WorldWideScience

Sample records for surfactant concentrations studied

  1. Determination of the critical micelle concentration in simulations of surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-01-28

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)

  2. Determination of the critical micelle concentration in simulations of surfactant systems.

    Science.gov (United States)

    Santos, Andrew P; Panagiotopoulos, Athanassios Z

    2016-01-28

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the "free" (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit).

  3. Determination of the critical micelle concentration in simulations of surfactant systems

    International Nuclear Information System (INIS)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z.

    2016-01-01

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)

  4. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH.

    Science.gov (United States)

    Ríos, Francisco; Lechuga, Manuela; Fernández-Serrano, Mercedes; Fernández-Arteaga, Alejandro

    2017-03-01

    The present study was designed to provide information regarding the effect of the molecular structure of amphoteric amine-oxide-based surfactants and the initial surfactant concentration on their ultimate biodegradation. Moreover, given this parameter's pH-dependence, the effect of pH was also investigated. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-Cocoamido). We studied the ultimate biodegradation using the Modified OECD Screening Test at initial surfactant concentrations ranged from 5 to 75 mg L -1 and at pH levels from 5 to 7.4. The results demonstrate that at pH 7.4, amine-oxide-based surfactants are readily biodegradable. In this study, we concluded that ω-oxidation can be assumed to be the main biodegradation pathway of amine-oxides and that differences in the biodegradability between them can be explained by the presence of an amide group in the alkyl chain of AO-Cocoamido; the CN fission of the amide group slows down their mineralization process. In addition, the increase in the concentration of the surfactant from 5 to 75 mg L -1 resulted in an increase in the final biodegradation of AO-R 12 and AO-R 14 . However, in the case of AO-Cocoamido, a clear relationship between the concentration and biodegradation cannot be stated. Conversely, the biodegradability of AO-R 12 and AO-R 14 was considerably lower in an acid condition than at a pH of 7.4, whereas AO-Cocoamido reached similar percentages in acid conditions and at a neutral pH. However, microorganisms required more time to acclimate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene

    International Nuclear Information System (INIS)

    Jin Danyue; Jiang Xia; Jing Xin; Ou Ziqing

    2007-01-01

    The effects of concentration, polar/ionic head group, and structure of surfactants on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase, as well as their effects on the bacterial activity were investigated. The toxicity ranking of studied surfactants is: non-ionic surfactants (Tween 80, Brij30, 10LE and Brij35) -1 ) served the sole carbon and energy resource. However, the degradation of 14 C-phenanthrene showed either a decrease or no obvious change with the surfactants present at all tested concentrations (5-40 mg L -1 ). Thus, the surfactant addition is not beneficial to the removal of phenanthrene or other PAH contaminants due presumably to the preferential utilization of surfactants at low levels as the non-toxic nutrient resource and to the high toxicity of the surfactants at high levels to the microorganism activity. Biodegradation of phenanthrene was also influenced by the surfactant concentration, head group type, and structure. Much more research has yet to be completed on the use of surfactants for soil remediation due to the surfactant toxicity or biodegradation effect

  6. Effect of surfactant types and their concentration on the structural characteristics of nanoclay

    Science.gov (United States)

    Zawrah, M. F.; Khattab, R. M.; Saad, E. M.; Gado, R. A.

    2014-03-01

    A series of organo-modified nanoclays was synthesized using three different surfactants having different alkyl chain lengths and concentrations [0.5-5.0 cation exchange capacity (CEC)]. These surfactants were Ethanolamine (EA), Cetyltrimethylammoniumbromide (CTAB) and Tetraoctadecylammoniumbromide (TO). The obtained modified nanoclays were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) and compared with unmodified nanoclay. The results of XRD analysis indicated that the basal d-spacing has increased with increasing alkyl chain length and surfactant concentration. From the obtained microstructures of these organo-modified nanoclays, the mechanism of surfactant adsorption was proposed. At relatively low loading of surfactant, most of surfactant entered the spacing by an ion-exchange mechanism and is adsorbed onto the interlayer cation sites. When the concentration of the surfactant exceeds the CEC of clay, the surfactant molecules then adhere to the surface adsorbed surfactant. Some surfactants entered the interlayers, whereas the others were attached to the clay surface. When the concentration of surfactant increased further beyond 2.0 CEC, the surfactants might occupy the inter-particle space within the house-of-cards aggregate structure.

  7. Influence of surfactant concentration on nanohydroxyapatite growth

    Indian Academy of Sciences (India)

    Nanohydroxyapatite particles with different morphologies were synthesized through a microwave coupled hydrothermal method using CTAB as a template. A successful synthesis of nanosized HAP spheres, rods and fibres is achieved through this method by controlling the concentration of the surfactant. The concentration ...

  8. Controlling Active Liquid Crystal Droplets with Temperature and Surfactant Concentration

    Science.gov (United States)

    Shechter, Jake; Milas, Peker; Ross, Jennifer

    Active matter is the study of driven many-body systems that span length scales from flocking birds to molecular motors. A previously described self-propelled particle system was made from liquid crystal (LC) droplets in water with high surfactant concentration to move particles via asymmetric surface instabilities. Using a similar system, we investigate the driving activity as a function of SDS surfactant concentration and temperature. We then use an optical tweezer to trap and locally heat the droplets to cause hydrodynamic flow and coupling between multiple droplets. This system will be the basis for a triggerable assembly system to build and couple LC droplets. DOD AROMURI 67455-CH-MUR.

  9. Effect of surfactant concentration on the size of one-pot synthesized Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Jung; Kim, Tae Woo; Lee, Myong Euy [Dept. of Chemistry and Medical Chemistry, College of Science and Technology, Research and EducationCenter for Advanced Silicon Materials, Yonsei University, Wonju (Korea, Republic of); Cho, Hyeon Mo [University College, Yonsei University, Incheon (Korea, Republic of); Yoon, Sang Woong [Youngchang Chemical Co., LTD, Seongnam (Korea, Republic of); Ryou, Joon Sung [Advanced Technology R and D Center, SKC, Suwon (Korea, Republic of)

    2015-07-15

    The effect of surfactant concentration on the synthesis of Si nanoparticles (NPs) was studied. Hexyl Si NPs were synthesized using one-pot synthetic methodology with different ratios of SiCl{sub 4}:HexylSiCl{sub 3} (1:1, 1:2, 1:3, 1:6) to observe the effect of surfactant concentration on the size of Si NPs. In Fourier transform infrared spectroscopy analysis, the Si–H stretching band and the characteristic Si–O–Si bands decreased and eventually disappeared with increasing hexyltrichlorosilane concentration. This suggests that the level of oxidation decreased with excess amounts of hexyltrichlorosilane because the surface area of exposed Si NPs without hexyl capping groups was reduced. Results of transmission electron microscopy and particle size analysis showed that the average diameter of hexyl Si NPs increased slightly from low surfactant concentration (SiCl{sub 4}:HexylSiCl{sub 3} = 1:1) to high concentration (1:6). This might be caused due to the relationship between the surfactant concentration effect and the core material part effect of hexyltrichlorosilane. Agglomerated Si NPs were observed and their luminescence bands were not shifted because the Si NPs were capped by alkyl groups to prevent aggregation.

  10. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers

    NARCIS (Netherlands)

    Haftka, Joris J H; Scherpenisse, Peter; Oetter, G??nter; Hodges, Geoff; Eadsforth, Charles V.; Kotthoff, Matthias; Hermens, Joop L M

    The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibres were used in the present study to measure CMC values of twelve nonionic, anionic, cationic and zwitterionic surfactants. The SPME derived CMC

  11. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves.

    Science.gov (United States)

    Zhou, Zhaolu; Cao, Chong; Cao, Lidong; Zheng, Li; Xu, Jun; Li, Fengmin; Huang, Qiliang

    2018-04-05

    The evaporation kinetics of pesticide droplets deposited on a leaf surface can affect their application efficiency. Evaporation of droplets on the hydrophobic leaves has received considerable attention, but little is known about hydrophilic leaf surfaces. In this study, the effect of surfactant concentration on the evaporation of droplets deposited on cotton leaves was investigated. The evaporation time is roughly decreased for concentrations ranging from 0% to 0.01% and increased from 0.01% to 0.10%. Contrary to the widely held belief that pesticide retention on target crops can rapidly be formed only with surfactant concentrations exceeding the CMC (critical micelle concentration), this study demonstrates that, on hydrophilic cotton leaves, fast evaporation of the droplet at surfactant concentrations of 0.01% (CMC) can reduce the volume quickly, lower the loss point and enhance pesticide retention. In addition, the evolution of droplet volume, height and contact angle on the cotton leaf surface were measured to confirm this conclusion. The result presented herein can be used to guide the use of surfactants and pesticides in agriculture. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    Science.gov (United States)

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  13. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  14. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  15. Study on the surfactants present in atmospheric aerosols collected in the Okinawa Japan

    Science.gov (United States)

    Kamegawa, A.; Kasaba, T.; Shimabukuro, W.; Arakaki, T.

    2017-12-01

    The main constituent of atmospheric aerosols is organic substances, which occupy 20 to 70% of the mass. Organic matters in the aerosols contain organic acids, protein and humic acid, which behave similar to surfactants. Since surfactants contain both hydrophobic and hydrophilic functional groups in the molecule, they can play important roles in cloud formation and can affect climate change, but detailed mechanisms and magnitude are not well understood. In addition, surfactants can cause asthma, allergy, dry eye and so on. In this study, our aim is to characterize surfactants in the aerosols collected in different seasons in Okinawa, Japan. Atmospheric aerosols were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) during Sep. 2013 and July 2014. Surfactants in the environment are comprised of artificially synthesized compounds and naturally derived organics so we only differentiate them into anionic and cationic surfactants. Colorimetric methods were used to determine the concentrations of anionic surfactants as methylene blue active substance (MBAS). Cationic surfactants were also measured by colorimetric method as disulfine blue active substance (DBAS) and showed always below detection limit. Thus, we only discuss anionic surfactants measured as MBAS. Water soluble organic carbon (WSOC) and metal concentrations were also measured for the same aerosol samples. Concentrations of MBAS in the studied samples were 2-3 times higher in spring, fall and winter than those collected in summer. MBAS concentration in the aerosols showed strong correlation with sulfate ion and WSOC, and slightly weaker correlation with nss-sulfate ion. Among the metals, only sodium ion showed a relatively strong correlation with MBAS concentrations. It is suggested that the anionic surfactants in the studied aerosols are mainly derived from marine sources.

  16. Effect of fluid velocity, temperature, and concentration of non-ionic surfactants on drag reduction

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Tae, Choon-Seob; Zaheeruddin, M.

    2007-01-01

    The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant as a function of fluid velocity, temperature, and surfactant concentration were investigated. Several types of new surfactants, which contain amine-oxide and betaine, were developed. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC; cethyl trimethyl ammonium chloride) had DR of 0.6-0.8 at 1000-2000 ppm concentration with fluid temperature ranging between 50 and 60 o C. However, the DR was very low when the fluid temperature was 70-80 o C. The new amine oxide and betaine surfactant (SAOB; stearyl amine oxide + betaine) had lower DR at fluid temperatures ranging between 50 and 60 o C compared with CTAC. However, with fluid temperature ranging between 70 and 80 o C the DR was 0.6-0.8 when the concentration level was between 1000 and 2000 ppm

  17. Denaturation of proteins by surfactants studied by the Taylor dispersion analysis.

    Directory of Open Access Journals (Sweden)

    Aldona Jelińska

    Full Text Available We showed that the Taylor Dispersion Analysis (TDA is a fast and easy to use method for the study of denaturation proteins. We applied TDA to study denaturation of β-lactoglobulin, transferrin, and human insulin by anionic surfactant sodium dodecyl sulfate (SDS. A series of measurements at constant protein concentration (for transferrin was 1.9 x 10-5 M, for β- lactoglobulin was 7.6 x 10-5 M, and for insulin was 1.2 x 10-4 M and varying SDS concentrations were carried out in the phosphate-buffered saline (PBS. The structural changes were analyzed based on the diffusion coefficients of the complexes formed at various surfactant concentrations. The concentration of surfactant was varied in the range from 1.2 x 10-4 M to 8.7 x 10-2 M. We determined the minimum concentration of the surfactant necessary to change the native conformation of the proteins. The minimal concentration of SDS for β-lactoglobulin and transferrin was 4.3 x 10-4 M and for insulin 2.3 x 10-4 M. To evaluate the TDA as a novel method for studying denaturation of proteins we also applied other methods i.e. electronic circular dichroism (ECD and dynamic light scattering (DLS to study the same phenomenon. The results obtained using these methods were in agreement with the results from TDA.

  18. Role of the thickening agent concentration and surfactant additions in the system's soap-oil

    Energy Technology Data Exchange (ETDEWEB)

    Shchegolev, G.G.; Trapeznikov, A.A.; Taranenko, V.G.

    1973-03-01

    The effect of the thickening agent concentration, surfactant additions and mechanical treatment on the microstructure and structural-mechanical properties of the system's lithium stearate-oil has been studied. The rate of cooling of the soap-oil system has been shown also to be of importance. The surfactants are less effective when introduced into a finished pseudogel, than when added during crystallization.

  19. Seasonal evolution of anionic, cationic and non-ionic surfactant concentrations in coastal aerosols from Askö, Sweden

    Science.gov (United States)

    Gérard, Violaine; Nozière, Barbara; Baduel, Christine

    2015-04-01

    Surfactants present in atmospheric aerosols are expected to enhance the activation into cloud droplets by acting on one of the two key parameters of the Köhler equation: the surface tension, σ. But because the magnitude of this effect and its regional and temporal variability are still highly uncertain [1,2], various approaches have been developed to evidence it directly in the atmosphere. This work presents the analysis of surfactants present in PM2.5 aerosol fractions collected at the coastal site of Askö, Sweden (58° 49.5' N, 17° 39' E) from July to October 2010. The total surfactant fraction was extracted from the samples using an improved double extraction technique. Surface tension measurements performed with the pendant drop technique [3] indicated the presence of very strong surfactants (σ ~ 30 - 35 mN/m) in these aerosols. In addition, these extractions were combined with colorimetric methods to determine the anionic, cationic and non-ionic surfactant concentrations [4,5], and provided for the first time interference-free surfactant concentrations in atmospheric aerosols. At this site, the total surfactant concentration in the PM2.5 samples varied between 7 to 150 mM and was dominated by anionic and non-ionic ones. The absolute surface tension curves obtained for total surfactant fraction displayed Critical Micelle Concentrations (CMC) in the range 50 - 400 uM, strongly suggesting a biological origin for the surfactants. The seasonal evolution of these concentrations and their relationships with environmental or meteorological parameters at the site will be discussed. [1] Ekström, S., Nozière, B. et al., Biogeosciences, 2010, 7, 387 [2] Baduel, C., Nozière, B., Jaffrezo, J.-L., Atmos. Environ., 2012, 47, 413 [3] Nozière, B., Baduel, C., Jaffrezo, J.-L., Nat. Commun., 2014, 5, 1 [4] Latif, M. T.; Brimblecombe, P. Environ. Sci. Technol., 2004, 38, 6501 [5] Pacheco e Silva et al., Method to measure surfactant in fluid, 2013, US 2013/0337568 A1

  20. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    Directory of Open Access Journals (Sweden)

    Maciej Kozak

    2013-04-01

    Full Text Available Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3-decyloxymethyl pentane chloride (gemini surfactant on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR and circular dichroism (CD spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase.

  1. Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles

    International Nuclear Information System (INIS)

    Rawal, Ishpal; Kaur, Amarjeet

    2014-01-01

    The mechanism of charge transport in polypyrrole (PPy) nanoparticles prepared with different concentrations (5 to 30 mM) of anionic surfactant (sodium dodecyl sulfate) is reported. Transmission electron microscopy technique confirms the formation of PPy nanoparticles of sizes ∼52 to 28 nm under surfactant directed approach. The room temperature electrical conductivity of the prepared nanoparticles found to increase from 3 to 22 S/cm with surfactant concentration. The temperature dependent activation energy rules out the possibility of band conduction mechanism in the prepared PPy nanoparticles and thus the synthesized nanoparticles are analyzed under variable range hopping (VRH) model for conduction mechanism. The PPy nanoparticles, reduced with liquid ammonia, hold 3D VRH conduction mechanism for the charge transport. However, in the doped samples, some deviation from 3D VRH conduction behavior at higher temperatures (>150 K) has been observed. This may be attributed to the presence of anionic surfactant in these samples. The doping of anionic surfactant causes rise in conducting islands, which may lead to the change in the shape/distribution of density of states governed by Gaussian or exponential type near Fermi level

  2. Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles

    Science.gov (United States)

    Rawal, Ishpal; Kaur, Amarjeet

    2014-01-01

    The mechanism of charge transport in polypyrrole (PPy) nanoparticles prepared with different concentrations (5 to 30 mM) of anionic surfactant (sodium dodecyl sulfate) is reported. Transmission electron microscopy technique confirms the formation of PPy nanoparticles of sizes ˜52 to 28 nm under surfactant directed approach. The room temperature electrical conductivity of the prepared nanoparticles found to increase from 3 to 22 S/cm with surfactant concentration. The temperature dependent activation energy rules out the possibility of band conduction mechanism in the prepared PPy nanoparticles and thus the synthesized nanoparticles are analyzed under variable range hopping (VRH) model for conduction mechanism. The PPy nanoparticles, reduced with liquid ammonia, hold 3D VRH conduction mechanism for the charge transport. However, in the doped samples, some deviation from 3D VRH conduction behavior at higher temperatures (>150 K) has been observed. This may be attributed to the presence of anionic surfactant in these samples. The doping of anionic surfactant causes rise in conducting islands, which may lead to the change in the shape/distribution of density of states governed by Gaussian or exponential type near Fermi level.

  3. Alpha-1-antitrypsin studies: canine serum and canine surfactant protein

    International Nuclear Information System (INIS)

    Tuttle, W.C.; Slauson, D.O.; Dahlstrom, M.; Gorman, C.

    1974-01-01

    Canine serum alpha-1-antitrypsin was isolated by gel filtration and affinity chromatography and characterized by polyacrylamide gel electrophoresis and immunoelectrophoresis. Measurement of the trypsin inhibitory capacity of the separated protein indicated a ninefold concentration of functional trypsin inhibitor during the isolation procedure. Electrophoresis demonstrated the presence of a single protein with alpha-globulin mobility and a molecular weight near that of human alpha-1-antitrypsin. The trypsin inhibitory capacity of pulmonary surfactant protein from five Beagle dogs was measured, related to total surfactant protein concentration, and compared with similar measurements on whole serum from the same animals. Results indicated a variable concentration of trypsin inhibitor in the canine pulmonary surfactant protein. However, the concentration in the surfactant protein was always significantly higher than that in the corresponding serum sample. Preliminary experiments designed to separate the trypsin inhibitory fraction(s) from the other surfactant proteins by gel filtration chromatography indicated that the trypsin inhibitor was probably a single protein with a molecular weight near that of alpha-1-antitrypsin. (U.S.)

  4. A PIV Study of Drop-interface Coalescence with Surfactants

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Dong, Teng; Angeli, Panagiota

    2017-11-01

    In this work, the coalescence of a drop with an aqueous-organic interface was studied by Particle Image Velocimetry (PIV). The effect of surfactants on the drop surface evolution, the vorticity field and the kinetic energy distribution in the drop during coalescence were investigated. The coalescence took place in an acrylic rectangular box with 79% glycerol solution at the bottom and Exxsol D80 oil above. The glycerol solution drop was generated through a nozzle fixed at 2cm above the aqueous/oil interface and was seeded with Rhodamine particles. The whole process was captured by a high-speed camera. Different mass ratios of non-ionic surfactant Span80 to oil were studied. The increase of surfactant concentration promoted deformation of the interface before the rupture of the trapped oil film. At the early stages after film rupture, two counter-rotating vortices appeared at the bottom of the drop which then travelled to the upper part. The propagation rates, as well as the intensities of the vortices decreased at high surfactant concentrations. At early stages, the kinetic energy was mainly distributed near the bottom part of the droplet, while at later stages it was distributed near the upper part of the droplet. Programme Grant MEMPHIS, Chinese Scholarship Council (CSC).

  5. Rape phosphatide concentrate in the technologies of surfactants production by the Actinobacteria

    Directory of Open Access Journals (Sweden)

    N. Koretska

    2015-05-01

    Full Text Available Introduction. Due to the fact that the production of microbial surfactants is limited by the low yield of end products and high cost of processes, the actual task is to optimize and reduce the cost of the technology of biosurfactants synthesis. One of the solutions of this problem is to use the industrial wastes, including rape phosphatide concentrate (PC. Materials and methods. Hexadecane and rape phosphatide concentrate (2% were used as a carbon source in a nutrient medium for the cultivation of bacteria. Lipids were extracted from a cell mass and supernatant by the mixture of chloroform-methanol 2:1. The qualitative analysis of metabolites was performed by a thin layer chromatography. Results and discussion. The peculiarities of synthesis of biosurfactants by strains G. rubripertincta UCM Aс-122 and R. erythropolis Au-1 during the growth on the nutrient media with rape phosphatide concentrate as a carbon source was studied. Quantity of biomass was 9.4 – 10.1 g/l, exopoly mers –8.9-9.5 g/l and the content of cellbound trehalose lipids was 1.37 – 2.26 g/l; whereas the content of exogenous trehalose lipids –metabolites of R. erythropolis Au-1 was 2.95 g/l. It was found that the addition of trehalose lipids (0.01 g/l to the nutrient medium caused the increase of biomass on 14.6 –17.0 % and cell-bound lipids on 13.9 –15.5 %. Conclusions. Rape phosphatide concentrate is economically viable carbon source in the technologies of surfactant production by Actinobacteria. Its use promotes an increasing of exogenous surfactants strain R. erythropolisAu-1 in 3-fold compared with cultivation on nutrient medium with hexadecane. Trehalose lipids show a stimulating effect on growth and synthesis of biosurfactants by strains of G. rubripertincta UCM Ac-122 and R. erythropolisAu-1.

  6. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  7. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 2. Effect of different surfactants and theoretical model.

    Science.gov (United States)

    Fainerman, V B; Lotfi, M; Javadi, A; Aksenenko, E V; Tarasevich, Yu I; Bastani, D; Miller, R

    2014-11-04

    The influence of the addition of the nonionic surfactants dodecyl dimethyl phosphine oxide (C12DMPO), tetradecyl dimethyl phosphine oxide (C14DMPO), decyl alcohol (C10OH), and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the surface tension is studied. It is shown that a significant decrease of the water/air surface tension occurs for all the surfactants studied at very low concentrations (10(-5)-10(-3) mmol/L). All measurements were performed with the buoyant bubble profile method. The dynamics of the surface tension was simulated using the Fick and Ward-Tordai equations. The calculation results agree well with the experimental data, indicating that the equilibration times in the system studied do not exceed 30 000 s, while the time required to attain the equilibrium on a plane surface is by one order of magnitude higher. To achieve agreement between theory and experiment for the mixtures, a supposition was made about the influence of the concentration of nonionic surfactant on the adsorption activity of the protein. The adsorption isotherm equation of the protein was modified accordingly, and this corrected model agrees well with all experimental data.

  8. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    Cervantes-MartInez, Alfredo; Maldonado, Amir

    2007-01-01

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  9. Comparison between high concentration EDTA (24%) and low concentration EDTA (3%) with surfactant upon removal of smear layer after rotary instrumentation: a SEM study.

    Science.gov (United States)

    Daghustani, Mohsen; Alhammadi, Ahmad; Merdad, Khalid; Ohlin, Johan; Erhardt, Fredrik; Ahlquist, Michael

    2011-01-01

    This in vitro study compare cleanliness of tooth canal walls regarding smear layer after final treatment with 24% ethylenediaminetetraaceticacid (EDTA) and 3% EDTA with or without surfactant. Sixty extracted teeth, randomly distributed into four groups, were prepared using ProFile instruments (DENTSPLY, Maillefer, Ballaigues, Switzerland), and subjected to different final irrigation solutions: group A, 24% EDTA; group B, 3% EDTA with surfactant; group C (positive control), 3% EDTA; and group D (negative control), 0.5% sodium hypochlorite. Roots were sectioned, examined and evaluated under scanning electron microscope; microphotographs were taken for the coronal, middle and apical third of each specimen. Statistical analysis showed no difference regarding presence of smear layer between test groups in the coronal and apical sections. They were cleaned in the coronal sections and uncleaned in the apical sections. In the middle section, group B was significantly cleaner (p EDTA did not improve root canal cleanliness and there is no difference between different EDTA concentrations in removing the smear layer.

  10. Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration.

    Science.gov (United States)

    Inoue, Tohru; Yamakawa, Haruka

    2011-04-15

    Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Structural studies of lamellar surfactant systems under shear

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Recent experimental studies on concentrated surfactant systems are reviewed. Particular attention is focused on the transformation from planar lamellar sheets to multilamellar vesicles. It is discussed whether both of these states are thermodynamic stable, or if the MLV is an artifact of shear in...

  12. Synergism and Physicochemical Properties of Anionic/Amphoteric Surfactant Mixtures with Nonionic Surfactant of Amine Oxide Type

    Science.gov (United States)

    Blagojević, S. M.; Pejić, N. D.; Blagojević, S. N.

    2017-12-01

    The physicochemical properties of initial formulation, that is anionic/amphoteric surfactants mixture SLES/AOS/CAB (sodium lauryl ether sulfate (SLES), α-olefin sulfonates (AOS) and cocamidopropyl betaine (CAB) at ratio 80 : 15 : 5) with nonionic surfactant of amine oxide type (lauramine oxide (AO)) in various concentration (1-5%) were studied. To characterize the surfactants mixture, the critical micelle concentration (CMC), surface tension (γ), foam volume, biodegradability and irritability were determined. This study showed that adding of AO in those mixtures lowered both γ and CMC as well as enhanced SLES/AOS/CAB foaming properties, but did not significantly affect biodegradability and irritability of initial formulation. Moreover, an increase in AO concentration has a meaningful synergistic effect on the initial formulation properties. All those results indicates that a nonionic surfactant of amine oxide type significantly improves the performance of anionic/amphoteric mixed micelle systems, and because of that anionic/amphoteric/nonionic mixture can be used in considerably lower concentrations as a cleaning formulation.

  13. Small-angle neutron scattering studies of nonionic surfactant: Effect ...

    Indian Academy of Sciences (India)

    celle above a concentration called critical micelle concentration (CMC) where their properties are different from those of the ... It is well-known that SANS is an ideal technique to study the micellar structure of surfactants [8,9] and this has also ... ment at the Dhruva reactor, Mumbai [11]. The mean wavelength of the incident.

  14. Evaluation of anionic surfactant concentrations in US effluents and probabilistic determination of their combined ecological risk in mixing zones.

    Science.gov (United States)

    McDonough, Kathleen; Casteel, Kenneth; Itrich, Nina; Menzies, Jennifer; Belanger, Scott; Wehmeyer, Kenneth; Federle, Thomas

    2016-12-01

    Alcohol sulfates (AS), alcohol ethoxysulfates (AES), linear alkyl benzenesulfonates (LAS) and methyl ester sulfonates (MES) are anionic surfactants that are widely used in household detergents and consumer products resulting in over 1 million tons being disposed of down the drain annually in the US. A monitoring campaign was conducted which collected grab effluent samples from 44 wastewater treatment plants (WWTPs) across the US to generate statistical distributions of effluent concentrations for anionic surfactants. The mean concentrations for AS, AES, LAS and MES were 5.03±4.5, 1.95±0.7, 15.3±19, and 0.35±0.13μg/L respectively. Since each of these surfactants consist of multiple homologues that differ in their toxicity, the concentration of each homologue measured in an effluent sample was converted into a toxic unit (TU) by normalizing to the predicted no effect concentration (PNEC) derived from high tier effects data (mesocosm studies). The statistical distributions of the combined TUs in the effluents were used in combination with distributions of dilution factors for WWTP mixing zones to conduct a US-wide probabilistic risk assessment for the aquatic environment for each of the surfactants. The 90th percentile level of TUs for AS, AES, LAS and MES in mixing zones were 1.89×10 -2 , 2.73×10 -3 , 2.72×10 -2 , and 3.65×10 -5 under 7Q10 (lowest river flow occurring over a 7day period every 10years) low flow conditions. Because these surfactants have the same toxicological mode of action, the TUs were summed and the aquatic safety for anionic surfactants as a whole was assessed. At the 90th percentile level under the conservative 7Q10 low flow conditions the forecasted TUs were 4.21×10 -2 which indicates that there is a significant margin of safety for the class of anionic surfactants in US aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems

    International Nuclear Information System (INIS)

    Fuguet, Elisabet; Rafols, Clara; Roses, Marti; Bosch, Elisabeth

    2005-01-01

    Critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS), lithium perfluorooctanesulfonate (LPFOS), hexadecyltrimethylammonium bromide (HTAB), tetradecyltrimethylammonium bromide (TTAB), and sodium cholate (SC), surfactants commonly used as pseudostationary phases in micellar electrokinetic chromatography (MEKC), have been determined by means of three different methods: MEKC, spectrophotometry, and conductometry. Determinations have been performed in water, and also in different concentrations of phosphate buffer at pH 7.0. CMC values ranging from 8.08 (water) to 1.99 (50 mM phosphate buffer) mM for SDS, from 7.16 (water) to 2,81 (30 mM phosphate buffer) mM for LPFOS, from 3.77 (water) to 1.93 (20 mM phosphate buffer) mM for TTAB, from 0.91 (water) to ∼0.34 (20 mM phosphate buffer) for HTAB, and around 13 mM (20 mM phosphate buffer) for SC, are obtained. The effect of the electrolyte concentration on the CMC, as well as the linear relationship between the electrolyte counter-ion concentration and the CMC are discussed. This linear relationship provides an easy way for users to estimate the CMC of a MEKC system, at a given electrolyte concentration. A comparison between experimental methods, as well as a discussion about the suitability of a given method for the determination of the CMC for a given surfactant system is also provided

  16. Transport of Fluorescently Labeled Hydroxyapatite Nanoparticles in Saturated Granular Media at Environmentally Relevant Concentrations of Surfactants

    Science.gov (United States)

    Little is known about the mobility of engineered nanoparticles (ENPs) in granular media at environmentally relevant concentration of surfactant, which represents a critical knowledge gap in employing ENPs for in-situ remediation of contaminated groundwater. In this study, transpo...

  17. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.

    Science.gov (United States)

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-03-15

    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  18. QUANTITATIVE ANALYSIS OF RELATIONSHIP STRUCTURE AND ANIONIC SURFACTANT MICELLE CONCENTRATION CRITIC WITH SEMIEMPIRIS AM1

    Directory of Open Access Journals (Sweden)

    Eva Vaulina Yulistia Delsy

    2017-05-01

    Full Text Available This research determines the mathematical equation which calculate the Concentration Micelle Critic theoretical anionic surfactant. The research was conducted the depiction of each surfactant anionic three-dimensional compound models, followed by optimizing the model structure anionic surfactant by using AM1 calculation method. Furthermore the calculation of descriptors (QSPR method, then it was analyzed statistically using Multiple Linear Regression (MLR. The results of statistical calculations showed that to calculate the theoretical CMC anionic surfactant can use the QSPR equation: log CMC = 4.157+0.118qC1+7.698qC2+0.425α–0.010µ-0.129RD–0.138 log P+0.021BM–0.034Avdw, n = 100 ; r = 0.927 ; r2 = 0.860 ; SE = 0.352 ; F= 30.888 ; PRESS = 23.506

  19. Thermodynamic Study of the Ion-Pair Complexation Equilibria of Dye and Surfactant by Spectral Titration and Chemometric Analysis

    Directory of Open Access Journals (Sweden)

    Hakimeh Abbasi Awal

    2017-12-01

    Full Text Available Surfactant-dye interactions are very important in chemical and dyeing processes. The dyes interact strongly with surfactant and show new spectrophotometric properties, so the UV-vis absorption spectrophotometric method has been used to study this process and extract some thermodynamic parameters. In this work, the association equilibrium between ionic dyes and ionic surfactant were studied by analyzing spectrophotometric data using chemometric methods. Methyl orange and crystal violet were selected as a model of cationic and anionic dyes respectively. Also sodium dodecyl sulphate and cetyltrimethylammonium bromide were selected as anionic and cationic surfactant, respectively. Hard model methods such as target transform fitting (TTF classical multi-wavelength fitting and soft model method such as multivariate curve resolution (MCR were used to analyze data that were recorded as a function of surfactant concentration in premicellar and postmicellar regions. Hard model methods were used to resolve data using ion-pair model in premicellar region in order to extract the concentration and spectral profiles of individual components and also related thermodynamic parameters. The equilibrium constants and other thermodynamic parameters of interaction of dyes with surfactants were determined by studying the dependence of their absorption spectra on the temperature in the range 293–308 K at concentrations of 5 × 10−6 M and 8 × 10−6 M for dye crystal violet and methyl orange, respectively. In postmicellar region, the MCR-ALS method was applied for resolving data and getting the spectra and concentration profiles in complex mixtures of dyes and surfactants.

  20. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves

    Science.gov (United States)

    Cao, Li-Dong; Zheng, Li; Xu, Jun; Li, Feng-Min; Huang, Qi-Liang

    2017-01-01

    The dynamics of evaporating sessile droplets on hydrophilic or hydrophobic surfaces is widely studied, and many models for these processes have been developed based on experimental evidence. However, few research has been explored on the evaporation of sessile droplets of surfactant or pesticide solutions on target crop leaves. Thus, in this paper the impact of surfactant concentrations on contact angle, contact diameter, droplet height, and evolution of the droplets’ evaporative volume on rice leaf surfaces have been investigated. The results indicate that the evaporation kinetics of surfactant droplets on rice leaves were influenced by both the surfactant concentrations and the hydrophobicity of rice leaf surfaces. When the surfactant concentration is lower than the surfactant CMC (critical micelle concentration), the droplet evaporation time is much longer than that of the high surfactant concentration. This is due to the longer existence time of a narrow wedge region under the lower surfactant concentration, and such narrow wedge region further restricts the droplet evaporation. Besides, our experimental data are shown to roughly collapse onto theoretical curves based on the model presented by Popov. This study could supply theoretical data on the evaporation of the adjuvant or pesticide droplets for practical applications in agriculture. PMID:28472108

  1. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    International Nuclear Information System (INIS)

    Voisin, David

    2002-01-01

    cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to ∼10's μm in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)

  3. Experimental Study on the Properties and Displacement Effects of Polymer Surfactant Solution

    Directory of Open Access Journals (Sweden)

    Ke-Liang Wang

    2013-01-01

    Full Text Available Based on the characteristics of oil reservoirs and the requirements of further enhancing oil recovery at high water cut stage of Pubei Oilfield, the displacement performance of polymer surfactant is evaluated. Reasonable injection parameters and oil displacement effects after water flooding are also researched. Compared with conventional polymer with intermediate molecular weight, polymer surfactant has the properties of higher viscosity at low concentration condition and lower interfacial tension. Laboratory experiments indicate that the displacement effect of polymer surfactant is much better than that of conventional polymer at a slug size of 0.57 PV. The oil recovery of polymer surfactant increases by more than 10% after water flooding. Considering the actual situation of low-permeability of Pubei Oilfield reservoirs, the system viscosity of 30 mPa·s is chosen. The corresponding concentration of Type III polymer surfactant is 600 mg/L and the injected slug is 0.57 PV and the oil recovery can be increased by 11.69%.

  4. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    Science.gov (United States)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  5. The effect of nanoparticle aggregation on surfactant foam stability.

    Science.gov (United States)

    AlYousef, Zuhair A; Almobarky, Mohammed A; Schechter, David S

    2018-02-01

    The combination of nanoparticles (NPs) and surfactant may offer a novel technique of generating stronger foams for gas mobility control. This study evaluates the potential of silica NPs to enhance the foam stability of three nonionic surfactants. Results showed that the concentration of surfactant and NPs is a crucial parameter for foam stability and that there is certain concentrations for strong foam generation. A balance in concentration between the nonionic surfactants and the NPs can enhance the foam stability as a result of forming flocs in solutions. At fixed surfactant concentration, the addition of NPs at low to intermediate concentrations can produce a more stable foam compared to the surfactant. The production of small population of flocs as a result of mixing the surfactant and NPs can enhance the foam stability by providing a barrier between the gas bubbles and delaying the coalescence of bubbles. Moreover, these flocs can increase the solution viscosity and, therefore, slow the drainage rate of thin aqueous film (lamellae). The measurements of foam half-life, bubble size, and mobility tests confirmed this conclusion. However, the addition of more solid particles or surfactant might have a negative impact on foam stability and reduce the maximum capillary pressure of coalescence as a result of forming extensive aggregates. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. α-TCP cements prepared by syringe-foaming: Influence of Na2HPO4 and surfactant concentration.

    Science.gov (United States)

    Vásquez, A F; Domínguez, S; Loureiro Dos Santos, L A

    2017-12-01

    The lack of intrinsic open porosity in calcium phosphate cements slows down the resorption rate and bone ingrowth when implanted In Vivo. In this study, macroporous structures were obtained by mixing α-TCP cement with a foamed liquid phase containing different concentrations of sodium hydrogen phosphate and a nonionic surfactant. The cement paste was prepared by hand mixing in a novel system of two syringes connected by a tube. Two different liquid to powder (L/P) ratios were used to prepare the cement paste. The cement samples showed open macropores with diameters>100μm. The specimens prepared with lower L/P ratio showed smaller porosity, macroporosity and pore size distribution. The cohesion of the cement paste in liquid solutions was assessed by adding 2wt% sodium alginate to the liquid phase. This study suggests that the final macrostructure of the foamed cements can be controlled by varying the phosphate and surfactant concentrations in the liquid phase and the L/P ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    the CSC have been determined for mixtures of cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to {approx}10's {mu}m in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)

  8. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    International Nuclear Information System (INIS)

    Batigoec, Cigdem; Akbas, Halide; Boz, Mesut

    2011-01-01

    Highlights: → Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. → Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. → Dimeric surfactants have attracted increasing attention due to their superior surface activity. → The positive values of ΔG cp 0 indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C 16 alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy (ΔG cp 0 ), the enthalpy (ΔH cp 0 ) and the entropy (ΔS cp 0 ) of the clouding phenomenon were found positive in all cases. The standard free energy (ΔG cp 0 ) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.

  9. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    Science.gov (United States)

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.

  10. Influence of surfactants in forced dynamic dewetting.

    Science.gov (United States)

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C 4 E 1 , C 8 E 3 and C 12 E 5 ) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s -1 the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  11. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  12. Binding of alkylpyridinium chloride surfactants to sodium polystyrene sulfonate

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.

    2009-01-01

    Binding of cationic surfactants to anionic polymers is well studied. However, the surfactant binding characteristics at very low concentration near the start of binding and at high concentration, where charge compensation may Occur. are less well known. Therefore, the binding characteristics of

  13. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  14. Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry.

    Science.gov (United States)

    Krouská, J; Pekař, M; Klučáková, M; Šarac, B; Bešter-Rogač, M

    2017-02-10

    The thermodynamics of the micelle formation of the cationic surfactants tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) with and without the addition of hyaluronan of two molecular weights was studied in aqueous solution by titration calorimetry. Macroscopic phase separation, which was detected by calorimetry and also by conductometry, occurs when charges on the surfactant and hyaluronan are balanced. In contrast, turbidimetry and potentiometry showed hyaluronan-surfactant interactions at very low surfactant concentrations. The observed differences between systems prepared with CTAB and TTAB indicate that besides the electrostatic interactions, which probably predominate, hydrophobic effects also play a significant role in hyaluronan interactions with cationic surfactants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Impact of cationic surfactant on the self-assembly of sodium caseinate.

    Science.gov (United States)

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija

    2014-08-27

    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  16. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    International Nuclear Information System (INIS)

    Shih, Chi-Chung; Chien, Chi-Sheng; Kung, Jung-Chang; Chen, Jian-Chih; Chang, Shy-Shin; Lu, Pei-Shan; Shih, Chi-Jen

    2013-01-01

    Highlights: ► All the unwanted organic contents were removed completely at temperatures above 600 °C. ► Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. ► SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. ► The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO 2 –CaO–P 2 O 5 mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1–9.1 wt% and significantly decreased from 328.7 to 204.0 m 2 /g in the concentration range of 9.1–12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  17. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    Science.gov (United States)

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  18. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  19. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  20. Photoisomerization of merocyanine 540 in polymer-surfactant ...

    Indian Academy of Sciences (India)

    Photoisomerization of merocyanine 540 (MC540) in a polymer-surfactant aggregate is studied using picosecond time resolved emission spectroscopy. The aggregate consists of the polymer, poly(vinylpyrrolidone) (PVP) and the surfactant, sodium dodecyl sulphate (SDS). With increase in the concentration of SDS in an ...

  1. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 3. Dilational surface rheology.

    Science.gov (United States)

    Fainerman, V B; Aksenenko, E V; Lylyk, S V; Lotfi, M; Miller, R

    2015-03-05

    The influence of the addition of the nonionic surfactants C12DMPO, C14DMPO, C10OH, and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the dilational surface rheology is studied. A maximum in the viscoelasticity modulus |E| occurs at very low surfactant concentrations (10(-4) to 10(-3) mmol/L) for mixtures of BCS with C12DMPO and C14DMPO and for mixtures of BLG with C10EO5, while for mixture of BCS with C10EO5 the value of |E| only slightly increased. The |E| values calculated with a recently developed model, which assumes changes in the interfacial molar area of the protein molecules due to the interaction with the surfactants, are in satisfactory agreement with experimental data. A linear dependence exists between the ratio of the maximum modulus for the mixture to the modulus of the single protein solution and the coefficient reflecting the influence of the surfactants on the adsorption activity of the protein.

  2. FLOTATION DE-INKING OF 50% ONP/ 50% OMG RECOVERED PAPERS MIXTURES USING NONIONIC SURFACTANT, SOAP, AND SURFACTANT/SOAP BLENDS

    Directory of Open Access Journals (Sweden)

    Jeremy Allix

    2010-11-01

    Full Text Available A laboratory flotation column equipped with Venturi aerators and an adjustable froth removal system was used to study the effect of calcium soap and a mixture of calcium soap/alkyl phenol ethoxylate surfactant on ink and fibres transfer during flotation de-inking of a 50% old newprint (ONP / 50% old magazines (OMG recovered papers mixture. Mass transport phenomena determining the yield of the flotation process were interpreted using model equations describing particle removal in terms of flotation, entrainment, and drainage in the froth. A decrease in the ink and mineral fillers flotation rate constant, drainage through the froth, and in fibre entrainment was observed when increasing the surfactant concentration. These trends were consistent with the typical dispersing action of the studied nonionic surfactant. An opposite effect on ink and fillers was observed when using calcium soap alone, and the increase in the flotation rate constant and drainage through the froth were consistent with the collecting and defoaming action of the calcium soap. Moreover, fibre entrainment decreased when increasing the soap concentration. The study of the surfactant/soap mixture highlighted the absence of synergy between the calcium soap and the surfactant.

  3. Indication of critical micelle concentration of nonionic surfactants with large emission change using water-soluble conjugated polymer as molecular light switch

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lilin, E-mail: sunlilin126@126.com [Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000 (China); Hao, Dan; Zhang, Ping; Qian, Zhangsheng; Shen, Weili [Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000 (China); Shao, Taili [Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000 (China); Department of Pharmacy, Wannan Medical College, Wuhu 241000 (China); Zhu, Changqing, E-mail: zhucq@mail.ahnu.edu.cn [Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000 (China)

    2013-02-15

    A new near-infrared water-soluble conjugated polymer, i.e. poly [2,5-di (propyloxysulfonate)-1,4-phenylene-ethynylene-9,10-anthrylene] (PPEASO3) was synthesized to investigate its interaction with surfactants. It was found that PPEASO3 has only a weak fluorescence emission at about 670 nm due to its self-aggregation in water and in aqueous solution containing a low concentration of nonionic surfactants, i.e. below their critical micelle concentration (CMC). However, a dramatic fluorescence enhancement with a large emission blue-shift (>40 nm) was found once the concentration of nonionic surfactants reached the CMC (especially for Triton X-100). An orange fluorescence could be observed even with naked-eyes under UV-lamp, which gave a direct indication for the micelle forming process and provided a simple method for the CMC determination of the nonionic surfactants. The CMC values determined by this method were in good agreement with those obtained by other techniques. The dramatic emission change observed could be ascribed to the intensive hydrophobic interaction between PPEASO3 and surfactants micelle, which greatly disrupts the aggregation of the polymer and increase the fluorescence efficiency of PPEASO3. Highlights: Black-Right-Pointing-Pointer Investigated the interaction of a new water-soluble conjugated polymer with surfactants. Black-Right-Pointing-Pointer The dramatic fluorescence enhancement and emission blue-shift were observed at the CMC. Black-Right-Pointing-Pointer The obvious emission color change could be observed with naked-eyes under UV-lamp. Black-Right-Pointing-Pointer Gave a direct indication for the micelle forming process. Black-Right-Pointing-Pointer Provided a simple method for the CMC determination of the nonionic surfactants.

  4. Estimation hydrophilic-lipophilic balance number of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta (Indonesia); Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com; Kusworo, Tutuk D.; Pramudono, Bambang, E-mail: Pramudono2004@yahoo.com [Chemical Engineering Department Diponegoro University (Indonesia); Dyartanti, Endah R. [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Enginering Departement Sebelas Maret University (Indonesia)

    2016-02-08

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  5. Photo-catalytic degradation of surfactants hexadecyltrimethyl-ammonium chloride in aqueous medium - a kinetic study

    International Nuclear Information System (INIS)

    Soomro, S.A.; Aziz, S.; Memon, A.R.

    2011-01-01

    Surfactants in the environment are a prerequisite for the sustainable development of human health and ecosystems. Surfactants are important in daily life in households as well as in industrial cleansing processes. It is important to have a detailed knowledge about their lifetime in the environment, their biodegradability in wastewater treatment plants and in natural waters, and their eco toxicity. Most of the issues on environmental acceptability focus on the effects on the environment associated with the use and disposal of these surfactants. These effects are taken into account by a risk assessment. The first step in a risk assessment is to estimate the concentrations of surfactants in the environmental compartment of interest, such as wastewater treatment plant effluents, surface waters, sediments, and soils. This estimate is generated either by actual measurement or by prediction via modelling. The measured or predicted concentrations are then compared to the concentrations of surfactant known to be toxic to organisms living in these environmental compartments. There are many situations where industry is producing both heavy metals ions and organic pollutants. Successful treatment of effluents of this type to achieve legislative compliance will depend on whether the heavy metals effect the process of degradation of the organic species and whether the presence of organic molecules hinder the process of removal of heavy metals. Degradation of cationic surfactant was studied with a photolytic cell system. Compressed air was used as oxidant and the temperature was maintained at 25-30 deg. C. Effect of UV source, hydrogen peroxide (H/sub 2/O/sub 2/) and titanium (TiO/sub 2/) on Hexadecyltrimethyl-ammonium chloride (C/sub 19/H/sub 42/NCl) were recorded. HPLC and IR were used to analyse the rate of degradation of Hexadecyltrimethyl-ammonium chloride (C/sub 19/H/sub 42/NCl).

  6. Mercury Concentration Reduction In Waste Water By Using Liquid Surfactant Membrane Technique

    International Nuclear Information System (INIS)

    Prayitno; Sardjono, Joko

    2000-01-01

    The objective of this research is ti know effectiveness of liquid surfactant membrane in diminishing mercury found in waste water. This process can be regarded as transferring process of solved mercury from the external phase functioning as a moving phase to continue to the membrane internal one. The existence of the convection rotation results in the change of the surface pressure on the whole interface parts, so the solved mercury disperses on every interface part. Because of this rotation, the solved mercury will fulfil every space with particles from dispersion phase in accordance with its volume. Therefore, the change of the surface pressure on the whole interface parts can be kept stable to adsorb mercury. The mercury adsorbed in the internal phase moves to dispersed particles through molecule diffusion process. The liquid surfactant membrane technique in which the membrane phase is realized into emulsion contains os kerosene as solvent, sorbitan monoleat (span-80) 5 % (v/v) as surfactant, threbuthyl phosphate (TBP) 10 % (v/v) as extractant, and solved mercury as the internal phase. All of those things are mixed and stirred with 8000 rpm speed for 20 minutes. After the stability of emulsion is formed, the solved mercury is extracted by applying extraction process. The effective condition required to achieve mercury ion recovery utilizing this technique is obtained through extraction and re-extraction process. This process was conducted in 30 minutes with membrane and mercury in scale 1 : 1 on 100 ppm concentration. The results of the processes was 99,6 % efficiency. This high efficiency shows that the liquid surfactant membrane technique is very effective to reduce waste water contamined by mercury

  7. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.

    Science.gov (United States)

    Tiecco, Matteo; Corte, Laura; Roscini, Luca; Colabella, Claudia; Germani, Raimondo; Cardinali, Gianluigi

    2014-07-25

    Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Atrazine and Diuron partitioning within a soil-water-surfactant system

    Science.gov (United States)

    Wang, P.; Keller, A.

    2006-12-01

    The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar

  9. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Influence of metacide - surfactant complexes on agricultural crops

    Directory of Open Access Journals (Sweden)

    Orynkul Esimova

    2014-12-01

    Full Text Available The complexes based on surfactants and polyhexamethyleneguanidine hydrochloride (metacide are important for agriculture. This paper considers compositions of known bactericidal metacide with different surfactants: anionic surfactant sodium dodecylsulphate (DDSNa and nonionic surfactant Tween 80 (monooleate of oxyethylenated anhydrosorbitols. The effect of individual components and associates of metacide and surfactants on productivity and infection of cereals was studied. According to the study, the highest productivity and infection rate were shown by the associate of metacide and Tween-80. At concentration of Tween-80 in aqueous solution equal to 0.001% in combination with metacide, efficiency was 98% at 0% infection. The surface tension and the wetting of metacide, DDSNa, Tween-80, and associates of metacide with surfactants were studied. In comparison with individual components, metacide-DDSNa and metacide-Tween-80 associates have higher surface activity.

  11. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chi-Chung [Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Chien, Chi-Sheng [Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Department of Orthopaedics, Chi Mei Foundation Hospital, Tainan, Taiwan (China); Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Kung, Jung-Chang [Department of Family Dentistry, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Shy-Shin [Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Lu, Pei-Shan [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer All the unwanted organic contents were removed completely at temperatures above 600 Degree-Sign C. Black-Right-Pointing-Pointer Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. Black-Right-Pointing-Pointer SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. Black-Right-Pointing-Pointer The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1-9.1 wt% and significantly decreased from 328.7 to 204.0 m{sup 2}/g in the concentration range of 9.1-12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  12. Molar concentration-depth profiles at the solution surface of a cationic surfactant reconstructed with angle resolved X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Wang Chuangye; Morgner, Harald

    2011-01-01

    In the current work, we first reconstructed the molar fraction-depth profiles of cation and anion near the surface of tetrabutylammonium iodide dissolved in formamide by a refined calculation procedure, based on angle resolved X-ray photoelectron spectroscopy experiments. In this calculation procedure, both the transmission functions of the core levels and the inelastic mean free paths of the photoelectrons have been taken into account. We have evaluated the partial molar volumes of surfactant and solvent by the densities of such solutions with different bulk concentrations. With those partial molar volumes, the molar concentration-depth profiles of tetrabutylammonium ion and iodide ion were determined. The surface excesses of both surfactant ions were then achieved directly by integrating these depth profiles. The anionic molar concentration-depth profiles and surface excesses have been compared with their counterparts determined by neutral impact ion scattering spectroscopy. The comparisons exhibit good agreements. Being capable of determining molar concentration-depth profiles of surfactant ions by core levels with different kinetic energies may extend the applicable range of ARXPS in investigating solution surfaces.

  13. Surfactant-Enhanced Size-Excluded Transport of Bacteria Through Unsaturated Porous Media.

    Science.gov (United States)

    Zhu, J.

    2017-12-01

    US domestic waste water is rich in surfactants because of the intensive usage of surfactants-containing household product. It results in a surfactants presence environment when this untreated waste water released into subsurface. It was reported that surfactants enhance the colloidal transport in porous media, which have significant effect on issues such as subsurface pathogens contamination and biodegradation. In this study, soil column experiments were conducted. The soil column was remained unsaturated and with a steady flow passing through it. Escherichia coli K-12 transported in the soil column and its breakthrough data was collected in presence of surfactant anionic surfactant linear alkylbenzene sulfonate (LAS) concentration range over 0, 0.25, 0.5, 0.75, 1, and 2 times Critical Micelle Concentration (CMC). It was found that the increase in LAS concentration greatly increases breakthrough concentration C/C0 and decreases breakthrough time tb until LAS concentration reaches 1 xCMC. Numerical models were built simulating and investigating this phenomenon. The goodness of model fitting was greatly improved by adding exclusion factor into the model, which indicated that the presence of surfactant might enhance the exclusion effect. The relationships between LAS concentration and the two coefficients, deposition rate coefficient k and exclusion effect coefficient θim, were found can be fitted by a quasi-Langmuir equation. And the model validation with observed data showed that the model has an acceptable reliability.

