soil-water-anionic surfactant system.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2009-02-01

    Surfactants can be added to pesticide-contaminated soils to enhance the treatment efficiency of soil washing. Our results showed that pesticide (atrazine and diuron) partitioning and desorbability within a soil-water-anionic surfactant system is soil particle-size dependent and is significantly influenced by the presence of anionic surfactant. Anionic surfactant (linear alkylbenzene sulphonate, LAS) sorption was influenced by its complexation with both the soluble and exchangeable divalent cations in soils (e.g. Ca2+, Mg2+). In this study, we propose a new concept: soil system hardness which defines the total amount of soluble and exchangeable divalent cations associated with a soil. Our results showed that anionic surfactant works better with soils having lower soil system hardness. It was also found that the hydrophobic organic compounds (HOCs) sorbed onto the LAS-divalent cation precipitate, resulting in a significant decrease in the aqueous concentration of HOC. Our results showed that the effect of exchangeable cations and sorption of HOC onto the surfactant precipitates needs to be considered to accurately predict HOC behavior within soil-water-anionic surfactant systems.

  18. Ellipsometry of functional organic surfaces and films

    CERN Document Server

    Hinrichs, Karsten

    2013-01-01

    Ellipsometry is the method of choice to determin the properties of surfaces and thin films. It provides comprehensive and sensitive characterization in a contactless and non-invasive measurements. This book gives a state-of-the-art survey of ellipsometric investigations of organic films and surfaces, from laboratory to synchrotron applications, with a special focus on in-situ use in processing environments and at solid-liquid interfaces.

  19. Enhanced chemical sensing organic thin-film transistors

    Science.gov (United States)

    Tanese, M. C.; Torsi, L.; Farinola, G. M.; Valli, L.; Hassan Omar, O.; Giancane, G.; Ieva, E.; Babudri, F.; Palmisano, F.; Naso, F.; Zambonin, P. G.

    2007-09-01

    Organic thin film transistor (OTFT) sensors are capable of fast, sensitive and reliable detection of a variety of analytes. They have been successfully tested towards many chemical and biological "odor" molecules showing high selectivity, and displaying the additional advantage of being compatible with plastic technologies. Their versatility is based on the possibility to control the device properties, from molecular design up to device architecture. Here phenylene-thiophene based organic semiconductors functionalized with ad hoc chosen side groups are used as active layers in sensing OTFTs. These materials, indeed, combine the detection capability of organic molecules (particularly in the case of bio-substituted systems) with the electronic properties of the conjugated backbone. A new OTFT structure including Langmuir-Schäfer layer by layer organic thin films is here proposed to perform chemical detection of organic vapors, including vapor phase chiral molecules such as citronellol vapors, with a detection limit in the ppm range. Thermally evaporated α6T based OTFT sensors are used as well to be employed as standard system in order to compare sensors performances.

  20. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong

    2012-07-10

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz), forming a film composed of the metal-ligand complex. Fast and quantitative formation of the complex leads to marked changes in the morphology and optical properties of the film. X-ray diffraction studies show that the chemical annealing process converts amorphous ZnTPP films to crystalline ZnTPP•ligand films, whose porphryin planes lie nearly parallel to the substrate (average deviation is 8° for the ZnTPP•pz film). Organic solar cells were prepared with ZnTPP donor and C 60 acceptor layers. Devices were prepared with and without chemical annealing of the ZnTPP layer with a pyrazine ligand. The devices with chemically annealed ZnTPP donor layer show an increase in short-circuit current (J SC) and fill factor (FF) relative to analogous unannealed devices, presumably because of enhanced exciton diffusion length and improved charge conductivity. The open circuit voltages (V OC) of the chemically annealed devices are lower than their unannealed counterpart because of enhanced polaron pair recombination at the donor/acceptor heterojunction. A net improvement of 5-20% in efficiency has been achieved, after chemical annealing of ZnTPP films with pyrazine. © 2012 American Chemical Society.

  1. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest 030018 (Romania); Raditoiu, V.; Corobea, M.C. [National R.& D. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021 Bucharest (Romania)

    2016-06-30

    Highlights: • PLD and MAPLE was successfully used to produce organo-layered double hydroxides. • The organic anions (dodecyl sulfate-DS) were intercalated in co-precipitation step. • Zn2.5Al-LDH (Zn/Al = 2.5) and Zn2.5Al-DS thin films obtained in this work could be suitable for further applications as hydrophobic surfaces. - Abstract: We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn{sup 2+}/Al{sup 3+} ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  2. Effect of gas type on foam film permeability and its implications for foam flow in porous media.

    Science.gov (United States)

    Farajzadeh, R; Muruganathan, R M; Rossen, W R; Krastev, R

    2011-10-14

    The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading

  3. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Pérez-Gil, Jesús

    2014-06-01

    Pulmonary surfactant is an essential lipid-protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air-liquid interface to stabilise the lungs against physical forces operating along the compression-expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  5. Roughness development in electrodeposited soft magnetic CoNiFe films in the presence of organic additives

    Directory of Open Access Journals (Sweden)

    STEVE RIEMER

    2003-05-01

    Full Text Available The effects of three additives, sodium lauryl sulfate (NaLS, saccharin (Sacc, and NaLS + Sacc, on roughness development during the electrodeposition of CoNiFe films were investigated. The characterization of these films by atomic force microscopy shows that the electrodeposits produced from NaLS containing solution result in a rough surface. The role of NaLS surfactant is to change the interfacial tension and clean non-polar species like hydrogen bubbles from the surface. In Sacc containing solution, the evolution of a smooth surface is controlled by adsorbed Sacc molecule at the interface. The kinetic roughening of these deposits was investigated by dynamic scaling analysis. It was demonstrated that the roughness of CoNiFe films, obtained in the presence of NaLS + Sacc additives, was also dependent on current density, roughness of substrate, and the temperature of plating bath.

  6. Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound.

    Science.gov (United States)

    Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil

    2014-07-01

    This article addresses furthering the role of sonication for the optimal fabrication of nickel ceramic composite membranes using electroless plating. Deliberating upon process modifications for surfactant induced electroless plating (SIEP) and combined surfactant and sonication induced electroless plating (SSOEP), this article highlights a novel method of contacting of the reducing agent and surfactant to the conventional electroless nickel plating baths. Rigorous experimental investigations indicated that the combination of ultrasound (in degas mode), surfactant and reducing agent pattern had a profound influence in altering the combinatorial plating characteristics. For comparison purpose, purely surfactant induced nickel ELP baths have also been investigated. These novel insights consolidate newer research horizons for the role of ultrasound to achieve dense metal ceramic composite membranes in a shorter span of total plating time. Surface and physical characterizations were carried out using BET, FTIR, XRD, FESEM and nitrogen permeation experiments. It has been analyzed that the SSOEP baths provided maximum ratio of percent pore densification per unit metal film thickness (PPDδ) and hold the key for further fine tuning of the associated degrees of freedom. On the other hand SIEP baths provided lower (PPDδ) ratio but higher PPD. For SSOEP baths with dropwise reducing agent and bulk surfactant, the PPD and metal film thickness values were 73.4% and 8.4 μm which varied to 66.9% and 13.3 μm for dropwise reducing agent and drop surfactant case. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-01-01

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd) 3 ), triethylsilane (HSi(C 2 H 5 ) 3 or HSiEt 3 ), and titanium tetrakisdiethylamide (Ti(N(C 2 H 5 ) 2 ) 4 or Ti(NEt 2 ) 4 ) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt 3 showed the formation of SiC phase but Al(hd) 3 -derived films were amorphous. The Ti(NEt 2 ) 4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO 2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  8. Metal–organic coordinated multilayer film formation: Quantitative analysis of composition and structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Alexandra S.; Elinski, Meagan B.; Ohnsorg, Monica L.; Beaudoin, Christopher K.; Alexander, Kyle A.; Peaslee, Graham F.; DeYoung, Paul A.; Anderson, Mary E., E-mail: meanderson@hope.edu

    2015-09-01

    Metal–organic coordinated multilayers are self-assembled thin films fabricated by alternating solution–phase deposition of bifunctional organic molecules and metal ions. The multilayer film composed of α,ω-mercaptoalkanoic acid and Cu (II) has been the focus of fundamental and applied research with its robust reproducibility and seemingly simple hierarchical architecture. However, internal structure and composition have not been unambiguously established. The composition of films up to thirty layers thick was investigated using Rutherford backscattering spectrometry and particle induced X-ray emission. Findings show these films are copper enriched, elucidating a 2:1 ratio for the ion to molecule complexation at the metal–organic interface. Results also reveal that these films have an average layer density similar to literature values established for a self-assembled monolayer, indicating a robust and stable structure. The surface structures of multilayer films have been characterized by contact angle goniometry, ellipsometry, and scanning probe microscopy. A morphological transition is observed as film thickness increases from the first few foundational layers to films containing five or more layers. Surface roughness analysis quantifies this evolution as the film initially increases in roughness before obtaining a lower roughness comparable to the underlying gold substrate. Quantitative analysis of topographical structure and internal composition for metal–organic coordinated multilayers as a function of number of deposited layers has implications for their incorporation in the fields of photonics and nanolithography. - Highlights: • Layer-by-layer deposition is examined by scanning probe microscopy and ion beam analysis. • Film growth undergoes morphological evolution during foundational layer deposition. • Image analysis quantified surface features such as roughness, grain size, and coverage. • Molecular density of each film layer is found to

  9. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Directory of Open Access Journals (Sweden)

    Mao-Kuo Wei

    2010-04-01

    Full Text Available In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode.

  10. Study of the influence of surfactants on the activity coefficients and mass transfer coefficients of methanol in aqueous mixtures by reversed-flow gas chromatography.

    Science.gov (United States)

    Kotsalos, Efthimios; Brezovska, Boryana; Sevastos, Dimitrios; Vagena, Artemis; Koliadima, Athanasia; Kapolos, John; Karaiskakis, George

    2017-11-17

    This work focuses on the influences of surfactants on the activity coefficients, γ, of methanol in binary mixtures with water, as well as on the mass transfer coefficients, k c , for the evaporation of methanol, which is a ubiquitous component in the troposphere, from mixtures of methanol with water at various surfactant's and methanol's concentrations. The technique used is the Reversed-Flow Gas Chromatography (R.F.G.C.), a version of Inverse Gas Chromatography, which allows determining both parameters by performing only one experiment for the k c parameter and two experiments for the γ parameter. The k c and γ values decrease in the presence of the three surfactants used (CTAB, SDS, TRITON X-100) at all methanol's and surfactant's concentrations. The decrease in the methanol's molar fraction, at constant number of surfactant films leads to a decrease in the k c and γ values, while the decrease in the surfactant's concentration, at constant methanol's molar fraction leads to an increase in both the k c and γ parameters. Mass transfer coefficients for the evaporation of methanol at the surfactant films, are also calculated which are approximately between 4 and 5 orders of magnitude larger than the corresponding mass transfer coefficients at the liquid films. Finally, thicknesses of the boundary layer of methanol in the mixtures of methanol with water were determined. The quantities found are compared with those given in the literature or calculated theoretically using various empirical equations. The precision of the R.F.G.C. method for measuring γ and k c parameters is approximately high (94.3-98.0%), showing that R.F.G.C. can be used with success not only for the thermodynamic study of solutions, but also for the interphase transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Magnetic properties of Cobalt thin films deposited on soft organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Bergenti, I. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)]. E-mail: i.bergenti@bo.ismn.cnr.it; Riminucci, A. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Arisi, E. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Murgia, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Cavallini, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Solzi, M. [Dipartimento di Fisica dell' Universita di Parma and CNISM, Parco Area delle Scienze 7/A, Parma 43100 (Italy); Casoli, F. [IMEM-CNR Parco Area delle Scienze 37/A, Parma 43100 (Italy); Dediu, V. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)

    2007-09-15

    Magnetic and morphological properties of Cobalt thin films grown by RF sputtering on organic Alq3 layers were investigated by magneto-optical Kerr effect (MOKE) technique and atomic force microscopy (AFM). The AFM images indicate a template growth of Co layers on top of Alq3, the magnetic film 'decorates' the surface of organic material. This peculiar morphology induces a strong uniaxial magnetic anisotropy in the Co films, as detected by MOKE measurements. Results are important for the operation of a new class of devices-vertical organic spin valves.

  12. Towards anti-corrosion coatings from surfactant-free latexes based on maleic anhydride containing polymers

    NARCIS (Netherlands)

    Soer, W.J.; Ming, W.; Koning, C.E.; Benthem, van R.A.T.M.

    2008-01-01

    We report on the film formation of surfactant-free, artificial latexes based on copolymers containing maleic anhydride. Different metallic substrates, such as aluminum, steel and magnesium alloys, were coated with three different latexes. A commercial polyester based coating was used as a

  13. Investigation on Minimum Film Boiling Point of Highly Heated Vertical Metal Rod in Aqueous Surfactant Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young; Kim, Jae Han [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2017-09-15

    In this study, experiments were conducted on the MFB(minimum film boiling) point of highly heated vertical metal rod quenched in aqueous surfactant solution at various temperature conditions. The aqueous Triton X-100 solution(100 wppm) and pure water were used as the liquid pool. Their temperatures ranged from 77 °C to 100 °C. A stainless steel vertical rod of initial center temperature of 500 °C was used as a test specimen. In both liquid pools, as the liquid temperature decreased, the time to reach the MFB point decreased with a parallel increase in the temperature and heat flux of the MFB point. However, over the whole present temperature range, in the aqueous Triton X-100 solution, the time to reach the MFB point was longer, while the temperature and heat flux of the MFB point were reduced when compared with pure water. Based on the present experimental data, this study proposed the empirical correlations to predict the MFB temperature of a high temperature vertical metal rod in pure water and in aqueous Triton X-100 solution.

  14. Contribution of Seawater Surfactants to Generated Primary Marine Aerosol Particles

    Science.gov (United States)

    Frossard, A. A.; Gerard, V.; Duplessis, P.; Kinsey, J. D.; Lu, X.; Zhu, Y.; Bisgrove, J.; Maben, J. R.; Long, M. S.; Chang, R.; Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Noziere, B.; Cohen, R. C.

    2017-12-01

    Surfactants account for minor fractions of total organic carbon in the ocean but may have major impacts on the surface tension of bursting bubbles at the sea surface that drive the production of primary marine aerosol particles (PMA). Surfactants associated with marine aerosol may also significantly reduce the surface tension of water thereby increasing the potential for cloud droplet activation and growth. During September and October 2016, PMA were produced from bursting bubbles in seawater using a high capacity generator at two biologically productive and two oligotrophic stations in the western North Atlantic, as part of a cruise on the R/V Endeavor. Surfactants were extracted from paired PMA and seawater samples, and their ionic compositions, total concentrations, and critical micelle concentrations (CMC) were quantified and compared for the four hydrographic stations. Higher surfactant concentrations were determined in the aerosol produced from biologically productive seawater compared to oligotrophic seawater, and the surfactants extracted from productive seawater were stronger (had lower CMCs) than those in the oligotrophic seawater. Surfactants associated with PMA and seawater in productive regions also varied over diel cycles, whereas those in the oligotrophic regions did not. This work demonstrates a direct link between surfactants in seawater and those in PMA.

  15. Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental

    DEFF Research Database (Denmark)

    Taeusch, H William; de la Serna, Jorge Bernardino; Perez-Gil, Jesus

    2005-01-01

    adsorption of surface active serum proteins. Aqueous suspensions of native porcine surfactant, organic extracts of native surfactant, and the clinical surfactants Curosurf, Infasurf, and Survanta spread on buffered subphases increase the surface pressure, pi, to approximately 40 mN/m within 2 min....... The variation with concentration, temperature, and mode of spreading confirmed Brewster angle microscopy observations that subphase to surface adsorption of surfactant is the dominant form of surfactant transport to the interface. However (with the exception of native porcine surfactant), similar rapid...... increases in pi did not occur when surfactants were applied to subphases containing serum. Components of serum are surface active and adsorb reversibly to the interface increasing pi up to a concentration-dependent saturation value, pi(max). When surfactants were applied to subphases containing serum...

  16. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    International Nuclear Information System (INIS)

    Wang Rui; Guo Li-Xin; Wang An-Qi; Wu Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional (1D) rough sea surface with the Pierson—Moskowitz (PM) spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic (EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments. (fundamental areas of phenomenology(including applications))

  17. Facile and template-free method toward chemical synthesis of polyaniline film/nanotube structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261; Zhu, Yisi [Materials Science Division, Argonne National Lab, Lemont Illinois 60439; Torres, Jorge [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261; Lee, Seung Hee [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-786 Korea; Yun, Minhee [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261

    2017-09-05

    A facile and template-free method is reported to synthesize a new thin film structure: polyaniline (PANI) film/nanotubes (F/N) structure. The PANI F/N is a 100-nm thick PANI film embedded with PANI nanotubes. This well-controlled method requires no surfactant or organic acid as well as relatively low concentration of reagents. Synthesis condition studies reveal that aniline oligomers with certain structures are responsible for guiding the growth of the nanotubes. Electrical characterization also indicates that the PANI F/N possesses similar field-effect transistor characteristics to bare PANI film. With its 20% increased surface-area-to-volume (S/V) ratio contributed by surface embedded nanotubes and the excellent p-type semiconducting characteristic, PANI F/N shows clear superiority compared with bare PANI film. Such advantages guarantee the PANI F/N a promising future toward the development of ultra-high sensitivity and low-cost biosensors.

  18. Pyrene removal from contaminated soil using electrokinetic process combined with surfactant

    Directory of Open Access Journals (Sweden)

    Seyed Enayat Hashemi

    2015-07-01

    Full Text Available Background: Pyrene is one of the stable polycyclic aromatic hydrocarbons that is considered as an important pollutants, because of extensive distribution in the environment and carcinogenic and mutagenic properties. Among the various treatment techniques, electrokinetic method is an environmental- friendly process for organic and mineral pollutants adsorbed to soil with fine pore size the same as clay and low hydraulic conductivity soils. For improving the efficiency of pyrene removal from soil, soulobilization of pyrene from soil could be used by surfactants. Materials and Methods : In this study, clay soil was selected as model because of the specific properties. Combined method using surfactant and electrokinetic was applied for pyrene removal from soil. Experiments were designed using response surface methodology (RSM, and effect of three variables includes surfactant concentration, voltage and surfactant type were evaluated for pyrene removal from contaminated soil. Results: Pyrene removal using anionic surfactants(SDS and nonionic surfactants(TX100 as a solubilizing agents has high removal efficiency. In the optimum condition with 95% confidence coefficient, utilizing mixed surfactants of sodium dodecyl sulfate and triton X-100 with the same volume, induced of 18.54 volt and 6.53 percent surfactant concentration have 94.6% pyrene removal efficiency. Conclusion:: Results of this study shows that electrokinetic process combined with surfactant as solubilizing agent could be applied as an efficient method for treating the pyrene-contaminated soils.

  19. Surface self-organization in multilayer film coatings

    Science.gov (United States)

    Shuvalov, Gleb M.; Kostyrko, Sergey A.

    2017-12-01

    It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.

  20. Organic semiconductor growth and morphology considerations for organic thin-film transistors.

    Science.gov (United States)

    Virkar, Ajay A; Mannsfeld, Stefan; Bao, Zhenan; Stingelin, Natalie

    2010-09-08

    Analogous to conventional inorganic semiconductors, the performance of organic semiconductors is directly related to their molecular packing, crystallinity, growth mode, and purity. In order to achieve the best possible performance, it is critical to understand how organic semiconductors nucleate and grow. Clever use of surface and dielectric modification chemistry can allow one to control the growth and morphology, which greatly influence the electrical properties of the organic transistor. In this Review, the nucleation and growth of organic semiconductors on dielectric surfaces is addressed. The first part of the Review concentrates on small-molecule organic semiconductors. The role of deposition conditions on film formation is described. The modification of the dielectric interface using polymers or self-assembled mono-layers and their effect on organic-semiconductor growth and performance is also discussed. The goal of this Review is primarily to discuss the thin-film formation of organic semiconducting species. The patterning of single crystals is discussed, while their nucleation and growth has been described elsewhere (see the Review by Liu et. al).([¹]) The second part of the Review focuses on polymeric semiconductors. The dependence of physico-chemical properties, such as chain length (i.e., molecular weight) of the constituting macromolecule, and the influence of small molecular species on, e.g., melting temperature, as well as routes to induce order in such macromolecules, are described.

  1. Separation of oil and grease from oil sludge using surfactant

    International Nuclear Information System (INIS)

    Ainon Abdul Aziz; Syed Hakimi Sakuma Syed Ahmad; Zalina Laili

    2005-01-01

    The objective of the experiments was to observe the efficiency of the surfactant to remove oil and grease from oil sludges using various surfactant concentration ranging from 10 %, 15 %, 20 % and 30 %. The surfactant solution consists of two mixtures of Aqua 2000 and D Bond. The oil sludge were subjected to heating and surfactant treatment process. Remaining oil and grease concentration were observed on the oil sludges after treatment. Small scale experiments were conducted by heating process, without heating process and heating process with addition of sodium chloride. Surfactant solution was added in each process. Results shows that there is separation of oil and grease from the oil sludges. There were formation of mini emulsions (oil in water). The higher the concentration of surfactant used, the higher the concentrations of mini emulsion formed as observed. Solid remains after the treatment process were found to contain lesser oil concentration with presence of bitumen, sediment, organic and inorganic materials. After a washing process using distilled water, the solid was still black but less oily than before the treatment. There is no separation of oil occurred in aqueous solution for the control experiment. (Author)

  2. Surfactant induced complex formation and their effects on the interfacial properties of seawater.

    Science.gov (United States)

    Guzmán, Eduardo; Santini, Eva; Benedetti, Alessandro; Ravera, Francesca; Ferrari, Michele; Liggieri, Libero

    2014-11-01

    The effect of a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), on the interfacial properties of seawater has been studied by dynamic and equilibrium surface tension and by dilational rheology essays. Important modifications of the surface tension and dilational rheology response have been observed already at the very low CTAB concentrations, where the effects due to the high ionic strength are negligible. The comparison with the effects of CTAB in different seawater models, or in natural seawater fractions, points out the establishment of strong interactions between the surfactant molecules and the lipophilic fraction of organic material dispersed/dissolved in seawater, affecting the interfacial activity of the molecules. Considering the biochemical richness of seawater, these results can be explained assuming interaction mechanisms and adsorption schemes similar to those speculated for protein and other macromolecules in the presence of surfactants, which in fact show similar features. Thus already at the low concentrations the surfactant molecules form highly surface-active complexes with part of the organic fraction of seawater. At the larger surfactant concentrations these complexes compete for adsorption with an excess of free CTAB molecules which, according to the thermodynamic conditions, are most favoured to occupy the liquid interface. The results of this study underline the important role of the sea organic content in enhancing the surface-activity of surfactants, which is relevant for a deeper understand of the direct and indirect effects of these types of pollutants on the physico-chemical environment in the sea coastal areas and develop mitigation strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali; Levi, Kemal; McGehee, Michae D.; Dauskardt, Reinhold H.

    2012-01-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial

  4. Hierarchical porous TiO{sub 2} thin films by soft and dual templating

    Energy Technology Data Exchange (ETDEWEB)

    Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); University of Liege, Center for Applied Technology in Microscopy (CATmu), B6 Sart Tilman, Liege 4000 (Belgium); Dewalque, Jennifer [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); Cloots, Rudi [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); University of Liege, Center for Applied Technology in Microscopy (CATmu), B6 Sart Tilman, Liege 4000 (Belgium); Vertruyen, Bénédicte; Jonlet, Jonathan; Colson, Pierre [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium)

    2013-07-31

    Hierarchical porous structures, with different pore sizes, including pores larger than 10 nm, constitute an important field of research for many applications such as selective molecule detection, catalysis, dye-sensitized solar cells, nanobiotechnology and nanomedecine. However, increasing the pore size logically results in the decrease of specific surface. There is a need to quantify and predict the resulting porosity and specific surface. We have prepared hierarchical porous TiO{sub 2} thin films either by surfactant templating (soft) or dual surfactant/nanospheres templating (soft/hard). They all show narrow, bimodal distribution of pores. Soft templating route uses a modified sol–gel procedure by adding a swelling agent (polypropylene glycol) to a precursor solution containing Ti alkoxide and block-copolymer surfactant. This scheme leads to very thin films showing high specific surface and bimodal porosity with diameters of 10 nm and 54 nm. Dual templating route combines a precursor solution made of Ti alkoxide and block-copolymer surfactant with polystyrene (PS) nanospheres (diam. 250 nm) in a one-pot simple process. This gives thicker films with a bimodal distribution of pores (8 nm and 165-200 nm). The introduction of PS nanospheres in the surfactant–Ti system does not interfere with the soft templating process and results in a macroporosity with a pore diameter 20–30% smaller than the original beads diameter. The dye loading of hierarchical films is compared to pure surfactant-templated TiO{sub 2} films and shows a relative decrease of 29% for soft templating and 43% for dual templating. The microstructure of bimodal porous films is characterized by several techniques such as transmission and scanning electron microscopy, X-ray diffraction, profilometry and ellipsometry. Finally, a geometrical model is proposed and validated for each system, based on the agreement between calculated specific surfaces and experimental dye loading with N719 dye

  5. Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Sørensen, Thomas Just; Glyvradal, Magni

    2009-01-01

    By use of specular X-ray reflectivity (XR) the structure of a metal-covered organic thin film device is measured with angstrom resolution. The model system is a Langmuir-Blodgett (LB) film, sandwiched between a silicon substrate and a top electrode consisting of 25 Å titanium and 100 Å aluminum....... By comparison of XR data for the five-layer Pb2+ arachidate LB film before and after vapor deposition of the Ti/Al top electrode, a detailed account of the structural damage to the organic film at the buried metal-molecule interface is obtained. We find that the organized structure of the two topmost LB layers...

  6. Maillard Conjugation of Sodium Alginate to Whey Protein for Enhanced Resistance to Surfactant-Induced Competitive Displacement from Air-Water Interfaces.

    Science.gov (United States)

    Cai, Bingqing; Saito, Anna; Ikeda, Shinya

    2018-01-24

    Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.

  7. Protection of MoO3 high work function by organic thin film

    International Nuclear Information System (INIS)

    Wang, Chenggong; Irfan, Irfan; Gao, Yongli

    2014-01-01

    The effects of air exposure are investigated for molybdenum trioxide (MoO 3 ) covered with organic thin films using ultraviolet photoemission spectroscopy. It is found that the severe drop of the work function of MoO 3 by air exposure is substantially reduced by the organic thin films. Both CuPc and C 60 are used for the investigations. The results indicate that the MoO 3 surface can be passivated by approximately two monolayers of organic thin films against exposure to air

  8. Organic Thin-Film Transistor (OTFT-Based Sensors

    Directory of Open Access Journals (Sweden)

    Daniel Elkington

    2014-04-01

    Full Text Available Organic thin film transistors have been a popular research topic in recent decades and have found applications from flexible displays to disposable sensors. In this review, we present an overview of some notable articles reporting sensing applications for organic transistors with a focus on the most recent publications. In particular, we concentrate on three main types of organic transistor-based sensors: biosensors, pressure sensors and “e-nose”/vapour sensors.

