WorldWideScience

Sample records for surfaces spectral theory

  1. Spectral theory of infinite-area hyperbolic surfaces

    CERN Document Server

    Borthwick, David

    2016-01-01

    This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constan...

  2. A spectral formalism for computing three-dimensional deformations due to surface loads. 1: Theory

    Science.gov (United States)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1994-01-01

    We outline a complete spectral formalism for computing high spatial resolution three-dimensional deformations arising from the surface mass loading of a spherically symmetric planet. The main advantages of the formalism are that all surface mass loads are always described using a consistent mathematical representation and that calculations of deformation fields for various spatial resolutions can be performed by simpley altering the spherical harmonic degree truncation level of the procedure. The latter may be important when incorporating improved observational constraints on a particular surface mass load, when considering potential errors in the computed field associated with mass loading having a spatial scale unresolved by the observational constraints, or when treating a number of global surface mass loads constrained with different spatial resolutions. The advantages do not extend to traditional 'Green's function' approaches which involve surface element discretizations of the global mass loads. Another advantage of the spectral formalism, over the Green's function approach, is that a posteriori analyses of the computed deformation fields are easily performed. In developing the spectral formalism, we consider specific cases where the Earth's mantle is assumed to respond as an elastic, slightly anelastic, or linear viscoelastic medium. In the case of an elastic or slightly anelastic mantle rheology the spectral response equations incorporate frequency dependent Love numbers. The formalism can therefore be used, for example, to compute the potentially resonant deformational response associated with the free core nutation and Chandler wobble eigenfunctions. For completeness, the spectral response equations include both body forces, as arise from the gravitational attraction of the Sun and the Moon, and surface mass loads. In either case, and for both elastic and anelastic mantle rheologies, we outline a pseudo-spectral technique for computing the ocean

  3. Spectral Theory and Mirror Symmetry

    CERN Document Server

    Marino, Marcos

    2015-01-01

    Recent developments in string theory have revealed a surprising connection between spectral theory and local mirror symmetry: it has been found that the quantization of mirror curves to toric Calabi-Yau threefolds leads to trace class operators, whose spectral properties are conjecturally encoded in the enumerative geometry of the Calabi-Yau. This leads to a new, infinite family of solvable spectral problems: the Fredholm determinants of these operators can be found explicitly in terms of Gromov-Witten invariants and their refinements; their spectrum is encoded in exact quantization conditions, and turns out to be determined by the vanishing of a quantum theta function. Conversely, the spectral theory of these operators provides a non-perturbative definition of topological string theory on toric Calabi-Yau threefolds. In particular, their integral kernels lead to matrix integral representations of the topological string partition function, which explain some number-theoretic properties of the periods. In this...

  4. Spectral numbers in Floer theories

    CERN Document Server

    Usher, Michael

    2007-01-01

    The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz, and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the "nondegenerate spectrality" axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and rather elementary, and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties provided that one works with coefficients in a Novikov ring whose degree-zero part \\Lambda_0 is a field. The key ingredient is a theorem about linear transforma...

  5. Spectral theory of ordinary differential operators

    CERN Document Server

    Weidmann, Joachim

    1987-01-01

    These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including th...

  6. Introduction to spectral theory in Hilbert space

    CERN Document Server

    Helmberg, Gilbert; Koiter, W T

    1969-01-01

    North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of lin

  7. Spectral flows and twisted topological theories

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1995-01-01

    We analyze the action of the spectral flows on N=2 twisted topological theories. We show that they provide a useful mapping between the two twisted topological theories associated to a given N=2 superconformal theory. This mapping can also be viewed as a topological algebra automorphism. In particular null vectors are mapped into null vectors, considerably simplifying their computation. We give the level 2 results. Finally we discuss the spectral flow mapping in the case of the DDK and KM realizations of the topological algebra.

  8. Learning theory of distributed spectral algorithms

    Science.gov (United States)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-07-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms.

  9. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  10. Universal fermionic spectral functions from string theory.

    Science.gov (United States)

    Gauntlett, Jerome P; Sonner, Julian; Waldram, Daniel

    2011-12-09

    We carry out the first holographic calculation of a fermionic response function for a strongly coupled d=3 system with an explicit D=10 or D=11 supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all d=3 N=2 SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.

  11. Exact Spectral Dimension of the Random Surface

    CERN Document Server

    Goncharenko, Igor

    2009-01-01

    We propose a new method of the analytical computation of the spectral dimension which is based on the equivalence of the random walk and the q-state Potts model with non-zero magnetic field in the limit $q\\to 0$. Calculating the critical exponent of the magnetization of this model on the dynamically triangulated random surface by means of a matrix model technique we obtain that the spectral dimension of this surface is equal to two.

  12. Spectral clustering based on matrix perturbation theory

    Institute of Scientific and Technical Information of China (English)

    TIAN Zheng; LI XiaoBin; JU YanWei

    2007-01-01

    This paper exposes some intrinsic characteristics of the spectral clustering method by using the tools from the matrix perturbation theory. We construct a weight matrix of a graph and study its eigenvalues and eigenvectors. It shows that the number of clusters is equal to the number of eigenvalues that are larger than 1, and the number of points in each of the clusters can be approximated by the associated eigenvalue. It also shows that the eigenvector of the weight matrix can be used directly to perform clustering; that is, the directional angle between the two-row vectors of the matrix derived from the eigenvectors is a suitable distance measure for clustering. As a result, an unsupervised spectral clustering algorithm based on weight matrix (USCAWM) is developed. The experimental results on a number of artificial and real-world data sets show the correctness of the theoretical analysis.

  13. Partial Differential Equations and Spectral Theory

    CERN Document Server

    Demuth, Michael; Witt, Ingo

    2011-01-01

    This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on futur

  14. Spectral emissivity of surface blackbody calibrators

    DEFF Research Database (Denmark)

    Clausen, Sønnik

    2007-01-01

    The normal spectral emissivity of commercial infrared calibrators is compared with measurements of anodized aluminum samples and grooved aluminum surfaces coated with Pyromark. Measurements performed by FTIR spectroscopy in the wavelength interval from 2 to 20 mu m and at temperatures between 5...... in emissivity using similar materials can be reduced to 0.5-1% by optimizing the coating process and the surface geometry. Results are discussed and an equation for calculation of the equivalent blackbody surface temperature from FTIR spectra is presented, including reflected ambient radiation. It is in most...... cases necessary to correct temperature calibration results for calibrators calibrated at 8-14 mu m to obtain absolute accuracies of 0.1-1 degrees C in other spectral regions depending on the temperature. Uncertainties are discussed and equations are given for the correction of measured radiation...

  15. ADE Spectral Networks and Decoupling Limits of Surface Defects

    CERN Document Server

    Longhi, Pietro

    2016-01-01

    We study vacua and BPS spectra of canonical surface defects of class $\\mathcal{S}$ theories in different decoupling limits using ADE spectral networks. In some regions of the IR moduli spaces of these 2d-4d systems, the mixing between 2d and 4d BPS states is suppressed, and the spectrum of 2d-4d BPS states becomes that of a 2d $\\mathcal{N}=(2,2)$ theory. For some decoupling limits, we identify the 2d theories describing the surface defects with nonlinear sigma models and coset models that have been previously studied. We also study certain cases where the decoupling limit of a surface defect exhibits a set of vacua and a BPS spectrum that appear to be entirely new. A detailed analysis of these spectra and their wall-crossing behavior is performed.

  16. ADE spectral networks and decoupling limits of surface defects

    Science.gov (United States)

    Longhi, Pietro; Park, Chan Y.

    2017-02-01

    We study vacua and BPS spectra of canonical surface defects of class S theories in different decoupling limits using ADE spectral networks. In some regions of the IR moduli spaces of these 2d-4d systems, the mixing between 2d and 4d BPS states is suppressed, and the spectrum of 2d-4d BPS states becomes that of a 2d N = (2, 2) theory. For some decoupling limits, we identify the 2d theories describing the surface defects with nonlinear sigma models and coset models that have been previously studied. We also study certain cases where the decoupling limit of a surface defect exhibits a set of vacua and a BPS spectrum that appear to be entirely new. A detailed analysis of these spectra and their wall-crossing behavior is performed.

  17. Theory of Solid Surfaces.

    Science.gov (United States)

    1976-05-01

    A~ —~ on 022 CAMBRIDGE UNIV (ENGLAND) CAVEND ISH LAB —. FIG 20/12 —“1THEORY OF SOLID SURFACES .(U) MAY 76 ~J C INKS ON, P W ANDERSON AF AFOSR...A~ D. ~ tLC .7~ ~~~~~~~ I In f or ~a t i oL O f f i c e r 111111 __________ ~~~~~~~~~~~~~~~ _________________ - -ii~ s ~~~~~~~~~~~~~ Abstract

  18. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard

    2000-01-01

    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  19. International Conference on Spectral Theory and Mathematical Physics

    CERN Document Server

    Raikov, Georgi; Aldecoa, Rafael

    2016-01-01

    The present volume contains the Proceedings of the International Conference on Spectral Theory and Mathematical Physics held in Santiago de Chile in November 2014. Main topics are: Ergodic Quantum Hamiltonians, Magnetic Schrödinger Operators, Quantum Field Theory, Quantum Integrable Systems, Scattering Theory, Semiclassical and Microlocal Analysis, Spectral Shift Function and Quantum Resonances. The book presents survey articles as well as original research papers on these topics. It will be of interest to researchers and graduate students in Mathematics and Mathematical Physics.

  20. BASIC THEORY AND METHOD OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    Li Junyue; Li Zhiyong; Li Huan; Xue Haitao

    2004-01-01

    Arc spectral information is a rising information source which can solve many problems that can not be done with arc electric information and other arc information.It is of important significance to develop automatic control technique of welding process.The basic theory and methods on it play an important role in expounding and applying arc spectral information.Using concerned equation in plasma physics and spectrum theory,a system of equations including 12 equations which serve as basic theory of arc spectral information is set up.Through analyzing of the 12 equations,a basic view that arc spectral information is the reflection of arc state and state variation,and is the most abundant information resource reflecting welding arc process is drawn.Furthermore,based on the basic theory,the basic methods of test and control of arc spectral information and points out some applications of it are discussesed.

  1. Enveloping Spectral Surfaces: Covariate Dependent Spectral Analysis of Categorical Time Series.

    Science.gov (United States)

    Krafty, Robert T; Xiong, Shuangyan; Stoffer, David S; Buysse, Daniel J; Hall, Martica

    2012-09-01

    Motivated by problems in Sleep Medicine and Circadian Biology, we present a method for the analysis of cross-sectional categorical time series collected from multiple subjects where the effect of static continuous-valued covariates is of interest. Toward this goal, we extend the spectral envelope methodology for the frequency domain analysis of a single categorical process to cross-sectional categorical processes that are possibly covariate dependent. The analysis introduces an enveloping spectral surface for describing the association between the frequency domain properties of qualitative time series and covariates. The resulting surface offers an intuitively interpretable measure of association between covariates and a qualitative time series by finding the maximum possible conditional power at a given frequency from scalings of the qualitative time series conditional on the covariates. The optimal scalings that maximize the power provide scientific insight by identifying the aspects of the qualitative series which have the most pronounced periodic features at a given frequency conditional on the value of the covariates. To facilitate the assessment of the dependence of the enveloping spectral surface on the covariates, we include a theory for analyzing the partial derivatives of the surface. Our approach is entirely nonparametric, and we present estimation and asymptotics in the setting of local polynomial smoothing.