  14. Molecular dynamics simulations of phase separation in the presence of surfactants

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren

    1994-01-01

    The dynamics of phase separation in two-dimensional binary mixtures diluted by surfactants is studied by means of molecular dynamics simulations. In contrast to pure binary systems, characterized by an algebraic time dependence of the average domain size, we find that systems containing surfactants...... not fully phase separate, we observe a dynamical scaling which is independent of the surfactant concentration. The results of these simulations are in general in agreement with previous Langevin simulations [Laradji, Guo, Grant, and Zuckermann, J. Phys. A 44, L629 (1991)] and a theory of Ostwald ripening...... exhibit nonalgebraic, slow dynamics. The average domain size eventually saturates at a value inversely proportional to the surfactant concentration. We also find that phase separation in systems with different surfactant concentrations follow a crossover scaling form. Finally, although these systems do...

  15. Surfactant selection for a liquid foam-bed photobioreactor.

    Science.gov (United States)

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  16. An Experimental Study of Surfactant Alternating CO2 Injection for Enhanced Oil Recovery of Carbonated Reservoir

    Directory of Open Access Journals (Sweden)

    Asghar Gandomkar

    2016-10-01

    Full Text Available Core flooding experiments were conducted with the objective of evaluating near miscible surfactant alternating CO2 injection and the effect of surfactant concentrations on gas-oil and water displacements in porous media. The core samples were provided from a low permeability mixed wet oil reservoir at 156 °F and 1900 psia. In addition, very few studies of surfactant adsorption on carbonate minerals have been conducted. Hence, the surfactant adsorption on carbonate rock was determined by core flooding and crushed tests. It was found that for the crushed rock, the required equilibrium time is approximately five hours, while it is more than four days for the flow-through tests. Hysteresis effects demonstrated that the irreducible water saturations were 5 to 10% higher than the initial connate water saturation after drainage cycles during 5000 ppm surfactant solution. Furthermore, near-miscible surfactant alternating CO2 injection process led to a 4-17% increase in the recovery factor in comparison to water alternating gas process.

  17. ASSOCIATION OF BRANCHED POLYETHYLENE IMINE WITH SURFACTANTS IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Ismael C. Bellettini

    2015-07-01

    Full Text Available Three polymer-surfactant systems comprised of branched polyethylene imine (PEI with an anionic surfactant (sodium dodecylsulfate; SDS, a cationic surfactant (tetradecyltrimethylammonium bromide; TTAB, and a zwitterionic surfactant (N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate; SB3-14 were studied based on the properties of surface tension, pyrene fluorescence emission, dynamic light scattering, pH, and zeta potential measurements. The critical aggregation concentration (cac and polymer saturation point (psp were determined for all three systems. The effect of these surfactants on the physico-chemical characteristics (diameter and surface charge of the complexes formed was determined. Polymer-surfactant interactions occurred in all of the systems studied, with the strongest interactions, electrostatic in nature, occurring in the SDS-PEI system. After the neutralization of the polymer charges with the addition of the surfactant, the hydrophobic effect started to control the interlacing of the polymer chains. For the PEI-TTAB system, a very dense film was formed at surfactant concentrations above 2.0 mmol L-1. In this case, the bromide counter-ion interacted with both the positively-charged PEI and the head of the surfactant, which is responsible for the formation of double layer coordination complexes. For the system composed of PEI and the zwitterionic surfactant, less cooperative associations occurred in comparison with the other systems.

  18. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison.

    Science.gov (United States)

    Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute

    2018-01-01

    Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.

  19. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  20. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  1. An Experimental Study of Alkali-surfactant-polymer Flooding through Glass Micromodels Including Dead-end Pores

    Directory of Open Access Journals (Sweden)

    Mohsen Esmaeili

    2013-07-01

    Full Text Available Chemical flooding, especially alkaline/surfactant/polymer flooding, is of increasing interest due to the world increasing oil demand. This work shows the aspects of using alkaline/surfactant/polymer as an enhanced oil recovery method in the porous media having a high dead-end pore frequency with various dead-end pore parameters (such as opening, depth, aspect ratio, and orientation. Using glass micromodels makes it possible to manipulate and analyze the pore parameters and watch through the porous media precisely. The results show that polyacrylamide almost always enhances oil production recovery factor (up to 14% in comparison with brine injection in this kind of porous media. Except at low concentrations of polyacrylamide and sodium carbonate, sodium dodecyl sulfonate improves oil recovery (even 15% in the case of high polyacrylamide concentration and low sodium carbonate concentration. Increasing alkaline concentration reduces recovery factor except at low concentrations of polyacrylamide and high concentrations of surfactant.

  2. Fluorescent visualization of a spreading surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2010-07-15

    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  3. Degradation of surfactants by sono-irradiation

    International Nuclear Information System (INIS)

    Ashokkumar, M.; Grieser, F.; Vinodgopal, K.

    2000-01-01

    Full text: The ultrasound induced decomposition of a commercially available polydisperse nonylphenol ethoxylate surfactant (Teric GN9) has been investigated. Nearly 90% mineralization and/or degradation into volatile products of the surfactant is achieved after sonication for 24 hours. Ultrasound has been found to be a useful tool to achieve a number of chemical processes. Linear and branched alkyl benzene sulfonates and alkyl nonylphenol ethoxylates are widely used surfactants which accumulated in the environment and contribute to a well-recognised pollution problem. We have investigated the use of ultrasound in the degradation of both types of surfactants with the aim of understanding the mechanism of degradation in order to optimise the decomposition process. In this presentation, we report on the sonochemical degradation of Teric GN9- polydisperse, a nonylphenol ethoxylate with an average of 9 ethylene oxide units. The ultrasound unit used for the degradation studies of the surfactant solutions was an Allied Signal (ELAC Nautik) RF generator and transducer with a plate diameter of 54.5 mm operated at 363 kHz in continuous wave mode at an intensity of 2 W/cm 2 . Ultrasound induced cavitation events generate primary radicals inside gas/vapour filled bubbles. Due to the extreme conditions (T ∼ 5000 K; P ∼ 100 atm) generated within the collapsing bubble, H and OH radicals are produced by the homolysis of water molecules, if water is the medium of sonication. These primary radicals attack the surfactant molecules adsorbed at the bubble/water interface. The initial rate of reaction of the surfactant was found to be dependent on the monomer concentration in solution below and above the critical micelle concentration of the surfactants. This result strongly suggests that the initial radical attack on the surfactants occurs at the cavitation bubble/solution interface, followed by oxidative decomposition and pyrolysis of volatile fragments of the surfactant within

  4. Surfactant-enhanced recovery of dissolved hydrocarbons at petroleum production facilities

    International Nuclear Information System (INIS)

    Freeman, J.T.; Mayes, M.; Wassmuth, F.; Taylor, K.; Rae, W.; Kuipers, F.

    1997-01-01

    The feasibility and cost effectiveness of surfactant-enhanced pumping to reduce source concentrations of petroleum hydrocarbons from contaminated soils was discussed. Light non-aqueous phase liquids (LNAPL) hydrocarbons are present beneath many petroleum production processing facilities in western Canada. Complete removal of LNAPLs from geologic materials is difficult and expensive. Treatment technologies include costly ex-situ methods such as excavation and in-situ methods such as physical extraction by soil venting and pumping, bioremediation, and combination methods such as bioventing, bioslurping or air sparging. Surfactant-aided pumping can reduce source hydrocarbon concentrations when used in conjunction with traditional pump and treat, or deep well injection. This study involved the selection of an appropriate surfactant from a wide variety of commercially available products. A site contaminated by hydrocarbons in Turner Valley, Alberta, was used for field scale testing. One of the major problems was quantifying the increase in the dissolved hydrocarbon concentrations in the recovered water once a surfactant was added. From the 30 surfactants screened in a series of washing and oil solubilization tests, two surfactants, Brij 97 and Tween 80, were selected for further evaluation. Increased hydrocarbon recovery was observed within 10 days of the introduction of the first surfactant. 2 refs., 7 figs

  5. In vitro surfactant structure-toxicity relationships: implications for surfactant use in sexually transmitted infection prophylaxis and contraception.

    Directory of Open Access Journals (Sweden)

    Ângela S Inácio

    Full Text Available BACKGROUND: The need for woman-controlled, cheap, safe, effective, easy-to-use and easy-to-store topical applications for prophylaxis against sexually transmitted infections (STIs makes surfactant-containing formulations an interesting option that requires a more fundamental knowledge concerning surfactant toxicology and structure-activity relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report in vitro effects of surfactant concentration, exposure time and structure on the viability of mammalian cell types typically encountered in the vagina, namely, fully polarized and confluent epithelial cells, confluent but non-polarized epithelial-like cells, dendritic cells, and human sperm. Representatives of the different families of commercially available surfactants--nonionic (Triton X-100 and monolaurin, zwitterionic (DDPS, anionic (SDS, and cationic (C(nTAB (n = 10 to 16, C(12PB, and C(12BZK--were examined. Triton X-100, monolaurin, DDPS and SDS were toxic to all cell types at concentrations around their critical micelle concentration (CMC suggesting a non-selective mode of action involving cell membrane destabilization and/or destruction. All cationic surfactants were toxic at concentrations far below their CMC and showed significant differences in their toxicity toward polarized as compared with non-polarized cells. Their toxicity was also dependent on the chemical nature of the polar head group. Our results suggest an intracellular locus of action for cationic surfactants and show that their structure-activity relationships could be profitably exploited for STI prophylaxis in vaginal gel formulations. The therapeutic indices comparing polarized epithelial cell toxicity to sperm toxicity for all surfactants examined, except C(12PB and C(12BZK, does not justify their use as contraceptive agents. C(12PB and C(12BZK are shown to have a narrow therapeutic index recommending caution in their use in contraceptive formulations. CONCLUSIONS

  6. Surfactant properties of human meibomian lipids.

    Science.gov (United States)

    Mudgil, Poonam; Millar, Thomas J

    2011-03-25

    Human meibomian lipids are the major part of the lipid layer of the tear film. Their surfactant properties enable their spread across the aqueous layer and help maintain a stable tear film. The purpose of this study was to investigate surfactant properties of human meibomian lipids in vitro and to determine effects of different physical conditions such as temperature and increased osmolarity, such as occur in dry eye, on these properties. Human meibomian lipids were spread on an artificial tear solution in a Langmuir trough. The lipid films were compressed and expanded to record the surface pressure-area (Π-A) isocycles. The isocycles were recorded under different physical conditions such as high pressure, increasing concentration and size of divalent cations, increasing osmolarity, and varying temperature. Π-A isocycles of meibomian lipids showed that they form liquid films that are compressible and multilayered. The isocycles were unaffected by increasing concentration or size of divalent cations and increasing osmolarity in the subphase. Temperature had a marked effect on the lipids. Increase in temperature caused lipid films to become fluid, an expected feature, but decrease in temperature unexpectedly caused expansion of lipids and an increase in pressure suggesting enhanced surfactant properties. Human meibomian lipids form highly compressible, non-collapsible, multilayered liquid films. These lipids have surfactants that allow them to spread across an aqueous subphase. Their surfactant properties are unaffected by increasing divalent cations or hyperosmolarity but are sensitive to temperature. Cooling of meibomian lipids enhances their surfactant properties.

  7. Thermal stability and hot-stage Raman spectroscopic study of Ca-montmorillonite modified with different surfactants: A comparative study

    International Nuclear Information System (INIS)

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A.; Frost, Ray L.

    2013-01-01

    Highlights: • A typical Ca-montmorillonite was modified with three surfactants through ion exchange. • The organoclays were characterized by XRD, TG and hot stage Raman. • The structural geometry and thermal properties of organoclays were analyzed. • The prepared organoclays show potential prospects in the environmental remediation. - Abstract: Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchange and the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermogravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes the surface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing of the interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three surfactants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalated into Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailed conformational ordering of different intercalated long-chain surfactants under different conditions. The wavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretching mode to the mobility of the tail of the amine chain. At room temperature, the conformational ordering is more easily affected by the packing density in the lateral model. With the increase of the temperature, the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers, which indicates a decrease of conformational ordering. This study offers new insights into the structure and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, the experimental results confirm the potential applications of organic Ca-montmorillonites for the removal

  8. Pyrene removal from contaminated soil using electrokinetic process combined with surfactant

    Directory of Open Access Journals (Sweden)

    Seyed Enayat Hashemi

    2015-07-01

    Full Text Available Background: Pyrene is one of the stable polycyclic aromatic hydrocarbons that is considered as an important pollutants, because of extensive distribution in the environment and carcinogenic and mutagenic properties. Among the various treatment techniques, electrokinetic method is an environmental- friendly process for organic and mineral pollutants adsorbed to soil with fine pore size the same as clay and low hydraulic conductivity soils. For improving the efficiency of pyrene removal from soil, soulobilization of pyrene from soil could be used by surfactants. Materials and Methods : In this study, clay soil was selected as model because of the specific properties. Combined method using surfactant and electrokinetic was applied for pyrene removal from soil. Experiments were designed using response surface methodology (RSM, and effect of three variables includes surfactant concentration, voltage and surfactant type were evaluated for pyrene removal from contaminated soil. Results: Pyrene removal using anionic surfactants(SDS and nonionic surfactants(TX100 as a solubilizing agents has high removal efficiency. In the optimum condition with 95% confidence coefficient, utilizing mixed surfactants of sodium dodecyl sulfate and triton X-100 with the same volume, induced of 18.54 volt and 6.53 percent surfactant concentration have 94.6% pyrene removal efficiency. Conclusion:: Results of this study shows that electrokinetic process combined with surfactant as solubilizing agent could be applied as an efficient method for treating the pyrene-contaminated soils.

  9. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Zuzanna Pietralik

    Full Text Available The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration, they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp and siRNA (21 bp. The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16. On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain.

  10. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.

    Science.gov (United States)

    Maestro, Armando; Kotsmar, Csaba; Javadi, Aliyar; Miller, Reinhard; Ortega, Francisco; Rubio, Ramón G

    2012-04-26

    This work presents a detailed study of the dilational viscoelastic moduli of the adsorption layers of the milk protein β-casein (BCS) and a surfactant at the liquid/air interface, over a broad frequency range. Two complementary techniques have been used: a drop profile tensiometry technique and an excited capillary wave method, ECW. Two different surfactants were studied: the nonionic dodecyldimethylphosphine oxide (C12DMPO) and the cationic dodecyltrimethylammonium bromide (DoTAB). The interfacial dilational elasticity and viscosity are very sensitive to the composition of protein-surfactant mixed adsorption layers at the air/water interface. Two different dynamic processes have been observed for the two systems studied, whose characteristic frequencies are close to 0.01 and 100 Hz. In both systems, the surface elasticity was found to show a maximum when plotted versus the surfactant concentration. However, at frequencies above 50 Hz the surface elasticity of BCS + C12DMPO is higher than the one of the aqueous BCS solution over most of the surfactant concentration range, whereas for the BCS + DoTAB it is smaller for high surfactant concentrations and higher at low concentrations. The BCS-surfactant interaction modifies the BCS random coil structure via electrostatic and/or hydrophobic interactions, leading to a competitive adsorption of the BCS-surfactant complexes with the free, unbound surfactant molecules. Increasing the surfactant concentration decreases the adsorbed proteins. However, the BCS molecules are rather strongly bound to the interface due to their large adsorption energy. The results have been fitted to the model proposed by C. Kotsmar et al. ( J. Phys. Chem. B 2009 , 113 , 103 ). Even though the model describes well the concentration dependence of the limiting elasticity, it does not properly describe its frequency dependence.

  11. Study of the effect of surfactants on extraction and determination of polyphenolic compounds and antioxidant capacity of fruits extracts.

    Directory of Open Access Journals (Sweden)

    Reza Hosseinzadeh

    Full Text Available Micelle/water mixed solutions of different surface active agents were studied for their effectiveness in the extraction of polyphenolic compounds from various varieties of apples from west Azerbaijan province in Iran. The total content of polyphenolic compound in fruit extracts were determined using ferrous tartrate and Folin-Ciocalteu assays methods and chromatographic methods and compared with theme. High performance liquid chromatography is one of the most common and important methods in biochemical compound identification. The effect of pH, ionic strength, surfactant type, surfactant concentration, extraction time and common organic solvent in the apple polyphenolics extractions was studied using HPLC-DAD. Mixtures of surfactants, water and methanol at various ratios were examined and micellar-water solutions of Brij surfactant showed the highest polyphenol extraction efficiency. Optimum conditions for the extraction of polyphenolic compounds from apple occurred at 7 mM Brij35, pH 3. Effect of ionic strength on extraction was determined and 2% (W/V potassium Chloride was determined to be the optimum salt concentration. The procedure worked well with an ultrasound bath. Total antioxidant capacity also was determined in this study. The method can be safely scaled up for pharmaceutical applications.

  12. Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes

    2017-04-01

    This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.

  13. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kartal, Muhammet, E-mail: kartal@sakarya.edu.tr [Sakarya University, Engineering Faculty, Metallurgical & Materials Engineering Department, Esentepe Campus, 54187 Sakarya (Turkey); Uysal, Mehmet [Sakarya University, Engineering Faculty, Metallurgical & Materials Engineering Department, Esentepe Campus, 54187 Sakarya (Turkey); Gul, Harun [Duzce University, Gumusova Vocational School, 81850 Duzce (Turkey); Alp, Ahmet; Akbulut, Hatem [Sakarya University, Engineering Faculty, Metallurgical & Materials Engineering Department, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-11-01

    Highlights: • Effect of surfactant concentration on the co-deposited WC was investigated. • In the Ni matrix significantly high hardness was achieved by WC co-deposition. • Optimum surfactant resulted in obtaining superior wear resistance in the Ni. • Friction coefficient was decreased by WC co-deposition in the Ni matrix. - Abstract: A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of <1 μm tungsten carbide reinforcements. The influence of surfactant (sodium dodecyl sulfate, SDS) concentration on particle distribution, microhardness and wear resistance of composite coatings has been studied. The nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55–65%).

  14. Changes in surfactant in bronchoalveolar lavage fluid after hemithorax irradiation in patients with mesothelioma

    International Nuclear Information System (INIS)

    Hallman, M.; Maasilta, P.; Kivisaari, L.; Mattson, K.

    1990-01-01

    Experimental studies have shown that the surfactant system of the lung is affected shortly after irradiation. It is unclear, however, whether surfactant plays a role in the pathogenesis of radiation pneumonitis. In the present study surfactant components (saturated phosphatidylcholine, surfactant protein A, phosphatidylglycerol, and phosphatidylinositol) and other phospholipids of bronchoalveolar lavage fluid (BAL) were studied in four patients with pleural mesothelioma before and during hemithorax irradiation (70 Gy) as well as zero, 1, 2, 3, and 4 months following irradiation. The concentrations of these same components and of soluble proteins were also estimated in the epithelial lining fluid (ELF) using urea as a marker of dilution. After radiotherapy, the concentrations of the surfactant components in ELF decreased to 12 to 55% of the control values before radiation, whereas the concentration of sphingomyelin in ELF increased ninefold. There were small changes in the other phospholipids. The concentration of soluble protein in ELF increased sevenfold. The minimum surface activity of crude BAL increased from 12 +/- 4 to 32 +/- 6 mN/m, and that of the sediment fraction of BAL increased from 7 +/- 4 to 22 +/- 6 mN/m, p less than 0.001. The protein-rich supernatant fraction of BAL from irradiated lung had a inhibitory effect on normal surfactant. There were significant correlations between the increasing severity of the radiologic changes on the one hand and, on the other, the saturated phosphatidylcholine/sphingomyelin ratio (p less than 0.001), the concentrations of soluble protein (p less than 0.001), and the concentrations of the surfactant components (p less than 0.02-0.001) in ELF

  15. Thermodynamic and Interfacial Properties of DTABr/CTABr Mixed Surfactant Systems in Ethanolamine/Water Mixtures: A Conductometry Study

    OpenAIRE

    Esan, Olaseni Segun; Osundiya, Medinat Olubunmi; Aboluwoye, Christopher Olumuyiwa; Olanrewaju, Owoyomi; Ige, Jide

    2013-01-01

    Mixed-micelle formation in the binary mixtures of dodecyltrimethylammonium bromide (DTABr) and cetyltrimethylammonium bromide (CTABr) surfactants in water-ethanolamine mixed solvent systems has been studied by conductometric method in the temperature range of 298.1 to 313.1 K at 5 K intervals. It was observed that the presence of ethanolamine forced the formation of mixed micelle to lower total surfactant concentration than in water only. The synergistic interaction was quantitatively investi...

  16. Modification of shape oscillations of an attached bubble by surfactants

    Directory of Open Access Journals (Sweden)

    Tihon J.

    2013-04-01

    Full Text Available Surface-active agents (surfactants, e.g. washing agents strongly modifies properties of gas-liquid interface. We have carried out extensive experiments, in which we study effect of surfactants on the shape oscillations of a bubble, which is attached at a tip of a capillary. In the experiments, shape oscillations of a bubble are invoked by a motion of a capillary, to which the bubble is injected. Decaying oscillations are recorded and their frequency and damping are evaluated. By changing the excitation frequency, three lowest oscillation modes are studied. Experiments were repeated in aqueous solution of several surfactants (terpineol, SDS, CTAB, Triton X-100, Triton X-45 at various concentrations. Generally, these features are observed: Initially a surfactant addition leads to an increase of the oscillation frequency (though surface tension is decreasing; this effect can be attributed to the increasing interfacial elasticity. The decay time of oscillation is strongly decreasing, as a consequence of energy dissipation linked with Marangoni stresses. At a certain critical concentration, frequency decreases abruptly and the decay time passes by a minimum. With further addition of surfactant, frequency decreases, and the decay time slightly lengthens. Above critical micelle concentration, all these parameters stabilize. Interestingly, the critical concentration, at which frequency drop occurs, depends on mode order. This clearly shows that the frequency drop and minimum decay time are not a consequence of some abrupt change of interfacial properties, but are a consequence of some phenomena, which still need to be explained.

  17. Studies of the ionizing radiation effects on the effluents acute toxicity due to anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, Maria Cristina Franco de

    2004-01-01

    Several studies have shown the negative effects of surfactants, as detergents active substance, when discharged on biological sewage wastewater treatment plants. High toxicity may represent a lower efficiency for biological treatment. When surfactants are in aquatic environment they may induce a loss of grease revetment on birds (feather). Depending on the surfactant concentration, several damages to all biotic systems can happen. Looking for an alternative technology for wastewater treatment, efficient for surfactant removal, the present work applied ionizing radiation as an advanced oxidation process for affluents and effluents from Suzano Treatment Station. Such wastewater samples were submitted to radiation using an electron beam from a Dynamic Electron Beam Accelerator from Instituto de Pesquisas Energeticas e Nucleares. In order to assess this proposed treatment efficacy, it was performed acute toxicity evaluation with two test-organisms, the crustacean Daphnia similis and the luminescent bacteria Vibrio fischeri. The studied effluents were: one from a chemical industry (IND), three from sewage plant (affluents - GG, GM and Guaio) and the last biologically treated secondary effluent (EfF), discharged at Tiete river. The applied radiation doses varied from 3 kGy to 50 kGy, being 50 kGy enough for surfactant degradation contained at industrial effluent. For GG, GM and Guaio samples, doses of 6 kGy and 10 kGy were efficient for surfactant and toxicity reduction, representing an average removal that varied from 71.80% to 82.76% and toxicity from 30% to 91% for most the effluents. The final effluent was less toxic than the others and the radiation induced an average 11% removal for anionic surfactant. The industrial effluents were also submitted to an aeration process in order to quantify the contribution of surfactant to the whole sample toxicity, once it was partially removed as foam and several fractions were evaluated for toxicity. (author)

  18. Flavonoid-surfactant interactions: A detailed physicochemical study

    Science.gov (United States)

    Singh, Onkar; Kaur, Rajwinder; Mahajan, Rakesh Kumar

    2017-01-01

    The aim of this article is to study the interactions between flavonoids and surfactants with attention of finding the probable location of flavonoids in micellar media that can be used for controlling their antioxidant behavior. In present study, the micellar and interfacial behavior of twin tailed anionic surfactants viz. sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium bis(2-ethylhexyl)phosphate (NaDEHP) in the presence of two flavonoids, namely quercetin (QUE) and kaempferol (KFL) have been studied by surface tension measurements. UV-visible, fluorescence and differential pulse voltammetric (DPV) measurements have been employed to predict the probable location of flavonoids (QUE/KFL) within surfactant (AOT/NaDEHP) aggregates. Dynamic light scattering (DLS) measurements further confirmed the solubilization of QUE/KFL in AOT/NaDEHP aggregates deduced from increased hydrodynamic diameter (Dh) of aggregates in the presence of flavonoids. Both radical scavenging activity (RSA) and degradation rate constant (k) of flavonoids are found to be higher in NaDEHP micelles as compared to AOT micelles.

  19. Separation of oil and grease from oil sludge using surfactant

    International Nuclear Information System (INIS)

    Ainon Abdul Aziz; Syed Hakimi Sakuma Syed Ahmad; Zalina Laili

    2005-01-01

    The objective of the experiments was to observe the efficiency of the surfactant to remove oil and grease from oil sludges using various surfactant concentration ranging from 10 %, 15 %, 20 % and 30 %. The surfactant solution consists of two mixtures of Aqua 2000 and D Bond. The oil sludge were subjected to heating and surfactant treatment process. Remaining oil and grease concentration were observed on the oil sludges after treatment. Small scale experiments were conducted by heating process, without heating process and heating process with addition of sodium chloride. Surfactant solution was added in each process. Results shows that there is separation of oil and grease from the oil sludges. There were formation of mini emulsions (oil in water). The higher the concentration of surfactant used, the higher the concentrations of mini emulsion formed as observed. Solid remains after the treatment process were found to contain lesser oil concentration with presence of bitumen, sediment, organic and inorganic materials. After a washing process using distilled water, the solid was still black but less oily than before the treatment. There is no separation of oil occurred in aqueous solution for the control experiment. (Author)

  20. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    Science.gov (United States)

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  1. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  2. Small angle neutron scattering study of doxorubicin–surfactant ...

    Indian Academy of Sciences (India)

    The binding affinity of doxorubicin within the micelle carrier is enhanced through complex formation of drug and anionic surfactant, aerosol OT (AOT). Electrostatic binding of doxorubicin with negatively charged surfactants leads to the formation of hydrophobic drug–surfactant complexes. Surfactant-induced partitioning of ...

  3. Studies on the role of unsaturation in the fatty acid surfactant molecule on the thermal conductivity of magnetite nanofluids.

    Science.gov (United States)

    Lenin, Ramanujam; Joy, Pattayil Alias

    2017-11-15

    To study the role of unsaturation in the surfactant molecule on the thermal conductivity of magnetite nanofluids, four different fatty acid (stearic, oleic, linoleic, and linolenic acids with different degree of unsaturation) coated magnetite nanoparticles of comparable size are prepared and dispersed in toluene. It is found that the nanofluid with the saturated fatty acid coated nanoparticles show larger viscosity than the fluid with the unsaturated fatty acid coated particles at all concentrations. Thermal conductivity studies show enhancement only above a critical concentration for all fluids. The critical concentration for thermal conductivity enhancement varies with the surfactant, possibly due to the difference in the degree of aggregation of the nanoparticles in the fluid, because of the difference in the conformation of the surfactant molecules on the nanoparticle's surface. The experimental thermal conductivity follows the Maxwell model at higher concentrations. From the overall studies, it is observed that the thermal conductivity of the fluids with aggregated or assembled nanoparticles shows slightly larger enhancement than that of the fluids with isolated particles. However, in the presence of a magnetic field, the fluids with isolated nanoparticles showed relatively larger enhancement, possibly due to the easy response of the isolated magnetite nanoparticles to the applied field. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Front-face fluorescence spectroscopy study of globular proteins in emulsions: displacement of BSA by a nonionic surfactant.

    Science.gov (United States)

    Rampon, V; Genot, C; Riaublanc, A; Anton, M; Axelos, M A V; McClements, D J

    2003-04-23

    The displacement of a globular protein (bovine serum albumin, BSA) from the surface of oil droplets in concentrated oil-in-water emulsions by a nonionic surfactant (polyoxyethylene sorbitan monolauarate, Tween 20) was studied using front-face fluorescence spectroscopy (FFFS). This method relies on measurement of the change in intensity (I(MAX)) and wavelength (lambda(MAX)) of the maximum in the tryptophan emission spectrum. A series of oil-in-water emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7.0) containing different molar ratios of Tween 20 to BSA (R = 0-131) were prepared. As the surfactant concentration was increased, the protein was progressively displaced from the droplet surfaces. At R > or = 66, the protein was completely displaced from the droplet surfaces. There was an increase in both I(MAX) and lambda(MAX) with increasing Tween 20 concentration up to R = 66, which correlated with the increase in the ratio of nonadsorbed to adsorbed protein. In contrast, there was a decrease in I(MAX) and lambda(MAX) with Tween 20 concentration in protein solutions and for R > or = 66 in the emulsions, which was attributed to binding of the surfactant to the protein. This study shows that FFFS is a powerful technique for nondestructively providing information about the interfacial composition of droplets in concentrated protein-stabilized emulsions in situ. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.

  5. An arbitrary Lagrangian-Eulerian method for interfacial flows with insoluble surfactants

    Science.gov (United States)

    Yang, Xiaofeng

    Interfacial flows, fluid flows involving two or more fluids that do not mix, are common in many natural and industrial processes such as rain drop formation, crude oil recovery, polymer blending, fuel spray formation, and so on. Surfactants (surface active substances) play an important role in such processes because they significantly change the interfacial dynamics. In this thesis, an arbitrary Lagrangian-Eulerian (ALE) method has been developed to numerically simulate interfacial flows with insoluble surfactants. The interface is captured using a coupled level set and volume of fluid method. To evolve the surfactant concentration, the method directly tracks the surfactant mass and the interfacial area. The surfactant concentration, which determines the local surface tension through an equation of state, is then computed as surfactant mass per interfacial area. By directly tracking the surfactant mass, the method conserves the surfactant mass exactly. To accurately approximate the interfacial area, the fluid interface is reconstructed using piecewise parabolas. The evolution of the level set function, volume fraction, interfacial area, and the surfactant mass is performed using an ALE approach. The fluid flow is governed by Stokes equations, which are solved using a finite element method. The surface forces are included in the momentum equation using a continuum surface stress formulation. To efficiently resolve the complex interfacial dynamics, interfacial regions of high surface curvature, and near contact regions between two interacting interfaces, the grid near the interface is adaptively refined. The method is extendible to axisymmetric and 3D spaces, and can be coupled with other flow solvers, such as Navier-Stokes and viscoelastic flow solvers, as well. The method has been applied to study the effect of surfactants on drop deformation and breakup in an extensional flow. Drop deformation results are compared with available experimental and theoretical

  6. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  7. Charging and Screening in Nonpolar Solutions of Nonionizable Surfactants

    Science.gov (United States)

    Behrens, Sven

    2010-03-01

    Nonpolar liquids do not easily accommodate electric charges, but surfactant additives are often found to dramatically increase the solution conductivity and promote surface charging of suspended colloid particles. Such surfactant-mediated electrostatic effects have been associated with equilibrium charge fluctuations among reverse surfactant micelles and in some cases with the statistically rare ionization of individual surfactant molecules. Here we present experimental evidence that even surfactants without any ionizable group can mediate charging and charge screening in nonpolar oils, and that they can do so at surfactant concentrations well below the critical micelle concentration (cmc). Precision conductometry, light scattering, and Karl-Fischer titration of sorbitan oleate solutions in hexane, paired with electrophoretic mobility measurements on suspended polymer particles, reveal a distinctly electrostatic action of the surfactant. We interpret our observations in terms of a charge fluctuation model and argue that the observed charging processes are likely facilitated, but not limited, by the presence of ionizable impurities.

  8. Atomistic simulations of surfactant adsorption kinetics at interfaces

    Science.gov (United States)

    Iskrenova, Eugeniya; Patnaik, Soumya

    2014-03-01

    Heat transfer control and enhancement is an important and challenging problem in a variety of industrial and technological applications including aircraft thermal management. The role of additives in nucleate boiling and phase change in general has long been recognized and studied experimentally and modeled theoretically but in-depth description and atomistic understanding of the multiscale processes involved are still needed for better prediction and control of the heat transfer efficiency. Surfactant additives have been experimentally observed to either enhance or inhibit the boiling heat transfer depending on the surfactant concentration and chemistry and, on a molecular level, their addition leads to dynamic surface tension and changes in interfacial and transfer properties, thus contributing to the complexity of the problem. We present our atomistic modeling study of the interfacial adsorption kinetics of aqueous surfactant (sodium dodecyl sulfate) systems at a range of concentrations at room and boiling temperatures. Classical molecular dynamics and Umbrella Sampling simulations were used to study the surfactant transport properties and estimate the adsorption and desorption rates at liquid-vacuum and liquid-solid interfaces. The authors gratefully acknowledge funding from AFOSR Thermal Science Program and the Air Force Research Laboratory DoD Supercomputing Resource Center for computing time and resources.

  9. Physico-chemical study of new functionalized surfactants having thermo sensitive de-mixing behaviour: use in extraction of uranyl nitrate

    International Nuclear Information System (INIS)

    Prevost, S.

    2006-04-01

    New thermo-sensitive functionalized surfactants with metal-chelating properties have been developed and their physical-chemistry studied. They associate a polyethoxylated nonionic surfactant (CiEj) block and a amino-acid residue as a chelating group. Functionalization preserves both properties of the thermo-sensitive surfactant moiety and the chelating group, a diamide closed to uranyl ionophore.The complexing group participates to the polar head group of the surfactant, increasing the area per molecule. As a result, functionalized surfactants form spherical micelles when diluted in water, and the concentrated part of their phase diagrams exhibits structures having higher curvatures than the nonionic precursor CiEj. The structure of the uranyl - diamide complex has been elucidated by NMR and ESI-MS and is of the type UO 2 (NO 3 ) 2 .L; the associated complexation constant, which is very low, has been evaluated by 1 H NMR.A nitrate salt, LiNO 3 , is added at high concentration to improve complexation. The effect of this salt has been analyzed, and was found to be rather similar to the effect on classical CiEj. When uranyl nitrate complexation occurs, the cloud point decreases dramatically, together with the reduction of the area per head group at micelle/solution interface. This effect can be minimized by using a nonionic precursor having a larger polar head group. The functionalized surfactants have been tested in the cloud point extraction of uranyl nitrate, and have proved their efficiency. Those results demonstrate the viability of the functionalized surfactants design, with a covalent link between a thermo-sensitive surfactant block and a chelating group. (author)

  10. Surfactant mediated slurry formulations for Ge CMP applications

    KAUST Repository

    Basim, G. Bahar

    2013-01-01

    In this study, slurry formulations in the presence of self-assembled surfactant structures were investigated for Ge/SiO2 CMP applications in the absence and presence of oxidizers. Both anionic (sodium dodecyl sulfate-SDS) and cationic (cetyl trimethyl ammonium bromide-C12TAB) micelles were used in the slurry formulations as a function of pH and oxidizer concentration. CMP performances of Ge and SiO2 wafers were evaluated in terms of material removal rates, selectivity and surface quality. The material removal rate responses were also assessed through AFM wear rate tests to obtain a faster response for preliminary analyses. The surfactant adsorption characteristics were studied through surface wettability responses of the Ge and SiO2 wafers through contact angle measurements. It was observed that the self-assembled surfactant structures can help obtain selectivity on the silica/germanium system at low concentrations of the oxidizer in the slurry. © 2013 Materials Research Society.

  11. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  12. Method of cement-solidification of radioactive liquid wastes containing surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Yusa, H

    1979-04-10

    Purpose: To provide the subject method comprising the steps of adjusting the concentration of the surfactant to a value less than the predetermined value even when the concentration of the surfactant is high, and rendering the uniaxial compression strength of the cement-solidification body into more than the defined fabrication reference value. Method: To radioactive liquid wastes there are applied means for boiling and heating liquid wastes by addition of sulfuric acid, means for cracking surfactants by the addition of oxidants and means for precipitating and arresting surfactants. After suppressing the hindrance of the cement hydration reaction by surfactants, the radioactive liquid wastes are cement-solidified. (Nakamura, S.).

  13. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR).

    Science.gov (United States)

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3) mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  14. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  15. Spectrophotometric studies of marine surfactants in the southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Violetta Drozdowska

    2015-04-01

    Full Text Available It is well known that surfactants in the southern Baltic Sea constitute the organic matter from riverine waters discharges as well as the secondary degradation products of marine phytoplankton excretion. They reach the surface microlayer by the upwellings and turbulent motions of water and in the membranes of the vesicles as well as from the atmosphere. To assess concentration and spatial distribution of marine surfactants in the southern Baltic Sea, the steady-state spectrophotometric and spectrofluorometric measurements of water samples taken from a surface film and a depth of 0.5 m were carried out. Water samples were collected during windless days of the cruise of r/v ‘Oceania’ in November 2012, from the open and the coastal waters having regard to the vicinity of the Vistula and Łeba mouths. In the present paper, fractions of dissolved organic matter having chromophores (CDOM or fluorophores (FDOM are recognized through their specific spectroscopic behavior, i.e., steady-state absorption, fluorescence excitation and fluorescence spectra. The steady-state spectroscopic measurements revealed the CDOM and FDOM molecules characteristic to both the land and marine origin. Moreover, the concentration and spatial distribution of marine surfactants significantly depend on the distance from the river mouth. Finally, higher values of absorbance and fluorescence intensity observed in a surface film in comparison to these values in a depth of 0.5 m clearly suggest the higher concentration of organic matter in a marine film. On the other hand, our results revealed that a surface microlayer is composed of the same CDOM and FDOM as bulk water.

  16. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  17. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: a two-dimensional flow cell study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.

  18. Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the air-water interface.

    Science.gov (United States)

    Zhang, Xiaoli L; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Bent, Julian; Cox, Andrew; Campbell, Richard A

    2011-09-20

    The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ∼30 Å thick, with a mean area per molecule of ∼400 Å(2) and a volume fraction of ∼0.7, for concentrations greater than 0.01 g/L, and the adsorption is independent of the solution pH. In competition with the conventional surfactants CTAB, SDS, and C(12)E(6) at pH 7, the HFBII adsorption totally dominates the surface for surfactant concentrations less than the critical micellar concentration, cmc. Above the cmc of the conventional surfactants, HFBII is displaced by the surfactant (CTAB, SDS, or C(12)E(6)). For C(12)E(6) this displacement is only partial, and some HFBII remains at the surface for concentrations greater than the C(12)E(6) cmc. At low pH (pH 3) the patterns of adsorption for HFBII/SDS and HFBII/C(12)E(6) are different. At concentrations just below the surfactant cmc there is now mixed HFBII/surfactant adsorption for both SDS and C(12)E(6). For the HFBII/SDS mixture the structure of the adsorbed layer is more complex in the region immediately below the SDS cmc, resulting from the HFBII/SDS complex formation at the interface. © 2011 American Chemical Society

  19. An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils.

    Science.gov (United States)

    Zhang, Wen; Li, Jianbing; Huang, Guohe; Song, Weikun; Huang, Yuefei

    2011-01-01

    The effect of bio-surfactant (rhamnolipid) on the remediation of crude oil and salt contaminated soil was investigated in this study. The experimental results indicated that there was a distinct decline of total petroleum hydrocarbon (TPH) concentration within the soil when using rhamnolipid during a remediation period of 30 days, with maximum TPH reduction of 86.97%. The most effective remediation that was observed was with rhamnolipid at a concentration of 2 CMC in soil solution, and a first-order TPH degradation rate constant of 0.0866 d(-1). The results also illustrated that salts in soil had a negative impact on TPH reduction, and the degradation rate was negatively correlated with NaCl concentration in soil solution. The analysis of soil TPH fractions indicated that there was a significant reduction of C13-C30 during the remediation process when using bio-surfactant.

  20. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    Science.gov (United States)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  1. Molecular dynamics simulations of surfactant and nanoparticle self-assembly at liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Luo Mingxiang; Dai, Lenore L [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-09-19

    We have performed molecular dynamics (MD) simulations to investigate self-assembly at water-trichloroethylene (TCE) interfaces with the emphasis on systems containing modified hydrocarbon nanoparticles (1.2 nm in diameter) and sodium dodecyl sulfate (SDS) surfactants. The nanoparticles and surfactants were first distributed randomly in the water phase. The MD simulations have clearly shown the progress of migration and final equilibrium of the SDS molecules at the water-TCE interfaces with the nanoparticles either at or in the vicinity of the interfaces. One unique feature is the 'attachment' of surfactant molecules to the nanoparticle clusters in the water phase followed by the 'detachment' at the water-TCE interfaces. At low concentrations of surfactants, the surfactants and nanoparticles co-equilibrate at the interfaces. However, the surfactants, at high concentrations, competitively dominate the interfaces and deplete nanoparticles away from the interfaces. The interfacial properties, such as interfacial thickness and interfacial tension, are significantly influenced by the presence of the surfactants, but not the nanoparticles. The order of the surfactants at the interfaces increases with increasing surfactant concentration, but is independent of nanoparticle concentration. Finally, the simulation has shown that surfactants can aggregate along the water-TCE interfaces, with and without the presence of nanoparticles.

  2. The toxicity of cationic surfactant HDTMA-Br, desorbed from surfactant modified zeolite, towards faecal indicator and environmental microorganisms.

    Science.gov (United States)

    Reeve, Peter J; Fallowfield, Howard J

    2017-10-05

    Surfactant Modified Zeolite (SMZ) represents a versatile, cost-effective permeable reactive material, capable of treating multiple classes of contaminants. The potential for HDTMA-Br, a cationic surfactant commonly used to modify zeolite, to desorb from the zeolite surface has been identified as a potential issue for the ongoing use of SMZ in water remediation contexts. This paper investigates the toxicity of HDTMA-Br towards enteric virus surrogates, F-RNA bacteriophage MS2 and E. coli, Bacillus subtilis, and soil microflora. The concentration of surfactant desorbing from SMZ was quantified through a bioassay using E. coli. Results showed HDTMA-Br concentrations of ≥10 -5 M were toxic to MS2, ≥10 -4 M were toxic to E. coli and ≥10 -6 M were toxic to B. subtilis. No toxic relationship was established between HDTMA-Br and soil microflora. Desorption of ≥10 -4 M of HDTMA-Br was shown for the two SMZ samples under the mixing conditions used. Effects of this surfactant on total soil microflora were ambiguous since no toxic relationship could be established, however, HDTMA-Br, at concentrations desorbing from SMZ, were shown to impact the soil bacterium B. subtilis. Further research is required to determine the effect of this surfactant on microbial populations and species diversity in soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Study of surfactant-free microemulsions and microemulsions with fatty acid salts

    OpenAIRE

    Marcus, Julien

    2016-01-01

    This thesis deals with the study of microemulsions and is composed of two main parts. In the first part, surfactant-free microemulsions are studied, whereas in the second part microemulsions with surfactants and cosurfactants are investigated. Over the last few years, surfactant-free microemulsions became a major topic at our institute and were thoroughly studied using the reference system water/ethanol/1-octanol. As explained later in the Fundamentals part (see section 1.2), fluctuating ...

  4. Experimental Study of Enhancing Oil Recovery with Weak Base Alkaline/Surfactant/Polymer

    Directory of Open Access Journals (Sweden)

    Dandan Yin

    2017-01-01

    Full Text Available Na2CO3 was used together with surfactant and polymer to form the Alkaline/Surfactant/Polymer (ASP flooding system. Interfacial tension (IFT and emulsification of Dagang oil and chemical solutions were studied in the paper. The experiment results show that the ASP system can form super-low interfacial tension with crude oil and emulsified phase. The stability of the emulsion is enhanced by the Na2CO3, surfactant, and the soap generated at oil/water contact. Six core flooding experiments are conducted in order to investigate the influence of Na2CO3 concentration on oil recovery. The results show the maximum oil recovery can be obtained with 0.3 wt% surfactant, 0.6 wt% Na2CO3, and 2000 mg/L polymer. In a heterogeneous reservoir, the ASP flooding could not enhance the oil recovery by reducing IFT until it reaches the critical viscosity, which indicates expanding the sweep volume is the premise for reducing IFT to enhance oil recovery. Reducing or removing the alkali from ASP system to achieve high viscosity will reduce oil recovery because of the declination of oil displacement efficiency. Weak base ASP alkali can ensure that the whole system with sufficient viscosity can start the medium and low permeability layers and enhance oil recovery even if the IFT only reaches 10−2 mN/m.

  5. Numerical approach for enhanced oil recovery with surfactant flooding

    Directory of Open Access Journals (Sweden)

    Sadegh Keshtkar

    2016-03-01

    Full Text Available The remained oil in the reservoir after conventional water-flooding processes, forms a dispersed phase in the form of oil drops which is trapped by capillary forces and is almost about 70% of the original oil in the place (OOIP. To reduce oil residual saturation in laboratory experiments and field projects, surfactant flooding is effective via decreasing the interfacial tension mobility ratio between oil and water phases. Estimation of the role of design variables, like chemical concentrations, partition coefficient and injection rate in different performance quantities, considering a heterogeneous and multiphase oil reservoir is a critical stage for optimal design. Increasing demand for oil production from water-flooded reservoirs has caused an increasing interest in surfactant-polymer (SP and alkali-surfactant-polymer (ASP. Modeling minimizes the risk of high cost of chemicals by improving our insight of process. In the present paper, a surfactant compositional flood model for a three-component (water, petroleum and surfactant, two phase (aqueous and oleic system is studied. A homogeneous, two-dimensional, isothermal reservoir with no free gas or alkali is assumed. The governing equations are in three categories: the continuity equations for the transport of each component, Darcy's equation for the transport of each phase and other auxiliary equations. The equations are solved by finite-differences using a procedure implicit in pressure and explicit in saturation. The validation of the model is achieved through comparing the modeling results with CMG simulators and Buckley–Leverett theory. The results of modeling showed good agreement with CMG results, and the comparison with Buckley–Leverett theory is explained according to different assumptions. After validation of the model, in order to investigate sensitivity analysis, the effects of system variables (partition coefficient, surface tension, oil viscosity and surface injection

  6. Use of surfactants for the remediation of contaminated soils: a review.

    Science.gov (United States)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The effect of surfactant on pollutant biosorption of Trametes versicolor

    Science.gov (United States)

    Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve

    2016-04-01

    The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.

  8. Effect of Surfactants on Mechanical, Thermal, and Photostability of a Monoclonal Antibody.

    Science.gov (United States)

    Agarkhed, Meera; O'Dell, Courtney; Hsieh, Ming-Ching; Zhang, Jingming; Goldstein, Joel; Srivastava, Arvind

    2018-01-01

    The purpose of this work was to evaluate the effect of commonly used surfactants (at 0.01% w/v concentration) on mechanical, thermal, and photostability of a monoclonal antibody (MAb1) of IgG1 sub-class and to evaluate the minimum concentration of surfactant (Polysorbate 80) required in protecting MAb1 from mechanical stress. Surfactants evaluated were non-ionic surfactants, Polysorbate 80, Polysorbate 20, Pluronic F-68 (polyoxyethylene-polyoxypropylene block polymer), Brij 35 (polyoxyethylene lauryl ether), Triton X-100, and an anionic surfactant, Caprylic acid (1-Heptanecarboxylic acid). After evaluating effect of surfactants and determining stabilizing effect of Polysorbate 80 against mechanical stress without compromising thermal and photostability of MAb1, the minimum concentration of Polysorbate 80 required for mechanical stability was further examined. Polysorbate 80 concentration was varied from 0 to 0.02%. Mechanical stability was evaluated by agitation of MAb1 at 300 rotations per minute at room temperature for 72 h. Samples were analyzed for purity by SEC-HPLC, turbidity by absorbance at 350 nm, visible particles by visual inspection, and sub-visible particles by light obscuration technique on a particle analyzer. All non-ionic surfactants tested showed a similar effect in protecting against mechanical stress and did not exhibit any significant negative effect on thermal and photostability. However, Caprylic acid had a slightly negative effect on mechanical and photostability when compared to the non-ionic surfactants or sample without surfactant. This work demonstrated that polysorbate 80 is better than other surfactants tested and that a concentration of at least 0.005% (w/v) Polysorbate 80 is needed to protect MAb1 against mechanical stress.

  9. Marine toxicity and persistence of surfactants used in the petroleum producing industry

    International Nuclear Information System (INIS)

    Maddin, C.M.

    1991-01-01

    This paper presents a survey of marine toxicity and biodegradability data for surfactants used in the petroleum industry. Surfactants are key chemicals in the formulation of products such as emulsifiers, demulsifiers, dispersants and inhibitors. They are also used directly as foaming and defoaming agents. Because they function at low concentrations, below 1%, and have a tendency to adsorb on solid surfaces, their long-term environmental effects are minimal. In applications such as cementing, surfactants cannot migrate into the environment and, thus, have no bioavailability. The possibility of environmental contamination has caused well operators and regulatory agencies to require fish toxicity and persistence data for products used in servicing wells. This data has been organized for nonionic, anionic, cationic and amphoteric surfactants. Nonionic surfactants are toxic to fish at concentrations below 10 mg/L to over 2500 mg/L depending on their chemical compositions. Anionic surfactants are toxic to fish at concentrations under 1 mg/L to several hundred mg/L depending on their chemical compositions. cationic and amphoteric surfactants are generally toxic to fish at concentrations below 50 mg/L. Overall efforts are aimed at low toxicity and high biodegradability with the least compromise in product efficiency. This requires the continual testing and environmental evaluation of surfactants summarized herein

  10. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2015-01-01

    formulations only comprised an aqueous micellar solution of the model drug (fenofibrate) in varying concentrations (2–25% (w/v)) of the three tested surfactants. Increased concentrations of Kolliphor ELP and EL led to increased fenofibrate AUC0–24h values. For the Kolliphor RH40 formulations, an apparent...... fenofibrate absorption optimum was seen at 15% (w/v) surfactant, displaying both the highest AUC0–24h and Cmax. The reduced absorption of fenofibrate from the formulation containing the highest level of surfactant (25% w/v) was thought to be caused by some degree of trapping within Kolliphor RH40 micelles....... In vitro, Kolliphor ELP and EL were found to be more prone to digestion than Kolliphor RH40, though not affecting the in vivo results. The highest fenofibrate bioavailability was attained from formulations with high Kolliphor ELP/EL levels (25% (w/v)), indicating that these surfactants are the better...

  11. Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-07-01

    Full Text Available Abstract Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL® 816 and AEROSIL® 200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample (solid phase and surfactant solution (aqueous phase. The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.

  12. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    International Nuclear Information System (INIS)

    Kucherenko, I S; Soldatkin, O O; Arkhypova, V M; Dzyadevych, S V; Soldatkin, A P

    2012-01-01

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l −1 ) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants. (paper)

  13. Dicationic alkylammonium bromide gemini surfactants. Membrane perturbation and skin irritation.

    Directory of Open Access Journals (Sweden)

    João A S Almeida

    Full Text Available Dicationic alkylammonium bromide gemini surfactants represent a class of amphiphiles potentially effective as skin permeation enhancers. However, only a limited number of studies has been dedicated to the evaluation of the respective cytotoxicity, and none directed to skin irritation endpoints. Supported on a cell viability study, the cytotoxicity of gemini surfactants of variable tail and spacer length was assessed. For this purpose, keratinocyte cells from human skin (NCTC 2544 cell line, frequently used as a model for skin irritation, were employed. The impact of the different gemini surfactants on the permeability and morphology of model vesicles was additionally investigated by measuring the leakage of calcein fluorescent dye and analyzing the NMR spectra of ³¹P, respectively. Detail on the interaction of gemini molecules with model membranes was also provided by a systematic differential scanning calorimetry (DSC and molecular dynamics (MD simulation. An irreversible impact on the viability of the NCTC 2544 cell line was observed for gemini concentrations higher than 25 mM, while no cytotoxicity was found for any of the surfactants in a concentration range up to 10 mM. A higher cytotoxicity was also found for gemini surfactants presenting longer spacer and shorter tails. The same trend was obtained in the calorimetric and permeability studies, with the gemini of longest spacer promoting the highest degree of membrane destabilization. Additional structural and dynamical characterization of the various systems, obtained by ³¹P NMR and MD, provide some insight on the relationship between the architecture of gemini surfactants and the respective perturbation mechanism.