  9. Surfactant-Enhanced Organic Acid Inactivation of Tulane Virus, a Human Norovirus Surrogate.

    Science.gov (United States)

    Lacombe, Alison; Niemira, Brendan A; Gurtler, Joshua B; Kingsley, David H; Li, Xinhui; Chen, Haiqiang

    2018-02-01

    Combination treatments of surfactants and phenolic or short-chain organic acids (SCOA) may act synergistically or additively as sanitizers to inactive foodborne viruses and prevent outbreaks. The purpose of this study was to investigate the effect of gallic acid (GA), tannic acid, p-coumaric acid, lactic acid (LA), or acetic acid (AA), in combination with sodium dodecyl sulfate (SDS), against Tulane virus (TV), a surrogate for human norovirus. An aqueous stock solution of phenolic acids or SCOA with or without SDS was prepared and diluted in a twofold dilution series to 2× the desired concentration with cell growth media (M119 plus 10% fetal bovine serum). The solution was inoculated with an equal proportion of 6 log PFU/mL TV with a treatment time of 5 min. The survival of TV was quantified using a plaque assay with LLC-MK2 cells. The minimum virucidal concentration was 0.5:0.7% (v/v) for LA-SDS at pH 3.5 (4.5-PFU/mL reduction) and 0.5:0.7% (v/v) AA-SDS at pH 4.0 (2.6-log PFU/mL reduction). GA and SDS demonstrated a minimum virucidal concentration of 12.5 mM GA-SDS at pH 7.0 (0.2:0.3% GA-SDS) with an 0.8-log PFU/mL reduction and 50 mM GA-SDS (0.8:1.4% GA-SDS at pH 7.0) increased log reduction to 1.6 log PFU/mL. The combination treatments of AA or LA with SDS at pH 7.0 did not produce significant log reduction, nor did individual treatments of tannic acid, GA, p-coumaric acid, AA, LA, or SDS. This study demonstrates that a surfactant, such as SDS, aids in the phenolic acid and SCOA toxicities against viruses. However, inactivation of TV by combination treatments is contingent upon the pH of the sanitizing solution being lower than the pK a value of the organic acid being used. This information can be used to develop sanitizing washes to disinfect food contact surfaces, thereby aiding in the prevention of foodborne outbreaks.

  10. Systematic investigation of the effects of organic film structure on light emitting diode performance

    Science.gov (United States)

    Joswick, M. D.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1996-09-01

    We present a systematic investigation of the effects of organic film structure on light emitting diode (LED) performance. Metal/organic film/metal LEDs were fabricated using a five ring, poly(phenylene vinylene) related oligomer as the active layer. The structure of the vacuum evaporated oligomer films was varied from amorphous to polycrystalline by changing the substrate temperature during deposition. The intrinsic properties of the oligomer films and the LED performance were measured. The measured intrinsic film properties include: optical absorption, photoluminescence (PL) spectra, PL lifetime, PL efficiency, and effective carrier mobility. The measured device characteristics include current-voltage, capacitance-voltage, electroluminescence (EL) efficiency, and the contact metal/organic film Schottky barrier heights. The optical absorption and PL properties of the films are weakly dependent on film structure but the effective carrier mobility decreases with increasing crystallinity. The EL quantum efficiency decreases by more than one order of magnitude, the drive voltage at a fixed current increases, and the electron Schottky barrier height increases as the crystallinity of the film is increased. The diode current-voltage characteristic is determined by the dominant hole current and the electroluminescence efficiency is controlled by the contact limited electron injection. These results demonstrate significant effects of organic film structure on the performance of organic LEDs.

  11. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    Science.gov (United States)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  12. Polyethoxylated carboxylic surfactant for ion foam flotation: fundamental study from solution to foam

    International Nuclear Information System (INIS)

    Micheau, Cyril

    2013-01-01

    Ion foam flotation allows to concentrate ions in a foam phase formed by a soap. For classical systems, the strong interaction between ions and surfactant generally leads to the formation of precipitates and of froth. When the froth collapses, the solid residue thus recovered requires a recycling or conversion. In order to remedy this, the present work uses as collector a polyethoxylated carboxylic surfactant, AKYPO RO 90 VG, which forms soluble ion/surfactant complexes, even with multi-charge ions. This work presents a detailed study of the fundamental mechanisms that govern the extraction of ions by foaming. In the first part, surface activity and acid/base properties of the surfactant in solution are determined by combining numerous independent techniques which are pH-metric dosage, tensiometry and small angle scattering. The evolution of these properties in the presence of different nitrate salts (Nd, Eu, Ca, Sr, Cu, Li, Na, Cs) coupled with electrophoretic measurements give a first approach to selectivity. Finally, all of these data combined with a study of the formation of surfactant/ion complexes allow us to determine the speciation of Nd/AKYPO system as a function of pH. In the second part, the analysis of the foam by conductivity and neutron scattering provides information on the wetness and foam film thickness, parameters governing foam stability. The pH and the nature of the added ions, their number of charge and also their chemical nature thus appear to be major parameters that governed wetness and foam film thickness. The last part is devoted to the understanding of the ion extraction/separation experiments by flotation based on all previous results. It is shown that the flotation of neodymium is strongly related to its speciation, which could lead to its re-extraction or its flotation in precipitated form. It is shown that, neodymium induces a phenomenon of mono-charge ion depletion in the foam. This ionic specificity allows to consider the studied

  13. Surfactant effect on drop coalescence and film drainage hydrodynamics

    Science.gov (United States)

    Weheliye, Weheliye; Chinaud, Maxime; Voulgaropoulos, Victor; Angeli, Panagiota

    2015-11-01

    Coalescence of a drop on an aqueous-organic interface is studied in two test geometries A rectangular acrylic vessel and a Hele-Shaw cell (two parallel plates placed 2mm apart) are investigated for the experiments. Time resolved Particle Image Velocimetry (PIV) measurements provide information on the hydrodynamics during the bouncing stage of the droplet and on the vortices generated at the bulk fluid after the droplet has coalesced. The velocity field inside the droplet during its coalescence is presented. By localizing the rupture point of the coalescence in the quasi two dimensional cell, the film drainage dynamics are discussed by acquiring its flow velocity by PIV measurements with a straddling camera. The effect of surface tension forces in the coalescence of the droplet is investigated by introducing surface active agents at various concentrations extending on both sides of the critical micelle concentration.

  14. Pseudomorphic growth of organic semiconductor thin films driven by incommensurate epitaxy

    International Nuclear Information System (INIS)

    Sassella, A.; Campione, M.; Raimondo, L.; Borghesi, A.; Bussetti, G.; Cirilli, S.; Violante, A.; Goletti, C.; Chiaradia, P.

    2009-01-01

    A stable pseudomorphic phase of α-quaterthiophene, a well known organic semiconductor, is obtained by growing films with organic molecular beam epitaxy (OMBE) on a single crystal of another organic semiconductor, namely, tetracene. The structural characteristics of the new phase are investigated by monitoring in situ the OMBE process by reflectance anisotropy spectroscopy; thus assessing that incommensurate epitaxy is in this case, the driving force for tuning the molecular packing in organic molecular films and in turn, their solid state properties

  15. High-mobility pyrene-based semiconductor for organic thin-film transistors.

    Science.gov (United States)

    Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee

    2013-05-01

    Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.

  16. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    International Nuclear Information System (INIS)

    Steitz, Roland; Schemmel, Sebastian; Shi Hongwei; Findenegg, Gerhard H

    2005-01-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle θ w ∼ 90), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (θ w ∼ 63). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic C m E n surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO 2 /C 8 E 4 /D 2 O reveal that there is no preferred lateral organization of the C 8 E 4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without

  17. Understanding the Impact of Model Surfactants on Cloud Condensation Nuclei Activity of Sea Spray Aerosols

    Science.gov (United States)

    Forestieri, S.; Cappa, C. D.; Ruehl, C. R.; Bertram, T. H.; Staudt, S.; Kuborn, T.

    2017-12-01

    Aerosol impacts on cloud properties, also known as indirect effects, remain a major source of uncertainty in modeling global radiative forcing. Reducing this uncertainty necessitates better understanding of how aerosol chemical composition impacts the cloud-forming ability of aerosols. The presence of surfactants in aerosols can decrease the surface tension of activating droplets relative to water and lead to more efficient activation. The importance of this effect has been debated, but recent surface tension measurements of microscopic droplets indicate that surface tension is substantially depressed relative to water for lab-generated particles consisting of salt and a single organic species and for complex mixtures of organic matter. However, little work has been done on understanding how chemical complexity (i.e. interaction between different surfactant species) impacts surface tension for particles containing mixtures of surfactants. In this work, we quantified the surface tension of lab-generated aerosols containing surfactants that are commonly found in nascent sea spray aerosol (SSA) at humidities close to activation using a continuous flow stream-wise thermal gradient chamber (CFSTGC). Surface tension was quantified for particles containing single surfactant species and mixtures of these surfactants to investigate the role of chemical complexity on surface tension and molecular packing at the air-water interface. For all surfactants tested in this study, substantial surface tension depression (20-40 mN/m) relative to water was observed for particles containing large fractions of organic matter at humidities just below activation. However, the presence of these surfactants only weakly depressed surface tension at activation. Kinetic limitations were observed for particles coated with just palmitic acid, since palmitic acid molecules inhibit water uptake through their ability to pack tightly at the surface. However, these kinetic limitations disappeared when

  18. Soluble organic additive effects on stress development during drying of calcium carbonate suspensions.

    Science.gov (United States)

    Wedin, Pär; Lewis, Jennifer A; Bergström, Lennart

    2005-10-01

    The effect of polymer, plasticizer, and surfactant additives on stress development during drying of calcium carbonate particulate coatings was studied using a controlled-environment apparatus that simultaneously monitors drying stress, weight loss, and relative humidity. We found that the calcium carbonate coatings display a drying stress evolution typical of granular films, which is characterized by a sharp capillary-induced stress rise followed by a rapid stress relaxation. The addition of a soluble polymer to the CaCO3 suspension resulted in a two-stage stress evolution process. The initial stress rise stems from capillary-pressure-induced stresses within the film, while the second, larger stress rise occurs due to solidification and shrinkage of the polymeric species. Measurements on the corresponding pure polymer solutions established a clear correlation between the magnitude of residual stress in both the polymer and CaCO3-polymer films to the physical properties of the polymer phase, i.e. its glass transition temperature, T(g), and Young's modulus. The addition of small organic molecules can reduce the residual stress observed in the CaCO3-polymer films; e.g., glycerol, which acts as a plasticizer, reduces the drying stress by lowering T(g), while surfactant additions reduce the surface tension of the liquid phase, and, hence, the magnitude of the capillary pressure within the film.

  19. Systematic investigation of the effects of organic film structure on light emitting diode performance

    Energy Technology Data Exchange (ETDEWEB)

    Joswick, M.D.; Campbell, I.H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1996-09-01

    We present a systematic investigation of the effects of organic film structure on light emitting diode (LED) performance. Metal/organic film/metal LEDs were fabricated using a five ring, poly(phenylene vinylene) related oligomer as the active layer. The structure of the vacuum evaporated oligomer films was varied from amorphous to polycrystalline by changing the substrate temperature during deposition. The intrinsic properties of the oligomer films and the LED performance were measured. The measured intrinsic film properties include: optical absorption, photoluminescence (PL) spectra, PL lifetime, PL efficiency, and effective carrier mobility. The measured device characteristics include current{endash}voltage, capacitance{endash}voltage, electroluminescence (EL) efficiency, and the contact metal/organic film Schottky barrier heights. The optical absorption and PL properties of the films are weakly dependent on film structure but the effective carrier mobility decreases with increasing crystallinity. The EL quantum efficiency decreases by more than one order of magnitude, the drive voltage at a fixed current increases, and the electron Schottky barrier height increases as the crystallinity of the film is increased. The diode current{endash}voltage characteristic is determined by the dominant hole current and the electroluminescence efficiency is controlled by the contact limited electron injection. These results demonstrate significant effects of organic film structure on the performance of organic LEDs. {copyright} {ital 1996 American Institute of Physics.}

  20. Organic Single-Crystal Semiconductor Films on a Millimeter Domain Scale.

    Science.gov (United States)

    Kwon, Sooncheol; Kim, Jehan; Kim, Geunjin; Yu, Kilho; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Junghwan; Kang, Hongkyu; Park, Byoungwook; Lee, Kwanghee

    2015-11-18

    Nucleation and growth processes can be effectively controlled in organic semiconductor films through a new concept of template-mediated molecular crystal seeds during the phase transition; the effective control of these processes ensures millimeter-scale crystal domains, as well as the performance of the resulting organic films with intrinsic hole mobility of 18 cm(2) V(-1) s(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Novel organic semiconductors and dielectric materials for high performance and low-voltage organic thin-film transistors

    Science.gov (United States)

    Yoon, Myung-Han

    Two novel classes of organic semiconductors based on perfluoroarene/arene-modified oligothiophenes and perfluoroacyl/acyl-derivatized quaterthiophens are developed. The frontier molecular orbital energies of these compounds are studied by optical spectroscopy and electrochemistry while solid-state/film properties are investigated by thermal analysis, x-ray diffraction, and scanning electron microscopy. Organic thin film transistors (OTFTs) performance parameters are discussed in terms of the interplay between semiconductor molecular energetics and film morphologies/microstructures. For perfluoroarene-thiophene oligomer systems, majority charge carrier type and mobility exhibit a strong correlation with the regiochemistry of perfluoroarene incorporation. In quaterthiophene-based semiconductors, carbonyl-functionalization allows tuning of the majority carrier type from p-type to ambipolar and to n-type. In situ conversion of a p-type semiconducting film to n-type film is also demonstrated. Very thin self-assembled or spin-on organic dielectric films have been integrated into OTFTs to achieve 1 - 2 V operating voltages. These new dielectrics are deposited either by layer-by-layer solution phase deposition of molecular precursors or by spin-coating a mixture of polymer and crosslinker, resulting in smooth and virtually pinhole-free thin films having exceptionally large capacitances (300--700 nF/cm2) and low leakage currents (10 -9 - 10-7 A/cm2). These organic dielectrics are compatible with various vapor- or solution-deposited p- and n-channel organic semiconductors. Furthermore, it is demonstrated that spin-on crosslinked-polymer-blend dielectrics can be employed for large-area/patterned electronics, and complementary inverters. A general approach for probing semiconductor-dielectric interface effects on OTFT performance parameters using bilayer gate dielectrics is presented. Organic semiconductors having p-, n-type, or ambipolar majority charge carriers are grown on

  2. Liquid crystals for organic thin-film transistors

    Science.gov (United States)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  3. Marine toxicity and persistence of surfactants used in the petroleum producing industry

    International Nuclear Information System (INIS)

    Maddin, C.M.

    1991-01-01

    This paper presents a survey of marine toxicity and biodegradability data for surfactants used in the petroleum industry. Surfactants are key chemicals in the formulation of products such as emulsifiers, demulsifiers, dispersants and inhibitors. They are also used directly as foaming and defoaming agents. Because they function at low concentrations, below 1%, and have a tendency to adsorb on solid surfaces, their long-term environmental effects are minimal. In applications such as cementing, surfactants cannot migrate into the environment and, thus, have no bioavailability. The possibility of environmental contamination has caused well operators and regulatory agencies to require fish toxicity and persistence data for products used in servicing wells. This data has been organized for nonionic, anionic, cationic and amphoteric surfactants. Nonionic surfactants are toxic to fish at concentrations below 10 mg/L to over 2500 mg/L depending on their chemical compositions. Anionic surfactants are toxic to fish at concentrations under 1 mg/L to several hundred mg/L depending on their chemical compositions. cationic and amphoteric surfactants are generally toxic to fish at concentrations below 50 mg/L. Overall efforts are aimed at low toxicity and high biodegradability with the least compromise in product efficiency. This requires the continual testing and environmental evaluation of surfactants summarized herein

  4. Photo-catalytic degradation of surfactants hexadecyltrimethyl-ammonium chloride in aqueous medium - a kinetic study

    International Nuclear Information System (INIS)

    Soomro, S.A.; Aziz, S.; Memon, A.R.

    2011-01-01

    Surfactants in the environment are a prerequisite for the sustainable development of human health and ecosystems. Surfactants are important in daily life in households as well as in industrial cleansing processes. It is important to have a detailed knowledge about their lifetime in the environment, their biodegradability in wastewater treatment plants and in natural waters, and their eco toxicity. Most of the issues on environmental acceptability focus on the effects on the environment associated with the use and disposal of these surfactants. These effects are taken into account by a risk assessment. The first step in a risk assessment is to estimate the concentrations of surfactants in the environmental compartment of interest, such as wastewater treatment plant effluents, surface waters, sediments, and soils. This estimate is generated either by actual measurement or by prediction via modelling. The measured or predicted concentrations are then compared to the concentrations of surfactant known to be toxic to organisms living in these environmental compartments. There are many situations where industry is producing both heavy metals ions and organic pollutants. Successful treatment of effluents of this type to achieve legislative compliance will depend on whether the heavy metals effect the process of degradation of the organic species and whether the presence of organic molecules hinder the process of removal of heavy metals. Degradation of cationic surfactant was studied with a photolytic cell system. Compressed air was used as oxidant and the temperature was maintained at 25-30 deg. C. Effect of UV source, hydrogen peroxide (H/sub 2/O/sub 2/) and titanium (TiO/sub 2/) on Hexadecyltrimethyl-ammonium chloride (C/sub 19/H/sub 42/NCl) were recorded. HPLC and IR were used to analyse the rate of degradation of Hexadecyltrimethyl-ammonium chloride (C/sub 19/H/sub 42/NCl).

  5. Simultaneous treatment of chlorinated organics and removal of metals and radionuclides with bimetals and complexing acids - application to surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Gu, B. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Currently available methods for separation and treatment of radioactive mixed waste are typically energy-intensive, and often require high temperatures. Passive methods that operate at ambient temperatures are needed. The purpose of this task is to develop bimetallic substrates, using a base metal such as iron and a promoter metal such as palladium (Pd), to provide a passive, low-energy solution to a substantial portion of DOE`s mixed-waste problem. This technology consists of a porous medium that can simultaneously dechlorinate hazardous organics such as TCE and polychlorinated biphenyls (PCBs) at the same time that it removes metallic and hazardous wastes from a solvent/surfactant solution. The porous medium consists of a bimetallic substrate such as palladized iron (Pd/Fe). Palladium is readily chemically plated on iron and preliminary studies suggest that only 0.05 to 0.1% Pd is needed for an efficient reaction. Thus, the cost of the material is reasonable especially is it is long-lived or can be regenerated. Field implementation would consist of the passage of a surfactant-laden, mixed waste through a column or bed of the bimetallic substrate. The organic component of this mixed waste may contain semivolatile compounds such as PCBs or pesticides and herbicides. The bimetal simultaneously removes radionuclides and metals and degrades halogenated hydrocarbons. Virtually any concentration can be treated. Following reaction of the bimetal with the waste stream, the resulting effluent will consist of an uncontaminated aqueous solution of surfactant or solvent that can be reused. The bimetal would then be rinsed with a dilute mineral acid or a mild complexing acid (e.g., oxalic or citric acid) to regenerate the surface and to remove sorbed metals and non-hazardous organic residue. The latter effluent would be low-level radioactive waste in some cases, but it would now be much easier to manage and be of a lower volume than the original mixed waste.

  6. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of

  7. Energy driven self-organization in nanoscale metallic liquid films.

    Science.gov (United States)

    Krishna, H; Shirato, N; Favazza, C; Kalyanaraman, R

    2009-10-01

    Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.

  8. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Electrodeposition of hybrid ZnO/organic dye films

    Energy Technology Data Exchange (ETDEWEB)

    Moya, Monica; Mari, Bernabe; Mollar, Miquel [Department de Fisica Aplicada-IDF, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain)

    2011-06-15

    The viability of the electrodeposition as a suitable technique for preparing new porous hybrid materials has been tested in this paper. Hybrid ZnO films with two different organic dyes: Eosin-Y and Tetrasulphonated-Cu-phtalocyanine were prepared. Their physical and chemical properties as well as their dependence on the growth conditions were investigated. It is found that the type of dye has a big influence on the morphology and porosity of hybrid films. Open and connected pores are created in hybrid ZnO/Eosin-Y films while both open and closed pores coexist in hybrid ZnO/Tetrasulfonated-Cu-phthalocyanine. As one of the promising applications of hybrid materials is photovoltaic conversion of sunlight, photoelectrochemical characterization of hybrid films is also reported. Photocurrent generation owing to both contributions ZnO and Eosin-Y is observed in ZnO/Eosin-Y films but no photocurrent has been observed in ZnO/Tetrasulfonated-Cu-phthalocyanine films. SEM micrographs of hybrid ZnO films grown in aqueous bath; (Left) ZnO/Eosin-Y films grown at 70 C, -0.9 V (Right) ZnO/Ts-CuPc films grown at 70 C, -0.9 V. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Effect of surfactants on the spectrofluorimetric properties of zearalenone

    International Nuclear Information System (INIS)

    Appell, Michael; Bosma, Wayne B.

    2011-01-01

    The chemiluminescent properties of the estrogenic mycotoxin zearalenone in the presence of aqueous micellar media were investigated using steady state fluorescence techniques. Micelles of surfactants sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide (CTAB), and non-ionic Triton X-100 enhanced the fluorescence intensity of zearalenone in aqueous solutions. The binding constants have been determined and indicate zearalenone has the highest affinity for Triton X-100, followed by CTAB, and then by SDS. The encapsulation of zearalenone by the micelles studied is spontaneous and exothermic. The selective microenvironments provided by organized micellar systems offer an attractive medium to modulate fluorescence detection of zearalenone. - Highlights: → Surfactants can selectively modulate the fluorescence detection of zearalenone. → Binding studies provide information on the zearalenone-surfactant interactions. → Fluorescence intensity of zearalenone is related to the micelle microenvironment.

  11. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  12. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    Directory of Open Access Journals (Sweden)

    Maciej Kozak

    2013-04-01

    Full Text Available Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3-decyloxymethyl pentane chloride (gemini surfactant on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR and circular dichroism (CD spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase.

  13. Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants

    International Nuclear Information System (INIS)

    de Campo, Liliana; Warr, G.G.

    2005-01-01

    Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)

  14. Organic Photovoltaic Devices Based on Oriented n-Type Molecular Films Deposited on Oriented Polythiophene Films.

    Science.gov (United States)

    Mizokuro, Toshiko; Tanigaki, Nobutaka; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-04-01

    The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films. Orientation of the PTCBI films was evaluated by polarized UV-vis spectroscopy and 2D-Grazing incidence X-ray diffraction. Results indicated that PTCBI molecules on PT film exhibit nearly edge-on and in-plane orientation (with molecular long axis along the substrate), whereas PTCBI molecules without PT film exhibit neither. OPVs composed of PTCBI molecular film with and without PT were fabricated and evaluated for correlation of orientation with performance. The OPVs composed of PTCBI film with PT showed higher power conversion efficiency (PCE) than that of film without PT. The experiment indicated that in-plane orientation of PTCBI molecules absorbs incident light more efficiently, leading to increase in PCE.

  15. Femtosecond time-resolved two-photon photoemission study of organic semiconductor copper phthalocyanine film

    International Nuclear Information System (INIS)

    Tanaka, A.; Tohoku University; University of Rochester, NY; Yan, L.; Watkins, N.J.; Gao, Y.

    2004-01-01

    Full text: Organic semiconductors are recently attracting much interest from the viewpoints of both device and fundamental physics. These organic semiconductors are considered to be important constituents of the future devices, such as organic light-emitting diode, organic field effect transistor, and organic solid-state injection laser. In order to elucidate their detailed physical properties and to develop the future devices, it is indispensable to understand their excited-state dynamics as well as their electronic structures. The femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy is attracting much interest because of its capability to observe the energy-resolved excited electron dynamics. In this work, we have carried out a TR-2PPE study of the organic semiconductor copper phthalocyanine (CuPc) film. Furthermore, we have investigated the detailed electronic structure of CuPc film using the photoemission (PES) and inverse photoemission (IPES) spectroscopies. From the simultaneous PES and IPES measurements for CuPc film with a thickness of 100 nm, the lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital, and ionization potential of CuPc film have been directly determined. The observed two-photon photoemission (2PPE) spectrum of the present CuPc film, measured with photon energy of about hv=3.3 eV, exhibits a broad feature. From the energy diagram of CuPc film determined by the PES and IPES measurements, the intermediate state observed in the present 2PPE spectrum of CuPc film corresponds to the energy region between about 0.4 and 1.7 eV above the LUMO energy. From the time-resolved pump-probe measurements, it is found that the relaxation lifetimes of excited states in the present CuPc films are very short (all below 50 fs) and monotonously become faster with increasing excitation energy. We attribute this extremely fast relaxation process of photoexcitation to a rapid internal conversion process. From these results

  16. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  17. Organic donor-acceptor thin film systems. Towards optimized growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kerstin Andrea

    2009-06-30

    In this work the preparation of organic donor-acceptor thin films was studied. A chamber for organic molecular beam deposition was designed and integrated into an existing deposition system for metallic thin films. Furthermore, the deposition system was extended by a load-lock with integrated bake-out function, a chamber for the deposition of metallic contacts via stencil mask technique and a sputtering chamber. For the sublimation of the organic compounds several effusion cells were designed. The evaporation characteristic and the temperature profile within the cells was studied. Additionally, a simulation program was developed, which calculates the evaporation characteristics of different cell types. The following processes were integrated: evaporation of particles, migration on the cell walls and collisions in the gas phase. It is also possible to consider a temperature gradient within the cell. All processes can be studied separately and their relative strength can be varied. To verify the simulation results several evaporation experiments with different cell types were employed. The thickness profile of the prepared thin films was measured position-dependently. The results are in good agreement with the simulation. Furthermore, the simulation program was extended to the field of electron beam induced deposition (EBID). The second part of this work deals with the preparation and characterization of organic thin films. The focus hereby lies on the charge transfer salt (BEDT-TTF)(TCNQ), which has three known structure variants. Thin films were prepared by different methods of co-evaporation and were studied with optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy (EDX).The formation of the monoclinic phase of (BEDT-TTF)(TCNQ) could be shown. As a last part tunnel structures were prepared as first thin film devices and measured in a He{sub 4} cryostat. (orig.)