  2. Spectral properties and conformal type of surfaces

    Directory of Open Access Journals (Sweden)

    PHILIPPE CASTILLON

    2002-12-01

    Full Text Available In this short note, we announce a result relating the geometry of a riemannian surface to the positivity of some operators on this surface (the operators considered here are of the form surface Laplacian plus a scalar multiple of the curvature function. In particular we obtain a theorem "à la Huber'': under a spectral hypothesis we prove that the surface is conformally equivalent to a Riemann surface with a finite number of points removed. This problem has its origin in the study of stable minimal surfaces.Nesta comunicação, anunciamos um resultado que relaciona a geometria de uma superfície riemanniana com a positividade de certos operadores na superfície (os operadores considerados têm forma "Laplaciano mais um múltiplo da curvatura''. Em particular, obtemos um teorema "à la Huber'': usando uma condição espectral, provamos que a superfície é conformemente equivalente a uma superfície de Riemann menos um número finito de pontos. Este problema tem origem no estudo das superfícies mínimas estáveis.

  3. SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Yang; Reddy, Vishnu; Corre, Lucille Le; Sykes, Mark V.; Prettyman, Thomas H. [Planetary Science Institute, 1700 E. Ft. Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael [Max Planck Institute for Solar System Research, Göttingen (Germany); Izawa, Matthew R. M.; Cloutis, Edward A. [University of Winnipeg, Winnipeg, Manitoba (Canada); Carsenty, Uri; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Schröder, Stefan E. [German Aerospace Center (DLR), Institute of Planetary Research, Berlin (Germany); Castillo-Rogez, Julie C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Schenk, Paul [Lunar and Planetary Institute, Houston, TX 77058 (United States); Williams, David A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Smith, David E. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Zuber, Maria T. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km{sup 2}, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  4. Spectral theory and nonlinear analysis with applications to spatial ecology

    CERN Document Server

    Cano-Casanova, S; Mora-Corral , C

    2005-01-01

    This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.

  5. Reflectance Spectral Characteristics of Lunar Surface Materials

    Institute of Scientific and Technical Information of China (English)

    Yong-Liao Zou; Jian-Zhong Liu; Jian-Jun Liu; Tao Xu

    2004-01-01

    Based on a comprehensive analysis of the mineral composition of major lunar rocks (highland anorthosite, lunar mare basalt and KREEP rock), we investigate the reflectance spectral characteristics of the lunar rock-forming minerals, including feldspar, pyroxene and olivine. The affecting factors, the variation of the intensity of solar radiation with wavelength and the reflectance spectra of the lunar rocks are studied. We also calculate the reflectivity of lunar mare basalt and highland anorthosite at 300 nm, 415 nm, 750 nm, 900 nm, 950 nm and 1000 nm.It is considered that the difference in composition between lunar mare basalt and highland anorthosite is so large that separate analyses are needed in the study of the reflectivity of lunar surface materials in the two regions covered by mare basalt and highland anorthosite, and especially in the region with high Th contents, which may be the KREEP-distributed region.

  6. Surface chemistry theory and applications

    CERN Document Server

    Bikerman, J J

    2013-01-01

    Surface Chemistry Theory and Applications focuses on liquid-gas, liquid-liquid, solid-gas, solid-liquid, and solid-solid surfaces. The book first offers information on liquid-gas surfaces, including surface tension, measurement of surface tension, rate of capillarity rise, capillary attraction, bubble pressure and pore size, and surface tension and temperature. The text then ponders on liquid-liquid and solid-gas surfaces. Discussions focus on surface energy of solids, surface roughness and cleanness, adsorption of gases and vapors, adsorption hysteresis, interfacial tension, and interfacial t

  7. BASIC THEORY AND APPLICATIONS OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    LI Junyue; XUE Haitao; LI Huan; SONG Yonglun

    2007-01-01

    Welding arc spectral information is a rising welding Information source. In some occasion, it can reflect many physical phenomena of welding process and solve many problems that cannot be done with arc electric information, acoustic information and other arc information. It is of important significance in developing automatic control technique of welding process and other similar process. Many years study work on welding arc spectral information of the anthor are discussed from three aspects of theory, method and application. Basic theory, view and testing methods of welding arc spectral information has been put forward. In application aspects, many applied examples, for example, monitoring of harmful gases in arc (such as hydrogen and nitrogen) with the method of welding arc spectral information; welding arc spectral imaging of thc welding pool which is used in automatic seam tracking; controlling of welding droplet transfer with welding arc spectral information and so on, are introduced. Especially, the successful application in real time controlling of welding droplet transfer in pulsed GMAW is introduced too. These application examples show that the welding arc spectral information has great applied significance and development potentialities. These content will play an important role in applying and spreading welding arc spectral information technology.

  8. Scattering zippers and their spectral theory

    CERN Document Server

    Marin, Laurent

    2011-01-01

    A scattering zipper is a system obtained by concatenation of scattering events with equal even number of incoming and out going channels. The associated scattering zipper operator is the unitary equivalent of Jacobi matrices with matrix entries and generalizes Blatter-Browne and Chalker-Coddington models and CMV matrices. Weyl discs are analyzed and used to prove a bijection between the set of semi-infinite scattering zipper operators and matrix valued probability measures on the unit circle. Sturm-Liouville oscillation theory is developed as a tool to calculate the spectra of finite and periodic scattering zipper operators.

  9. Merging the A- and Q-spectral theories

    OpenAIRE

    Nikiforov, V.

    2016-01-01

    Let $G$ be a graph with adjacency matrix $A\\left( G\\right) $, and let $D\\left( G\\right) $ be the diagonal matrix of the degrees of $G.$ The signless Laplacian $Q\\left( G\\right) $ of $G$ is defined as $Q\\left( G\\right) :=A\\left( G\\right) +D\\left( G\\right) $. Cvetkovi\\'{c} called the study of the adjacency matrix the $A$% \\textit{-spectral theory}, and the study of the signless Laplacian--the $Q$\\textit{-spectral theory}. During the years many similarities and differences between these two theo...

  10. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    Science.gov (United States)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  11. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens

    2006-01-01

    and after high-pressure water cleaning. The spectral signatures of the surface materials and dirt attached to the surfaces showed that it is possible to make discrimination and hence to classify areas that are visually clean. When spectral bands 450, 600, 700 and 800 nm are chosen, there are at least two...... the cleaning process and to minimise the amount of water and electricity consumed. This research is aimed at utilising a spectral imaging method for cleanliness detection. Consequently, information on the reflectance of building materials and contamination in different spectral ranges is important...... in the investigation. Reflectance data were sampled under controlled lighting conditions using a spectrometer communicating with a portable computer. The measurements were performed in a laboratory with materials used in a pig house for 4-5 weeks. The spectral data were collected for the surfaces before, during...

  12. Spectral theory of linear operators and spectral systems in Banach algebras

    CERN Document Server

    Müller, Vladimir

    2003-01-01

    This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...

  13. Surface Albedo and Spectral Variability of Ceres

    CERN Document Server

    Li, Jian-Yang; Nathues, Andreas; Corre, Lucille Le; Izawa, Matthew R M; Clouts, Edward A; Sykes, Mark V; Carsenty, Uri; Castillo-Rogez, Julie C; Hoffmann, Martin; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Prettyman, Thomas H; Schaefer, Michael; Schenk, Paul; Schröder, Stefan E; Williams, David A; Smith, David E; Zuber, Maria T; Konopliv, Alexander S; Park, Ryan S; Raymond, Carol A; Russell, Christopher T

    2016-01-01

    Previous observations suggested that Ceres has active but possibly sporadic water outgassing, and possibly varying spectral characteristics in a time scale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, and the newly acquired images by Dawn Framing Camera to search for spectral and albedo variability on Ceres, in both a global scale and local regions, particularly the bright spots inside Occator crater, over time scales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in Occator crater by >15%, or the global albedo by >3% over various time scales that we searched. Recently reported spectral slope variations can be explained by changing Sun-Ceres-Earth geometry. The active area on Ceres is less than 1 km$^2...

  14. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  15. Spectral Representation Theory for Dielectric Behavior of Nonspherical Cell Suspensions

    Institute of Scientific and Technical Information of China (English)

    HUANG Ji-Ping; YU Kin-Wah; LEI Jun; SUN Hong

    2002-01-01

    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. The cell shape effect was simulated by an ellipsoidal cell model but the comparison between theory and experiment was far from being satisfactory. Prompted by the discrepancy, we proposed the use of spectral representation to analyze more realistic cell models. We adopted a shell-spheroidal model to analyze the effects of the cell membrane. It is found that the dielectric property of the cell membrane has only a minor effect on the dispersion magnitude ratio and the characteristic frequency ratio. We further included the effect of rotation of dipole induced by an external electric field, and solved the dipole-rotation spheroidal model in the spectral representation.Good agreement between theory and experiment has been obtained.

  16. Gauge Theories, Tessellations & Riemann Surfaces

    CERN Document Server

    He, Yang-Hui

    2014-01-01

    We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.

  17. Gauge theories, tessellations & Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang-Hui [Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); School of Physics, NanKai University,Tianjin, 300071 (China); Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom); Loon, Mark van [Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom)

    2014-06-10

    We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.

  18. Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control

    CERN Document Server

    Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta

    2016-01-01

    This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...

  19. Separation Surfaces in the Spectral TV Domain for Texture Decomposition

    Science.gov (United States)

    Horesh, Dikla; Gilboa, Guy

    2016-09-01

    In this paper we introduce a novel notion of separation surfaces for image decomposition. A surface is embedded in the spectral total-variation (TV) three dimensional domain and encodes a spatially-varying separation scale. The method allows good separation of textures with gradually varying pattern-size, pattern-contrast or illumination. The recently proposed total variation spectral framework is used to decompose the image into a continuum of textural scales. A desired texture, within a scale range, is found by fitting a surface to the local maximal responses in the spectral domain. A band above and below the surface, referred to as the \\textit{Texture Stratum}, defines for each pixel the adaptive scale-range of the texture. Based on the decomposition an application is proposed which can attenuate or enhance textures in the image in a very natural and visually convincing manner.

  20. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens

    2006-01-01

    Manual cleaning of pig production buildings based on high-pressure water cleaners is unappealing to workers, because it is tedious and health threatening. To replace manual cleaning, a few cleaning robots have been commercialised. With no cleanliness sensor available, the operation of these robots...... spectral bands for each type of the materials, in which the spectral signals can be used for discrimination of dirty and clean condition of the surfaces. (c) 2006 IAgrE. All rights reserved Published by Elsevier Ltd...

  1. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  2. Search for olivine spectral signatures on the surface of Vesta

    Science.gov (United States)

    Palomba, E.; De Sanctis, M. C.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Farina, M.; Frigeri, A.; Longobardo, A.; Tosi, F.; Zambon, F.; McSween, H. Y.; Mittlefehldt, D. W.; Russell, C. T.; Raymond, C. A.; Sunshine, J.; McCord, T. B.