  14. Influence of anionic surfactant on the process of electro-Fenton decolorized methyl orange.

    Science.gov (United States)

    Ren, B X

    2010-01-01

    The electro-Fenton process has been shown to be very successful to remove dyes from water. However, the influence of other constituents in dyeing industry wastewater, such as Sodium Dodecyl Sulfate (SDS) surfactants, has not been investigated. In this study, the effect of SDS surfactant on the kinetics of Methyl Orange degradation undergoing Electro-Fenton process was investigated. Results show that Methyl Orange degradation rate decreased as SDS concentration (below Critical Micelle Concentration, CMC) increased, which was attributed to the consumption of hydroxyl radicals (( )OH) by surfactants. The kinetics modeling indicates the reaction was the first-order reaction to Methyl Orange even SDS existing. The pseudo first-order rate constants decreased as SDS concentration increased.

  15. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR.

    Directory of Open Access Journals (Sweden)

    Caili Dai

    Full Text Available An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS for enhanced oil recovery (EOR. The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  16. Contribution of Seawater Surfactants to Generated Primary Marine Aerosol Particles

    Science.gov (United States)

    Frossard, A. A.; Gerard, V.; Duplessis, P.; Kinsey, J. D.; Lu, X.; Zhu, Y.; Bisgrove, J.; Maben, J. R.; Long, M. S.; Chang, R.; Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Noziere, B.; Cohen, R. C.

    2017-12-01

    Surfactants account for minor fractions of total organic carbon in the ocean but may have major impacts on the surface tension of bursting bubbles at the sea surface that drive the production of primary marine aerosol particles (PMA). Surfactants associated with marine aerosol may also significantly reduce the surface tension of water thereby increasing the potential for cloud droplet activation and growth. During September and October 2016, PMA were produced from bursting bubbles in seawater using a high capacity generator at two biologically productive and two oligotrophic stations in the western North Atlantic, as part of a cruise on the R/V Endeavor. Surfactants were extracted from paired PMA and seawater samples, and their ionic compositions, total concentrations, and critical micelle concentrations (CMC) were quantified and compared for the four hydrographic stations. Higher surfactant concentrations were determined in the aerosol produced from biologically productive seawater compared to oligotrophic seawater, and the surfactants extracted from productive seawater were stronger (had lower CMCs) than those in the oligotrophic seawater. Surfactants associated with PMA and seawater in productive regions also varied over diel cycles, whereas those in the oligotrophic regions did not. This work demonstrates a direct link between surfactants in seawater and those in PMA.

  17. REMEDIATION OF SOILS CONTAMINATED WITH MOTOR OIL BY HIGHLY BIODEGRADABLE SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Ignacio Moya-Ramírez

    2014-06-01

    Full Text Available The remediation of a sandy soil contaminated with motor oil was studied by applying two different washing procedures: one discontinuous and the other continuous. In addition the capacity of three highly biodegradable surfactants, two synthetic (Glucopon 600 and Findet 1214N/23 and a biosurfactant from Bacillus subtilis, to enhance oil removal was tested. The results obtained with the continuous procedure were much better than those achieved with the discontinuous one, even in experiments conducted with distilled water. Both the addition of surfactants and the rise in temperature significantly increased the removal of the pollutant in experiments conducted with the discontinuous procedure, but the biosurfactant showed a higher capacity for soil remediation than the synthetic surfactants at concentrations close to its CMC. Conversely, when the continuous method was used, surfactant concentration seems to have a lower effect on motor oil removal, at least below the CMC.

  18. Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel.

    Science.gov (United States)

    Riaud, Antoine; Zhang, Hao; Wang, Xueying; Wang, Kai; Luo, Guangsheng

    2018-04-18

    Microchannel emulsification requires large amounts of surfactant to prevent coalescence and improve emulsions lifetime. However, most numerical studies have considered surfactant-free mixtures as models for droplet formation in microchannels, without taking into account the distribution of surfactant on the droplet surface. In this paper, we investigate the effects of nonuniform surfactant coverage on the microfluidic flow pattern using an extended lattice-Boltzmann model. This numerical study, supported by micro-particle image velocimetry experiments, reveals the likelihood of uneven distribution of surfactant during the droplet formation and the appearance of a stagnant cap. The Marangoni effect affects the droplet breakup by increasing the shear rate. According to our results, surfactant-free and surfactant-rich droplet formation processes are qualitatively different, such that both the capillary number and the Damköhler number should be considered when modeling the droplet generation in microfluidic devices. The limitations of traditional volume and pressure estimation methods for determining the dynamic interfacial tension are also discussed on the basis of the simulation results.

  19. Small angle neutron scattering study of two nonionic surfactants in ...

    Indian Academy of Sciences (India)

    nonionic surfactants in water micellar solutions. RAJEWSKA ALDONA. Institute of ... water solution for concentration c = 0.17% (dilute regime) at different temperatures in the range t = 10–35°C by small .... which yields the pair distance distribution function p(r), where r is the distance in real space. The point, at which the p(r) ...

  20. Surfactant-enhanced control of track-etch pore morphology

    International Nuclear Information System (INIS)

    Apel', P.Yu.; Blonskaya, I.V.; Didyk, A.Yu.; Dmitriev, S.N.; Orelovich, O.L.; Samojlova, L.I.; Vutsadakis, V.A.; Root, D.

    2000-01-01

    The influence of surfactants on the process of chemical development of ion tracks in polymers is studied. Based on the experimental data, a mechanism of the surfactant effect on the track-etch pore morphology is proposed. In the beginning of etching the surfactant is adsorbed on the surface and creates a layer that is quasi-solid and partially protects the surface from the etching agent. However, some etchant molecules diffuse through the barrier and react with the polymer surface. This results in the formation of a small hole at the entrance to the ion track. After the hole has attained a few annometers in diameter, the surfactant molecules penetrate into the track and cover its walls. Further diffusion of the surfactant into the growing pore is hindered. The adsorbed surfactant layer is not permeable for large molecules. In contrast, small alkali molecules and water molecules diffuse into the track and provide the etching process enlarging the pore. At this stage the transport of the surfactant into the pore channel can proceed only due to the lateral diffusion in the adsorbed layer. The volume inside the pore is free of surfactant molecules and grows at a higher rate than pore entrance. After a more prolonged etching the bottle-like (or 'cigar-like') pore channels are formed. The bottle-like shape of the pore channels depends on the etching conditions such as alkali and surfactant concentration, temperature, and type of the surfactant. The use of surfactants enables one to produce track-etch membranes with improved flow rate characteristics compared with those having cylindrical pores with the same nominal pore diameters

  1. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    International Nuclear Information System (INIS)

    Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M.; Al-Lohedan, H.A.; Nigam, Lokesh; Subbarao, Naidu; Hasan Khan, Rizwan

    2015-01-01

    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K b ), enthalpy (ΔH 0 ), entropy (ΔS 0 ) and Gibbs free energy change (ΔG 0 ) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction

  2. In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.

    Science.gov (United States)

    Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C

    2005-11-01

    In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.

  3. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    Science.gov (United States)

    Kyle, Erin C. H.; Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5-6 × 1019 cm-3 as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 1018 cm-3. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  4. Influence of MWCNT/surfactant dispersions on the mechanical properties of Portland cement pastes

    Science.gov (United States)

    Rodríguez, B.; Quintero, J. H.; Arias, Y. P.; Mendoza-Reales, O. A.; Ochoa-Botero, J. C.; Toledo-Filho, R. D.

    2017-12-01

    This work studies the reinforcing effect of Multi Walled Carbon Nanotubes (MWCNT) on cement pastes. A 0.35% solid concentration of MWCNT in powder was dispersed in deionized water with sodium dodecyl sulfate (cationic surfactant), cetylpyridinium chloride (anionic surfactant) and triton X-100 (amphoteric surfactant) using an ultrasonic tip processor. Three concentrations of each surfactant (1mM, 10mM and 100mM) were tested, and all samples were sonicated until an adequate dispersion degree was obtained. Cement pastes with additions of carbon nanotubes of 0.15% by mass of cement were produced in two steps; first the dispersions of MWCNT were combined with the mixing water using an ultrasonic tip processor to guarantee homogeneity, and then cement was added and mixed until a homogeneous paste was obtained. Direct tensile strength, apparent density and open porosity of the pastes were measured after 7 days of curing. It was found that the MWCNT/surfactants dispersions decrease the mechanical properties of the cement based matrix due to an increased porosity caused by the presence of surfactants.

  5. Growth Mechanism of Gold Nanorods in Binary Surfactant System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Mi; Seo, Sun-Hwa; Joe, Ara; Shim, Kyu-Dong; Jang, Eue-Soon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    In order to reveal the growth mechanism of gold nanorods (GNRs) in a binary surfactant system, we synthesized various GNRs by changing the concentration of the surfactants, AgNO{sub 3}, and HBr in the growth solution. We found that the benzyldime thylhexadecylammoniumchloride surfactant had weak interaction with the gold ions, but it could reduce the membrane fluidity. In addition, we could dramatically decrease the cetyltrimethylammonium bromide concentration required for GNR growth by adding an HBr solution. Notably, Ag{sup +} ions were necessary to break the symmetry of the seed crystals for GNR growth, but increasing the concentration of Ag{sup +} and Br{sup -} ions caused a decrease in the template size.

  6. NMR study of the dynamics of cationic gemini surfactant 14-2-14 in mixed solutions with conventional surfactants.

    Science.gov (United States)

    Jiang, Yan; Lu, Xing-Yu; Chen, Hong; Mao, Shi-Zhen; Liu, Mai-Li; Luo, Ping-Ya; Du, You-Ru

    2009-06-18

    Three kinds of conventional surfactants, namely, two nonionic surfactants [polyethylene glycol (23) lauryl ether (Brij-35) and Triton X-100 (TX-100)], one cationic surfactant [n-tetradecyltrimethyl ammonium bromide (TTAB)], and an anionic surfactant [sodium n-dodecyl sulfate (SDS)}, were mixed into the quaternary ammonium gemini surfactant [C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(2).2Br(-) (14-2-14) in aqueous solution. The exchange rate constants between 14-2-14 molecules in the mixed micelles and those in the bulk solution were detected using two nuclear magnetic resonance (NMR) methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). The results obtained from these two methods were consistent. Both showed that mixing a nonionic conventional surfactant, either Brij-35 or TX-100, enhanced the exchange process between the 14-2-14 molecules in the mixed micelles and those in the bulk solution. In contrast, the anionic surfactant SDS and the cationic surfactant TTAB slowed the process slightly.

  7. Surfactant loss control in chemical flooding spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1993--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1995-06-01

    The aim of this project is to elucidate the mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations, other inorganic and polymeric species is being studied. A multi-pronged approach consisting of micro and nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability is used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. During the second year of this three year contract, adsorption/desorption of single surfactants and select surfactant mixtures on alumina and silica was studied. Surfactants studied include the anionic sodium dodecyl sulfate (SDS), cationic tetradecyl trimethyl ammonium chloride (TTAC), nonionic pentadecylethoxylated nonyl phenol (NP-15) and the nonionic octaethylene glycol n-dodecyl ether (C{sub 12}EO{sub 8}) of varying hydrocarbon chain length. The microstructure of the adsorbed layer in terms of micropolarity and aggregation numbers was probed using fluorescence spectroscopy. Changes of microstructure upon dilution (desorption) were also studied. Presence of the nonionic surfactant in the mixed aggregate led to shielding of the charge of the ionic surfactant which in-turn promoted aggregation but reduced electrostatic attraction between the charged surfactant and the mineral surface. Strong consequences of surfactant interactions in solution upon adsorption as well as correlations between monomer concentrations in mixtures and adsorption were revealed.

  8. Polyethoxylated carboxylic surfactant for ion foam flotation: fundamental study from solution to foam

    International Nuclear Information System (INIS)

    Micheau, Cyril

    2013-01-01

    Ion foam flotation allows to concentrate ions in a foam phase formed by a soap. For classical systems, the strong interaction between ions and surfactant generally leads to the formation of precipitates and of froth. When the froth collapses, the solid residue thus recovered requires a recycling or conversion. In order to remedy this, the present work uses as collector a polyethoxylated carboxylic surfactant, AKYPO RO 90 VG, which forms soluble ion/surfactant complexes, even with multi-charge ions. This work presents a detailed study of the fundamental mechanisms that govern the extraction of ions by foaming. In the first part, surface activity and acid/base properties of the surfactant in solution are determined by combining numerous independent techniques which are pH-metric dosage, tensiometry and small angle scattering. The evolution of these properties in the presence of different nitrate salts (Nd, Eu, Ca, Sr, Cu, Li, Na, Cs) coupled with electrophoretic measurements give a first approach to selectivity. Finally, all of these data combined with a study of the formation of surfactant/ion complexes allow us to determine the speciation of Nd/AKYPO system as a function of pH. In the second part, the analysis of the foam by conductivity and neutron scattering provides information on the wetness and foam film thickness, parameters governing foam stability. The pH and the nature of the added ions, their number of charge and also their chemical nature thus appear to be major parameters that governed wetness and foam film thickness. The last part is devoted to the understanding of the ion extraction/separation experiments by flotation based on all previous results. It is shown that the flotation of neodymium is strongly related to its speciation, which could lead to its re-extraction or its flotation in precipitated form. It is shown that, neodymium induces a phenomenon of mono-charge ion depletion in the foam. This ionic specificity allows to consider the studied

  9. Controlling block copolymer phase behavior using ionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India E-mail: debes.phys@gmail.com (India)

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  10. Use of surfactants for the remediation of contaminated soils: A review

    International Nuclear Information System (INIS)

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-01-01

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation

  11. Use of surfactants for the remediation of contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xuhui, E-mail: clab@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Jiang, Rui; Xiao, Wei [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2015-03-21

    Highlights: • The recent advances in use of surfactant for soil remediation are reviewed. • The mechanisms of surfactant-based soil remediation are discussed. • A review on the application of different types of surfactants is made. • The future research direction of surfactant-based technologies is suggested. - Abstract: Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  12. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis

    2004-01-01

    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  13. Surfactant loss control in chemical flooding spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1992--September 30 1995

    Energy Technology Data Exchange (ETDEWEB)

    Casteel, J. [Bartlesville Project Office, OK (United States)

    1996-07-01

    The aim of this research project was to investigate mechanisms governing adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effects of surfactant structure, surfactant combinations, various inorganic and polymeric species, and solids mineralogy have been determined. A multi-pronged approach consisting of micro & nano spectroscopy, electrokinetics, surface tension and wettability is used in this study. The results obtained should help in controlling surfactant loss in chemical flooding and in developing optimum structures and conditions for efficient chemical flooding processes. During the three years contract period, adsorption of single surfactants and select surfactant mixtures was studied at the solid-liquid and gas-liquid interfaces. Alkyl xylene sulfonates, polyethoxylated alkyl phenols, octaethylene glycol mono n-decyl ether, and tetradecyl trimethyl ammonium chloride were the surfactants studied. Adsorption of surfactant mixtures of varying composition was also investigated. The microstructure of the adsorbed layer was characterized using fluorescence spectroscopy. Changes in interfacial properties such as wettability, electrokinetics and stability of reservoir minerals were correlated with the amounts of reagent adsorbed. Strong effects of the structure of the surfactant and position of functional groups were revealed. Changes of microstructure upon dilution (desorption) were also studied. Presence of the nonionic surfactants in mixed aggregate leads to shielding of the charge of ionic surfactants which in turn promotes aggregation but reduced electrostatic attraction between the charged surfactant and the mineral surface. Strong consequences of surfactant interactions in solution on adsorption as well as correlations between monomer concentration in mixtures and adsorption were revealed.

  14. Sono-electroanalysis of copper: enhanced detection and determination in the presence of surfactants.

    Science.gov (United States)

    Hardcastle, Joanna Lorraine; Hignett, Geraldine; Melville, James L; Compton, Richard G

    2002-04-01

    Surfactant adsorption has been shown to have a passivating effect on the electrode surface during anodic stripping voltammetric measurements. In the present work the feasibility of sono-anodic stripping analysis for the determination of copper in aqueous media contaminated with surfactant has been studied at an unmodified bare glassy carbon electrode. We illustrate the deleterious effect of three common surfactants, sodium dodecyl sulfate (SDS), dodecyl pyridinium chloride (DPC) and Triton-X 100 (TX-100) on conventional electroanalysis. The analogous sono-electroanalytical response was investigated for each surfactant at ultrasound intensities above and below the cavitation threshold. The enhancement in the stripping signal observed is attributed to the increased mass transport due to acoustic streaming and above the cavitation threshold the intensity of cavitational events is significantly increased leading to shearing of adsorbed surfactant molecules from the surface. As a result accurate analyses for SDS concentrations up to 100 ppm are possible, with analytical signals visible in solutions of SDS and TX-100 of 1000 ppm. Analysis is reported in high concentration of surfactant with use of sono-solvent double extraction. The power of this technique is clearly illustrated by the ability to obtain accurate measurements of copper concentration from starting solutions containing 1000 ppm SDS or TX-100. This was also exemplified by analysis of the low concentration 0.3 microM Cu(II) solution giving a percentage recovery of 94% in the presence of 1000 ppm SDS or TX-100.

  15. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology.

    Science.gov (United States)

    Mikhailovskaya, A A; Noskov, B A; Lin, S-Y; Loglio, G; Miller, R

    2011-08-25

    The dynamic dilatational surface elasticity of mixed solutions of globular proteins (β-lactoglobulin (BLG) and bovine serum albumin (BSA)) with cationic (dodecyltrimethylammonium bromide (DTAB)) and anionic (sodium dodecyl sulfate (SDS)) surfactants was measured as a function of the surfactant concentration and surface age. If the cationic surfactant concentration exceeds a certain critical value, the kinetic dependencies of the dynamic surface elasticity of BLG/DTAB and BSA/DTAB solutions become nonmonotonous and resemble those of mixed solutions of proteins with guanidine hydrochloride. This result indicates not only the destruction of the protein tertiary structure in the surface layer of mixed solution but also a strong perturbation of the secondary structure. The corresponding kinetic dependencies for protein solutions with added anionic surfactants are always monotonous, thereby revealing a different mechanism of the adsorption layer formation. One can assume that the secondary structure is destroyed to a lesser extent in the latter case and hinders the formation of loops and tails at the interface. The increase of the solution's ionic strength by the addition of sodium chloride results in stronger changes of the protein conformations in the surface layer and the appearance of a local maximum in the kinetic dependencies of the dynamic surface elasticity in a relatively narrow range of SDS concentration. © 2011 American Chemical Society

  16. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    Energy Technology Data Exchange (ETDEWEB)

    Ishtikhar, Mohd [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Ali, Mohd Sajid [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Atta, Ayman M. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Petroleum Application department, Egyptian Petroleum Research Institute, Ahmad Elzomor St., Nasr city, Cairo-11727 (Egypt); Al-Lohedan, H.A. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Nigam, Lokesh; Subbarao, Naidu [Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Hasan Khan, Rizwan, E-mail: rizwanhkhan@hotmail.com [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India)

    2015-11-15

    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K{sub b}), enthalpy (ΔH{sup 0}), entropy (ΔS{sup 0}) and Gibbs free energy change (ΔG{sup 0}) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction.

  17. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis

    Directory of Open Access Journals (Sweden)

    Anna Koziróg

    2017-11-01

    Full Text Available We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide (C6, synthesized by the reaction of N,N-dimethyl-N-dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB. The experiments were performed with bacteria Asaia lannensis, a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.

  18. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis.

    Science.gov (United States)

    Koziróg, Anna; Kręgiel, Dorota; Brycki, Bogumił

    2017-11-22

    We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-( N,N -dimethyl- N -dodecylammonium bromide) (C6), synthesized by the reaction of N,N -dimethyl- N- dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis , a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.

  19. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    Science.gov (United States)

    Smith, Douglas D.; Hiller, John M.

    1998-01-01

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  20. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    Science.gov (United States)

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  1. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Lizzy A. Mwamburi

    2015-03-01

    Full Text Available Three non-ionic surfactants: Tween20, Tween80 and Breakthru® were screened for their effects on spore germination and mycelial growth rates and for their influence on three isolates of Beauveria bassianaspore germination at various temperatures. Tween20 and Tween80 were compatible with all the B. bassiana isolates in the germination studies, but inhibited germination at higher surfactant concentrations, irrespective of the conidial concentrations. Breakthru® had an inhibitory effect on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The effects of the surfactants on spore germination did not correspond with their effects on colony growth. Conidial viability within the same formulation declined significantly with increases in temperature, irrespective of the surfactant. The optimal temperature for conidial germination of B. bassiana isolates was approximately 25 °C with an upper limit at 30 °C. Isolate 7320 was identified as the least affected by the different surfactants. This isolate was able to germinate rapidly in a broad temperature range of 25–30 °C after 24 h, this characteristic being an essential factor in controlling house fly populations in poultry houses.

  2. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana.

    Science.gov (United States)

    Mwamburi, Lizzy A; Laing, Mark D; Miller, Ray M

    2015-03-01

    Three non-ionic surfactants: Tween20, Tween80 and Breakthru (®) were screened for their effects on spore germination and mycelial growth rates and for their influence on three isolates of Beauveria bassiana spore germination at various temperatures. Tween20 and Tween80 were compatible with all the B. bassiana isolates in the germination studies, but inhibited germination at higher surfactant concentrations, irrespective of the conidial concentrations . Breakthru (®) had an inhibitory effect on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The effects of the surfactants on spore germination did not correspond with their effects on colony growth. Conidial viability within the same formulation declined significantly with increases in temperature, irrespective of the surfactant. The optimal temperature for conidial germination of B. bassiana isolates was approximately 25 °C with an upper limit at 30 °C. Isolate 7320 was identified as the least affected by the different surfactants. This isolate was able to germinate rapidly in a broad temperature range of 25-30 °C after 24 h, this characteristic being an essential factor in controlling house fly populations in poultry houses.

  3. Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution

    International Nuclear Information System (INIS)

    Rub, Malik Abdul; Azum, Naved; Kumar, Dileep; Asiri, Abdullah M.; Marwani, Hadi M.

    2014-01-01

    Highlights: • Micellization behavior of (ibuprofen + non-ionic surfactant) mixtures has been investigated. • Ion–dipole type of interaction between ibuprofen drug and non-ionic surfactant. • The negative β values propose attractive interactions between the components. • Stern–Volmer binding constants (K sv ) and dielectric constant of mixed systems have also been evaluated. • The results have applicability in drug delivery. - Abstract: Herein, we have accounted for the interaction between a non-steroidal anti-inflammatory drug ibuprofen (IBF) and non-ionic surfactant polyethoxyglycol t-octylphenyl ether (TX-100 (4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol) and TX-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol)), in aqueous urea solutions using tensiometric and fluorimetric techniques at T = 298.15 K. Surface tension measurements were carried out to evaluate the critical micelle concentrations (cmc) of the drug and surfactant as well as their mixtures of varying compositions. An increase in the surface charge of the micelles was observed with the addition of urea followed by halt of micelles formation. Various physicochemical parameters, such as, cmc values of the mixture, micellar mass fraction (X 1 Rub ) of surfactants (TX-100/TX-114), interaction parameters (β) at the monolayer air–water interface and in bulk solutions, different thermodynamic parameters and activity coefficients (f 1 m ,f 2 m ) for the non-ionic surfactant and drug in the mixed micelles, were determined by using the approach of Clint, of Rubingh, and of Rosen. All results identified synergism and attractive interactions in the mixed systems of (drug–surfactant) mixtures and showed effective involvement of the non-ionic surfactant (TX-100/TX-114) component in the mixture. Micelle aggregation numbers (N agg ), evaluated by using steady-state fluorescence quenching studies, suggest that the contribution of non-ionic surfactant was always more than that of

  4. The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gac, Wojciech, E-mail: wojciech.gac@umcs.lublin.pl [Department of Chemical Technology, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 M. Curie-Sklodowska Sq., 20-031 Lublin (Poland); Zawadzki, Witold; Słowik, Grzegorz; Pawlonka, Justyna; Machocki, Andrzej [Department of Chemical Technology, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 M. Curie-Sklodowska Sq., 20-031 Lublin (Poland); Lipke, Agnieszka; Majdan, Marek [Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, 2 M. Curie-Sklodowska Sq., 20-031 Lublin (Poland)

    2016-06-15

    Highlights: • Synthesis of novel ZnO−Al{sub 2}O{sub 3} oxides in the presence of CTAB surfactant. • Determination of the structural, surface and optical properties. • Nanocrystalline, high-surface area ZnO−Al{sub 2}O{sub 3} oxides. • ZnO-Al{sub 2}O{sub 3} materials of different gap energy. - Abstract: Novel alumina modified zinc oxide materials were prepared by co-precipitation method in the presence of different amounts of cetyltrimethylammonium bromide (CTAB) surfactant. X-ray diffraction, {sup 27}Al magic-angle spinning Nuclear Magnetic Resonance Spectroscopy, and transmission electron microscopy studies evidenced formation of 10–15 nm zinc oxide nanoparticles in the presence of the small amounts of surfactant. Amorphous alumina and zinc aluminate phases of different coordination environment of Al sites were identified. An increase of surfactant concentration led to the elongation of nanoparticles and changes of the nature of hydroxyl groups. Precipitation in the high CTAB concentration conditions facilitated formation of mesoporous materials of high specific surface area. The materials were composed of very small (2–3 nm) zinc aluminate spinel nanoparticles. High concentration of CTAB induced widening of band gap energy.

  5. The effect of surfactants on the electropolishing behavior of copper in orthophosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Taha, A.A., E-mail: asia_taha@yahoo.com; Ahmed, A.M.; Rahman, H.H. Abdel; Abouzeid, F.M.

    2013-07-15

    The electropolishing behavior of copper was studied in orthophosphoric acid with Triton X-100, sodium dodecyl sulphate and cetyl pyridinium chloride as additives for improving the finish obtained on copper surface. This was investigated by measuring and comparing anode potential-limiting current relationships in solutions of gradually increasing concentration of surfactants. The addition of surfactants to the electropolishing solution results in a lower limiting current. This confirms the mass transport of dissolved species from the anode surface to the bulk of solution as the rate-determining step in the presence of three surfactants in all concentrations investigated. Scanning electron microscope (SEM), atomic force microscope (AFM) and measured brightness values were used to investigate the copper surface after electropolishing and the results were compared to polishing done in absence of surfactants. According to SEM images and brightness values, addition of Triton X-100 was effective to enhance levelling and brightening more than sodium dodecyl sulphate and cetyl pyridinium chloride. AFM analysis showed that the roughness values (R{sub a}) for an electropolished copper surface, in presence of surfactants, is significantly lower than in absence of surfactants. Different reaction conditions and the physical properties of solutions are studied to obtain dimensionless correlation among all these parameters.

  6. Modeling of the Critical Micelle Concentration (CMC) of Nonionic Surfactants with an Extended Group-Contribution Method

    DEFF Research Database (Denmark)

    Mattei, Michele; Kontogeorgis, Georgios; Gani, Rafiqul

    2013-01-01

    , those compounds that exhibit larger correlation errors (based only on first- and second-order groups) are assigned to more detailed molecular descriptions, so that better correlations of critical micelle concentrations are obtained. The group parameter estimation has been performed using a data set......A group-contribution (GC) property prediction model for estimating the critical micelle concentration (CMC) of nonionic surfactants in water at 25 °C is presented. The model is based on the Marrero and Gani GC method. A systematic analysis of the model performance against experimental data...... concentration, and in particular, the quantitative structure−property relationship models, the developed GC model provides an accurate correlation and allows for an easier and faster application in computer-aided molecular design techniques facilitating chemical process and product design....

  7. The interactions between ionic surfactants and phosphatidylcholine vesicles: Conductometry

    Science.gov (United States)

    Tsao, Heng-Kwong; Tseng, Wen Liang

    2001-11-01

    The interaction between ionic surfactants and phosphatidylcholine vesicles, which are prepared without addition of buffer and salt, is investigated by conductivity measurements. On the basis of the vesicle acting as a trap of charge carriers, the bilayer/aqueous phase partition coefficient K and the surfactant/lipid molar ratio Re of nine surfactants are determined. The thermodynamic consistency is satisfied by the measured parameters. The effects of the alkyl chain length (C10-C16) and ionic head group are then studied. The inverse partition coefficient K-1 is linearly related to the critical micelle concentration. The solubilizing ability Reb is a consequence of the competition between the surfactant incorporation into the bilayer and the formation of micelles. Consequently, the K parameter rises whereas the Reb parameter declines as the chain length is increased. The influence due to addition of salt is also discussed.

  8. Study of the enhanced oil recovery with surfactant based systems; Estudo de recuperacao avancada de petroleo por sistemas a base de tensoativos

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Neto, Valdir Cotrim; Paulino, Luisa Cimatti; Acyoly, Alessandra; Santos, Enio Rafael M.; Dantas Neto, Afonso Avelino [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, it must be used enhanced recovery methods. One of these technologies is the injection of surfactant solutions, where exists a chemical interaction between the injected fluid and the reservoir's fluid. With this in mind, this work was developed with two main objectives: to study of parameters that influence the surfactant behavior in solution, namely the critical micelle concentration (CMC), the surface and interface tensions between fluids and the evaluation of oil recovery with these solutions. After the Botucatu sandstone (Brazil) porosity study, the plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The solutions were studied in enhanced recovery step, when the plug samples could already be compared to a mature field. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater. (author)

  9. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    Science.gov (United States)

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  10. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Erin C. H., E-mail: erinkyle@engineering.ucsb.edu; Kaun, Stephen W.; Young, Erin C.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5–6 × 10{sup 19} cm{sup −3} as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 10{sup 18} cm{sup −3}. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  11. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A

    2009-05-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.

  12. Role of anionic and cationic surfactants on the structural and dielectric properties of ZrO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, Gaganpreet Kaur; Kumar, Rajesh, E-mail: rajeshbaboria@gmail.com

    2017-01-15

    Highlights: • Synthesis of Zirconia nanoparticles with and without surfactants by co- precipitation method. • Surface modification of ZrO{sub 2} nanoparticles. • Phase transition with different concentration of surfactants. • Dielectric behavior of bare, CTAB assisted and SDS assisted ZrO{sub 2} nanoparticles. - Abstract: In the present paper, we report the synthesis of Cetyltrimethylammonium Bromide (CTAB) and Sodium dodecyl sulfate (SDS) assisted Zirconia (ZrO{sub 2}) nanoparticles by co-precipitation method. The effect of surfactant concentration on the structural and dielectric properties has been extensively studied. X-ray diffraction studies reveal the formation of tetragonal phase in the ZrO{sub 2} nanoparticles prepared by lower CTAB concentration. However, for higher concentration of CTAB some traces of monoclinic phase appeared along with tetragonal phase. SDS assisted nanoparticles shows crystalline tetragonal phase with lower concentration of SDS and amorphous nature with higher concentrations of SDS. FTIR results show the presence of Zr–O symmetrical stretching vibrations at tetrahedral site. The dielectric properties of all samples have been studied from 10 Hz to 1 MHz, revealing the low value of dielectric constant with CTAB and very high value with SDS as compared to bare ZrO{sub 2} nanoparticles. The dielectric behaviour of the bare and surfactant assisted nanoparticles has been correlated with the phase transition, size of nanoparticles and the nature of surfactants.

  13. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts...

  14. The Initial Comparison Study of Sodium Lignosulfonate, Sodium Dodecyl Benzene Sulfonate, and Sodium p-Toluene Sulfonate Surfactant for Enhanced Oil Recovery

    Science.gov (United States)

    Khoirul Anas, Argo; Iman Prakoso, Nurcahyo; Sasvita, Dilla

    2018-04-01

    Surfactant (surface active agent) exhibit numerous interesting properties that enable their use as additional component in mobilising of residual oil from capillary pore after secondary recovery process using gas injection and water flooding. In this study, Sodium Lignosulfonate (SLS) surfactant was successfully synthesized by applying batch method using lignin from oil palm empty fruit bunches as precursor. Furthermore, its performance in reducing interfacial tension of crude oil and formation water colloidal system was compared with commercial available surfactant including Sodium Dodecyl Benzene Sulfonate (SDBS) and Sodium p-Toluene Sulfonate (SpTS). The synthesized SLS surfactant was characterized by using Fourier Transform Infrared (FTIR) spectroscopy. Meanwhile, its performance in reducing interfacial tension of crude oil and formation water colloidal system was analyzed by using compatibility test, phase behaviour analysis, and interfacial tension (IFT) measurement. The compatibility test shows that SLS, SDBS, and SpTS surfactants were compatible with formation water. In addition, the phase behaviour analysis shows that SLS surfactant was better than SpTS surfactant, while SDBS surfactant generates the highest performance proved by the best microemulsion formation resulted by SDBS. Furthermore, the optimum concentration of SLS, SDBS, and SpTS surfactants in reducing the interfacial tension of crude oil and formation water was 1.0%. The IFT measurement indicates that the performance of SLS with the value of 1.67 mN/m was also better than SpTS surfactant with the value of 3.59 mN/m. Meanwhile, SDBS surfactant shows the best performance with the IFT value of 0.47 mN/m.

  15. Surfactant induced complex formation and their effects on the interfacial properties of seawater.

    Science.gov (United States)

    Guzmán, Eduardo; Santini, Eva; Benedetti, Alessandro; Ravera, Francesca; Ferrari, Michele; Liggieri, Libero

    2014-11-01

    The effect of a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), on the interfacial properties of seawater has been studied by dynamic and equilibrium surface tension and by dilational rheology essays. Important modifications of the surface tension and dilational rheology response have been observed already at the very low CTAB concentrations, where the effects due to the high ionic strength are negligible. The comparison with the effects of CTAB in different seawater models, or in natural seawater fractions, points out the establishment of strong interactions between the surfactant molecules and the lipophilic fraction of organic material dispersed/dissolved in seawater, affecting the interfacial activity of the molecules. Considering the biochemical richness of seawater, these results can be explained assuming interaction mechanisms and adsorption schemes similar to those speculated for protein and other macromolecules in the presence of surfactants, which in fact show similar features. Thus already at the low concentrations the surfactant molecules form highly surface-active complexes with part of the organic fraction of seawater. At the larger surfactant concentrations these complexes compete for adsorption with an excess of free CTAB molecules which, according to the thermodynamic conditions, are most favoured to occupy the liquid interface. The results of this study underline the important role of the sea organic content in enhancing the surface-activity of surfactants, which is relevant for a deeper understand of the direct and indirect effects of these types of pollutants on the physico-chemical environment in the sea coastal areas and develop mitigation strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Partitioning of hydrophobic pesticides within a soil-water-anionic surfactant system.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2009-02-01

    Surfactants can be added to pesticide-contaminated soils to enhance the treatment efficiency of soil washing. Our results showed that pesticide (atrazine and diuron) partitioning and desorbability within a soil-water-anionic surfactant system is soil particle-size dependent and is significantly influenced by the presence of anionic surfactant. Anionic surfactant (linear alkylbenzene sulphonate, LAS) sorption was influenced by its complexation with both the soluble and exchangeable divalent cations in soils (e.g. Ca2+, Mg2+). In this study, we propose a new concept: soil system hardness which defines the total amount of soluble and exchangeable divalent cations associated with a soil. Our results showed that anionic surfactant works better with soils having lower soil system hardness. It was also found that the hydrophobic organic compounds (HOCs) sorbed onto the LAS-divalent cation precipitate, resulting in a significant decrease in the aqueous concentration of HOC. Our results showed that the effect of exchangeable cations and sorption of HOC onto the surfactant precipitates needs to be considered to accurately predict HOC behavior within soil-water-anionic surfactant systems.

  17. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    Science.gov (United States)

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  18. Influence of Valsartan on the thermodynamics of micellization of anionic surfactant Sodium Dodecyl Sulphate

    Directory of Open Access Journals (Sweden)

    Stopková L.

    2016-12-01

    Full Text Available In this manuscript was investigated behaviour of drug valsartan by micellar media of anionic surfactant sodium dodecyl sulphate. As the method was used electrical conductivity for the determination of critical micelle concentration at different temperatures (T = 293.15 - 313.15 K, as well as calculated thermodynamic parameters like standard Gibbs free energy, enthalpy and entropy of micellization. According to contribution of Gibbs free energy is the process of micellization primarily controlled by entropy. Solubilization of valsartan was studied in surfactant system at 298.15 K and physiological conditions pH 7.4 using UV-spectrophotometry at different concentration range (0.001 - 0.07 mol/l of sodium dodecyl sulphate. The solubilization of drug was observed with increasing concentration of surfactant in aqueous solution.

  19. BINDING OF IONIC SURFACTANTS ON OPPOSITELY CHARGED POLYELECTROLYTES OBSERVED BY FLUORESCENCE METHODS

    Institute of Scientific and Technical Information of China (English)

    Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng

    2003-01-01

    Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.

  20. A level-set method for two-phase flows with soluble surfactant

    Science.gov (United States)

    Xu, Jian-Jun; Shi, Weidong; Lai, Ming-Chih

    2018-01-01

    A level-set method is presented for solving two-phase flows with soluble surfactant. The Navier-Stokes equations are solved along with the bulk surfactant and the interfacial surfactant equations. In particular, the convection-diffusion equation for the bulk surfactant on the irregular moving domain is solved by using a level-set based diffusive-domain method. A conservation law for the total surfactant mass is derived, and a re-scaling procedure for the surfactant concentrations is proposed to compensate for the surfactant mass loss due to numerical diffusion. The whole numerical algorithm is easy for implementation. Several numerical simulations in 2D and 3D show the effects of surfactant solubility on drop dynamics under shear flow.

  1. Surfactant flooding of diesel-contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.A.

    1991-01-01

    At one installation, approximately 60,000 gallons of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of this research program after initial surfactant screening of 21 surfactants. Three of the surfactants were used for the surfactant flooding studies; the results from that phase of the research program are described

  2. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2015-05-19

    A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process.

  3. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    International Nuclear Information System (INIS)

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-01-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs

  4. Role of surfactant on thermoelectric behaviors of organic-inorganic composites

    Science.gov (United States)

    Shin, Sunmi; Roh, Jong Wook; Kim, Hyun-Sik; Chen, Renkun

    2018-05-01

    Hybrid organic/inorganic composites have recently attracted intensive interests as a promising candidate for flexible thermoelectric (TE) devices using inherently soft polymers as well as for increasing the degree of freedom to control TE properties. Experimentally, however, enhanced TE performance in hybrid composites has not been commonly observed, primarily due to inhomogeneous mixing between the inorganic and organic components which leads to limited electrical conduction in the less conductive component and consequently a low power factor in the composites compared to their single-component counterparts. In this study, we investigated the effects of different surfactants on the uniformity of mixing and the TE behaviors of the hybrid composites consisting of Bi0.5Sb1.5Te3 (BST) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). We found that compared to dimethyl sulfoxide, which is the most widely used surfactant, Triton X-100 (TX-100) can lead to homogenous dispersion of BST in PEDOT:PSS. By systematically studying the effects of the surfactant concentration, we can attribute the better mixing capability of TX-100 to its non-ionic property, which results in homogenous mixing with a lower critical micelle concentration. Consequently, we observed simultaneous increase in electrical conductivity and Seebeck coefficient in the BST/PEDOT:PSS composites with the TX-100 surfactant.

  5. Influence of chemical surfactants on the biodegradation of crude oil by a mixed bacterial culture

    International Nuclear Information System (INIS)

    Van Hamme, J.D.; Ward, O.P.

    1999-01-01

    A study was conducted in which the effects of surfactant physicochemical properties on crude oil biodegradation by a mixed-bacterial culture were examined. The effects of hydrophile-lipophile balance (HLB) and molecular structure on the biodegradation of Bow River crude oil were determined. It was shown that chemical surfactants have the potential to improve crude oil biodegradation in complex microbial systems. Surfactant selection should consider factors such as molecular structure, HLB and surfactant concentration. 26 refs., 4 tabs., 3 figs

  6. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Leão, Bruna A; Tótola, Marcos R; Borges, Arnaldo C

    2011-02-01

    The acute toxicity of bacterial surfactants LBBMA111A, LBBMA155, LBBMA168, LBBMA191 and LBBMA201 and the synthetic surfactant sodium dodecyl sulfate (SDS) on the bioluminescent bacterium Vibrio fischeri was evaluated by measuring the reduction of light emission (EC(20)) by this microorganism when exposed to different surfactant concentrations. Moreover, the toxic effects of different concentrations of biological and synthetic surfactants on the growth of pure cultures of isolates Acinetobacter baumannii LBBMA04, Acinetobacter junni LBBMA36, Pseudomonas sp. LBBMA101B and Acinetobacter baumanni LBBMAES11 were evaluated in mineral medium supplemented with glucose. The EC(20) values obtained confirmed that the biosurfactants have a significantly lower toxicity to V. fischeri than the SDS. After 30 min of exposure, bacterial luminescence was almost completely inhibited by SDS at a concentration of 4710 mg L(-1). Growth reduction of pure bacterial cultures caused by the addition of biosurfactants to the growth medium was lower than that caused by SDS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. EVALUATION OF THE USEFULNESS OF CONTINUOUS FLOW ANALYSIS FOR THE STUDY OF ANIONIC SURFACTANTS AND NONIONIC SURFACTANTS IN WATER AND SEWAGE SAMPLES

    Directory of Open Access Journals (Sweden)

    Aleksandra Strugała-Wilczek

    2014-10-01

    Established methods show low limit of detection, good precision and good correctness. The described full automatic method takes effect in short-time analysis, small sample volume required for testing and waste restriction. Proposed flow injection system comply with requirements and may be successfully applied in monitoring studies as well as in the routine laboratory analysis. Rapid determination of water and waste water quality by the SFA for the content of surfactants allows an adequate response in case of exceeding the permissible concentrations, even according to the most restricted requirements.

  8. Microfluidic processing of concentrated surfactant mixtures: online SAXS, microscopy and rheology.

    Science.gov (United States)

    Martin, Hazel P; Brooks, Nicholas J; Seddon, John M; Luckham, Paul F; Terrill, Nick J; Kowalski, Adam J; Cabral, João T

    2016-02-14

    We investigate the effect of microfluidic flow on the microstructure and dynamics of a model surfactant mixture, combining synchrotron Small Angle X-ray Scattering (SAXS), microscopy and rheology. A system comprising a single-chain cationic surfactant, hexadecyl trimethyl ammonium chloride (C16TAC), a short-chain alcohol (1-pentanol) and water was selected for the study due to its flow responsiveness and industrial relevance. Model flow fields, including sequential contraction-expansion (extensional) and rotational flows, were investigated and the fluid response in terms of the lamellar d-spacing, orientation and birefringence was monitored in situ, as well as the recovery processes after cessation of flow. Extensional flows are found to result in considerable d-spacing increase (from approx 59 Å to 65 Å). However, under continuous flow, swelling decreases with increasing flow velocity, eventually approaching the equilibrium values at velocities ≃2 cm s(-1). Through individual constrictions we observe the alignment of lamellae along the flow velocity, accompanied by increasing birefringence, followed by an orientation flip whereby lamellae exit perpendicularly to the flow direction. The resulting microstructures are mapped quantitatively onto the flow field in 2D with 200 μm spatial resolution. Rotational flows alone do not result in appreciable changes in lamellar spacing and flow type and magnitude evidently impact the fluid microstructure under flow, as well as upon relaxation. The findings are correlated with rheological properties measured ex situ to provide a mechanistic understanding of the effect of flow imposed by tubular processing units in the phase behavior and performance of a model surfactant system with ubiquitous applications in personal care and coating industries.

  9. Nonlinear dynamics in experimental devices with compressed/expanded surfactant monolayers

    International Nuclear Information System (INIS)

    Higuera, M; Perales, J M; Vega, J M

    2014-01-01

    A theory is provided for a common experimental set up that is used to measure surface properties in surfactant monolayers. The set up consists of a surfactant monolayer (over a shallow liquid layer) that is compressed/expanded in a periodic fashion by moving in counter-phase two parallel, slightly immersed solid barriers, which vary the free surface area and thus the surfactant concentration. The simplest theory ignores the fluid dynamics in the bulk fluid, assuming spatially uniform surfactant concentration, which requires quite small forcing frequencies and provides reversible dynamics in the compression/expansion cycles. In this paper, we present a long-wave theory for not so slow oscillations that assumes local equilibrium but takes the fluid dynamics into account. This simple theory uncovers the physical mechanisms involved in the surfactant behavior and allows for extracting more information from each experimental run. The conclusion is that the fluid dynamics cannot be ignored, and that some irreversible dynamics could well have a fluid dynamic origin. (paper)

  10. Dispersion stability of a ceramic glaze achieved through ionic surfactant adsorption.

    Science.gov (United States)

    Panya, Preecha; Arquero, Orn-anong; Franks, George V; Wanless, Erica J

    2004-11-01

    The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.

  11. Biodegradation of an oil-hydrocarbon contaminated soil, enhanced by surfactants: Effect of the type and dose of surfactant

    International Nuclear Information System (INIS)

    Torres, L. G.; Galindo, C.; Rojas, N.; Iturbe, R.

    2009-01-01

    The aim of this work was to study the effect of different parameters, such as surfactant type an dose, soil initial hydrocarbons concentration, and soil granulometry, over the total petroleum hydrocarbons TPH degradation, as well as over the microbial count (as colony formation units CFU/g soil) along the process. (Author)

  12. The photodegradation of trichloroethylene with or without the NAPL by UV irradiation in surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jia Juncai [Department of Civil and Structural Engineering, Research Centre for Urban Environmental Technology and Management, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Chu, W. [Department of Civil and Structural Engineering, Research Centre for Urban Environmental Technology and Management, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)], E-mail: cewchu@polyu.edu.hk

    2009-01-15

    The photodegradation of trichloroethene (TCE) with or without nonaqueous phase liquids (NAPL) by ultraviolet irradiation in surfactant solutions was examined in this study. The photodecay of TCE was studied at monochromatic 254 nm UV lamps. The effects of the type of surfactants, initial surfactant concentrations, pH levels and NAPL concentrations were examined to explore the photodecay of TCE. All the photodegradation of TCE followed pseudo-first-order decay kinetics at various conditions. It was found that Brij 35 overdose and higher initial pH levels may retard or inhibit the photodecay of TCE, mainly due to protons, intermediate generation and change of surfactant structure in the processes. The optimal condition for TCE photodecay was suggested based on the analysis of kinetics data, from which the reaction mechanism of TCE in the presence of NAPL form was also studied. In general, the reactions of TCE in micellar solution and NAPL pool can be considered as independent pathways due to the low molecule diffusion between the two phases.

  13. The photodegradation of trichloroethylene with or without the NAPL by UV irradiation in surfactant solutions

    International Nuclear Information System (INIS)

    Jia Juncai; Chu, W.

    2009-01-01

    The photodegradation of trichloroethene (TCE) with or without nonaqueous phase liquids (NAPL) by ultraviolet irradiation in surfactant solutions was examined in this study. The photodecay of TCE was studied at monochromatic 254 nm UV lamps. The effects of the type of surfactants, initial surfactant concentrations, pH levels and NAPL concentrations were examined to explore the photodecay of TCE. All the photodegradation of TCE followed pseudo-first-order decay kinetics at various conditions. It was found that Brij 35 overdose and higher initial pH levels may retard or inhibit the photodecay of TCE, mainly due to protons, intermediate generation and change of surfactant structure in the processes. The optimal condition for TCE photodecay was suggested based on the analysis of kinetics data, from which the reaction mechanism of TCE in the presence of NAPL form was also studied. In general, the reactions of TCE in micellar solution and NAPL pool can be considered as independent pathways due to the low molecule diffusion between the two phases

  14. Study of the influence of surfactants on the activity coefficients and mass transfer coefficients of methanol in aqueous mixtures by reversed-flow gas chromatography.

    Science.gov (United States)

    Kotsalos, Efthimios; Brezovska, Boryana; Sevastos, Dimitrios; Vagena, Artemis; Koliadima, Athanasia; Kapolos, John; Karaiskakis, George

    2017-11-17

    This work focuses on the influences of surfactants on the activity coefficients, γ, of methanol in binary mixtures with water, as well as on the mass transfer coefficients, k c , for the evaporation of methanol, which is a ubiquitous component in the troposphere, from mixtures of methanol with water at various surfactant's and methanol's concentrations. The technique used is the Reversed-Flow Gas Chromatography (R.F.G.C.), a version of Inverse Gas Chromatography, which allows determining both parameters by performing only one experiment for the k c parameter and two experiments for the γ parameter. The k c and γ values decrease in the presence of the three surfactants used (CTAB, SDS, TRITON X-100) at all methanol's and surfactant's concentrations. The decrease in the methanol's molar fraction, at constant number of surfactant films leads to a decrease in the k c and γ values, while the decrease in the surfactant's concentration, at constant methanol's molar fraction leads to an increase in both the k c and γ parameters. Mass transfer coefficients for the evaporation of methanol at the surfactant films, are also calculated which are approximately between 4 and 5 orders of magnitude larger than the corresponding mass transfer coefficients at the liquid films. Finally, thicknesses of the boundary layer of methanol in the mixtures of methanol with water were determined. The quantities found are compared with those given in the literature or calculated theoretically using various empirical equations. The precision of the R.F.G.C. method for measuring γ and k c parameters is approximately high (94.3-98.0%), showing that R.F.G.C. can be used with success not only for the thermodynamic study of solutions, but also for the interphase transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles.

    Science.gov (United States)

    Kennedy, Patrick J; Perreira, Ines; Ferreira, Daniel; Nestor, Marika; Oliveira, Carla; Granja, Pedro L; Sarmento, Bruno

    2018-06-01

    Targeted drug delivery with nanoparticles (NPs) requires proper surface ligand presentation and availability. Surfactants are often used as stabilizers in the production of targeted NPs. Here, we evaluated the impact of surfactants on ligand functionalization and downstream molecular recognition. Our model system consisted of fluorescent poly(lactic-co-glycolic acid) (PLGA) NPs that were nanoprecipitated in one of a small panel of commonly-used surfactants followed by equivalent washes and conjugation of an engineered Fab antibody fragment. Size, polydispersity index and zeta potential were determined by dynamic light scattering and laser Doppler anemometry, and Fab presence on the NPs was assessed by enzyme-linked immunosorbent assay. Most importantly, Fab-decorated NP binding to the cell surface receptor was monitored by fluorescence-activated cell sorting. 2% polyvinyl alcohol, 1% sodium cholate, 0.5% Pluronic F127 (F127) and 2% Tween-80 were initially tested. Of the four surfactants tested, PLGA NPs in 0.5% F127 and 2% Tween-80 had the highest cell binding. These two surfactants were then retested in two different concentrations, 0.5% and 2%. The Fab-decorated PLGA NPs in 2% F127 had the highest cell binding. This study highlights the impact of common surfactants and their concentrations on the downstream targeting of ligand-decorated NPs. Similar principles should be applied in the development of future targeted nanosystems where surfactants are employed. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental

    DEFF Research Database (Denmark)

    Taeusch, H William; de la Serna, Jorge Bernardino; Perez-Gil, Jesus

    2005-01-01

    adsorption of surface active serum proteins. Aqueous suspensions of native porcine surfactant, organic extracts of native surfactant, and the clinical surfactants Curosurf, Infasurf, and Survanta spread on buffered subphases increase the surface pressure, pi, to approximately 40 mN/m within 2 min....... The variation with concentration, temperature, and mode of spreading confirmed Brewster angle microscopy observations that subphase to surface adsorption of surfactant is the dominant form of surfactant transport to the interface. However (with the exception of native porcine surfactant), similar rapid...... increases in pi did not occur when surfactants were applied to subphases containing serum. Components of serum are surface active and adsorb reversibly to the interface increasing pi up to a concentration-dependent saturation value, pi(max). When surfactants were applied to subphases containing serum...

  17. Study on 3D surfactant assisted electrokinetic remediation of 1,2,4-trichlorobenzene in low permeability soil

    Science.gov (United States)

    Qiao, W.; Ye, S.; Wu, J.