  18. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Simonsen, Adam C

    2004-01-01

    part in the surfactant structures could be organized heterogeneously in the form of inplane domains, originating from particular distributions of specific proteins and lipids. Here we report novel results concerning the lateral organization of bilayer membranes made of native pulmonary surfactant where...

  19. Flows in films and over flippers

    Science.gov (United States)

    van Nierop, Ernst Adriaan

    Three topics in fluid mechanics are dealt with in this dissertation, namely (i) reactive spreading and recoil of oil on water, (ii) free film formation theory and experiment, and (iii) how humpback whale flippers delay stall. Reactive spreading of an oil droplet on water is described in Chapter 1. Small amounts of acid and base were added to the oil and water respectively, such that a surfactant was produced at the interface between the oil and the water, greatly enhancing spreading rates. After the oil drop spreads out to some maximum radius, the drop recoils on a timescale that is indicative of a diffusive process redistributing the surfactant over the entire volume of water. In Chapter 2, the theory of soap film formation by withdrawal from a bath of soapy liquid is reviewed, and the assumptions supporting Frankel's law are challenged. Stress balances that describe film evolution in either extensional or shear flow are rigorously derived and we find that the strength of surface stress terms pick the resulting flow type. With this background in mind, we describe in Chapter 3 how films were made using aqueous solutions of poly(ethylene oxide) or PEO with and without surfactant. The initial thickness of these films agrees well with existing data in the literature for overlapping ranges of the capillary number Ca. For larger Ca numbers, we observe that (i) the addition of SDS results in thinner films, (ii) films can be made that are thicker than the wire thickness, and (iii) films swell in thickness when the withdrawal process stops. Some potential mechanisms are described to explain the novel swelling phenomenon. Finally, in Chapter 4, we model the bumpy flipper of a humpback whale as a perturbed elliptic wing with Joukowski profiles of varying chord length, and combine this with lifting line theory as well as experimental stall characteristics of smooth wings. This model shows that the perturbations rearrange the downwash distribution on the wing, smoothing the

  20. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  1. Effect of surfactants on the properties of hydrotalcites prepared by the reverse micelle method

    Energy Technology Data Exchange (ETDEWEB)

    Holgado, Patricia H., E-mail: h.holgado@usal.es; Holgado, María J., E-mail: holgado@usal.es; San Román, María S., E-mail: sanroman@usal.es; Rives, Vicente, E-mail: vrives@usal.es

    2015-02-01

    Layered double hydroxides with the hydrotalcite-type structure have been prepared by the reverse micelles method. The layer cations were Ni{sup 2+} and Fe{sup 3+} in all cases and the interlayer anion was carbonate. We have studied the effect of the surfactant used (with linear chains of different lengths, or cyclic) and the effect of the pH on the properties of the solids formed. These have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric analysis, temperature-programmed reduction, FT-IR and Vis–UV spectroscopies and scanning electron microscopy. It has been found that the samples prepared at pH 9 are more crystalline than those prepared at pH 11 and their crystallite sizes are always larger than for samples prepared by the conventional precipitation method. Surfactants with cyclic organic chains lead to a larger crystallite size, probably because the water pool vesicle where the crystallite grows is larger due to sterical hindrance of the organic chains. - Graphical abstract: Layered double hydroxides with the hydrotalcite-type structure with Ni{sup 2+} and Fe{sup 3+} cations in the layers have been prepared by the reverse micelles method. Different surfactants were used at different pH synthesis. Samples prepared at pH 9 are higher crystalline than those prepared at pH 11. Surfactants with cyclic organic chains lead to a larger crystallite size. - Highlights: • Hydrotalcites were prepared by the micelles reverse method. • Straight alkyl or cyclic chain surfactants were used. • All hydrotalcites are well crystallized at pH = 9 and 11. • The crystallite size depends on the linear/cyclic nature of the surfactant chain.

  2. Effect of surfactants on the properties of hydrotalcites prepared by the reverse micelle method

    International Nuclear Information System (INIS)

    Holgado, Patricia H.; Holgado, María J.; San Román, María S.; Rives, Vicente

    2015-01-01

    Layered double hydroxides with the hydrotalcite-type structure have been prepared by the reverse micelles method. The layer cations were Ni 2+ and Fe 3+ in all cases and the interlayer anion was carbonate. We have studied the effect of the surfactant used (with linear chains of different lengths, or cyclic) and the effect of the pH on the properties of the solids formed. These have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric analysis, temperature-programmed reduction, FT-IR and Vis–UV spectroscopies and scanning electron microscopy. It has been found that the samples prepared at pH 9 are more crystalline than those prepared at pH 11 and their crystallite sizes are always larger than for samples prepared by the conventional precipitation method. Surfactants with cyclic organic chains lead to a larger crystallite size, probably because the water pool vesicle where the crystallite grows is larger due to sterical hindrance of the organic chains. - Graphical abstract: Layered double hydroxides with the hydrotalcite-type structure with Ni 2+ and Fe 3+ cations in the layers have been prepared by the reverse micelles method. Different surfactants were used at different pH synthesis. Samples prepared at pH 9 are higher crystalline than those prepared at pH 11. Surfactants with cyclic organic chains lead to a larger crystallite size. - Highlights: • Hydrotalcites were prepared by the micelles reverse method. • Straight alkyl or cyclic chain surfactants were used. • All hydrotalcites are well crystallized at pH = 9 and 11. • The crystallite size depends on the linear/cyclic nature of the surfactant chain

  3. Selective labeling of pulmonary surfactant protein SP-C in organic solution

    DEFF Research Database (Denmark)

    Plasencia, I; Cruz, A; López-Lacomba, J L

    2001-01-01

    Pulmonary surfactant protein SP-C has been isolated from porcine lungs and treated with dansyl isothiocyanate in chloroform:methanol 2:1 (v/v) solutions,under conditions optimized to introduce a single dansyl group covalently attached to the N-terminalamine group of the protein without loss of its...

  4. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    Directory of Open Access Journals (Sweden)

    M. Ammann

    2008-09-01

    Full Text Available Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3, an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g. The uptake coefficient was reduced by a factor of 5–50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15, which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12 and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  5. Preparation and properties of PMMA nanoparticles as 3 dimensional photonic crystals and its thin film via surfactant-free emulsion polymerization

    Science.gov (United States)

    Tahrin, Rabiatul Addawiyah Azwa; Azma, Nur Syafiqa; Kassim, Syara; Harun, Noor Aniza

    2017-09-01

    3-dimensional (3D) photonic crystals have been extended use in wide research and application from material to sensor. Nanoparticles of poly (methyl methacrylate) (PMMA) latex beads have been successfully prepared by green-chemistry approach where no surfactant, linking agent and solvent were involved. Regardless of the effect of initiator in polymerization reaction, this study presents the effect of temperature, monomer concentration, stirring speed and reaction period in order to tune the particle size. Its morphology of uniformity sized-tuned was confirming by using particle size analyzer (PSA) and scanning electron microscopy (SEM). The fabrication of 3D photonic crystals film by using self-assembly method to pattern the desired PMMA layers which is the most feasible, low cost method are also presented. The detailed properties of PMMA nanoparticles from this experimental study will be discussed and its potential used in photonic application will be explained.

  6. Molecular characterization of organic electronic films.

    Science.gov (United States)

    DeLongchamp, Dean M; Kline, R Joseph; Fischer, Daniel A; Richter, Lee J; Toney, Michael F

    2011-01-18

    Organic electronics have emerged as a viable competitor to amorphous silicon for the active layer in low-cost electronics. The critical performance of organic electronic materials is closely related to their morphology and molecular packing. Unlike their inorganic counterparts, polymers combine complex repeat unit structure and crystalline disorder. This combination prevents any single technique from being able to uniquely solve the packing arrangement of the molecules. Here, a general methodology for combining multiple, complementary techniques that provide accurate unit cell dimensions and molecular orientation is described. The combination of measurements results in a nearly complete picture of the organic film morphology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Role of surfactant protein A (SP-A)/lipid interactions for SP-A functions in the lung.

    Science.gov (United States)

    Casals, C

    2001-01-01

    Surfactant protein A (SP-A), an oligomeric glycoprotein, is a member of a group of proteins named collectins that contain collagen-like and Ca(2+)-dependent carbohydrate recognition domains. SP-A interacts with a broad range of amphipathic lipids (glycerophospholipids, sphingophospholipids, glycosphingolipids, lipid A, and lipoglycans) that are present in surfactant or microbial membranes. This review summarizes SP-A/lipid interaction studies regarding the lipid system used (i.e., phospholipid vesicles, phospholipid monolayers, and lipids immobilized on silica or adsorbed on a solid support). The effect of calcium, ionic strength, and pH on the binding of SP-A to lipids and the subsequent lipid aggregation process is discussed. Current evidence suggests that hydrophobic-binding forces are involved in the peripherical association of SP-A to membranes. It is also proposed that fluid and liquid-ordered phase coexistence in surfactant membranes might favor partition of SP-A into those membranes. The binding of SP-A to surfactant membranes containing hydrophobic surfactant peptides makes possible the formation of a membrane reservoir in the alveolar fluid that is protected by SP-A against inactivation and improves the rate of surfactant film formation. In addition, the interaction of SP-A with membranes might enhance the affinity of SP-A for terminal carbohydrates of glycolipids or glycoproteins on the surface of invading microorganisms.

  8. Surfactant and counter-ion distribution in styrene-butyl acrylate-acrylic acid dry latex submonolayers

    Directory of Open Access Journals (Sweden)

    Keslarek Amauri José

    2004-01-01

    Full Text Available Styrene-butyl acrylate-acrylic acid latex submonolayers prepared using a non-reactive phosphate surfactant together with a reactive sulfonate surfactant were examined in a transmission microscope using electron energy loss spectroscopy imaging (ESI-TEM. Phosphorus is nearly absent from the particles core but it is detected in a thick shell and in unusual, strongly scattering structures with a low carbon content, and largely made out of inorganic phosphate. P is also dispersed outside the particles, while S is uniformly distributed within then. The Na and N elemental maps show that the respective monovalent ions (Na+ and NH4+ have different distributions, in the latex: Na signal within the particles is stronger than in the background, while N is accumulated at the particle borders. The distributions of surfactant and counter-ions are thus different from some current assumptions, but they support recent results on the distribution of ionic constituents in latex films, by scanning electric potential microscopy.

  9. Synthesis of nanosized (polymerization in miniemulsion employing in situ surfactant formation.

    Science.gov (United States)

    Guo, Yi; Zetterlund, Per B

    2011-10-18

    A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Surfactant replacement therapy--economic impact.

    Science.gov (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  11. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  12. Coupling surfactants with permanganate for DNAPL removal : coinjection or sequential application as delivery methods

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.J. [Carus Corp., Peru, IL (United States); Siegrist, R.L. [Colorado School of Mines, Golden, CO (United States); Crimi, M.L. [Clarkson Univ., Potsdam, NY (United States)

    2010-07-01

    This PowerPoint presentation described a study conducted to test the effectiveness of surfactant-enhanced permanganate for the remediation of dense nonaqueous phase liquids (DNAPL). When DNAPL enters the environment, it can pollute millions of gallons of ground water and create huge dissolved plumes that act as long-term sources of contamination. Surfactants were used to enhance the solubilization and mobilization of DNAPL during the remediation process. In situ chemical oxidation (ISCO) was then used to deliver oxidants into the sub-surface to destroy organic contaminants in the soil and ground water. Experimental 2-D flow-through cell studies of 72 surfactants were conducted with the permanganate to evaluate delivery methods and determine compatible co-solvents for the surfactant process. Delivery methods included co-injection and sequential application. Four compatible surfactants were found to be compatible with the permanganate. A 90 percent DNAPL remediation rate was achieved using relatively low surfactant and oxidant concentrations. tabs., figs.

  13. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  14. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    Science.gov (United States)

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  15. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  16. Surfactant -- Where Are We in 2003?

    Directory of Open Access Journals (Sweden)

    JF Lewis

    2004-01-01

    Full Text Available Surfactant research has progressed over the past several years to the extent that exogenous surfactant administration in patients with the acute respiratory distress syndrome (ARDS is now being evaluated. Unfortunately, clinical responses have been variable, and we now need to take a look at how surfactant is altered in this disease so that more effective treatment strategies can be developed. This review briefly discusses the biophysical and host defense properties of surfactant, the impact of mechanical ventilation (MV on the endogenous surfactant system and the most recent clinical data involving exogenous surfactant administration in patients with ARDS. Discussions regarding future directions of surfactant research both in ARDS and diseases other than acute lung injury are included.

  17. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    International Nuclear Information System (INIS)

    Batigoec, Cigdem; Akbas, Halide; Boz, Mesut

    2011-01-01

    Highlights: → Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. → Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. → Dimeric surfactants have attracted increasing attention due to their superior surface activity. → The positive values of ΔG cp 0 indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C 16 alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy (ΔG cp 0 ), the enthalpy (ΔH cp 0 ) and the entropy (ΔS cp 0 ) of the clouding phenomenon were found positive in all cases. The standard free energy (ΔG cp 0 ) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.

  18. In situ characterization of the film coverage and the charge transport in the alkylated-organic thin film transistor

    Science.gov (United States)

    Watanabe, Takeshi; Koganezawa, Tomoyuki; Kikuchi, Mamoru; Muraoka, Hiroki; Ogawa, Satoshi; Yoshimoto, Noriyuki; Hirosawa, Ichiro

    2018-03-01

    We propose an in situ experimental method of investigating the correlations of the film coverage of the organic semiconductor layers and charge transport properties of organic thin film transistors during vacuum deposition. The coverage of each monolayer was estimated using the intensity of off-specular diffuse scattering and diffraction. Experimental data were obtained from the in situ measurements of two-dimensional grazing incidence X-ray scattering and charge transport. The source-drain current increased over the film coverage of the first monolayer (= 0.48). This is in agreement with the critical percolation coverage, indicating that the conductivities of the first and second monolayers are different.

  19. Understanding polymorphism in organic semiconductor thin films through nanoconfinement.

    Science.gov (United States)

    Diao, Ying; Lenn, Kristina M; Lee, Wen-Ya; Blood-Forsythe, Martin A; Xu, Jie; Mao, Yisha; Kim, Yeongin; Reinspach, Julia A; Park, Steve; Aspuru-Guzik, Alán; Xue, Gi; Clancy, Paulette; Bao, Zhenan; Mannsfeld, Stefan C B

    2014-12-10

    Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.

  20. Surfactant-thermal syntheses, structures, and magnetic properties of Mn-Ge-sulfides/selenides

    KAUST Repository

    Zhang, Guodong

    2014-10-06

    Although either surfactants or amines have been investigated to direct the crystal growth of metal chalcogenides, the synergic effect of organic amines and surfactants to control the crystal growth has not been explored. In this report, several organic bases (hydrazine monohydrate, ethylenediamine (en), 1,2-propanediamine (1,2-dap), and 1,3-propanediamine (1,3-dap)) have been employed as structure-directing agents (SDAs) to prepare four novel chalcogenides (Mn3Ge2S7(NH3)4 (1), [Mn(en)2(H2O)][Mn(en)2MnGe3Se9] (2), (1,2-dapH)2{[Mn(1,2-dap)2]Ge2Se7} (3), and (1,3-dapH)(puH)MnGeSe4(4) (pu = propyleneurea) under surfactant media (PEG-400). These as-prepared new crystalline materials provide diverse metal coordination geometries, including MnS3N tetrahedra, MnGe2Se7 trimer, and MnGe3Se10 T2 cluster. Compounds 1-3 have been fully characterized by single-crystal X-ray diffraction (XRD), powder XRD, UV-vis spectra, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Moreover, magnetic measurements for compound 1 showed an obvious antiferromagnetic transition at ∼9 K. Our research not only enriches the structural chemistry of the transitional-metal/14/16 chalcogenides but also allows us to better understand the synergic effect of organic amines and surfactants on the crystallization of metal chalcogenides.

  1. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  2. Characterization of sodium bentonites: effect of treatment with ammonium salt- free organic surfactant; Caracterizacao de bentonitas sodicas: efeito do tratamento com surfactante organico livre de sal de amonio

    Energy Technology Data Exchange (ETDEWEB)

    Morita, R. Y.; Barbosa, R. V.; Kloss, J.R., E-mail: julianaweber@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dartamento de Quimica e Biologia

    2015-07-15

    Bentonite, which the main clay mineral is montmorillonite, are commercially attractive because of its abundance in nature. The clays can be modified by ion exchange reactions of ions contained in the interlayer region with cationic surfactants that include ammonium or phosphonium salts. The clays origin and the type of surfactants (modifiers) are the main factors in the alteration of physical and chemical properties of these materials. This study aims to characterize and compare the results of natural bentonite commercially available and the effect of treatments with quaternary ammonium salt and an organic compound free of ammonium salt. The FTIR and XRD results indicate the process of organophilization of clays after treatment with the surfactants. These treatments have altered the average particle size, suggesting the formation of agglomerates, which was showed in the SEM images. The results of surface area and particle size data indicated the presence of larger particles. Although the two surfactants have shown similarities in the investigated properties, the organoclays free of ammonium salt are more promising in terms of its use as well as for their preparation and solubility. (author)

  3. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko; Schroeder, Bob; Nielsen, Christian; Bronstein, Hugo; Fei, Zhuping; McCulloch, Iain; Heeney, Martin; Durrant, James

    2016-01-01

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact

  4. Micellization of a Cationic Surfactant in Mixed Aqueous and Non ...

    African Journals Online (AJOL)

    Reception

    Department of Chemistry, Rivers State University of Science and Technology, Port ... surfactants in water-organic mixed-solvent systems is ... MATERIALS AND METHODS .... Journal of Applied ... Journal of Chemical and Engineering Data, 54,.

  5. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each ...

  6. Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect

    International Nuclear Information System (INIS)

    Abad, Begoña; Rull-Bravo, Marta; Hodson, Stephen L.; Xu, Xianfan; Martin-Gonzalez, Marisol

    2015-01-01

    The effect of the addition of a surfactant, sodium lignosulfonate (SLS), on the thermoelectric properties of tellurium films prepared by electrochemical deposition is studied. The growth mechanism is found to have an important role in the thermoelectric properties since the grain size of the films is sharply reduced when the surfactant is added to the solution. For this reason, the electrical resistivity of the tellurium films when the surfactant is not added is 229 μΩ·m, which is lower than 798 μΩ·m with SLS. The Seebeck coefficient values are not influenced, with values in the vicinity of 285 μV/K for both solutions. The power factor resulted higher values than previous works, reaching values of 280 μW/m·K 2 (without SLS) and 82 μW/m·K 2 (with SLS) at room temperature. Finally, the thermal conductivity was measured by means of the Photoacoustic technique, which showed values of the order of 1 W/m·K for both solutions, which is a factor of 3 less than the bulk value of tellurium. A notable observation is that the power factor and the thermal conductivity of electrodeposited tellurium films have the same order of magnitude of bismuth telluride films grown by electrodeposition. The figure of merit is estimated to be approximately one order of magnitude higher than the bulk value, 0.09 without SLS and 0.03 with SLS, both at room temperature

  7. High-efficiency THz modulator based on phthalocyanine-compound organic films

    International Nuclear Information System (INIS)

    He, Ting; Zhang, Bo; Shen, Jingling; Zang, Mengdi; Chen, Tianji; Hu, Yufeng; Hou, Yanbing

    2015-01-01

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl 2 Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface

  8. Film Formation of Ag Nanoparticles at the Organic-Aqueous Liquid Interface

    Science.gov (United States)

    Vigorita, John

    2005-03-01

    A wet-chemical method to make films by spontaneous assembly of passivated Ag nanoparticles at the organic-aqueous liquid interface is presented. The interfacial films exhibit a blue opalescence, or in other cases a silvery color, and are characterized with transmission electron microscopy and UV-visible spectrophotometry. Measurements indicate that nanoparticles in the interfacial film can form superlattices and in some cases nanostructures.

  9. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo.

  10. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  11. Transport of organic solutes through amorphous teflon AF films.

    Science.gov (United States)

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  12. A new capillary electrophoresis buffer for determining organic and inorganic anions in electroplating bath with surfactant additives.

    Science.gov (United States)

    Sun, H; Lau, K M; Fung, Y S

    2010-05-07

    Monitoring of trace impurities in electroplating bath is needed to meet EU requirements for WEEE and RoHS and for quality control of electrodeposits. Methods using IC and 100% aqueous CE buffer were found producing non-repeatable results attributed to interference of surfactants and major methanesulphonate anion. A new CE buffer containing 1.5mM tetraethylenepentaamine, 3mM 1,3,5-benzenetricarboxylic acid and 15 mM Tris in 20% (v/v) methanol at pH=8.4 was shown to enhance the separation window, reduce interaction between buffer and bath constituents, and give satisfactory repeatability with baseline separation for 14 organic and inorganic anions within 14 min, good repeatability for migration time (0.32-0.57% RSD), satisfactory peak area and peak height (2.9-4.5 and 3-4.7% respectively), low detection limit (S/N=2, 20-150 ppb), and wide working ranges (0.1-100 ppm). The CE buffer with 20% (v/v) methanol has demonstrated its capability for identifying anion impurities causing problem in aged tin bath and the use of only 10-fold dilution to produce reliable results for quality assessment in plating bath containing high surfactant additives. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant

  14. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform

  15. Latex Imaging by Environmental STEM: Application to the Study of the Surfactant Outcome in Hybrid Alkyd/Acrylate Systems

    OpenAIRE

    Faucheu , Jenny; Chazeau , Laurent; Gauthier , Catherine; Cavaille , Jean-Yves; Goikoetxea , Monika; Minari , Roque; Asua , Jose M.

    2009-01-01

    International audience; Among other uses. latexes are a successful alternative to solvent-borne binders for coatings. Efforts are made to produce hybrid nanostructured latexes containing an acrylic phase and an alkyd phase, However, after the film-forming process, the surfactant used to stabilize these latexes remains in the film, and its location can have a drastic effect on the application properties. Among the processing parameters, the alkyd hydrophobicity can strongly influence this loca...

  16. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    Science.gov (United States)

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Surfactants from petroleum paraffin wax

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, T.M.; Hussein, M.H.; El Sayed, A.S.

    Paraffin wax from Egyptian petroleum was purified and then oxidized to fatty acids which were esterified to form their methyl esters, fractionated and then hydrolysed. The obtained fatty acids were converted into the corresponding primary amines which were converted with ethylene oxide to form nonionic surfactants. The prepared primary amines were also converted into tertiary amines and then converted into cationic surfactants through condensation with benzyl chloride or 1-chloromethylnaphthalene. Also, amine oxide surfactants were prepared by oxidation of the tertiary amines with hydrogen peroxide. The surface active properties of all the prepared surfactants were determined, and the effect of their chemical structure on the surfactant properties are discussed in this paper.

  18. Acute Pathophysiological Effects of Intratracheal Instillation of Budesonide and Exogenous Surfactant in a Neonatal Surfactant-depleted Piglet Model

    Directory of Open Access Journals (Sweden)

    Chia-Feng Yang

    2010-08-01

    Conclusions: Intratracheal instillation of surfactant or surfactant plus budesonide can improve oxygenation and pulmonary histologic outcome in neonatal surfactant-depleted lungs. The additional use of budesonide does not disturb the function of the exogenous surfactant. Intratracheal administration of a corticosteroid combined with surfactant may be an effective method for alleviating local pulmonary inflammation in severe RDS.

  19. Surfactant flooding of diesel-contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.A.

    1991-01-01

    At one installation, approximately 60,000 gallons of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of this research program after initial surfactant screening of 21 surfactants. Three of the surfactants were used for the surfactant flooding studies; the results from that phase of the research program are described

  20. Electrochemical sample preparation for the determination of Cd, Pb, and Cu in the presence of surfactants by stripping voltammetry

    International Nuclear Information System (INIS)

    Svintsova, L.D.; Chernysheva, N.N.

    1997-01-01

    The electrochemical pretreatment of aqueous solutions of synthetic surfactants in a diaphragm elelctrolyzer was used in order to diminish surfactant interference. The determination of cadmium, lead, and copper by stripping voltammetry with a mercury-film electrode in model solutions of cetylpyriridinium chloride, sodium lauryl sulfate, and OP-10 was taken as an example. It was found that the reproducibility of anodic peaks of the elements was improved, and the linearity of calibration characteristics was recovered; however, the sensitivity was not always as high as the value in the blank experiment

  1. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  2. Effect of a cationic surfactant on the volatilization of PAHs from soil.

    Science.gov (United States)

    Lu, Li; Zhu, Lizhong

    2012-06-01

    Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil. The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid-vapor and solid-vapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis. DDPB affects both liquid-vapor and solid-vapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas-liquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas-liquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid-vapor volatilization of PAHs. The overall effect of the two simultaneous effects of DDPB on liquid-vapor and solid-vapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.

  3. Morphology of polymer-based films for organic photovoltaics

    OpenAIRE

    Ruderer, Matthias A.

    2012-01-01

    In this thesis, polymer-based films are examined for applications in organic photovoltaics. Polymer-fullerene, polymer-polymer and diblock copolymer systems are characterized as active layer materials. The focus is on experimental parameters influencing the morphology formation of the active layer in organic solar cells. Scattering and imaging techniques provide a complete understanding of the internal structure on different length scales which is compared to spectroscopic and photovoltaic pr...

  4. Conductance measurement by two-line probe method of polypyrrole nano-films formed on mica by admicellar polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mou, C.-Y. [Graduate Institute of Textile Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Yuan, W.-L. [Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan (China)], E-mail: wyuan@fcu.edu.tw; Tsai, I-S. [Graduate Institute of Textile Engineering, Feng Chia University, Taichung 40724, Taiwan (China); O' Rear, Edgar A. [School of Chemical, Biological and Material Engineering, University of Oklahoma, Norman, OK 73019 (United States); Barraza, Harry [Unilever R and D HPC, Quarry Road East, Bebington, Wirral, CH63 3JW (United Kingdom)

    2008-10-01

    Measuring the electrical conductance is of importance in fabricating electronic devices based on semiconducting thin films. In this report, electrically conducting polypyrrole (PPy) nano-films were deposited on insulating mica plates by admicellar polymerization. It becomes difficult to measure such film conductance in the lateral direction due the nanometric thickness which only allows for very low electrical current. In order to understand the effects of surfactant on the film conductivity, morphological studies using atomic force microscopy and conductance measurements with a sub-fA multimeter were performed. Higher conductances were found for PPy thin films made using surfactant templates, than that of a bare mica surface. Using the two-line probe method by drawing two lines of silver glue 8 mm apart on the sample surface, the current-voltage curves of bare mica surface yielded a lateral conductance of 6.0 x 10{sup -13} S. In comparison, PPy thin films made using sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) as surfactant templates showed conductances of 1.2 x 10{sup -11} S and 7.7 x 10{sup -12} S, respectively. The higher conductances indicate tunneling, hopping, and percolation of charge carriers throughout the films. The lower-bound conductivities were calculated as 4.0 x 10{sup -3} S/cm and 2.6 x 10{sup -3} S/cm, measured based on the average thickness 2.3 nm for the SDS-PPy films and 2.4 nm for the CTAB-PPy films. Conductivities for both SDS and CTAB template PPy films are found to be of the same order.