    2012-04-01

    The occurrence of olivines on Vesta were first postulated from traditional petrogenetic models which suggest the formation of olivine as lower crustal cumulates. An indirect confirmation is given by their presence as a minor component in some samples of diogenite meteorites, the harzburgitic diogenites and the dunitic diogenites, and as olivine mineral clasts in howardites. Another indication for this mineral was given by interpretations of ground-based and Hubble Space Telescope observations that suggested the presence of local olivine-bearing units on the surface of Vesta. The VIR instrument onboard the DAWN mission has been mapping Vesta since July 2011. VIR acquired hyperspectral images of Vesta's surface in the wavelength range from 0.25 to 5.1 µm during Approach, Survey and High Altitude Mapping (HAMO) orbits that allowed a 2/3 of the entire asteroid surface to be mapped. The VIR operative spectral interval, resolution and coverage is suitable for the detection and mapping of any olivine rich regions that may occur on the Vesta surface. The abundance of olivine in diogenites is typically lower than 10% but some samples richer in olivine are known. However, we do not expect to have extensive exposures of olivine-rich material on Vesta. Moreover, the partial overlap of olivine and pyroxene spectral signatures will make olivine difficult to detect. Different spectral parameters have been used to map olivine on extraterrestrial bodies, and here we discuss the different approaches used, and develop new ones specifically for Vesta. Our new methods are based on combinations of the spectral parameters relative to the 1 and 2 micron bands (the most prominent spectral features of Vesta surface in the visible and the infrared), such as band center locations, band depths, band areas, band area ratios. Before the direct application to the VIR data, the efficiency of each approach is evaluated by means of analysis of laboratory spectra of HED meteorites, pyroxenes

  3. Search for Olivine Spectral Signatures on the Surface of Vesta

    Science.gov (United States)

    Palomba, E.; De Sanctis, M. C.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Farina, M.; Frigeri, A.; Longobardo, A.; Tosi, F.; Zambon, F.; McSween, H. Y.; Mittlefehldt, D. W.; Russell, C. T.; Raymond, C. A.; Sunshine, J.; McCord, T. B.

    2012-01-01

    The occurrence of olivines on Vesta were first postulated from traditional petrogenetic models which suggest the formation of olivine as lower crustal cumulates. An indirect confirmation is given by their presence as a minor component in some samples of diogenite meteorites, the harzburgitic diogenites and the dunitic diogenites, and as olivine mineral clasts in howardites. Another indication for this mineral was given by interpretations of groundbased and Hubble Space Telescope observations that suggested the presence of local olivine-bearing units on the surface of Vesta. The VIR instrument onboard the DAWN mission has been mapping Vesta since July 2011. VIR acquired hyperspectral images of Vesta s surface in the wavelength range from 0.25 to 5.1 m during Approach, Survey and High Altitude Mapping (HAMO) orbits that allowed a 2/3 of the entire asteroid surface to be mapped. The VIR operative spectral interval, resolution and coverage is suitable for the detection and mapping of any olivine rich regions that may occur on the Vesta surface. The abundance of olivine in diogenites is typically lower than 10% but some samples richer in olivine are known. However, we do not expect to have extensive exposures of olivine-rich material on Vesta. Moreover, the partial overlap of olivine and pyroxene spectral signatures will make olivine difficult to detect. Different spectral parameters have been used to map olivine on extraterrestrial bodies, and here we discuss the different approaches used, and develop new ones specifically for Vesta. Our new methods are based on combinations of the spectral parameters relative to the 1 and 2 micron bands (the most prominent spectral features of Vesta surface in the visible and the infrared), such as band center locations, band depths, band areas, band area ratios. Before the direct application to the VIR data, the efficiency of each approach is evaluated by means of analysis of laboratory spectra of HED meteorites, pyroxenes, olivines

  4. The RHMC algorithm for theories with unknown spectral bounds

    CERN Document Server

    Kogut, J B

    2006-01-01

    The Rational Hybrid Monte Carlo (RHMC) algorithm extends the Hybrid Monte Carlo algorithm for lattice QCD simulations to situations involving fractional powers of the determinant of the quadratic Dirac operator. This avoids the updating increment ($dt$) dependence of observables which plagues the Hybrid Molecular-dynamics (HMD) method. The RHMC algorithm uses rational approximations to fractional powers of the quadratic Dirac operator. Such approximations are only available when positive upper and lower bounds to the operator's spectrum are known. We apply the RHMC algorithm to simulations of 2 theories for which a positive lower spectral bound is unknown: lattice QCD with staggered quarks at finite isospin chemical potential and lattice QCD with massless staggered quarks and chiral 4-fermion interactions ($\\chi$QCD). A choice of lower bound is made in each case, and the properties of the RHMC simulations these define are studied. Justification of our choices of lower bounds is made by comparing measurements ...

  5. Face Recognition System Based on Spectral Graph Wavelet Theory

    Directory of Open Access Journals (Sweden)

    R. Premalatha Kanikannan

    2014-09-01

    Full Text Available This study presents an efficient approach for automatic face recognition based on Spectral Graph Wavelet Theory (SGWT. SGWT is analogous to wavelet transform and the transform functions are defined on the vertices of a weighted graph. The given face image is decomposed by SGWT at first. The energies of obtained sub-bands are fused together and considered as feature vector for the corresponding image. The performance of proposed system is analyzed on ORL face database using nearest neighbor classifier. The face images used in this study has variations in pose, expression and facial details. The results indicate that the proposed system based on SGWT is better than wavelet transform and 94% recognition accuracy is achieved.

  6. Theory of satellite structures on spectral-line profiles.

    Science.gov (United States)

    Atakan, A. K.; Jacobson, H. C.

    1973-01-01

    A systematic comparison with experiment of various explanations for the problem of satellite-band formation on spectral-line profiles was initiated. The experiments were performed under a variety of conditions in an effort to construct a consistent model of entire line shapes. A composite theory is detailed which is the result of the insights of many individuals. The calculations indicate that the main features of the problem, the line, the high-intensity red satellites, and the blue satellite can be described simultaneously. The results also indicate that widely different potentials can lead to very similar line profiles. Ancillary conclusions are presented concerning the role of Lennard-Jones potentials in line-shape calculations.

  7. Orbifoldization, covering surfaces and uniformization theory

    CERN Document Server

    Bántay, P

    1998-01-01

    The connection between the theory of permutation orbifolds, covering surfaces and uniformization is investigated, and the higher genus partition functions of an arbitrary permutation orbifold are expressed in terms of those of the original theory.

  8. Spectral Theory for Dissipation Mechanism of Wind Waves

    CERN Document Server

    Polnikov, Vladislav G

    2010-01-01

    A systematic and full description of the theory for a dissipation mechanism of wind wave energy in a spectral representation is given. As a basis of the theory, the fundamental is stated that the most general dissipation mechanism for wind waves is provided by the viscosity due to interaction between wave motions and turbulence of the water upper layer. The latter, in turn, is supposed to be induced by the whole aggregate of dissipation processes taking place at the air-sea interface. In the frame of phenomenological constructions of nonlinear closure for Reynolds stresses, it is shown that the dissipation function is generally a power series with respect to wave spectrum, starting from a quadratic term. Attracting previous results of the author, a simplified parameterization of the general theoretical result is done. Physical meaning for parameters of the dissipation function and its compliance with the new experimental facts established in this field for the last 5-10 years is discussed. Summarized theoreti...

  9. Spectral reflectance of SNC meteorites: Relationships to Martian surface composition

    Science.gov (United States)

    Mcfadden, L. A.

    1987-01-01

    The spectral signatures of each of the Shergottite-Nakhlite-Chassignite (SNC) meteorite types measured to date are unique among extraterrestrial materials. Reflectance spectra of dark regions of Mars show evidence of basaltic composition. Analytic analysis of absorption band positions and widths in reflectance spectra of SNC meteorites will permit comparisons with spectra from approximately 600 km sized regions for which high-quality, near-IR spectra are available. Multi-spectral mapping data from orbital spacecraft is expected to provide the necessary spectra to determine basaltic compositions of smaller regions on Mars provided fresh, unaltered basalts can be observed or the effects of Martian weathering can be understood and removed from the spectra. With modeling of spectral weathering and mixing of SNC meteoritic assemblages it should be possible with the Mars Observer data to test for the presence of SNC analogs on the Martian surface. Before the relationship between the basaltic composition of units on Mars and the SNC meteorites can be addressed, it is necessary to analyze the absorption band parameters of the SNC reflectance spectra and to acquire high resolution spectral data on smaller regions of the Martian surface.

  10. KK -theory and spectral flow in von Neumann algebras

    DEFF Research Database (Denmark)

    Kaad, Jens; Nest, Ryszard; Rennie, Adam

    2012-01-01

    We present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko (J). Given a semifinite spectral triple (A, H, D) relative to (N, t) with A separable......, we construct a class [D] ¿ KK1 (A, K(N)). For a unitary u ¿ A, the von Neumann spectral flow between D and u*Du is equal to the Kasparov product [u] A[D], and is simply related to the numerical spectral flow, and a refined C* -spectral flow....

  11. KK -theory and spectral flow in von Neumann algebras

    DEFF Research Database (Denmark)

    Kaad, Jens; Nest, Ryszard; Rennie, Adam

    2012-01-01

    We present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko (J). Given a semifinite spectral triple (A, H, D) relative to (N, t) with A separable...

  12. Mixed Weyl symbol calculus and spectral line shape theory

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, T.A.; Kondrat' eva, M.F.; Tabisz, G.C. [Department of Physics, University of Manitoba, Winnipeg, MB, (Canada); McQuarrie, B.R. [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON (Canada)

    1999-06-04

    A new and computationally viable full quantum version of line shape theory is obtained in terms of a mixed Weyl symbol calculus. The basic ingredient in the collision-broadened line shape theory is the time-dependent dipole autocorrelation function of the radiator-perturber system. The observed spectral intensity is the Fourier transform of this correlation function. A modified form of the Wigner-Weyl isomorphism between quantum operators and phase space functions (Weyl symbols) is introduced in order to describe the quantum structure of this system. This modification uses a partial Wigner transform in which the radiator-perturber relative motion degrees of freedom are transformed into a phase space dependence, while operators associated with the internal molecular degrees of freedom are kept in their original Hilbert space form. The result of this partial Wigner transform is called a mixed Weyl symbol. The star product, Moyal bracket and asymptotic expansions native to the mixed Weyl symbol calculus are determined. The correlation function is represented as the phase space integral of the product of two mixed symbols: one corresponding to the initial configuration of the system, the other being its time evolving dynamical value. There are, in this approach, two semiclassical expansions - one associated with the perturber scattering process, the other with the mixed symbol star product. These approximations are used in combination to obtain representations of the autocorrelation that are sufficiently simple to allow numerical calculation. The leading O((h/2{pi}){sup 0}) approximation recovers the standard classical path approximation for line shapes. The higher-order O((h/2{pi}){sup 1}) corrections arise from the noncommutative nature of the star product. (author)

  13. Design of cloaking metamaterials using spectral representation theory

    Science.gov (United States)

    Lai Leung, Lai; Fung, Tai Hang; Yu, Kin Wah

    2008-03-01

    Controlling the propagation of electromagnetic (EM) waves, for instance in cloaking problem, has become an important topic in nanophotonics. So far, following the cloaking model proposed by Pendry et al. [1], the experimental realization was only limited to the microwave region [2]. Since practical application lies in the visible range, we have extended the investigation to that region by utilizing nanocomposites with reference to the material parameters proposed by Pendry et al. and Shalaev et al. [3]. The calculations can be made much simpler by invoking the spectral representation theory [4]. The loss and dispersion effects, as well as the propagation of EM waves are assessed for the designed cloaking models in order to investigate the cloaking performance. Further analyses show that our models can accomplish the desired cloaking effect in the visible range. Moreover, the loss and dispersion effects are found to be small and acceptable.[1] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [2] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith Science 314, 5801 (2006). [3] Wenshan Cai, Uday K. Chettiar, Alexander V. Kildishev and Vladimir M. Shalaev, Nature photonics 1 (2007). [4] L. Dong, Mikko Karttunen, K. W. Yu, Phys. Rev. E 72, 016613 (2005).