    2014-12-01

    Electrickinetic(EK) is a promising remediation technology because of its capability to remediate soils with low permeability. It has been used for heavy metals and organic pollutant(OPs) contaminated soils. As the most OPs are poor solubility and strong sorption capacity, combined EK technology is usually used, for example, EK combined with surfactants. Numerous combined EK tests are done in one-dimension(1D) column, however, it is proved that there is a big gap between 1D tests and field application. The objectives of this study are to investigate the remediation efficiency and EK behavior of 1,2,4-trichlorobenzene(1,2,4-TCB) contaminated clay enhanced by surfactants in a three-dimension reactor with 28cm length×15cm width×16cm height. 1,2,4-TCB was one of the main contaminants at a field site in Nanjing, China, where the polluted soils are clay. Soil filled in EK cell was divided into six layers in depth, and each layer was divided into six parts in length and three parts in width. There were 108 specimens in total which realized 3D monitoring the effects of EK. Triton X-100(Exp1) and Tween80(Exp2) dissolved in NaCO3/NaHCO3 buffer respectively, were used as the anode purging solution. The distributions of soil pH and water content showed that the buffer was sufficient to neutralize H+ produced at anode and the direction of electroosmotic flow(EOF) remained constant. Exp2 generated a higher EOF than Exp1, but remediation efficiencies were not satisfactory so far. The concentration of 1,2,4-TCB in soil reached a peak and nadir in the normalized distances of 0.75 and 0.9 from cathode after 5 days, respectively. The 1,2,4-TCB concentration in the peak was almost twice as much as the initial concentration. It suggested that 1,2,4-TCB was desorbed from soil by surfactants and was transported from anode to cathode by EOF, which proved the capability of EK with surfactants to move 1,2,4-TCB in clay. The concentration of 1,2,4-TCB in the normalized distances of 0

  18. Effects of a homologous series of linear alcohol ethoxylate surfactants on fathead minnow early life stages.

    Science.gov (United States)

    Lizotte, R E; Wong, D C; Dorn, P B; Rodgers, J H

    1999-11-01

    Effects of a homologous series of three primarily linear alcohol ethoxylate surfactants were studied in laboratory flow-through 28-day early-life-stage tests with fathead minnow (Pimephales promelas Rafinesque). Surfactants were a C(9-11), C(12-13), and C(14-15) with an average of 6, 6.5, and 7 ethylene oxide units per mole of alcohol, respectively. Average measured surfactant recoveries were 103%, 81%, and 79% of nominal concentrations for the C(9-11) EO 6, C(12-13) EO 6.5, and C(14-15) EO 7 studies, respectively. Embryo survival at 48 h was not adversely affected at any of the concentrations tested. Impaired hatching and deformed fry were observed only in the C(12-13) EO 6.5 study. The 28-day LC50 values were 4.87, 2.39, and 1.02 mg/L for the C(9-11) EO 6, C(12-13) EO 6.5, and C(14-15) EO 7 surfactants, respectively. The corresponding NOECs for survival were 1.01, 1.76, and 0.74 mg/L. Posthatch fry growth was more sensitive than survival for the C(12-13) EO 6.5 and C(14-15) EO 7 surfactants. Survival of posthatch fry decreased with increasing surfactant alkyl chain length. Twenty-eight-day laboratory data were compared to 96-h laboratory, 10-day laboratory and 30-day stream mesocosm data for fathead minnow previously determined for these surfactants. Survival endpoints from the different exposures were comparable and only varied within a factor of two. Similarity of results suggests that it is possible to effectively use 96-h, 10-day, or 28-day laboratory data to predict environmental effects concentrations of these surfactants for fish. http://link.springer-ny. com/link/service/journals/00244/bibs/37n4p536.html

  19. Use of surfactants to control island size and density

    Science.gov (United States)

    Merrell, Jason; Liu, Feng; Stringfellow, Gerald B.

    2017-08-15

    Methods of controlling island size and density on an OMVPE growth film may comprise adding a surfactant at a critical concentration level, allowing a growth phase for a first period of time, and ending the growth phase when desired island size and density are achieved. For example, the island size and density of an OMVPE grown InGaN thin film may be controlled by adding an antimony surfactant at a critical concentration level.

  20. Modeling and simulation of surfactant-polymer flooding using a new hybrid method

    Science.gov (United States)

    Daripa, Prabir; Dutta, Sourav

    2017-04-01

    Chemical enhanced oil recovery by surfactant-polymer (SP) flooding has been studied in two space dimensions. A new global pressure for incompressible, immiscible, multicomponent two-phase porous media flow has been derived in the context of SP flooding. This has been used to formulate a system of flow equations that incorporates the effect of capillary pressure and also the effect of polymer and surfactant on viscosity, interfacial tension and relative permeabilities of the two phases. The coupled system of equations for pressure, water saturation, polymer concentration and surfactant concentration has been solved using a new hybrid method in which the elliptic global pressure equation is solved using a discontinuous finite element method and the transport equations for water saturation and concentrations of the components are solved by a Modified Method Of Characteristics (MMOC) in the multicomponent setting. Numerical simulations have been performed to validate the method, both qualitatively and quantitatively, and to evaluate the relative performance of the various flooding schemes for several different heterogeneous reservoirs.

  1. Optimization of surfactant-aided remediation of industrially contaminated soils

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1996-01-01

    Soil matrices contaminated with polycyclic aromatic hydrocarbons (PAHs) abound at the sites of coke-oven gas plants, refineries, and many other major chemical industries. The removal of PAHs from soil using pure water, via soil washing (ex situ) or soil flushing (in situ), is quite ineffective due to their low solubility and hydrophobicity. However, addition of suitable surfactant(s) has been shown to increase the removal efficiency several fold. For the present work, the removal of PAHs occurring in industrially contaminated soil was studied. The objective was to use a nonionic surfactant solution for in situ soil flushing and to evaluate the optimal range of process parameters that can significantly increase the removal efficiency. The process parameters chosen were surfactant concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant effect on PAH removal from the contaminated soil and an optimal range was determined for each parameter under given washing conditions

  2. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    Science.gov (United States)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  3. Spectroscopic characterization approach to study surfactants effect on ZnO2 nanoparticles synthesis by laser ablation process

    International Nuclear Information System (INIS)

    Drmosh, Q.A.; Gondal, M.A.; Yamani, Z.H.; Saleh, T.A.

    2010-01-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2 O 2 . The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2 O 2 , and H 2 O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1 . FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1 .

  4. Extraction and Characterization of Surfactants from Atmospheric Aerosols.

    Science.gov (United States)

    Nozière, Barbara; Gérard, Violaine; Baduel, Christine; Ferronato, Corinne

    2017-04-21

    Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed.

  5. Surfactants, interfaces and pores : a theoretical study

    NARCIS (Netherlands)

    Huinink, H.

    1998-01-01

    The aim of this study was to investigate the behavior of surfactants in porous media by theoretical means. The influence of curvature of a surface on the adsorption has been studied with a mean field lattice (MFL) model, as developed by Scheutjens and Fleer. An analytical theory has been

  6. Effect of a non-ionic surfactant added to the soil structure on the biodegradation of aromatic hydrocarbons within the soil

    Energy Technology Data Exchange (ETDEWEB)

    Aronstein, B N [Lab. of Soil Microbiology, Dept. of Soil, Crop, and Atmospheric Sciences, Cornell Univ., Ithaca, NY (United States); Alexander, M [Lab. of Soil Microbiology, Dept. of Soil, Crop, and Atmospheric Sciences, Cornell Univ., Ithaca, NY (United States)

    1993-06-01

    A study was conducted to determine whether a non-ionic surfactant (Novel II 1412-56) added to the surface of Lima silt loam would enhance the biodegradation of penanthrene and biphenyl present within the soil. Water containing the surfactant at concentrations of 10 and 100 [mu]g/ml was pumped through the soil. At 10 [mu]g/ml, Novel II 1412-56 markedly enhanced the rate and extent of phenanthrene mineralization and the extent but not the initial rate of biphenyl mineralization. The stimulation was less if the water added to the soil surface contained 100 [mu]g surfactant/ml. Addition of the surfactant at the two concentrations did not result in leaching of either phenanthrene or biphenyl, but products of the degradation were found in the soil leachate with or without the surfactant. We suggest that surfactants at low concentrations may be useful for in-situ bioremediation of sites contaminated with hydrophobic pollutants without causing movement of the parent compounds to ground-waters. (orig.)

  7. Improved surfactants formulation for remediation of oil sludge recovery

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Shahidan Radiman

    2000-01-01

    Surfactant enhanced remediation based on mobilisation of the residual NAPLs (oil sludge) which is radioactive depends on the tendency of the surfactants to lower interfacial tension. Mobilisation has greater potential than solubilisation to increase the rate of remediation. Optimised surfactants formulation was determined with concentration of Aqua 2000 and D Bond of 1% wt respectively, sodium chloride concentration of 2 gmL -1 and addition of 3% wt butanol as cosolvent. The formulation was of benefit not only able to decrease further the interfacial tension of aqueous solution containing oil emulsion, but also to make possible to be more mobile and destruction of mixed liquid crystals that formed. Formation of liquid crystals can hinders significantly recovery efficiency of aqueous solution containing oil emulsion in field remediation work. In a 100 litres soil column experiment conducted containing oil emulsion in field sludge soil and using the surfactants formulation for flushing, miniemulsion formed sizes maintained at average size between 125 nm and 280 nm before and after remediation. Total oil and grease concentration removed from the soil were significant due to the decreased in oil emulsion sizes, increase mobility and solubility. (Author)

  8. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.

    Science.gov (United States)

    Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F

    2016-03-01

    The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  10. Coupling surfactants with permanganate for DNAPL removal : coinjection or sequential application as delivery methods

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.J. [Carus Corp., Peru, IL (United States); Siegrist, R.L. [Colorado School of Mines, Golden, CO (United States); Crimi, M.L. [Clarkson Univ., Potsdam, NY (United States)

    2010-07-01

    This PowerPoint presentation described a study conducted to test the effectiveness of surfactant-enhanced permanganate for the remediation of dense nonaqueous phase liquids (DNAPL). When DNAPL enters the environment, it can pollute millions of gallons of ground water and create huge dissolved plumes that act as long-term sources of contamination. Surfactants were used to enhance the solubilization and mobilization of DNAPL during the remediation process. In situ chemical oxidation (ISCO) was then used to deliver oxidants into the sub-surface to destroy organic contaminants in the soil and ground water. Experimental 2-D flow-through cell studies of 72 surfactants were conducted with the permanganate to evaluate delivery methods and determine compatible co-solvents for the surfactant process. Delivery methods included co-injection and sequential application. Four compatible surfactants were found to be compatible with the permanganate. A 90 percent DNAPL remediation rate was achieved using relatively low surfactant and oxidant concentrations. tabs., figs.

  11. Interactions of structurally modified surfactants with reservoir minerals: Calorimetric, spectroscopic and electrokinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.; Sivakumar, A.; Xu, Q.

    1991-03-01

    The objective of this project is to elucidate mechanisms of adsorption of structurally modified surfactants on reservoir minerals and to develop a full understanding of the effect of the surfactant structure on the nature of the adsorbed layers at the molecular level. An additional aim is to study the adsorption of surfactant mixtures on simple well-characterized minerals and on complex minerals representing real conditions. The practical goal of these studies is the identification of the optimum surfactant structures and their combinations for micellar flooding. In this work, the experiments on adsorption were focussed on the position of sulfonate and methyl groups on the aromatic ring of alkyl xylene sulfonates. A multi-pronged approach consisting of calorimetry, electrokinetics, wettability and spectroscopy is planned to elucidate the adsorption mechanism of surfactants and their mixtures on minerals such as alumina and kaolinite. 32 refs., 15 figs., 7 tabs.

  12. Effect of selected non-ionic surfactants on the flow behavior of aqueous veegum suspensions.

    Science.gov (United States)

    Kennedy, Ross A; Kennedy, Michelle L

    2007-03-30

    The aim of this work was to investigate the influence of some non-ionic surfactants, Tween 80 and Brij 98, on the viscosity and flow behavior of a commercial montmorillonite clay, Veegum Granules. The effect of different concentrations of the surfactants on the shear stress-shear rate rheograms of hydrated concentrated clay suspensions was determined by shear viscometry. The addition of either surfactant increased the plastic viscosity and the yield stress of the suspensions. Furthermore, both surfactants altered the thixotropy of the suspensions to an extent that depended on both the surfactant concentration and the time of equilibration of the surfactant and Veegum. Brij 98 had a greater and more rapid effect. It is proposed that the surfactant polar head-groups anchor at the tetrahedral sheet surface, leaving the alkyl chains extending away from the edges and faces. Consequently, the alkyl chains undergo hydrophobic interactions that facilitate the association between the platelets and increase the physical structure within the suspension. Stereochemical differences between the polar groups may lead to differences in the way the surfactants associate with the tetrahedral sheet and hence their ultimate effect on the rheological behavior. There is a significant interaction between these surfactants and montmorillonite clays, and the rheological changes that occur could have a major impact on any pharmaceutical formulation that uses these ingredients.

  13. Surfactants enhance recovery of poorly soluble drugs during microdialysis sampling

    DEFF Research Database (Denmark)

    Koplin, Sebastian; Kumpugdee-Vollrath, Mont; Bauer-Brandl, Annette

    2017-01-01

    Aim of this project was to investigate the applicability of a recently developed in vitro microdialysis-sampling approach in connection with a dissolution-/permeation (D/P) system, especially the impact of surfactants within the perfusion fluid. The D/P-system is based on side-by-side chambers...... drug-dissolution (-release) and drug permeation. Furthermore, it should allow quantification of the unbound (free) drug concentration. In the first step, it was assessed, if the addition of the anionic surfactant sodium dodecyl sulphate (SDS) to the perfusate of the microdialysis system affects...... celecoxib, i.e. the fraction of drug, which is not associated with taurocholate surfactant micelles. In buffer, the measured concentrations matched the overall CXB concentrations. By the use of SDS-containing perfusates microdialysis sampling enabled reliable quantification of minute amounts of free CXB...

  14. A numerical study of the life time of superficial bubbles in water-alcohol mixtures with surfactants

    Science.gov (United States)

    Atasi, Omer; Scheid, Benoit; Haut, Benoît; Legendre, Dominique; Zenit, Roberto

    2017-11-01

    The evaluation of the lifetime of bubbles at the surface of a liquid has been used as an empirical technique in the traditional production of Mezcal (an artisanal distilled agave spirit from Mexico) to determine the desired concentration of alcohol. We investigated this problem in light of computational fluid dynamics (CFD) using a level-set method and a scalar transport technique to account for the presence of surfactants. We determined the rupture time of the film at the top of a bubble in function of the various bulk and surface properties. In agreement with experiments, we found that the superficial bubbles exhibit an extended lifetime for an intermediate water-alcohol concentration, corresponding to both a maximum of viscosity and a specific concentration of surfactants. We finally propose a scaling law that should be of practical use for Mezcal production. F.R.S-FNRS.

  15. Degradation of Surfactants in Hydroponic Wheat Root Zones

    Science.gov (United States)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  16. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  17. Enhanced oil recovery with surfactant flooding

    Energy Technology Data Exchange (ETDEWEB)

    Buelow Sandersen, S.

    2012-05-15

    different compositions of the surfactant system were studied. The effect of increased pressure became more significant when combined with increasing temperature. The experiments performed on the oil/ seawater systems were similar to the high pressure experiments for the surfactant system discussed above. Oil was contacted with different brine solutions with varying sulfate concentrations at a WOR of 70/30. A series of experiments were performed on two crude oils; a Latin American crude oil and a Middle East crude oil. The two crude oils showed significantly different phase behavior when exposed to elevated temperatures and pressures. The Latin American crude showed a decrease in oil viscosity with an increase in sulfate concentration in the brine solution after contacting in the PVT cell. The Middle East crude oil formed emulsions in the PVT cell with increasing temperature and pressure which was more pronounced at higher sulfate concentrations. Further characterization of the two crude oils using gas chromatography and SARA analysis confirmed that the heavier components in the crude oils, (in the case of the Latin American crude oil), are correlated to the observed decrease of viscosity, where the viscosity decrease may be explained from change of the shape of the heavy components with the increase in sulfate concentration after contacting at high pressures and temperatures. A third model system consisting of heptane and seawater solutions was also studied. This system formed emulsions in the PVT cell similar to the Middle East crude oil, which indicates that the lighter components in the Middle East crude oil (compared to the Latin American crude oil) are responsible for the observed formation of emulsions. The final part of the thesis is a phase behavior modeling study of alkane/ alkanol/ water systems relevant for surfactant flooding. Existing thermodynamic models, such as equations of state, while able to predict and correlate phase equilibrium in two liquid phases

  18. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    Science.gov (United States)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  19. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Zhang, Xiao; Paice, Mike; McFarlane, Paul; Saddler, Jack N

    2009-01-01

    The effects of surfactants addition on enzymatic hydrolysis and subsequent fermentation of steam exploded lodgepole pine (SELP) and ethanol pretreated lodgepole pine (EPLP) were investigated in this study. Supplementing Tween 80 during cellulase hydrolysis of SELP resulted in a 32% increase in the cellulose-to-glucose yield. However, little improvement was obtained from hydrolyzing EPLP in the presence of the same amount of surfactant. The positive effect of surfactants on SELP hydrolysis led to an increase in final ethanol yield after the fermentation. It was found that the addition of surfactant led to a substantial increase in the amount of free enzymes in the 48 h hydrolysates derived from both substrates. The effect of surfactant addition on final ethanol yield of simultaneous saccharification and fermentation (SSF) was also investigated by using SELP in the presence of additional furfural and hydroxymethylfurfural (HMF). The results showed that the surfactants slightly increased the conversion rates of furfural and HMF during SSF process by Saccharomyces cerevisiae. The presence of furfural and HMF at the experimental concentrations did not affect the final ethanol concentration either. The strategy of applying surfactants in cellulase recycling to reduce enzyme cost is presented. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  20. Influence of surfactants on the sorption of two chloroacetanilide in an Romanian chernozem soil.

    Science.gov (United States)

    Coroi, I G; De Wilde, T; Cara, M S; Jitareanu, G; Steurbaut, W

    2011-01-01

    Pesticides have been extensively used in modern agriculture. Due to the prevalent use, there have been serious problems generated by pesticides wastes which could eventually endanger water resources and human health. The development of technologies for the decontamination of soils and waters polluted by hydrophobic organic compounds has encouraged research into the use of non-ionic surfactants as potential agents for the enhanced solubilization and removal of contaminants from soils and sediments. Sorption of two chloroacetanilide herbicides, acetochlor and metolachlor was studied on a representative chernozem soil of the Main Agricultural Research Station Ezareni belonging to the "Ion Ionescu de la Brad" University of Agriculture and Veterinary Medicine lasi, Romania, in the presence and absence of surfactants. Three different non-ionic surfactants were selected: Tween-20, Synperonic 91/5 and Silwet L-77, to verify the influence of their presence on herbicide sorption at different concentrations. Our results showed that the sorption of the studied herbicides within the soil-water-non-ionic surfactant system was influenced by the presence of non-ionic surfactants. The n values obtained were lower than 1 for all pesticide-surfactant combinations, which indicates that the amount of acetochor and metolachlor sorbed decreased with an increase in pesticide concentration. The sorption of acetochlor increased in the following order: Acetochlor+Synperonic 91/5 < Acetochlor < Acetochlor+Tween-20 < Acetochlor+Silwet L-77. In the case of metolachlor+Synperonic and metolachlor+Silwet L-77, the Kf values were significantly higher than the Kf value of metolachlor+Tween-20 on soil, where a lower Kf value could be observed with however a higher n value which indicate a higher sorption capacity at higher concentrations.

  1. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle......Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  2. Identifying the Imprint of Surfactant Stabilisation in Whitecap Foam Evolution

    Science.gov (United States)

    Callaghan, A. H.; Deane, G. B.; Stokes, D.

    2016-02-01

    Surfactants are ubiquitous in the world's oceans and can affect climatically-relevant processes such as air-sea gas exchange, sea spray aerosol (SSA) flux, and air-sea momentum transfer. Surfactants are amphiphilic and help form the physically and chemically distinct ocean surface microlayer (SML), however, the spatial distribution, concentration and composition of the SML is not well understood, especially under conditions of vigorous wave breaking. Like the SML, breaking waves also influence physical exchange processes at the air-sea interface, and oceanic whitecap foam coverage is commonly used to quantify bubble-mediated exchange processes. However, surfactants can increase the lifetime of foam over clean water conditions, potentially complicating the use of whitecap coverage to parameterise air-sea gas exchange and SSA production flux. A better understanding of how surfactants affect the evolution of whitecap foam is needed to improve whitecap parameterisations of bubble-mediated processes, and may also provide a remote sensing approach to map the spatial distribution of surfactants at the water surface. Here we present results from a laboratory study that looked at whitecap foam evolution in "clean" and "surfactant-added" seawater regimes. We find that the whitecap foam area growth timescale is largely insensitive to the presence of surfactants, but that surfactant stabilization of whitecap foam becomes important during the whitecap foam area decay phase. The timescale at which this occurs appears to be consistent for breaking waves of different scale and intensity. A simple method is then used to isolate the surfactant signal and derive an equivalent "clean" seawater foam decay time for the whitecaps in the "surfactant-added" regime. The method is applied to oceanic whitecaps and results compared to the laboratory whitecaps from the "clean" and "surfactant-added" regimes.

  3. Binding affinities of cationic dyes in the presence of activated charcoal and anionic surfactant in the premicellar region

    Science.gov (United States)

    Ali, Farman; Ibrahim, Muhammad; Khan, Fawad; Bibi, Iram; Shah, Syed W. H.

    2018-03-01

    Binding preferences of cationic dyes malachite green and methylene blue in a mixed charcoal-sodium dodecyl sulfate system have been investigated using UV-visible absorption spectroscopy. The dye adsorption shows surfactant-dependent patterns, indicating diverse modes of interactions. At low surfactant concentration, a direct binding to charcoal is preferred. Comparatively greater quantities of surfactant lead to attachment of dye-surfactant complex to charcoal through hydrophobic interactions. A simple model was employed for determination of equilibrium constant K eq and concentration of dye-surfactant ion pair N DS for both dyes. The values of binding parameters revealed that malachite green was directly adsorbed onto charcoal, whereas methylene blue was bound through surfactant monomers. The model is valid for low surfactant concentrations in the premicellar region. These findings have significance for material and environmental sciences.

  4. Surfactant-induced mobilisation of trace metals from estuarine sediment: Implications for contaminant bioaccessibility and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anu [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk

    2009-02-15

    The mobilisation of metals (Al, Fe, Cd, Cu, Mn, Ni, Pb, Sn, Zn) from contaminated estuarine sediment has been examined using commercially available surfactants. Metal release by the anionic surfactant, sodium dodecyl sulphate (SDS), increased with increasing amphiphile concentration up to and above its critical micelle concentration (CMC). Metal mobilisation by the bile acid salt, sodium taurocholate, and the nonionic surfactant, Triton X-100, however, did not vary with amphiphile concentration. SDS was the most efficient surfactant in mobilising metals from the sample, and Cd, Cu and Ni were released to the greatest extents (12-18% of total metal at [SDS] > CMC). Metal mobilisation appeared to proceed via complexation with anionic amphiphiles and denudation of hydrophobic host phases. Surfactants may play an important role in the solubilisation of metals in the digestive environment of deposit-feeding animals and, potentially, in the remediation of metal-contaminated soil and sediment. - Significant quantities of metals are mobilised from estuarine sediment by commercially available surfactants.

  5. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  6. Small angle neutron scattering study of the gemini nonionic surfactant in heavy water solutions

    International Nuclear Information System (INIS)

    Rajewska, A

    2012-01-01

    The nonionic gemini surfactant α α'-[2,4,7,9-tetramethyl-5-decyne-4,7diyl]bis[ω hydroxyl-polyoxyethylene] (S-10) was investigated in heavy water solutions only for concentrations: 2.3%, 2.5%,3%, 3.4%, 4% and 5% at temperature 25 C with small angle neutron scattering (SANS) method. All of surfactants solutions were prepared using D 2 O (99.9% deuterated, Prikladnaia Chimia, St. Petersburg, Russia) as a solvent. The nonionic gemini surfactant S-10 was obtained from Air Products and Chemicals, Inc., and used without further purification. All SANS measurements were performed on V-4 SANS spectrometer at BENSC, Berlin (Germany). Neutrons were used in wavelength range of 0.02 - 4 nm - 1. For the measurements quartz cells of were used during experiment. Up to 14 such cells were placed in a holder. Results from experiment was calculated and evaluated with PCG 2.0 program from Graz University (Austria). In the investigated solutions two axis ellipsoidal micelles was observed.

  7. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant.

    Science.gov (United States)

    Astete, Carlos E; Dolliver, Debra; Whaley, Meocha; Khachatryan, Lavrent; Sabliov, Cristina M

    2011-12-27

    The goal of the study was to synthesize a surfactant made of α-tocopherol (vitamin E) and ascorbic acid (vitamin C) of antioxidant properties dubbed as EC, and to use this surfactant to make poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Self-assembled EC nanostructures and PLGA-EC nanoparticles were made by nanoprecipitation, and their physical properties (size, size distribution, morphology) were studied at different salt concentrations, surfactant concentrations, and polymer/surfactant ratios. EC surfactant was shown to form self-assembled nanostructures in water with a size of 22 to 138 nm in the presence of sodium chloride, or 12 to 31 nm when synthesis was carried out in sodium bicarbonate. Polymeric PLGA-EC nanoparticles presented a size of 90 to 126 nm for 40% to 120% mass ratio PLGA to surfactant. For the same mass ratios, the PLGA-Span80 formed particles measured 155 to 216 nm. Span80 formed bilayers, whereas EC formed monolayers at the interfaces. PLGA-EC nanoparticles and EC showed antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay measurements using UV and EPR techniques, antioxidant activity which is not characteristic to commercially available Span80. The thiobarbituric acid reactive substances (TBARS) assay for lipid peroxidation showed that PLGA nanoparticles with EC performed better as antioxidants than the EC nanoassembly or the free vitamin C. Nanoparticles were readily internalized by HepG2 cells and were localized in the cytoplasm. The newly synthesized EC surfactant was therefore found successful in forming uniform, small size polymeric nanoparticles of intrinsic antioxidant properties.

  8. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant

  9. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    Science.gov (United States)

    Mendenhall, Jonathan D.

    Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc

  10. Silica micro- and nanoparticles reduce the toxicity of surfactant solutions.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Fernández-Serrano, Mercedes; Jurado, Encarnación; Lechuga, Manuela

    2018-04-20

    In this work, the toxicity of hydrophilic fumed silica micro- and nanoparticles of various sizes (7 nm, 12 nm, and 50 μm) was evaluated using the luminescent bacteria Vibrio fischeri. In addition, the toxicity of an anionic surfactant solution (ether carboxylic acid), a nonionic surfactant solution (alkyl polyglucoside), and a binary (1:1) mixture of these solutions all containing these silica particles was evaluated. Furthermore, this work discusses the adsorption of surfactants onto particle surfaces and evaluates the effects of silica particles on the surface tension and critical micellar concentration (CMC) of these anionic and nonionic surfactants. It was determined that silica particles can be considered as non-toxic and that silica particles reduce the toxicity of surfactant solutions. Nevertheless, the toxicity reduction depends on the ionic character of the surfactants. Differences can be explained by the different adsorption behavior of surfactants onto the particle surface, which is weaker for nonionic surfactants than for anionic surfactants. Regarding the effects on surface tension, it was found that silica particles increased the surface activity of anionic surfactants and considerably reduced their CMC, whereas in the case of nonionic surfactants, the effects were reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Acid-base, optical and extraction properties of Rose Bengal in the presence of surfactants

    International Nuclear Information System (INIS)

    Lengyel, J.; Krtil, J.; Kuban, V.

    1989-01-01

    Changes in the optical and acid-base characteristics of Rose Bengal in the presence of cationic (Septones - SPX, hexadecyltrimethylammonium bromide - CTMAB and hexadecylpyridinium bromide - CPB), anionic (sodium dodecylsuulfate - SDS) and nonionic (Triton X-100) surfactants in submicellar and micellar concentrations were studied spectrophotometrically. The conditional dissociation constants of Rose Bengal pK ai * depend on the kind and concentration of cationic surfactant. Changes in pK ai * values are described in terms of formation of ion associates of the dye with the surfactant of the composition QHB and Q 2 B. The extraction constants of the ion associates in chloroform were determined radiometrically with the aid of Rose Bengal labelled with 131 I. (author). 4 figs., 3 tabs., 22 refs

  12. Comprehensive study of tartrazine/cationic surfactant interaction.

    Science.gov (United States)

    Shahir, Afshin Asadzadeh; Javadian, Soheila; Razavizadeh, Bi Bi Marzieh; Gharibi, Hussein

    2011-12-15

    Interaction of a food dye, tartrazine, with some cationic conventional and gemini surfactants, tetradecyltrimethylammonium bromide (TTAB), N,N'-ditetradecyl-N,N,N',N'-tetramethyl-N,N'-butanediyl-diammonium dibromide (14,4,14), and N,N'-didodecyl-N,N,N',N'-tetramethyl-N,N'-butanediyl-diammonium dibromide (12,4,12), were first investigated comprehensively employing conductometry, tensiometry, and UV-visible spectroscopy. Tartrazine was found to behave in the same manner as aromatic counterions. The formation of ion pairs reflected as a considerable increase of the surfactant efficiency in tensiometry plots and their stoichiometry were determined by Job's method of continuous variations. For the tartrazine/TTAB system, nonionic DS(3), ionic DS(2-), and/or DS(2)(-) ion pairs, their small premicelles, and tartrazine-rich micelles were constituted as well as dye-containing TTAB-rich micelles. Insoluble J-aggregates of DS(-) ion pairs and cylindrical surfactant-rich micelles were also formed in tartrazine/gemini surfactant systems and recognized by transmission electron microscopy. The zeta potential and the size of the aggregates were determined using dynamic light scattering and confirmed the suggested models for the processes happening in each system. Cyclic voltammetry was applied successfully to track all of these species using tartrazine's own reduction peak current for the first time.

  13. A novel approach to enhancement of surface properties of CdO films by using surfactant: dextrin

    Science.gov (United States)

    Sahin, Bünyamin; Bayansal, Fatih; Yüksel, Mustafa

    2015-12-01

    We studied the effect of an organic surfactant, dextrin, concentration on structural, morphological and optical properties of nanostructured CdO films deposited on glass substrates by using an easy and low-cost SILAR method. Microstructures of the nanostructured CdO films were optimized by adjusting dextrin concentration. XRD, SEM and UV-Vis Spectroscopy were used to study phase structure, surface morphology and optical properties of CdO films. Furthermore, effects of dextrin concentration on the surface roughness characteristics of CdO samples were reported. The results showed that the presence of organic surfactant highly affected the physical properties of CdO nanomaterials.

  14. Effect of surfactant concentration on nifedipine crystal habit and its related pharmaceutical properties

    Science.gov (United States)

    Kumar, Dinesh; Thipparaboina, Rajesh; Modi, Sameer R.; Bansal, Arvind K.; Shastri, Nalini R.

    2015-07-01

    Crystallization in the presence of Polysorbate-80 (T-80), a non-ionic surfactant was explored for crystal habit modification of nifedipine polymorph I (Nif). A concentration dependent reduction in aspect ratio was observed with T-80. Generation of any new solvates/polymorphs was ruled out by Fourier Transform Infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, and thermogravimetric analysis, while the absence of T-80 on the surface or bulk of the recrystallized samples was established by liquid chromatography mass spectroscopy. The dissolution rate order of the re-crystallized Nif habits was in the order of; Nif-D (Nif with 0.6%v/v T-80)>Nif-C (Nif with 0.4% v/v T-80)>Nif-B (Nif with 0.2% v/v T-80)>Nif-A (plain Nif). Wetting ability and surface free energy determination from contact angle measurements were used to explain the order of dissolution rate. The consequences of varying concentration of T-80 on Nif crystal habit was supported by means of molecular dynamics (MD) which was executed using COMPASS force field while modified attachment energy was computed to acquire the absolute morphology. The mechanism for alteration in the morphology was suggested based on the computed crystal surface chemistry. Nif-D crystal habit was nearly iso-diametric with majority of facets occupied by polar dominant surfaces {0 1 1} and {0 0 2} which ultimately resulted in higher dissolution rate. In Nif-B and Nif-C the dissolution rate was dependent on the proportion of polar and non-polar facet area. The methodology used in this study could be an influential tool for selection of concentration of habit-modifying additives in other crystallization studies.

  15. Effect of a cationic surfactant on the volatilization of PAHs from soil.

    Science.gov (United States)

    Lu, Li; Zhu, Lizhong

    2012-06-01

    Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil. The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid-vapor and solid-vapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis. DDPB affects both liquid-vapor and solid-vapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas-liquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas-liquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid-vapor volatilization of PAHs. The overall effect of the two simultaneous effects of DDPB on liquid-vapor and solid-vapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.

  16. Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, T.T.; Kao, C.M. [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Yeh, T.Y. [Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, Taiwan (China)], E-mail: tyyeh@nuk.edu.tw; Liang, S.H.; Chien, H.Y. [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2009-01-15

    The industrial solvent trichloroethylene (TCE) is among the most ubiquitous chlorinated solvents found in groundwater contamination. The main objectives of this study were to evaluate the feasibility of using non-ionic surfactant Simple Green{sup TM} (SG) to enhance the oxidative dechlorination of TCE by potassium permanganate (KMnO{sub 4}) employing a continuous stir batch reactor system (CSBR) and column experiments. The effect of using surfactant SG to enhance the biodegradation of TCE via aerobic cometabolism was also examined. Results from CSBR experiments revealed that combination of KMnO{sub 4} with surfactant SG significantly enhanced contaminant removal, particularly when the surfactant SG concentrated at its CMC. TCE degradation rates ranged from 74.1% to 85.7% without addition of surfactant SG while TCE degradation rates increased to ranging from 83.8% to 96.3% with presence of 0.1 wt% SG. Furthermore, results from column experiments showed that TCE was degraded from 38.1 {mu}M to 6.2 {mu}M in equivalent to 83.7% of TCE oxidation during first 560 min reaction. This study has also demonstrated that the addition of surfactant SG is a feasible method to enhance bioremediation efficiency for TCE contaminated groundwater. The complete TCE degradation was detected after 75 days of incubation with both 0.01 and 0.1 wt% of surfactant SG addition. Results revealed that surfactant enhanced chemical oxidation and bioremediation technology is one of feasible approaches to clean up TCE contaminated groundwater.

  17. Electrostatic Screening and Charge Correlation Effects in Micellization of Ionic Surfactants

    KAUST Repository

    Jusufi, Arben

    2009-05-07

    We have used atomistic simulations to study the role of electrostatic screening and charge correlation effects in self-assembly processes of ionic surfactants into micelles. Specifically, we employed grand canonical Monte Carlo simulations to investigate the critical micelle concentration (cmc), aggregation number, and micellar shape in the presence of explicit sodium chloride (NaCl). The two systems investigated are cationic dodecyltrimethylammonium chloride (DTAC) and anionic sodium dodecyl sulfate (SDS) surfactants. Our explicit-salt results, obtained from a previously developed potential model with no further adjustment of its parameters, are in good agreement with experimental data for structural and thermodynamic micellar properties. We illustrate the importance of ion correlation effects by comparing these results with a Yukawa-type surfactant model that incorporates electrostatic screening implicitly. While the effect of salt on the cmc is well-reproduced even with the implicit Yukawa model, the aggregate size predictions deviate significantly from experimental observations at low salt concentrations. We attribute this discrepancy to the neglect of ion correlations in the implicit-salt model. At higher salt concentrations, we find reasonable agreement of the Yukawa model with experimental data. The crossover from low to high salt concentrations is reached when the electrostatic screening length becomes comparable to the headgroup size. © 2009 American Chemical Society.

  18. SAXS and SANS studies of surfactants and reverse micelles in supercritical CO2

    International Nuclear Information System (INIS)

    Londono, J.D.; Dharmapurikar, R.S.; Wignall, G.D.; Cochran, H.D.

    1997-01-01

    Surfactants promise to extend the applicability of supercritical CO 2 (SC-CO 2 ) to processing of insoluble materials such as polymers and aqueous systems. In this short paper the authors summarize the techniques for studying surfactants and reverse micelles in SC-CO 2 using SAXS and SANS; they will describe the scattering instruments and the pressure cells for conducting these studies; they will describe the types of measurement that yield the desired characterizations; they will describe the methods of data analysis and interpretation; and they will provide illustrative results from this laboratory. Industry seeks to replace common organic solvents now used in many reaction and separation processes; SC-CO 2 is a potential solvent substitute widely favored by both government and industry. The currently available surfactants are limited in number and performance. In ongoing work the authors are coupling their SAXS and SANS scattering studies with complementary molecular simulations in efforts to understand, at a molecular level, what surfactant characteristics lead to improved performance. They hope that superior surfactants for use in SC-CO 2 can be designed and synthesized based on this new level of understanding

  19. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.; Montemagno, C.D.; Lewis, B.

    1991-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which 21 surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site

  20. Effects of the surfactant Tween 80 on the growth and dibenzothiophene utilization by Exophiala spinifera isolated from oil- contaminated soil

    Directory of Open Access Journals (Sweden)

    Fatemeh Elmi

    2016-06-01

    Full Text Available Introduction: Oil is one of the most important energy sources that contain variety of organosulfur compounds that are combustible and can produce sulfur dioxide which will cause pollution over the atmosphere and the soil. Dibenzothiophene (DBT is often used as a model for biodesulfurization studies and surfactant Tween80 increases the solubility of DBT in water that leads to higher consumption by microorganisms. Materials and methods: DBT specific UV spectrophotometry at a wavelength of 323 nm was used to evaluate the ability of isolated Exophiala spinifera fungus in removal of DBT. The effect of various concentrations of surfactant Tween80 on the growth of the fungus and DBT utilization was studied. Results: Exophiala spinifera was able to remove 100% DBT after 7 days of incubation at 30 ° C and 180 rpm shaking. The effect of different concentrations of surfactant Tween80 on growth and DBT utilization by this fungus was examined and it was observed that the presence of surfactant in the culture medium increased the growth and removal of DBT, therefore the amount of DBT utilized with 0.4% concentration of the surfactant was about 30% more than that utilized without surfactant. However, higher concentrations of surfactant Tween80 decreased the growth and consumption of DBT by fungi. Discussion and conclusion: Exophiala spinifera was isolated from oil contaminated soil and able to utilize toxic compound DBT as a sulfur source in the presence of other carbon sources such as glucose. So this isolated strain could be a good candidate for the petroleum desulfurization and it is the first report about desulfurization of DBT by fungus Exophiala spinifera. Growth and removal of DBT by fungus increased in the presence of surfactant Tween80. It can be concluded that the surfactant increases the total DBT transfer between the organic and aqueous phases and has a potential application in DBT bioremediation system by the studied fungus biocatalyst.

  1. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl

    Science.gov (United States)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen

    2017-09-01

    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  2. Adsorption Of Surfactants At the Water-Oil Interface By Short-Time Diffusion

    Science.gov (United States)

    Cortes-Estrada, Aldo; Ibarra-Bracamontes, Laura; Aguilar-Corona, Alicia; Viramontes-Gamboa, Gonzalo

    2017-11-01

    Surface tension is an important parameter for different industrial processes. The addition of surfactants can modify the interfacial tension between two fluids. As the surfactant molecules reach and are adsorbed at a fluid interface, the surface tension or interfacial tension is reduced until the interface is saturated. Dynamic Interfacial tension measurements were carried out using an optical tensiometer by the Pendant Drop technique at a room temperature of 25 °C for a period of 250 sec. A drop of surfactant solution was deposited and allowed to diffuse into a water-oil interface, and then the adsorption rate at the interface was calculated. Sodium Dodecyl Sulfate (SDS) was used as the surfactant, hexane and dodecane were tested as the oil phase. A linear decay in the interfacial tension was observed for the lower initial concentrations of the order of 0.0001 to 0.01 mM, and an exponential decay was observed for initial concentrations of the order of 0.1 to 1 mM. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.

  3. Effect of the surfactant on the availability of piroxicam as a poorly hydrosoluble drug from suppositories.

    Science.gov (United States)

    Dal Zorro, M; Franceschinis, E; Punchina, A; Realdon, N

    2012-01-01

    The use of surfactants in suppository formulations has been suggested to improve availability of poorly soluble drugs. In the present study, different kinds of surfactants have been investigated to clarify the influence on piroxicam release from suppositories formulated with both lipophilic and hydrophilic bases. Two hydrophilic glucose-derivate surfactants, and a polyoxylglyceride amphiphilic surfactant, all with high HLB values, were investigated for their use in improving drug availability. The two glucose derivate surfactants reduced drug availability from both lipophilic suppositories and hydrophilic formulations, according to longer disintegration times and drug micellization. The more complex surfactant, a lauroyl macrogolglyceride, showed an increase in piroxicam availability from lipophilic suppositories at the higher tested concentrations (15% and 20%). Otherwise, when used in hydrophilic formulations, it was less effective in promoting drug release and even reduced drug availability.

  4. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.

    Science.gov (United States)

    Liu, Xiaoyang; Abbott, Nicholas L

    2011-04-15

    We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. © 2011 American Chemical Society

  5. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Vesna [Brazilian Synchrotron Light Source, Campinas (Brazil); Broadbent, Charlotte [Columbia Univ., New York, NY (United States). Engineering Dept.; DiMasi, Elaine [Brookhaven National Lab. (BNL), Upton, NY (United States). Photon Sciences Division; Galleguillos, Ramiro [Lubrizol Advanced Materials, Cleveland, OH (United States); Woodward, Valerie [Lubrizol Advanced Materials, Cleveland, OH (United States)

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such data make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.

  6. Comparison of several ethanol productions using xylanase, inorganic salts, surfactant

    Science.gov (United States)

    Wu, Yan; Lu, Jie; Yang, Rui-feng; Song, Wen-jing; Li, Hai-ming; Wang, Hai-song; Zhou, Jing-hui

    2017-03-01

    Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. Corn stover was pretreated with liquid hot water (LHW) and then subjected to semi-simultaneous saccharification and fermentation (S-SSF) to obtain high ethanol concentration and yield. The present study aimed to confirm the effect of several additives on the fermentation digestibility of unwashed WIS of corn stover pretreated with LHW. So we also investigated the process, such as enzyme addition, inorganic salts, surfactant and different loading Triton. Results show that high ethanol concentration is necessary to add xylanase in the stage of saccharification. The ethanol concentration increased mainly with magnesium ion on fermentation. Comparing with Tween 80, Span 80 and Polyethylene glycol, Triton is the best surfactant. In contrast to using xylanase and Triton respectively, optimization can make up the lack of stamina and improve effect of single inorganic salts.

  7. Surfactant replacement therapy--economic impact.

    Science.gov (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  8. Spectroscopic characterization approach to study surfactants effect on ZnO{sub 2} nanoparticles synthesis by laser ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Q.A. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Saleh, T.A. [Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H{sub 2}O{sub 2}. The effect of surfactants on the optical and structure of ZnO{sub 2} was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H{sub 2}O{sub 2}, and H{sub 2}O{sub 2} mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO{sub 2} nanoparticles prepared with and without surfactants show a characteristic ZnO{sub 2} absorption at 435-445 cm{sup -1}. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm{sup -1}.

  9. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    Science.gov (United States)

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. Copyright © 2015. Published by Elsevier B.V.

  10. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    Science.gov (United States)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of <1 μm tungsten carbide reinforcements. The influence of surfactant (sodium dodecyl sulfate, SDS) concentration on particle distribution, microhardness and wear resistance of composite coatings has been studied. The nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  11. Effect of surfactants on the aggregation of pyronin B and pyronin Y in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Arik, Mustafa; Meral, Kadem [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Onganer, Yavuz, E-mail: yonganer@atauni.edu.t [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2009-06-15

    Molecular dynamics of pyronin B (PyB) and pyronin Y (PyY) in aqueous solution containing different surfactants were investigated by using absorption and fluorescence spectroscopy techniques. First, the interactions of PyB and PyY with the negatively charged surfactant sodium dodecyl sulphate (SDS) were investigated in the below and above critical micelle concentration (cmc). The H-aggregate formation of the dye compounds was observed for below the cmc of SDS surfactant. The absorbance of H-aggregate absorption band of PyB and PyY decreased according to the aggregate-monomer equilibrium by increasing SDS surfactant concentration towards the cmc. Therefore, equilibrium constants of the aggregate formation and oscillator strengths of monomer and aggregate of the dye compounds were calculated from spectral studies. Moreover, aggregate formation dynamics was discussed in terms of thermodynamic functions by using temperature studies. The interactions of PyB and PyY with the positively charged hexadecyltrimethylammonium bromide (CTAB) and neutral Triton X-100 (TX-100) were also studied and it was observed that there was no aggregate formation on the absorption and fluorescence spectra for below and above the cmc.

  12. The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system.

    Science.gov (United States)

    Nainggolan, Irwana; Radiman, Shahidan; Hamzah, Ahmad Sazali; Hashim, Rauzah

    2009-10-01

    Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.

  13. Adsorption of dissymmetric cationic gemini surfactants at silica/water interface

    Science.gov (United States)

    Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi

    2007-05-01

    Adsorption of a series of cationic gemini surfactants 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini surfactants in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini surfactants adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini surfactants were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of surfactant molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini surfactants on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini surfactants are closely related to the dissymmetry of gemini molecules.

  14. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay

    International Nuclear Information System (INIS)

    Huang Jianhua; Liu Yuanfa; Jin Qingzhe; Wang Xingguo; Yang Jun

    2007-01-01

    The removal of water-soluble Reactive Red MF-3B from aqueous media by sonication-surfactant-modified attapulgite clay was studied in a batch system. The surfactant used was octodecyl trimethyl ammonium chloride (OTMAC). Adsorbent characterizations were investigated using X-ray diffraction, infrared spectroscopy, and surface area analysis. The effects of pH, contact time, initial solute concentration, adsorbent dose, and temperature on the adsorption of Reactive Red MF-3B onto modified clay were investigated. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and second-order adsorption kinetics was observed in the case. Film diffusion was found to be the rate-limiting step. Reactive Red MF-3B adsorption was found to increase with increase temperature. The Reactive Red MF-3B equilibrium adsorption data were fitted to Freundlich and Langmuir isotherm models, the former being found to provide the better fit of the experimental data. Thermodynamic parameters were calculated. From the results it can be concluded that the surfactant-modified clay could be a good adsorbent for treating Reactive Red MF-3B-contaminated waters

  15. Preparation of Melamine - Formaldehyde Microcapsules Containing Hexadecane as a Phase Change Material: The Effect of Surfactants Type and Concentration

    Directory of Open Access Journals (Sweden)

    Zeinab Alinejad

    2013-05-01

    Full Text Available Microcapsules containing n-hexadecane (HD as the core and melamineformaldehyde (MF prepolymer as the shell were prepared by in-situ dispersion polymerization. The effects of surfactants type and amount were studied in relation to the morphology and thermal properties of microcapsules. The morphology of the microcapsules was studied using scanning electron microscopy (SEM and thermal properties were detected by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. SEM images showed that the increase in the amount of Triton X-100 (non-ionic to SDS (ionic ratio resulted in the agglomeration of the prepared microcapsules. This increase led also to lower encapsulated hexadecane and thermal stability of microcapsules. As a result, the optimum composition of the above surfactants for obtaining higher thermal stability and proper morphology wasfound to be 20 wt% of Triton X-100 and 80 wt% of SDS in the recipe. The optimum total amounts of surfactants was 4 wt%, which resulted in spherical and separate microcapsules. DSC and TGA analyses revealed that a sample prepared with 4 wt% of surfactants was not only successful in encapsulation of hexadecane but also showedhigher thermal stability compared with other formulations.

  16. Biosynthesis of Bio surfactant by Egyptian Local Bacterial Isolates Using Different Agricultural Wastes

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.

    2014-01-01

    Fifteen bacterial isolates were isolated from sea water from the coast of the General Petroleum Company on Suez Gulf. They were screened for bio surfactant production using emulsification activity and haemolytic activity. The most potent isolate B11 were selected according to two parameters: The ability to grow and produce surfactant and its haemolytic activity on blood agar plates. The isolate B11 was characterized and identified as Bacillus licheniformis according to API system. The isolate was subjected to different doses of gamma irradiation in a trial to improve its ability for bio surfactant production which resulted in a passive effect on bio surfactant production. Three types of agricultural wastes (Rice straw, Cane Bagasse, Corn straw) were used as fertilizers for bio surfactant biosynthesis by the promising isolate in concentrations of 1, 2, 3, 4, 5 g/l. At five g/l concentration cane bagasse gave high production of bio surfactant with maximum capacity at (32%) flowed by rice straw at 18% and corn straw at 9.8 %.

  17. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher

  18. Novel Pyridinium Surfactants with Unsaturated Alkyl Chains : Aggregation Behavior and Interactions with Methyl Orange in Aqueous Solution

    NARCIS (Netherlands)

    Kuiper, Johanna M.; Buwalda, Rixt T.; Hulst, Ron; Engberts, Jan B.F.N.

    2001-01-01

    This paper presents the synthesis and a study of the aggregation behavior of 4-undecyl-1-methyl- and 4-undecenyl-1-methylpyridinium iodide surfactants. The effect of the position of the double bond in the alkyl chain of the surfactant on the critical micelle concentration (cmc), degree of counterion

  19. The effect of electrolytes on emulsions stabilized by nonionic surfactants

    NARCIS (Netherlands)

    Boomgaard, van den A.

    1985-01-01

    The objective of this study was to investigate the effect of high electrolyte concentrations on the stability of oil-in-water- emulsions stabilized by nonionic surfactants.

    In chapter 1 several stability mechanisms are briefly outlined and the distinction between coalescence and

  20. Production of bio surfactants (Rhamnolipids) by pseudomonas aeruginosa isolated from colombian sludges

    International Nuclear Information System (INIS)

    Pimienta, A.L; Diaz M, M. P; Carvajal S, F.G; Grosso V, J.L.

    1997-01-01

    The bio surfactant production by strains of Pseudomonas aeruginosa isolated from Colombian hydrocarbon contaminated sludge has been determined. The methodology included the isolation of microorganisms, standardization of batch culture conditions for good surfactant production and characterization of the produced rhamnolipid. Several carbon sources were evaluated with regard to the growth and production curves. The stability of the rhamnolipid was also determined under variable conditions of pH, temperature and salt concentration. The strain Pseudomonas aeruginosa BS 3 showed bio surfactant production capabilities of rhamnolipid resulting in concentrations up to 2 g-dm with surface tensions of 30 - 32 mN-m in batch cultures with commercial nutrients

  1. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques

    Science.gov (United States)

    Mondal, Satyajit; Das, Bijan

    2018-06-01

    The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH 7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C16MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C16MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants.

  2. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Ruge, Christian A

    2017-01-01

    Lung-delivered polymer nanoparticles provoked dysfunction of the essential lung surfactant system. A steric shielding of the nanoparticle surface with poloxamers could minimize the unwanted interference of polymer nanoparticles with the biophysical function of lung surfactant. The extent of poly......(styrene) and poly(lactide) nanoparticle-induced lung surfactant inhibition could be related to the type and content of the applied poloxamer. Escalations of the adsorbed coating layer thickness (>3 nm) as well as concentration (brush- rather than mushroom-like conformation of poly(ethylene glycol), chain......-associated proteins. Poloxamer-modified polymer nanoparticles represent a promising nanomedicine platform intended for respiratory delivery revealing negligible effects on the biophysical functionality of the lining layer present in the deep lungs....

  3. Thermodynamic aspects of polymer–surfactant interactions: Gemini (16-5-16-PVP-water system

    Directory of Open Access Journals (Sweden)

    Naved Azum

    2016-11-01

    Full Text Available The interaction between polyvinylpyrrolidone (PVP and gemini surfactant (16-5-16 in aqueous solution has been analyzed using conductometry. From conductivity data the critical aggregation concentration (cac, critical micelle concentration (cmc, the effective degree of counter-ion binding (β at different temperatures were obtained. The thermodynamic parameters, i.e., Gibbs energy of aggregation and micellization, standard enthalpy of aggregation, and standard entropy of aggregation of surfactant/polymer system were estimated, employing pseudophase separation model. The negative values of Gibbs energy and standard enthalpy suggest that the surfactant/polymer aggregation process is spontaneous and exothermic respectively.

  4. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    Science.gov (United States)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛsurfactant concentration is therefore attributed to the considerable cross links among micelles and polymers (transient network). In addition to substantial alteration of the transport properties, this weak interaction also influences the onset point of thermodynamic instability associated with polymer-surfactant solutions. The examples include the decrease of critical aggregation concentration for ionic surfactant and clouding point for nonionic surfactant due to PEG addition.