  5. Conductance measurement by two-line probe method of polypyrrole nano-films formed on mica by admicellar polymerization

    International Nuclear Information System (INIS)

    Mou, C.-Y.; Yuan, W.-L.; Tsai, I-S.; O'Rear, Edgar A.; Barraza, Harry

    2008-01-01

    Measuring the electrical conductance is of importance in fabricating electronic devices based on semiconducting thin films. In this report, electrically conducting polypyrrole (PPy) nano-films were deposited on insulating mica plates by admicellar polymerization. It becomes difficult to measure such film conductance in the lateral direction due the nanometric thickness which only allows for very low electrical current. In order to understand the effects of surfactant on the film conductivity, morphological studies using atomic force microscopy and conductance measurements with a sub-fA multimeter were performed. Higher conductances were found for PPy thin films made using surfactant templates, than that of a bare mica surface. Using the two-line probe method by drawing two lines of silver glue 8 mm apart on the sample surface, the current-voltage curves of bare mica surface yielded a lateral conductance of 6.0 x 10 -13 S. In comparison, PPy thin films made using sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) as surfactant templates showed conductances of 1.2 x 10 -11 S and 7.7 x 10 -12 S, respectively. The higher conductances indicate tunneling, hopping, and percolation of charge carriers throughout the films. The lower-bound conductivities were calculated as 4.0 x 10 -3 S/cm and 2.6 x 10 -3 S/cm, measured based on the average thickness 2.3 nm for the SDS-PPy films and 2.4 nm for the CTAB-PPy films. Conductivities for both SDS and CTAB template PPy films are found to be of the same order

  6. Surfactant mediated extraction of total phenolic contents (TPC) and antioxidants from fruits juices.

    Science.gov (United States)

    Sharma, Shweta; Kori, Shivpoojan; Parmar, Ankush

    2015-10-15

    The aim of this study was to enhance the extraction of total phenolic contents (TPC) and antioxidants from fruit juices by the application of surfactants formulations instead of conventional solvents (methanol, ethanol and acetone). A variety of fruit infusions: apple red delicious (apple (rd)) (Malus domestica), Mcintosh apple (apple (i)) (Malus pumila), sweet lemon (Citrus limetta) and mango (Magnifera indica) were studied. Effect of water, organic solvents and five different aqueous surfactant formulations viz. SDS, Brij-35, Brij-58, Triton X-100 and Span-40 were explored for the extraction of TPC and determining the antioxidant activity (AA). The TPC and AA (%) were determined using Folin-Ciocalteu (FCA) and DPPH assay, respectively. The effect of surfactant type, concentration and common organic solvents on the extraction of TPC and AA (%) was studied using UV-visible spectrophotometric technique. Among all the extracting systems employed, Brij-58 showed the highest extraction efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Energy Migration in Organic Thin Films--From Excitons to Polarons

    Science.gov (United States)

    Mullenbach, Tyler K.

    The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.

  8. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant

    Directory of Open Access Journals (Sweden)

    Jun Kobayashi

    2016-06-01

    Full Text Available A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8 isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC impedance spectroscopy.

  9. Ion-pair hollow-fiber liquid-phase microextraction of the quaternary ammonium surfactant dicocodimethylammonium chloride.

    Science.gov (United States)

    Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake

    2009-02-01

    A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.

  10. Secondary structure and lipid interactions of the N-terminal segment of pulmonary surfactant SP-C in Langmuir films: IR reflection-absorption spectroscopy and surface pressure studies

    DEFF Research Database (Denmark)

    Bi, Xiaohong; Flach, Carol R; Pérez-Gil, Jesus

    2002-01-01

    reversibly with surface pressure (pi), suggestive of the peptide being squeezed out from hydrophobic regions of the monolayer. No such effect was observed for DPPG/peptide monolayers, indicative of stronger, probably electrostatic, interactions. Depalmitoylation produced a weakened interaction with either...... phospholipid as deduced from IRRAS spectra and from pi-area isotherms. S-Palmitoylation may modulate peptide hydration and conformation in the N-terminal region of SP-C and may thus permit the peptide to remain in the film at the high surface pressures present during lung compression. The unique capability...... of IRRAS to detect the surface pressure dependence of protein or peptide structure/interactions in a physiologically relevant model for surfactant is clearly demonstrated. Udgivelsesdato: 2002-Jul-2...

  11. Organophilization of bentonite clays with non-ionic surfactants aiming their use in drilling fluids base oil

    International Nuclear Information System (INIS)

    Silva, I.A.; Costa, J.M.R.; Neves, G.A.; Ferreira, H.C.; Ferreira, H.S.

    2010-01-01

    The use of nonionic surfactants has been replacing the traditional ionic surfactants among others by its high potential for resistance to thermal degradation. This work aims at the development of organoclay by the addition of nonionic surfactants for use in drilling fluids for oil wells based oil. The bentonite clay was organophilized and then characterized by X-ray diffraction and swelling Foster, seeking the most appropriate choice of surfactant to liquid organic dispersing media: ester, diesel and paraffin. With the obtained dispersions were measured apparent viscosities and plastic. The results showed that incorporation of surfactants used in the clay interlayer spacing increased significantly and that the dispersions showed rheological properties within the specifications of PETROBRAS, for the use of organophilic clays in drilling fluids in a non-aqueous base. (author)

  12. Drainage Behavior in Soap Films Above and Below the CMC

    Science.gov (United States)

    Berg, S.; Adelizzi, E. A.; Troian, S. M.

    2003-11-01

    We investigate through laser interferometry the drainage behavior of Newtonian soap films initially entrained on a fiber frame at small and constant capillary number. The initial film thickness is sufficiently small that gravitational drainage is presumed minimal. The drainage of rigid soap films by capillary forces alone should proceed according to h(t) ˜ t^- 1/2. Our experimental results show much more rapid drainage with exponents as large as -2, especially for those solutions whose surfactant concentrations are below the CMC. Video recordings of the entire film surface reveal a variety of structures during the drainage process, some attributable to marginal regeneration. Though still a controversial issue, this regeneration process is believed to be caused by surfactant accumulation in the meniscus region (1). We show that modification of the relevant capillary drainage equation to account for Marangoni effects through a course-grained slip condition at the air-liquid interface produces exponents in better agreement with experimental findings. (1) V. A. Nierstrasz and G. Frens, JCIS 215, 28 (1999).

  13. The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders.

    Science.gov (United States)

    Daniels, Christopher B; Orgeig, Sandra; Sullivan, Lucy C; Ling, Nicholas; Bennett, Michael B; Schürch, Samuel; Val, Adalberto Luis; Brauner, Colin J

    2004-01-01

    Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish (the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian

  14. Printed organic thin-film transistor-based integrated circuits

    International Nuclear Information System (INIS)

    Mandal, Saumen; Noh, Yong-Young

    2015-01-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted. (paper)

  15. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV

  16. In situ ellipsometry — A powerful tool for monitoring alkali doping of organic thin films

    International Nuclear Information System (INIS)

    Haidu, F.; Ludemann, M.; Schäfer, P.; Gordan, O.D.; Zahn, D.R.T.

    2014-01-01

    The changes of the optical properties of several organic thin films induced by potassium doping were monitored using in situ spectroscopic ellipsometry. The samples were prepared in a high vacuum chamber by organic molecular deposition. Then, potassium (K) was evaporated by passing current through K getters. The three different organic molecules used, show very distinct and different spectral behaviour upon doping. While for Tris-(8-hydroxyquinoline)-aluminium(III) and N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine only small shifts of the spectral features were noticed, Manganese Phthalocyanine revealed significant changes of the optical properties induced by the K doping. This work indicates that the K doping process can have a dramatic effect on the electronic and the optical properties of the organic molecules, but the effect on the optical spectra remains specific for each organic molecule used, and cannot be easily predicted. - Highlights: • Monitoring organic film growth and doping with in situ spectroscopic ellipsometry • K doped organic thin films • Optical properties of organic thin films change by K doping. • The changes in the optical spectra remain specific for each organic molecule used

  17. Electronic and geometric structure of electro-optically active organic films and associated interfaces

    International Nuclear Information System (INIS)

    Ivanco, J.; Haber, T.; Resel, R.; Netzer, F.P.; Ramsey, M.G.

    2006-01-01

    The electronic and structural properties of sexiphenyl and sexithiophene films grown under ultra-high vacuum conditions on a variety of well-controlled substrate surfaces have been examined. We show that, in contradiction with the general notion, the ionisation potential of the organic films is not a material constant. Considering the variable ionisation potential, the validity of the Schottky-Mott relationship, which expresses a dependence of the band alignment on the substrate work function, is analysed. We also briefly discuss the relevance of the built-in potential behaviour in organic films for the band-bending concept

  18. Engineered Multifunctional Fluorinated Film Based on Semicontinuous Emulsion Polymerization Using Polymerizable Quaternary Ammonium Emulsifiers

    Directory of Open Access Journals (Sweden)

    Hongzhu Liu

    2018-01-01

    Full Text Available Along with society’s progress, high-quality coatings are widely used. Although fluorinated polymers were successfully prepared by semicontinuous emulsion polymerization with surfactants, chlorotrifluoroethylene (CTFE, and acrylate monomers, the optimization collocation of surfactants still has room for improvement. The traditional emulsifiers are physically absorbed onto the surface of latex particles. The latex film generated by latex particles is unstable in water, which limits its application. Herein, a novel series of cationic quaternary ammonium polymerizable surfactant was selected because it can react with CTFE and acrylate monomers and can become a part of the polymers. We also studied the effects of emulsifier type on resultant emulsion properties. In addition, wonderful weatherability, water resistance, and antibacterial and antifouling of the multifunctional fluorinated films were observed, which would open up a bright future for coating industries.

  19. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  20. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Beaussoubre, Pascal; Wong, Kenneth

    2010-12-07

    We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. We compare the behavior of an oil of low water solubility (limonene) and one of high water solubility (benzyl acetate). It is shown how the evaporation of an oil of low water solubility is selectively retarded and how the retardation effect depends on the oil volume fraction in the emulsion. We compare how the evaporation retardation depends on the nature of the adsorbed film stabilizing the emulsion. Surfactant films are less effective than adsorbed films of nanoparticles, and the retardation can be further enhanced by compression of the adsorbed nanoparticle films by preshrinking the emulsion drops.

  1. Study of thin films of carrier-doped strontium titanate with emphasis on their interfaces with organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Naoki [Laboratory of Molecular Aggregation Analysis, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)]. E-mail: naokis@e.kuicr.kyoto-u.ac.jp; Harada, Youichiro [Laboratory of Molecular Aggregation Analysis, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Terashima, Takahito [International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanda, Ryoko [International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Takano, Mikio [International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2005-05-15

    Fifty nanometer-thick metal-doped strontium titanate (M:STO, M = La and V) films deposited epitaxially on single crystalline STO substrates were characterized in comparison with indium tin oxide (ITO) covered glasses, to check their applicability to optically transparent anode materials for organic optoelectronic devices. M:STO, in particular V:STO, films turned out to have distinct surface flatness, needfully low electric resistivities and notably large work functions. While their optical transmittances are lower than those of ITOs at this moment, we suggest that M:STO films have a potential to take the place of ITO films. Further, we have observed energy level alignments for copper phthalocyanine thin films at the interface of V:STO.

  2. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint.

    Science.gov (United States)

    Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram

    2017-05-10

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  3. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint

    KAUST Repository

    Richter, Lee J.

    2017-04-17

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  4. Metal ion extractant in microemulsions: where solvent extraction and surfactant science meet

    International Nuclear Information System (INIS)

    Bauer, C.

    2011-01-01

    The presented work describes the supramolecular structure of mixtures of a hydrophilic surfactant n-octyl-beta-glucoside (C8G1), and the hydrophobic metal ion extractant tributylphosphate (TBP) in n-dodecane/water as well as in the presence of salts. In the first part, basic solvent extraction system, composed of water, oil and extractant, will be introduced. The focus, however, lies on the extraction of multivalent metal ions from the aqueous phase. During this extraction process and in the following thermodynamic equilibrium, aggregation and phase transition in supramolecular assemblies occur, which are already described in literature. Notably, these reports rest on individual studies and specific conclusions, while a general concept is still missing. We therefore suggest the use of generalized phase diagrams to present the physico-chemical behaviour of (amphiphilic) extractant systems. These phase diagrams facilitated the development of a thermodynamic model based on molecular geometry and packing of the extractant molecules in the oil phase. As a result, we are now in the position to predict size and water content of extractant aggregates and, thus, verify the experimental results by calculation.Consequently, the second part presents a systematic study of the aqueous and organic phase of water/C8G1 and water/oil/TBP mixtures. The focus lies on understanding the interaction between metal ions and both amphiphilic molecules by means of small angle x-ray scattering (SAXS), dynamic light scattering (DLS) and UV-Vis spectroscopy. We confirmed the assumption that extraction of metal ions is driven by TBP, while C8G1 remains passive. In the third and last part, microemulsions of C8G1, TBP, water (and salt) and n-dodecane are characterized by small angle neutron scattering (SANS), and chemical analytics (Karl Fischer, total organic carbon, ICP-OES,...). The co-surfactant behaviour of TBP was highlighted by comparison to the classical n-alcohol (4≤n≤8) co-surfactants

  5. Undoped Polyaniline/Surfactant Complex for the Corrosion Prevention

    Science.gov (United States)

    Liu, Lo-Min; Levon, Kalle

    1998-01-01

    Due to the strict regulations on the usage of heavy metals as the additives in the coating industries, the search for effective organic corrosion inhibitors in replace of those metal additives has become essential. Electrically conducting polymers have been shown to be effective for corrosion prevention but the poor solubility of these intractable polymers has been a problem. We have explored a polyaniline/4-dodecylphenol complex (PANi/DDPh) to improve the dissolution and it has been shown to be an effective organic corrosion inhibitor. With the surfactant, DDPh, PANi could be diluted into the coatings and the properties of the coatings were affected. Emeraldine base (EB) form of PANi was also found to be oxidized by the hardener. The oxidized form of polyaniline provides improved corrosion protection of metals than that of emeraldine base since the value of the standard electrode potential for the oxidized form of PANi is higher than that of EB. Additionally, the surfactant improves the wet adhesion property between the coating and the metal surface.

  6. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  7. NMR study of the dynamics of cationic gemini surfactant 14-2-14 in mixed solutions with conventional surfactants.

    Science.gov (United States)

    Jiang, Yan; Lu, Xing-Yu; Chen, Hong; Mao, Shi-Zhen; Liu, Mai-Li; Luo, Ping-Ya; Du, You-Ru

    2009-06-18

    Three kinds of conventional surfactants, namely, two nonionic surfactants [polyethylene glycol (23) lauryl ether (Brij-35) and Triton X-100 (TX-100)], one cationic surfactant [n-tetradecyltrimethyl ammonium bromide (TTAB)], and an anionic surfactant [sodium n-dodecyl sulfate (SDS)}, were mixed into the quaternary ammonium gemini surfactant [C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(2).2Br(-) (14-2-14) in aqueous solution. The exchange rate constants between 14-2-14 molecules in the mixed micelles and those in the bulk solution were detected using two nuclear magnetic resonance (NMR) methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). The results obtained from these two methods were consistent. Both showed that mixing a nonionic conventional surfactant, either Brij-35 or TX-100, enhanced the exchange process between the 14-2-14 molecules in the mixed micelles and those in the bulk solution. In contrast, the anionic surfactant SDS and the cationic surfactant TTAB slowed the process slightly.

  8. Pair distribution functions of amorphous organic thin films from synchrotron X-ray scattering in transmission mode

    Directory of Open Access Journals (Sweden)

    Chenyang Shi

    2017-09-01

    Full Text Available Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials.

  9. Viscous bursting of suspended films

    Science.gov (United States)

    Debrégeas, G.; Martin, P.; Brochard-Wyart, F.

    1995-11-01

    Soap films break up by an inertial process. We present here the first observations on freely suspended films of long-chain polymers, where viscous effects are dominant and no surfactant is present. A hole is nucleated at time 0 and grows up to a radius R(t) at time t. A surprising feature is that the liquid from the hole is not collected into a rim (as it is in soap films): The liquid spreads out without any significant change of the film thickness. The radius R(t) grows exponentially with time, R~exp(t/τ) [while in soap films R(t) is linear]. The rise time τ~ηe/2γ where η is viscosity, e is thickness (in the micron range), and γ is surface tension. A simple model is developed to explain this growth law.

  10. Surfactant-enhanced electrokinetic remediation of soil contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.W.; Park, J.Y.; Lee, H.H.; Cho, H.J. [Dept. of Chemical Engineering, Korea Advanced Inst. of Science and Technology, Taejon (Korea)

    2001-07-01

    Removal of hydrophobic organic contaminants (HOCs) using electrokinetic method was studied in a model system. Kaolinite and phenanthrene were selected as the model clay soil and representative HOC. Three different types of surfactants, APG (alkyl polyglucoside), Brij30 (polyoxyethylene 4 lauryl ether), and SDS (sodium dodecyl sulfate), were used to enhance the solubility of HOCs. Electrokinetic (EK) column experiments were performed using water, surfactant solution, and acetate buffer solution under a constant current condition. Voltage and flow through the soil system were interpreted with time. Electrolyte pH at the anode and cathode compartments was observed for operation time. Removal efficiency of phenanthrene was examined after the end of EK operation during 2, 4, and 6 weeks. (orig.)

  11. On effect of surfactants on formation of metal trihydroxyfluoronates

    International Nuclear Information System (INIS)

    Antonovich, V.P.; Novoselova, M.M.; Nazarenko, V.A.

    1984-01-01

    Literary data on the practical application and properties of metal complexes with different trihydroxyfluorone derivatives being formed in the presence of surfactants, on the effect of detergents on acidic-Uasic cOaracteristics of reagents, on the mechanism of formation of coloured metal complexes with 2,3,7- and 3,4,5-trihydroxyfluorons, are systematized. Characteristics (formation conditions, properties) of complexes of Mo(6), Zr(4), Nb(5), W(6), V(4), Te(4), U(6), rare earths, Ta(5), Se(3), Hf(4), In(3) and other metals, are considered. Special attention is paid to the analysis of different approaches to the mechanism of surfactant effect on metal reaction with chromophore organic analytic reagents

  12. Self-Organized Ni Nanocrystal Embedded in BaTiO3 Epitaxial Film

    Directory of Open Access Journals (Sweden)

    Ge FF

    2010-01-01

    Full Text Available Abstract Ni nanocrystals (NCs were embedded in BaTiO3 epitaxial films using the laser molecular beam epitaxy. The processes involving the self-organization of Ni NCs and the epitaxial growth of BaTiO3 were discussed. With the in situ monitoring of reflection high-energy electron diffraction, the nanocomposite films were engineered controllably by the fine alternation of the self-organization of Ni NCs and the epitaxial growth of BaTiO3. The transmission electron microscopy and the X-ray diffraction characterization confirmed that the composite film consists of the Ni NCs layers alternating with the (001/(100-oriented epitaxial BaTiO3 separation layers.

  13. Influence of organic films on the evaporation and condensation of water in aerosol.

    Science.gov (United States)

    Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P

    2013-05-28

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.

  14. Influence of organic films on the evaporation and condensation of water in aerosol

    Science.gov (United States)

    Davies, James F.; Miles, Rachael E. H.; Haddrell, Allen E.; Reid, Jonathan P.

    2013-01-01

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [CnH(2n+1)OH], with the value decreasing from 2.4 × 10−3 to 1.7 × 10−5 as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid. PMID:23674675

  15. Nucleation and strain-stabilization during organic semiconductor thin film deposition.

    Science.gov (United States)

    Li, Yang; Wan, Jing; Smilgies, Detlef-M; Bouffard, Nicole; Sun, Richard; Headrick, Randall L

    2016-09-07

    The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.

  16. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  17. Nonionic surfactant organoclay obtaining from Pedra Lavrada District, PB, Brazil

    International Nuclear Information System (INIS)

    Silva, I.A. da; Cardoso, M.A.F.; Figueiredo, J.M.R.; Silva, C.D.; Neves, G.A.; Ferreira, H. C.

    2012-01-01

    The oil industry has invested for many years in the use of smectite clay as a dispersing agent in the composition of drilling fluids for oil wells water based and oil based. The State of Paraiba is one of the largest producers of clays and recently discovered new deposits in the regions of Cubati and Pedra Lavrada by creating a great expectation of the expansion of mineral production in the region. The aim of this work is a smectite clays organophilization of the city of Pedra Lavrada, with the addition of nonionic surfactant. After organophilization clay was characterized by X-ray diffraction and Foster swelling in order to choose the most suitable surfactant through the organic liquid dispersant diesel. The results showed that incorporation of surfactant used in the clay interlayer spacing increased significantly, and that the dispersions showed rheological properties within the specifications of PETROBRAS, for use of organophilic clays in drilling fluids in nonionic base. (author)

  18. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  19. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...... of around 7%, by incorporating sputter deposited TiOx thin-films as electron-transport and exciton-blocking layers. In the work, we report on the effect of different TiOx deposition temperatures and thicknesses on the organic-solar-cell device performance. Besides optical characterization, AFM and XRD...... analyses are performed to characterize the morphology and crystal structure of the films, and external quantum efficiency measurements are employed to shed further light on the device performance. Our study presents a novel method for implementation of TiOx thin-films as electron-transport layer in organic...

  20. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  1. Calixarene Langmuir-Blodgett Thin Films For Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Capan, R.

    2010-01-01

    Volatile Organic Compounds (VOC's) such as benzene, toluene, chloroform are chemicals that evaporate easily at room temperature and create many health effects on young children, elderly and a person with heightened sensitivity to chemicals. Concentrations of many VOC's are consistently higher indoors (up to ten times higher) than outdoors because many household products (for example paints, varnishes, many cleaning, disinfecting, cosmetic, degreasing, hobby products etc.) contains VOC's. Some effects of VOC's for human beings can be followed as the eye, nose, and throat irritations; headaches, loss of coordination, nausea; damage to liver, kidneys, and central nervous system. These are big incentives for the development of portable, user-friendly VOC's sensors and for the investigation of the sensing properties of new materials to be prepared as a thin film sensing element. Langmuir-Blodgett (LB) ultra-thin film technique allows us to produce monolayer or multilayer organic thin films that can be used as chemical sensing elements.In this work, materials known as the calix[n]arene are investigated for the production of sensing material against several VOC's such as the chloroform, benzene, ethylbenzene and toluene by using LB thin film techniques. UV-visible, Quartz Crystal Microbalance (QCM) system and Surface Plasmon Resonance (SPR) measurement techniques are used to check the quality of the deposition process onto a solid substrate. Surface morphology and sensing properties of the final sensing layers are then studied by Atomic Force Microscopy (AFM) and SPR techniques. Our results indicated that selected calixarene materials are sensitive enough and quite suitable to fabricate a highly ordered, reproducible and uniform LB film that can be used as a very thin sensing layer against VOC's.

  2. Characterisation of thin films of organic phosphorescent materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Thompson, J.; Arima, V.; Matino, F.; Cingolani, R.; Blyth, R.I.R.

    2005-01-01

    Synchrotron radiation photoemission and X-ray absorption spectroscopy (NEXAFS) have been used to investigate the electronic structure of evaporated films of the phosphorescent organic iridium complexes iridium tris-(2-(4-totyl)pyridinato-N,C 2 ), iridium bis(2-(4,6-difluorophenyl)pyridinato-N,C 2 )picolinate, and iridium bis(2-(2'-benzothienyl)pyridinato-N,C 3 )-(acetylacetonate) and spin coated films of these materials in a polymer host. Resonant photoemission at the Ir N 6,7 edge indicates that the Ir 5d states are hybridised with the π orbitals of the organic ligands, in agreement with recent calculations. The nitrogen K-edge NEXAFS shows the difference in the unoccupied orbitals induced by the acetylacetonate group compared to those of the pyridinate ligands. Although the valence bands of the ex situ prepared films are not accessible to photoemission, the Ir 4f core levels remain visible, and demonstrate that the polymer host serves to lower the electron injection barrier in the iridium complexes in comparison to the pure films

  3. Characterisation of thin films of organic phosphorescent materials using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J. [Float-Lux srl., via Ravenna 14, 73100 Lecce (Italy); Arima, V. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Matino, F. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Cingolani, R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Blyth, R.I.R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy)]. E-mail: rob.blyth@unile.it

    2005-07-30

    Synchrotron radiation photoemission and X-ray absorption spectroscopy (NEXAFS) have been used to investigate the electronic structure of evaporated films of the phosphorescent organic iridium complexes iridium tris-(2-(4-totyl)pyridinato-N,C{sup 2}), iridium bis(2-(4,6-difluorophenyl)pyridinato-N,C{sup 2})picolinate, and iridium bis(2-(2'-benzothienyl)pyridinato-N,C{sup 3})-(acetylacetonate) and spin coated films of these materials in a polymer host. Resonant photoemission at the Ir N{sub 6,7} edge indicates that the Ir 5d states are hybridised with the {pi} orbitals of the organic ligands, in agreement with recent calculations. The nitrogen K-edge NEXAFS shows the difference in the unoccupied orbitals induced by the acetylacetonate group compared to those of the pyridinate ligands. Although the valence bands of the ex situ prepared films are not accessible to photoemission, the Ir 4f core levels remain visible, and demonstrate that the polymer host serves to lower the electron injection barrier in the iridium complexes in comparison to the pure films.

  4. Reflectivity and diffraction of X rays applied to organic thin films

    International Nuclear Information System (INIS)

    Rieutord, Francois

    1987-01-01

    This research thesis reports the study of organic thin films by using X-ray-based technologies, and more particularly X-ray reflectivity. After some recalls on X ray diffraction, and on the fabrication of Langmuir-Blodgett films, the author shows how, by combining three X-ray-based techniques, it is possible to study a volume structure of a thin film. He describes the technique of measurement by X- ray reflexivity, its experimental implementation, and methods for result interpretation. In the next part, the author reports the study of peculiar interference effects which are noticed in reflexivity on Langmuir-Blodgett films, and then describes the nature of these films by correlating results of X ray reflexivity with direct observations performed by electronic microscopy on replica [fr

  5. Swelling of a mesostructured zirconium oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.J. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Rennie, A.R. [Uppsala University, Studsvik Neutron Research Laboratory, S-611 82 Nykoeping (Sweden); Hawley, A.M. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); White, J.W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)]. E-mail: jww@rsc.anu.edu.au

    2006-11-15

    The structural changes that cause the change in interlayer spacing of a surfactant-templated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 A on a lattice parameter of about 36 A. The (0 0 1) and (0 0 2) diffraction peak widths, positions and areas of a swollen film were monitored as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals.