  14. Quantitative characterization of surface topography using spectral analysis

    Science.gov (United States)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  15. Spectral polarimetric light-scattering by particulate media: 1. Theory of spectral Vector Radiative Transfer

    Science.gov (United States)

    Ceolato, Romain; Riviere, Nicolas

    2016-07-01

    Spectral polarimetric light-scattering by particulate media has recently attracted growing interests for various applications due to the production of directional broadband light sources. Here the spectral polarimetric light-scattering signatures of particulate media are simulated using a numerical model based on the spectral Vector Radiative Transfer Equation (VRTE). A microphysical analysis is conducted to understand the dependence of the light-scattering signatures upon the microphysical parameters of particles. We reveal that depolarization from multiple scattering results in remarkable spectral and directional features, which are simulated by our model over a wide spectral range from visible to near-infrared. We propose to use these features to improve the inversion of the scattering problem in the fields of remote sensing, astrophysics, material science, or biomedical.

  16. Theory of Digitized Conjugate Surface and Solution to Conjugate Surface

    Institute of Scientific and Technical Information of China (English)

    Xiao Lai-yuan; Liao Dao-xun; Yi Chuan-yun

    2004-01-01

    In order to meet the needs of designing and processing digitized surfaces, the method to spreading digitized surface has been proposed. The key technique is to solve the problem of digitized conjugate surface. In the paper, the digitized conjugate surface was theoretically investigated, and the solution of conjugate surface based on digitized surface was also studied. The digitized conjugate surface theory was then proposed, and applied to build the model of solving conjugate surface based on digitized surface. A corresponding algorithm was developed. This paper applies the software Conjugater-1.0 that is developed by ourselves to compute the digitized conjugate surfaces of the drum-tooth surface. This study provides theoretical and technical bases for analyzing engagement of digitized surface, simulation and numerical processing technique.

  17. UV spectral filtering by surface structured multilayer mirrors.

    Science.gov (United States)

    Huang, Qiushi; Paardekooper, Daniel Mathijs; Zoethout, Erwin; Medvedev, V V; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; Bijkerk, Fred

    2014-03-01

    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (λ=100-400  nm) and simultaneously a high reflectance of EUV light (λ=13.5  nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but reflective for UV light. The reflected UV is filtered out by blazed diffraction, interference, and absorption. A first demonstration pyramid structure was fabricated on a multilayer by using a straightforward deposition technique. It shows an average suppression of 14 times over the whole UV range and an EUV reflectance of 56.2% at 13.5 nm. This robust scheme can be used as a spectral purity solution for all XUV sources that emit longer wavelength radiation as well.

  18. Numerical validation of the generalized Harvey-Shack surface scatter theory

    Science.gov (United States)

    Choi, Narak; Harvey, James E.

    2013-11-01

    The generalized Harvey-Shack (GHS) surface scatter theory is numerically compared to the classical small perturbation method, the Kirchhoff approximation method, and the rigorous method of moments for one-dimensional ideally conducting surfaces whose surface power spectral density function is Gaussian or exhibits an inverse power law (fractal) behavior. In spite of its simple analytic form, our numerical comparison shows that the new GHS theory is valid (with reasonable accuracy) over a broader range of surface parameter space than either of the two classical surface scatter theories.

  19. Spectral density of the correlation matrix of factor models: a random matrix theory approach.

    Science.gov (United States)

    Lillo, F; Mantegna, R N

    2005-07-01

    We studied the eigenvalue spectral density of the correlation matrix of factor models of multivariate time series. By making use of the random matrix theory, we analytically quantified the effect of statistical uncertainty on the spectral density due to the finiteness of the sample. We considered a broad range of models, ranging from one-factor models to hierarchical multifactor models.

  20. Europa: Characterization and interpretation of global spectral surface units

    Science.gov (United States)

    Nelson, M.L.; McCord, T.B.; Clark, R.N.; Johnson, T.V.; Matson, D.L.; Mosher, J.A.; Soderblom, L.A.

    1986-01-01

    The Voyager global multispectral mosaic of the Galilean satellite Europa (T. V. Johnson, L. A. Soderblom, J. A. Mosher, G. E. Danielson, A. F. Cook, and P. Kupferman, 1983, J. Geophys. Res. 88, 5789-5805) was analyzed to map surface units with similar optical properties (T. B. McCord, M. L. Nelson, R. N. Clark, A. Meloy, W. Harrison, T. V. Johnson, D. L. Matson, J. A. Mosher, and L. Soderblom, 1982, Bull Amer. Astron. Soc. 14, 737). Color assignments in the unit map are indicative of the spectral nature of the unit. The unit maps make it possible to infer extensions of the geologic units mapped by B. K. Lucchitta and L. A. Soderblom (1982, in Satellites of Jupiter, pp. 521-555, Univ. of Arizona Press, Tucson) beyond the region covered in the high-resolution imagery. The most striking feature in the unit maps is a strong hemispheric asymmetry. It is seen most clearly in the ultraviolet/violet albedo ratio image, because the asymmetry becomes more intense as the wavelength decreases. It appears as if the surface has been darkened, most intensely in the center of the trailing hemisphere and decreasing gradually, essentially as the cosine of the angle from the antapex of motion, to a minimum in the center of the leading hemisphere. The cosine pattern suggests that the darkening is exogenic in origin and is interpreted as evidence of alteration of the surface by ion bombardment from the Jovian magnetosphere. ?? 1986.

  1. Polarized spectral combs probe optical fiber surface plasmons.

    Science.gov (United States)

    Caucheteur, Christophe; Voisin, Valérie; Albert, Jacques

    2013-02-11

    The high-order cladding modes of conventional single mode fiber come in semi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. Using tilted fiber Bragg gratings to excite these mode families separately, we show how plasmonic coupling to a thin gold coating on the surface of the fiber modifies the effective indices of the modes differently according to polarization and to mode order. In particular, we show the existence of a single "apolarized" grating resonance, with equal effective index for all input polarization states. This special resonance provides direct evidence of the excitation of a surface plasmon on the metal surface but also an absolute wavelength reference that allows for the precise localization of the most sensitive resonances in refractometric and biochemical sensing applications. Two plasmon interrogation methods are proposed, based on wavelength and amplitude measurements. Finally, we use a biotin-streptavidin biomolecular recognition experiment to demonstrate that differential spectral transmission measurements of a fine comb of cladding mode resonances in the vicinity of the apolarized resonance provide the most accurate method to extract information from plasmon-assisted Tilted fiber Bragg gratings, down to pM concentrations and at least 10(-5) refractive index changes.

  2. Software Defined Network Monitoring Scheme Using Spectral Graph Theory and Phantom Nodes

    Science.gov (United States)

    2014-09-01

    Communication Systems, 2013. 98 [11] S. Huang and J. Griffioen, “Network hypervisors: Managing the emerging SDN chaos ,” in Proc. of 22nd International...NETWORK MONITORING SCHEME USING SPECTRAL GRAPH THEORY AND PHANTOM NODES by Jamie L. Johnson September 2014 Thesis Co-Advisors: Murali...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE SOFTWARE DEFINED NETWORK MONITORING SCHEME USING SPECTRAL GRAPH THEORY AND PHANTOM

  3. Spectral theory and differential equations V. A. Marchenko's 90th anniversary collection

    CERN Document Server

    Khruslov, E; Shepelsky, D

    2014-01-01

    This volume is dedicated to V. A. Marchenko on the occasion of his 90th birthday. It contains refereed original papers and survey articles written by his colleagues and former students of international stature and focuses on the areas to which he made important contributions: spectral theory of differential and difference operators and related topics of mathematical physics, including inverse problems of spectral theory, homogenization theory, and the theory of integrable systems. The papers in the volume provide a comprehensive account of many of the most significant recent developments in th

  4. Phonon spectral densities of Cu surfaces: Application to Cu(211)

    Science.gov (United States)

    Mărinică, M.-C.; Raşeev, G.; Smirnov, K. S.

    2001-05-01

    Power phonon spectra of vicinal stepped surfaces of Cu(211) have been calculated using a molecular dynamics method combined with a semiempirical potential. The potential is based on an analytic form of inverse powers proposed by Finnis and Sinclair with the parametrization of Sutton and Chen. One of the four independent parameters of the potential was rescaled to reproduce the bulk phonon spectrum of Cu while retaining other properties of the bulk Cu close to the experimental values. Using this potential, we calculated the power surface phonon spectra, projection of the spectra at the high-symmetry points of surface Brillouin zone (SBZ), and the mean square displacements (MSD's) of atoms of the Cu(211) surface. The calculated projected phonon spectra at Γ¯ and at two new SBZ points (at X¯ and Y¯) compare favorably with experiment and theory when available. The MSD of the Cu(211) surface is also well reproduced and its temperature dependence shows that anharmonicity of the atomic motion becomes important above 200 K.

  5. Geometric Measure Theory and Minimal Surfaces

    CERN Document Server

    Bombieri, Enrico

    2011-01-01

    W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.

  6. Local spectral theory for 2×2 operator matrices

    Directory of Open Access Journals (Sweden)

    H. Elbjaoui

    2003-01-01

    Full Text Available We discuss the spectral properties of the operator MC∈ℒ(X⊕Y defined by MC:=(AC0B, where A∈ℒ(X, B∈ℒ(Y, C∈ℒ(Y,X, and X, Y are complex Banach spaces. We prove that (SA∗∩SB∪σ(MC=σ(A∪σ(B for all C∈ℒ(Y,X. This allows us to give a partial positive answer to Question 3 of Du and Jin (1994 and generalizations of some results of Houimdi and Zguitti (2000. Some applications to the similarity problem are also given.

  7. Monte Carlo computation of the spectral density function in the interacting scalar field theory

    Science.gov (United States)

    Abbasi, Navid; Davody, Ali

    2015-12-01

    We study the ϕ4 field theory in d = 4. Using bold diagrammatic Monte Carlo method, we solve the Schwinger-Dyson equations and find the spectral density function of the theory beyond the weak coupling regime. We then compare our result with the one obtained from the perturbation theory. At the end, we utilize our Monte Carlo result to find the vertex function as the basis for the computation of the physical scattering amplitudes.

  8. Spectral functions for composite fields and viscosity in hot scalar field theory

    CERN Document Server

    Wang, E; Heinz, Ulrich W; Wang, Enke; Zhang, Xiaofei; Heinz, Ulrich

    1995-01-01

    We derive a spectral representation for the two-point Green function for arbitrary composite field operators in Thermo Field Dynamics (TFD). A simple way for calculating the spectral density within TFD is pointed out and compared with known results from the imaginary time formalism. The method is applied to hot \\phi^4 theory. We give a compact derivation of the one-loop contribution to the shear viscosity and show that it is dominated by low-momentum plasmons.