  5. The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

    Directory of Open Access Journals (Sweden)

    Braun Armin

    2009-09-01

    Full Text Available Abstract Background Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO2 nanosized particles (NSP and microsized particles (MSP on biophysical surfactant function after direct particle contact and after surface area cycling in vitro. In addition, TiO2 effects on surfactant ultrastructure were visualized. Methods A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml of TiO2 NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope. Results TiO2 NSP, but not MSP, induced a surfactant dysfunction. For TiO2 NSP, adsorption surface tension (γads increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p min slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p 2 NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γads (63.6 ± 0.4 mN/m and γmin (21.1 ± 0.4 mN/m. Interestingly, TiO2 NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae. Conclusion TiO2 nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.

  6. The study of the influence of surfactant charge on alkaline hydrolysis reactions of acetylsalicylic acid (ASA) and triflusal (TFL) using spectrophotometric methods.

    Science.gov (United States)

    Ferrit, Mónica; del Valle, Carmen; Martínez, Fernando

    2007-07-01

    In this research, the effects of micellar systems on alkaline hydrolysis reactions of acetylsalicylic acid (ASA) and triflusal (TFL) were found to be dependant upon the surfactant charge within the micelle. In cationic micelles, there is a catalytic effect at low concentrations of surfactant. However, this reaction is inhibited at higher surfactant concentrations. In anionic micelles, a catalytic effect occurs, while in zwitterionic and non-ionic micelles there is an inhibitory effect. Such reactions are attributable to changes in reactants on the micellar surface, or to the fact that both reactants are found in different microenvironments. The pseudophase (PS) and ion-exchange (PPIE) models were found to be consistent with the experimental result. Furthermore, the association constants for both drugs could be determined together with micellar rate constants in heterogeneous media.

  7. Relationship between concentration of surfactant and pressure for droplet creation, and effect on droplet size in microchannel O/W emulsification; Maikurochaneru ni yoru O/W nyukaho ni okeru kaimen kasseizai nodo to ekiteki seisei atsuryoku no kankei, oyobi koreraga ekitekikei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, T.; Komori, H.; Oda, N.; Yonemoto, T. [Tohoku Univ., Sendai (Japan). Graduate School of Engineering

    1998-03-01

    O/W (oil in water) emulsion is produced by micro-channel emulsification method, and the effects of surfactant concentration on the pressures at which droplet generation starts and stops are evaluated in connection with the water phase and oil phase interfacial tension. In addition, the effects of surfactant concentration and operational pressure on the droplet size are investigated by measuring the generated droplet distribution, mean droplet size, standard deviation, geometrical standard deviation, and the possibility of producing mono-dispersion emulsion whose droplet size is large than 10 micron. The breakthrough pressure and the minimum pressure for droplet generation become low with the increase of SDS (sodium lauryl sulfate) concentration. The surfactant concentration, however, is found to have no effect on the breakthrough pressure and the minimum pressure for droplet generation when the SDS concentration exceeds the critical micelle concentration. It is true also for a system added with NaCl. As regards droplet size, uniform 20{mu}m droplet is obtained irrespective of the surfactant concentration and pressure. 13 refs., 10 figs., 2 tabs.

  8. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.-A.

    1992-01-01

    At one installation in California, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, resulting in contamination at depths from 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. This paper summarizes a surfactant screening/surfactant flooding research program in which 22 surfactants were screened for their effectiveness in mobilizing the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on contaminated soil samples obtained from the site

  9. Comparative study of the physicochemical properties of aqueous solutions of the hydrocarbon and fluorocarbon surfactants and their ternary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Szymczyk, Katarzyna, E-mail: katarzyna.szymczyk@poczta.umcs.lublin.pl

    2014-03-03

    Highlights: • Acoustic properties of hydrocarbon and fluorocarbon surfactants were studied. • Auerbach’s relation is not proper for mixtures with fluorocarbon surfactants. • Values of the hydration number decreases at concentrations higher than CMC. • FSO100 and its mixtures are the strongest chaotropes. - Abstract: Speed of sound and density of aqueous solutions of hydrocarbon p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethyleneglycols) (Triton X-100 (TX100), Triton X-165 (TX165)) and fluorocarbon (Zonyl FSN-100 (FSN100), Zonyl FSO-100 (FSO100)) surfactants as well as their ternary mixtures were measured at 293 K. Taking into account these values and the literature data of the surface tension and viscosity of the studied systems, the values of the isentropic compressibility, apparent specific adiabatic compressibility, hydration number, apparent specific volume and Jones Dole’s A and B-coefficients were determined. For the systems containing FSO100 also the values of dB/dT were determined on the basis of the values of viscosity measured at different temperatures. Next, the calculated thermodynamic properties have been discussed in the term of intermolecular interactions between the components of the mixtures.

  10. Effect of anionic surfactants on the process of Fenton degradation of methyl orange.

    Science.gov (United States)

    Yang, C W; Wang, D

    2009-01-01

    Fenton process has been shown to be very successful to remove dyes from water. However, the influence of other constituents in dyeing industry wastewater, such as Sodium Dodecyl Sulphate (SDS) surfactants, has not been investigated. In this study, the effect of SDS surfactant on the kinetics of Methyl Orange degradation undergoing Fenton process was investigated. Results show that Methyl Orange degradation rate decreased as SDS concentration increased, which was attributed to the consumption of hydroxyl radicals (OH) by surfactants and the formation of Methyl Orange-SDS complex. No evidence was found that the Methyl Orange degradation pathway was affected by the presence of SDS. The kinetics modelling indicates the reaction was the first-order reaction to Methyl Orange.

  11. Kinetics of the H 2O 2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique

    Science.gov (United States)

    Liu, Airong; Huang, Xirong; Song, Shaofang; Wang, Dan; Lu, Xuemei; Qu, Yinbo; Gao, Peiji

    2003-09-01

    The kinetics of ligninase-catalyzed oxidation of veratryl alcohol (VA) by H 2O 2 in the aqueous medium containing cationic surfactant cetyltrimethylammonium bromide (CTAB) has been investigated using spectrophotometric technique. Steady-state kinetic studies at different concentrations of CTAB indicate that the reaction follows a ping pong mechanism and the mechanism always holds but the kinetic parameters vary with CTAB concentrations. CTAB is a weak inhibitor for ligninase; it lowers the maximum initial velocity. CTAB also causes the Michaelis constant of H 2O 2 to decrease dramatically and that of VA to increase markedly. Based on the changes in kinetic parameters of the enzyme-catalyzed reaction at different CTAB concentrations (lower than, near to and larger than its critical micelle concentration) and the effects of the CTAB monomer and the micelles on the spectra of VA and its corresponding aldehyde, a conclusion could be made that modification of the enzymatic protein by the surfactant monomer should be responsible for the above-mentioned results.

  12. Evaluation of the mechanism of skin enhancing surfactants on the biomembrane of shed snake skin.

    Science.gov (United States)

    Wonglertnirant, Nanthida; Ngawhirunpat, Tanasait; Kumpugdee-Vollrath, Mont

    2012-01-01

    The aim of the present work was to investigate the effects of different surfactants at various concentrations as a skin penetration enhancer through the biomembrane of the shed skin of Naja kaouthia. Additionally, the enhancer mechanism(s) of each class of surfactants were evaluated using physical characterization techniques, such as scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and small and wide angle X-ray scattering (SWAXS). Our results showed that skin permeability increased with increasing concentrations of surfactants and the degree of increase was higher for the model hydrophilic permeant, deuterium dioxide (D(2)O), than the lipophilic permeant, ketoprofen (KP). Ionic surfactants, sodium lauryl sulfate (SLS) and cetyl trimethyl ammonium bromide (CTAB), demonstrated higher enhancement ability than the polyoxyethylene (20) sorbitan mono-oleate (Tween 80) non-ionic surfactant, which was consistent with the results from physical characterization studies. Increasing amounts of permeated drug resulted in an increase in membrane interactions. From our observations, it can be assumed that SLS and CTAB can be localized inside the biomembrane and thereby enhance drug permeation mainly through interactions with intercellular lipids in the stratum corneum (SC) and the creation of a perturbed microenvironment among lipid alkyl chains and polar head groups.

  13. Anionic Surfactant as a Corrosion Inhibitor for Synthesized Ferrous Alloy in Acidic Solution

    Directory of Open Access Journals (Sweden)

    Farida Kellou-Kerkouche

    2013-01-01

    Full Text Available The effect of temperature on the corrosion behaviour of a synthesized iron-based alloy in 1 N sulphuric acid solution has been examined by means of three electrochemical techniques. Thereafter, we studied the influence of an anionic surfactant (sodium dodecyl benzene sulfonate at various concentrations on the electrochemical behaviour of the ferrous alloy. The obtained results show that the temperature increase reduced the performance of the used alloy, in the acidic environment. Otherwise, the surfactant inhibits the alloy dissolution in the sulphuric acid, through its adsorption on the metal surface without modifying the mechanism of corrosion process. We also noticed that the highest inhibition effect is obtained at a concentration above its critical micelle concentration (CMC. Langmuir adsorption isotherm fits well with the experimental data.

  14. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques.

    Science.gov (United States)

    Mondal, Satyajit; Das, Bijan

    2018-06-05

    The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C 16 MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C 16 MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C 16 MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  16. Small-angle neutron scattering studies of nonionic surfactant: Effect

    Indian Academy of Sciences (India)

    Micellar solution of nonionic surfactant -dodecyloligo ethyleneoxide surfactant, decaoxyethylene monododecyl ether [CH3(CH2)11(OCH2CH2)10OH], C12E10 in D2O solution have been analysed by small-angle neutron scattering (SANS) at different temperatures (30, 45 and 60°C) both in the presence and absence of ...

  17. Surfactant-enhanced solubilization of residual dodecane in soil columns. 2. Mathematical modeling

    International Nuclear Information System (INIS)

    Abriola, L.M.; Dekker, T.J.; Pennell, K.D.

    1993-01-01

    A mathematical model is developed to describe surfactant-enhanced solubilization of nonaqueous-phase liquids (NAPLs) in porous media. The model incorporates aqueous-phase transport equations for organic and surfactant components as well as a mass balance for the organic phase. Rate-limited solubilization and surfactant sorption are represented by a linear driving force expression and a Langmuir isotherm, respectively. The model is implemented in a one-dimensional Galerkin finite element simulator which idealizes the entrapped residual organic as a collection of spherical globules. Soil column data for the solubilization of residual dodecane by an aqueous solution of polyoxyethylene (20) sorbitan monooleate are used to evaluate the conceptual model. Input parameters were obtained, where possible, from independent batch experiments. Calibrated model simulations exhibit good agreement with measured effluent concentrations, supporting the utility of the conceptual modeling approach. Sensitivity analyses explore the influence of surfactant concentration and flushing strategy on NAPL recovery. 45 refs., 6 figs., 3 tabs

  18. Reducing plant uptake of PAHs by cationic surfactant-enhanced soil retention

    Energy Technology Data Exchange (ETDEWEB)

    Lu Li, E-mail: ll19840106@zju.edu.c [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong, E-mail: zlz@zju.edu.c [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang 310029 (China)

    2009-06-15

    Reducing the transfer of contaminants from soils to plants is a promising approach to produce safe agricultural products grown on contaminated soils. In this study, 0-400 mg/kg cetyltrimethylammonium bromide (CTMAB) and dodecylpyridinium bromide (DDPB) were separately utilized to enhance the sorption of PAHs onto soils, thereby reducing the transfer of PAHs from soil to soil solution and subsequently to plants. Concentrations of phenanthrene and pyrene in vegetables grown in contaminated soils treated with the cationic surfactants were lower than those grown in the surfactant-free control. The maximum reductions of phenanthrene and pyrene were 66% and 51% for chrysanthemum (Chrysanthemum coronarium L.), 62% and 71% for cabbage (Brassica campestris L.), and 34% and 53% for lettuce (Lactuca sativa L.), respectively. Considering the impacts of cationic surfactants on plant growth and soil microbial activity, CTMAB was more appropriate to employ, and the most effective dose was 100-200 mg/kg. - Cationic surfactants could enhance the retention of PAHs in soil, and reduce PAH transfer to and accumulation in vegetables.

  19. Reducing plant uptake of PAHs by cationic surfactant-enhanced soil retention

    International Nuclear Information System (INIS)

    Lu Li; Zhu Lizhong

    2009-01-01

    Reducing the transfer of contaminants from soils to plants is a promising approach to produce safe agricultural products grown on contaminated soils. In this study, 0-400 mg/kg cetyltrimethylammonium bromide (CTMAB) and dodecylpyridinium bromide (DDPB) were separately utilized to enhance the sorption of PAHs onto soils, thereby reducing the transfer of PAHs from soil to soil solution and subsequently to plants. Concentrations of phenanthrene and pyrene in vegetables grown in contaminated soils treated with the cationic surfactants were lower than those grown in the surfactant-free control. The maximum reductions of phenanthrene and pyrene were 66% and 51% for chrysanthemum (Chrysanthemum coronarium L.), 62% and 71% for cabbage (Brassica campestris L.), and 34% and 53% for lettuce (Lactuca sativa L.), respectively. Considering the impacts of cationic surfactants on plant growth and soil microbial activity, CTMAB was more appropriate to employ, and the most effective dose was 100-200 mg/kg. - Cationic surfactants could enhance the retention of PAHs in soil, and reduce PAH transfer to and accumulation in vegetables.

  20. A Molecular Dynamics Study of Single-Walled Carbon Nanotubes (SWCNTs) Dispersed in Bile Salt Surfactants

    Science.gov (United States)

    Phelan, Frederick, Jr.; Sun, Huai

    2014-03-01

    Single-walled carbon nanotubes (SWNCTs) are materials with structural, electronic and optical properties that make them attractive for a myriad of advanced technology applications. A practical barrier to their use is that SWCNT synthesis techniques produce heterogeneous mixtures of varying lengths and chirality, whereas applications generally require tubes with narrow size distributions and individual type. Most separation techniques currently in use to obtain monodisperse tube fractions rely on dispersion of these materials in aqueous solution using surfactants. The dispersion process results in a mixture of colloidal structures in which individual tubes are dispersed and contained in a surfactant shell. Understanding the structure and properties of the SWCNT-surfactant complex at the molecular level, and how this is affected by chirality, is key to understanding and improving separations processes. In this study, we use molecular dynamics (MD) simulations to study the structure and properties of SWCNT-surfactant colloidal complexes. We tested a number of methods and protocols in order to build an accurate model for simulating SWCNT systems for a variety of bile salt surfactants as well as anionic co-surfactants, components that are widely used and important in experimental separation studies at NIST. The custom force field parameters used here will be stored in WebFF, a Web-hosted smart force-field repository for polymeric and organic materials being developed at NIST for the Materials Genome Initiative.

  1. Factors controlling leaching of polycyclic aromatic hydrocarbons from petroleum source rock using nonionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Akinlua, Akinsehinwa [Obafemi Awolowo Univ., Ile-Ife (Nigeria). Fossil Fuels and Environmental Geochemistry Group; Jochmann, Maik A.; Qian, Yuan; Schmidt, Torsten C. [Duisburg-Essen Univ., Essen (Germany). Instrumental Analytical Chemistry; Sulkowski, Martin [Duisburg-Essen Univ., Essen (Germany). Inst. of Environmental Analytical Chemistry

    2012-03-15

    The extraction of polycyclic aromatic hydrocarbons (PAHs) from petroleum source rock by nonionic surfactants with the assistance of microwave irradiation was investigated and the conditions for maximum yield were determined. The results showed that the extraction temperatures and type of surfactant have significant effects on extraction yields of PAHs. Factors such as surfactant concentration, irradiation power, sample/solvent ratio and mixing surfactants (i.e., mixture of surfactant at specific ratio) also influence the extraction efficiencies for these compounds. The optimum temperature for microwave-assisted nonionic surfactant extraction of PAHs from petroleum source rock was 120 C and the best suited surfactant was Brij 35. The new method showed extraction efficiencies comparable to those afforded by the Soxhlet extraction method, but a reduction of the extraction times and environmentally friendliness of the new nonionic surfactant extraction system are clear advantages. The results also show that microwave-assisted nonionic surfactant extraction is a good and efficient green analytical preparatory technique for geochemical evaluation of petroleum source rock. (orig.)

  2. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  3. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  4. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps

    DEFF Research Database (Denmark)

    Clausen, S K; Sobhani, S; Poulsen, O M

    2000-01-01

    The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice. The surfact......The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice...

  5. Edge-wave-driven durable variations in the thickness of the surfactant film and concentration of surface floats

    Energy Technology Data Exchange (ETDEWEB)

    Averbukh, Elena [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); Kurkina, Oksana, E-mail: okurkina@hse.ru [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); National Research University Higher School of Economics, 25/12 Bol' shaya Pecherskaya St., 603155 Nizhny Novgorod (Russian Federation); Kurkin, Andrey [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); Soomere, Tarmo, E-mail: soomere@cs.ioc.ee [Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn (Estonia)

    2014-01-03

    By employing a simple model for small-scale linear edge waves propagating along a homogeneous sloping beach, we demonstrate that certain combinations of linear wave components may lead to durable changes in the thickness of the surfactant film, equivalently, in the concentration of various substances (debris, litter) floating on the water surface. Such changes are caused by high-amplitude transient elevations that resemble rogue waves and occur during dispersive focusing of wave fields with a continuous spectrum. This process can be treated as an intrinsic mechanism of production of patches in the surface layer of an otherwise homogeneous coastal environment impacted by linear edge waves.

  6. Polymer-surfactant interactions studied by titration microcalorimetry : Influence of polymer hydrophobicity, electrostatic forces, and surfactant aggregational state

    NARCIS (Netherlands)

    Kevelam, J; van Breemen, J.F.L.; Blokzijl, W.; Engberts, J.B.F.N.

    1996-01-01

    Isothermal titration microcalorimetry has been applied to investigate the interactions between hydrophobically-modified water-soluble polymers and surfactants. The following polymers were used in this study: poly(sodium acrylate-co-n-alkyl methacrylate) (A), where n-alkyl = C9H19, C12H25, and C18H37

  7. Studying the silver nanoparticles influence on thermodynamic behavior and antimicrobial activities of novel amide Gemini cationic surfactants.

    Science.gov (United States)

    Shaban, Samy M; Abd-Elaal, Ali A

    2017-07-01

    Three novels amide Gemini cationic surfactants with various alkyl chains and their silver nanohybrid with silver nanoparticles were synthesized and a confirmation study for surfactant and their nanoparticles formation has been established using IR, 1 HNMR, TEM and UV-Vis spectroscopy. The surface-active properties of these surfactants and their nanoform were investigated through surface tension and electrical conductivity measurements and a comparative study has been established. The thermodynamic parameters of micellization and adsorption were assessed at temperatures range from 25 to 65°C. The effect of silver particles on the surface behavior of the synthesized surfactant has been discussed. The aggregation behavior of silver nanoparticles with these synthesized Gemini surfactants in water were investigated using dynamic light scattering and transmission electron microscopy. Furthermore, the antimicrobial activities of these synthesized amide Gemini surfactants and their nanostructure with silver against both Gram positive and Gram negative bacteria were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method

    Directory of Open Access Journals (Sweden)

    Murahari Kolli

    2015-12-01

    Full Text Available In this paper, Taguchi method was employed to optimize the surfactant and graphite powder concentration in dielectric fluid for the machining of Ti-6Al-4V using Electrical Discharge Machining (EDM. The process parameters such as discharge current, surfactant concentration and powder concentration were changed to explore their effects on Material Removal Rate (MRR, Surface Roughness (SR, Tool wear rate (TWR and Recast Layer Thickness (RLT. Detailed analysis of structural features of machined surface was carried out using Scanning Electron Microscope (SEM to observe the influence of surfactant and graphite powder on the machining process. It was observed from the experimental results that the graphite powder and surfactant added dielectric fluid significantly improved the MRR, reduces the SR, TWR and RLT at various conditions. Analysis of Variance (ANOVA and F-test of experimental data values related to the important process parameters of EDM revealed that discharge current and surfactant concentration has more percentage of contribution on the MRR and TWR whereas the SR, and RLT were found to be affected greatly by the discharge current and graphite powder concentration.

  9. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    Science.gov (United States)

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  10. Comparison of cytotoxicity in vitro and irritation in vivo for aqueous and oily solutions of surfactants.

    Science.gov (United States)

    Czajkowska-Kośnik, Anna; Wolska, Eliza; Chorążewicz, Juliusz; Sznitowska, Małgorzata

    2015-01-01

    The in vivo model on rabbit eyes and the in vitro cytotoxicity on fibroblasts were used to compare irritation effect of aqueous and oily (Miglyol 812) solutions of surfactants. Tween 20, Tween 80 and Cremophor EL were tested in different concentrations (0.1, 1 or 5%) and the in vitro test demonstrated that surfactants in oil are less cytotoxic than in aqueous solutions. In the in vivo study, the aqueous solutions of surfactants were characterized as non-irritant while small changes in conjunctiva were observed after application the oily solutions of surfactants and the preparations were classified as slightly irritant, however this effect was similar when Miglyol was applied alone. In conclusion, it is reported that the MTT assay does not correlate well with the Draize scores.

  11. Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles.

    Science.gov (United States)

    Skoglund, Sara; Lowe, Troy A; Hedberg, Jonas; Blomberg, Eva; Wallinder, Inger Odnevall; Wold, Susanna; Lundin, Maria

    2013-07-16

    The stability of silver nanoparticles (Ag NPs) potentially released from clothing during a laundry cycle and their interactions with laundry-relevant surfactants [anionic (LAS), cationic (DTAC), and nonionic (Berol)] have been investigated. Surface interactions between Ag NPs and surfactants influence their speciation and stability. In the absence of surfactants as well as in the presence of LAS, the negatively charged Ag NPs were stable in solution for more than 1 day. At low DTAC concentrations (≤1 mM), DTAC-Ag NP interactions resulted in charge neutralization and formation of agglomerates. The surface charge of the particles became positive at higher concentrations due to a bilayer type formation of DTAC that prevents from agglomeration due to repulsive electrostatic forces between the positively charged colloids. The adsorption of Berol was enhanced when above its critical micelle concentration (cmc). This resulted in a surface charge close to zero and subsequent agglomeration. Extended DLVO theory calculations were in compliance with observed findings. The stability of the Ag NPs was shown to depend on the charge and concentration of the adsorbed surfactants. Such knowledge is important as it may influence the subsequent transport of Ag NPs through different chemical transients and thus their potential bioavailability and toxicity.

  12. Effects of Surfactant on Geotechnical Characteristics of Silty Soil

    International Nuclear Information System (INIS)

    Rahman, Z.A.; Sahibin, A.R.; Lihan, T.; Idris, W.M.R.; Sakina, M.

    2013-01-01

    Surfactants are often used as a cleaning agent for restoration of oil-contaminated soil. However the effect of surfactant on the geotechnical properties of soil is not clearly understood. In this study, the effects of surfactant on silty soil were investigated for consistency index, compaction, permeability and shear strength. Sodium dodecyl sulfate (SDS) was used in this study to prepare the surfactant-treated soil. Our results showed that the soil with added surfactant exhibited a decrease in liquid and plastic limit values. Maximum dry densities increased and optimum moisture contents decreased as contents of added surfactant were increased. The presence of surfactant assists the soil to achieve maximum density at lower water content. The addition of surfactant decreased the permeability of soil from 6.29 x 10 -4 to 1.15 x 10 -4 ms -1 . The shear strength of soil with added surfactant was examined using the undrained unconsolidated triaxial tests. The results showed that the undrained shear strength, Cu was significantly affected, decreased from 319 kPa to 50 kPa for soil with 20 % of added surfactant. The results of this study showed that the presence of surfactant in soil can modify the mechanical behaviour of the soil. (author)

  13. Respiratory failure following anti-lung serum: study on mechanisms associated with surfactant system damage

    International Nuclear Information System (INIS)

    Lachmann, B.; Hallman, M.; Bergmann, K.C.

    1987-01-01

    Within 2 minutes intravenous anti-lung serum (ALS) into guinea pig induces a respiratory failure that is fatal within 30 min. The relationship between surfactant, alveolar-capillary permeability and respiratory failure was studied. Within two minutes ALS induced a leak in the alveolar-capillary barrier. Within 30 minutes 28.3% (controls, given normal rabbit serum: 0.7%) of iv 131 I-albumin, and 0.5% (controls 0.02%) of iv surfactant phospholipid tracer were recovered in bronchoalveolar lavage. Furthermore, 57% (controls 32%) of the endotracheally administered surfactant phospholipid became associated with lung tissue and only less than 0.5% left the lung. The distribution of proteins and phospholipids between the in vivo small volume bronchoalveolar lavages and the ex vivo bronchoalveolar lavages were dissimilar: 84% (controls 20%) of intravenously injected, lavageable 131 I-albumin and 23% (controls 18%) of total lavageable phospholipid were recovered in the in vivo small volume bronchoalveolar lavages. ALS also decreased lavageable surfactant phospholipid by 41%. After ALS the minimum surface tension increased. The supernatant of the lavage increased the minimum surface tension of normal surfactant. In addition, the sediment fraction of the lavage had slow surface adsorption, and a marked reduction in 35,000 and 10,000 MW peptides. Exogenous surfactant ameliorated the ALS-induced respiratory failure. We propose that inhibition, altered intrapulmonary distribution, and dissociation of protein and phospholipid components of surfactant are important in early pathogenesis of acute respiratory failure

  14. Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: theory

    DEFF Research Database (Denmark)

    Zasadzinski, Joseph A; Alig, T F; Alonso, Coralie

    2005-01-01

    . The depletion force increases with polymer concentration as well as with polymer molecular weight. Increasing the surfactant concentration has a much smaller effect than adding polymer, as is observed. Natural hydrophilic polymers, like the SP-A present in native surfactant, or hyaluronan, normally present...... with the observations reported in the companion article (pages 1769-1779). Adding nonadsorbing, hydrophilic polymers to the subphase provides a depletion attraction between the surfactant aggregates and the interface, which can overcome the steric and electrostatic resistance to adsorption induced by serum...

  15. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    Science.gov (United States)

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  16. Surfactant protein A and surfactant protein D variation in pulmonary disease

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Husby, Steffen; Holmskov, Uffe

    2007-01-01

    Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding...... lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential...... in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic...

  17. The Accelerated Late Adsorption of Pulmonary Surfactant

    Science.gov (United States)

    2011-01-01

    Adsorption of pulmonary surfactant to an air−water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value. PMID:21417351

  18. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms

    Science.gov (United States)

    Wang, N.; Besser, J.M.; Buckler, D.R.; Honegger, J.L.; Ingersoll, C.G.; Johnson, B. Thomas; Kurtzweil, M.L.; MacGregor, J.; McKee, M.J.

    2005-01-01

    The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water–sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l−1 nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43–83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23–97%) was only observed in overlying water sampled from water–sediment microcosms during the first 24 h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4–6 mg l−1) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.

  19. Surfactant modified clays’ consistency limits and contact angles

    Directory of Open Access Journals (Sweden)

    S Akbulut

    2012-07-01

    Full Text Available This study was aimed at preparing a surfactant modified clay (SMC and researching the effect of surfactants on clays' contact angles and consistency limits; clay was thus modified by surfactants formodifying their engineering properties. Seven surfactants (trimethylglycine, hydroxyethylcellulose  octyl phenol ethoxylate, linear alkylbenzene sulfonic acid, sodium lauryl ether sulfate, cetyl trimethylammonium chloride and quaternised ethoxylated fatty amine were used as surfactants in this study. The experimental results indicated that SMC consistency limits (liquid and plastic limits changedsignificantly compared to those of natural clay. Plasticity index and liquid limit (PI-LL values representing soil class approached the A-line when zwitterion, nonionic, and anionic surfactant percentageincreased. However, cationic SMC became transformed from CH (high plasticity clay to MH (high plasticity silt class soils, according to the unified soil classification system (USCS. Clay modifiedwith cationic and anionic surfactants gave higher and lower contact angles than natural clay, respectively.

  20. Lactose oleate as new biocompatible surfactant for pharmaceutical applications.

    Science.gov (United States)

    Perinelli, D R; Lucarini, S; Fagioli, L; Campana, R; Vllasaliu, D; Duranti, A; Casettari, L

    2018-03-01

    Sugar fatty acid esters are an interesting class of non-ionic, biocompatible and biodegradable sugar-based surfactants, recently emerged as a valid alternative to the traditional commonly employed (e.g. polysorbates and polyethylene glycol derivatives). By varying the polar head (carbohydrate moiety) and the hydrophobic tail (fatty acid), surfactants with different physico-chemical characteristics can be easily prepared. While many research papers have focused on sucrose derivatives, relatively few studies have been carried out on lactose-based surfactants. In this work, we present the synthesis and the physico-chemical characterization of lactose oleate. The new derivative was obtained by enzymatic mono-esterification of lactose with oleic acid. Thermal, surface, and aggregation properties of the surfactant were studied in detail and the cytotoxicity profile was investigated by MTS and LDH assays on intestinal Caco-2 monolayers. Transepithelial electrical resistance (TEER) measurements on Caco-2 cells showed a transient and reversible effect on the tight junctions opening, which correlates with the increased permeability of 4 kDa fluorescein-labelled dextran (as model for macromolecular drugs) in a concentration dependent manner. Moreover, lactose oleate displayed a satisfactory antimicrobial activity over a range of Gram-positive and Gram-negative bacteria. Overall, the obtained results are promising for a further development of lactose oleate as an intestinal absorption enhancer and/or an alternative biodegradable preservative for pharmaceutical and food applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    Science.gov (United States)

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The structure of normal ionic micelles by interpretation of small-angle neutron scattering data from selectively labeled (2H, 19F) surfactant solutions

    International Nuclear Information System (INIS)

    Berr, S.S.

    1986-12-01

    We have determined the structure of micelles formed in water by several classes of ionic surfactants under a variety of experimental conditions using small-angle neutron scattering (SANS) techniques. Contrast between the micelles and the solvent was achieved through either selective deuteration or fluorination of the surfactant, or through the use of D 2 O. Interpretation of SANS data was facilitated by the use of Hayter, Penfold, and Hansen's rescaled Mean Spherical Approximation theory to calculate the scattering due to interparticle interactions. We have devised a number of micelle models, both spherical and ellipsoidal, to account for the scattering due to single micelles. It was found that changing the solvent from H 2 O to D 2 O results in the formation of larger micelles due to changes in the solvent-surfactant hydrocarbon interactions. This solvent isotope effect increased as the length of the alkyl chain increased. The fractional micellar charge did not change with respect to isotopic composition of solvent. We found that alkyltrimethylammonium bromide surfactants form drier micelles than do the sodium alkyl sulfate surfactants of equal chain length. Also, all micelles studied were found to be dry near the critical micelle concentration (cmc) and to become increasingly wetter as the concentration increased. The increase in aggregation number with respect to the square root of surfactant concentration was found to be linear for all systems studied. 80 figs

  3. Open lung ventilation preserves the response to delayed surfactant treatment in surfactant-deficient newborn piglets

    NARCIS (Netherlands)

    van Veenendaal, Mariëtte B.; van Kaam, Anton H.; Haitsma, Jack J.; Lutter, René; Lachmann, Burkhard

    2006-01-01

    OBJECTIVE: Delayed surfactant treatment (>2 hrs after birth) is less effective than early treatment in conventionally ventilated preterm infants with respiratory distress syndrome. The objective of this study was to evaluate if this time-dependent efficacy of surfactant treatment is also present

  4. Interactions of short chain phenylalkanoic acids within ionic surfactant micelles in aqueous media

    Directory of Open Access Journals (Sweden)

    Naeem Kashif

    2012-01-01

    Full Text Available % SDS KR nema Solubilization and interactions of phenylalkanoic acids induced by cationic surfactant, cetyltrimethylammonium bromide (CTAB and an anionic surfactant, sodium dodecyl sulfate (SDS was investigated spectrophotometrically at 25.0°C. The UV spectra of the additives (acids were measured with and without surfactant above and below critical micelle concentration (cmc of the surfactant. The presence of alkyl chain in phenylalkanoic acids is responsible for hydrophobic interaction resulting in shift of the spectra towards longer wavelength (red shift. The value of partition coefficient (Kx between the bulk water and surfactant micelles and in turn standard free energy change of solubilization (ΔGpº were also estimated by measuring the differential absorbance (ΔA of the additives in micellar solutions.

  5. Conductometric study of sodium dodecyl sulfate - nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 mixed micelles in aqueous solution

    Directory of Open Access Journals (Sweden)

    Ćirin Dejan M.

    2012-01-01

    Full Text Available The present study is concerned with the determination of the critical micelle concentration (cmc of mixed micelles of sodium dodecyl sulfate with one of five nonionic surfactants (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 from conductance measurements. Based on the calculated values of the β parameters we have noticed that SDS-nonionic surfactants mostly showed strong synergistic effect. It was found that nonionic surfactants with mainly longer and more hydrophobic tail show stronger interactions with hydrophobic part of SDS, thus expressing stronger synergism. In SDS-Tween 80 binary system the strongest synergistic effect was noticed. SDS-Tween 85 micellar system showed antagonistic effect, most probably because the presence of the double bond in its three hydrophobic tails (three C18 tails makes it sterically rigid.

  6. Surfactant induced flows in thin liquid films : an experimental study

    NARCIS (Netherlands)

    Sinz, D.K.N.

    2012-01-01

    The topic of the experimental work summarized in my thesis is the flow in thin liquid films induced by non-uniformly distributed surfactants. The flow dynamics as a consequence of the deposition of a droplet of an insoluble surfactant onto a thin liquid film covering a solid substrate where

  7. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    International Nuclear Information System (INIS)

    Khun Khun, Kamalpreet; Mahajan, Aman; Bedi, R.K.

    2011-01-01

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  8. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Khun Khun, Kamalpreet [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Mahajan, Aman, E-mail: dramanmahajan@yahoo.co.in [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Bedi, R.K. [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2011-01-15

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  9. An ALC study of spin exchange of a muoniated cosurfactant in lamellar phase surfactant dispersions

    International Nuclear Information System (INIS)

    Dilger, H.; Martyniak, A.; Scheuermann, R.; Vujosevic', D.; Tucker, I.M.; McKenzie, I.; Roduner, E.

    2006-01-01

    The Avoided Level Crossing muon spin resonance (ALC-μSR) technique has been used to measure the Heisenberg spin exchange rate between the Mu adducts of 2-phenylethanol (PEA) and Ni 2+ in a concentrated lamellar phase dispersion composed of the dichain cationic surfactant 2,3-diheptadecyl ester ethoxypropyl-1,1,1-trimethylammonium chloride (DHTAC) and water. Ni 2+ is only dissolved in the aqueous phase, therefore information about the local environment of the PEA can be extracted from the spin exchange rate. In the high-temperature (L α ) phase the spin exchange is very slow, revealing that PEA preferentially resides in the headgroup regime of the surfactant. In the low-temperature (L β ) phase the spin exchange is diffusion controlled, because the PEA is expelled into the water region between the bilayers

  10. Polarization-dependent NEXAFS study of adsorption of long-chain surfactants on mechanically milled iron powder

    Energy Technology Data Exchange (ETDEWEB)

    Syugaev, A.V., E-mail: syual@mail.ru; Maratkanova, A.N.

    2014-08-15

    Highlights: • Plate-like particles modified with surfactant molecules were obtained under high-energy ball milling. • Adsorption layers were studied with polarization-dependent NEXAFS spectroscopy. • For the first time, arrangement of surfactants molecules on the powdered metal surface has been determined. • Tails of surfactant molecules (C-F/C-H) are shown to be oriented perpendicular to the particle surface. • Arrangement of carboxylate groups on the particle surfaces is discussed. - Abstract: In this work we have demonstrated the possibility of using the polarization-dependent NEXAFS spectra to study the structure of organic layers at the surface of powdered materials with plate-like shaped particles. The polarization dependence of the NEXAFS spectra may be easily obtained by just changing the angle between the X-ray beam direction and the substrate onto which the powder particles are set. For the first time, we have carried out a detailed study of the surfactant layers (n-perfluorononanoic and stearic acid), which are formed at the surface of iron plate-like particles under mechanical milling of iron powder with an addition of corresponding surfactants. The surfactant molecules are predominantly oriented perpendicular to the surface of the mechanically milled particles. Such orientation is similar to the arrangement of the molecules in the layers formed under equilibrium conditions, e.g. deposition from solutions. The changes in the chemical environment occurring in the molecule tails (defluorination or dehydrogenation) under mechanochemical treatment, do not result in a significant change in the molecular orientation and disordering of the adsorbed layer.

  11. Surfactant mediated extraction of total phenolic contents (TPC) and antioxidants from fruits juices.

    Science.gov (United States)

    Sharma, Shweta; Kori, Shivpoojan; Parmar, Ankush

    2015-10-15

    The aim of this study was to enhance the extraction of total phenolic contents (TPC) and antioxidants from fruit juices by the application of surfactants formulations instead of conventional solvents (methanol, ethanol and acetone). A variety of fruit infusions: apple red delicious (apple (rd)) (Malus domestica), Mcintosh apple (apple (i)) (Malus pumila), sweet lemon (Citrus limetta) and mango (Magnifera indica) were studied. Effect of water, organic solvents and five different aqueous surfactant formulations viz. SDS, Brij-35, Brij-58, Triton X-100 and Span-40 were explored for the extraction of TPC and determining the antioxidant activity (AA). The TPC and AA (%) were determined using Folin-Ciocalteu (FCA) and DPPH assay, respectively. The effect of surfactant type, concentration and common organic solvents on the extraction of TPC and AA (%) was studied using UV-visible spectrophotometric technique. Among all the extracting systems employed, Brij-58 showed the highest extraction efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Absorption of a volatile organic compound by a jet loop reactor with circulation of a surfactant solution: Performance evaluation

    International Nuclear Information System (INIS)

    Park, Byungjoon; Hwang, Geelsu; Haam, Seungjoo; Lee, Changha; Ahn, Ik-Sung; Lee, Kyoungjoo

    2008-01-01

    Biofiltration shows high efficiency for the removal of industrial waste gases and reliable operational stability at low investment and operating cost, especially when the VOC concentration is low, such as 100 ppmv (μL L -1 ) or less. However, it has been reported that the abrupt change in VOC concentrations leads to the failure of the biofilter. Hence, the pretreatment of waste gases is necessary to ensure the stable operation of the biofilter. The objective of this study is to develop a jet loop reactor (JLR) with circulation of a surfactant solution to lower the concentration of VOCs, especially hydrophobic VOCs. Toluene and Tween 81 were used as a model industrial waste gas and a surfactant, respectively. Among several non-ionic surfactants tested, Tween 81 showed the most rapid dissolution of toluene. When a JLR is replaced with fresh Tween 81 solution (0.3% w/v) every hour, it successfully absorbed for 48 h over 90% of the toluene in an inlet gas containing toluene at 1000 ppmv (μL L -1 ) or less. Therefore, JLR with circulation of a surfactant solution is believed to ensure the stable operation of the biofilter even with the unexpected increase in the VOC concentrations

  13. Antioxidant Microemulsion-based Ethylene Vinyl Acetate Film Containing Mangiferin and Surfactants

    Directory of Open Access Journals (Sweden)

    Boonnattakorn Rungkan

    2016-01-01

    Full Text Available Mangiferin, a natural antioxidant additive, was incorporated into an ethylene vinyl acetate copolymer (EVA containing 18% vinyl acetate (VA using the emulsion solvent evaporation technique. Sorbitan ester (Span®20 and polymeric surfactant (Pluronic®P−123 were compared. Mangiferin was finely dispersed in the suspension with the addition of surfactants studied. Span®20 was chosen as the surfactant for film preparation in the next step due to the dispersing and film forming properties. Effects of vinyl acetate (VA contents on the film properties were investigated. The EVA films with 12% VA had the highest tensile strength and oxygen barrier, followed by 18, 25 and 40% VA, respectively. Addition of Span®20 had only a slight effect on mechanical and barrier properties of the films, but markedly increased the release of mangiferin from the EVA matrices except in the 40% VA films. The maximum concentrations of mangiferin released from the 40, 25, 18 and 12% VA films into 95% ethanol were 83.30, 66.84, 51.77 and 34.57 μg·mL−11, respectively. The release concentrations from the 40 and 25% VA films was 2.4 and 1.9 folds of that from the 12% VA film, respectively. The antioxidant activity of the EVA films containing mangiferin and Span®20 was 80% radical-scavenging capacity (RSC for the 40 and 25% VA and 60% RSC for the 18 and 12% VA. The release of mangiferin from the EVA matrices may be controlled by appropriate selection of the surfactants and vinyl acetate contents.

  14. Fouling behavior of silica nanoparticle-surfactant mixtures during constant flux dead-end ultrafiltration

    NARCIS (Netherlands)

    Trzaskus, Krzystof; Lee, Sooi Li; de Vos, Wiebe Matthijs; Kemperman, Antonius J.B.; Nijmeijer, Kitty

    2017-01-01

    The increasing use of engineered nanoparticles in customer products results in their accumulation in water sources. In this experimental study, we investigated the role of surfactant type (cationic, anionic and non-ionic) and concentration on fouling development, nanoparticle rejection and fouling

  15. The Biophysical Function of Pulmonary Surfactant

    OpenAIRE

    Rugonyi, Sandra; Biswas, Samares C.; Hall, Stephen B.

    2008-01-01

    Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a three-dimensional bulk phase....

  16. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  17. Study of polyacrylamide-surfactant system on the water–oil interface properties and rheological properties for EOR

    Directory of Open Access Journals (Sweden)

    S.Z. Mahdavi

    2017-12-01

    Full Text Available Nowadays, due to the remarkable oil reduction in oil fields, enhanced oil recovery (EOR techniques have been considered by a large number of scientists and company. Situ oil extraction is normally done by these techniques with high efficiency. In this particular study, five different surface active agents (surfactant, two kinds of oil with various API, two kinds of sulfonated polyacrylamide, two different electrolyte solutions with various TDS and two distinctive alcohols were tested and evaluated. An optimal formulation in terms of the properties and quantity of materials has to be used in order to enhance oil recovery, achieved by investigation of surface tension and the phase behavior of mentioned substances. Rheological behavior of polymer flooding and surfactant was studied. Employing this formulation, the maximum micro emulsion of oil in water occurred. Due to the synergy between surfactant and alcohol (as a co-surfactant, relatively lower amounts of surfactants were used which led to the dip in the cost of operation, and ultimately the efficiency of operation improved.

  18. Reversal of multidrug resistance by surfactants.

    Science.gov (United States)

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.

    1992-01-01

    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  19. Evaluation of the presence of major anionic surfactants in marine sediments.

    Science.gov (United States)

    Cantarero, S; Camino-Sánchez, F J; Zafra-Gómez, A; Ballesteros, O; Navalón, A; Vílchez, J L; Verge, C; Reis, M S; Saraiva, P M

    2012-03-01

    The contamination of aquatic environments has become the focus of increasing regulation and public concern due to their potential and unknown negative effects on the ecosystems. The present work develops a monitoring and statistical study, based on the analysis of variance test (ANOVA) and the multivariable analysis, both for insoluble soap and LAS in order to compare the behavior of different anionic surfactants in this environmental compartment. First, a novel and successfully validated methodology to analyze insoluble soap in these samples is developed. The matrix effect and the comparison of different extraction techniques were also performed. The optimized analytical methodologies were applied to 48 representative samples collected from the Almeria Coast (Spain) and then a statistical analysis to correlate anionic surfactant concentration and several variables associated with marine sediment samples was also developed. The results obtained showed relevant conclusions related to the environmental behavior of anionic surfactants in marine sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Mixed system of ionic liquid and non-ionic surfactants in aqueous media: Surface and thermodynamic properties

    International Nuclear Information System (INIS)

    Bhatt, Darshak; Maheria, Kalpana; Parikh, Jigisha

    2014-01-01

    Highlights: • Interaction of ionic liquid and ethylene oxide based non-ionic surfactants in aqueous media. • Evaluation of various surface properties and thermodynamic parameters. • Micellar growth ensues from exothermic to endothermic with increase in temperature. • Micelle formation is enthalpy driven at low temperature and entropy driven at higher temperature. • The micellization power and adsorption proficiency decreased at high IL concentrations. - Abstract: The mixed system of ionic liquid (IL) tetraethyl ammonium tetrafluoroborate [TEA(BF 4 )] and numerous ethylene oxide based non-ionic surfactants in aqueous media were studied using surface tension, viscosity and dynamic light scattering (DLS) measurements. Various surface properties like critical micelle concentration (cmc), maximum surface excess concentration (Γ max ), minimum surface area per surfactant molecule (A min ), surface tension at the cmc (γ cmc ), adsorption efficiency (pC 20 ), and effectiveness of surface tension reduction (π cmc ) as well as thermodynamic parameters of micellization have been determined. DLS and viscosity measurements revealed that the micellar growth was attributed to the bridged solvophilicity of the POE chain in surfactants at elevated temperatures. In most of the cases, the progression ensues from exothermic to endothermic with increase in temperature of the mixed system. Thermodynamic parameter indicates that the micelle formation process is enthalpy driven at low temperature and entropy driven at higher temperature

  1. Mechanisms of dynamic wetting failure in the presence of soluble surfactants

    Science.gov (United States)

    Kumar, Satish; Liu, Chen-Yu; Carvalho, Marcio S.

    2017-11-01

    A hydrodynamic model and flow visualization experiments are used to understand the mechanisms through which soluble surfactants can influence the onset of dynamic wetting failure. In the model, a Newtonian liquid displaces air in a rectangular channel in the absence of inertia. A Navier-slip boundary condition and constant contact angle are used to describe the dynamic contact line, and surfactants are allowed to adsorb to the interface and moving channel wall (substrate). The Galerkin finite element method is used to calculate steady states and identify the critical capillary number Cacrit at which wetting failure occurs. It is found that surfactant solubility weakens the influence of Marangoni stresses, which tend to promote the onset of wetting failure. The experiments indicate that Cacrit increases with surfactant concentration. For the more viscous solutions used, this behaviour can largely be explained by accounting for changes to the mean surface tension and static contact angle produced by surfactants. For the lowest-viscosity solution used, comparison between the model predictions and experimental observations suggests that other surfactant-induced phenomena such as Marangoni stresses may play a more important role.

  2. Synthesis, surface properties and antimicrobial activity of some germanium nonionic surfactants.

    Science.gov (United States)

    Zaki, Mohamed F; Tawfik, Salah M

    2014-01-01

    Esterification reaction between different fatty acid namely; lauric, stearic, oleic and linoleic acids and polyethylene glycol-400 were performed. The produced polyethylene glycol ester were reacted with p-amine benzoic acid followed by condensation reaction with germanium dioxide in presence of sodium carbonate to form desired germinate surfactants. The chemical structures of the synthesized surfactants were determined using different spectra tools. The surface parameter including: the critical micelle concentration (CMC), effectiveness (π(cmc)), efficiency (Pc20), maximum surface excess (Γ(max)) and minimum surface area (A(min)), were calculated from the surface tension measurements. The synthesized surfactants showed higher surface activity. The thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the synthesized nonionic surfactants showed their tendency towards adsorption at the interfaces and also micellization in the bulk of their solutions. The synthesized surfactants were tested against different strain of bacteria using inhibition zone diameters. The synthesized surfactants showed good antimicrobial activities against the tested microorganisms including Gram positive, Gram negative as well as fungi. The promising inhibition efficiency of these compounds against the sulfate reducing bacteria facilitates them to be applicable as new categories of sulfate reducing bacteria biocides.

  3. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.

    Science.gov (United States)

    Goldsipe, Arthur; Blankschtein, Daniel

    2006-04-11

    A predictive, molecular-thermodynamic theory is developed to model the micellization of pH-sensitive surfactants. The theory combines a molecular-thermodynamic description of micellization in binary surfactant mixtures with the protonation equilibrium of the surfactant monomers. The thermodynamic component of the theory models the pH-mediated equilibrium between micelles, surfactant monomers, and counterions. These counterions may originate from the surfactant or from added salt, acid, or base. The molecular component of the theory models the various contributions to the free energy of micellization, which corresponds to the free-energy change associated with forming a mixed micelle from the protonated and deprotonated forms of the surfactant and from the bound counterions. The free energy of micellization includes hydrophobic, interfacial, packing, steric, electrostatic, and entropic contributions, which are all calculated molecularly. The theory also requires knowledge of the surfactant molecular structure and the solution conditions, including the temperature and the amount of any added salt, acid, or base. To account for the pH sensitivity of the surfactant, the theory requires knowledge of the surfactant monomer equilibrium deprotonation constant (pK1), which may be obtained from experimental titration data obtained below the critical micelle concentration (cmc). The theory can be utilized to predict the equilibrium micelle and solution properties, including the cmc, the micelle composition, the micelle shape and aggregation number, the solution pH, and the micelle deprotonation equilibrium constant (pKm). Theoretical predictions of the cmc, the micelle aggregation number, and the pKm compare favorably with the available experimental data for alkyldimethylamine oxide surfactants. This class of pH-sensitive surfactants exhibits a form of self-synergy, which has previously been attributed to hydrogen-bond formation at the micelle interface. Instead, we show that

  4. STUDI CAMPURAN SURFACTANT UNTUK MENENTUKAN FUNGSI SOLUBILIZER DAN FIXATIVE PADA INDUSTRI PARFUM

    Directory of Open Access Journals (Sweden)

    K N Adli

    2016-03-01

    Full Text Available Kualitas parfum  ditentukan oleh kejernihan dan longlasting parfum. Campuran surfaktan dapat meningkatkan kualitas parfum dengan biaya produksi yang murah. Penelitian ini bertujuan untuk mengkaji rasio campuran surfaktan untuk menentukan fungsi solubilizer dan fixative. Bibit parfum yang digunakan dalam penelitian ini adalah eugenol, surfaktan dengan fungsi solubilizer adalah portasol 40 dan tween 80 sedangkan surfaktan dengan fungsi fixative adalah glucam P20 dan patchouli alkohol. Rasio yang digunakan pada penelitian ini antara lain rasio glucam p20 : portasol (r G/P, rasio portasol 40 : tween 80 (r P/T dan rasio glucam P20 : patchouli alkohol (r G/PA. Hasil penelitian menunjukkan campuran surfaktan dapat meningkatkan kejernihan dan longlasting parfum lebih baik daripada surfaktan tunggal. Optimasi menggunakan RSM didapatkan rasio campuran yang paling berpengaruh terhadap kejernihan adalah r P/T sedangkan rasio yang paling berpengaruh terhadap longlasting parfum adalah r G/PA. Hasil optimum dengan respon turbiditas r G/P = 3,59; r P/T = 0,48; r G/PA = 0,41 dan respon longlasting  r G/P = 4,51; r P/T = 0,40; r G/PA = 0,42 menghasilkan turbiditas 0,0489 NTU serta longlasting 3,68 jam.Perfume quality is determined by the clarity and longlasting perfume. Surfactant mixture can improve the quality of perfumes at low production costs. This study objectives are to examines the blending ratio surfactant and to determine the function of solubilizer and fixative. Perfume seeds used in this study is eugenol, surfactants with solubilizer function is Portasol 40 and Tween 80 while surfactant with fixative function are glucam P20 and patchouli alcohol. The ratio used in this study include glucam ratio P20: portasol (r G/P, the ratio portasol 40: tween 80 (rP/T and the ratio of glucam P20: patchouli alcohol (r G/PA. The results showed a mixture of surfactants may improve the clarity and longlasting perfume is better than a single surfactant. RSM

  5. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wei, Yang; Zhan, Xinyu; Mao, Like; Gao, Yanxiang

    2018-08-30

    In this study, zein, propylene glycol alginate (PGA) and surfactant ternary complexes were fabricated by antisolvent co-precipitation method. Two types of surfactants (rhamnolipid and lecithin) were applied to generate zein-PGA-rhamnolipid (Z-P-R) and zein-PGA-lecithin (Z-P-L) ternary complexes, respectively. Results showed that the surfactant types significantly affected the properties of ternary complexes. The formation of ternary complexes was mainly due to the non-covalent interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among zein, PGA and surfactants. Moreover, the thermal stability of ternary complexes was enhanced with increasing the levels of both surfactants. Notably, ternary complex dispersions exhibited better stability against pH from 2 to 8. Furthermore, a compact network structure was observed in Z-P-R ternary complex, while Z-P-L ternary complex remained the spherical structure. These findings would provide new insights into the development of novel delivery system and expand the options, when zein-based complexes were utilized under different environment conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of

  7. The effect of pressure on the phase behavior of surfactant systems: An experimental study

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow; Stenby, Erling Halfdan; von Solms, Nicolas

    2012-01-01

    Enhanced oil recovery is employed in many mature oil reservoirs to maintain or increase the reservoir recovery factor. In this context, surfactant flooding has recently gained interest again. Surfactant flooding is the injection of surfactants (and co-surfactants) into the reservoir, in order...... to create microemulsions at the interface between crude oil and water, thus obtaining very low interfacial tension, which consequently helps mobilize the trapped oil.In this work a surfactant system, which has been thoroughly described at atmospheric pressure, is examined at elevated pressure. The effect...