  6. Pulmonary clearance of {sup 99m}Tc-DTPA in experimental surfactant dysfunction treated with surfactant installation

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, K.; John, J.; Lachmann, B.; Robertson, B.; Wollmer, P.

    1997-02-01

    Background: Breakdown of the alveolo-capillary barrier is a characteristic feature of respiratory distress syndrome. Restoration of alveolo-capillary barrier function may be an important aspect of surfactant replacement therapy. We examined the effect of surfactant installation on alveolo-capillary barrier function in an experimental model of surfactant dysfunction by measuring pulmonary clearance of {sup 99m}Tc-DTPA. Methods: Nineteen rabbits were tracheotomized and mechanically ventilated. Surfactant dysfunction was induced by administration of a synthetic detergent in aerosol form. Detergent was given to 13 rabbits; seven rabbits were then treated with installation of natural surfactant, whereas six rabbits received saline. Six rabbits were used as untreated controls. An aerosol of {sup 99m}Tc-DTPA was administered to all animals and the pulmonary clearance was measured with a gamma camera. Results: {sup 99m}Tc-DTPA cleared from the lungs with a half-life of 71{+-}22 min in the control animals, 21.4{+-}7.4 min in the surfactant-treated animals and 5.8{+-}1.5 min in the saline-treated animals. The difference in half-life between groups was highly significant (P<0.001). There was no change in arterial oxygenation or compliance in controls or in animals treated with saline. In animals treated with surfactant, a small transient reduction in arterial oxygen tension and a more long-standing reduction in compliance were observed. Conclusion: Surfactant treatment thus significantly attenuated the effect of detergent treatment but did not restore alveolo-capillary transfer of {sup 99m}Tc-DTPA to normal. (AU) 26 refs.

  7. SAXS and SANS studies of surfactants and reverse micelles in supercritical CO2

    International Nuclear Information System (INIS)

    Londono, J.D.; Dharmapurikar, R.S.; Wignall, G.D.; Cochran, H.D.

    1997-01-01

    Surfactants promise to extend the applicability of supercritical CO 2 (SC-CO 2 ) to processing of insoluble materials such as polymers and aqueous systems. In this short paper the authors summarize the techniques for studying surfactants and reverse micelles in SC-CO 2 using SAXS and SANS; they will describe the scattering instruments and the pressure cells for conducting these studies; they will describe the types of measurement that yield the desired characterizations; they will describe the methods of data analysis and interpretation; and they will provide illustrative results from this laboratory. Industry seeks to replace common organic solvents now used in many reaction and separation processes; SC-CO 2 is a potential solvent substitute widely favored by both government and industry. The currently available surfactants are limited in number and performance. In ongoing work the authors are coupling their SAXS and SANS scattering studies with complementary molecular simulations in efforts to understand, at a molecular level, what surfactant characteristics lead to improved performance. They hope that superior surfactants for use in SC-CO 2 can be designed and synthesized based on this new level of understanding

  8. Summer/winter variability of the surfactants in aerosols from Grenoble, France

    Science.gov (United States)

    Baduel, Christine; Nozière, Barbara; Jaffrezo, Jean-Luc

    2012-02-01

    Many atmospheric aerosols seem to contain strong organic surfactants likely to enhance their cloud-forming properties. Yet, few techniques allow for the identification and characterization of these compounds. Recently, we introduced a double extraction method to isolate the surfactant fraction of atmospheric aerosol samples, and evidenced their very low surface tension (≤30 mN m -1). In this work, this analytical procedure was further optimized. In addition to an optimized extraction and a reduction of the analytical time, the improved method led to a high reproducibility in the surface tension curves obtained (shapes and minimal values), illustrated by the low uncertainties on the values, ±10% or less. The improved method was applied to PM 10 aerosols from the urban area of Grenoble, France collected from June 2009 to January 2010. Significant variability was observed between the samples. The minimum surface tension obtained from the summer samples was systematically lower (30 mN m -1) than that of the winter samples (35-45 mN m -1). Sharp transitions in the curves together with the very low surface tensions suggested that the dominating surfactants in the summer samples were biosurfactants, which would be consistent with the high biogenic activity in that season. One group of samples from the winter also displayed sharp transitions, which, together with the slightly higher surface tension, suggested the presence of weaker, possibly man-made, surfactants. A second group of curves from the winter did not display any clear transition but were similar to those of macromolecular surfactants such as polysaccharides or humic substances from wood burning. These surfactants are thus likely to originate from wood burning, the dominating source for aerosols in Grenoble in winter. These observations thus confirm the presence of surfactants from combustion processes in urban aerosols reported by other groups and illustrates the ability of our method to distinguish between

  9. Dependence of the organic nonvolatile memory performance on the location of ultra-thin Ag film

    International Nuclear Information System (INIS)

    Jiao Bo; Wu Zhaoxin; He Qiang; Mao Guilin; Hou Xun; Tian Yuan

    2010-01-01

    We demonstrated organic nonvolatile memory devices based on 4,4',4''-tris[N-(3-methylphenyl)-N-phenylamino] triphenylamine (m-MTDATA) inserted by an ultra-thin Ag film. The memory devices with different locations of ultra-thin Ag film in m-MTDATA were investigated, and it was found that the location of the Ag film could affect the performance of the organic memory, such as ON/OFF ratio, retention time and cycling endurance. When the Ag film was located at the ITO/m-MTDATA interface, the largest ON/OFF ratio (about 10 5 ) could be achieved, but the cycling endurance was poor. When the Ag film was located in the middle region of the m-MTDATA layer, the ON/OFF ratios came down by about 10 3 , but better performance of cycling endurance was exhibited. When the Ag film was located close to the Al electrode, the ON/OFF ratios and the retention time of this device decreased sharply and the bistable phenomenon almost disappeared. Our works show a simple approach to improve the performance of organic memory by adjusting the location of the metal film.

  10. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    Science.gov (United States)

    Best, James P.; Michler, Johann; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Maeder, Xavier; Röse, Silvana; Oberst, Vanessa; Liu, Jinxuan; Walheim, Stefan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof

    2015-09-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST-1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  11. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  12. Simple gun for vapor deposition of organic thin films

    International Nuclear Information System (INIS)

    Sato, N.; Seki, K.; Inokuchi, H.

    1987-01-01

    A simple evaporation gun for preparing organic thin films was fabricated using commercially available parts of an electron gun for a TV Braun tube. The device permits sample heating to be easily controlled because of the small heat capacity

  13. Bi-liquid foams

    International Nuclear Information System (INIS)

    Sonneville, Odile

    1997-01-01

    by fluctuations in film thickness and in interfacial surfactant density. We have found that submicron emulsions with interfaces that are saturated with surfactant can form very thin films with a very high metastability. The rupture of these films is controlled by the nucleation and growth of defects in the films (holes, curvature inversions). The barriers that oppose this process depend on the interfacial parameters of the films: cohesion parameters and curvature parameters. Surfactants with polar heads that are very hydrophilic, as well as sufficiently long apolar tails, will be well anchored at the interface and will keep a curvature towards oil. As a consequence, films made with these surfactants have better chances to maintain a good metastability against dehydration. These results can be used to make dry emulsions. For highly cohesive films, dehydration often causes a crystallization of the surfactant that destabilizes the films. Therefore the stability of the films can be improved by using surfactants that make organized dehydrated phases or by small molecules or ions that plasticize the surfactant. (author) [fr

  14. Quantifying resistances across nanoscale low- and high-angle interspherulite boundaries in solution-processed organic semiconductor thin films.

    Science.gov (United States)

    Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin

    2012-11-27

    The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.

  15. Methods to ease the release of thin polydimethylsiloxane films from difficult substrates

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Skov, Anne Ladegaard

    2014-01-01

    permissible thickness is around 25–50 µm. The relatively small Young's modulus for these elastomers is a requirement for actuation capabilities. However, peeling and release of such films during manufacture processes are very difficult. To ease the release of the films, techniques such as the use of release....... Polysorbate-20, a non-ionic surfactant, fulfills all requirements and gives the lowest peel forces for the films....

  16. Low-Temperature Solution-Processed Gate Dielectrics for High-Performance Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Jaekyun Kim

    2015-10-01

    Full Text Available A low-temperature solution-processed high-k gate dielectric layer for use in a high-performance solution-processed semiconducting polymer organic thin-film transistor (OTFT was demonstrated. Photochemical activation of sol-gel-derived AlOx films under 150 °C permitted the formation of a dense film with low leakage and relatively high dielectric-permittivity characteristics, which are almost comparable to the results yielded by the conventionally used vacuum deposition and high temperature annealing method. Octadecylphosphonic acid (ODPA self-assembled monolayer (SAM treatment of the AlOx was employed in order to realize high-performance (>0.4 cm2/Vs saturation mobility and low-operation-voltage (<5 V diketopyrrolopyrrole (DPP-based OTFTs on an ultra-thin polyimide film (3-μm thick. Thus, low-temperature photochemically-annealed solution-processed AlOx film with SAM layer is an attractive candidate as a dielectric-layer for use in high-performance organic TFTs operated at low voltages.

  17. PZT Films Fabricated by Metal Organic Decomposition Method

    Science.gov (United States)

    Sobolev, Vladimir; Ishchuk, Valeriy

    2014-03-01

    High quality lead zirconate titanate films have been fabricated on different substrates by metal organic decomposition method and their ferroelectric properties have been investigated. Main attention was paid to studies of the influence of the buffer layer with conditional composition Pb1.3(Zr0.5Ti0.5) O3 on the properties of Pb(Zr0.5Ti0.5) O3 films fabricated on the polycrystalline titanium and platinum substrates. It is found that in the films on the Pt substrate (with or without the buffer layer) the dependencies of the remanent polarization and the coercivity field on the number of switching cycles do not manifest fatigue up to 109 cycles. The remanent polarization dependencies for films on the Ti substrate with the buffer layer containing an excess of PbO demonstrate an fundamentally new feature that consists of a remanent polarization increase after 108 switching cycles. The increase of remanent polarization is about 50% when the number of cycles approaches 1010, while the increase of the coercivity field is small. A monotonic increase of dielectric losses has been observed in all cases.

  18. Characteristics of sputtered Al-doped ZnO films for transparent electrodes of organic thin-film transistor

    International Nuclear Information System (INIS)

    Park, Yong Seob; Kim, Han-Ki

    2011-01-01

    Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (I D -V D ), drain current-gate voltage (I D -V G ), threshold voltage (V T ), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 x 10 -3 Ω.cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm 2 /V s and the on/off ratio of ∼ 10 5 . Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.

  19. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    Chitra, S.; Chandran, S.; Sasidhar, P.; Lal, K.B.; Amalraj, R.V.

    1991-01-01

    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  20. 3D Model of Surfactant Replacement Therapy

    Science.gov (United States)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  1. Falling film evaporators: organic solvent regeneration in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Garcin, I.

    1989-01-01

    The aim of this work was to improve knowledge about working of falling film evaporators used in nuclear fuel reprocessing plants for organic solvent regeneration. The first part deals with a non evaporation film. An original film thickness measuring technique was used; infrared thermography. It gave indications on hydrodynamics and wave amplitude and pointed out thermocapillary forces to be the cause of bad wetting of the heated wall. By another way we showed that a small slit spacing on the film distributor, an enhanced surface roughness and an important liquid flow rate favour a better wetting. The second part deals with evaporation of a binary solvent mixture. Experiments in an industrial evaporator corroborated the fact that it is essential for the efficiency of the apparatus to work at high flow rates. We propose an over-simple model which can be used to estimate performances of co-current falling film evaporators of the process [fr

  2. Estimation hydrophilic-lipophilic balance number of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta (Indonesia); Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com; Kusworo, Tutuk D.; Pramudono, Bambang, E-mail: Pramudono2004@yahoo.com [Chemical Engineering Department Diponegoro University (Indonesia); Dyartanti, Endah R. [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Enginering Departement Sebelas Maret University (Indonesia)

    2016-02-08

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  3. Degradation of surfactants by sono-irradiation

    International Nuclear Information System (INIS)

    Ashokkumar, M.; Grieser, F.; Vinodgopal, K.

    2000-01-01

    Full text: The ultrasound induced decomposition of a commercially available polydisperse nonylphenol ethoxylate surfactant (Teric GN9) has been investigated. Nearly 90% mineralization and/or degradation into volatile products of the surfactant is achieved after sonication for 24 hours. Ultrasound has been found to be a useful tool to achieve a number of chemical processes. Linear and branched alkyl benzene sulfonates and alkyl nonylphenol ethoxylates are widely used surfactants which accumulated in the environment and contribute to a well-recognised pollution problem. We have investigated the use of ultrasound in the degradation of both types of surfactants with the aim of understanding the mechanism of degradation in order to optimise the decomposition process. In this presentation, we report on the sonochemical degradation of Teric GN9- polydisperse, a nonylphenol ethoxylate with an average of 9 ethylene oxide units. The ultrasound unit used for the degradation studies of the surfactant solutions was an Allied Signal (ELAC Nautik) RF generator and transducer with a plate diameter of 54.5 mm operated at 363 kHz in continuous wave mode at an intensity of 2 W/cm 2 . Ultrasound induced cavitation events generate primary radicals inside gas/vapour filled bubbles. Due to the extreme conditions (T ∼ 5000 K; P ∼ 100 atm) generated within the collapsing bubble, H and OH radicals are produced by the homolysis of water molecules, if water is the medium of sonication. These primary radicals attack the surfactant molecules adsorbed at the bubble/water interface. The initial rate of reaction of the surfactant was found to be dependent on the monomer concentration in solution below and above the critical micelle concentration of the surfactants. This result strongly suggests that the initial radical attack on the surfactants occurs at the cavitation bubble/solution interface, followed by oxidative decomposition and pyrolysis of volatile fragments of the surfactant within

  4. Homogenous smooth sol gel films doped with organic compounds for nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliu, I.C. [INOE 2000 — National Institute for Optoelectronics, 409 Atomistilor Str., Magurele, Bucharest, RO 077125 (Romania); Ionita, I., E-mail: i_ionita@yahoo.com [UB — University of Bucharest, 405 Atomistilor Str., Magurele, Bucharest, RO 077125 (Romania); Matei, A. [INFLPR — National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, Bucharest, RO 077125 (Romania); Elisa, M.; Iordanescu, R.; Feraru, I.; Emandi, A. [INOE 2000 — National Institute for Optoelectronics, 409 Atomistilor Str., Magurele, Bucharest, RO 077125 (Romania)

    2016-02-29

    The demand for protection of various types of optical sensors from laser-beam pulses has resulted in the search for optical limiting devices that have the property of being transparent at low intensity of light (normal light), but no transparent towards high intensity (laser) light. Organic material with nonlinear optical (NLO) properties as reverse saturable absorption and two-photon absorption can be used for optical limiting with the advantage of a very fast response and self-activation. A promising approach in the fabrication of thin films by low cost/easy use deposition methods for second-order nonlinear optics is sol–gel technique. The present paper reports on the sol–gel synthesis of some pyrazolone derivative doped SiO{sub 2}–P{sub 2}O{sub 5} smooth and homogenous films (Root mean square roughness (Rq) = 1.1 nm) using as precursors tetraethylorthosilicate (TEOS) and phosphoric acid (H{sub 3}PO{sub 4}). The structure of the deposited azo-derivatives doped thin films was examined by Fourier transform infrared spectroscopy and atomic force microscopy, while their optical properties of the films by UV–VIS spectroscopy. The nonlinear optical efficiencies due to the interaction of the NLO-active chromophores with the inorganic matrix have a significant influence on the second harmonic generation capabilities that was measured using a femtosecond Ti:Sapphire laser. The properties of the films were investigated and correlated with the concentration of the organic dopant and the thermal treatment temperature. - Highlights: • We obtained pyrazolone derivative doped SiO{sub 2}–P{sub 2}O{sub 5} smooth and homogenous films. • The pyrazolone derivative presents SHG characteristics by itself. • Thin sol gel films doped with organic compounds with NLO properties. • Temperature of thermal treatment and aging time can improve NLO properties of films. • We found that 150 °C and 28 h aging time give the maximum performance in SHG response.

  5. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  6. On the Morphology of the SDS Film on the Surface of Borosilicate Glass

    Directory of Open Access Journals (Sweden)

    Zih-Yao Shen

    2017-05-01

    Full Text Available Surfactant films on solid surfaces have attracted much attention because of their scientific interest and applications, such as surface treatment agent, or for micro- or nano-scale templates for microfluidic devices. In this study, anionic surfactant sodium dodecyl sulfate (SDS solutions with various charged inorganic salts was spread on a glass substrate and dried to form an SDS thin film. Atomic force microscopy (AFM was employed to observe the micro-structure of the SDS thin film. The effects of inorganic salts on the morphology of the SDS film were observed and discussed. The results of experiments demonstrated that pure SDS film formed patterns of long, parallel, highly-ordered stripes. The existence of the inorganic salt disturbed the structure of the SDS film due to the interaction between the cationic ion and the anionic head groups of SDS. The divalent ion has greater electrostatic interaction with anionic head groups than that of the monovalent ion, and causes a gross change in the morphology of the SDS film. The height of the SDS bilayer measured was consistent with the theoretical value, and the addition of the large-sized monovalent ion would lead to lowering the height of the adsorbed structures.

  7. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro, E-mail: takeuchi@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  8. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Yangang Liang

    2016-01-01

    Full Text Available We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  9. Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer

    International Nuclear Information System (INIS)

    Pan Feng; Qian Xian-Rui; Huang Li-Zhen; Wang Hai-Bo; Yan Dong-Hang

    2011-01-01

    High-mobility vanadyl phthalocyanine (VOPc)/5,5‴-bis(4-fluorophenyl)-2,2':5',2″:5″,2‴-quaterthiophene (F2-P4T) thin-film transistors are demonstrated by employing a copper hexadecafluorophthalocyanine (F 16 CuPc)/copper phthalocyanine (CuPc) heterojunction unit, which are fabricated at different substrate temperatures, as a buffer layer. The highest mobility of 4.08cm 2 /Vs is achieved using a F 16 CuPc/CuPc organic heterojunction buffer layer fabricated at high substrate temperature. Compared with the random small grain-like morphology of the room-temperature buffer layer, the high-temperature organic heterojunction presents a large-sized fiber-like film morphology, resulting in an enhanced conductivity. Thus the contact resistance of the transistor is significantly reduced and an obvious improvement in device mobility is obtained. (cross-disciplinary physics and related areas of science and technology)

  10. Surfactant Effect in Polypyrrole and Polypyrrole with Multi Wall Carbon Nanotube Counter Electrodes: Improved Power Conversion Efficiency of Dye-Sensitized Solar Cell.

    Science.gov (United States)

    Thuy, Chau Thi Thanh; Park, Ji Young; Lee, Seung Woo; Suresh, Thogiti; Kim, Jae Hong

    2016-05-01

    In our present study, polypyrrole-1 (PPy1), polypyrrole-2 (PPy2), and polypyrrole-2/multi wall carbon nanotube composite film (PPy2/MWCNT) were proposed as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) to replace the precious Pt CE. These films were fabricated on fluorine-doped tin oxide substrates by using a facile electrochemical polymerization route, and served as CEs in DSSCs. It is shown that the introduction of anionic surfactant, sodium dodecyl sulfate (SDS), enhanced the catalytic activity, thus leading to an improvement in the performance of PPy2. Further, introduction of MWCNT resulted in increase in conversion efficiency of DSSCs with PPy2/MWCNT composite film. The Tafel and electrochemical impedance analysis revealed that the PPy2 and PPy2/MWCNT CEs prepared with anionic surfactant possessed more catalytic activity and lower charge transfer resistance in comparison with PPy1 -based CE. This resulted in a better conversion efficiency of 5.88% for PPy2/MWCNT-based DSSC under 1 sun condition, reaching 86% of the DSSC based on reference Pt counter electrode (6.86%). These results indicate that the composite film with high catalytic properties for I3- reduction can potentially be used as the CE in a high-performance DSSC.

  11. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  12. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  13. Separation process for lanthanides based on solvation properties of non ionic surfactants

    International Nuclear Information System (INIS)

    Draye, M.; Favre-Reguillon, A.; Foos, J.; Cote, G.

    2004-01-01

    In the present study, cloud-point extraction is used with a lipophilic chelating agent (8-hydroxyquinoline) to extract and separate lanthanum (III) and gadolinium (III) from an aqueous solution. The methodology used is based on the formation of lanthanide (III) organic complexes that are soluble in a micellar phase of non-ionic surfactant. The lanthanide (III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The cloud-point temperature, the structure of the lipophilic part of the nonionic surfactant and the chelating agent - metal molar ratio are identified as factors determining the extraction efficiency and selectivity. With Triton X-114, high selectivity and decontamination factor for Gd(III) is observed indicating that micelle mediated extraction involving cloud-point extraction is promising for the specific separation of actinide ions from nuclear waste solution. (authors)

  14. Co-depositing Sn controls the growth of Al films as surfactant

    International Nuclear Information System (INIS)

    Barna, P. B.; Kovacs, A.; Misjak, F.; Eisenmenger-Sittner, C.; Bangert, H.; Tomastik, C.

    2002-01-01

    The present study investigates the influence of co-deposited Sn on the atomic processes involved in the structure evolution of vapour-deposited Al films. The films were prepared in HV by thermal evaporation from W sources at 1600 C substrate temperature either on Si wafers covered by a thermally grown oxide or on air cleaved mica. By applying the half-shadow technique, pure and Sn-doped Al films could be deposited simultaneously. The samples were investigated by AFM, scanning AES, X-TEM as well as by X-ray diffraction methods. The grain growth of Al is promoted by Sn in all stages of the film formation. Scanning AES measurements prove the existence of a wetting Sn layer both on the surface of Al islands and on the surface of the continuos Al layer. Excess Sn forms islands on the growth surface. The surface of pure Al layers exhibits grain boundary grooves and bunches of growth steps around terraces, while that of the Sn doped layers is more rounded. The substrate-film interface was covered by a thin Sn layer. AES measurements also prove the presence of Sn on the growth surface of Al films even after termination of Sn addition. Results of these experiments indicate that during co-deposition of Al and Sn the impinging Al atoms penetrate the wetting layer and are incorporated into the already existing Al crystals. A model has been developed for describing the growth of Al crystals in the presence Sn. (Authors)

  15. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wei, Yang; Zhan, Xinyu; Mao, Like; Gao, Yanxiang

    2018-08-30

    In this study, zein, propylene glycol alginate (PGA) and surfactant ternary complexes were fabricated by antisolvent co-precipitation method. Two types of surfactants (rhamnolipid and lecithin) were applied to generate zein-PGA-rhamnolipid (Z-P-R) and zein-PGA-lecithin (Z-P-L) ternary complexes, respectively. Results showed that the surfactant types significantly affected the properties of ternary complexes. The formation of ternary complexes was mainly due to the non-covalent interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among zein, PGA and surfactants. Moreover, the thermal stability of ternary complexes was enhanced with increasing the levels of both surfactants. Notably, ternary complex dispersions exhibited better stability against pH from 2 to 8. Furthermore, a compact network structure was observed in Z-P-R ternary complex, while Z-P-L ternary complex remained the spherical structure. These findings would provide new insights into the development of novel delivery system and expand the options, when zein-based complexes were utilized under different environment conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Biomimicry of surfactant protein C.

    Science.gov (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  17. Resistive switching characteristics of solution-processed organic-inorganic blended films for flexible memory applications

    Science.gov (United States)

    Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    We developed a hybrid organic-inorganic resistive random access memory (ReRAM) device that uses a solution-process to overcome the disadvantages of organic and inorganic materials for flexible memory applications. The drawbacks of organic and inorganic materials are a poor electrical characteristics and a lack of flexibility, respectively. We fabricated a hybrid organic-inorganic switching layer of ReRAM by blending HfOx or AlOx solution with PMMA solution and investigated the resistive switching behaviour in Ti/PMMA/Pt, Ti/PMMA-HfOx/Pt and Ti/PMMA-AlOx/Pt structures. It is found that PMMA-HfOx or PMMA-AlOx hybrid switching layer has a larger memory window, more stable durability and retention characteristics, and a better set/reset voltage distribution than PMMA layer. Further, it is confirmed that the flexibility of the PMMA-HfOx and PMMA-AlOx blended films was almost similar to that of the organic PMMA film. Thus, the solution-processed organic-inorganic blended films are considered a promising material for a non-volatile memory device on a flexible or wearable electronic system.

  18. High-sensitivity ultraviolet photoemission spectroscopy technique for direct detection of gap states in organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bussolotti, Fabio, E-mail: fabio@ims.ac.jp

    2015-10-01

    Highlights: • Density of gap states in organic thin film was detected by photoemission spectroscopy. • Inert gas exposure affects the density of gap states in organic thin films. • Density of gap states controls the energy level alignment at the organic/inorganic and organic/organic interfaces. - Abstract: We developed ultrahigh sensitivity, low-background ultraviolet photoemission spectroscopy (UPS) technique which does not introduce detectable radiation damages into organic materials. The UPS allows to detect density of states of the order of ∼10{sup 16} states eV{sup −1} cm{sup −3} even for radiation-sensitive organic films, this results being comparable to electrical measurements of charge trapping centers. In this review we introduce the method of ultrahigh sensitivity photoemission measurement and we present some results on the energy distribution of gap states in pentacene (Pn) films deposited on SiO{sub 2} and Au(1 1 1) substrate. For Pn/SiO{sub 2} thin film the results show that exposure to inert gas (N{sub 2} and Ar) atmosphere produces a sharp rise in gap states from 10{sup 16} to 10{sup 18} states eV{sup −1} cm{sup −3} and pushes the Fermi level closer to the valence band (0.15–0.17 eV), as does exposure to O{sub 2} (0.20 eV), while no such gas-induced effects are observed for Pn/Au(1 1 1) system. The results demonstrate that these gap states originate from small imperfections in the Pn packing structure, which are induced by gas penetration into the film through the Pn crystal grain boundaries. Similar results were obtained for CuPc/F{sub 16}CuPc thin films, a prototypical example of donor/acceptor interface for photovoltaic application.