  9. Spectral dualities in XXZ spin chains and five dimensional gauge theories

    CERN Document Server

    Mironov, A; Runov, B; Zenkevich, Y; Zotov, A

    2013-01-01

    Motivated by recent progress in the study of supersymmetric gauge theories we propose a very compact formulation of spectral duality between XXZ spin chains. The action of the quantum duality is given by the Fourier transform in the spectral parameter. We investigate the duality in various limits and, in particular, prove it for q-->1, i.e. when it reduces to the XXX/Gaudin duality. We also show that the universal difference operators are given by the normal ordering of the classical spectral curves.

  10. Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics

    CERN Document Server

    Shizgal, Bernard

    2015-01-01

    This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...

  11. Galileo's Multiinstrument Spectral View of Europa's Surface Composition

    Science.gov (United States)

    Fanale, F.P.; Granahan, J.C.; McCord, T.B.; Hansen, G.; Hibbitts, C.A.; Carlson, R.; Matson, D.; Ocampo, A.; Kamp, L.; Smythe, W.; Leader, F.; Mehlman, R.; Greeley, R.; Sullivan, R.; Geissler, P.; Barth, C.; Hendrix, A.; Clark, B.; Helfenstein, P.; Veverka, J.; Belton, M.J.S.; Becker, K.; Becker, T.

    1999-01-01

    We have combined spectral reflectance data from the Solid State Imaging (SSI) experiment, the Near-Infrared Mapping Spectrometer (NIMS), and the Ultraviolet Spectrometer (UVS) in an attempt to determine the composition and implied genesis of non-H2O components in the optical surface of Europa. We have considered four terrains: (1) the "dark terrains" on the trailing hemisphere, (2) the "mottled terrain," (3) the linea on the leading hemisphere, and (4) the linea embedded in the dark terrain on the trailing hemisphere. The darker materials in these terrains exhibit remarkably similar spectra in both the visible and near infrared. In the visible, a downturn toward shorter wavelengths has been attributed to sulfur. The broad concentrations of dark material on the trailing hemisphere was originally thought to be indicative of exogenic sulfur implantation. While an exogenic cause is still probable, more recent observations by the UVS team at higher spatial resolution have led to their suggestions that the role of the bombardment may have primarily been to sputter away overlying ice and to reveal underlying endogenic non-H2O contaminants. If so, this might explain why the spectra in all these terrains are so similar despite the fact that the contaminants in the linea are clearly endogenic and those in the mottled terrain are almost certainly so. In the near infrared, all these terrains exhibit much more asymmetrical bands at 1.4 and 2.0 ??m at shorter wavelengths than spectra from elsewhere on Europa. It has been argued that this is because the water molecules are bound in hydrated salts. However, this interpretation has been challenged and it has also been argued that pure coarse ice can exhibit such asymmetric bands under certain conditions. The nature of this controversy is briefly discussed, as are theoretical and experimental studies bearing on this problem. ?? 1999 Academic Press.

  12. Spectral rigidity of vehicular streams (random matrix theory approach)

    Energy Technology Data Exchange (ETDEWEB)

    Krbalek, Milan [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague (Czech Republic); Seba, Petr [Doppler Institute for Mathematical Physics and Applied Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague (Czech Republic)

    2009-08-28

    Using a method originally developed for the random matrix theory, we derive an approximate mathematical formula for the number variance {delta}{sub N}(L) describing the rigidity of particle ensembles with a power-law repulsion. The resulting relation is compared with the relevant statistics of the single-vehicle data measured on the Dutch freeway A9. The detected value of the inverse temperature {beta}, which can be identified as a coefficient of the mental strain of the car drivers, is then discussed in detail with the relation to the traffic density {rho} and flow J.

  13. Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2017-01-01

    A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...... separation. Finally, it is shown that the RDT output can deviate from Monin-Obukhov similarity theory....

  14. Differential operators and spectral theory M. Sh. Birman's 70th anniversary collection

    CERN Document Server

    Buslaev, V; Yafaev, D

    1999-01-01

    This volume contains a collection of original papers in mathematical physics, spectral theory, and differential equations. The papers are dedicated to the outstanding mathematician, Professor M. Sh. Birman, on the occasion of his 70th birthday. Contributing authors are leading specialists and close professional colleagues of Birman. The main topics discussed are spectral and scattering theory of differential operators, trace formulas, and boundary value problems for PDEs. Several papers are devoted to the magnetic Schrödinger operator, which is within Birman's current scope of interests and re

  15. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  16. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  17. Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.

    Science.gov (United States)

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-11

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  18. Monte Carlo Computation of Spectral Density Function in Real-Time Scalar Field Theory

    CERN Document Server

    Abbasi, Navid

    2014-01-01

    Non-perturbative study of "real-time" field theories is difficult due to the sign problem. We use Bold Schwinger-Dyson (SD) equations to study the real-time $\\phi^4$ theory in $d=4$ beyond the perturbative regime. Combining SD equations in a particular way, we derive a non-linear integral equation for the two-point function. Then we introduce a new method by which one can analytically perform the momentum part of loop integrals in this equation. The price we must pay for such simplification is to numerically solve a non-linear integral equation for the spectral density function. Using Bold diagrammatic Monte Carlo method we find non-perturbative spectral function of theory and compare it with the one obtained from perturbation theory. At the end we utilize our Monte Carlo result to find the full vertex function as the basis for the computation of real-time scattering amplitudes.

  19. Quantum Spectral Curve of the N =6 Supersymmetric Chern-Simons Theory

    Science.gov (United States)

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-01

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N =6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  20. Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory

    Science.gov (United States)

    Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe

    2013-06-01

    We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.

  1. Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory

    CERN Document Server

    Sakellariadou, Mairi; Vitiello, Giuseppe

    2013-01-01

    We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.

  2. Spectral theory of differential operators M. Sh. Birman 80th anniversary collection

    CERN Document Server

    Suslina, T

    2009-01-01

    This volume is dedicated to Professor M. Sh. Birman in honor of his eightieth birthday. It contains original articles in spectral and scattering theory of differential operators, in particular, Schrodinger operators, and in homogenization theory. All articles are written by members of M. Sh. Birman's research group who are affiliated with different universities all over the world. A specific feature of the majority of the papers is a combination of traditional methods with new modern ideas.

  3. Applications of surface analysis and surface theory in tribology

    Science.gov (United States)

    Ferrante, John

    1989-01-01

    Tribology, the study of adhesion, friction and wear of materials, is a complex field which requires a knowledge of solid state physics, surface physics, chemistry, material science, and mechanical engineering. It has been dominated, however, by the more practical need to make equipment work. With the advent of surface analysis and advances in surface and solid-state theory, a new dimension has been added to the analysis of interactions at tribological interfaces. In this paper the applications of tribological studies and their limitations are presented. Examples from research at the NASA Lewis Research Center are given. Emphasis is on fundamental studies involving the effects of monolayer coverage and thick films on friction and wear. A summary of the current status of theoretical calculations of defect energetics is presented. In addition, some new theoretical techniques which enable simplified quantitative calculations of adhesion, fracture, and friction are discussed.

  4. Spectral Analysis and Musical Theory in Support to the Pianism of Samba and Related Genres

    Directory of Open Access Journals (Sweden)

    Luiz E. Castelões

    2013-02-01

    Full Text Available The present article proposes a methodology, which integrates spectral analysis, music theory, and instrumental practice, in order to approach the left-hand accompaniment of the samba's pianism to the muffled and loose tone of three different kinds of surdos (round shape drums used in the performance of samba.

  5. New approach to the Dirac spectral density in lattice gauge theory applications

    CERN Document Server

    Fodor, Zoltan; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2016-01-01

    We report tests and results from a new approach to the spectral density and the mode number distribution of the Dirac operator in lattice gauge theories. The algorithm generates the spectral density of the lattice Dirac operator as a continuous function over all scales of the complete eigenvalue spectrum. This is distinct from an earlier method where the integrated spectral density (mode number) was calculated efficiently for some preselected fixed range of the integration. The new algorithm allows global studies like the chiral condensate from the Dirac spectrum at any scale including the cutoff-dependent IR and UV range of the spectrum. Physics applications include the scale-dependent mass anomalous dimension, spectral representation of composite fermion operators, and the crossover transition from the $\\epsilon$-regime of Random Matrix Theory to the p-regime in chiral perturbation theory. We present thorough tests of the algorithm in the 2-flavor sextet SU(3) gauge theory that we continue to pursue for its...

  6. Spectral emissivity measurements of land-surface materials and related radiative transfer simulations

    Science.gov (United States)

    Wan, Z.; Ng, D.; Dozier, J.

    1994-01-01

    Spectral radiance measurements have been made in the laboratory and in the field for deriving spectral emissivities of some land cover samples with a spectroradiometer and an auxiliary radiation source in the wavelength range 2.5-14.5 micrometers. A easy and quick four-step method (four steps to measure the sample and a diffuse reflecting plate surface under sunshine and shadowing conditions, respectively) has been used for simultaneous determination of surface temperature and emissivity. We emphasized in-situ measurements in combination with radiative transfer simulations, and an error analysis for basic assumptions in deriving spectral emissivity of land-surface samples from thermal infrared measurements.

  7. Alternative theory of diffraction grating spectral device and its application for calculation of convolution and correlation of optical pulse signals

    Science.gov (United States)

    Kazakov, Vasily I.; Moskaletz, Dmitry O.; Moskaletz, Oleg D.

    2016-04-01

    A new, alternative theory of diffraction grating spectral device which is based on the mathematical analysis of the optical signal transformation from the input aperture of spectral device to result of photo detection is proposed. Exhaustive characteristics of the diffraction grating spectral device - its complex and power spread functions as the kernels of the corresponding integral operator, describing the optical signal transformation by spectral device is obtained. On the basis of the proposed alternative theory the possibility of using the diffraction grating spectral device for calculation of convolution and correlation of optical pulse signals is showed.