  8. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    Directory of Open Access Journals (Sweden)

    Roza Bouchal

    2016-02-01

    Full Text Available Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC, and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK, critical micelle concentration (CMC, minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH° were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.

  9. Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide gemini surfactants as novel corrosion inhibitors for mild steel in formic acid

    Directory of Open Access Journals (Sweden)

    Mohammad Mobin

    2012-12-01

    Full Text Available Gemini surfactants, butanediyl 1,4-bis(dimethyl cetylammonium bromide, pentanediyl 1,5 - bis (dimethyl cetylammonium bromide and hexanediyl 1,6 - bis (dimethyl cetylammonium bromide from Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide series were synthesized in laboratory and were characterized by using Nuclear Magnetic Resonance (NMR spectroscopy. The surfactants were tested as corrosion inhibitors for mild steel in 20% formic acid. The influence of surfactants on mild steel corrosion inhibition was investigated by measuring the corrosion rate of mild steel in their absence and presence by weight loss measurements, solvent analysis of iron ions into the test solution and potentiodynamic polarization measurements. The surface morphology of the corroded steel samples in presence and absence of surfactants was evaluated by using Scanning Electron Microscopy (SEM. The synthesized gemini surfactants performed as excellent corrosion inhibitor, the inhibition efficiency (IE being in the range of 76.66-97.41%. The IE of surfactants is slightly affected by the spacer length. The IE increased with increase in surfactant concentration and temperature. The adsorption of gemini surfactants on the steel surface was found to obey Langmuir adsorption isotherm. The results of the potentiodynamic polarization studies are consistent with the results of weight loss studies.

  10. Thermodynamics on the micellization of various pure and mixed surfactants: Effects of head- and tail-groups

    International Nuclear Information System (INIS)

    Lee, Nam-Min; Lee, Byung-Hwan

    2016-01-01

    Highlights: • The values of critical micelle concentration of various pure and mixed surfactants are measured. • Thermodynamic parameters’ values are calculated to analyze the effects of head- and tail-groups on the micellization. • All the thermodynamic parameters’ values are decreasing with the increase of temperature. • The thermodynamic parameters’ values are depending severely on the chain length of alkyl group. - Abstract: The values of critical micelle concentration (CMC) for the micellization of various pure and mixed surfactants are determined by the UV–Vis spectrophotometric method. And the effects of temperature on the CMC values have been measured and thermodynamic parameters’ values are calculated to analyse the effects of head- and tail-groups on the micellization of surfactant molecules. The results show that the values of ΔG"o are negative and those of ΔS"o are positive for the micellization of all the surfactants within the measured temperature range. But the values of ΔH"o are positive or negative, depending on the kinds of surfactants. All these thermodynamic parameters’ values are decreasing together with the increase of temperature for all the surfactants. And these thermodynamic parameters’ values are depending severely on the chain length of alkyl group also as much as on the head-groups of surfactant molecules.

  11. Microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock

    Energy Technology Data Exchange (ETDEWEB)

    Akinlua, A., E-mail: geochemresearch@yahoo.com [Fossil Fuels and Environmental Geochemistry Group, Department of Chemistry, Obafemi Awolowo University, Ile-Ife (Nigeria); Jochmann, M.A.; Laaks, J.; Ewert, A.; Schmidt, T.C. [Instrumental Analytical Chemistry, University Duisburg-Essen, Universitaetsstr, 5, 45141 Essen (Germany)

    2011-04-08

    The extraction of aliphatic hydrocarbons from petroleum source rock using nonionic surfactants with the assistance of microwave was investigated and the conditions for maximum yield were determined. The results showed that the extraction temperatures and kinetic rates have significant effects on extraction yields of aliphatic hydrocarbons. The optimum temperature for microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock was 105 deg. C. The optimum extraction time for the aliphatic hydrocarbons was at 50 min. Concentration of the nonionic surfactant solution and irradiation power had significant effect on the yields of aliphatic hydrocarbons. The yields of the analytes were much higher using microwave assisted nonionic surfactant extraction than with Soxhlet extraction. The recoveries of the n-alkanes and acyclic isoprenoid hydrocarbons for GC-MS analysis from the extractant nonionic surfactant solution by in-tube extraction (ITEX 2) with a TENAX TA adsorbent were found to be efficient. The results show that microwave-assisted nonionic surfactant extraction (MANSE) is a good and efficient green analytical preparatory technique for geochemical evaluation of petroleum source rock.

  12. Microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock

    International Nuclear Information System (INIS)

    Akinlua, A.; Jochmann, M.A.; Laaks, J.; Ewert, A.; Schmidt, T.C.

    2011-01-01

    The extraction of aliphatic hydrocarbons from petroleum source rock using nonionic surfactants with the assistance of microwave was investigated and the conditions for maximum yield were determined. The results showed that the extraction temperatures and kinetic rates have significant effects on extraction yields of aliphatic hydrocarbons. The optimum temperature for microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock was 105 deg. C. The optimum extraction time for the aliphatic hydrocarbons was at 50 min. Concentration of the nonionic surfactant solution and irradiation power had significant effect on the yields of aliphatic hydrocarbons. The yields of the analytes were much higher using microwave assisted nonionic surfactant extraction than with Soxhlet extraction. The recoveries of the n-alkanes and acyclic isoprenoid hydrocarbons for GC-MS analysis from the extractant nonionic surfactant solution by in-tube extraction (ITEX 2) with a TENAX TA adsorbent were found to be efficient. The results show that microwave-assisted nonionic surfactant extraction (MANSE) is a good and efficient green analytical preparatory technique for geochemical evaluation of petroleum source rock.

  13. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, Mark A. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States)], E-mail: mark.a.chappell@usace.army.mil; George, Aaron J.; Dontsova, Katerina M.; Porter, Beth E. [SpecPro, Inc., 4815 Bradford Drive, Suite 201, Huntsville, AL 35805 (United States); Price, Cynthia L. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States); Zhou Pingheng; Morikawa, Eizi [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Kennedy, Alan J.; Steevens, Jeffery A. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States)

    2009-04-15

    Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L{sup -1} added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment. - Suspensions of multi-walled carbon nanotubes are stabilized by relatively low concentrations of dissolved humic substances in solution through surfactive mechanisms.

  14. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances

    International Nuclear Information System (INIS)

    Chappell, Mark A.; George, Aaron J.; Dontsova, Katerina M.; Porter, Beth E.; Price, Cynthia L.; Zhou Pingheng; Morikawa, Eizi; Kennedy, Alan J.; Steevens, Jeffery A.

    2009-01-01

    Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L -1 added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment. - Suspensions of multi-walled carbon nanotubes are stabilized by relatively low concentrations of dissolved humic substances in solution through surfactive mechanisms

  15. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    Science.gov (United States)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  16. An ALC study of spin exchange of a muoniated cosurfactant in lamellar phase surfactant dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, H. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail: h.dilger@ipc.uni-stuttgart.de; Martyniak, A. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Vujosevic' , D. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral, CH63 3JW (United Kingdom); McKenzie, I. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2006-03-31

    The Avoided Level Crossing muon spin resonance (ALC-{mu}SR) technique has been used to measure the Heisenberg spin exchange rate between the Mu adducts of 2-phenylethanol (PEA) and Ni{sup 2+} in a concentrated lamellar phase dispersion composed of the dichain cationic surfactant 2,3-diheptadecyl ester ethoxypropyl-1,1,1-trimethylammonium chloride (DHTAC) and water. Ni{sup 2+} is only dissolved in the aqueous phase, therefore information about the local environment of the PEA can be extracted from the spin exchange rate. In the high-temperature (L{sub {alpha}}) phase the spin exchange is very slow, revealing that PEA preferentially resides in the headgroup regime of the surfactant. In the low-temperature (L{sub {beta}}) phase the spin exchange is diffusion controlled, because the PEA is expelled into the water region between the bilayers.

  17. A simplified treatment of surfactant effects on cloud drop activation

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2011-02-01

    Full Text Available Dissolved surface active species, or surfactants, have a tendency to partition to solution surface and thereby decrease solution surface tension. Activating cloud droplets have large surface-to-volume ratios, and the amount of surfactant molecules in them is limited. Therefore, unlike with macroscopic solutions, partitioning to the surface can effectively deplete the droplet interior of surfactant molecules.

    Surfactant partitioning equilibrium for activating cloud droplets has so far been solved numerically from a group of non-linear equations containing the Gibbs adsorption equation coupled with a surface tension model and an optional activity coefficient model. This can be a problem when surfactant effects are examined by using large-scale cloud models. Namely, computing time increases significantly due to the partitioning calculations done in the lowest levels of nested iterations.

    Our purpose is to reduce the group of non-linear equations to simple polynomial equations with well known analytical solutions. In order to do that, we describe surface tension lowering using the Szyskowski equation, and ignore all droplet solution non-idealities. It is assumed that there is only one surfactant exhibiting bulk-surface partitioning, but the number of non-surfactant solutes is unlimited. It is shown that the simplifications cause only minor errors to predicted bulk solution concentrations and cloud droplet activation. In addition, computing time is decreased at least by an order of magnitude when using the analytical solutions.

  18. Surfactant-aided recovery/in situ bioremediation for oil-contaminated sites

    International Nuclear Information System (INIS)

    Ducreaux, J.; Baviere, M.; Seabra, P.; Razakarisoa, O.; Shaefer, G.; Arnaud, C.

    1995-01-01

    Bioremediation has been the most commonly used method way for in situ cleaning of soils contaminated with low-volatility petroleum products such as diesel oil. However, whatever the process (bioventing, bioleaching, etc.), it is a time-consuming technique that may be efficiency limited by both accessibility and too high concentrations of contaminants. A currently developed process aims at quickly recovering part of the residual oil in the vadose and capillary zones by surfactant flushing, then activating in situ biodegradation of the remaining oil in the presence of the same or other surfactants. The process has been tested in laboratory columns and in an experimental pool, located at the Institut Franco-Allemand de Recherche sur l'Environnement (IFARE) in Strasbourg, France. Laboratory column studies were carried out to fit physico-chemical and hydraulic parameters of the process to the field conditions. The possibility of recovering more than 80% of the oil in the flushing step was shown. For the biodegradation step, forced aeration as a mode of oxygen supply, coupled with nutrient injection aided by surfactants, was tested

  19. Recycling of surfactant template in mesoporous MCM-41 synthesis

    Science.gov (United States)

    Lai, J. Y.; Twaiq, F.; Ngu, L. H.

    2017-06-01

    The recycling of surfactant template is investigated through the reuse of the surfactant template in the mesoporous MCM-41 synthesis process. In the synthesis of MCM-41, tetraethylorthosilicate (TEOS) solution in water was utilized as the silica source while hexadecyltrimethylammonium bromide (CTAB) solution in ethyl alcohol was used as a surfactant template. The synthesized gel is formed thoroughly by mixing the two solutions under acid conditions with a pH value of 0.5 for 1 hour and kept for crystallization for 48 hours. The as-synthesized MCM-41 powder is recovered by filtration while the filtrate (mother liquor) was then reused for the second synthesis cycle. The synthesis procedure was repeated till no further solid product was formed. The synthesized gel was not produced in the unifying solution in the fifth cycle of MCM-41 synthesis. The quality of the calcined MCM-41 powder produced in each synthesis cycle was evaluated by calculating the amount of MCM-41 produced and the surface area of the powder product. The result showed that 1.28, 0.37, 1.64, 1.90 and 0.037 g were obtained in the 1st, 2nd, 3rd, 4th and 5th synthesis cycle, respectively. The surface area of the powder produced was found to be 1170, 916, 728, and 508 m2/g for 1st, 2nd, 3rd and 4th respectively. The concentration of the surfactant template has reached value lower than the critical micelle concentration (CMC) and remained constant after the 4th cycle. There was no further formation of gel due to low availability in the interaction between silicate anions and surfactant cations when the amount of TEOS was fixed for every synthesis cycle.

  20. NMR studies of electrophoretic mobility in surfactant systems

    International Nuclear Information System (INIS)

    Conveney, F.M.; Strange, J.H.; Smith, A.L.; Smith, E.G.

    1989-01-01

    An experimental technique is described in which the flow of electrically charged micelles is measured in the presence of an applied electric field using an NMR technique. The method is used to determine the electrophoretic mobility at ambient temperature of a 5% aqueous solution of sodium dodecyl sulphate and is shown to provide a new technique for the study of electrophoresis in surfactant solutions. (author). 8 refs.; 4 figs

  1. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.

    2011-01-01

    with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant DNA ratio determined by the surface coverage of the underlying...... interfacial structures, a higher concentration in relation to its cmc is required for the more soluble DTAB surfactant with a shorter alkyl chain than for CTAB. Our results suggest that the DNA Molecules Will spontaneously form a relatively dense, thin layer on top of a surfactant monolayer (hydrophobic...... surface) or a layer of admicelles (hydrophilic surface) as long as the surface concentration of surfactant is great enough to ensure a high interfacial-charge density. These findings have implications for bioanalytical and nanotechnology applications, which require the deposition of DNA layers with well...

  2. Automated electronic tongue based on potentiometric sensors for the determination of a trinary anionic surfactant mixture.

    Science.gov (United States)

    Cortina, Montserrat; Ecker, Christina; Calvo, Daniel; del Valle, Manuel

    2008-01-22

    An automated electronic tongue consisting of an array of potentiometric sensors and an artificial neural network (ANN) has been developed to resolve mixtures of anionic surfactants. The sensor array was formed by five different flow-through sensors for anionic surfactants, based on poly(vinyl chloride) membranes having cross-sensitivity features. Feedforward multilayer neural networks were used to predict surfactant concentrations. As a great amount of information is required for the correct modelling of the sensors response, a sequential injection analysis (SIA) system was used to automatically provide it. Dodecylsulfate (DS(-)), dodecylbenzenesulfonate (DBS(-)) and alpha-alkene sulfonate (ALF(-)) formed the three-analyte study case resolved in this work. Their concentrations varied from 0.2 to 4mM for ALF(-) and DBS(-) and from 0.2 to 5mM for DS(-). Good prediction ability was obtained with correlation coefficients better than 0.933 when the obtained values were compared with those expected for a set of 16 external test samples not used for training.

  3. Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants

    International Nuclear Information System (INIS)

    de Campo, Liliana; Warr, G.G.

    2005-01-01

    Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)

  4. Discourse of the form and concentration of surfactants to ensure the sustainability foam-emulsive products

    Directory of Open Access Journals (Sweden)

    O. Kotlyar

    2015-05-01

    Full Text Available Introduction. Development of dry mixes for making spumy and emulsion products are topical, because nowadays there is a tendency to minimize the time spent on the process of cooking, which is achieved by the use of semi finished products high degree of readiness. Materials and methods. Foaming ability was determined by the method of multiplicity of the foam, the stability of unstable foam-by the half-life method of foam, highly resistant foam - as a ratio of the height of the column of foam after exposure for 24 hours. Results. Was determined the influence of sunflower oil on the foaming ability and half-life foam of systems «sodium caseinate-oil». It was found that getting systems with high index of foaming capacity and foam stability in the presence of oil in the system is impossible without the use of low molecular weight surfactants. Substantiated recommendations regarding the feasibility of using two surfactants in systems «sodium caseinate-surfactants-oil», which provide the necessary kinship surfaces air, fat and water phases. it has been found that the use of 2,5...3,5% mono-and diglycerides of fatty acid sand Lecithin’s 0.15...0.25% in the content of sodium caseinate about 0.5% allows to receive the stable foam-emulsive systems containing sunflower oil 7...8% and foaming ability about 640±1%. Conclusions. It is established that for ensuring high indicators foaming capacity and stability of foam-emulsive systems required the use of low-molecular surfactants. The research results, is recommended to use when developing technology of foam-emulsive products. Introduction

  5. Discourse of the form and concentration of surfactants to ensure the sustainability foam-emulsive products

    Directory of Open Access Journals (Sweden)

    Oleg

    2015-05-01

    Full Text Available Introduction. Development of dry mixes for making spumy and emulsion products are topical, because nowadays there is a tendency to minimize the time spent on the process of cooking, which is achieved by the use of semi finished products high degree of readiness. Materials and methods. Foaming ability was determined by the method of multiplicity of the foam, the stability of unstable foam-by the half-life method of foam, highly resistant foam - as a ratio of the height of the column of foam after exposure for 24 hours. Results. Was determined the influence of sunflower oil on the foaming ability and half-life foam of systems «sodium caseinate-oil». It was found that getting systems with high index of foaming capacity and foam stability in the presence of oil in the system is impossible without the use of low molecular weight surfactants. Substantiated recommendations regarding the feasibility of using two surfactants in systems «sodium caseinate-surfactants-oil», which provide the necessary kinship surfaces air, fat and water phases. it has been found that the use of 2,5...3,5% mono-and diglycerides of fatty acid sand Lecithin’s 0.15...0.25% in the content of sodium caseinate about 0.5% allows to receive the stable foam-emulsive systems containing sunflower oil 7...8% and foaming ability about 640±1%. Conclusions. It is established that for ensuring high indicators foaming capacity and stability of foam-emulsive systems required the use of low-molecular surfactants. The research results, is recommended to use when developing technology of foam-emulsive products.

  6. Free-surface entrainment into a rimming flow containing surfactants

    Science.gov (United States)

    Thoroddsen, S. T.; Tan, Y.-K.

    2004-02-01

    We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.

  7. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    Science.gov (United States)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  8. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    International Nuclear Information System (INIS)

    Kostela, J.; Elmgren, M.; Almgren, M.

    2005-01-01

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E 0 -values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase

  9. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    Energy Technology Data Exchange (ETDEWEB)

    Kostela, J. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)]. E-mail: johan.kostela@fki.uu.se; Elmgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden); Almgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)

    2005-05-30

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E {sup 0}-values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase.

  10. Surfactant-mediated growth of ultrathin Ge and Si films and their interfaces: Interference-enhanced Raman study

    OpenAIRE

    Kanakaraju, S; Sood, AK; Mohan, S

    2000-01-01

    We report on the growth and interfaces of ultrathin polycrystalline Ge and Si films when they are grown on each other using ion beam sputter deposition with and without surfactant at different growth temperatures, studied using interference enhanced Raman spectroscopy. Ge films grown on Si without surfactant show Ge segregation at the interfaces forming an alloy of GexSi1-x as indicated by the Ge-Si Raman mode. However, use of Sb as surfactant strongly suppresses the intermixing. Also Si film...

  11. Surfactant use with nitrate-based bioremediation

    International Nuclear Information System (INIS)

    Wilson, B.H.; Hutchins, S.R.; West, C.C.

    1995-01-01

    This study presents results of an initial survey on the effect of six surfactants on the biodegradation of petroleum hydrocarbons in bioremediation applications using nitrate as the electron acceptor. Aquifer material from Park City, Kansas, was used for the study. The three atomic surfactants chosen were Steol CS-330, Dowfax 8390 and sodium dodecylbenzene sulfonate (SDBS); the three nonionic surfactants were T-MAZ-60, Triton X-100, and Igepal CO-660. Both Steol CS-330 and T-MAZ-60 biodegraded under denitrifying conditions. The Steol inhibited biodegradation of benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (BTEXTMB). Only toluene was rapidly degraded in the presence of T-MAZ-60. Biodegradation of all compounds, including toluene, appears to be inhibited by Dowfax 8390 and SDBS. No biodegradation of Dowfax 8390 or SDBS was observed. SDBS inhibited denitrification, but Dowfax 8390 did not. For the microcosms containing Triton X-100 or Igepal CO-660, removal of toluene, ethylbenzene, m-xylene, 1,3,5-TMB, and 1,2,4-TMB were similar to their removals in the no-surfactant treatment. These two surfactants did not biodegrade, did not inhibit biodegradation of the alkylbenzenes, and did not inhibit denitrification. Further studies are continuing with aquifer material from Eglin Air Force Base

  12. (Cationic + nonionic) mixed surfactant aggregates for solubilisation of curcumin

    International Nuclear Information System (INIS)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S.K.; Chaudhary, G.R.; Mehta, S.K.

    2016-01-01

    Highlights: • Critical micelle concentration of mixed surfactant has been measured. • Aqueous solubility and alkaline stability of curcumin has been significantly improved. • Location of curcumin within micelles has been evaluated. • Scavenging activity of curcumin has been improved. • Non-intercalative binding with ct-DNA has been observed. - Abstract: Curcumin is a potential drug for variety of diseases. Major limitations of curcumin are low water solubility, rapid hydrolytic degradation in alkaline medium and poor bioavailability. To overcome these limitations, highly potential mixed micellar system has been prepared. In order to reduce inter ionic repulsion and precipitation of surfactants, (cationic + non-ionic) mixed system have been chosen that directly influence its applicability. Hydrophobic chain of non-ionic surfactant significantly influences the cmc of mixed surfactant system as indicated by fluorescence and conductivity data. UV–visible spectroscopy analyses show that solubility, stability and antioxidant property of the curcumin is remarkably improved depending on cmc and aggregation number (N_a_g_g) of mixed surfactants, where N_a_g_g plays crucial role. Generally, curcumin undergoes complete degradation in slight basic medium, but stability has been maintained up to 8 h at pH-13 using formulated mixed micelles (only (20 to 25)% degraded). Location of curcumin which is monitored using emission spectroscopy, fluorescence quenching and "1H NMR spectroscopy techniques play the most important role. Observed results show that the major population of curcumin is located at the polar region and some are in hydrophobic region of the mixed micelles. To ensure the effect of mixed surfactants and curcumin loaded mixed surfactants on DNA, the interaction parameter indicates non-interclative interactions.

  13. Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Andersen, Kell kleiner; Enghild, Jan J.

    2009-01-01

    Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS) and catio......Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS......) and cationic (DTAC) surfactant concentrations corresponding to specific conformational transitions, using the surfactant-robust broad-specificity proteases Savinase and Alcalase. Cleavage sites are identified by SDS-PAGE and N-terminal sequencing. We observe well-defined cleavage fragments, which suggest......, cleavage sites can be rationalized from the structure of the protein's folding transition state and the position of loops in the native state. Nevertheless, they are more sensitive to choice of surfactant and protease, probably reflecting a heterogeneous and fluctuating ensemble of partially unfolded...

  14. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    of FA, oppositely charged amphiphiles (surfactant-polyelectrolyte), and the charge ratio of the surfactant-polyelectrolyte on the extent of coacervation have been investigated. Furthermore, the chemical composition of each phase formed in the coacervate system was determined as a function of HFIP percentage. Phase diagrams of HFIP-PMA-CTAB and 2-propanol-PMA-CTAB were studied. The phase separation occurs over a wide range of polyelectrolyte, surfactant and alcohol concentration. In addition, a study of the dependence of coacervate volume on phase composition in different system (as defined by concentrations and mole charge ratio of amphihiles and alcohols) provided useful insight about possible underlying interactions and mechanisms. It has been concluded that neutralization favors coacervation in both systems. However, according to the compositional analysis of both HFIP and 2-propanol SPCC system, it seems that coacervation mechanisms are different. In Chapter III the properties of 2-propanol--SPCC, with analogous surfactant (CTAB) and polyelectrolyte (PMA) used in Chapter II, will be investigated. In particular, we are interested in examining the difference between the phase separation characteristics of the coacervates induced by 2-propanol and HFIP as coacervator. For this purpose, the phase behavior and the chemical composition of the phases will be analyzed as a function of 2-propanol and constituents concentrations. Chapter IV contains results of our investigations on the activity of a model enzyme (Trypsin) in 2-propanol- and FA-induced SPCC system. These investigations will facilitate understanding whether the aliphatic alcohol, AA- and FA-induced SPCC system denature the model enzymes. Such investigations also help in evaluation of the applicability of the coacervate systems developed in this work in proteomics where the proteolytic activity of enzymes is used for protein digestion. Finally, in Chapter V, the efficiency of the coacervate system (2-propanol

  15. Surfactant-Mediated Growth Revisited

    International Nuclear Information System (INIS)

    Meyerheim, H. L.; Sander, D.; Popescu, R.; Pan, W.; Kirschner, J.; Popa, I.

    2007-01-01

    The x-ray structure analysis of the oxygen-surfactant-mediated growth of Ni on Cu(001) identifies up to 0.15 monolayers of oxygen in subsurface octahedral sites. This questions the validity of the general view that surfactant oxygen floats on top of the growing Ni film. Rather, the surfactant action is ascribed to an oxygen-enriched zone extending over the two topmost layers. Surface stress measurements support this finding. Our results have important implications for the microscopic understanding of surfactant-mediated growth and the change of the magnetic anisotropy of the Ni films

  16. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  17. The Effect Of Organic Surfactants On The Properties Of Common Hygroscopic Particles: Effective Densities, Reactivity And Water Evaporation Of Surfactant Coated Particles

    Science.gov (United States)

    Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.

    2006-12-01

    Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a

  18. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

  19. The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation

    International Nuclear Information System (INIS)

    Seo, Youngwoo; Lee, Woo-Hyung; Sorial, George; Bishop, Paul L.

    2009-01-01

    Lab scale mulch biofilm barriers were constructed and tested to evaluate their performance for preventing the migration of aqueous and surfactant solubilized PAHs. The spatial distribution of viable PAH degrader populations and resultant biofilm formation were also monitored to evaluate the performance of the biobarrier and the prolonged surfactant effect on the PAH degrading microorganism consortia in the biobarrier. Sorption and biodegradation of PAHs resulted in stable operation of the system for dissolved phenanthrene and pyrene during 150 days of experimentation. The nonionic surfactant could increase the solubility of phenanthrene and pyrene significantly. However, the biobarrier itself couldn't totally prevent the migration of micellar solubilized phenanthrene and pyrene. The presence of surfactant and the resultant highly increased phenanthrene or pyrene concentration didn't appear to cause toxic effects on the attached biofilm in the biobarrier. However, the presence of surfactant did change the structural composition of the biofilm. - Mulch biofilm barrier showed potential for surfactant enhanced bioremediation, and the presence of surfactant changed the structural composition of the biofilm

  20. Electrostatic Interactions Govern "Odd/Even" Effects in Water-Induced Gemini Surfactant Self-Assembly.

    Science.gov (United States)

    Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun

    2017-01-26

    Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.

  1. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.

    Science.gov (United States)

    Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan

    2010-07-20

    The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.

  2. A Simple Two-Step Cloud Point Extraction Process for Removing Fluorescent Whitening Agents VBL in Industrial Wastewater and Recycling of Surfactant.

    Science.gov (United States)

    Han, Juan; Tang, Xu; Wang, Yun; Li, Jing; Ni, Liang; Wang, Lei

    2017-03-01

      With the enhancement of people's environmental consciousness, the treatment of wastewater was studied as the focus of this paper. Here we present a simple two-step extraction to realize efficient separation of fluorescent whitening agents VBL and cyclic utilization of surfactant to reduce the cost of wastewater treatment and environmental pollution. Firstly, the removal of VBL has been achieved by CPE using TX-114 as nonionic surfactant. The results showed that complete extraction was possible using 1% (w/w) TX-114 for VBL concentration not exceeding 17.5 mg/L, otherwise using a higher concentration of 1.5% (w/w) TX-114. Then the surfactant from the coacervate phase was recycled by changing the potential difference between phases. The morphology of micelles and solubilization mechanism of VBL were demonstrated through the observation of a fluorescent microscope. This method was successfully used to remove the VBL from wastewater sample and the surfactant could be reused several times.

  3. Study on the effect of surfactants on morphologies of trigonal selenium in microfluidic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Tian-bin [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Zheda Lu 38, Hangzhou 310027 (China); Yin, Xue-feng, E-mail: yinxf@zju.edu.cn [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Zheda Lu 38, Hangzhou 310027 (China); Fan, Jie [Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Liu, Jin-hua [College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036 (China)

    2010-02-15

    The influence of the surfactants on the morphologies of trigonal selenium (t-Se) submicrostructures was studied in a two-step microfluidic system, which is composed of a glass microchip for preparing spherical amorphous selenium (a-Se) colloids coupled with a poly(methyl methacrylate) microchip for transferring a-Se into its t-Se seeds under sonication. The selenious acid containing surfactants and hydrazine solutions were delivered through the two-inlets of the glass microfluidic chip. Submicro-rods, -wires as well as -tubes of t-Se were obtained by simply varying the coexisted surfactants. The as-synthesized products were characterized by powder X-ray diffraction (XRD), Raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED).

  4. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Elias [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas [Surface Engineering and Tribology, CSIR – Central Mechanical Engineering Research Institute, Durgapur 721 302 (India); Nayak, Ganesh Chandra [Department of Applied Chemistry, ISM Dhanbad, Dhanbad 826 004, Jharkhand (India); Kim, Nam Hoon [Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Ku, Bon-Cheol [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Dunsan-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 864-9 (Korea, Republic of); Lee, Joong Hee, E-mail: jhl@chonbuk.ac.kr [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2013-06-15

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml{sup −1}. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m{sup −1}) was comparatively higher than SDS and Triton X-100 functionalized graphene.

  5. Nanoparticle-enabled delivery of surfactants in porous media.

    Science.gov (United States)

    Nourafkan, Ehsan; Hu, Zhongliang; Wen, Dongsheng

    2018-06-01

    The adsorption of surfactants on the reservoir rocks surface is a serious issue in many energy and environment related areas. Learning from the concept of drug delivery in the nano-medicine field, this work proposes and validates the concept of using nanoparticles to deliver a mixture of surfactants into a porous medium. TiO 2 nanoparticles (NPs) are used as carriers for a blend of surfactants mixtures including anionic alkyl aryl sulfonic acid (AAS) and nonionic alcohol ethoxylated (EA) at the optimum salinity and composition conditions. The transport of NPs through a core sample of crushed sandstone grains and the adsorption of surfactants are evaluated. By using TiO 2 NPs, the adsorption of surfactant molecules can be significantly reduced, i.e. half of the initial adsorption value. The level of surfactant adsorption reduction is related to the NPs transport capability through the porous medium. An application study shows that comparing to surfactant flooding alone, the total oil recovery can be increased by 7.81% of original oil in place (OOIP) by using nanoparticle bonded surfactants. Such work shows the promise of NP as an effective surfactant carrier for sandstone reservoirs, which could have many potential applications in enhanced oil recovery (EOR) and environmental remediation. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: Impacts of acidity, halide concentration, and organic surfactants.

    Science.gov (United States)

    Frinak, Elizabeth K; Abbatt, Jonathan P D

    2006-09-07

    This study reports the first laboratory measurement of gas-phase Br2 production from the reaction between gas-phase hydroxyl radicals and aqueous salt solutions. Experiments were conducted at 269 K in a rotating wetted-wall flow tube coupled to a chemical-ionization mass spectrometer for analysis of gas-phase components. From both pure NaBr solutions and mixed NaCl/NaBr solutions, the amount of Br2 released was found to increase with increasing acidity, whereas it was found to vary little with increasing concentration of bromide ions in the sample. For mixed NaCl/NaBr solutions, Br2 was formed preferentially over Cl2 unless the Br- levels in the solution were significantly depleted by OH oxidation, at which point Cl2 formation was observed. Presence of a surfactant in solution, sodium dodecyl sulfate, significantly suppressed the formation of Br2; this is the first indication that an organic surfactant can affect the rate of interfacial mass transfer of OH to an aqueous surface. The OH-mediated oxidation of bromide may serve as a source of active bromine in the troposphere and contribute to the subsequent destruction of ozone that proceeds in marine-influenced regions of the troposphere.

  7. Surfactant treatment before first breath for respiratory distress syndrome in preterm lambs: comparison of a peptide-containing synthetic lung surfactant with porcine-derived surfactant

    Directory of Open Access Journals (Sweden)

    van Zyl JM

    2013-08-01

    Full Text Available Johann M van Zyl,1 Johan Smith2 1Division of Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; 2Department of Paediatrics and Child Health, Tygerberg Children's Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa Background: In a recent study utilizing a saline-lavaged adult rabbit model, we described a significant improvement in systemic oxygenation and pulmonary shunt after the instillation of a novel synthetic peptide-containing surfactant, Synsurf. Respiratory distress syndrome in the preterm lamb more closely resembles that of the human infant, as their blood gas, pH values, and lung mechanics deteriorate dramatically from birth despite ventilator support. Moreover, premature lambs have lungs which are mechanically unstable, with the advantage of being able to measure multiple variables over extended periods. Our objective in this study was to investigate if Synsurf leads to improved systemic oxygenation, lung mechanics, and histology in comparison to the commercially available porcine-derived lung surfactant Curosurf® when administered before first breath in a preterm lamb model. Materials and methods: A Cesarean section was performed under general anesthesia on 18 time-dated pregnant Dohne Merino ewes at 129–130 days gestation. The premature lambs were delivered and ventilated with an expiratory tidal volume of 6–8 mL/kg for the first 30 minutes and thereafter at 8–10 mL/kg. In a randomized controlled trial, the two surfactants tested were Synsurf and Curosurf®, both at a dose of 100 mg/kg phospholipids (1,2-dipalmitoyl-L-α-phosphatidylcholine; 90% in Synsurf, 40% in Curosurf®. A control group of animals was treated with normal saline. Measurements of physiological variables, blood gases, and lung mechanics were made before and after surfactant and saline replacement and at 15, 30, 45, 60, 90, 120, 180

  8. A hybrid interface tracking - level set technique for multiphase flow with soluble surfactant

    Science.gov (United States)

    Shin, Seungwon; Chergui, Jalel; Juric, Damir; Kahouadji, Lyes; Matar, Omar K.; Craster, Richard V.

    2018-04-01

    A formulation for soluble surfactant transport in multiphase flows recently presented by Muradoglu and Tryggvason (JCP 274 (2014) 737-757) [17] is adapted to the context of the Level Contour Reconstruction Method, LCRM, (Shin et al. IJNMF 60 (2009) 753-778, [8]) which is a hybrid method that combines the advantages of the Front-tracking and Level Set methods. Particularly close attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with experiments and results from previous simulations. All benchmarking tests compare well with existing data thus providing confidence that the adapted LCRM formulation for surfactant advection and diffusion is accurate and effective in three-dimensional multiphase flows with a structured mesh. We also demonstrate that this approach applies easily to massively parallel simulations.

  9. Alkali/Surfactant/Polymer Flooding in the Daqing Oilfield Class II Reservoirs Using Associating Polymer

    Directory of Open Access Journals (Sweden)

    Ru-Sen Feng

    2013-01-01

    Full Text Available Hydrophobically modified associating polyacrylamide (HAPAM has good compatibility with the Daqing heavy alkylbenzene sulfonate surfactant. The HAPAM alkali/surfactant/polymer (ASP system can generate ultralow interfacial tension in a wide range of alkali/surfactant concentrations and maintain stable viscosity and interfacial tension for 120 days. The HAPAM ASP system has good injectivity for the Daqing class II reservoirs (100–300 × 10−3 μm2 and can improve oil recovery by more than 25% on top of water flooding. In the presence of both the alkali and the surfactant, the surfactant interacts with the associating groups of the polymer to form more micelles, which can significantly enhance the viscosity of the ASP system. Compared with using HPAM (Mw = 2.5 MDa, using HAPAM can reduce the polymer use by more than 40%.

  10. Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh-Tabrizi, S.A., E-mail: tabrizi1980@gmail.com [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Bigham, Ashkan [Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Rafienia, Mohammad [Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)

    2016-01-01

    In the present study, forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB contents and heat treatment on the textural properties and drug release from nanoparticles were investigated. The synthesized powders were studied by X-ray diffraction, Fourier transform infrared spectra, Brunauer–Emmett–Teller surface area analysis and transmission electron microscope images. Mg{sub 2}SiO{sub 4} materials demonstrated mesoporous characteristics and large specific surface area ranging from 159 to 30 m{sup 2}/g. The TEM results showed that forsterite nanorods had diameters about 4 nm and lengths ranging from 10 to 60 nm. It was found that the samples with 6 g CTAB show slower drug release rate than the other specimens, which is due to smaller pore size. This study revealed that the drug delivery of forsterite can be tailored by changing the amount of surfactant. - Highlights: • Forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method. • Nanoparticles were loaded with ibuprofen as a novel drug delivery system. • Synthesized nanoparticles had a rod-like morphology. • CTAB concentration strongly affected the textural properties and drug release of the nanoparticles.

  11. Surfactant -- Where Are We in 2003?

    Directory of Open Access Journals (Sweden)

    JF Lewis

    2004-01-01

    Full Text Available Surfactant research has progressed over the past several years to the extent that exogenous surfactant administration in patients with the acute respiratory distress syndrome (ARDS is now being evaluated. Unfortunately, clinical responses have been variable, and we now need to take a look at how surfactant is altered in this disease so that more effective treatment strategies can be developed. This review briefly discusses the biophysical and host defense properties of surfactant, the impact of mechanical ventilation (MV on the endogenous surfactant system and the most recent clinical data involving exogenous surfactant administration in patients with ARDS. Discussions regarding future directions of surfactant research both in ARDS and diseases other than acute lung injury are included.

  12. Tailor-made surfactants for optimized chemical EOR. Meeting oil reservoir conditions by applied knowledge of structure-performance relationship in extended surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, G.; Sorensen, W. [Sasol North America Inc., Westlake, LA (United States); Jakobs-Sauter, B. [Sasol Germany GmbH (Germany)

    2013-08-01

    Formulating the surfactant package for chemical EOR is a time consuming and expensive process - the formulation needs to fit the specific reservoir conditions (like oil type, temperature, salinity, etc.) to give optimum performance and the number of formulation variables is virtually endless. This paper studies the impact of surfactant structure on EOR formulation ability and performance and how to adjust the structure of the surfactant molecule to meet a specific reservoir's needs. Data from salinity phase boundary studies of alcohol propoxy sulfates illustrate how changes in alcohol structure as well as in propylene oxide level can shift optimum salinity and temperature to the desired range in a given model oil. From these data the impact of individual structural units was evaluated. Application of the HLD model (Hydrophilic-Lipophilic Deviation) shows how to extrapolate from the known data set to actual reservoir conditions. This is illustrated by studies on crude oil samples. Additional tests study how effective the selected surfactants perform. The HLD concept proves to be a valuable tool to select and tailor surfactants to individual reservoir needs, thus simplifying the surfactant screening process for EOR formulations by pre-selection of suitable structures and ultimately reducing cost and effort on the way to the most effective chemical EOR package. (orig.)

  13. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2009-02-15

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {l_brace}M{sub W} = (1000, 6000, and 35,000) g . mol{sup -1}{r_brace} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed.

  14. Synthesis and Characterization of Nanoporous Carbon Materials; The Effect of Surfactant Concentrations and Salts

    Directory of Open Access Journals (Sweden)

    Shokoofeh Geranmayeh

    2011-01-01

    Full Text Available Nanoporous carbon framework was synthesized using phenol and formaldehyde as carbon precursors and triblock copolymer (pluronic F127 as soft template via evaporation induced self-assembly. Hexagonal mesoporous carbon with specific surface area of 350 m2/g through optimizing the situation was obtained. The effects of different surfactant/phenol molar ratio and presence of salts on specific surface area, pore size and pore volume for all the prepared samples were studied by means of the Brunauer-Emmett-Teller (BET formalism, powder X-ray diffraction technique and FT-IR spectroscopy.

  15. The effect of surfactants on path instability of a rising bubble

    Science.gov (United States)

    Tagawa, Yoshiyuki; Takagi, Shu; Matsumoto, Yoichiro

    2013-11-01

    We experimentally investigate the surfactant effect on path instability of an air bubble rising in quiescent water. An addition of surfactant varies the gas-water boundary condition from zero shear stress to non-zero shear stress. We report three main findings: firstly, while the drag force acting on the bubble increases with the surfactant concentration as expected, the lift force shows a non-monotonic behavior; secondly, the transient trajectory starting from helical to zigzag is observed, which has never been reported in the case of purified water; lastly, a bubble with the intermediate slip conditions between free-slip and no-slip show a helical motion for a broad range of the Reynolds number. Aforementioned results are rationalized by considering the adsorption-desorption kinetics of the surfactants on gas-water interface and the wake dynamics. Y.T. thanks for financial support from Grant-in-Aid for JSPS Fellows (20-10701). We also thank for Grant-in-Aid for Scientific Research (B) (21360079).

  16. Alveolar Thin Layer Flows and Surfactant Dynamics

    Science.gov (United States)

    Roumie, Ahmad; Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    Pulmonary surfactants play a vital role in everyday respiration. They regulate surface tension in the lungs by diffusing through the hypophase, a liquid layer that lines the interior surface of the alveoli, and adsorbing to the existing air-fluid interface. This decreases the equilibrium surface tension value by as much as a factor of 3, minimizing breathing effort and preventing lung collapse at the end of exhalation. Given that the hypophase thickness h lies within the range 0.1 μm < h <0.5 μm , and that the average alveolar radius R is 100 μm , for some purposes the hypophase may usefully be modeled as a fluid layer on a flat sheet representing the alveolar wall. Moreover, because of the large aspect ratio, the lubrication approximation can be applied. The aim of the present work is to study the interaction between the straining of the alveolar wall and the fluid flow in the hypophase. The analysis is governed by the relative magnitudes of the time scales of surfactant diffusion, adsorption, desorption, viscous dissipation and sheet straining. Cases of particular interest include non-uniform surfactant concentration at the interface, leading to Marangoni flows and a non-uniform hypophase thickness profile. The analytical formulation and numerical simulations are presented. This work is motivated by a need to understand alveolar deformation during breathing, and to do so in a way that derives from improved understanding of the fluid mechanics of the problem.

  17. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin.

    Science.gov (United States)

    Hansted, Jon G; Wejse, Peter L; Bertelsen, Hans; Otzen, Daniel E

    2011-05-01

    The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Discrepancies over the onset of surfactant monomer aggregation interpreted by fluorescence, conductivity and surface tension methods

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Carvalho Costa

    1998-06-01

    Full Text Available Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac of polymer-surfactant complexes and the critical micellar concentration (cmc of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS mixtures, solutions containing poly(ethylene oxide-SDS, poly(vinylpyrrolidone-SDS and poly(acrylic acid-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.

  19. Improvement of Biodegradable Biocide’s Activity of Peroxyacetic Acid Basis Using Surfactants: Characterization and Stability

    Directory of Open Access Journals (Sweden)

    Esther Asensio

    2015-01-01

    Full Text Available This paper deals with the study of the kinetics decomposition reaction of the peroxyacetic acid under influence of surfactant additives. The peroxyacetic acid shows a decomposition rate of 1.70 × 10−3 h−1 and its activation energy is 66 kJ mol−1. The influence of temperature on the reaction of spontaneous decomposition of peroxyacetic acid was studied at two seasonal periods. Peroxyacetic acid standard and four prototypes of biocide samples with known concentration of peroxyacetic acid and hydrogen peroxide were studied. Finally, a factorial analysis ANOVA was carried out to establish significant differences (p<0.003 between the four biocide samples over time with respect to peroxyacetic acid and hydrogen peroxide concentration. From the study carried out, it can be concluded that the biocide with surfactant substances in its composition offers the best stability and its difference versus the other biocides may guarantee a better behaviour.

  20. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant

    International Nuclear Information System (INIS)

    Doong Rueyan; Lei Wengang

    2003-01-01

    The solubilization and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a soil system amended with different surfactants was examined. Mineralization experiments were conducted with the addition of [ 14 C]pyrene. An inoculum of the PAH-degrading microorganism, Pseudomonas putida, was investigated for its sensitivity towards four non-ionic and one anionic surfactants with different polyoxyethylene (POE) chain lengths. The addition of surfactant was found to enhance the bioavailability of naphthalene, phenanthrene and pyrene with efficiencies ranging from 21.1 to 60.6%, 33.3 to 62.8% and 26.8 to 70.9%, respectively. The enhanced efficiency followed the order of Brij 30, Triton X-100, Tween 80, and Brij 35, which is correlated with the polyoxyethylene chain of the surfactants. Brij 35 and Tween 80 inhibited the growth of P. putida. However, microorganisms can utilize Triton X-100 and Brij 30 as the sole carbon and energy sources at concentrations above CMC values. In the aqueous system without the addition of surfactants, microorganisms could mineralize [ 14 C]pyrene to 14 CO 2 which corresponds to 28% of mineralization. The addition of surfactants decreased the mineralization rate of pyrene. Also, the fraction of the micellar-phase pyrene that can be directly biodegraded decreased as the concentration of micelle increases. However, the mineralization rate can be enhanced by the amendment of Brij 30 when soil was applied to the cultures. This suggests that biodegradable surfactants can be applicable for increasing the bioavailability and mineralization of PAHs in soil systems

  1. Surfactant Phosphatidylcholine Metabolism in Severe Neonatal Lung Disease: Studied with Stable Isotopes

    NARCIS (Netherlands)

    D.J.M.T. Janssen (Daphne)

    2003-01-01

    markdownabstract__Abstract__ Avery and Mead showed in 1959 that pulmonary surfactant deficiency is a major factor in the pathophysiology of respiratory distress syndrome (RDS). In 1980 Fujiwara et al. administered exogenous surfactant for the first time successfully to preterm infants with RDS

  2. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo.

  3. INDUSTRIAL WASTE BIOCONVERSION INTO SURFACTANTS BY Rhodococcus erythropolis ІMV Ас-5017, Acinetobacter calcoaceticus ІMV В-7241 and Nocardia vaccinii ІMV В-7405

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2017-04-01

    Full Text Available The aim of the work is to realize an alternative processing of toxic industrial waste into surfactants by strains Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 for remediation of environment. The studied strains were grown in liquid media containing such sources of carbon as waste (fried sunflower oil, technical glycerol (by-product of biodiesel production, and aromatic compounds. The synthesis of surfactants was evaluated by emulsification index, conditional concentration of surfactants and concentration of extracellular surfactants, which was determined gravimetrically after their extraction from supernatant by the mixture of methanol and chloroform. The concentration of oil in water and soil was analyzed by gravimetric method after extraction with hexane. It was shown that with increasing concentration of the inoculum up to 10−15% and two times increase of nitrogen source content in medium containing 7−8% (v/v of crude glycerol, concentration of surfactants synthesized by R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B 7241 and N. vaccinii IMV B-7405 was 3.4; 5.0 and 5.3 g/l, respectively, that is 1.6−1.7 times higher as compared with values on basal medium with the same content of substrate. The maximum concentration (3.9−4.3 g/l of surfactants synthesized by A. calcoaceticus IMV B-7241 on fried sunflower oil (4% was achieved by using the inoculum grown on refined oil. The ability of R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 to decompose aromatic compounds (phenol, naphthalene, toluene, hexachlorobenzene, benzoic and N-phenylanthranilic acid with simultaneous synthesis of extracellular metabolites with surface-active and emulsifying properties was established. In the presence of surfactants in the form of culture liquid (5−10%, the degree of degradation of complex oil with heavy metal (Cu2+, Cd2+, Pb2+, 0.01−0.5 mmol

  4. A Spectroscopic and Electrochemical Investigation of Interactions of Anticancer Uracil Derivatives with Cationic and Anionic Surfactants

    International Nuclear Information System (INIS)

    Zafar, F.; Shah, A.; Ahmad, Z.; Siddiq, M.; Ali, S.; Asad Muhammad Khan, A. M.; Rana, U. A.

    2015-01-01

    Interactions of 5-fluorouracil (5-FU), a commercially available anti-cancer drug and two other possibly anti-cancer actives, 2-thiouracil (2-TU) and 2,4-dithiouracil (DTU), with anionic sodium dodecyl sulphate (SDS) and cationic cetlytrimethyl ammonium bromide (CTAB) surfactants were studied using cyclic voltammetry and UV-Visible spectroscopic techniques. The results from both techniques asserted the formation of complex between the drugs and surfactants. In the pre-micellar concentrations, the binding was mainly due to the interactions between the surfactants monomers (electrostatic) and the drug molecules, while in the post-micellar region, drug was encapsulated within the micelle due to electrostatic as well as hydrophobic interactions. The UV-Visible spectroscopic data of the interaction between 5-fluorouracil and the surfactants exhibited an isobestic point which indicated the presence of equilibrium species in bulk and the micellar phase. Binding constant, partition coefficient between bulk and miceller phase, and the number of drug molecules incorporated per micelle were calculated. (author)

  5. Occurrence, distribution and partitioning of nonionic surfactants and pharmaceuticals in the urbanized Long Island Sound Estuary (NY)

    International Nuclear Information System (INIS)

    Lara-Martín, Pablo A.; González-Mazo, Eduardo; Petrovic, Mira; Barceló, Damià; Brownawell, Bruce J.

    2014-01-01

    Highlights: • Surfactant levels were one order of magnitude higher than those for pharmaceuticals. • Concentrations of analytes in seawater were influenced by tides and sampling depth. • Surfactants were found in all suspended solids samples at more than 1 μg g −1 . • Presence of pharmaceuticals in sewage impacted surface sediments was minimal. • Among all analytes, polyethylene glycols show highest concentrations in sediments. - Abstract: This work deals with the environmental distribution of nonionic surfactants (nonylphenol and alcohol ethoxylates), their metabolites (NP, nonylphenol; NPEC, nonylphenol ethoxycarboxylates; and PEG, polyethylene glycols) and a selection of 64 pharmaceuticals in the Long Island Sound (LIS) Estuary which receives important sewage discharges from New York City (NYC). Most target compounds were efficiently removed (>95%) in one wastewater treatment plant monitored, with the exception of NPEC and some specific drugs (e.g., hydrochlorothiazide). Concentrations of surfactants (1.4–4.5 μg L −1 ) and pharmaceuticals (0.1–0.3 μg L −1 ) in seawater were influenced by tides and sampling depth, consistent with salinity differences. Surfactants levels in suspended solids samples were higher than 1 μg g −1 , whereas only most hydrophobic or positively charged pharmaceuticals could be found (e.g., tamoxifen, clarithromycin). Maximum levels of target compounds in LIS sediments (PEG at highest concentrations, 2.8 μg g −1 ) were measured nearest NYC, sharply decreasing with distance from major sewage inputs

  6. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  7. Morphological control of seedlessly-synthesized gold nanorods using binary surfactants

    Science.gov (United States)

    Roach, Lucien; Ye, Sunjie; Moorcroft, Samuel C. T.; Critchley, Kevin; Coletta, P. Louise; Evans, Stephen D.

    2018-04-01

    High purity gold nanorods (AuNRs) with tunable morphology have been synthesized through a binary-surfactant seedless method, which enables the formation of monocrystalline AuNRs with diameters between 7 and 35 nm. The protocol has high shape yield and monodispersity, demonstrating good reproducibility and scalability allowing synthesis of batches 0.5 l in volume. Morphological control has been achieved through the adjustment of the molar concentrations of cetyltrimethylammonium bromide and sodium oleate in the growth solution, providing fine tuning of the optical scattering and absorbance properties of the AuNRs across the visible and NIR spectrum. Sodium oleate was found to provide greatest control over the aspect ratio (and hence optical properties) with concentration changes between 10 and 23 mM leading to variation in the aspect ratio between 2.8 and 4.8. Changes in the geometry of the end-caps were also observed as a result of manipulating the two surfactant concentrations.