  19. Measurement of incident molecular temperature in the formation of organic thin films

    Science.gov (United States)

    Abe, Takahiro; Matsubara, Ryosuke; Hayakawa, Munetaka; Shimoyama, Akifumi; Tanaka, Takaaki; Tsuji, Akira; Takahashi, Yoshikazu; Kubono, Atsushi

    2018-03-01

    To investigate the effects of incident molecular temperature on organic-thin-film growth by vacuum evaporation, quantitative analysis of molecular temperature is required. In this study, we propose a method of determining molecular temperature based on the heat exchange between a platinum filament and molecular vapor. Molecular temperature is estimated from filament temperature, which remains unchanged even under molecular vapor supply. The results indicate that our method has sufficient sensitivity to evaluate the molecular temperature under the typical growth rate used for fabrication of functional organic thin films.

  20. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  1. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  2. Methods for enhancing P-type doping in III-V semiconductor films

    Science.gov (United States)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  3. Small angle neutron scattering study of doxorubicin–surfactant ...

    Indian Academy of Sciences (India)

    The binding affinity of doxorubicin within the micelle carrier is enhanced through complex formation of drug and anionic surfactant, aerosol OT (AOT). Electrostatic binding of doxorubicin with negatively charged surfactants leads to the formation of hydrophobic drug–surfactant complexes. Surfactant-induced partitioning of ...

  4. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  5. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  6. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Best, James P., E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Michler, Johann; Maeder, Xavier [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Liu, Jinxuan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert, E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Wöll, Christof, E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu [Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Röse, Silvana [Preparative Macromolecular Chemistry, Institute for Chemical Technology and Polymer Chemistry (ICTP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe (Germany); Institute for Biological Interfaces (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Oberst, Vanessa [Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Walheim, Stefan [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-09-07

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E{sub ITO} ≈ 96.7 GPa, E{sub HKUST−1} ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  7. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    International Nuclear Information System (INIS)

    Best, James P.; Michler, Johann; Maeder, Xavier; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Liu, Jinxuan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof; Röse, Silvana; Oberst, Vanessa; Walheim, Stefan

    2015-01-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E ITO  ≈ 96.7 GPa, E HKUST−1  ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices

  8. Influence of nonionic surfactants on the potentiometric response of hydrogen ion-selective polymeric membrane electrodes.

    Science.gov (United States)

    Espadas-Torre, C; Bakker, E; Barker, S; Meyerhoff, M E

    1996-05-01

    The influence of poly(ethylene oxide)-based nonionic surfactants (i.e., Triton X-100 and Brij 35) in the sample phase on the response properties of hydrogen ion-selective polymeric membrane electrodes containing mobile (lipophilic amines) or covalently bound (aminated-poly-(vinyl chloride)) hydrogen ion carriers is reported. In the presence of these nonionic surfactants, membrane electrode response toward interfering cation activity (e.g., Na+) in the sample phase is increased substantially and the pH measuring range shortened. The degree of cation interference for pH measurements is shown to correlate with the basicity of the hydrogen ion carrier doped within the membrane phase. The observed deterioration in selectivity arises from the partitioning of the surfactant into the membrane and concomitant extraction of metal cations by the surfactants in the organic phase. The effect of nonionic surfactants on pH electrodes prepared with aminated-PVC membranes is shown to be more complex, with additional large shifts in EMF values apparently arising from multidentate interactions between the surfactant molecules and the polymeric amine in the membrane, leading to a change in the apparent pKa values for the amine sites. The effects induced by nonionic surfactants on the EMF response function of hydrogen ion-selective polymeric membrane electrodes are modeled, and experimental results are shown to correlate well with theoretical predictions.

  9. Simultaneous determination of naphthol isomers at poly(3-methylthiophene)-nano-Au modified electrode with the enhancement of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Li, Linlin [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Shandong Institute for Product Quality Inspection, Jinan 250100 (China); Liu, Enli; Wang, Xiaolin; Chen, Jia [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Xiaoli, E-mail: zhangxl@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-08-01

    A polymer film incorporated gold nanoparticle modified electrode was fabricated. The fabricated process involved eletrodeposition of gold nanoparticles and electropolymerization of the 3-methylthiophene (abbreviated 3MT) onto the glassy carbon electrode (GCE). The resulting electrode (P3MT-nano-Au/GCE) was characterized by scanning electron microscopy (SEM), and a simultaneous determination of naphthol isomers at P3MT-nano-Au/GCE was studied using semi-derivative voltammetry. Because of the synergistic effect of gold nanoparticles and poly(3MT), the sensitivity and distinguishability in the simultaneous determination of naphthol isomers were greatly increased. Besides, a further increase in the detecting sensitivity of naphthol isomers could be obtained in the presence of surfactant, cetyl trimethyl ammonium bromide (CTAB). Also, the role of different kinds of surfactants was texted and the action mechanism was discussed in detail. Under the optimal conditions, the linear calibration ranges of the determination of naphthols were 7.0 × 10{sup −7} to 1.5 × 10{sup −4} mol/L for 1-naphthol and 1.0 × 10{sup −6} to 1.5 × 10{sup −4} mol/L for 2-naphthol with detection limits of 1.0 × 10{sup −7} and 3.0 × 10{sup −7} mol/L (S/N = 3), respectively. - Highlights: • Nano-Au-polymer film was fabricated by eletrodeposition and electropolymerization. • Naphthol isomers were detected simultaneously. • Surfactant improved the sensitivity and selectivity.

  10. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    International Nuclear Information System (INIS)

    Nakahara, Yoshio; Kawa, Haruna; Yoshiki, Jun; Kumei, Maki; Yamamoto, Hiroyuki; Oi, Fumio; Yamakado, Hideo; Fukuda, Hisashi; Kimura, Keiichi

    2012-01-01

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol–gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 °C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol–gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: ► Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. ► The ultra-thin PSQ film could be cured at low temperatures of less than 120 °C. ► The PSQ film showed the almost perfect solubilization resistance to organic solvent. ► The surface of the PSQ film was very smooth at a nano-meter level. ► Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  11. Thermal stability and hot-stage Raman spectroscopic study of Ca-montmorillonite modified with different surfactants: A comparative study

    International Nuclear Information System (INIS)

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A.; Frost, Ray L.

    2013-01-01

    Highlights: • A typical Ca-montmorillonite was modified with three surfactants through ion exchange. • The organoclays were characterized by XRD, TG and hot stage Raman. • The structural geometry and thermal properties of organoclays were analyzed. • The prepared organoclays show potential prospects in the environmental remediation. - Abstract: Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchange and the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermogravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes the surface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing of the interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three surfactants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalated into Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailed conformational ordering of different intercalated long-chain surfactants under different conditions. The wavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretching mode to the mobility of the tail of the amine chain. At room temperature, the conformational ordering is more easily affected by the packing density in the lateral model. With the increase of the temperature, the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers, which indicates a decrease of conformational ordering. This study offers new insights into the structure and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, the experimental results confirm the potential applications of organic Ca-montmorillonites for the removal

  12. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    Science.gov (United States)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  13. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  14. Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Su, Shui-Hsiang, E-mail: shsu@isu.edu.tw; Wu, Chung-Ming; Kung, Shu-Yi; Yokoyama, Meiso

    2013-06-01

    Organic thin-film transistors (OTFTs) with various buffer layers between the active layer and source/drain electrodes were investigated. The structure was polyethylene terephthalate/indium-tin oxide/poly(methyl methacrylate) (PMMA)/pentacene/buffer layer/Au (source/drain). V{sub 2}O{sub 5}, 4,4′,4″-tris{N,(3-methylpheny)-N-phenylamino}-triphenylamine (m-MTDATA) and m-MTDATA-doped V{sub 2}O{sub 5} films were utilized as buffer layers. The electrical performances of OTFTs in terms of drain current, threshold voltage, mobility and on/off current ratio have been determined. As a result, the saturation current of − 40 μA is achieved in OTFTs with a 10% m-MTDATA-doped V{sub 2}O{sub 5} buffer layer at a V{sub GS} of − 60 V. The on/off current ratio reaches 2 × 10{sup 5}, which is approximately double of the device without a buffer layer. The energy band diagrams of the electrode/buffer layer/pentacene were measured using ultra-violet photoelectron spectroscopy. The improvement in electrical characteristics of the OTFTs is attributable to the weakening of the interface dipole and the lowering of the barrier to enhance holes transportation from the source electrode to the active layer. - Highlights: • A buffer layer enhances the performance of organic thin-film transistors (OTFTs). • The buffer layer consists of organic-doped inorganic material. • Interface dipole is weakened at the active layer/electrodes interface of OTFTs.

  15. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the

  16. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali

    2012-08-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.

  17. Measurement of thin liquid film drainage using a novel high-speed impedance analyzer

    Science.gov (United States)

    Hool, Kevin O.; Saunders, Robert C.; Ploehn, Harry J.

    1998-09-01

    This work describes the design and implementation of a new instrument, called the thin film impedance analyzer, which measures the rate of drainage of thin oil films. The instrument forms an oil film by elevating a planar oil-water interface into a water drop hanging from a stainless steel capillary tube immersed in the oil. The instrument measures the magnitude of the impedance of the matter between the capillary tube and a screen electrode immersed in the lower water phase. Under appropriate conditions, the capacitance of the oil film dominates the impedance. The instrument records the increase in the magnitude of the admittance associated with the draining and thinning of the oil film. The features of the drainage curves vary considerably with the type, amount, and location of surfactants in the oil and water phases, as well as with user-specified values of drop volume, drop equilibration time, and extent of drop compression. For this reason, the instrument has utility as a screening tool for selecting surfactants for emulsion formulations. Potential future uses include accelerated prediction of emulsion stability and extraction of oil-water interfacial rheological parameters.

  18. DC Magnetron Sputtered IZTO Thin Films for Organic Photovoltaic Application.

    Science.gov (United States)

    Lee, Hye Ji; Noviyana, Imas; Putri, Maryane; Koo, Chang Young; Lee, Jung-A; Kim, Jeong-Joo; Jeong, Youngjun; Lee, Youngu; Lee, Hee Young

    2018-02-01

    IZTO20 (In0.6Zn0.2Sn0.2O1.5) ceramic target was prepared from oxide mixture of In2O3, ZnO, and SnO2 powders. IZTO20 thin films were then deposited onto glass substrate at 400 °C by DC magnetron sputtering. The average optical transmittance determined by ultraviolet-visible spectroscopy was higher than 85% for all films. The minimum resistivity of the annealed IZTO20 thin film was approximately 6.1×10-4 Ω·cm, which tended to increase with decreasing indium content. Substrate heating and annealing were found to be important parameters affecting the electrical and optical properties. An organic photovoltaic (OPV) cell was fabricated using the IZTO20 film deposited under the optimized condition as an anode electrode and the efficiency of up to 80% compared to that of a similar OPV cell using ITO film was observed. Reduction of surface roughness and electrical resistivity through annealing treatment was found to contribute to the improved efficiency of the OPV cell.

  19. Synthesis of metal-organic framework films by pore diffusion method

    Science.gov (United States)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  20. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  1. Regularities of ions and surfactants adsorption on metal corrosion products and salt deposites

    International Nuclear Information System (INIS)

    Batrakov, V.V.; Gorichev, I.G.; Martynova, T.V.; Gutenev, A.V.

    1994-01-01

    Adsorption of ions on oxide/solution interface is described using the concepts of existence of acid-base equilibria and assumptions of the Graham-Parson theory on the structure of double electric layer. It is shown that adsorption data are in a good agreement with theoretical aspects. The influence of solution pH on adsorption of certain surfactant organic substances on oxide/solution interface was discussed. Data on adsorption of surfactants on salts-silver iodide and calcium carbonate - are dicussed making allowance for the structure of double electric layer

  2. Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures.

    Science.gov (United States)

    Straight, Paul D; Willey, Joanne M; Kolter, Roberto

    2006-07-01

    Using mixed-species cultures, we have undertaken a study of interactions between two common spore-forming soil bacteria, Bacillus subtilis and Streptomyces coelicolor. Our experiments demonstrate that the development of aerial hyphae and spores by S. coelicolor is inhibited by surfactin, a lipopeptide surfactant produced by B. subtilis. Current models of aerial development by sporulating bacteria and fungi postulate a role for surfactants in reducing surface tension at air-liquid interfaces, thereby removing the major barrier to aerial growth. S. coelicolor produces SapB, an amphipathic peptide that is surface active and required for aerial growth on certain media. Loss of aerial hyphae in developmental mutants can be rescued by addition of purified SapB. While a surfactant from a fungus can substitute for SapB in a mutant that lacks aerial hyphae, not all surfactants have this effect. We show that surfactin is required for formation of aerial structures on the surface of B. subtilis colonies. However, in contrast to this positive role, our experiments reveal that surfactin acts antagonistically by arresting S. coelicolor aerial development and causing altered expression of developmental genes. Our observations support the idea that surfactants function specifically for a given organism regardless of their shared ability to reduce surface tension. Production of surfactants with antagonistic activity could provide a powerful competitive advantage during surface colonization and in competition for resources.

  3. Surfactants tailored by the class Actinobacteria

    Science.gov (United States)

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  4. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  5. 2D Organic-Inorganic Hybrid Thin Films for Flexible UV-Visible Photodetectors

    KAUST Repository

    Velusamy, Dhinesh Babu

    2017-02-13

    Flexible 2D inorganic MoS and organic g-CN hybrid thin film photodetectors with tunable composition and photodetection properties are developed using simple solution processing. The hybrid films fabricated on paper substrate show broadband photodetection suitable for both UV and visible light with good responsivity, detectivity, and reliable and rapid photoswitching characteristics comparable to monolayer devices. This excellent performance is retained even after the films are severely deformed at a bending radius of ≈2 mm for hundreds of cycles. The detailed charge transfer and separation processes at the interface between the 2D materials in the hybrid films are confirmed by femtosecond transient absorption spectroscopy with broadband capability.

  6. [Effects of white organic light-emitting devices using color conversion films on electroluminescence spectra].

    Science.gov (United States)

    Hou, Qing-Chuan; Wu, Xiao-Ming; Hua, Yu-Lin; Qi, Qing-Jin; Li, Lan; Yin, Shou-Gen

    2010-06-01

    The authors report a novel white organic light-emitting device (WOLED), which uses a strategy of exciting organic/ inorganic color conversion film with a blue organic light-emitting diode (OLED). The luminescent layer of the blue OLED was prepared by use of CBP host blended with a blue highly fluorescent dye N-BDAVBi. The organic/inorganic color conversion film was prepared by dispersing a mixture of red pigment VQ-D25 and YAG : Ce3+ phosphor in PMMA. The authors have achieved a novel WOLED with the high color stability by optimizing the thickness and fluorescent pigment concentration of the color conversion film. When the driving voltage varied between 6 and 14 V, the color coordinates (CIE) varied slightly from (0.354, 0.304) to (0.357, 0.312) and the maximum current efficiency is about 5.8 cd x A(-1) (4.35 mA x cm(-2)), the maximum brightness is 16 800 cd x m(-2) at the operating voltage of 14 V.

  7. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshio; Kawa, Haruna [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan); Yoshiki, Jun [Division of Information and Electronic Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Kumei, Maki; Yamamoto, Hiroyuki; Oi, Fumio [Konishi Chemical IND. Co., LTD., 3-4-77 Kozaika, Wakayama 641-0007 (Japan); Yamakado, Hideo [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan); Fukuda, Hisashi [Division of Engineering for Composite Functions, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Kimura, Keiichi, E-mail: kkimura@center.wakayama-u.ac.jp [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan)

    2012-10-01

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol-gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 Degree-Sign C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol-gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: Black-Right-Pointing-Pointer Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. Black-Right-Pointing-Pointer The ultra-thin PSQ film could be cured at low temperatures of less than 120 Degree-Sign C. Black-Right-Pointing-Pointer The PSQ film showed the almost perfect solubilization resistance to organic solvent. Black-Right-Pointing-Pointer The surface of the PSQ film was very smooth at a nano-meter level. Black-Right-Pointing-Pointer Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  8. In vitro surfactant structure-toxicity relationships: implications for surfactant use in sexually transmitted infection prophylaxis and contraception.

    Directory of Open Access Journals (Sweden)

    Ângela S Inácio

    Full Text Available BACKGROUND: The need for woman-controlled, cheap, safe, effective, easy-to-use and easy-to-store topical applications for prophylaxis against sexually transmitted infections (STIs makes surfactant-containing formulations an interesting option that requires a more fundamental knowledge concerning surfactant toxicology and structure-activity relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report in vitro effects of surfactant concentration, exposure time and structure on the viability of mammalian cell types typically encountered in the vagina, namely, fully polarized and confluent epithelial cells, confluent but non-polarized epithelial-like cells, dendritic cells, and human sperm. Representatives of the different families of commercially available surfactants--nonionic (Triton X-100 and monolaurin, zwitterionic (DDPS, anionic (SDS, and cationic (C(nTAB (n = 10 to 16, C(12PB, and C(12BZK--were examined. Triton X-100, monolaurin, DDPS and SDS were toxic to all cell types at concentrations around their critical micelle concentration (CMC suggesting a non-selective mode of action involving cell membrane destabilization and/or destruction. All cationic surfactants were toxic at concentrations far below their CMC and showed significant differences in their toxicity toward polarized as compared with non-polarized cells. Their toxicity was also dependent on the chemical nature of the polar head group. Our results suggest an intracellular locus of action for cationic surfactants and show that their structure-activity relationships could be profitably exploited for STI prophylaxis in vaginal gel formulations. The therapeutic indices comparing polarized epithelial cell toxicity to sperm toxicity for all surfactants examined, except C(12PB and C(12BZK, does not justify their use as contraceptive agents. C(12PB and C(12BZK are shown to have a narrow therapeutic index recommending caution in their use in contraceptive formulations. CONCLUSIONS

  9. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  10. Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode

    CSIR Research Space (South Africa)

    Nwanya, AC

    2016-04-01

    Full Text Available We describe the chemical synthesis of binderless and surfactant free CuO films for pseudocapacitive applications. Nanosheet-like and nanorod-like CuO films are deposited on indium tin oxide (ITO) substrates using the successive ionic layer...

  11. The Molecular Era of Surfactant Biology

    OpenAIRE

    Whitsett, Jeffrey A.

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  12. Nanoparticle-enabled delivery of surfactants in porous media.

    Science.gov (United States)

    Nourafkan, Ehsan; Hu, Zhongliang; Wen, Dongsheng

    2018-06-01

    The adsorption of surfactants on the reservoir rocks surface is a serious issue in many energy and environment related areas. Learning from the concept of drug delivery in the nano-medicine field, this work proposes and validates the concept of using nanoparticles to deliver a mixture of surfactants into a porous medium. TiO 2 nanoparticles (NPs) are used as carriers for a blend of surfactants mixtures including anionic alkyl aryl sulfonic acid (AAS) and nonionic alcohol ethoxylated (EA) at the optimum salinity and composition conditions. The transport of NPs through a core sample of crushed sandstone grains and the adsorption of surfactants are evaluated. By using TiO 2 NPs, the adsorption of surfactant molecules can be significantly reduced, i.e. half of the initial adsorption value. The level of surfactant adsorption reduction is related to the NPs transport capability through the porous medium. An application study shows that comparing to surfactant flooding alone, the total oil recovery can be increased by 7.81% of original oil in place (OOIP) by using nanoparticle bonded surfactants. Such work shows the promise of NP as an effective surfactant carrier for sandstone reservoirs, which could have many potential applications in enhanced oil recovery (EOR) and environmental remediation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Comparison of rSP-C surfactant with natural and synthetic surfactants after late treatment in a rat model of the acute respiratory distress syndrome

    Science.gov (United States)

    Häfner, Dietrich; Germann, Paul-Georg; Hauschke, Dieter

    1998-01-01

    In a previous paper we showed that an SP-C containing surfactant preparation has similar activity as bovine-derived surfactants in a rat lung lavage model of the adult respiratory distress syndrome. In this study surfactant was given ten minutes after the last lavage (early treatment). In the present investigation we were interested how different surfactant preparations behave when they are administered 1 h after the last lavage (late treatment). Four protein containing surfactants (rSP-C surfactant, bLES, Infasurf and Survanta) were compared with three protein-free surfactants (ALEC, Exosurf and the phospholipid (PL) mixture of the rSP-C surfactant termed PL surfactant) with respect to their ability to improve gas exchange in this more stringent model when surfactant is given one hour after the last lavage. For better comparison of the surfactants the doses were related to phospholipids. The surfactants were given at doses of 25, 50 and 100 mg kg−1 body weight. The surfactants were compared to an untreated control group that was only ventilated for the whole experimental period. Tracheotomized rats (8–12 per dose and surfactant) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min−1, inspiration expiration ratio of 1 : 2, peak inspiratory pressure of 28 cmH2O at positive endexpiratory pressure (PEEP) of 8 cmH2O. Animals were ventilated for one hour after the last lavage and thereafter the surfactants were intratracheally instilled. During the whole experimental period the ventilation was not changed. Partial arterial oxygen pressures (PaO2, mmHg) at 30 min and 120 min after treatment were used for statistical comparison. All protein containing surfactants caused a dose-dependent increase of the reduced PaO2 values at 30 min after treatment. The protein-free surfactants showed only weak dose-dependent increase in PaO2 values at this time. This difference between the

  14. Surfactant modified clays’ consistency limits and contact angles

    Directory of Open Access Journals (Sweden)

    S Akbulut

    2012-07-01

    Full Text Available This study was aimed at preparing a surfactant modified clay (SMC and researching the effect of surfactants on clays' contact angles and consistency limits; clay was thus modified by surfactants formodifying their engineering properties. Seven surfactants (trimethylglycine, hydroxyethylcellulose  octyl phenol ethoxylate, linear alkylbenzene sulfonic acid, sodium lauryl ether sulfate, cetyl trimethylammonium chloride and quaternised ethoxylated fatty amine were used as surfactants in this study. The experimental results indicated that SMC consistency limits (liquid and plastic limits changedsignificantly compared to those of natural clay. Plasticity index and liquid limit (PI-LL values representing soil class approached the A-line when zwitterion, nonionic, and anionic surfactant percentageincreased. However, cationic SMC became transformed from CH (high plasticity clay to MH (high plasticity silt class soils, according to the unified soil classification system (USCS. Clay modifiedwith cationic and anionic surfactants gave higher and lower contact angles than natural clay, respectively.

  15. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    Science.gov (United States)

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  16. Polybrominated diphenyl ethers (PBDEs) in indoor and outdoor window organic films in Izmir, Turkey

    International Nuclear Information System (INIS)

    Cetin, Banu; Odabasi, Mustafa

    2011-01-01

    Polybrominated diphenyl ether (PBDE) concentrations of outdoor and indoor organic films on window glasses were measured at different locations (offices, laboratories, and homes in urban, suburban, rural, and industrial sites) in Izmir, Turkey. Σ 7 PBDE concentrations were dominated by technical penta and deca-BDE mixture components. Average total outdoor PBDE (Σ 7 PBDE) concentrations for suburban, urban, and industrial sites were 43.5, 45.5, and 206 ng m -2 , respectively. This spatial gradient (industrial > urban > suburban concentrations) was similar to one observed for ambient air concentrations recently in Izmir, Turkey. The highest concentrations measured in the industrial area were attributed to the significant PBDE emissions from several steel plants located in the area. Air-organic film partitioning modeling results have suggested that organic films can be used in conjunction with the dynamic uptake model to approximate the gas-phase ambient air concentrations. Modeling results have also indicated that congeners in the gas-phase with very large octanol-air partition coefficients (i.e., BDE-154, -153, and -209) will require several months to approach equilibrium with the surface films. This finding may have important implications for gas-particle and gas-film partitioning, transport, and photolytic degradation of atmospheric PBDEs.

  17. Polybrominated diphenyl ethers (PBDEs) in indoor and outdoor window organic films in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, Banu [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey); Odabasi, Mustafa, E-mail: mustafa.odabasi@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey)

    2011-01-30

    Polybrominated diphenyl ether (PBDE) concentrations of outdoor and indoor organic films on window glasses were measured at different locations (offices, laboratories, and homes in urban, suburban, rural, and industrial sites) in Izmir, Turkey. {Sigma}{sub 7}PBDE concentrations were dominated by technical penta and deca-BDE mixture components. Average total outdoor PBDE ({Sigma}{sub 7}PBDE) concentrations for suburban, urban, and industrial sites were 43.5, 45.5, and 206 ng m{sup -2}, respectively. This spatial gradient (industrial > urban > suburban concentrations) was similar to one observed for ambient air concentrations recently in Izmir, Turkey. The highest concentrations measured in the industrial area were attributed to the significant PBDE emissions from several steel plants located in the area. Air-organic film partitioning modeling results have suggested that organic films can be used in conjunction with the dynamic uptake model to approximate the gas-phase ambient air concentrations. Modeling results have also indicated that congeners in the gas-phase with very large octanol-air partition coefficients (i.e., BDE-154, -153, and -209) will require several months to approach equilibrium with the surface films. This finding may have important implications for gas-particle and gas-film partitioning, transport, and photolytic degradation of atmospheric PBDEs.

  18. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Hernández-Burgos, Kenneth [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Silberstein, Katharine E. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Rodríguez-Calero, Gabriel G. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Bisbey, Ryan P. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Dichtel, William R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  19. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.; Rodríguez-Calero, Gabriel G.; Bisbey, Ryan P.; Abruña, Héctor D.; Dichtel, William R.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  20. Effects of Surfactant on Geotechnical Characteristics of Silty Soil

    International Nuclear Information System (INIS)

    Rahman, Z.A.; Sahibin, A.R.; Lihan, T.; Idris, W.M.R.; Sakina, M.

    2013-01-01

    Surfactants are often used as a cleaning agent for restoration of oil-contaminated soil. However the effect of surfactant on the geotechnical properties of soil is not clearly understood. In this study, the effects of surfactant on silty soil were investigated for consistency index, compaction, permeability and shear strength. Sodium dodecyl sulfate (SDS) was used in this study to prepare the surfactant-treated soil. Our results showed that the soil with added surfactant exhibited a decrease in liquid and plastic limit values. Maximum dry densities increased and optimum moisture contents decreased as contents of added surfactant were increased. The presence of surfactant assists the soil to achieve maximum density at lower water content. The addition of surfactant decreased the permeability of soil from 6.29 x 10 -4 to 1.15 x 10 -4 ms -1 . The shear strength of soil with added surfactant was examined using the undrained unconsolidated triaxial tests. The results showed that the undrained shear strength, Cu was significantly affected, decreased from 319 kPa to 50 kPa for soil with 20 % of added surfactant. The results of this study showed that the presence of surfactant in soil can modify the mechanical behaviour of the soil. (author)

  1. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  2. Surfactant-enhanced control of track-etch pore morphology

    International Nuclear Information System (INIS)

    Apel', P.Yu.; Blonskaya, I.V.; Didyk, A.Yu.; Dmitriev, S.N.; Orelovich, O.L.; Samojlova, L.I.; Vutsadakis, V.A.; Root, D.