  8. Pigment Identification of Paintings Based on Kubelka-Munk Theory and Spectral Images

    Science.gov (United States)

    Moghareh Abed, Farhad

    The preservation of cultural heritage and treatment thereof are delicate responsibilities that demand the best possible technologies and extreme care to avoid any irreversible loss. It necessitates a deep understanding of constituent materials, along with the analytical methods and cutting-edge technologies. Considering this direction, the goal of this dissertation is to promote the conservation procedures by providing an applicable workflow for spectral-based pigment identification. The proposed pipeline is a novel and practical aid for museum conservators for many aspects, such as inpainting, treatment and archiving of artwork. Spectral-based pigment identification algorithms rely on accurate spectral data, a subtractive mixing model and an effective unmixing algorithm. In this dissertation, the spectral data were obtained using a spectral image acquisition system as a feasible and non-destructive technique. A liquid-crystal tunable filter (LCTF) and a CCD camera were used for spectral measurement of the painting. The spectral accuracy and precision of the LCTF-based spectral acquisition system were assessed and enhanced. Of the common factors affecting the acquisition performance, capturing geometry, LCTF angular dependencies and spectral characterization algorithm were new contributions to the traditional workflow. The complexity of subtractive mixtures limits the effective application of linear unmixing algorithms for pigment identification. Accordingly, a new linear modification of single-constant Kubelka-Munk theory was derived to enable the use of available linear spectral unmixing algorithms for paint mixtures. A selection of geometric and iterative-based unmixing algorithms was applied to the LCTF spectral images in the subtractive mixing space using the defined subtractive linear model. Final sets of primary pigments were improved employing a pre-existing database of common pigments as a tool for practical inpainting procedures. The pigment maps, showing

  9. MASLOV-TYPE INDEX THEORY FOR SYMPLECTIC PATHS AND SPECTRAL FLOW(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the spectral flow and the stratification structures of the symplectic group Sp(2n, C),the Maslov-type index theory and its generalization, the w-index theory parameterized by all w on the unit circle, for arbitrary paths in Sp(2n, C) are established. Then the Bott-type iteration formula of the Maslov-type indices for iterated paths in Sp(2n, C) is proved, and the mean index for any path in Sp(2n, C) is defined. Also, the relation among various Maslov-type index theories is studied.

  10. Spectral functions in finite temperature SU(3) gauge theory and applications to transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Michael

    2014-12-10

    In this thesis, gluon spectral functions in SU(3) gauge theory are calculated at finite temperature. The temperature range covers the confining regime below T{sub c} to the high temperature regime, where perturbation theory is applicable. The numerical tool is the Maximum Entropy Method (MEM) employing euclidean, non-perturbative, Landau gauge gluon propagators, obtained with the Functional Renormalisation Group and Lattice QCD, as input. The spectral function is related to the propagators by an integral equation. MEM is a complex multidimensional optimisation algorithm to invert such integral equations, corresponding to an analytic continuation of the numerical data. A continuation of a discreet set of data cannot be unambiguous. The occuring ambiguities are resolved by introducing a priori knowledge of the asymptotic shape of the spectral function, in the form of a model function. Thereby, MEM simultaneously optimizes the spectral function to the input propagators and the model, leading to a unique model-dependent solution. Standard-MEM assumes positive definite spectral functions, whereas gluons show a violation of positivity in the spectral function, due to confinement. Therefore, an extended-MEM algorithm is proposed. The main application of this thesis is the calculation of the shear viscosity in units of the entropy density. A Kubo relation connects shear viscosity to the low frequency limit of a certain energy-momentum tensor correlation function. For this correlation function a loop representation of finite order in terms of gluon spectral functions is derived. That allows to calculate (η)/(s) from first principles in SU(3) for the first time for arbitrary temperatures. Further, a mapping of the SU(3) results for (η)/(s) to QCD is proposed.

  11. Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory

    Directory of Open Access Journals (Sweden)

    Georgi G. Grahovski

    2010-06-01

    Full Text Available The algebraic structure and the spectral properties of a special class of multi-component NLS equations, related to the symmetric spaces of BD.I-type are analyzed. The focus of the study is on the spectral theory of the relevant Lax operators for different fundamental representations of the underlying simple Lie algebra g. Special attention is paid to the structure of the dressing factors in spinor representation of the orthogonal simple Lie algebras of B_r simeq so(2r+1,C type.

  12. Spectral/quadrature duality: Picard-Vessiot theory and finite-gap potentials

    CERN Document Server

    Brezhnev, Yurii V

    2010-01-01

    In the framework of differential Galois theory we treat classical spectral problem $\\Psi''-u(x)\\Psi=\\lambda\\Psi$ and its finite-gap potentials as exactly solvable in quadratures by Picard-Vessiot without involving special functions (the ideology goes back to works by J. Drach 1919). From this standpoint we inspect known facts and obtain new ones: an important formula for Psi-function, differential properties of Jacobian theta-functions, and Theta-function extension of Picard-Vessiot fields. We show that duality between spectral and quadrature approaches is realized through the Weierstrass permutation theorem for a logarithmic Abelian integral.

  13. Spectral difference Lanczos method for efficient time propagation in quantum control theory.

    Science.gov (United States)

    Farnum, John D; Mazziotti, David A

    2004-04-01

    Spectral difference methods represent the real-space Hamiltonian of a quantum system as a banded matrix which possesses the accuracy of the discrete variable representation (DVR) and the efficiency of finite differences. When applied to time-dependent quantum mechanics, spectral differences enhance the efficiency of propagation methods for evolving the Schrodinger equation. We develop a spectral difference Lanczos method which is computationally more economical than the sinc-DVR Lanczos method, the split-operator technique, and even the fast-Fourier-Transform Lanczos method. Application of fast propagation is made to quantum control theory where chirped laser pulses are designed to dissociate both diatomic and polyatomic molecules. The specificity of the chirped laser fields is also tested as a possible method for molecular identification and discrimination.

  14. The surface stress theory of microbial morphogenesis.

    Science.gov (United States)

    Koch, A L

    1983-01-01

    From the physics of the situation, one might conclude that the osmotic pressure within most prokaryotes creates a sufficiently high tension in the wall that organisms are at risk of ripping themselves apart. The Surface Stress Theory holds that they avoid this, and are able to carry out certain morphogenetic processes by linking the cleavages of appropriate bonds to enzymes that are sensitive to the stress in the bonds under attack. This tends to maintain the internal pressure and couples wall growth to cytoplasmic growth. Mechanisms with widely different geometry function for different organisms, but they have in common the requirement that new murein be covalently linked, and usually in an unextended conformation. Organisms differ in the site of wall addition and site of cleavage. In the Gram-positive Streptococcus, septum formation, and septal splitting occurs with little stretching of the unsplit septum. In Gram-positive bacilli, the cylinder grows by the inside-to-outside mechanism, and the poles appear to be formed by a split-and-stretch mechanism. Gram-negative rods, with their much thinner wall, resist a spherical shape and are capable of cell division by altering the biochemical mechanism so that initially one-third to one-fifth of the pressure-volume work required to increase the area of the side wall is needed to increase that in a developing pole. The growth of hyphae is a separate case; it requires that much less work is needed to force growth of the apex relative to the side wall. Some other bacterial shapes also can be explained by the theory. But at present, it is only a theory, although it is gradually becoming capable of accounting for current observations in detail. Its importance is that it prescribes many experiments that now need to be done.

  15. Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations

    Science.gov (United States)

    Roush, Ted L.

    2016-01-01

    Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.

  16. UV spectral filtering by surface structured multilayer mirrors

    NARCIS (Netherlands)

    Huang, Q.; Paardekooper, Daniel Mathijs; Zoethout, E.; Medvedev, V. V.; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; F. Bijkerk,

    2014-01-01

    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (lambda = 100-400 nm) and simultaneously a high reflectance of EUV light (lambda = 13.5 nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but

  17. UV spectral filtering by surface structured multilayer mirrors

    NARCIS (Netherlands)

    Huang, Q.; Paardekooper, Daniel Mathijs; Zoethout, E.; Medvedev, V. V.; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; F. Bijkerk,

    2014-01-01

    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (lambda = 100-400 nm) and simultaneously a high reflectance of EUV light (lambda = 13.5 nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but ref

  18. Similarity measure of spectral vectors based on set theory and its application in hyperspectral RS image retrieval

    Institute of Scientific and Technical Information of China (English)

    Peijun Du (杜培军); Tao Fang (方涛); Hong Tang (唐宏); Pengfei Shi (施鹏飞)

    2003-01-01

    In this paper, two new similarity measure methods based on set theory were proposed. Firstly, similarity measure of two sets based on set theory and set operation was discussed. This principle was used to spectral vectors, and two approaches were proposed. The first method was to create a spectral polygon corresponding to spectral curve, and similarity of two spectral vectors can be replaced by that of two polygons. Area of spectral polygon was used as quantification function and some effective indexes for similarity and dissimilarity were computed. The second method was to transform the original spectral vector to encoding vector according to absorption or reflectance feature bands, and similarity measure was conducted to encoding vectors. It proved that the spectral polygon-based approach was effective and can be used to hyperspectral RS image retrieval.

  19. Sum rules and spectral density flow in QCD and in superconformal theories

    Directory of Open Access Journals (Sweden)

    Costantini Antonio

    2014-01-01

    Full Text Available We discuss the signature of the anomalous breaking of the superconformal symmetry in N${\\cal N}$ = 1 super Yang Mills theory and its manifestation in the form of anomaly poles. Moreover, we describe the massive deformations of the N${\\cal N}$ = 1 theory and the spectral densities of the corresponding anomaly form factors. These are characterized by spectral densities which flow with the mass deformation and turn the continuum contributions from the two-particle cuts of the intermediate states into poles, with a single sum rule satisfied by each component. The poles can be interpreted as signaling the exchange of a composite axion/dilaton/dilatino (ADD multiplet in the effective Lagrangian. We conclude that global anomalous currents characterized by a single flow in the perturbative picture always predict the existence of composite interpolating fields.

  20. Spectral reflectance of surface soils - A statistical analysis

    Science.gov (United States)

    Crouse, K. R.; Henninger, D. L.; Thompson, D. R.

    1983-01-01

    The relationship of the physical and chemical properties of soils to their spectral reflectance as measured at six wavebands of Thematic Mapper (TM) aboard NASA's Landsat-4 satellite was examined. The results of performing regressions of over 20 soil properties on the six TM bands indicated that organic matter, water, clay, cation exchange capacity, and calcium were the properties most readily predicted from TM data. The middle infrared bands, bands 5 and 7, were the best bands for predicting soil properties, and the near infrared band, band 4, was nearly as good. Clustering 234 soil samples on the TM bands and characterizing the clusters on the basis of soil properties revealed several clear relationships between properties and reflectance. Discriminant analysis found organic matter, fine sand, base saturation, sand, extractable acidity, and water to be significant in discriminating among clusters.

  1. Comparisons Between Model Predictions and Spectral Measurements of Charged and Neutral Particles on the Martian Surface

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; hide

    2014-01-01

    Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios

  2. Classifying the Phases of Gauge Theories by Spectral Density of Probing Chiral Quarks

    CERN Document Server

    Alexandru, Andrei

    2015-01-01

    We describe our recent proposal that distinct phases of gauge theories with fundamental quarks translate into specific types of low-energy behavior in Dirac spectral density. The resulting scenario is built around new evidence substantiating the existence of a phase characterized by bimodal (anomalous) density, and corresponding to deconfined dynamics with broken valence chiral symmetry. We argue that such anomalous phase occurs quite generically in these theories, including in "real world" QCD above the crossover temperature, and in zero-temperature systems with many light flavors.

  3. Stratified spectral mixture analysis of medium resolution imagery for impervious surface mapping

    Science.gov (United States)

    Sun, Genyun; Chen, Xiaolin; Ren, Jinchang; Zhang, Aizhu; Jia, Xiuping

    2017-08-01

    Linear spectral mixture analysis (LSMA) is widely employed in impervious surface estimation, especially for estimating impervious surface abundance in medium spatial resolution images. However, it suffers from a difficulty in endmember selection due to within-class spectral variability and the variation in the number and the type of endmember classes contained from pixel to pixel, which may lead to over or under estimation of impervious surface. Stratification is considered as a promising process to address the problem. This paper presents a stratified spectral mixture analysis in spectral domain (Sp_SSMA) for impervious surface mapping. It categorizes the entire data into three groups based on the Combinational Build-up Index (CBI), the intensity component in the color space and the Normalized Difference Vegetation Index (NDVI) values. A suitable endmember model is developed for each group to accommodate the spectral variation from group to group. The unmixing into the associated subset (or full set) of endmembers in each group can make the unmixing adaptive to the types of endmember classes that each pixel actually contains. Results indicate that the Sp_SSMA method achieves a better performance than full-set-endmember SMA and prior-knowledge-based spectral mixture analysis (PKSMA) in terms of R, RMSE and SE.