  8. Physicochemical studies of mixed surfactant microemulsions with isopropyl myristate as oil.

    Science.gov (United States)

    Bardhan, Soumik; Kundu, Kaushik; Saha, Swapan K; Paul, Bidyut K

    2013-07-15

    The present study is focused on evaluation of interfacial compositions and thermodynamic properties of w/o mixed surfactant [(sodium dodecylsulfate, SDS/polyoxyethylene (23) lauryl ether, Brij-35)/1-pentanol (Pn)/isopropyl myristate (IPM)] microemulsions under various physicochemical conditions by the dilution method. The number of moles of Pn at the interface (n(a)(i)) and bulk oil (n(a)(o)), and various thermodynamic parameters [viz. standard Gibbs free energy (ΔG(o→i)(0)), standard enthalpy (ΔH(o→i)(0)), and standard entropy (ΔS(o→i)(0)) of the transfer of Pn from bulk oil to the interface] have been found to be dependent on the molar ratio of water to surfactant (ω), concentration of Brij-35 (X(Brij-35)), and temperature. Temperature-insensitive microemulsions with zero specific heat capacity (ΔC(p)(0))(o→i) have been formed at specific compositions. The intrinsic enthalpy change of the transfer process (ΔH(0))(o→i)* has been evaluated from linear correlation between ΔH(o→i)(0) and ΔS(o→i)(0) at different experimental temperatures. The present report also aims at a precise characterization on the basis of molecular interactions between the constituents and provides insight into the nature of the oil/water interfaces of these systems by conductivity and dynamic light scattering studies as a function of ω and X(Brij-35). Conductivity studies reveal that incorporation of Brij-35 in non-percolating water/SDS/Pn/IPM systems makes them favorable for ω-induced percolation behavior up to X(Brij-35) ≤ 0.5. But further addition of Brij-35 causes a decrease in conductivity with increasing ω. Furthermore, the hydrodynamic diameters of the microemulsion droplets increase with increase in both X(Brij-35) and ω. Correlations of the results in terms of the evaluated physicochemical parameters have been attempted. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Surfactant media for constant-current coulometry. Application for the determination of antioxidants in pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Ziyatdinova, Guzel, E-mail: Ziyatdinovag@mail.ru [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation); Ziganshina, Endzhe; Budnikov, Herman [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation)

    2012-09-26

    Highlights: Black-Right-Pointing-Pointer Applicability of surfactants in constant-current coulometry is shown for the first time. Black-Right-Pointing-Pointer Reactions of antioxidants with electrogenerated titrants in surfactant media are investigated. Black-Right-Pointing-Pointer Water insoluble antioxidants can be determined in water media with addition of surfactants. Black-Right-Pointing-Pointer Coulometric determination of antioxidants in pharmaceutical dosage forms using surfactants media is developed. - Abstract: Effect of surfactant presence on electrochemical generation of titrants has been evaluated and discussed for the first time. Cationic (1-dodecylpyridinium and cetylpyridinium bromide), anionic (sodium dodecyl sulfate) and nonionic (Triton X100 and Brij{sup Registered-Sign} 35) surfactants as well as nonionic high molecular weight polymer (PEG 4000) do not react with the electrogenerated bromine, iodine and hexacyanoferrate(III) ions. The electrogenerated chlorine chemically interact with Triton X100 and Brij{sup Registered-Sign} 35. The allowable range of surfactants concentrations providing 100% current yield has been found. Chain-breaking low molecular weight antioxidants (ascorbic acid, rutin, {alpha}-tocopherol and retinol) were determined by reaction with the electrogenerated titrants in surfactant media. Nonionic and cationic surfactants can be used for the determination of antioxidants by reaction with the electrogenerated halogens. On contrary, cationic surfactants gives significantly overstated results of antioxidants determination with electrogenerated hexacyanoferrate(III) ions. The use of surfactants in coulometry of {alpha}-tocopherol and retinol provides their solubilization and allows to perform titration in water media. Simple, express and reliable coulometric approach for determination of {alpha}-tocopherol, rutin and ascorbic acid in pharmaceuticals using surfactant media has been developed. The relative standard deviation of the

  10. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform

  11. Surfactants from petroleum paraffin wax

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, T.M.; Hussein, M.H.; El Sayed, A.S.

    Paraffin wax from Egyptian petroleum was purified and then oxidized to fatty acids which were esterified to form their methyl esters, fractionated and then hydrolysed. The obtained fatty acids were converted into the corresponding primary amines which were converted with ethylene oxide to form nonionic surfactants. The prepared primary amines were also converted into tertiary amines and then converted into cationic surfactants through condensation with benzyl chloride or 1-chloromethylnaphthalene. Also, amine oxide surfactants were prepared by oxidation of the tertiary amines with hydrogen peroxide. The surface active properties of all the prepared surfactants were determined, and the effect of their chemical structure on the surfactant properties are discussed in this paper.

  12. Role of Marangoni stress during breakup of surfactant-covered liquid threads: Reduced rates of thinning and microthread cascades

    Science.gov (United States)

    Kamat, Pritish M.; Wagoner, Brayden W.; Thete, Sumeet S.; Basaran, Osman A.

    2018-04-01

    Adsorption onto and lowering of surface tension σ of fluid interfaces by surfactants is exploited in drop formation (e.g., inkjet printing) where a thinning liquid thread (radius h ) connects an about-to-form drop to the liquid that remains hanging from the nozzle when the former falls from it. Surfactants can affect thread pinch-off in two ways: first, by lowering σ , they lower capillary pressure (σ /h ), and second, as surfactant concentration along the interface can be nonuniform, they cause the interface to be subjected to a surface tension gradient or Marangoni stress. Recent studies show that the location where the thread breaks is devoid of surfactant, and others assert that the influence of Marangoni stress on pinch-off is negligible. We demonstrate by simulations and experiments that surfactants play a major role in drop formation and that Marangoni stresses acting near but not at the pinch point give rise to reduced rates of thread thinning and formation of multiple microthreads that distinguish pinch-off of surfactant-covered threads from surfactant-free ones. Thinning at finite Reynolds and Peclet numbers, Re and Pe, is shown to exhibit intermediate scaling regimes that have heretofore only been observed during pinch-off of threads undergoing creeping flow (Re=0 ) while convection of surfactant is weak compared to its diffusion (Pe<1 ).

  13. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters

    Directory of Open Access Journals (Sweden)

    Mahdi ES

    2011-06-01

    Full Text Available Elrashid Saleh Mahdi1, Mohamed HF Sakeena1, Muthanna F Abdulkarim1, Ghassan Z Abdullah1,3, Munavvar Abdul Sattar2, Azmin Mohd Noor11Department of Pharmaceutical Technology, 2Department of Physiology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia; 3Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, Kuala Lumpur, MalaysiaBackground: The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters.Methods: Nonionic surfactant blends of Tween® and Tween®/Span® series were screened based on their solubilization capacity with water for palm kernel oil esters. Tween® 80 and five blends of Tween® 80/Span® 80 and Tween® 80/Span® 85 in the hydrophilic-lipophilic balance (HLB value range of 10.7–14.0 were selected to study the phase diagram behavior of palm kernel oil esters using the water titration method at room temperature.Results: High solubilization capacity was obtained by Tween® 80 compared with other surfactants of Tween® series. High HLB blends of Tween® 80/Span® 85 and Tween® 80/Span® 80 at HLB 13.7 and 13.9, respectively, have better solubilization capacity compared with the lower HLB values of Tween® 80/Span® 80. All the selected blends of surfactants were formed as water-in-oil microemulsions, and other dispersion systems varied in size and geometrical layout in the triangles. The high solubilization capacity and larger areas of the water-in-oil microemulsion systems were due to the structural similarity between the lipophilic tail of Tween® 80 and the oleyl group of the palm kernel oil esters.Conclusion: This study suggests that the phase diagram behavior of palm kernel oil esters, water, and nonionic surfactants is not only affected by the HLB value, but also by the structural similarity between palm kernel oil esters and the surfactant

  14. Acute Pathophysiological Effects of Intratracheal Instillation of Budesonide and Exogenous Surfactant in a Neonatal Surfactant-depleted Piglet Model

    Directory of Open Access Journals (Sweden)

    Chia-Feng Yang

    2010-08-01

    Conclusions: Intratracheal instillation of surfactant or surfactant plus budesonide can improve oxygenation and pulmonary histologic outcome in neonatal surfactant-depleted lungs. The additional use of budesonide does not disturb the function of the exogenous surfactant. Intratracheal administration of a corticosteroid combined with surfactant may be an effective method for alleviating local pulmonary inflammation in severe RDS.

  15. Adsorption of surfactant ions and binding of their counterions at an air/water interface.

    Science.gov (United States)

    Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki

    2009-01-01

    An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.

  16. Surfactant therapy in late preterm infants

    Directory of Open Access Journals (Sweden)

    Murat Yurdakök

    2013-06-01

    Full Text Available Late preterm (LPT neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS, transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature infants, leading to a gap in knowledge and understanding of the developmental biology and mechanism of pulmonary diseases in LPT neonates. Surfactant deficiency is the most frequent etiology of RDS in very preterm and moderately preterm infants, while cesarean section and lung infection play major roles in RDS development in LPT infants. The clinical presentation and the response to surfactant therapy in LPT infants may be different than that seen in very preterm infants. Incidence of pneumonia and occurrence of pneumothorax are significantly higher in LPT and term infants. High rates of pneumonia in these infants may result in direct injury to the type II alveolar cells of the lung with decreasing synthesis, release, and processing of surfactant. Increased permeability of the alveolar capillary membrane to both fluid and solutes is known to result in entry of plasma proteins into the alveolar hypophase, further inhibiting the surface properties of surfactant. However, the oxygenation index value do not change dramatically after ventilation or surfactant administration in LPT infants with RDS compared to very preterm infants. These finding may indicate a different pathogenesis of RDS in late preterm and term infants. In conclusion, surfactant therapy may be of significant benefit in LPT infants with serious respiratory failure secondary to a number of insults. However, optimal timing and dose of administration are not so clear in this group. Additional

  17. Surfactant protein D in newborn infants

    DEFF Research Database (Denmark)

    Dahl, Marianne; Juvonen, Pekka Olavi; Holmskov, Uffe

    2005-01-01

    Surfactant protein D (SP-D) is a collectin that plays an important role in the innate immune system. The role of SP-D in the metabolism of surfactant is as yet quite unclear. The aims of this study were to establish normal values of SP-D in the umbilical cord blood and capillary blood of mature...

  18. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series - Part III. Immersion time effects and theoretical studies

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Ahmed, M.A.; Arida, H.A.; Kandemirli, Fatma; Saracoglu, Murat; Arslan, Taner; Basaran, Murat A.

    2011-01-01

    Graphical abstract: . Display Omitted Research highlights: → The inhibition effect of TX-100, TX-165 and TX-305 on iron corrosion in 1.0 M HCl was studied. → TX-305 inhibited iron corrosion more effectively than TX-100 and TX-165. → In most cases, inhibition efficiency increased with time during the first 60 min of immersion, then decreased. → Calculated quantum chemical parameters confirmed the experimental inhibition efficiencies of the tested surfactants. - Abstract: The inhibition performance of three selected non-ionic surfactants of the TRITON-X series, namely TRITONX-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.01-0.20 g L -1 ) and immersion time (0.0-8 h) at 298 K. Measurements were conducted based on Tafel polarization, LPR and impedance studies. At high frequencies, the impedance spectrum showed a depressed capacitive loop in the complex impedance plane, whose diameter is a function of the immersion time and the type and concentration of the introduced surfactant. In all cases, an inductive loop was observed in the low frequency and this could be attributed to the adsorption behavior. The inhibition efficiency increased with immersion time, reached a maximum and then decreased. This was attributed to the orientation change of adsorbed surfactant molecules. TX-305 inhibited iron corrosion more effectively than TX-100 and TX-165. The frontier orbital energies, the energy gap between frontier orbitals, dipole moments (μ), charges on the C and O atoms, the polarizabilities, and the quantum chemical descriptors were calculated. The quantum chemical calculation results inferred that for the HOMO representing the condensed Fukui function for an electrophilic attack (f k + ), the contributions belong to the phenyl group and the oxygen atom attached to the phenyl group for each tested surfactant. Quantitative structure

  19. The study of furfural removal from aqueous solutions using activated carbon and bentonite modified with cetyltrimethylammonium bromide (CTAB), a cationic surfactant

    OpenAIRE

    M Leili; Gh Asgari; A. A Eskandari; L Borzoei; B Ramavandi

    2016-01-01

    Background and Objectives: Furfural is one of the toxic chemical compounds used in many industries such as petrochemical, food, paper products, pharmaceutical, etc., due to having some characteristics. Therefore, furfural could be found at different concentrations in the effluent from these industries and can enter the environment. Hence, the aim of this study was the assessment the efficiency of a low cost bentonite modified with cationic surfactant in the removal of furfural from aqueous so...

  20. REMOVAL OF ANIONIC SURFACTANTS FROM WASTEWATER BY MAGNETIC MINERAL SORBENTS

    Directory of Open Access Journals (Sweden)

    Oksana Vladimirova Makarchuk

    2016-07-01

    Full Text Available The simplest and most effective method of removing low concentrations of anionic surfactants such as sodium dodecyl benzenesulfonate (SDBS and sodium lauryl sulfate (SLS is adsorption. Among adsorbents the natural clays are cheap and promising for these purposes. However, there are significant difficulties in removal of spent sorbent after the adsorption process. So, the creation of magnetic sorbents that can be effectively removed from water after sorption by magnetic separation will be a successful decision. The aim of this investigation is the creation of cheap and efficient magnetic sorbents based on natural clays and magnetite for anionic surfactant removal from wastewater. We have synthesized a series of magnetic sorbents from different natural clays with a content of magnetite from 2 to 10 wt%. The ability of magnetic sorbents to remove SDBS and SLS from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature and shaking time. Thermodynamic parameters were calculated from the slope and intercept of the linear plots of ln K against 1/T. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on magnetic sorbents correspond to the Langmuir isotherm. It is shown that with increasing the content of magnetite in the magnetic sorbents improves not only their separation from water by magnetic separation, but adsorption capacity to SDBS and SLS. Thus, we obtained of cheap magnetic sorbents based on natural clays and magnetite by the easy way, which not only quickly separated from the solution by magnetic separation, but effectively remove anionic surfactants.

  1. Latex imaging by environmental STEM: application to the study of the surfactant outcome in hybrid alkyd/acrylate systems.

    Science.gov (United States)

    Faucheu, Jenny; Chazeau, Laurent; Gauthier, Catherine; Cavaillé, Jean-Yves; Goikoetxea, Monika; Minari, Roque; Asua, José M

    2009-09-01

    Among other uses, latexes are a successful alternative to solvent-borne binders for coatings. Efforts are made to produce hybrid nanostructured latexes containing an acrylic phase and an alkyd phase. However, after the film-forming process, the surfactant used to stabilize these latexes remains in the film, and its location can have a drastic effect on the application properties. Among the processing parameters, the alkyd hydrophobicity can strongly influence this location. This article aims at the imaging of these surfactant molecules in two hybrid latexes with different hydrophobicity level of the alkyd resin. A first part of this paper is dedicated to the understanding of the contrast provided by the surfactant in environmental STEM imaging of latexes. Then, the influence of surfactant-polymer affinity on the surfactant location after film-forming of those hybrid alkyd/acrylate latexes is studied by this technique. It is shown that in the hybrid latex with an alkyd shell (obtained with the most hydrophilic resin), the surfactant molecules tend to remain buried in the alkyd phase. Conversely, in the hybrid latex with an acrylate shell (in the case of the most hydrophobic resin), the surfactant molecules tend to gather into islands like in pure acrylate latex films.

  2. Pulmonary surfactant and its components inhibit secretion of phosphatidylcholine from cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Dobbs, L.G.; Wright, J.R.; Hawgood, S.; Gonzalez, R.; Venstrom, K.; Nellenbogen, J.

    1987-01-01

    Pulmonary surfactant is synthesized and secreted by alveolar type II cells. Radioactive phosphatidylcholine has been used as a marker for surfactant secretion. The authors report findings that suggest that surfactant inhibits secretion of 3 H-labeled phosphatidylcholine by cultured rat type II cells. The lipid components and the surfactant protein group of M/sub r/ 26,000-36,000 (SP 26-36) inhibit secretion to different extents. Surfactant lipids do not completely inhibit release; in concentrations of 100 μg/ml, lipids inhibit stimulated secretion by 40%. SP 26-36 inhibits release with an EC 50 of 0.1 μg/ml. At concentrations of 1.0 μg/ml, SP 26-36 inhibits basal secretion and reduces to basal levels secretion stimulated by terbutaline, phorbol 12-myristate 13-acetate, and the ionophore A23187. The inhibitory effect of SP 26-36 can be blocked by washing type II cells after adding SP 26-36, by heating the proteins to 100 0 C for 10 min, by adding antiserum specific to SP 26-36, or by incubating cells in the presence of 0.2 mM EGTA. SP 26-36 isolated from canine and human sources also inhibits phosphatidylcholine release from rat type II cells. Neither type I collagen nor serum apolipoprotein A-1 inhibits secretion. These findings are compatible with the hypothesis that surfactant secretion is under feedback regulatory control

  3. Modulation of the wettability of excipients by surfactant and its impacts on the disintegration and release of tablets.

    Science.gov (United States)

    Yang, Baixue; Xu, Lu; Wang, Qiuxiao; Li, Sanming

    2016-12-01

    To investigate the modulation of the wettability of excipients by different types of surfactants and its impacts on the disintegration of tablets and drug release. The critical micelle concentration (CMC) of surfactants, including sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), dodecyl trimethyl ammonium bromide (DTAB), cetyltrimethyl ammonium bromide (CTAB) and polysorbate (Tween-20 and Tween-80), was obtained using the platinum ring method. Contact angles of surfactant solutions on the excipient compacts and double-distilled water on the mixture of surfactant and the other excipient (magnesium stearate (MgSt) or sodium alginate (SA)) were measured by the sessile drop technique. Besides, surface free energy of excipients was calculated by the Owens method. Finally, the disintegration of tablets and in vitro dissolution testing were performed according to the method described in USP. The wettability of excipients could be enhanced to different extent with low concentration of surfactant solutions and maintained stable basically after CMC. For MgSt (hydrophobic excipient), the shorter the hydrophobic chain (C 12 , including SDS and DTAB), the better the wettability with the addition of surfactant in the formulation, leading to the shorter disintegration time of tablets and higher drug release rate. In contrast, the wettability of SA (hydrophilic excipient) was reduced by adding surfactant, resulting in the longer disintegration time of tablets and lower release rate. The modulation of the wetting of pharmaceutical excipients by surfactant had changed the disintegration time of tablets and drug release rate to a greater extent.

  4. Experimental Investigation on Zonal Structure in Drag-Reducing Channel Flow with Surfactant Additives

    Directory of Open Access Journals (Sweden)

    Masaaki Motozawa

    2011-01-01

    Full Text Available The spatial structure of a drag-reducing channel flow with surfactant additives in a two-dimensional channel was investigated experimentally. We carried out detailed measurements of the instantaneous velocity in the streamwise wall-normal plane and streamwise spanwise plane by using particle image velocimetry (PIV. The surfactant used in this experiment is a kind of cationic surfactant CTAC. The weight concentrations of the CTAC solution were 25 and 40 ppm on the flow. We considered the effects of Reynolds number ranging from 10000 to 25000 and the weight concentration of CTAC. The results of this paper showed that in the drag-reducing flow, there appeared an area where the root mean square of streamwise velocity fluctuation and the vorticity fluctuation sharply decreased. This indicated that two layers with different turbulent structure coexisted on the boundary of this area. Moreover, these layers had characteristic flow structures, as confirmed by observation of the instantaneous vorticity fluctuation map.

  5. A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Sukhendu Mandal

    Full Text Available Triton X-100 (TX-100, a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA and its derivative (C9W have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.

  6. Revealing New Structural Insights from Surfactant Micelles through DLS, Microrheology and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Samiul Amin

    2015-06-01

    Full Text Available The correlation between molecular changes and microstructural evolution of rheological properties has been demonstrated for the first time in a mixed anionic/zwitterionic surfactant-based wormlike micellar system. Utilizing a novel combination of DLS-microrheology and Raman Spectroscopy, the effect of electrostatic screening on these properties of anionic (SLES and zwitterionic (CapB surfactant mixtures was studied by modulating the NaCl concentration. As Raman Spectroscopy delivers information about the molecular structure and DLS-microrheology characterizes viscoelastic properties, the combination of data delivered allows for a deeper understanding of the molecular changes underlying the viscoelastic ones. The high frequency viscoelastic response obtained through DLS-microrheology has shown the persistence of the Maxwell fluid response for low viscosity solutions at high NaCl concentrations. The intensity of the Raman band at 170 cm−1 exhibits very strong correlation with the viscosity variation. As this Raman band is assigned to hydrogen bonding, its variation with NaCl concentration additionally indicates differences in water structuring due to potential microstructural differences at low and high NaCl concentrations. The microstructural differences at low and high NaCl concentrations are further corroborated by persistence of a slow mode at the higher NaCl concentrations as seen through DLS measurements. The study illustrates the utility of the combined DLS, DLS-optical microrheology and Raman Spectroscopy in providing new molecular structural insights into the self-assembly process in complex fluids.

  7. Serum and sputum surfactants -A and -D in multidrug-resistant and ...

    African Journals Online (AJOL)

    Abnormal production and function of surfactants are associated with pulmonary diseases. Also, pulmonary infections alter surfactant metabolism. Due to lack of information on the levels of surfactants A (SP-A) and D (SP-D) in Nigerian tuberculosis (TB) patients, this study assessed these surfactants in both sputum and ...

  8. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.

    Science.gov (United States)

    Roques-Carmes, Thibault; Mathieu, Vincent; Gigante, Alexandra

    2010-04-01

    The dynamics of drop spreading of glycerol-water mixtures with and without surfactant on hydrophilic glass surfaces has been investigated. The influence of different factors, such as viscosity, drop volume and non-ionic alkyl (8-16) glucoside (Plantacare) surfactant concentration on the number and the nature of the spreading regimes is systematically investigated. More than 25 spreading experiments have been performed in order to obtain clear trends. The results confirm the existence of several spreading regimes for the duration of an experiment (200 s). For each regime, the radius can be expressed by a power law of the form R=Kt(n). Both n and K are necessary to identify the regime. The experimental data are compared with the analytical predictions of the combined theory of spreading. One of the main results of this study is that the nature of the regimes is strongly affected by the drop volume, the viscosity and the surfactant concentration. This behavior is not predicted by the theory. For drop volume less than or equal to 15 microL, a succession of two different regimes which depend on the viscosity and surfactant concentration are observed in the following order: a molecular-kinetic regime followed by a hydrodynamic regime (for high viscosity in the presence of surfactant) or a hydrodynamic regime and lastly a final asymptotic regime corresponding to a long relaxation time to equilibrium (for high viscosity in absence of surfactant and for low viscosity regardless of the presence of surfactant). The spreading follows quantitatively the predictions of the theory. Our results demonstrate that the theory is still valid for low viscosity liquids and in the presence of surfactant. The contact angle for which the crossover between molecular-kinetic regime and hydrodynamic regime occurs is thoroughly estimated since the theories do not allow the exact calculation of this value. Here for the first time, an empirical power law exponent (n=0.08+/-0.05) is proposed for

  9. Dilational viscoelastic properties of fluid interfaces - III mixed surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Djabbarah, N.F.; Wasan, D.T.

    1982-01-01

    The surface viscosity and elasticity of solutions of mixed surfactants were determined using the longitudinal wave technique combined with tracer particle measurements. The recent analysis of Maru et al., which was restricted to insoluble monolayers and to monolayers adsorbed from a single surfactant solution, has now been extended to multicomponent solutions. This analysis can be used not only to estimate the ''net'' viscoelastic properties at gas-liquid interfaces but also to estimate the composition as well as the intrinsic viscoelastic properties. Furthermore, when accompanied by separate measurements of shear viscoelastic properties, the above analysis can be used for the determination of dilational viscosity and elasticity. Surface viscoelasticity measurements were conducted on aqueous solutions of sodium lauryl sulfate and sodium lauryl sulfate-lauryl alcohol. Net surface viscosity and elasticity of sodium lauryl sulfate solutions increased with bulk concentration and reached a maximum at a concentration in the neighborhood of the critical micelle concentration. The presence of small amount of lauryl alcohol caused almost an order of magnitude increase in intrinsic surface viscosity and a similar increase in compositional surface elasticity. A comparison between the values of intrinsic surface viscosity and those of surface shear viscosity indicated that surface dilational viscosity exceeds surface shear viscosity by at least two orders of magnitude. These appear to be the first set of data presented hitherto for the surface dilational properties in addition to surface shear properties for the same mixed surfactant systems.

  10. Controlled synthesis of gold nanostars by using a zwitterionic surfactant.

    Science.gov (United States)

    Casu, Alberto; Cabrini, Elisa; Donà, Alice; Falqui, Andrea; Diaz-Fernandez, Yuri; Milanese, Chiara; Taglietti, Angelo; Pallavicini, Piersandro

    2012-07-23

    By replacing cetyltrimethylammonium bromide (CTAB) with the zwitterionic lauryl sulfobetaine (LSB) surfactant in the classical seed-growth synthesis, monocrystalline gold nanostars (m-NS) and pentatwinned gold asymmetric nanostars (a-NS) were obtained instead of nanorods. The main product under all synthetic conditions was a-NS, which have branches with high aspect ratios (AR), thus leading to LSPR absorptions in the 750-1150 nm range. The percentage of m-NS versus a-NS, the aspect ratio of the a-NS branches, and consequently the position of their LSPR absorption can be finely tuned simply by regulating the concentration of reductant, the concentration of surfactant, or the concentration of the "catalytic" Ag(+) cation. The m-NS have instead shorter and larger branches, the AR of which is poorly influenced by synthetic conditions and displays an LSPR positioned around 700 nm. A growth mechanism that involves the direct contact of the sulfate moiety of LSB on the surface of the nano-object is proposed, thereby implying preferential coating of the {111} Au faces with weak interactions. Consistent with this, we also observed the straightforward complete displacement of the LSB surfactant from the surface of the nanostars. This was obtained by the simple addition of thiols in aqueous solution to yield extremely stable coated a-NS and m-NS that are resistant to highly acidic, basic, and in similar to in vivo conditions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Influence of Surfactants and Fluoride against Enamel Erosion.

    Science.gov (United States)

    Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler

    2018-06-06

    This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.

  12. A study of correlations between the release of drugs from petrolatum-based gels containing nonionic surfactants and some physical and physico-chemical characteristics of the gel systems.

    Science.gov (United States)

    Colo, G D; Nannipieri, E; Serafini, M F; Vitale, D

    1986-06-01

    Synopsis The in vitro release of benzocaine and 2-ethyIhexyl p-di-methylaminobenzoate (EH-PABA) from petrolatum-based gels either containing two nonionic surfactants, or not, was compared with some physical and/or physico-chemical characteristics of the drugs, the gels and the drug-gel systems. The surfactants had no effect on the release of EH-PABA, the less polar drug, whereas they decreased the release of benzocaine. Moreover, the release data show a complex dependence of diffusive properties of ben-zocaine on drug and surfactant concentration. Benzocaine appears to form mixed micelles with each of the two surfactants and/or undergoes self-aggregation phenomena within surfactant micelles. The results indicate that drug diffusion is influenced by gel porosity, drug molecular size and polarity and molecular interactions. Etude des corrélations entre la disponibilité des medicaments dans les gels a base de vaseline contenant des surfactifs non ioniques et quelques propriétés physiques et physicochimiques des gels.

  13. Evaluation of soy-based surface active copolymers as surfactant ingredients in model shampoo formulations.

    Science.gov (United States)

    Popadyuk, A; Kalita, H; Chisholm, B J; Voronov, A

    2014-12-01

    A new non-toxic soybean oil-based polymeric surfactant (SBPS) for personal-care products was developed and extensively characterized, including an evaluation of the polymeric surfactant performance in model shampoo formulations. To experimentally assure applicability of the soy-based macromolecules in shampoos, either in combination with common anionic surfactants (in this study, sodium lauryl sulfate, SLS) or as a single surface-active ingredient, the testing of SBPS physicochemical properties, performance and visual assessment of SBPS-based model shampoos was carried out. The results obtained, including foaming and cleaning ability of model formulations, were compared to those with only SLS as a surfactant as well as to SLS-free shampoos. Overall, the results show that the presence of SBPS improves cleaning, foaming, and conditioning of model formulations. SBPS-based formulations meet major requirements of multifunctional shampoos - mild detergency, foaming, good conditioning, and aesthetic appeal, which are comparable to commercially available shampoos. In addition, examination of SBPS/SLS mixtures in model shampoos showed that the presence of the SBPS enables the concentration of SLS to be significantly reduced without sacrificing shampoo performance. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    International Nuclear Information System (INIS)

    Chernova, R.K.; Shtykov, S.N.; Beloliptseva, G.M.; Sukhova, L.K.; Amelin, V.G.; Kulapina, E.G.

    1984-01-01

    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H 2 SO 4 -pH14 acidity range and the 1x10 -3 -5x10 -6 M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection

  15. Comparison of rSP-C surfactant with natural and synthetic surfactants after late treatment in a rat model of the acute respiratory distress syndrome

    Science.gov (United States)

    Häfner, Dietrich; Germann, Paul-Georg; Hauschke, Dieter

    1998-01-01

    In a previous paper we showed that an SP-C containing surfactant preparation has similar activity as bovine-derived surfactants in a rat lung lavage model of the adult respiratory distress syndrome. In this study surfactant was given ten minutes after the last lavage (early treatment). In the present investigation we were interested how different surfactant preparations behave when they are administered 1 h after the last lavage (late treatment). Four protein containing surfactants (rSP-C surfactant, bLES, Infasurf and Survanta) were compared with three protein-free surfactants (ALEC, Exosurf and the phospholipid (PL) mixture of the rSP-C surfactant termed PL surfactant) with respect to their ability to improve gas exchange in this more stringent model when surfactant is given one hour after the last lavage. For better comparison of the surfactants the doses were related to phospholipids. The surfactants were given at doses of 25, 50 and 100 mg kg−1 body weight. The surfactants were compared to an untreated control group that was only ventilated for the whole experimental period. Tracheotomized rats (8–12 per dose and surfactant) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min−1, inspiration expiration ratio of 1 : 2, peak inspiratory pressure of 28 cmH2O at positive endexpiratory pressure (PEEP) of 8 cmH2O. Animals were ventilated for one hour after the last lavage and thereafter the surfactants were intratracheally instilled. During the whole experimental period the ventilation was not changed. Partial arterial oxygen pressures (PaO2, mmHg) at 30 min and 120 min after treatment were used for statistical comparison. All protein containing surfactants caused a dose-dependent increase of the reduced PaO2 values at 30 min after treatment. The protein-free surfactants showed only weak dose-dependent increase in PaO2 values at this time. This difference between the

  16. Laser-heating-induced displacement of surfactants on the water surface

    NARCIS (Netherlands)

    Backus, E.H.G.; Bonn, D.; Cantin, S.; Roke, S.; Bonn, M.

    2012-01-01

    We report a combined vibrational sum-frequency generation (SFG) spectroscopy, Brewster angle microscopy (BAM), and ellipsometry study of different surfactants on water as a function of surfactant density. Vibrational SFG spectra of surfactants on the water surface in a Langmuir trough have been

  17. Effect of surfactants on the morphology of FeSe films fabricated from ...

    Indian Academy of Sciences (India)

    All the films were prepared via similar experimental conditions (temperature, flow rate, concentration, solvent system and reactor type) except the use of three different concentrations of two different surfactants i.e., triton and span. Seven thin films were characterized with PXRD, SEM, AFM, EDS and EDS mapping.

  18. Perfectly Wetting Mixtures of Surfactants from Renewable Resources: The Interaction and Synergistic Effects on Adsorption and Micellization.

    Science.gov (United States)

    Szumała, Patrycja; Mówińska, Alicja

    This paper presents a study of the surface properties of mixtures of surfactants originating from renewable sources, i.e., alkylpolyglucoside (APG), ethoxylated fatty alcohol (AE), and sodium soap (Na soap). The main objective was to optimize the surfactant ratio which produces the highest wetting properties during the analysis of the solution of the individual surfactants, two- and three-component mixtures, and at different pH values. The results showed the existence of a synergistic effect in lowering the interfacial tension, critical micelle concentration and the formation of mixed micelles in selected solutions. We found that best wetting properties were measured for the binary AE:APG mixtures. It has been demonstrated that slightly lower contact angles values were observed on Teflon and glass surfaces for the AE:APG:soap mixtures but the results were obtained for higher concentration of the components. In addition, all studied solutions have very good surface properties in acidic, basic and neural media. However, the AE:soap (molar ratio of 1:2), AE:APG (2:1) and AE:APG:soap (1:1:1) compositions improved their wetting power at pH 7 on the aluminium and glass surfaces, as compared to solutions at other pH values tested (selected Θ values close to zero-perfectly wetting liquids). All described effects detected would allow less surfactant to be used to achieve the maximum capacity of washing, wetting or solubilizing while minimizing costs and demonstrating environmental care.

  19. Mixed micelles of polyethylene glycol (23) lauryl ether with ionic surfactants studied by proton 1D and 2D NMR.

    Science.gov (United States)

    Gao, Hong-Chang; Zhao, Sui; Mao, Shi-Zhen; Yuan, Han-Zhen; Yu, Jia-Yong; Shen, Lian-Fang; Du, You-Ru

    2002-05-01

    (1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.

  20. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions

    International Nuclear Information System (INIS)

    Choi, S-H; Sasaki, T; Shimizu, Y; Yoon, J-W; Nichols, W T; Sung, Y-E; Koshizaki, N

    2007-01-01

    Cubic ZnS semiconductor nanocrystals with the size of 2 to 5 nm were prepared by pulsed laser ablation in aqueous surfactant solutions of sodium dodecyl sulfate and cetyltrimethylammonium bromide without any further treatments. The obtained suspensions of the nanocrystals have broad photoluminescence emission from 375 to 600 nm. The abundance and emission intensity of the nanocrystals depend on the concentration of the surfactant in solution

  1. Respiratory Tract Infections in Diabetic and Non-Diabetic Individuals are Linked with Serum Surfactant Protein-D

    International Nuclear Information System (INIS)

    Jawed, S.; Parveen, N.

    2015-01-01

    Objective: To find out the rate of respiratory tract infections in diabetic and non-diabetic individuals and their relation with surfactant protein D. Methods: The cross-sectional study was conducted at Dow University of Health Sciences, Karachi, from September 2011 to April 2012, and comprised subjects of both genders between ages of 30 and 60 years. The subjects were divided into four groups: diabetic obese, non-diabetic obese, diabetic non-obese, and non-diabetic-non-obese. A structured questionnaire was used to collect information about respiratory tract infections. Serum surfactant protein D levels were analysed using human surfactant protein D enzyme-linked immunosorbent assay kit. Statistical analysis was performed using SPSS 16. Results: Of the 90 subjects, there were 20(22.2 percent) diabetic obese, 30(33.3 percent) non-diabetic obese, 10(11.1 percent) diabetic non-obese, and 30(33.3 percent) non-diabetic-non-obese. The overall mean age was 36.6±103 years. Among the diabetic obese, 15(75 percent) had respiratory tract infections which was higher than the other study groups, and patients having respiratory tract infections had lower surfactant protein D levels than those who did not have infections (p=0.01). Conclusion: Diabetic obese subjects had greater rate of recurrent respiratory tract infections and had lower concentration of serum surfactant protein D compared to subjects without respiratory tract infections. (author)

  2. Comparative study of the effects of PM1-induced oxidative stress on autophagy and surfactant protein B and C expressions in lung alveolar type II epithelial MLE-12 cells.

    Science.gov (United States)

    Bai, Ru; Guan, Longfei; Zhang, Wei; Xu, Jinxia; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2016-12-01

    There is a strong link between smaller air pollution particles and a range of serious health conditions. Thus, there is a need for understanding the impacts of airborne fine particulate matter (PM) with an aerodynamic diameter of PM1) on lung alveolar epithelial cells. In the present study, mouse lung epithelial type II cell MLE-12 cells were used to examine the intracellular oxidative responses and the surfactant protein expressions after exposure to various concentrations of PM1 collected from an urban site and a steel-factory site (referred as uPM1 and sPM1 hereafter, respectively). Physicochemical characterization of PM1 was performed by using scanning electron microscopy and transmission electron microscopy. Cytotoxicity and autophagy induced by PM1 were assessed by using comprehensive approaches after MLE-12 cells were exposed to different concentrations of PM1 for various times. Expression of surfactant proteins B and C in MLE-12 cells was determined by Western blotting. All of the tested PM1 induced cytotoxicity evidenced by significant decrease of cell viability and increase of lactate dehydrogenase (LDH) release in a time- and concentration-dependent manner in the exposed cells compared with the unexposed cells. A similar pattern of increase of intercellular reactive oxygen species (ROS) generation and decrease of superoxide dismutase (SOD) and catalase (CAT) activities was also observed. PM1-induced autophagy was evidenced by an increase in microtubule-associated protein light chain-3 (LC3) puncta, accumulation of LC3II, and increased levels of beclin1. Data from Western blotting showed significant decrease of surfactant protein B and C expressions. Relatively high concentrations of transition metals, including Fe, Cu and Mn, may be responsible for the higher toxicity of sPM1 compared with uPM1. Moreover, pretreatment with N-acetylcysteine (NAC) or Chelex (a metal chelating agent, which removes a large suite of metals from PM1) prevented the increase of

  3. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy.

    Science.gov (United States)

    Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile

    2014-09-28

    We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped

  4. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV

  5. Physico-chemical study of new non-ionic surfactants. Influence of ions on aggregation properties; Etude physico-chimique de nouveaux tensioactifs complexants thermoreversibles. Influence d'ions reconnus et non reconnus sur les proprietes d'agregation

    Energy Technology Data Exchange (ETDEWEB)

    Coulombeau, H

    2003-01-01

    New di-block thermo-sensitive metal chelating surfactants have been synthesised. They are based on polyethoxylated non-ionic surfactants (CiEj). A lysine block is linked either to the extremity of a CiEj (surfactant 2) or in a branched position (surfactant 1). These molecules retain the cloud point and the surface-active properties exhibited by the CiEj surfactants. Moreover they possess good complexing properties towards certain ions, which allows them to be successfully applied to cloud point extraction. In both cases, the cloud point and the area per headgroup at the air-water interface are higher than those of the analogous CiEj, which shows the hydrophilic contribution of the lysine block. Macroscopic properties (phase diagrams) and microscopic properties (shape of the aggregates and interactions between them) of the water-surfactant systems have been studied at ambient temperature. Small angle X-Rays scattering (SAXS) and small angle neutrons scattering (SANS) have shown that the new di-block surfactants form spherical micelles at low concentrations. The influence of non complexed salts on the new surfactants is the same as on classical CiEj: salting-in and salting-out phenomena occur according to the Hofmeister series. The effect of a complexed ion, uranyl cation, is however unusual: it leads to a sphere to rod transition, in turn lowering significantly the cloud point, which goes against the expectations on basis of the Hofmeister series. Finally, a preliminary study of ternary mixtures, water-surfactant 1-oil, is presented. It revealed the formation of microemulsions and pointed out that the surfactant film is then a lot more rigid than that formed with classical CiEj. (author)

  6. Critical role of surfactants in the formation of digestively-ripened, ultra-small (r<2 nm) copper oxide quantum dots

    Science.gov (United States)

    Talluri, Bhusankar; Prasad, Edamana; Thomas, Tiju

    2018-04-01

    Synthesis of ultra-small (r photovoltaics to sensing. Digestive ripening (DR), a method for preparing uniformly-sized particles is critically influenced by nature and concentrations of the starting materials, solvent, and surfactant. To better understand the DR process there is a need to study the effect of each synthetic parameter. In this work, we investigate the effect of surfactant on a ceramic-DR process, with copper oxide as the chosen material. To study the influence of surfactant; aminoalcohols (triethanolamine, diethanolamine, monoethanolamine), alkylamines (ethyl amine) and aqua ligands are chosen. Digestively ripened quantum dots (QDs) are formed in case of all surfactants except ethyl amine and water. Aminoalchols based surfactants which contain both hydroxyl and amine moieties are efficient ligands (due to their chelation ability) for achieving DR. With the increase of denticity of the ligand, average size of QDs do not vary; however the variance in size does. QDs formed using aminoalchols are more monodispersed when compared to alkyl amine and aqua ligand systems. Furthermore, absorption and photoluminescence spectra suggest that choice of surfactant is important for achieving DR in ceramic nanostructures (when compared to other parameters). Hard-soft-acid-base-interactions between surfactant and copper oxide seem primarily responsible for the observed DR in copper oxide QDs. The absorption and photoluminescence spectra indicate that the energy migration and relaxation pathways taking place in DR QDs depend on the type of capping agent used.

  7. Liquid Phase Micro-Extraction of Linear Alkylbenzene Sulfonate Anionic Surfactants in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2011-10-01

    Full Text Available Hollow fiber liquid phase micro-extraction (LPME of linear alkylbenzene sulfonates (LAS from aqueous samples was studied. Ion pair extraction of C10, C11, C12 and C13 homologues was facilitated with trihexylamine as ion-pairing agent, using di-n-hexylether as solvent for the supported liquid membrane (SLM. Effects of extraction time, acceptor buffer concentration, stirring speed, sample volume, NaCl and humic acids were studied. At 10–50 µg L−1 linear R2-coefficients were 0.99 for C10 and C11 and 0.96 for C12. RSD was typically ~15%. Three observations were especially made. Firstly, LPME for these analytes was unusually slow with maximum enrichment observed after 15–24 h (depending on sample volume. Secondly, the enrichment depended on LAS sample concentration with 35–150 times enrichment below ~150 µg L−1 and 1850–4400 times enrichment at 1 mg L−1. Thirdly, lower homologues were enriched more than higher homologues at low sample concentrations, with reversed conditions at higher concentrations. These observations may be due to the fact that LAS and the amine counter ion themselves influence the mass transfer at the water-SLM interface. The observations on LPME of LAS may aid in LPME application to other compounds with surfactant properties or in surfactant enhanced membrane extraction of other compounds.

  8. Effects of anionic surfactant on n-hexane removal in biofilters.

    Science.gov (United States)

    Cheng, Yan; He, Huijun; Yang, Chunping; Yan, Zhou; Zeng, Guangming; Qian, Hui

    2016-05-01

    The biodegradability of three anion surfactants by biofilm microorganisms and the toxicity of the most readily biodegradable surfactant to biofilm microorganisms were examined using batch experiments, and the optimal concentration of SDS for enhanced removal of hexane was investigated using two biotrickling filters (BTFs) for comparison. Results showed that SDS could be biodegraded by microorganisms, and its toxicity to microorganisms within the experimental range was negligible. The best concentration of SDS in biofiltration of n-hexane was 0.1 CMC and the elimination capacity (EC) of 50.4 g m(-3) h(-1) was achieved at a fixed loading rate (LR) of 72 g m(-3) h(-1). When an inlet concentration of n-hexane increased from 600 to 850 mg m(-3), the removal efficiency (RE) decreased from 67% to 41% by BTF2 (with SDS) and from 52% to 42% by BTF1 (without SDS). SDS could enhance hexane removal from 43% (BTF1) to 60% (BTF2) at gas empty-bed residence time (EBRT) of 7.5 s and an inlet concentration of 200 mg m(-3). Copyright © 2016. Published by Elsevier Ltd.

  9. Experimental and QSAR study on the surface activities of alkyl imidazoline surfactants

    Science.gov (United States)

    Kong, Xiangjun; Qian, Chengduo; Fan, Weiyu; Liang, Zupei

    2018-03-01

    15 alkyl imidazoline surfactants with different structures were synthesized and their critical micelle concentration (CMC) and surface tension under the CMC (σcmc) in aqueous solution were measured at 298 K. 54 kinds of molecular structure descriptors were selected as independent variables and the quantitative structure-activity relationship (QSAR) between surface activities of alkyl imidazoline and molecular structure were built through the genetic function approximation (GFA) method. Experimental results showed that the maximum surface excess of alkyl imidazoline molecules at the gas-liquid interface increased and the area occupied by each surfactant molecule and the free energies of micellization ΔGm decreased with increasing carbon number (NC) of the hydrophobic chain or decreasing hydrophilicity of counterions, which resulted in a CMC and σcmc decrease, while the log CMC and NC had a linear relationship and a negative correlation. The GFA-QSAR model, which was generated by a training set composed of 13 kinds of alkyl imidazoline though GFA method regression analysis, was highly correlated with predicted values and experimental values of the CMC. The correlation coefficient R was 0.9991, which means high prediction accuracy. The prediction error of 2 kinds of alkyl imidazoline CMCs in the Validation Set that quantitatively analyzed the influence of the alkyl imidazoline molecular structure on the CMC was less than 4%.

  10. Removal of As(V, Cr(VI and Pb(II from aqueous solution using surfactant-modified Sabzevar nanozeolite

    Directory of Open Access Journals (Sweden)

    Kourosh Razmgar

    2016-04-01

    Full Text Available The pollution of water environments is a challenging issue especially in developing countries. Contamination of drinking water with heavy metals has been reported in many parts of the world. Arsenic, chromium and lead are dangerous heavy metals and also common contaminants of drinking water. In this study, the capacity and performance of the surfactant-modified Sabzevar natural nanozeolite (SMSNZ on the removal of heavy metals from an aqueous solution was investigated. Initially, the appropriate concentration of hexadecyltrimethylammonium bromide HDTMA-Br solution for modification was investigated; it was found that it must be higher than the critical concentration micelle (CMC. Then, the removal of As (V, Cr (VI, and Pb(II from an aqueous solution was studied using SMSNZ. The results indicated that the removal efficiency was very high in different initial concentrations of heavy metals. The Linear, Langmuir and Freundlich isotherm models were used to investigate the adsorption equilibrium of the surfactant-modified natural zeolite for heavy metals adsorption. The results showed that the Linear isotherm is a better fit for the three studied heavy metals.

  11. Thermodynamic stability and retinol binding property of {beta}-lactoglobulin in the presence of cationic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Sahihi, M. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Bordbar, A.K., E-mail: bordbar@chem.ui.ac.ir [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Ghayeb, Y. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-08-15

    Highlights: > The stability parameters of {beta}-lactoglobulin, BLG, in the presence of C{sub n}TAB have been evaluated. > Rising in hydrocarbon chain length increases the denaturating power of surfactants. > C{sub n}TAB enhances the retinol binding affinity of BLG in all of its concentration range. - Abstract: In this work the stability parameters of bovine {beta}-lactoglobulin, variant A (BLG-A), with regard to their transition curves induced by dodecyltrimethylammonium bromide (C{sub 12}TAB), tetradecyltrimethylammonium bromide (C{sub 14}TAB) and hexadecyltrimethylammonium bromide (C{sub 16}TAB) as cationic surfactants, were determined at 298 K. For each transition curve, the conventional method of analysis which assumes a linear concentration dependence of the pre- and post-transition base lines, gave the most realistic values for {Delta}G{sub D}(H{sub 2}O). The results represent the increase in the denaturating power of surfactants with an increase in hydrocarbon chain length. The value of about 22.27 kJ . mol{sup -1} was obtained for {Delta}G{sub D}(H{sub 2}O) from transition curves. Subsequently, the retinol binding property of BLG as its functional indicator was investigated in the presence of these surfactants using the spectrofluorimeter titration method. The results represent the substantial enhancement of retinol binding affinity of BLG in the presence of these surfactants.

  12. The application of density functional theory to the analysis of small-angle neutron scattering of concentrated microemulsion with nonionic surfactant

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Liz, L.

    1993-09-01

    The experimental results obtained by the static small-angle neutron scattering technique for the microemulsion consisting of 40% in volume of nonionic surfactant pentaethylene-glycol-4-octylphenylether, equal volumes of heavy water and decane, and additives (the salt KCl, the anionic surfactant SDS and butanol) are presented and discussed. The universal features of obtained scattering intensity plots are determined. The shape of the peak present in all scattering spectra was fitted by the universal function derived from the density functional theory. The persistence length of surfactant sheet used in many density functional theories of microemulsions is determined and the effect of different additives on this length is shown. (author). 10 refs, 2 figs

  13. Association of surfactant protein-d with obesity

    International Nuclear Information System (INIS)

    Jawed, S.

    2016-01-01

    Obesity is associated with inflammatory diseases and obese individual's poses high risk for infections. Surfactant protein D (SP-D) is an important regulator of immunity and inflammation. Latest studies have suggested that it is also involved in lipid homeostasis and obese subjects have decrease concentration of SPD as compared to normal weight peoples. The aim of the current study was to elucidate the relationship among serum SP-D and BMI. Method: This cross sectional study was performed at Dow University of health sciences (DUHS), Karachi. We analysed 90 obese and non-obese subjects for serum SP-D concentration. SP-D was estimated by ELISA. Data was analysed by SPSS 16. Mean SP-D level and demographical variables between the groups were compared by t test, Associations of SP-D with BMI investigated by regression analysis. Results: obese subjects have significant lower levels of Serum SP-D than non-obese and negatively associated with BMI in both genders (p=0.000). Conclusion: This study concluded that obese subjects have lower concentration of SP-D as compare to non-obese and there is an inverse association between the SP-D and BMI. (author)

  14. 3D Model of Surfactant Replacement Therapy

    Science.gov (United States)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  15. The effects of insulin and hyperglycemia on surfactant phospholipid synthesis in organotypic cultures of type II pneumocytes.

    Science.gov (United States)

    Engle, M J; Langan, S M; Sanders, R L

    1983-08-29

    Organotypic cultures of fetal type II epithelial cells were incubated in media containing insulin at concentrations ranging from 10 to 400 microunits/ml. Exposure to insulin resulted in increased glucose uptake from the media and in the rate of glucose conversion to CO2. Furthermore, both glucose uptake and CO2 production were dependent on the glucose concentration in the media. Surfactant and residual phosphatidylcholine fractions were isolated from the organotypic cultures by sucrose density centrifugation. The presence of low doses of insulin (10-25 microunits/ml) caused a significant increase in the incorporation of glucose into both surfactant and residual phosphatidylcholine. Insulin at levels of 100 microunits/ml or higher resulted in a significant decrease in glucose incorporation into both phosphatidylcholine fractions. Increasing the media glucose concentration from 5.6 to 20 mM caused a 2- to 2.5-fold increase in glucose utilization for surfactant and residual phospholipid synthesis, but did not produce any significant changes in choline incorporation into either surfactant or residual phosphatidylcholine. The addition of 400 microunits/ml of insulin to media containing 20 mM glucose, however, resulted in a 20% decrease in choline incorporation into surfactant phosphatidylcholine but had no effect on choline incorporation into residual phosphatidylcholine. These results suggest that insulin is an important hormone regulating fetal lung maturation and that hyperinsulinemia may be responsible for the delayed lung development in infants of diabetic mothers.

  16. Improvements in technique for determining the surfactant penetration in hair fibres using scanning ion beam analyses

    International Nuclear Information System (INIS)

    Hollands, R.; Clough, A.S.; Meredith, P.

    1999-01-01

    The penetration abilities of surfactants need to be known by companies manufacturing hair-care products. In this work three complementary techniques were used simultaneously - PIXE, NRA and RBS - to measure the penetration of a surfactant, which had been deuterated, into permed hair fibres. Using a scanning micro-beam of 2 MeV 3 He ions 2-dimensional concentration maps were obtained which showed whether the surfactant penetrated the fibre or just stayed on the surface. This is the first report of the use of three simultaneous scattering techniques with a scanning micro-beam. (author)

  17. Strong cooperative effect of oppositely charged surfactant mixtures on their adsorption and packing at the air-water interface and interfacial water structure.

    Science.gov (United States)

    Nguyen, Khoi T; Nguyen, Tuan D; Nguyen, Anh V

    2014-06-24

    Remarkable adsorption enhancement and packing of dilute mixtures of water-soluble oppositely-charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl amine hydrochloride (DAH), at the air-water interface were observed by using sum frequency generation spectroscopy and tensiometry. The interfacial water structure was also observed to be significantly influenced by the SDS-DAH mixtures, differently from the synergy of the single surfactants. Most strikingly, the obtained spectroscopic evidence suggests that the interfacial hydrophobic alkyl chains of the binary mixtures assemble differently from those of single surfactants. This study highlights the significance of the cooperative interaction between the headgroups of oppositely charged binary surfactant systems and subsequently provides some insightful observations about the molecular structure of the air-aqueous interfacial water molecules and, more importantly, about the packing nature of the surfactant hydrophobic chains of dilute SDS-DAH mixtures of concentration below 1% of the CMC.

  18. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    Science.gov (United States)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  19. Structural study of concentrated micellar solutions

    International Nuclear Information System (INIS)

    Zemb, Thomas

    1985-01-01

    This research thesis reports the study of the structure of concentrated soap-water binary micelles with a comparison of measurements of light, neutrons and X-ray scattering, and the relaxation induced by paramagnetic ions adsorbed at the interface. In the first part, the author discusses the specific sensitivity ranges of different experimental techniques, outlines the resolution which can be obtained with scattering experiments, and proposes a critical analysis of results published in the relevant literature. In a second part, the author discusses the compared results of the application of various techniques (magnetic resonance, X-light and neutron scattering) on the two most used model systems: sodium octanoate and sodium dodecyl sulfate (SDS) in solution. Then, the author addresses the case of ternary systems: study of the influence of the presence of a co-surfactant on the structure, study of the effect of interfacial charge on the micellar structure, use of the same previous quantitative methods to study the disturbances brought to the structure due to the presence of reactants [fr

  20. Alkyl-imidazolium glycosides: non-ionic-cationic hybrid surfactants from renewable resources.

    Science.gov (United States)

    Salman, Abbas Abdulameer; Tabandeh, Mojtaba; Heidelberg, Thorsten; Hussen, Rusnah Syahila Duali; Ali, Hapipah Mohd

    2015-08-14

    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An investigation of bubble coalescence and post-rupture oscillation in non-ionic surfactant solutions using high-speed cinematography.