    2000-01-01

    The influence of surfactants on the process of chemical development of ion tracks in polymers is studied. Based on the experimental data, a mechanism of the surfactant effect on the track-etch pore morphology is proposed. In the beginning of etching the surfactant is adsorbed on the surface and creates a layer that is quasi-solid and partially protects the surface from the etching agent. However, some etchant molecules diffuse through the barrier and react with the polymer surface. This results in the formation of a small hole at the entrance to the ion track. After the hole has attained a few annometers in diameter, the surfactant molecules penetrate into the track and cover its walls. Further diffusion of the surfactant into the growing pore is hindered. The adsorbed surfactant layer is not permeable for large molecules. In contrast, small alkali molecules and water molecules diffuse into the track and provide the etching process enlarging the pore. At this stage the transport of the surfactant into the pore channel can proceed only due to the lateral diffusion in the adsorbed layer. The volume inside the pore is free of surfactant molecules and grows at a higher rate than pore entrance. After a more prolonged etching the bottle-like (or 'cigar-like') pore channels are formed. The bottle-like shape of the pore channels depends on the etching conditions such as alkali and surfactant concentration, temperature, and type of the surfactant. The use of surfactants enables one to produce track-etch membranes with improved flow rate characteristics compared with those having cylindrical pores with the same nominal pore diameters

  3. Open lung ventilation preserves the response to delayed surfactant treatment in surfactant-deficient newborn piglets

    NARCIS (Netherlands)

    van Veenendaal, Mariëtte B.; van Kaam, Anton H.; Haitsma, Jack J.; Lutter, René; Lachmann, Burkhard

    2006-01-01

    OBJECTIVE: Delayed surfactant treatment (>2 hrs after birth) is less effective than early treatment in conventionally ventilated preterm infants with respiratory distress syndrome. The objective of this study was to evaluate if this time-dependent efficacy of surfactant treatment is also present

  4. Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors

    International Nuclear Information System (INIS)

    Huang, Kaibing; Yao, Yiyuan; Yang, Xiuwen; Chen, Zhenhua; Li, Min

    2016-01-01

    Hierarchical porous nitrogen-doped carbon nanofiber (HPNCNF) films were prepared via a simple electrospinning process, in which polyacrylonitrile and silicone surfactants were adopted as carbon source and porogen, respectively, followed by a thermal treatment. The morphology, chemical composition, and porosity of the HPNCNFs were investigated by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and nitrogen adsorption–desorption experiments. The as-prepared HPNCNFs with a specific surface area of 656 m"2 g"−"1, a hierarchical pore structure, and a nitrogen content of 8.1 at% showed a specific capacitance of 289 F g"−"1 in a 6 mol L"−"1 KOH aqueous solution with excellent cycle durability, making HPNCNF films a promising electrode material for a future application in supercapacitors. - Highlights: • HPNCNF films are prepared by electrospinning followed by thermal treatment. • Silicone surfactants are adopted as porogen to prepare HPNCNF films. • The HPNCNF films show a specific capacitance of 289 F g"−"1 at a current density of 0.2 A g"−"1.

  5. Influence of surfactants in forced dynamic dewetting.

    Science.gov (United States)

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C 4 E 1 , C 8 E 3 and C 12 E 5 ) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s -1 the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  6. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  7. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  8. Nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel for reversal of multidrug resistance.

    Science.gov (United States)

    Ji, Xiufeng; Gao, Yu; Chen, Lingli; Zhang, Zhiwen; Deng, Yihui; Li, Yaping

    2012-01-17

    Three new nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel (PTX) (NLPs) were prepared to overcome multidrug resistance (MDR) in PTX-resistance human lung cancer cell line. Three non-ionic surfactants, Solutol HS 15 (HS-15), pluronic F68 (PF-68) and cremophor EL (CrEL) were inserted into liposomes by film hydration method to form NLPs with an average size of around 110, 180 and 110 nm, respectively. There was an obvious increase of rhodamin 123 (Rh123) accumulation in A549/T cells after treated with nanohybrid systems loading Rh123 (NLRs) when compared with free Rh123 or liposomes loading Rh123 without surfactants (LRs), which indicated the significant inhibition effects of NLRs on drug efflux. The P-gp detection and ATP determination demonstrated that BNLs could not only interfere P-gp expression on the membrane of drug resistant cells, but also decrease ATP level in the cells. The cytotoxicity of NLPs against A549/T cells was higher than PTX loaded liposomes without surfactants (LPs), and the best result was achieved after treated with NLPs2. The apoptotic assay and the cell cycle analysis showed that NLPs could induce more apoptotic cells in drug resistant cells when compared with LPs. These results suggested that NLPs could overcome MDR by combination of drug delivery, P-gp inhibition and ATP depletion, and showed potential for treatment of MDR. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, M.C.F.; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I.

    2004-01-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced

  10. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, M.C.F. E-mail: mariacristinafm@uol.com.br; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I

    2004-10-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  11. Crystalline thin films of transition metal hexacyanochromates grown under Langmuir monolayer

    International Nuclear Information System (INIS)

    Bagkar, Nitin; Choudhury, Sipra; Kim, Kyung-Hee; Chowdhury, Prasanta; Lee, Sung-Ik; Yakhmi, J.V.

    2006-01-01

    Crystalline films of cobalt, nickel and iron hexacyanochromates (analogues of Prussian blue) were grown at air-water interface using a surfactant monolayer as a template. These films were transferred on suitable substrates and characterized by X-ray diffraction (XRD), cyclic voltammetry and magnetization measurements. XRD patterns confirmed the formation of oriented crystals in {100} direction for all these films. Magnetization data on nickel and iron hexacyanochromate films indicated ferromagnetic behaviour below Curie temperatures of 72 and 21 K, respectively. The methodology adopted by us to grow crystalline films is useful in obtaining magnetic thin films of analogues of Prussian blue with interesting magnetic properties with respect to transition temperatures and nature of magnetic ordering

  12. Stabilization of thin liquid films by repulsive van der waals force

    KAUST Repository

    Li, Erqiang; Vakarelski, Ivan Uriev; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-01-01

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water

  13. Correlating electronic and geometric structures of organic films and interfaces by means of synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Yamane, Hiroyuki

    2013-01-01

    The electronic structure of organic thin films and interfaces plays a crucial role in the performance of optoelectronic devices using organic semiconductors, and is seriously dominated by the geometric film/interface structure due to the anisotropic spatial distribution of molecular orbitals. This paper briefly reviews the recent progress of the examination of correlating electronic structure and geometric structure of archetypal organic semiconductor thin films and interfaces by using spectroscopic experiments with synchrotron radiation such as angle-resolved photoelectron spectroscopy, x-ray absorption spectroscopy, and x-ray standing wave. (author)

  14. Fully transparent conformal organic thin-film transistor array and its application as LED front driving.

    Science.gov (United States)

    Cui, Nan; Ren, Hang; Tang, Qingxin; Zhao, Xiaoli; Tong, Yanhong; Hu, Wenping; Liu, Yichun

    2018-02-22

    A fully transparent conformal organic thin-film field-effect transistor array is demonstrated based on a photolithography-compatible ultrathin metallic grid gate electrode and a solution-processed C 8 -BTBT film. The resulting organic field-effect transistor array exhibits a high optical transparency of >80% over the visible spectrum, mobility up to 2 cm 2 V -1 s -1 , on/off ratio of 10 5 -10 6 , switching current of >0.1 mA, and excellent light stability. The transparent conformal transistor array is demonstrated to adhere well to flat and curved LEDs as front driving. These results present promising applications of the solution-processed wide-bandgap organic semiconductor thin films in future large-scale transparent conformal active-matrix displays.

  15. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  16. Gas Sensing Performance of Pure and Modified BST Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    G. H. JAIN

    2008-04-01

    Full Text Available Barium Strontium Titanate (BST-(Ba0.87Sr0.13TiO3 ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The pure BST film was surface modified by surfactant CrO3 by using dipping technique. The surface modified film suppresses the response to ammonia and enhances to H2S gas. The surface modification of films changes the adsorption-desorption relationship with the target gas and shifts its selectivity. The gas response, selectivity, response and recovery time of the pure and modified films were measured and presented.

  17. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  18. In situ nanocalorimetry of thin glassy organic films

    Science.gov (United States)

    León-Gutierrez, E.; Garcia, G.; Lopeandía, A. F.; Fraxedas, J.; Clavaguera-Mora, M. T.; Rodríguez-Viejo, J.

    2008-11-01

    In this work, we describe the design and first experimental results of a new setup that combines evaporation of liquids in ultrahigh vacuum conditions with in situ high sensitivity thermal characterization of thin films. Organic compounds are deposited from the vapor directly onto a liquid nitrogen cooled substrate, permitting the preparation and characterization of glassy films. The substrate consists of a microfabricated, membrane-based nanocalorimeter that permits in situ measurements of heat capacity under ultrafast heating rates (up to 105 K/s) in the temperature range of 100-300 K. Three glass forming liquids—toluene, methanol, and acetic acid—are characterized. The spikes in heat capacity related to the glass-transition temperature, the fictive temperature and, in some cases, the onset temperature of crystallization are determined for several heating rates.

  19. Stability of an unsupported multi-layer surfactant laden liquid curtain under gravity

    KAUST Repository

    Henry, D.

    2015-11-07

    The industrial process of curtain coating has long been an important method in coating applications, by which a thin liquid curtain is formed to impinge upon a moving substrate, due to its highly lucrative advantage of being able to coat multiple layers simultaneously. We investigate the linear stability of an unsupported two-layer liquid curtain, which has insoluble surfactants in both liquids, which are widely used in industry to increase the stability of the curtain. We formulate the governing equations, simplified by making a thin film approximation, from which we obtain equations describing the steady-state profiles. We then examine the response of the curtain to small perturbations about this steady state to identify conditions under which the curtain is unstable, finding the addition of surfactants stabilizes the curtain. Our results are then compared to experimental data, showing a favourable trend and thereby extending the works of Brown (J Fluid Mech 10:297–305, 1960) and Dyson et al. (J Eng Math 64:237–250, 2009).

  20. Stable organic thin-film transistors

    Science.gov (United States)

    Jia, Xiaojia; Fuentes-Hernandez, Canek; Wang, Cheng-Yin; Park, Youngrak; Kippelen, Bernard

    2018-01-01

    Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (μc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V−1 s−1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies. PMID:29340301

  1. High thermoelectric power factor from multilayer solution-processed organic films

    Science.gov (United States)

    Zuo, Guangzheng; Andersson, Olof; Abdalla, Hassan; Kemerink, Martijn

    2018-02-01

    We investigate the suitability of the "sequential doping" method of organic semiconductors for thermoelectric applications. The method consists of depositing a dopant (F4TCNQ) containing solution on a previously cast semiconductor (P3HT) thin film to achieve high conductivity, while preserving the morphology. For very thin films (˜25 nm), we achieve a high power factor around 8 μW/mK-2 with a conductivity over 500 S/m. For the increasing film thickness, conductivity and power factor show a decreasing trend, which we attribute to the inability to dope the deeper parts of the film. Since thick films are required to extract significant power from thermoelectric generators, we developed a simple additive technique that allows the deposition of an arbitrary number of layers without significant loss in conductivity or power factor that, for 5 subsequent layers, remain at ˜300 S/m and ˜5 μW/mK-2, respectively, whereas the power output increases almost one order of magnitude as compared to a single layer. The efficient doping in multilayers is further confirmed by an increased intensity of (bi)polaronic features in the UV-Vis spectra.

  2. Hydrostatic Pressurization of Lung Surfactant Microbubbles: Observation of a Strain-Rate Dependent Elasticity.

    Science.gov (United States)

    Thomas, Alec N; Borden, Mark A

    2017-11-28

    The microbubble offers a unique platform to study lung surfactant mechanics at physiologically relevant geometry and length scale. In this study, we compared the response of microbubbles (∼15 μm initial radius) coated with pure dipalmitoyl-phosphatidylcholine (DPPC) versus naturally derived lung surfactant (SURVANTA) when subjected to linearly increasing hydrostatic pressure at different rates (0.5-2.3 kPa/s) at room temperature. The microbubbles contained perfluorobutane gas and were submerged in buffered saline saturated with perfluorobutane at atmospheric pressure. Bright-field microscopy showed that DPPC microbubbles compressed spherically and smoothly, whereas SURVANTA microbubbles exhibited wrinkling and smoothing cycles associated with buckling and collapse. Seismograph analysis showed that the SURVANTA collapse amplitude was constant, but the collapse rate increased with the pressurization rate. An analysis of the pressure-volume curves indicated that the dilatational elasticity increased during compression for both shell types. The initial dilatational elasticity for SURVANTA was nearly twice that of DPPC at higher pressurization rates (>1.5 kPa/s), producing a pressure drop of up to 60 kPa across the film prior to condensation of the perfluorobutane core. The strain-rate dependent stiffening of SURVANTA shells likely arises from their composition and microstructure, which provide enhanced in-plane monolayer rigidity and lateral repulsion from surface-associated collapse structures. Overall, these results provide new insights into lung surfactant mechanics and collapse behavior during compression.

  3. Flexible barrier film, method of forming same, and organic electronic device including same

    Science.gov (United States)

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  4. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  5. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  6. SnO2 thin film synthesis for organic vapors sensing at ambient temperature

    Directory of Open Access Journals (Sweden)

    N.H. Touidjen

    2016-12-01

    Full Text Available The present work is a study of tin dioxide (SnO2 based thin sensitive layer dedicated to organic vapors detection at ambient temperature. SnO2 thin film was deposited by chemical spray pyrolysis technique. The glass substrate temperature was kept to 400 °C, using a starting solution of 0.1 M tin (II dichloride dihydrate (SnCl2, 2H2O. Films structural and morphological properties were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscope (AFM respectively. Films optical characteristics were studied using UV-VIS spectrophotometer. XRD revealed the presence of pure SnO2 polycrystalline thin film with a tetragonal rutile structure. The SEM and AFM observations confirmed the granular morphology with presence of pores in the film surface. The prepared film was tested in various organic vapors (ethanol, methanol and acetone at ambient operating temperature (25 °C ± 2 °C. The obtained results suggested that SnO2 is more sensitive to ethanol vapor with a maximum sensitivity of 35% higher than to methanol and acetone vapors (1% and 3%. The realized SnO2 based sensor demonstrated fast response and recovery times as revealed by the values of 2 s to 3 s towards 47 ppm of ethanol vapor. Keywords: SnO2 thin film, Sensitivity, XRD, SEM, AFM, UV–visible

  7. Domain growth kinetics in stratifying foam films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2015-11-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are ~ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness characteristic scaling laws. Though several studies have focused on the expansion dynamics of isolated domains that exhibit a diffusion-like scaling, the change in expansion kinetics observed after domains contact with the Plateau border has not been reported and analyzed before.

  8. Physical processes in thin-film electroluminescent structures based on ZnS:Mn showing self-organized patterns

    International Nuclear Information System (INIS)

    Zuccaro, S.; Raker, Th.; Niedernostheide, F.-J.; Kuhn, T.; Purwins, H.-G.

    2003-01-01

    Physical processes in thin ZnS:Mn films and their relation to the formation of dynamical patterns in the electroluminescence of AC driven films are investigated. The technique of photo-depolarization-spectroscopy is used to investigate defect states in these films and it is shown that specific features in the spectra correlate with the observed self-organized patterns. Furthermore, the time dependence of the dissipative current is measured at the same samples and compared with current waveforms obtained from numerical simulations of a drift-diffusion model. The results are used to discuss the origin of the self-organized processes in ZnS:Mn-films

  9. Degradation of anionic surfactants using the reactor based on dielectric barrier discharge

    Directory of Open Access Journals (Sweden)

    Aonyas Munera Mustafa

    2016-01-01

    Full Text Available Two anionic surfactants (sodium lauryl sulfate - SDS and sodium dodecylbenzenesulfonate - SDBS were treated with dielectric barrier discharge. Loss of surfactant activity, decrease of chemical oxygen demand and total organic carbon as well as lower toxicity of degradation products were determined. Effects of catalysts - hydrogen peroxide and iron (II, on parameters mentioned above, were determined. Catalysts affect the degradation of SDBS and in the case of SDS catalysts have no effect on degradation. Both catalysts induce the decrease of COD and TOC values. Toxicity of solutions after the plasma treatment is lower in all the systems tested. [Projekat Ministarstva nauke Republike Srbije, br. OI 172030

  10. Smooth Growth of Organic Semiconductor Films on Graphene for High-Efficiency Electronics

    NARCIS (Netherlands)

    Hlawacek, G.; Khokhar, F.S.; van Gastel, Raoul; Poelsema, Bene; Teichert, Christian

    2011-01-01

    High-quality thin films of conjugated molecules with smooth interfaces are important to assist the advent of organic electronics. Here, we report on the layer-by-layer growth of the organic semiconductor molecule p-sexiphenyl (6P) on the transparent electrode material graphene. Low energy electron

  11. Passivation of Si(111) surfaces with electrochemically grafted thin organic films

    Science.gov (United States)

    Roodenko, K.; Yang, F.; Hunger, R.; Esser, N.; Hinrichs, K.; Rappich, J.

    2010-09-01

    Ultra thin organic films (about 5 nm thick) of nitrobenzene and 4-methoxydiphenylamine were deposited electrochemically on p-Si(111) surfaces from benzene diazonium compounds. Studies based on atomic force microscopy, infrared spectroscopic ellipsometry and x-ray photoelectron spectroscopy showed that upon exposure to atmospheric conditions the oxidation of the silicon interface proceed slower on organically modified surfaces than on unmodified hydrogen passivated p-Si(111) surfaces. Effects of HF treatment on the oxidized organic/Si interface and on the organic layer itself are discussed.

  12. Surfactant-ligand co-assisted solvothermal technique for the synthesis of different-shaped CdS nanorod-based materials

    International Nuclear Information System (INIS)

    Bao Chunyan; Jin Ming; Lu Ran; Xue Pengchong; Zhang Qinglin; Wang Dejun; Zhao Yingying

    2003-01-01

    1-D nanorods, twinrods, golfclubs, and tripods of CdS were prepared via a surfactant-ligand co-assisted solvothermal method at 160 deg. C. The surfactant of S-dodecylisothiounium bromide (C 12 ) used in the process was favorable for synthesis of different-shaped CdS nanorod with high aspect ratio. X-ray diffraction (XRD) and TEM images showed that the 1-D nanorods had wurtzite phase and others had a zinc blende core and wurtzite arms. The morphologies of CdS prepared under different conditions suggested the 'template-assistance' of the surfactant and that the nonaqueous organic media are important for the self-assembling of inorganic components at atomic level

  13. A Molecular Dynamics Study of Single-Walled Carbon Nanotubes (SWCNTs) Dispersed in Bile Salt Surfactants

    Science.gov (United States)

    Phelan, Frederick, Jr.; Sun, Huai

    2014-03-01

    Single-walled carbon nanotubes (SWNCTs) are materials with structural, electronic and optical properties that make them attractive for a myriad of advanced technology applications. A practical barrier to their use is that SWCNT synthesis techniques produce heterogeneous mixtures of varying lengths and chirality, whereas applications generally require tubes with narrow size distributions and individual type. Most separation techniques currently in use to obtain monodisperse tube fractions rely on dispersion of these materials in aqueous solution using surfactants. The dispersion process results in a mixture of colloidal structures in which individual tubes are dispersed and contained in a surfactant shell. Understanding the structure and properties of the SWCNT-surfactant complex at the molecular level, and how this is affected by chirality, is key to understanding and improving separations processes. In this study, we use molecular dynamics (MD) simulations to study the structure and properties of SWCNT-surfactant colloidal complexes. We tested a number of methods and protocols in order to build an accurate model for simulating SWCNT systems for a variety of bile salt surfactants as well as anionic co-surfactants, components that are widely used and important in experimental separation studies at NIST. The custom force field parameters used here will be stored in WebFF, a Web-hosted smart force-field repository for polymeric and organic materials being developed at NIST for the Materials Genome Initiative.

  14. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  15. A numerical study of the life time of superficial bubbles in water-alcohol mixtures with surfactants

    Science.gov (United States)

    Atasi, Omer; Scheid, Benoit; Haut, Benoît; Legendre, Dominique; Zenit, Roberto

    2017-11-01

    The evaluation of the lifetime of bubbles at the surface of a liquid has been used as an empirical technique in the traditional production of Mezcal (an artisanal distilled agave spirit from Mexico) to determine the desired concentration of alcohol. We investigated this problem in light of computational fluid dynamics (CFD) using a level-set method and a scalar transport technique to account for the presence of surfactants. We determined the rupture time of the film at the top of a bubble in function of the various bulk and surface properties. In agreement with experiments, we found that the superficial bubbles exhibit an extended lifetime for an intermediate water-alcohol concentration, corresponding to both a maximum of viscosity and a specific concentration of surfactants. We finally propose a scaling law that should be of practical use for Mezcal production. F.R.S-FNRS.

  16. Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors

    Science.gov (United States)

    Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang

    2017-11-01

    Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.

  17. Electrical characteristics of top contact pentacene organic thin film

    Indian Academy of Sciences (India)

    Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+ -Si) ...

  18. Synthesis and characterization of fluorinated polyacrylate latex emulsified with novel surfactants.

    Science.gov (United States)

    Zhang, Cuifeng; Xu, Tingting; Bao, Zhongbin; Chen, Lijun

    2017-01-01

    The fluorinated polyacrylate latex were successfully prepared with semi- continuous seeded emulsion polymerization of butyl acrylate (BA), methyl methacrylate (MMA) and hexafluorobutyl methacrylate (HFMA) which was initiated with potassium persulfate (KPS) initiator and emulsified with the novel mixed surfactants of sodium lauryl glutamate (SLG) and alkylphenol ethoxylates (OP-10). The structure of the resultant latex was confirmed by Fourier transform infrared spectroscopy (FTIR). The particle size of the latex was measured by Zetatrac dynamic light scattering detector. The film of latex was tested by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and contact angle (CA). The optimum conditions of preparing the novel fluorinated polyacrylate latex are optimized and the results are as follows: the amount of emulsifiers is 4.0%; mass ratio of SLG to OP-10 is 1:1, the amount of the initiator is 0.6%. The mass ratio of MMA to BA is 1:1 and the amount of HFMA is 7.0%. In this case, the conversion is high and the polymerization stability is good. In addition, the water resistance and thermal properties of the latex films were improved significantly in comparison with the film of the latex prepared without the fluorinated monomer.

  19. Adsorption of organic layers over electrodeposited magnetite (Fe3O4) thin films

    International Nuclear Information System (INIS)

    Cortes, M.; Gomez, E.; Sadler, J.; Valles, E.

    2011-01-01

    Research highlights: → Adherent low roughness magnetite films ranging from 80 nm to 3.75 μm-thick were electrodeposited on Au/glass substrates under galvanostatic control. → X-ray diffraction and magnetic measurements corroborates the purity of the electrodeposited magnetite. → Both dodecanethiol and oleic acid are shown to adsorb on the magnetite prepared at low temperature, significantly inducing the hydrophobicity of the surface. → Contact angle and voltammetric measurements, as well as XPS confirm the monolayers formation. - Abstract: The formation of monolayers of two organic compounds (oleic acid and dodecanethiol) over magnetite films was studied. Magnetite films ranging from 80 nm to 3.75 μm-thick were electrodeposited on Au on glass substrates under galvanostatic control, with deposition parameters optimized for minimum surface roughness. Films were characterised by SEM and AFM, showing granular deposits with a low rms roughness of 5-40 nm measured over an area of 1 μm 2 . The growth rate was estimated by measuring cross-sections of the thin films. Pure magnetite with an fcc structure is observed in XRD diffractograms. The adsorption of both oleic acid and dodecanethiol on the magnetite films was tested by immersing them in ethanol solutions containing the organic molecules, for different deposition time, temperature and cleaning procedure. Monolayer formation in both cases was studied by contact angle and voltammetric measurements, as well as XPS.

  20. X-ray radiation damage of organic semiconductor thin films during grazing incidence diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuhold, A., E-mail: alfred.neuhold@tugraz.at [Institute of Solid State Physics, Graz University of Technology, Graz (Austria); Novak, J.; Flesch, H.-G.; Moser, A.; Djuric, T. [Institute of Solid State Physics, Graz University of Technology, Graz (Austria); Grodd, L.; Grigorian, S.; Pietsch, U. [Institute of Physics, University Siegen (Germany); Resel, R. [Institute of Solid State Physics, Graz University of Technology, Graz (Austria)

    2012-08-01

    Since modern synchrotrons with highly intense X-ray beams are in use to investigate organic materials, the stability of soft matter materials during beam exposure is a crucial issue. Grazing incidence X-ray diffraction and specular X-ray reflectivity measurements were performed on thin films of organic semiconducting materials, like poly(3-hexylthiophene) (P3HT), sexithiophene and pentacene. These films were irradiated with an average flux density between 10{sup 15} and 10{sup 16} photons/(s mm{sup 2}) and evidenced a different stability in synchrotron X-ray radiation. The semi-crystalline P3HT showed a clear intensity decrease of the 1 0 0 Bragg peak and 0 2 0 Bragg peak compared to the rather stable diffraction features of the molecular crystals sexithiophene and pentacene. The difference in synchrotron X-ray radiation stability is explained by the interaction of the X-ray beam with the individual chemical components in the molecules as well as by the different crystallinities of the materials. Furthermore, the semi-crystalline P3HT film exhibited an increase of film thickness after irradiation and the surface roughness slightly decreased. To summarize, this study shows a strong influence of synchrotron X-ray radiation to specific organic thin films like e.g. P3HT, while others like pentacene and sexithiophene are observed as quite stable.

  1. Influence of metacide - surfactant complexes on agricultural crops

    Directory of Open Access Journals (Sweden)

    Orynkul Esimova

    2014-12-01

    Full Text Available The complexes based on surfactants and polyhexamethyleneguanidine hydrochloride (metacide are important for agriculture. This paper considers compositions of known bactericidal metacide with different surfactants: anionic surfactant sodium dodecylsulphate (DDSNa and nonionic surfactant Tween 80 (monooleate of oxyethylenated anhydrosorbitols. The effect of individual components and associates of metacide and surfactants on productivity and infection of cereals was studied. According to the study, the highest productivity and infection rate were shown by the associate of metacide and Tween-80. At concentration of Tween-80 in aqueous solution equal to 0.001% in combination with metacide, efficiency was 98% at 0% infection. The surface tension and the wetting of metacide, DDSNa, Tween-80, and associates of metacide with surfactants were studied. In comparison with individual components, metacide-DDSNa and metacide-Tween-80 associates have higher surface activity.