  4. Spectral features in isolated neutron stars induced by inhomogeneous surface temperatures

    CERN Document Server

    Viganò, Daniele; Rea, Nanda; Pons, José A

    2014-01-01

    The thermal X-ray spectra of several isolated neutron stars display deviations from a pure blackbody. The accurate physical interpretation of these spectral features bears profound implications for our understanding of the atmospheric composition, magnetic field strength and topology, and equation of state of dense matter. With specific details varying from source to source, common explanations for the features have ranged from atomic transitions in the magnetized atmospheres or condensed surface, to cyclotron lines generated in a hot ionized layer near the surface. Here we quantitatively evaluate the X-ray spectral distortions induced by inhomogeneous temperature distributions of the neutron star surface. To this aim, we explore several surface temperature distributions, we simulate their corresponding general relativistic X-ray spectra (assuming an isotropic, blackbody emission), and fit the latter with a single blackbody model. We find that, in some cases, the presence of a spurious 'spectral line' is requ...

  5. Variation of surface water spectral response as a function of in situ sampling technique

    Science.gov (United States)

    Davis, Bruce A.; Hodgson, Michael E.

    1988-01-01

    Tests were carried out to determine the spectral variation contributed by a particular sampling technique. A portable radiometer was used to measure the surface water spectral response. Variation due to the reflectance of objects near the radiometer (i.e., the boat side) during data acquisition was studied. Consideration was also given to the variation due to the temporal nature of the phenomena (i.e., wave activity).

  6. Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling

    Directory of Open Access Journals (Sweden)

    Mingke Hu

    2015-01-01

    Full Text Available A spectral selectivity surface for both solar heating and radiative cooling was proposed. It has a high spectral absorptivity (emissivity in the solar radiation band and atmospheric window band (i.e., 0.2~3 μm and 8~13 μm, as well as a low absorptivity (emissivity in other bands aside from the solar radiation and atmospheric window wavelengths (i.e., 3~8 μm or above 13 μm. A type of composite surface sample was trial-manufactured combining titanium-based solar selective absorbing coating with polyethylene terephthalate (TPET. Sample tests showed that the TPET composite surface has clear spectral selectivity in the spectra of solar heating and radiation cooling wavelengths. The equilibrium temperatures of the TPET surface under different sky conditions or different inclination angles of surface were tested at both day and night. Numerical analysis and comparisons among the TPET composite surface and three other typical surfaces were also performed. These comparisons indicated that the TPET composite surface had a relative heat efficiency of 76.8% of that of the conventional solar heating surface and a relative temperature difference of 75.0% of that of the conventional radiative cooling surface, with little difference in cooling power.

  7. Spectral and scattering theory for translation invariant models in quantum field theory

    DEFF Research Database (Denmark)

    Rasmussen, Morten Grud

    This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... of the essential energy-momentum spectrum and either the two-body threshold, if there are no exited isolated mass shells, or the one-body threshold pertaining to the first exited isolated mass shell, if it exists. For the model restricted to the vacuum and one-particle sectors, the absence of singular continuous...... spectrum is proven to hold globally and scattering theory of the model is studied using time-dependent methods, of which the main result is asymptotic completeness....

  8. Non-LTE Spectral Analysis of Extremely Hot Post-AGB Stars: Constraints for Evolutionary Theory

    CERN Document Server

    Rauch, Thomas; Ziegler, Marc; Koesterke, Lars; Kruk, Jeffrey W

    2008-01-01

    Spectral analysis by means of Non-LTE model-atmosphere techniques has arrived at a high level of sophistication: fully line-blanketed model atmospheres which consider opacities of all elements from H to Ni allow the reliable determination of photospheric parameters of hot, compact stars. Such models provide a crucial test of stellar evolutionary theory: recent abundance determinations of trace elements like, e.g., F, Ne, Mg, P, S, Ar, Fe, and Ni are suited to investigate on AGB nucleosynthesis. E.g., the strong Fe depletion found in hydrogen-deficient post-AGB stars is a clear indication of an efficient s-process on the AGB where Fe is transformed into Ni or even heavier trans iron-group elements. We present results of recent spectral analyses based on high-resolution UV observations of hot stars.

  9. Determination of the Wenzel roughness parameter by the Power Spectral Density of functional Alumina surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, P.L.G., E-mail: pedro.lovato@ufrgs.br [Programa de Pós-Graduação em Microeletrônica, Instituto de Física da Universidade Federal do Rio Grande do Sul, CEP. 91501-970 Porto Alegre (Brazil); Horowitz, F. [Programa de Pós-Graduação em Microeletrônica, Instituto de Física da Universidade Federal do Rio Grande do Sul, CEP. 91501-970 Porto Alegre (Brazil); Felde, N.; Schröder, S.; Coriand, L.; Duparré, A. [Fraunhofer Institute for Applied Optics and Precision Engineering, D 07745 Jena (Germany)

    2016-05-01

    The Wenzel roughness parameter of isotropic Gaussian surfaces is analytically described in terms of the Power Spectral Density function without the smooth surface approximation. This Wenzel roughness parameter — Power Spectral Density link was examined for distinct roughnesses of Aluminum-oxide thin films. The Power Spectral Density functions of the surfaces were determined in a wide spatial frequency range by combining different scan areas of Atomic Force Microscopy measurements. The calculated results presented a good agreement with the Wenzel roughness parameter values obtained directly from the topography measured by Atomic Force Microscopy. Finally, wetting behavior was ascertained through determination of water contact angles, including superhydrophobic behavior. This approach, together with an empirical procedure based on a structural parameter, can predict the wetting properties of a surface by taking all its relevant roughness components into account. - Highlights: • Wenzel roughness parameter and Power Spectral Density are theoretically linked. • The formula is tested for Alumina surfaces with distinct roughnesses. • The formula agrees with the experimental data from Atomic Force Microscopy. • The proper contribution of topography in surface wetting can be ascertained.

  10. Gauge theories on compact toric surfaces, conformal field theories and equivariant Donaldson invariants

    CERN Document Server

    Bershtein, Mikhail; Ronzani, Massimiliano; Tanzini, Alessandro

    2016-01-01

    We show that equivariant Donaldson polynomials of compact toric surfaces can be calculated as residues of suitable combinations of Virasoro conformal blocks, by building on AGT correspondence between N = 2 supersymmetric gauge theories and two-dimensional conformal field theory.

  11. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, RuLin [Beijing Computational Science Research Center, No. 3 He-Qing Road, Beijing 100084 (China); Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Kwok, YanHo; Xie, Hang; Chen, GuanHua [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yam, ChiYung, E-mail: yamcy@csrc.ac.cn [Beijing Computational Science Research Center, No. 3 He-Qing Road, Beijing 100084 (China); Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  12. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  13. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions.

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  14. C=1 conformal field theories on Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R.; Verlinde, E.; Verlinde, H.

    1988-03-01

    We study the theory of c=1 torus and Z/sub 2/-orbifold models on general Riemann surfaces. The operator content and occurrence of multi-critical points in this class of theories is discussed. The partition functions and correlation functions of vertex operators and twist fields are calculated using the theory of double covered Riemann surfaces. It is shown that orbifold partition functions are sensitive to the Torelli group. We give an algebraic construction of the operator formulation of these nonchiral theories on higher genus surfaces. Modular transformations are naturally incorporated as canonical transformations in the Hilbert space.

  15. C=1 conformal field theories on Riemann surfaces

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1988-12-01

    We study the theory of c=1 torus and ℤ2-orbifold models on general Riemann surfaces. The operator content and occurrence of multi-critical points in this class of theories is discussed. The partition functions and correlation functions of vertex operators and twist fields are calculated using the theory of double covered Riemann surfaces. It is shown that orbifold partition functions are sensitive to the Torelli group. We give an algebraic construction of the operator formulation of these nonchiral theories on higher genus surfaces. Modular transformations are naturally incorporated as canonical transformations in the Hilbert space.

  16. Study of isospin nonconservation in the framework of spectral distribution theory

    CERN Document Server

    Kar, Kamales

    2014-01-01

    The observed isospin-symmetry breaking in light nuclei are caused not only by the Coulomb interaction but by the isovector one and two body plus isotensor two body nuclear interactions as well. Spectral distribution theory which treats nuclear spectroscopy and other structural properties in a statistical framework was earlier applied to isospin conserving Hamiltonians only. In this paper we extend that to include the nuclear interactions non-scalar in isospin and work out examples in sd shell to calculate the linear term in the isobaric mass-multiplet equation originating from these non-scalar parts.

  17. Study of isospin nonconservation in the framework of spectral distribution theory

    Science.gov (United States)

    Kar, Kamales; Sarkar, Sukhendusekhar

    2015-05-01

    The observed isospin-symmetry breaking in light nuclei are caused not only by the Coulomb interaction but also by the isovector one- and two-body plus isotensor two- body nuclear interactions. Spectral distribution theory, which treats nuclear spectroscopy and other structural properties in a statistical framework, has been applied mostly to isospin conserving Hamiltonians. In this paper we extend that to include the nuclear interactions non-scalar in isospin and work out examples in the sd shell to calculate the linear term in the isobaric mass-multiplet equation originating from these non-isoscalar parts.

  18. Seiberg-Witten equations and non-commutative spectral curves in Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Chekhov, Leonid [Department of Theoretical Physics, Steklov Mathematical Institute, Moscow, 119991 Russia and School of Mathematics, Loughborough University, LE11 3TU Leicestershire (United Kingdom); Eynard, Bertrand [Institut de Physique Theorique, IPhT, CNRS, URA 2306, F-91191 Gif-sur-Yvette (France); Ribault, Sylvain [Institut de Physique Theorique, IPhT, CNRS, URA 2306, F-91191 Gif-sur-Yvette (France); Laboratoire Charles Coulomb UMR 5221 CNRS-UM2, Universite Montpellier 2, Place Eugene Bataillon, F-34095 Montpellier Cedex 5 (France)

    2013-02-15

    We propose that there exist generalized Seiberg-Witten equations in the Liouville conformal field theory, which allow the computation of correlation functions from the resolution of certain Ward identities. These identities involve a multivalued spin one chiral field, which is built from the energy-momentum tensor. We solve the Ward identities perturbatively in an expansion around the heavy asymptotic limit, and check that the first two terms of the Liouville three-point function agree with the known result of Dorn, Otto, Zamolodchikov, and Zamolodchikov. We argue that such calculations can be interpreted in terms of the geometry of non-commutative spectral curves.

  19. Theory and experiments on surface diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, W.L.

    1998-11-01

    The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.