    Science.gov (United States)

    Bournival, G; Ata, S; Karakashev, S I; Jameson, G J

    2014-01-15

    Most processes involving bubbling in a liquid require small bubbles to maximise mass/energy transfer. A common method to prevent bubbles from coalescing is by the addition of surfactants. In order to get an insight into the coalescence process, capillary bubbles were observed using a high speed cinematography. Experiments were performed in solutions of 1-pentanol, 4-methyl-2-pentanol, tri(propylene glycol) methyl ether, and poly(propylene glycol) for which information such as the coalescence time and the deformation of the resultant bubble upon coalescence was extracted. It is shown in this study that the coalescence time increases with surfactant concentration until the appearance of a plateau. The increase in coalescence time with surfactant concentration could not be attributed only to surface elasticity. The oscillation of the resultant bubble was characterised by the damping of the oscillation. The results suggested that a minimum elasticity is required to achieve an increased damping and considerable diffusion has a detrimental effect on the dynamic response of the bubble, thereby reducing the damping. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    Energy Technology Data Exchange (ETDEWEB)

    Chernova, R K; Shtykov, S N; Beloliptseva, G M; Sukhova, L K; Amelin, V G; Kulapina, E G [Saratovskij Gosudarstvennyj Univ. (USSR)

    1984-06-01

    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H/sub 2/SO/sub 4/-pH14 acidity range and the 1x10/sup -3/-5x10/sup -6/ M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection.

  3. Surfactant loss control in chemical flooding: Spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1994-07-01

    The aim of this research project is to investigate mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effects of surfactant structure, surfactant combinations, various inorganic and polymeric species, and solids mineralogy will be determined. A multi-pronged approach consisting of micro & nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability; is used in this study. The results obtained should help in controlling surfactant loss in chemical flooding and in developing optimum structures and conditions for efficient chemical flooding processes. During the first year of this three year contract, adsorption of single surfactants and select surfactant mixtures was studied at the solid-liquid and gas-liquid interfaces. Surfactants studied include alkyl xylene sulfonates, polyethoxylated alkyl phenols, octaethylene glycol mono n-decyl ether, and tetradecyl trimethyl ammonium chloride. Adsorption of surfactant mixtures of varying composition was also investigated. The microstructure of the adsorbed layer was characterized using fluorescence spectroscopy. Changes interfacial properties such as wettability, electrokinetics and stability of reservoir minerals were correlated with the amount of reagent adsorbed. Strong effects of the structure of the surfactant and position of functional groups were revealed.

  4. Kinetics of marine surfactant adsorption at an air water interface. Baltic Sea studies

    Directory of Open Access Journals (Sweden)

    Stanis³aw J. Pogorzelski

    2001-12-01

    Full Text Available The paper contains the results of studies of natural surface film adsorption kinetics carried out in inland waters and in shallow offshore regions of the Baltic Sea during 2000-01 under calm sea conditions. The novel approach presented here for the adsorption dynamics is based on the mixed kinetic-diffusion model and analyses of the surface pressure-time plots at short (t ->0 and long( t -> ∞ adsorption time intervals. Values of the effective relative diffusion coefficient Deff / D (= 0.008-0.607 and energy barrier for adsorption Ea / RT (= 0.49-7.10 agree well with the data reported for model non-ionic surfactant solutions of pre-cmc concentrations. Wind speed is one of the factors affecting the adsorption barrier via the increased surface pressure of the natural film exposed to wind shear stress (~ U102, and enters the relation Ea / RT = 1.70 U101/3.

  5. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  6. Phase Behaviour Study of Swiftlet Nest Using Virgin Coconut Oil with Non-Ionic Surfactants

    International Nuclear Information System (INIS)

    Siti Salwa Abd Gani; Siti Zulaika Adisah; Siti Salwa Abd Gani

    2015-01-01

    Virgin coconut oil (VCO) is the oil that obtained from fresh and mature kernel of the coconut by mechanical or natural means with or without the application of heat, which does not lead to alteration of the nature of the oil. It have advantages such as strengthens the immune system because of its lauric acid content. It also has medium-chain fatty acids which heighten metabolism and energy, thus stimulating the thyroid. Swiftlet nest as an active ingredient need to be dispersed in a carrier system. Thus, ternary phase diagrams were constructed to find the suitable and stable system for it. The phase behavior of systems has been investigated by constructing ternary phase diagrams consisting of non-ionic surfactants/VCO:bird nest/water. The surfactants used were Sorbitan tri-oleate (Span 85), Sorbitan mono-oleate (Span 80), Sorbitan monolaurate (Span 20), Polyoxyethylene(20) sorbitan tri-oleate (Tween 85) and Polyoxyethylene (20) sorbitan mono-oleate (Tween 80). These systems include several phase regions such as homogeneous, isotropic, two-phase and three-phase regions. Different hydrophilic lipophilic balance (HLB) value of non-ionic surfactants exhibit different ternary diagram characteristics. A lower HLB shows a more oil-soluble and a more water-soluble surfactant (larger homogeneous and isotropic region in ternary phase diagrams) whereas high value of HLB shows the reverse of that result. The results show that the T85/VCO:bird nest/water system gave better performance than the other four individual surfactant systems. As a conclusion, high hydrophilic lipophilic balance (HLB) values of surfactant were found to be a good surfactant for the formulation of VCO:bird nest emulsion for cosmetic and pharmaceutical purposes. (author)

  7. A mean-density model of ionic surfactants for the dispersion of carbon nanotubes in aqueous solutions

    Science.gov (United States)

    Joung, Young Soo

    2018-05-01

    We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.

  8. Estudo das dispersões aquosas de nanotubos de carbono utilizando diferentes surfactantes Study of aqueous dispersions of carbon nanotubes using different surfactants

    Directory of Open Access Journals (Sweden)

    Isabella R. da Silva

    2013-01-01

    Full Text Available The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80 are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.

  9. Cuticular uptake of xenobiotics into living plants. Part 2: influence of the xenobiotic dose on the uptake of bentazone, epoxiconazole and pyraclostrobin, applied in the presence of various surfactants, into Chenopodium album, Sinapis alba and Triticum aestivum leaves.

    Science.gov (United States)

    Forster, W Alison; Zabkiewicz, Jerzy A; Liu, Zhiqian

    2006-07-01

    This study has determined the uptake of three pesticides, applied as commercial or model formulations in the presence of a wide range of surfactants, into the leaves of three plant species (bentazone into Chenopodium album L. and Sinapis alba L., epoxiconazole and pyraclostrobin into Triticum aestivum L.). The results have confirmed previous findings that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong, positive determinant of uptake. This held true for all the pesticide formulations studied, although surfactant concentration was found to have an effect. The lower surfactant concentrations studied showed an inferior relationship between the amount of xenobiotic applied and uptake. High molecular mass surfactants also produced much lower uptake than expected from the dose uptake equations in specific situations.

  10. Estimating the contribution of surfactant replacement therapy to the alveolar pool: an in vivo study based on 13 C natural abundance in rabbits.

    Science.gov (United States)

    Giambelluca, Sonia; Ricci, Francesca; Simonato, Manuela; Correani, Alessio; Casiraghi, Costanza; Storti, Matteo; Cogo, Paola; Salomone, Fabrizio; Carnielli, Virgilio Paolo

    2018-04-06

    Variation of the isotopic abundance of selected nutrients and molecules have been used for pharmacological and kinetics studies under the premise that the administered molecule has a different isotopic enrichment from the isotopic background of the recipient subject. The aim of this study is to test the feasibility of assessing the contribution of exogenous surfactant phospholipids to the endogenous alveolar pool in vivo after exogenous surfactant replacement therapy in rabbits. The study consisted in measuring the consistency of 13 C/ 12 C ratio of disaturated-phosphatidylcholine palmitate (DSPC-PA) in 7 lots of poractant alfa, produced over a year, and among bronchoalveolar lavages of 20 rabbits fed with a standard chow. A pilot study was performed in a rabbit model of lavage-induced surfactant deficiency: 7 control rabbits and 4 treated with exogenous surfactant. The contribution of exogenous surfactant to the alveolar pool was assessed after intra-tracheal administration of 200 mg/kg of poractant alfa. The 13 C content of DSPC-PA was measured by Isotope Ratio Mass Spectrometry. The mean DSPC-PA 13 C/ 12 C ratio of the 7 lots of poractant alfa was -18.8 ‰ with a SD of 0.1 ‰ [Range: -18.9 ‰; -18.6 ‰]. The mean 13 C/ 12 C ratio of surfactant DSPC recovered from the lung lavage of 20 rabbits was -28.8±1.2 ‰ [Range: -31.7 ‰; -25.7 ‰]. The contribution of exogenous surfactant to the total alveolar surfactant could be calculated in the treated rabbits and it ranged from 83.9 to 89.6 %. This pilot study describes a novel method to measure the contribution of the exogenous surfactant to the alveolar pool. This method is based on the natural variation of 13 C and therefore it does not require the use of chemically synthetized tracers. This method could be useful in human research and especially in surfactant replacement studies in preterm infants. This article is protected by copyright. All rights reserved.

  11. An experimental study of flow boiling chf with porous surface coatings and surfactant solutions

    International Nuclear Information System (INIS)

    Sarwar, Mohammad Sohail

    2007-02-01

    The boiling crisis or critical heat flux (CHF) phenomenon is an enormously studied topic of the boiling heat transfer. The great interest in the CHF is due to practical motives, since it is desirable to design an equipment (heat exchanger or boiler, etc) to operate at as high a heat flux as possible with optimum heat transfer rates but without the risk of physical burnout. This study consists of two parts of flow boiling CHF experiment: with porous surface coated tubes and by using surfactant solutions as working fluid. In first part, the effect of micro- and nano-porous inside surface coated vertical tubes on the CHF was determined for flow boiling of water in vertical round tubes at atmospheric pressure. CHF was measured for a smooth and three different coated tubes, at mass fluxes of 100∼300 kg/m 2 s and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Greater CHF enhancement was found with microporous coatings. Al 2 O 3 microporous coatings with particle size <10 μm and coating thickness of 50 μm showed the best CHF enhancement. The maximum increase in the CHF was about 25% for microporous Al 2 O 3 . A wettability test was performed to study the physical mechanism of increase of CHF with microporous coated surfaces and contact angle was measured for smooth and coated surfaces. Pressure drop measurements were also performed across the coated tubes using the DP-cell apparatus. In second part, surfactant effect on the CHF was determined for water flow boiling at atmospheric pressure in a closed loop filled with solution of tri-sodium phosphate (TSP, Na 3 PO 4 ·12H 2 O). The TSP is usually added to the containment sump water to adjust pH level during accident in nuclear power plants. The CHF was measured for four different surfactant solutions of water in vertical tubes, at different mass fluxes (100 ∼ 500 kg/m 2 s) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Surfactant solutions in the range of 0.05%∼0.2% at low mass

  12. Complex phase behavior in solvent-free nonionic surfactants

    DEFF Research Database (Denmark)

    Hillmyer, M.A.; Bates, F.S.; Almdal, K.

    1996-01-01

    Unsolvated block copolymers and surfactant solutions are ''soft materials'' that share a common set of ordered microstructures, A set of polyethyleneoxide-polyethylethylene (PEG-PEE) block copolymers that are chemically similar to the well-known alkane-oxyethylene (C(n)EO(m)) nonionic surfactants...... was synthesized here. The general phase behavior in these materials resembles that of both higher molecular weight block copolymers and lower molecular weight nonionic surfactant solutions. Two of the block copolymers exhibited thermally induced order-order transitions and were studied in detail by small...

  13. Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots

    KAUST Repository

    Zhang, Haitao; Hu, Bo; Sun, Liangfeng; Hovden, Robert; Wise, Frank W.; Muller, David A.; Robinson, Richard D.

    2011-01-01

    in that no new surfactant ligands are introduced and the post-treated NC surfaces are nearly bare. The detailed mechanism study shows that the high reactivity between (NH 4) 2S and metal-surfactant ligand complexes enables the complete removal of surfactant

  14. Pulmonary clearance of {sup 99m}Tc-DTPA in experimental surfactant dysfunction treated with surfactant installation

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, K.; John, J.; Lachmann, B.; Robertson, B.; Wollmer, P.

    1997-02-01

    Background: Breakdown of the alveolo-capillary barrier is a characteristic feature of respiratory distress syndrome. Restoration of alveolo-capillary barrier function may be an important aspect of surfactant replacement therapy. We examined the effect of surfactant installation on alveolo-capillary barrier function in an experimental model of surfactant dysfunction by measuring pulmonary clearance of {sup 99m}Tc-DTPA. Methods: Nineteen rabbits were tracheotomized and mechanically ventilated. Surfactant dysfunction was induced by administration of a synthetic detergent in aerosol form. Detergent was given to 13 rabbits; seven rabbits were then treated with installation of natural surfactant, whereas six rabbits received saline. Six rabbits were used as untreated controls. An aerosol of {sup 99m}Tc-DTPA was administered to all animals and the pulmonary clearance was measured with a gamma camera. Results: {sup 99m}Tc-DTPA cleared from the lungs with a half-life of 71{+-}22 min in the control animals, 21.4{+-}7.4 min in the surfactant-treated animals and 5.8{+-}1.5 min in the saline-treated animals. The difference in half-life between groups was highly significant (P<0.001). There was no change in arterial oxygenation or compliance in controls or in animals treated with saline. In animals treated with surfactant, a small transient reduction in arterial oxygen tension and a more long-standing reduction in compliance were observed. Conclusion: Surfactant treatment thus significantly attenuated the effect of detergent treatment but did not restore alveolo-capillary transfer of {sup 99m}Tc-DTPA to normal. (AU) 26 refs.

  15. Decontamination of solid substrates using supercritical carbon dioxide - Application with trade hydro-carbonated surfactants

    International Nuclear Information System (INIS)

    Galy, J.; Fournel, B.; Sawada, K.; Lacroix-Desmazes, P.; Lagerge, S.; Persin, M.

    2007-01-01

    The phase behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) tri-block copolymers (PEO-PPO-PEO Pluronics) in liquid and supercritical carbon dioxide has been studied by cloud point measurements. It shows that such trade hydro-carbonated surfactants are fairly soluble (0.1 wt.%) in carbon dioxide in relatively mild conditions of temperature and pressure (T ≤ 65 degrees C, P ≤ 30 MPa). An empirical model based on the molecular weight of the copolymer has been proposed to predict the pressure-temperature phase diagram for a series of Pluronics (10 wt.% of ethylene oxide). Furthermore, the water/CO 2 interfacial tension has been measured to investigate the interactions between water and the polar moieties of the surfactants (PEO blocks and hydroxyl end-groups) as well as the interactions between CO 2 and the 'CO 2 -philic' moiety of the surfactants (PPO block). An interfacial saturation concentration was evidenced and it was shown to depend on the temperature at a given pressure. The cloud point curves and interfacial tension data are fully consistent with a change in the affinity of the surfactant for CO 2 versus pressure and temperature. A correlation between CO 2 -philic characteristics and surface active properties of the copolymers is given. (authors)

  16. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  17. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    Science.gov (United States)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  18. Preparation, Characterization and Performance Studies of Active PVDF Ultrafiltration-Surfactants Membranes Containing PVP as Additive

    International Nuclear Information System (INIS)

    Nur Izzah Md Fadilah; Abdul Rahman Hassan

    2016-01-01

    The role of surfactants in the formation of active Poly(vinylidene fluoride) (PVDF) ultrafiltration (AUF) membranes was studied. The effect combination of surfactants that are Sodium dodecyl sulfate (SDS)/ Tween 80 and Tween 80/ Triton X-100 formulations on performance and morphological structures were investigated for the first time. The influence of surfactants blends on the membrane pores was also examined. Experimental data showed that combination of Tween 80/ Triton X-100 give the highest BSA permeation flux with a value of 285.51 Lm -2 h -1 . With combination of SDS/ Tween 80, the AUF membrane showed the highest protein rejection up to 93 % and 79 % for Bovine Serum Albumin (BSA) and Egg Albumin (EA), respectively. Moreover, membranes characterization demonstrated that the addition of SDS/ Tween 80 and Tween 80/ Triton X-100 were found to affect the performance, surface morphologies and membrane pores of AUF PVDF membranes. (author)

  19. In situ X-ray polymerization: from swollen lamellae to polymer-surfactant complexes.

    Science.gov (United States)

    Agzenai, Yahya; Lindman, Björn; Alfredsson, Viveka; Topgaard, Daniel; Renamayor, Carmen S; Pacios, Isabel E

    2014-01-30

    The influence of the monomer diallyldimethylammonium chloride (D) on the lamellar liquid crystal formed by the anionic surfactant aerosol OT (AOT) and water is investigated, determining the lamellar spacings by SAXS and the quadrupolar splittings by deuterium NMR, as a function of the D or AOT concentrations. The cationic monomer D induces a destabilization of the AOT lamellar structure such that, at a critical concentration higher than 5 wt %, macroscopic phase separation takes place. When the monomer, which is dissolved in the AOT lamellae, is polymerized in situ by X-ray initiation, a new collapsed lamellar phase appears, corresponding to the complexation of the surfactant with the resulting polymer. A theoretical model is employed to analyze the variation of the interactions between the AOT bilayers and the stability of the lamellar structure.

  20. Weak and saturable protein-surfactant interactions in the denaturation of apo-alpha-lactalbumin by acidic and lactonic sophorolipid

    Directory of Open Access Journals (Sweden)

    Kell K Andersen

    2016-11-01

    Full Text Available Biosurfactants are of growing interest as sustainable alternatives to fossil-fuel-derived chemical surfactants, particularly for the detergent industry. To realize this potential, it is necessary to understand how they affect proteins which they may encounter in their applications. However knowledge of such interactions is limited. Here we present a study of the interactions between the model protein apo-alpha-lactalbumin and the biosurfactant sophorolipid (SL produced by the yeast Starmerella bombicola. SL occurs both as an acidic and a lactonic form; the lactonic form (lactSL is sparingly soluble and has a lower critical micelle concentration than the acidic form (acidSL. We show that acidSL affects apo-aLA in a similar way to the related glycolipid biosurfactant rhamnolipid (RL, with the important difference that RL is also active below the cmc in contrast to acidSL. Using isothermal titration calorimetry data, we show that acidSL has weak and saturable interactions with apo-aLA at low concentrations; due to the relatively low cmc of acidSL (which means that the monomer concentration is limited to ca. 0-1 mM SL, it is only possible to observe interactions with monomeric acidSL at high apo-aLA concentrations. However, the denaturation kinetics of apo-aLA in the presence of acidSL are consistent with a collaboration between monomeric and micellar surfactant species, similar to RL and nonionic or zwitterionic surfactants. Inclusion of lactSL as mixed micelles with acidSL lowers the cmc and this effectively reduces the rate of unfolding, emphasizing that SL like other biosurfactants is a gentle anionic surfactant. Our data highlight the potential of these biosurfactants for future use in the detergent industry.

  1. Simulation on the Effects of Surfactants and Observed Thermocapillary Motion for Laser Melting Physics

    Science.gov (United States)

    Nourgaliev, Robert; Barney, Rebecca; Weston, Brian; Delplanque, Jean-Pierre; McCallen, Rose

    2017-11-01

    A newly developed, robust, high-order in space and time, Newton-Krylov based reconstructed discontinuous Galerkin (rDG) method is used to model and analyze thermocapillary convection in melt pools. The application of interest is selective laser melting (SLM) which is an Additive Manufacturing (AM, 3D metal laser printing) process. These surface tension driven flows are influenced by temperature gradients and surfactants (impurities), and are known as the Marangoni flow. They have been experimentally observed in melt pools for welding applications, and are thought to influence the microstructure of the re-solidified material. We study the effects of the laser source configuration (power, beam size and scanning speed), as well as surfactant concentrations. Results indicate that the surfactant concentration influences the critical temperature, which governs the direction of the surface thermocapillary traction. When the surface tension traction changes sign, very complex flow patterns emerge, inducing hydrodynamic instability under certain conditions. These in turn would affect the melt pool size (depth) and shape, influencing the resulting microstructure, properties, and performance of a finished product part produced using 3D metal laser printing technologies. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-735908.

  2. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    Science.gov (United States)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  3. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    Chitra, S.; Chandran, S.; Sasidhar, P.; Lal, K.B.; Amalraj, R.V.

    1991-01-01

    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  4. Design of Agglomerated Crystals of Ibuprofen During Crystallization: Influence of Surfactant

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-01-01

    Full Text Available Objective(sIbuprofen is a problematic drug in tableting, and dissolution due to its poor solubility, hydrophobicity, and tendency to stick to surface. Because of the bad compaction behavior ibuprofen has to be granulated usually before tableting. However, it would be more satisfactory to obtain directly during the crystallization step crystalline particles that can be directly compressed and quickly dissolved. Materials and Methods Crystallization of ibuprofen was carried out using the quasi emulsion solvent diffusion method in presence of surfactant (sodium lauryl sulfate (SLS, Tween 80. The particles were characterized by differential scanning calorimetry (DSC, powder X-ray diffraction (XRPD and were evaluated for particle size, flowability, drug release and tableting behavior. ResultsIbuprofen particles obtained in the presence of surfactants consisted of numerous plate- shaped crystals which had agglomerated together as near spherical shape. The obtained agglomerates exhibited significantly improved micromeritic properties as well as tableting behavior than untreated drug crystals. The agglomerates size and size distribution was largely controlled by surfactant concentration, but there was no significant influence found on the tableting properties. The dissolution tests showed that the agglomerates obtained in presence of SLS exhibited enhanced dissolution rate while the agglomerates made in the presence of Tween 80 had no significant impact on dissolution rate of ibuprofen in comparison to untreated sample. The XRPD and DSC results showed that during the agglomeration process, ibuprofen did not undergo any polymorphic changes.Conclusion The study highlights the influence of surfactants on crystallization process leading to modified performance.

  5. A Novel Combination of Surfactant Addition and Persulfate-assisted Electrokinetic Oxidation for Remediation of Pyrene-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    M. Abtahi

    2018-03-01

    Full Text Available Effect of surfactant addition on persulfate-assisted electrokinetic remediation of pyrene-spiked soil was studied. The influence of effective factors including voltage, surfactant addition, moisture content, and persulfate concentration on the removal of initial pyrene concentration of 200 mg kg–1 were investigated. A complete pyrene removal was observed for voltage of 1 V cm–1, saturated conditions, Tween 80 concentration of 20 mL kg–1, and persulfate concentration of 100 mg kg–1 after 24 h, corresponding to pyrene mineralization of 61 %, based on TPH analysis. The experimental results were best fitted with pseudo-first-order kinetic model with correlation coefficient of 0.968 and rate constant of 0.191 min−1. The main intermediates of pyrene degradation were benzene o-toluic acid, acetic, azulene, naphthalene and decanoic acid. Finally, an unwashed hydrocarbon-contaminated soil was subjected to persulfate-assisted electrokinetic remediation, and a TPH removal of 38 % was observed for the initial TPH content of 912 mg kg–1, under the selected conditions.

  6. The Potential of a Surfactant/Polymer Flood in a Middle Eastern Reservoir

    Directory of Open Access Journals (Sweden)

    Meshal Algharaib

    2012-01-01

    Full Text Available An integrated full-field reservoir simulation study has been performed to determine the reservoir management and production strategies in a mature sandstone reservoir. The reservoir is a candidate for an enhanced oil recovery process or otherwise subject to abandonment. Based on its charateristics, the reservoir was found to be most suited for a surfactant/polymer (SP flood. The study started with a large data gathering and the building of a full-field three-dimensional geological model. Subsequently, a full field simulation model was built and used to history match the water flood. The history match of the water flood emphasizes the areas with remaining high oil saturations, establishes the initial condition of the reservoir for an SP flood, and generates a forecast of reserves for continued water flood operations. A sector model was constructed from the full field model and then used to study different design parameters to maximize the project profitability from the SP flood. An economic model, based on the estimated recovery, residual oil in-place, oil price, and operating costs, has been implemented in order to optimize the project profitability. The study resulted in the selection of surfactant and polymer concentrations and slug size that yielded the best economic returns when applied in this reservoir. The study shows that, in today’s oil prices, surfactant/polymer flood when applied in this reservoir has increased the ultimate oil recovery and provide a significant financial returns.

  7. Structure formation in binary mixtures of surfactants: vesicle opening-up to bicelles and octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    Micelle formation in binary mixtures of surfactants is studied using a coarse-grained molecular simulation. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle, the bicelle, is typically formed. It is found that cup-shaped vesicles and bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and critical micelle concentration. The obtained octopus shape of micelles agree with those observed in the cryo-TEM images reported in [S. Jain and F. S. Bates, Macromol. 37, 1511 (2004).]. Two types of connection structures between the worm-like micelles and the bicelles are revealed.

  8. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  9. Degradation of trichloroethylene (TCE) and polychlorinated biphenyls (PCBs) by Fe and Fe-Pd bimetals in the presence of surfactants and cosolvents

    International Nuclear Information System (INIS)

    Gu, B.; Liang, L.; West, O.R.; Cameron, P.; Davenport, D.

    1997-01-01

    Surfactants and cosolvents are being used to enhance the removal of dense non-aqueous phase liquids (DNAPL) such as trichloroethylene (TCE) and polychlorinated biphenyls (PCBS) from contaminated soils. However, the waste surfactant solution containing TCE and PCBs must be treated before it can be disposed. This study evaluated the use of zero-valence iron and palladized iron fillings on the dechlorination of TCE and a PCB congener in a dihexylsulfosuccinate surfactant solution. Batch experimental results indicated that TCE can be rapidly degraded by palladized iron filings with a half-life of 27.4 min. PCB was degraded at a slower rate than TCE with a half-life ranging from 100 min to 500 min as the concentration of surfactant increased. In column flow-through experiments, both TCE and PCBs degrade at an enhanced rate with a half-life about 1.5 and 6 min because of an increased solid to solution ratio in the column than in the batch experiments. Results of this work suggest that Fe-Pd filings may be potentially applicable for ex-situ treatment of TCE and PCBs in the surfactant solutions that are generated during surfactant washing of the contaminated soils

  10. Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Abdelhalim I. A. Mohamed

    2017-01-01

    Full Text Available Emulsified water-in-oil (W/O systems are extensively used in the oil industry for water control and acid stimulation. Emulsifiers are commonly utilized to emulsify a water-soluble material to form W/O emulsion. The selection of a particular surfactant for such jobs is critical and certainly expensive. In this work, the impact of surfactant structure on the stability of W/O emulsions is investigated using the hydrophilic-lipophilic balance (HLB of the surfactant. Different commercial surfactants were evaluated for use as emulsifiers for W/O systems at high-temperature (up to 120°C high-salinity (221,673 ppm HTHS conditions. Diverse surfactants were examined including ethoxylates, polyethylene glycols, fluorinated surfactants, and amides. Both commercial Diesel and waste oil are used for the oleic phase to prepare the emulsified system. Waste oil has shown higher stability (less separation in comparison with Diesel. This work has successfully identified stable emulsified W/O systems that can tolerate HTHS environments using HLB approach. Amine Acetate family shows higher stability in comparison with Glycol Ether family and at even lower concentration. New insights into structure-surfactant stability relationship, beyond the HLB approach, are provided for surfactant selection.

  11. Gemini Surfactant-Modified Activated Carbon for Remediation of Hexavalent Chromium from Water

    Directory of Open Access Journals (Sweden)

    Yingying Zhou

    2018-01-01

    Full Text Available Gemini surfactants, with double hydrophilic and hydrophobic groups, offer potentially orders of magnitude greater surface activity compared to similar single unit molecules. A cationic Gemini surfactant (Propyl didodecyldimethylammonium Bromide, PDDDAB and a conventional cationic surfactant (Dodecyltrimethylammonium Bromide, DTAB were used to pre-treat and generate activated carbon. The removal efficiency of the surfactant-modified activated carbon through adsorption of chromium(VI was investigated under controlled laboratory conditions. Fourier-transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM were used to investigate the surface changes of surfactant-modified activated carbon. The effect of important parameters such as adsorbent dosage, pH, ionic strength and contact time were also investigated. The chromium(VI was adsorbed more significantly on the Gemini surfactant-modified activated carbon than on the conventional surfactant-modified activated carbon. The correlation coefficients show the data best fit the Freundlich model, which confirms the monolayer adsorption of chromium(VI onto Gemini surfactant-modified activated carbon. From this assessment, the surfactant-modified (especially Gemini surfactant-modified activated carbon in this study showed promise for practical applications to treat water pollution.

  12. Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent.

    Science.gov (United States)

    Al-Saiedy, Mustafa; Pratt, Ryan; Lai, Patrick; Kerek, Evan; Joyce, Heidi; Prenner, Elmar; Green, Francis; Ling, Chang-Chun; Veldhuizen, Ruud; Ghandorah, Salim; Amrein, Matthias

    2018-04-01

    Pulmonary surfactant forms a cohesive film at the alveolar air-lung interface, lowering surface tension, and thus reducing the work of breathing and preventing atelectasis. Surfactant function becomes impaired during inflammation due to degradation of the surfactant lipids and proteins by free radicals. In this study, we examine the role of reactive nitrogen (RNS) and oxygen (ROS) species on surfactant function with and without physiological cholesterol levels (5-10%). Surface activity was assessed in vitro in a captive bubble surfactometer (CBS). Surfactant chemistry, monolayer fluidity and thermodynamic behavior were also recorded before and after oxidation. We report that physiologic amounts of cholesterol combined with oxidation results in severe impairment of surfactant function. We also show that surfactant polyunsaturated phospholipids are the most susceptible to oxidative alteration. Membrane thermodynamic experiments showed significant surfactant film stiffening after free radical exposure in the presence of cholesterol. These results point to a previously unappreciated role for cholesterol in amplifying defects in surface activity caused by oxidation of pulmonary surfactant, a finding that may have implications for treating several lung diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Design and screening of synergistic blends of SiO2 nanoparticles and surfactants for enhanced oil recovery in high-temperature reservoirs

    International Nuclear Information System (INIS)

    Le, Nhu Y Thi; Pham, Duy Khanh; Le, Kim Hung; Nguyen, Phuong Tung

    2011-01-01

    SiO 2 nanoparticles (NPs) were synthesized by the sol–gel method in an ultrasound reactor and monodispersed NPs with an average particle size of 10–12 nm were obtained. The synergy occurring in blending NPs and anionic surfactant solutions was identified by ultra-low interfacial tension (IFT) reduction measured by a spinning drop tensiometer (Temco500). The oil displacement efficiency of the synergistic blends and surfactant solutions at Dragon South-East (DSE) reservoir temperature was evaluated using contact angle measurement (Dataphysics OCA 20). It was found that SiO 2 /surfactant synergistic blends displace oil as well as their original surfactant solutions at the same 1000 ppm total concentration. Abundant slag appearing in the SiO 2 /surfactant medium during oil displacement could be attributed to an adsorption of surfactants onto the NPs. The results indicate that at a concentration of 1000 ppm in total, the original surfactant SS16-47A and its blend with SiO 2 NPs in the ratio of 8:2 exhibited an IFT reduction as high as fourfold of the IFT recorded for the DSE oil–brine interface and very high speed of oil displacement. Therefore, it could potentially be applicable to enhanced oil recovery (EOR) in high-temperature reservoirs with high hardness-injection-brine, like the one at DSE. This opens up a new direction for developing effective EOR compositions, which require less surfactant and are environmentally safer

  14. The influence of synthetic food additives and surfactants on the body weight of larvae of Tenebrio molitor (Coleoptera, Tenebrionidae

    Directory of Open Access Journals (Sweden)

    V. O. Martynov

    2017-08-01

    Full Text Available The broad spectrum of negative effects of food additives and surfactants on living organisms and the environment in general indicate a necessity of a detailed study on this issue. The aim of this article is to evaluate the impact of food additives and surfactants in a concentration of 350 mg/kg of fodder on the body weight of third age Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae larvae. A significant change in the body weight of T. molitor larvae was observed when they consumed a diet containing 350 mg/kg of sodium glutamate, sodium cyclamate and sodium benzoate. We observed a tendency towards increase in body weight after addition of the food colouring Allura Red, saccharin, benzoic acid, betaine, emulsifying wax, AOS and SLES, and also we observed a decrease in body weight after addition of Tartrazine and Indigo Carmine in the same concentration. Out of the 18 tested food additives, 3 significantly stimulated an increase in the body weight of third age T. molitor larvae, and 3 manifested the same effect at the level of tendency (stimulated an increase in mass on average by 43–58% over the 14-day experiment, and 2 caused decrease in the body weight of larvae. Also, the 4 studied surfactants manifested a tendency towards increase in the body weight of T. molitor. This study on the impact of food additives and surfactants on organisms of insects is of great significance for protecting rare species of insects.

  15. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  16. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  17. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.

    Science.gov (United States)

    Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

    2012-06-26

    We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by

  18. Enhancing the Drag Reduction Phenomenon within a Rotating Disk Apparatus Using Polymer-Surfactant Additives

    Directory of Open Access Journals (Sweden)

    Musaab K. Rashed

    2016-12-01

    Full Text Available Pipelines and tubes play important roles in transporting economic liquids, such as water, petroleum derivatives, and crude oil. However, turbulence reduces the initial flow rate at which liquids are pumped, thereby making liquid transportation through pipelines inefficient. This study focuses on enhancing the drag reduction (DR phenomenon within a rotating disk apparatus (RDA using polymer-surfactant additives. The complex mixture of polyisobutylene (PIB and sodium dioctyl sulfosuccinate (SDS was used. These materials were tested individually and as a complex mixture in RDA at various concentrations and rotational speeds (rpm. The morphology of this complex was investigated using transmission electronic microscopy (TEM. The reduction of the degradation level caused by the continuous circulation of surfactant additives in RDA could improve the long-term DR level. Experimental result shows that the maximum %DR of the complex mixture was 21.455% at 3000 rpm, while the PIB and SDS were 19.197% and 8.03%, respectively. Therefore, the complex mixture had better performance than these substances alone and were highly dependent on the alkyl chain of the surfactant.

  19. Biomimicry of surfactant protein C.

    Science.gov (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  20. The effect of novel surfactants and Solutol HS 15 on paclitaxel aqueous solubility and permeability across a Caco-2 monolayer.

    Science.gov (United States)

    Alani, Adam W G; Rao, Deepa A; Seidel, Ron; Wang, Jian; Jiao, Jim; Kwon, Glen S

    2010-08-01

    The effect of novel surfactants on the aqueous solubility and the permeability of paclitaxel across a Caco-2 cell monolayer were examined in this work. The solubility and permeability of paclitaxel was evaluated in the presence of four soft surfactants (SS) KXN441, KXN424, KXN437, and KXN 337 and Solutol HS15. All surfactants increased the aqueous solubility of paclitaxel. Caco-2 cell membrane integrity in the presence of SS and Solutol HS15 was assessed by mannitol permeability and LDH release. All surfactants were tested at 0.5x CMC, 5x CMC and 1.5 mM concentrations. The effect of SSs on paclitaxel permeability was concentration dependent. At all concentrations tested, KXN 441 and Solutol HS 15 showed partially inhibition of drug efflux with no discernable change in mannitol permeability or cytotoxicity as observed with LDH release. At these concentrations, other SSs exhibited some partial efflux inhibition along with compromised membrane integrity and increasing mannitol permeability. In conclusion, all SSs were able to increase the aqueous solubility and permeability of paclitaxel across Caco-2 cells monolayer. However, KXN441 and Solutol HS15 were able to enhance paclitaxel permeability across Caco-2 monolayer without cytotoxicity. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions.

    Science.gov (United States)

    Toledo-Jaldin, Helen Paola; Blanco-Flores, Alien; Sánchez-Mendieta, Víctor; Martín-Hernández, Osnieski

    2017-08-30

    Removal potentials of a surfactant modified zeolite (SMZ) and clay (SMC) for atrazine adsorption were evaluated. Materials were modified with hexadecyl trimethyl ammonium bromide (HDTMA-Br) and benzyl octadecyl dimethyl ammonium (BODA) chloride considering the critical micellar concentration (CMC) of each one (0.94 and 0.041 meq/L, respectively). The influence of the surfactant was analyzed in detail, particularly the formation of surfactant layers (complete or partial) connected with the length of the surfactant tail (16 and 18 methyl groups or number of carbons in the chain). Raw materials were characterized by XRD and Fourier transform infrared spectroscopy (FTIR), SMZ and SMC were analyzed by FTIR. Results obtained from kinetic adsorption experiments shown that equilibrium time is less for materials modified with HDTMA (8 h) than materials with BODA (10 and 12 h). Materials modified with the largest chain surfactant (BODA) showed more resistance to atrazine masse transference. The chemisorption was presented in the adsorption mechanisms of atrazine and adsorbent materials. Based on the results of adsorption isotherms Langmuir isotherms showed the better correlation coefficients value. The q max is greater for materials modified with BODA (0.9232 and 4.2448 mg/g) than for materials modified with HDTMA (0.6731 and 3.9121 mg/g). Therefore, SMZ and SMC modified with the largest chain surfactant has more affinity for the pesticide. The removal process at high concentration of atrazine depends of the partition process but at lower concentration, it occurs not only by this process but also by absorption process.

  2. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    Science.gov (United States)

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  3. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  4. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces

    Science.gov (United States)

    Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.

    2017-11-01

    Any efficient exploitation of new petroleum reservoirs necessitates developing methods to mobilize the crude oils from such reservoirs. Here silicon dioxide nanoparticles (SiO2 NPs) were used to improve the efficiency of the chemical-enhanced oil recovery process that uses surfactant flooding. Specifically, SiO2 NPs (i.e., 0, 0.001, 0.005, 0.01, 0.05, and 0.1 wt%) and Tween®20, a nonionic surfactant, at 0, 0.5, and 2 critical micelle concentration (CMC) were varied to determine their effect on the stability of nanofluids and the interfacial tension (IFT) at the oil-aqueous interface for 5 wt% brine-surfactant-SiO2 nanofluid-oil systems for West Texas Intermediate light crude oil, Prudhoe Bay medium crude oil, and Lloydminster heavy crude oil. Our study demonstrates that SiO2 NPs may either decrease, increase the IFT of the brine-surfactant-oil systems, or exhibit no effects at all. For the brine-surfactant-oil systems, the constituents of the oil and aqueous substances affected the IFT behavior, with the nanoparticles causing a contrast in IFT trends according to the type of crude oil. For the light oil system (0.5 and 2 CMC Tween®20), the IFT increased as a function of SiO2 NP concentration, while a threshold concentration of SiO2 NPs was observed for the medium (0.5 and 2 CMC Tween®20) and heavy (2 CMC Tween®20) oil systems in terms of IFT trends. Concentrations below the SiO2 NP threshold concentration resulted in a decrease in IFT, and concentrations above this threshold resulted in an increase in IFT. The IFT decreased until the NP concentration reached a threshold concentration where synergetic effects between nonionic surfactants and SiO2 NPs are the opposite and result in antagonistic effects. Adsorption of both SiO2 NPs and surfactants at an interface caused a synergistic effect and an increased reduction in IFT. The effectiveness of the brine-surfactant-SiO2 nanofluids in decreasing the IFT between the oil-aqueous phase for the three tested crude oils

  5. Measurement of Ce(IV) Concentration in Foam Decontaminant containing Fluorosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Yang, H. B.; Yoon, I. H.; Choi, W. K.; Moon, J. K. [KAERI, Daejeon (Korea, Republic of); Lee, J. S. [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    To improve the stability of the foam, surfactants and inorganic materials such as nanoparticles can be added. A nanoparticle-based foam decontaminant is composed of a surfactant and nanoparticles for the generation and maintenance of foam, and a chemical decontamination agent made of Ce(IV) dissolved in nitric acid. Ce(IV) will be reduced to Ce(III) through the decontamination process. Oxidizing the cerium (III) can be reused as a decontamination agent, Ce(IV). Oxidation treatment technology by ozone uses its strong oxidizing power. It can be regarded as an environmentally friendly process, because ozone cannot be stored and transported like other industrial gases (because it quickly decays into diatomic oxygen) and must therefore be produced on site, and used ozone can be decomposed immediately. A concentration analysis of Ce(IV) in foam decontaminant containing a surfactant is necessary prior to the derivation of optimal conditions for the regeneration of Ce(III) through ozonation treatment. A UV spectrometric method using the absorbance or potentiometric method with a potential difference in Ce(III)/Ce(IV), or a potentiometric titration method using Fe (II), can be used for a Ce(IV) concentration analysis. A UV spectrometric method has a problem receiving the influence of the surfactant, and a potentiometric method is difficult to use because of the problem of an insignificant change in the potential difference value of the Ce(III)/Ce(IV). Thus, the present study was undertaken to determine whether the potentiometric titration method can be used for an analysis of the Ce(IV) concentration in the nanoparticle-based foam decontaminant containing surfactant. It will be effectively used for the Ce(IV) concentration measurement, in relation to the subsequent research on the derivation of optimal conditions for the regeneration of Ce(III) through ozonation treatment.

  6. Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water)

    International Nuclear Information System (INIS)

    Alsabagh, A.M.; Migahed, M.A.; Awad, Hayam S.

    2006-01-01

    Effect of different concentrations, 40-200 ppm, of various polyester aliphatic amine surfactants on inhibition of the corrosion of carbon steel in the formation water (deep well water) was investigated. These surfactants exhibit different levels of inhibition particularly at high concentration (200 ppm). Inhibition efficiencies in the range 86-96% were determined by weight loss method. Comparable results were obtained from electrochemical measurements using Tafel extrapolation and polarisation resistance methods. It was shown that all the investigated surfactants act primarily as anodic inhibitors; however, they also affect the rate and mechanism of the cathodic reaction. These compounds function via adsorption on reactive sites on the corroding surface reducing the corrosion rate of the metal. It was revealed that the adsorption of these surfactants obey Langmuir adsorption isotherm. The inhibition effectiveness increases with the length of the aliphatic hydrocarbon chain, being a maximum in the presence of surfactant IV (∼96% efficiency). The corrosion inhibition feature of this compound is attributed to the presence of a long hydrocarbon chain that ensures large surface coverage as well as the presence of multiple active centers for adsorption. Scanning electron microscopy, SEM, has been applied to identify the surface morphology of carbon steel alloy in the absence and presence of the inhibitor molecules

  7. Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water)

    Energy Technology Data Exchange (ETDEWEB)

    Alsabagh, A.M. [Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor Street 1, Nasr City, Cairo 11727 (Egypt); Migahed, M.A. [Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor Street 1, Nasr City, Cairo 11727 (Egypt)]. E-mail: mohamedatiyya707@hotmail.com; Awad, Hayam S. [Chemistry Department, Faculty of Girls for Science, Art and Education, Ain Shams University, Asmaa Fahmi Street, Helliopolis, Cairo (Egypt)

    2006-04-15

    Effect of different concentrations, 40-200 ppm, of various polyester aliphatic amine surfactants on inhibition of the corrosion of carbon steel in the formation water (deep well water) was investigated. These surfactants exhibit different levels of inhibition particularly at high concentration (200 ppm). Inhibition efficiencies in the range 86-96% were determined by weight loss method. Comparable results were obtained from electrochemical measurements using Tafel extrapolation and polarisation resistance methods. It was shown that all the investigated surfactants act primarily as anodic inhibitors; however, they also affect the rate and mechanism of the cathodic reaction. These compounds function via adsorption on reactive sites on the corroding surface reducing the corrosion rate of the metal. It was revealed that the adsorption of these surfactants obey Langmuir adsorption isotherm. The inhibition effectiveness increases with the length of the aliphatic hydrocarbon chain, being a maximum in the presence of surfactant IV ({approx}96% efficiency). The corrosion inhibition feature of this compound is attributed to the presence of a long hydrocarbon chain that ensures large surface coverage as well as the presence of multiple active centers for adsorption. Scanning electron microscopy, SEM, has been applied to identify the surface morphology of carbon steel alloy in the absence and presence of the inhibitor molecules.

  8. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  9. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    , thus reducing the interfacial tension (IFT) to ultra low (0.001 mN/m), which consequently will mobilize the residual oil and result in improved oil recovery. This EOR technology is, however, made challenging by a number of factors, such as the adsorption of surfactant and co-surfactant to the rock...... be resistant to and remain active at reservoir conditions such as high temperatures, pressures and salinities. Understanding the underlying mechanisms of systems that exhibit liquid-liquid equilibrium (e.g. oil-brine systems) at reservoir conditions is an area of increasing interest within EOR. This is true...... studied. The effect of increased pressure became more significant when combined with increasing temperature. The experiments performed on the oil/ seawater systems were similar to the high pressure experiments for the surfactant system discussed above. Oil was contacted with different brine solutions...

  10. A highly accurate boundary integral equation method for surfactant-laden drops in 3D

    Science.gov (United States)

    Sorgentone, Chiara; Tornberg, Anna-Karin

    2018-05-01

    The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

  11. Effect of Surfactants on the Deformation and Detachment of Oil Droplets in a Model Laminar Flow Cell

    Directory of Open Access Journals (Sweden)

    Fréville V.

    2013-10-01

    Full Text Available Sugar-based surfactants are increasingly present in the development of eco-friendly detergents due to current regulations and consumer demand. In order to assess the degreasing performance of these new surfactants, the behavior of model oil droplets subjected to the action of a flow of surfactant solutions of different concentrations was studied in a laminar flow cell and related to the physico-chemical properties measured at the liquid/liquid (interfacial tension and solid/liquid/liquid interfaces (contact angle. With the surfactant solutions and the model oils employed in this study, three main behaviors were observed when a critical flow rate was reached: elongation, fragmentation or spontaneous detachment of the droplet. The analysis of the results leads to a correlation between the droplet behavior and the balance of the forces applied on the droplet in its initial position, in particular the gravity force Fg, which tends to move the oil droplet upwards (given the density difference, and the capillary force Fc, which tends to keep the droplet spherical. A state diagram could be established, based on the dimensionless Bond number (Fg/Fc and cosθ, θ being the initial contact angle of the drop on the surface before the establishment of the flow. One can thus predict the droplet behavior as a function of the system initial characteristics. The results allowed the comparison of degreasing performance of the different surfactants used and illustrated the potential of AlkylPolyPentosides (APP for detergent formulations.

  12. Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel

    International Nuclear Information System (INIS)

    Wyrwas, Bogdan; Chrzanowski, Łukasz; Ławniczak, Łukasz; Szulc, Alicja; Cyplik, Paweł; Białas, Wojciech; Szymański, Andrzej; Hołderna-Odachowska, Aleksandra

    2011-01-01

    Highlights: ► Efficient degradation of Triton X-100 under both aerobic and aerobic conditions. ► Triton X-100 was most likely degraded via the ‘central fission’ mechanism. ► Preferential degradation of Triton X-100 over diesel oil. ► The presence of surfactants decreased diesel oil biodegradation efficiency. - Abstract: The hypothesis regarding preferential biodegradation of surfactants applied for enhancement of microbial hydrocarbons degradation was studied. At first the microbial degradation of sole Triton X-100 by soil isolated hydrocarbon degrading bacterial consortium was confirmed under both full and limited aeration with nitrate as an electron acceptor. Triton X-100 (600 mg/l) was utilized twice as fast for aerobic conditions (t 1/2 = 10.3 h), compared to anaerobic conditions (t 1/2 = 21.8 h). HPLC/ESI-MS analysis revealed the preferential biodegradation trends in both components classes of commercial Triton X-100 (alkylphenol ethoxylates) as well as polyethylene glycols. The obtained results suggest that the observed changes in the degree of ethoxylation for polyethylene glycol homologues occurred as a consequence of the ‘central fission’ mechanism during Triton X-100 biodegradation. Subsequent experiments with Triton X-100 at approx. CMC concentration (150 mg/l) and diesel oil supported our initial hypothesis that the surfactant would become the preferred carbon source even for hydrocarbon degrading bacteria. Regardless of aeration regimes Triton X-100 was utilized within 48–72 h. Efficiency of diesel oil degradation was decreased in the presence of surfactant for aerobic conditions by approx. 25% reaching 60 instead of 80% noted for experiments without surfactant. No surfactant influence was observed for anaerobic conditions.

  13. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  14. Hierarchically mesoporous silica materials prepared from the uniaxially stretched polypropylene membrane and surfactant templates

    International Nuclear Information System (INIS)

    Wang Xiaocong; Ma Jin; Liu Jin; Zhou Chen; Zhao, Yan; Yi Shouzhi; Yang Zhenzhong

    2006-01-01

    Hierarchically mesoporous silica materials with a bimodal distribution were template-prepared from uniaxially stretched polypropylene membrane in the presence of a surfactant via a sol-gel process. Their regularity and morphologies were characterized by transmission electron microscopy (TEM), x-ray diffraction and Brunauer-Emmett-Teller (BET) surface area analysis. The larger channel pores formed by removing the microfibrils of uniaxially stretched polypropylene membrane have a broad pore size distribution, and their size is around 13 nm. In contrast, the smaller mesopores formed by surfactant templates have a narrow distribution; their size is about 3.9 nm. The size of the smaller pores could be tuned from 2 to 6 nm by selecting different surfactants and by changing the concentration of reactants

  15. Solubilisation of a host molecule in a surfactant film: thermodynamic and structural approach in the case of lindane

    International Nuclear Information System (INIS)

    Testard, Fabienne

    1996-01-01

    In this research thesis, the author aimed at understanding the main aspects of solubilisation in the specific case of a pesticide, the lindane, which is a hydrophobic molecule, poorly soluble in water. She first proposes a review of some existing models of solubilisation, and presents the only existing predictive model for the prediction of solubilisation in water-ionic surfactant binary systems. She addresses these systems and tries to characterise disruptions induced by the presence of the solute for lindane-saturated solutions (study of phase diagrams, of structure for different surfactant concentrations and different temperatures). Then she focuses on a part of the ternary diagram which allows micro emulsions to be reached at the point of spontaneous null curvature. She reports the study (by neutron and X ray scattering at small angles) of structural information on the surfactant film in different aggregates of ternary solutions in presence of solute. She finally proposes a more chemical approach to solubilisation [fr

  16. Effect of Surfactants and Manufacturing Methods on the Electrical and Thermal Conductivity of Carbon Nanotube/Silicone Composites

    Directory of Open Access Journals (Sweden)

    Martina Hřibová

    2012-11-01

    Full Text Available The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA, the cationic surfactant cetyltrimethylammonium bromide (CTAB, and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  17. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.

    Science.gov (United States)

    Vilčáková, Jarmila; Moučka, Robert; Svoboda, Petr; Ilčíková, Markéta; Kazantseva, Natalia; Hřibová, Martina; Mičušík, Matej; Omastová, Mária

    2012-11-05

    The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  18. Photochemical key steps in the synthesis of surfactants from furfural-derived intermediates.

    Science.gov (United States)

    Gassama, Abdoulaye; Ernenwein, Cédric; Hoffmann, Norbert

    2009-01-01

    Furfural is oxidized to 2[5H]-furanone by using hydrogen peroxide or to 5-hydroxy-2[5H]-furanone by using photo-oxygenation. An amine function is introduced by photochemically induced radical addition of tertiairy amines, some of which carry an n-alkyl side chain as hydrophobic moiety. These amines are produced from fatty aldehydes and cyclic secondary amines. The resulting adducts are transformed into amphoteric surfactants possessing an ammonium and a carboxylate function. Amphoteric (pK(N) and isoelectric point) and surfactant properties such as the critical micelle concentration and the adsorption efficiency are determined.

  19. Determination of trace impurities in high-purity iron using salting-out of polyoxyethylene-type surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Matsumiya, Hiroaki, E-mail: h-matsu@numse.nagoya-u.ac.jp [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakane, Yuto; Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-10-19

    To an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.9% yields, leaving trace metals [e.g., Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Bi(III)] in the aqueous phase. After removing the surfactant phase by centrifugation, the remaining trace metals were concentrated onto an iminodiacetic acid-type chelating resin. The trace metals were desorbed with dilute nitric acid for the determination by inductively coupled plasma-mass spectrometry or graphite-furnace atomic absorption spectrometry. The proposed separation method allowed the analysis of high-purity iron metals for trace impurities at low {mu}g g{sup -1} to ng g{sup -1} levels.

  20. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the