  2. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  3. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  4. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Solution-processable precursor route for fabricating ultrathin silica film for high performance and low voltage organic transistors

    Institute of Scientific and Technical Information of China (English)

    Shujing Guo; Liqiang Li; Zhongwu Wang; Zeyang Xu; Shuguang Wang; Kunjie Wu; Shufeng Chen; Zongbo Zhang; Caihong Xu; Wenfeng Qiu

    2017-01-01

    Silica is one of the most commonly used materials for dielectric layer in organic thin-film transistors due to its excellent stability,excellent electrical properties,mature preparation process,and good compatibility with organic semiconductors.However,most of conventional preparation methods for silica film are generally performed at high temperature and/or high vacuum.In this paper,we introduce a simple solution spin-coating method to fabricate silica thin film from precursor route,which possesses a low leakage current,high capacitance,and low surface roughness.The silica thin film can be produced in the condition of low temperature and atmospheric environment.To meet various demands,the thickness of film can be adjusted by means of preparation conditions such as the speed of spin-coating and the concentration of solution.The p-type and n-type organic field effect transistors fabricated by using this film as gate electrodes exhibit excellent electrical performance including low voltage and high performance.This method shows great potential for industrialization owing to its characteristic of low consumption and energy saving,time-saving and easy to operate.

  6. Ordered organic-organic multilayer growth

    Science.gov (United States)

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  7. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    Science.gov (United States)

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  8. Effect of pre-drying treatments on solution-coated organic thin films for active-matrix organic light-emitting diodes

    Science.gov (United States)

    Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon

    2017-12-01

    Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.

  9. Ellipsometry of functional organic surfaces and films

    CERN Document Server

    Eichhorn, Klaus-Jochen

    2018-01-01

    This new edition provides a state-of-the-art survey of ellipsometric methods used to study organic films and surfaces, from laboratory to synchrotron applications, with a special focus on in-situ use in processing environments and at solid-liquid interfaces. Thanks to the development of functional organic, meta- and hybrid materials for new optical, electronic, sensing and biotechnological devices, the ellipsometric analysis of optical and material properties has made tremendous strides over the past few years. The second edition has been updated to reflect the latest advances in ellipsometric methods. The new content focuses on the study of anisotropic materials, conjugated polymers, polarons, self-assembled monolayers, industrial membranes, adsorption of proteins, enzymes and RGD-peptides, as well as the correlation of ellipsometric spectra to structure and molecular interactions.

  10. Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in [Department of Physics, University of Allahabad, Allahabad-211 002 (India)

    2016-05-23

    Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.

  11. Wavelength Dispersive X-ray Fluorescence Spectrometry for the Analysis of Organic Polymer Film

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Park, Yong Joon; Kim, Jong Yun

    2008-01-01

    Recently, many studies have been focused on the thin films because there are numerous industrial processes relevant to thin films such as fuel cells, sensors, lubricants, coatings, and so on. Physical and chemical properties of solid surface have been modified by ultra-thin coatings such as Langmuir-Blodgett (LB) method with a variety of types of organic functional materials for the specific purposes in many applications. In addition, the layer-by-layer technique using polyelectrolyte films are now of interest as biosensors, electrochromic and electroluminescent devices, etc. In general, several methods such as X-ray or neutron reflectivity, and quartz crystal microbalance (QCM) have been utilized for the thin film analysis. These optical techniques can measure the film thicknesses up to hundreds of nanometers while X-ray photoelectron spectroscopy is widely used to study a few nanometers thick films. Other methods such as X-ray Photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom force microscopy (AFM) have also been used in the film analysis in spite of some disadvantages for each method. X-ray fluorescence (XRF) has long been used as a rapid and simple analytical tool for the analysis of elemental composition of materials. XRF technique is suitable for on-line or in-line real-time monitoring because it is a non-destructive and rapid analysis with good precision and good accuracy at low cost. The aim of this work is to develop a new analytical technique for the quantitative analysis of polymer film on metal substrate. In the present study, Compton peak profile was investigated under different experimental conditions by using wavelength-dispersive XRF (WD-XRF). Compared to energy-dispersive XRF (ED-XRF), WD-XRF is more adequate in an accurate quantitative analysis of thin organic film

  12. Bio surfactants production in bioreactor assisted with membrane process; Producao de biossurfactantes em biorreator assistido por processos com membranas

    Energy Technology Data Exchange (ETDEWEB)

    Kronemberger, Frederico de Araujo; Borges, Cristiano Piacsek [Universidade Federal do Rio de Janeiro (UFRJ). COPPE. Programa de Engenharia Quimica, RJ (Brazil)], e-mails: frederico@peq.coppe.ufrj.br, cristiano@peq.coppe.ufrj.br, s.noblat@csn.com.br; Freire, Denise Maria Guimaraes [Universidade Federal do Rio de Janeiro (UFRJ). Instituto de Quimica. Departamento de Bioquimica, RJ (Brazil)], e-mail: freire@iq.ufrj.br

    2010-04-15

    Chemically synthesized surfactants are widely used in the pharmaceutical, food and oil industries. However, they may eventually be replaced by bio surfactants, which are biodegradable and produced from renewable substrates, the surface active molecules produced by micro-organisms. Currently bio surfactants use is limited to some specific applications as they are not economically competitive. The fermentation technology needs to be improved to expand the production scale and lower costs. The most studied bio surfactants are produced by aerobic microorganisms. The main difficulty of this fermentation process is the excess foam caused by injecting air into the vessel. To overcome this problem, a membrane contactor can be used for the non-dispersive transfer of oxygen from the gas to liquid phase. The main objective of this study was to produce rhamno lipidic type bio surfactants from a strain of Pseudomonas aeruginosa (PA1), isolated from oil wells. This production used a hollow-fiber membrane contactor to oxygenate the culture medium. The study results indicate this bio surfactant is economically viable in large scale production. (author)

  13. Absorption of a volatile organic compound by a jet loop reactor with circulation of a surfactant solution: Performance evaluation

    International Nuclear Information System (INIS)

    Park, Byungjoon; Hwang, Geelsu; Haam, Seungjoo; Lee, Changha; Ahn, Ik-Sung; Lee, Kyoungjoo

    2008-01-01

    Biofiltration shows high efficiency for the removal of industrial waste gases and reliable operational stability at low investment and operating cost, especially when the VOC concentration is low, such as 100 ppmv (μL L -1 ) or less. However, it has been reported that the abrupt change in VOC concentrations leads to the failure of the biofilter. Hence, the pretreatment of waste gases is necessary to ensure the stable operation of the biofilter. The objective of this study is to develop a jet loop reactor (JLR) with circulation of a surfactant solution to lower the concentration of VOCs, especially hydrophobic VOCs. Toluene and Tween 81 were used as a model industrial waste gas and a surfactant, respectively. Among several non-ionic surfactants tested, Tween 81 showed the most rapid dissolution of toluene. When a JLR is replaced with fresh Tween 81 solution (0.3% w/v) every hour, it successfully absorbed for 48 h over 90% of the toluene in an inlet gas containing toluene at 1000 ppmv (μL L -1 ) or less. Therefore, JLR with circulation of a surfactant solution is believed to ensure the stable operation of the biofilter even with the unexpected increase in the VOC concentrations

  14. Surfactant-Polymer Interaction for Improved Oil Recovery; FINAL

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-01

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering

  15. Preparation of Organized Mesoporous Silica from Sodium Metasilicate Solutions in Alkaline Medium using Nonionic Surfactants

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Rathouský, Jiří; Zukal, Arnošt

    2003-01-01

    Roč. 68, č. 10 (2003), s. 2019-2031 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z4040901 Keywords : mesoporous SiO2 * sodium metasilicate * nonionic surfactants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  16. Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties.

    Science.gov (United States)

    Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner

    2013-04-08

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  17. Combinatorial Techniques to Efficiently Investigate and Optimize Organic Thin Film Processing and Properties

    Directory of Open Access Journals (Sweden)

    Hans-Werner Schmidt

    2013-04-01

    Full Text Available In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  18. Surfactant selection for a liquid foam-bed photobioreactor.

    Science.gov (United States)

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  19. History of surfactant up to 1980.

    Science.gov (United States)

    Obladen, Michael

    2005-01-01

    Remarkable insight into disturbed lung mechanics of preterm infants was gained in the 18th and 19th century by the founders of obstetrics and neonatology who not only observed respiratory failure but also designed devices to treat it. Surfactant research followed a splendid and largely logical growth curve. Pathological changes in the immature lung were characterized in Germany by Virchow in 1854 and by Hochheim in 1903. The Swiss physiologist von Neergard fully understood surfactant function in 1929, but his paper was ignored for 25 years. The physical properties of surfactant were recognized in the early 1950s from research on warfare chemicals by Pattle in Britain and by Radford and Clements in the United States. The causal relationship of respiratory distress syndrome (RDS) and surfactant deficiency was established in the USA by Avery and Mead in 1959. The Australian obstetrician Liggins induced lung maturity with glucocorticoids in 1972, but his discovery was not fully believed for another 20 years. A century of basic research was rewarded when Fujiwara introduced surfactant substitution in Japan in 1980 for treatment and prevention of RDS. Copyright 2005 S. Karger AG, Basel

  20. Adsorption of anionic surfactants in limestone medium during oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Canbolat, Serhat; Bagci, Suat [Middle East Technical Univ., Dept. of Petroleum and Natural Gas Engineering, Ankara (Turkey)

    2004-07-15

    Foam-forming surfactant performance was evaluated by several experimental methods (interfacial tension, foam stability, corefloods) using commercial surfactants. There is considerable interest in the use of foam-forming surfactants for mobility control in water flood. To provide effective mobility control, the injected surfactant must propagate from the injection well toward the production well. One of the important parameters affecting propagation of foam-forming surfactant through the reservoir is the retention of surfactant due to its adsorption on reservoir rock. The determination of the adsorption of foam-forming surfactants in limestone reservoirs is important for the residual oil recovery efficiency. Adsorption measurements, recovery efficiencies, and surfactant and alkaline flooding experiments carried out with the representative of the selected surfactants alkaline solutions, linear alkyl benzene sulphonic acid (LABSA), sodium lauryl ether sulfate (SLES), and NaOH in a limestone medium. These surfactants were selected with respect to their foaming ability. Calibration curves formed by pH measurements were used to determine the correct adsorption amount of the used surfactants and recovery efficiency of these surfactants compared with base waterflooding. The results showed that LABSA adsorbed more than SLES in limestone reservoirs. The recovery efficiency of SLES was higher than the recovery efficiency of LABSA, and they decreased the recovery efficiency with respect to only the water injection case. (Author)

  1. Pulsed injection metal organic chemical vapour deposition and characterisation of thin CaO films

    International Nuclear Information System (INIS)

    Borges, R.P.; Ferreira, P.; Saraiva, A.; Goncalves, R.; Rosa, M.A.; Goncalves, A.P.; Silva, R.C. da; Magalhaes, S.; Lourenco, M.J.V.; Santos, F.J.V.; Godinho, M.

    2009-01-01

    Thin films of CaO were grown on silicon (Si) and lanthanum aluminate (LaAlO 3 ) substrates by pulsed injection metal-organic chemical vapour deposition in a vertical injection MOCVD system. Growth parameters were systematically varied to study their effect on film growth and quality and to determine the optimal growth conditions for this material. Film quality and growth rate were evaluated by atomic force microscopy, X-ray diffraction and Rutherford Backscattering Spectroscopy measurements. Optimised conditions allowed growing transparent, single phase films textured along the (0 0 l) direction.

  2. Mechanistic Insights into Growth of Surface-Mounted Metal-Organic Framework Films Resolved by Infrared (Nano-) Spectroscopy

    NARCIS (Netherlands)

    Delen, Guusje; Ristanovic, Zoran; Mandemaker, Laurens D. B.; Weckhuysen, Bert M.

    2018-01-01

    Control over assembly, orientation, and defect-free growth of metal-organic framework (MOF) films is crucial for their future applications. A layer-by-layer approach is considered a suitable method to synthesize highly oriented films of numerous MOF topologies, but the initial stages of the film

  3. Superconducting Bi-Sr-Ca-Cu-O thin films from metallo-organic complexes

    International Nuclear Information System (INIS)

    Gruber, H.; Krautz, E.; Fritzer, H.P.; Popitsch, A.

    1991-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system are produced by decomposition of organic precursor compounds containing different metallo-organic complexes. The superconducting phase identified is Bi 2 Sr 2 CaCu 2 O 8+x on (100)-MgO single crystal substrates, polycrystalline Au- and Ag-ribbons and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x on Ag-ribbons. For the 2212-phase a zero resistance temperature of 79 K is found. The 2223-samples on Ag-ribbons show a broad transition at 110 K with a zero resistance at 85 K. SEM and EDX are used for the detection of the microstructure and composition of the prepared films. (orig.)

  4. Studies of the ionizing radiation effects on the effluents acute toxicity due to anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, Maria Cristina Franco de

    2004-01-01

    Several studies have shown the negative effects of surfactants, as detergents active substance, when discharged on biological sewage wastewater treatment plants. High toxicity may represent a lower efficiency for biological treatment. When surfactants are in aquatic environment they may induce a loss of grease revetment on birds (feather). Depending on the surfactant concentration, several damages to all biotic systems can happen. Looking for an alternative technology for wastewater treatment, efficient for surfactant removal, the present work applied ionizing radiation as an advanced oxidation process for affluents and effluents from Suzano Treatment Station. Such wastewater samples were submitted to radiation using an electron beam from a Dynamic Electron Beam Accelerator from Instituto de Pesquisas Energeticas e Nucleares. In order to assess this proposed treatment efficacy, it was performed acute toxicity evaluation with two test-organisms, the crustacean Daphnia similis and the luminescent bacteria Vibrio fischeri. The studied effluents were: one from a chemical industry (IND), three from sewage plant (affluents - GG, GM and Guaio) and the last biologically treated secondary effluent (EfF), discharged at Tiete river. The applied radiation doses varied from 3 kGy to 50 kGy, being 50 kGy enough for surfactant degradation contained at industrial effluent. For GG, GM and Guaio samples, doses of 6 kGy and 10 kGy were efficient for surfactant and toxicity reduction, representing an average removal that varied from 71.80% to 82.76% and toxicity from 30% to 91% for most the effluents. The final effluent was less toxic than the others and the radiation induced an average 11% removal for anionic surfactant. The industrial effluents were also submitted to an aeration process in order to quantify the contribution of surfactant to the whole sample toxicity, once it was partially removed as foam and several fractions were evaluated for toxicity. (author)

  5. CISM Course on Fluid Mechanics of Surfactant and Polymer Solutions

    CERN Document Server

    Ivanov, Ivan

    2004-01-01

    Colloidal systems and dispersions are of great importance in oil recovery, waist water treatment, coating, food and beverage industry, pharmaceutical industry, medicine, environmental protection etc. Colloidal systems and dispersions are always multi-component and multiphase systems. In these systems at least one dimension is in a range of colloidal forces action: colloidal dispersions/emulsions are examples of three dimensional colloidal systems, while thin liquid films are examples of one dimensional colloidal systems. The contribution presented in this issue deals with flow, distribution and redistribution, coating and deposition of surfactant and polymer molecules in colloidal systems. The book presents reviews of recent advances and trends by well-know scientists and engineers in this area.

  6. Decisive Interactions between the Heterocyclic Moiety and the Cluster Observed in Polyoxometalate-Surfactant Hybrid Crystals

    Directory of Open Access Journals (Sweden)

    Saki Otobe

    2015-04-01

    Full Text Available Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda and dodecylpyridinium (C12py surfactants. The decatungstate (W10 anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10, the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10 had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions.

  7. Effect of Vertical Annealing on the Nitrogen Dioxide Response of Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sihui Hou

    2018-03-01

    Full Text Available Nitrogen dioxide (NO2 sensors based on organic thin-film transistors (OTFTs were fabricated by conventional annealing (horizontal and vertical annealing processes of organic semiconductor (OSC films. The NO2 responsivity of OTFTs to 15 ppm of NO2 is 1408% under conditions of vertical annealing and only 72% when conventional annealing is applied. Moreover, gas sensors obtained by vertical annealing achieve a high sensing performance of 589% already at 1 ppm of NO2, while showing a preferential response to NO2 compared with SO2, NH3, CO, and H2S. To analyze the mechanism of performance improvement of OTFT gas sensors, the morphologies of 6,13-bis(triisopropylsilylethynyl-pentacene (TIPS-pentacene films were characterized by atomic force microscopy (AFM in tapping mode. The results show that, in well-aligned TIPS-pentacene films, a large number of effective grain boundaries inside the conducting channel contribute to the enhancement of NO2 gas sensing performance.

  8. Silica micro- and nanoparticles reduce the toxicity of surfactant solutions.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Fernández-Serrano, Mercedes; Jurado, Encarnación; Lechuga, Manuela

    2018-04-20

    In this work, the toxicity of hydrophilic fumed silica micro- and nanoparticles of various sizes (7 nm, 12 nm, and 50 μm) was evaluated using the luminescent bacteria Vibrio fischeri. In addition, the toxicity of an anionic surfactant solution (ether carboxylic acid), a nonionic surfactant solution (alkyl polyglucoside), and a binary (1:1) mixture of these solutions all containing these silica particles was evaluated. Furthermore, this work discusses the adsorption of surfactants onto particle surfaces and evaluates the effects of silica particles on the surface tension and critical micellar concentration (CMC) of these anionic and nonionic surfactants. It was determined that silica particles can be considered as non-toxic and that silica particles reduce the toxicity of surfactant solutions. Nevertheless, the toxicity reduction depends on the ionic character of the surfactants. Differences can be explained by the different adsorption behavior of surfactants onto the particle surface, which is weaker for nonionic surfactants than for anionic surfactants. Regarding the effects on surface tension, it was found that silica particles increased the surface activity of anionic surfactants and considerably reduced their CMC, whereas in the case of nonionic surfactants, the effects were reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Recent progress on thin-film encapsulation technologies for organic electronic devices

    Science.gov (United States)

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  10. Synergism and Physicochemical Properties of Anionic/Amphoteric Surfactant Mixtures with Nonionic Surfactant of Amine Oxide Type

    Science.gov (United States)

    Blagojević, S. M.; Pejić, N. D.; Blagojević, S. N.

    2017-12-01

    The physicochemical properties of initial formulation, that is anionic/amphoteric surfactants mixture SLES/AOS/CAB (sodium lauryl ether sulfate (SLES), α-olefin sulfonates (AOS) and cocamidopropyl betaine (CAB) at ratio 80 : 15 : 5) with nonionic surfactant of amine oxide type (lauramine oxide (AO)) in various concentration (1-5%) were studied. To characterize the surfactants mixture, the critical micelle concentration (CMC), surface tension (γ), foam volume, biodegradability and irritability were determined. This study showed that adding of AO in those mixtures lowered both γ and CMC as well as enhanced SLES/AOS/CAB foaming properties, but did not significantly affect biodegradability and irritability of initial formulation. Moreover, an increase in AO concentration has a meaningful synergistic effect on the initial formulation properties. All those results indicates that a nonionic surfactant of amine oxide type significantly improves the performance of anionic/amphoteric mixed micelle systems, and because of that anionic/amphoteric/nonionic mixture can be used in considerably lower concentrations as a cleaning formulation.

  11. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: Film morphology and field effect mobility

    International Nuclear Information System (INIS)

    Kotsuki, Kenji; Tanaka, Hiroshige; Obata, Seiji; Stauss, Sven; Terashima, Kazuo; Saiki, Koichiro

    2014-01-01

    We have investigated the film morphology and the field effect mobility of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) thin films which were formed by spin coating on the SiO 2 substrate with solution-processed graphene electrodes. The domain size and the density of aggregates in the C8-BTBT film showed the same dependence on the spinning speed. These competitive two factors (domain size and density of aggregates) give an optimum spinning speed, at which the field effect mobility of C8-BTBT transistor showed a maximum (2.6 cm 2 /V s). This result indicates the importance of spinning speed in the fabrication of solution processed organic thin film transistors by spin coating.

  12. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene.

    Science.gov (United States)

    Basu, Sarbani; Lee, Mu Chen; Wang, Yeong-Her

    2014-08-21

    This paper presents 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and pentacene-based organic thin film transistors (OTFTs) with monolayer graphene source-drain (S-D) electrodes. The electrodes are patterned using conventional photolithographic techniques combined with reactive ion etching. The monolayer graphene film grown by chemical vapor deposition on Cu foil was transferred on a Si dioxide surface using a polymer-supported transfer method to fabricate bottom-gate, bottom-contact OTFTs. The pentacene OTFTs with graphene S-D contacts exhibited superior performance with a mobility of 0.1 cm(2) V(-1) s(-1) and an on-off ratio of 10(5) compared with OTFTs with Au-based S-D contacts, which had a mobility of 0.01 cm(2) V(-1) s(-1) and an on-off ratio of 10(3). The crystallinity, grain size, and microscopic defects (or the number of layers of graphene films) of the TIPS-pentacene/pentacene films were analyzed by X-ray diffraction spectroscopy, atomic force microscopy, and Raman spectroscopy, respectively. The feasibility of using graphene as an S-D electrode in OTFTs provides an alternative material with high carrier injection efficiency, chemical stability, and excellent interface properties with organic semiconductors, thus exhibiting improved device performance of C-based electronic OTFTs at a reduced cost.

  13. Critical structural and functional roles for the N-terminal insertion sequence in surfactant protein B analogs.

    Directory of Open Access Journals (Sweden)

    Frans J Walther

    2010-01-01

    Full Text Available Surfactant protein B (SP-B; 79 residues belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., approximately residues 8-25 and 63-78, confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1-7 attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity.FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary alpha-helix and secondary beta-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR, predictive aggregation algorithms, and molecular dynamics (MD and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a "saposin-like" fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B.Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.

  14. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces.

    Science.gov (United States)

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-12-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  15. Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kaibing, E-mail: kbhuang8888@163.com; Yao, Yiyuan; Yang, Xiuwen; Chen, Zhenhua; Li, Min

    2016-02-01

    Hierarchical porous nitrogen-doped carbon nanofiber (HPNCNF) films were prepared via a simple electrospinning process, in which polyacrylonitrile and silicone surfactants were adopted as carbon source and porogen, respectively, followed by a thermal treatment. The morphology, chemical composition, and porosity of the HPNCNFs were investigated by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and nitrogen adsorption–desorption experiments. The as-prepared HPNCNFs with a specific surface area of 656 m{sup 2} g{sup −1}, a hierarchical pore structure, and a nitrogen content of 8.1 at% showed a specific capacitance of 289 F g{sup −1} in a 6 mol L{sup −1} KOH aqueous solution with excellent cycle durability, making HPNCNF films a promising electrode material for a future application in supercapacitors. - Highlights: • HPNCNF films are prepared by electrospinning followed by thermal treatment. • Silicone surfactants are adopted as porogen to prepare HPNCNF films. • The HPNCNF films show a specific capacitance of 289 F g{sup −1} at a current density of 0.2 A g{sup −1}.

  16. Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency

    Science.gov (United States)

    Liu, Wei-Ting; Huang, Wen-Yao

    2012-10-01

    This study used the novel fluorescence based deep-blue-emitting molecule BPVPDA in an organic fluorescent color thin film to exhibit deep blue color with CIE coordinates of (0.13, 0.16). The developed original organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and thin-film-transistor (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a TFT LCD with organic color thin films. The organic color thin films structure uses an organic dye dopant in a limpid photoresist. With this technology, the following characteristics can be obtained: 1. high color reproduction of gamut ratio, and 2. improved luminous efficiency with organic color fluorescent thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD or OLED.

  17. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

    International Nuclear Information System (INIS)

    Conte, Pellegrino; Agretto, Anna; Spaccini, Riccardo; Piccolo, Alessandro

    2005-01-01

    The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils. - Solutions of natural humic acids appear to be a better choice for washing highly polluted soils

  18. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  19. Surfactant therapy in late preterm infants

    Directory of Open Access Journals (Sweden)

    Murat Yurdakök

    2013-06-01

    Full Text Available Late preterm (LPT neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS, transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature infants, leading to a gap in knowledge and understanding of the developmental biology and mechanism of pulmonary diseases in LPT neonates. Surfactant deficiency is the most frequent etiology of RDS in very preterm and moderately preterm infants, while cesarean section and lung infection play major roles in RDS development in LPT infants. The clinical presentation and the response to surfactant therapy in LPT infants may be different than that seen in very preterm infants. Incidence of pneumonia and occurrence of pneumothorax are significantly higher in LPT and term infants. High rates of pneumonia in these infants may result in direct injury to the type II alveolar cells of the lung with decreasing synthesis, release, and processing of surfactant. Increased permeability of the alveolar capillary membrane to both fluid and solutes is known to result in entry of plasma proteins into the alveolar hypophase, further inhibiting the surface properties of surfactant. However, the oxygenation index value do not change dramatically after ventilation or surfactant administration in LPT infants with RDS compared to very preterm infants. These finding may indicate a different pathogenesis of RDS in late preterm and term infants. In conclusion, surfactant therapy may be of significant benefit in LPT infants with serious respiratory failure secondary to a number of insults. However, optimal timing and dose of administration are not so clear in this group. Additional

  20. Cell behaviors on micro-patterned porous thin films

    International Nuclear Information System (INIS)

    Phong, Ho Quoc; Wang Shuling; Wang, Meng-Jiy

    2010-01-01

    Thin polymer films with patterned surfaces have drawn tremendous attention in manufacturing advanced electronic, mechanical devices and in biomaterials due to the advantageous properties such as mechanical strength, chemical resistance and optic transparency. The applications can be extended to the fields such as catalysts, antireflection coatings, template for inorganic growth masks, and substrates for cell culturing providing the patterned surface containing micron-sized features. Various methods have been used to fabricate polymers with micro-patterned surfaces such as photolithographic, ink-jet printing, nonsolvent, spin coating in a dry environment, self-organization, and the condensation of monodisperse water droplet on the polymer solution. The physiological functions of mature cells depend on the microenvironment/niche surrounding which can provide proper factors to regulate cell proliferation and differentiation. While designing appropriate scaffolds for tissue engineering, the microstructure is one of the most important factors to be considered. In this work, a facile single-step phase separation method was used to create micro-patterned polymer thin films with concaves or convexes with sizes ranged from 7 to 70 μm. The effects of water content, casting volume and the addition of surfactant on the distribution of pores and substrate morphology were examined. Moreover, detailed observations of fibroblast cells on the micro-patterned thin films were presented to compare and elucidate the roles of surface micro-features and chemical functionalities.