  20. A Computational Theory of Visual Surface Interpolation.

    Science.gov (United States)

    1981-06-01

    first carefully consider the process by which the zero-crossing contours are generated. The Marr-Hildreth theory of edge detection [Mart and Ilildreth...Understanding Workshop, Palo Alto, Cal., 1979, 41-47. Hildreth. F.C Implementation of a theory of edge detection , M. Sc. Thesis, Dlepartment of...Francisco, 1981. Man’, D. and Hildreth, E.C. " Theory of edge detection ," Proc. R. Soc. Lond B 207 (1980), 187-217. Marr, D. and Nishihara, H.K

  1. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  2. Spectral fine structure of the atomic ground states based on full relativistic theory

    Institute of Scientific and Technical Information of China (English)

    Zhenghe Zhu; Yongjian Tang

    2011-01-01

    @@ We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.%We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.

  3. Surface forces: Surface roughness in theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Drew F., E-mail: Drew.Parsons@anu.edu.au; Walsh, Rick B.; Craig, Vincent S. J. [Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-28

    A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between “true zero,” where the separation between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.

  4. Understanding cancer complexome using networks, spectral graph theory and multilayer framework

    Science.gov (United States)

    Rai, Aparna; Pradhan, Priodyuti; Nagraj, Jyothi; Lohitesh, K.; Chowdhury, Rajdeep; Jalan, Sarika

    2017-02-01

    Cancer complexome comprises a heterogeneous and multifactorial milieu that varies in cytology, physiology, signaling mechanisms and response to therapy. The combined framework of network theory and spectral graph theory along with the multilayer analysis provides a comprehensive approach to analyze the proteomic data of seven different cancers, namely, breast, oral, ovarian, cervical, lung, colon and prostate. Our analysis demonstrates that the protein-protein interaction networks of the normal and the cancerous tissues associated with the seven cancers have overall similar structural and spectral properties. However, few of these properties implicate unsystematic changes from the normal to the disease networks depicting difference in the interactions and highlighting changes in the complexity of different cancers. Importantly, analysis of common proteins of all the cancer networks reveals few proteins namely the sensors, which not only occupy significant position in all the layers but also have direct involvement in causing cancer. The prediction and analysis of miRNAs targeting these sensor proteins hint towards the possible role of these proteins in tumorigenesis. This novel approach helps in understanding cancer at the fundamental level and provides a clue to develop promising and nascent concept of single drug therapy for multiple diseases as well as personalized medicine.

  5. Spectral Density Functions and Their Sum Rules in an Effective Chiral Field Theory

    CERN Document Server

    Klevansky, S P

    1997-01-01

    The validity of Weinberg's two sum rules for massless QCD, as well as the six additional sum rules introduced into chiral perturbation theory by Gasser and Leutwyler, are investigated for the extended Nambu-Jona-Lasinio chiral model that includes vector and axial vector degrees of freedom. A detailed analysis of the vector, axial vector and coupled pion plus longitudinal axial vector modes is given. We show that, under Pauli-Villars regularization of the meson polarization amplitudes that determine the spectral density functions, all of the sum rules involving inverse moments higher than zero are automatically obeyed by the model spectral densities. By contrast, the zero moment sum rules acquire a non-vanishing right hand side that is proportional to the quark condensate density of the non-perturbative groundstate. We use selected sum rules in conjunction with other calculations to obtain explicit expressions for the scale-independent coupling constants $\\bar l_i$ of chiral perturbation theory in the combinat...

  6. Development of a low-cost, 11 µm spectral domain optical coherence tomography surface profilometry prototype

    Science.gov (United States)

    Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.

    2017-06-01

    A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.

  7. Estimating and Mapping Urban Impervious Surfaces: Reflection on Spectral, Spatial, and Temporal Resolutions

    Science.gov (United States)

    Weng, Q.

    2007-12-01

    Impervious surface is a key indicator of urban environmental quality and urbanization degree. Therefore, estimation and mapping of impervious surfaces in urban areas has attracted more and more attention recently by using remote sensing digital images. In this paper, satellite images with various spectral, spatial, and temporal resolutions are employed to examine the effects of these remote sensing data characteristics on mapping accuracy of urban impervious surfaces. The study area was the city proper of Indianapolis (Marion County), Indiana, United States. Linear spectral mixture analysis was applied to generate high albedo, low albedo, vegetation, and soil fraction images (endmembers) from the satellite images, and impervious surfaces were then estimated by adding high albedo and low albedo fraction images. A comparison of EO-1 ALI (multispectral) and Hyperion (hyperspectral) images indicates that the Hyperion image was more effective in discerning low albedo surface materials, especially the spectral bands in the mid-infrared region. Linear spectral mixing modeling was found more useful for medium spatial resolution images, such as Landsat TM/ETM+ and ASTER images, due to the existence of a large amount of mixed pixels in the urban areas. The model, however, may not be suitable for high spatial resolution images, such as IKONOS images, because of less influence from the mixing pixel. The shadow problem in the high spatial resolution images, caused by tall buildings and large tree crowns, is a challenge in impervious surface extraction. Alternative image processing algorithms such as decision tree classifier may be more appropriate to achieve high mapping accuracy. For mid-latitude cities, seasonal vegetation phenology has a significant effect on the spectral response of terrestrial features, and therefore, image analysis must take into account of this environmental characteristic. Three ASTER images, acquired on April 5, 2004, June 16, 2001, and October 3, 2000

  8. Spectral reflectance properties of minerals exposed to simulated Mars surface conditions

    Science.gov (United States)

    Cloutis, E. A.; Craig, M. A.; Kruzelecky, R. V.; Jamroz, W. R.; Scott, A.; Hawthorne, F. C.; Mertzman, S. A.

    2008-05-01

    A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H 2O, with some structural groups showing more rapid H 2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe 3+- and H 2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe 3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in C sbnd H related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.

  9. Spectral Approximation of an Oldroyd Liquid Draining down a Porous Vertical Surface

    Directory of Open Access Journals (Sweden)

    F. Talay Akyildiz

    2011-01-01

    Full Text Available Consideration is given to the free drainage of an Oldroyd four-constant liquid from a vertical porous surface. The governing systems of quasilinear partial differential equations are solved by the Fourier-Galerkin spectral method. It is shown that Fourier-Galerkin approximations are convergent with spectral accuracy. An efficient and accurate algorithm based on the Fourier-Galerkin approximations for the governing system of quasilinear partial differential equations is developed and implemented. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented. The effect of the material parameters, elasticity, and porous medium constant on the centerline velocity and drainage rate is discussed.

  10. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  11. Spectral properties of the Wilson-Dirac operator and random matrix theory

    Science.gov (United States)

    Kieburg, Mario; Verbaarschot, Jacobus J. M.; Zafeiropoulos, Savvas

    2013-11-01

    Random matrix theory has been successfully applied to lattice quantum chromodynamics. In particular, a great deal of progress has been made on the understanding, numerically as well as analytically, of the spectral properties of the Wilson-Dirac operator. In this paper, we study the infrared spectrum of the Wilson-Dirac operator via random matrix theory including the three leading order a2 correction terms that appear in the corresponding chiral Lagrangian. A derivation of the joint probability density of the eigenvalues is presented. This result is used to calculate the density of the complex eigenvalues, the density of the real eigenvalues, and the distribution of the chiralities over the real eigenvalues. A detailed discussion of these quantities shows how each low-energy constant affects the spectrum. Especially we consider the limit of small and large (which is almost the mean field limit) lattice spacing. Comparisons with Monte Carlo simulations of the random matrix theory show a perfect agreement with the analytical predictions. Furthermore we present some quantities which can be easily used for comparison of lattice data and the analytical results.

  12. Theory of back-surface-field solar cells

    Science.gov (United States)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  13. Wetting theory for small droplets on textured solid surfaces

    Science.gov (United States)

    Kim, Donggyu; Pugno, Nicola M.; Ryu, Seunghwa

    2016-11-01

    Conventional wetting theories on rough surfaces with Wenzel, Cassie-Baxter, and Penetrate modes suggest the possibility of tuning the contact angle by adjusting the surface texture. Despite decades of intensive study, there are still many experimental results that are not well understood because conventional wetting theory, which assumes an infinite droplet size, has been used to explain measurements of finite-sized droplets. Here, we suggest a wetting theory applicable to a wide range of droplet size for the three wetting modes by analyzing the free energy landscape with many local minima originated from the finite size. We find that the conventional theory predicts the contact angle at the global minimum if the droplet size is about 40 times or larger than the characteristic scale of the surface roughness, regardless of wetting modes. Furthermore, we obtain the energy barrier of pinning which can induce the contact angle hysteresis as a function of geometric factors. We validate our theory against experimental results on an anisotropic rough surface. In addition, we discuss the wetting on non-uniformly rough surfaces. Our findings clarify the extent to which the conventional wetting theory is valid and expand the physical understanding of wetting phenomena of small liquid drops on rough surfaces.

  14. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains Central Facility

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Gaustad, Krista L.; Mlawer, Eli J.; Long, Charles N.; Delamere, Jennifer

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  15. Surface nanobubbles: Theory, numerics and experiments

    Science.gov (United States)

    Weijs, Joost H.

    2013-11-01

    When a solid is brought into contact with water, surface nanobubbles can be formed at the solid-liquid interface. These nanobubbles are small; their height is of order 10nm and their lateral sizes vary from 10-100 nm. Initially, the only proof of the existence of surface nanobubbles was delivered by atomic force microscopy. Later, additional techniques such as infrared attenuated total reflectance have confirmed the existence of gaseous domains on the solid-liquid interface. Before this overwhelming evidence, the existence of surface nanobubbles was controversial because they possess some unusual properties. For example, nanobubbles are surprisingly robust against dissolution by diffusion and Laplace pressure: Instead of the expected lifetime of about a microsecond, nanobubbles are found to survive for several hours and in some cases even several days. Additionally, surface nanobubbles are flatter than predicted by Young's law and are able to resist strong tensile stresses (~-6 MPa), rather than serving as a nucleation site for a macroscopic bubble. A deep understanding of surface nanobubbles is crucial for practical applications (e.g. drag reduction in microfluidic devices) but nanobubbles also pose fundamental questions on the validity of continuum models at the nanoscale. In this talk, we will discuss these open questions in detail by considering theoretical efforts and molecular dynamics simulations. Theoretically, we study the consequences of a pinned contact line. We find that the pinned contact line can explain the long lifetimes and many other nanobubble properties. From molecular dynamics results, we clarify the influence of the gas species on the contact angle. Finally, we will discuss some very recent experimental and theoretical work on the effects of an acoustic field on nanobubbles. We provide experimental data combined with a theoretical analysis and find that the acoustic driving can cause the nanobubbles to grow by rectified diffusion.

  16. Semilocal density functional theory with correct surface asymptotics

    Science.gov (United States)

    Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio

    2016-03-01

    Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.

  17. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich

    2009-12-18

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.

  18. A continuum theory of surface piezoelectricity for nanodielectrics

    Science.gov (United States)

    Pan, XiaHui; Yu, ShouWen; Feng, XiQiao

    2011-04-01

    In this paper, a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials. This theory is inspired by the physical idea that once completely relaxed, an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field. Under external loadings, the surface Helmholtz free energy density is identified as the characteristic function of such surfaces, with the in-plane strain tensor of surface and the surface free charge density as the independent state variables. New boundary conditions governing the surface piezoelectricity are derived through the variational method. The resulting concepts of charge-dependent surface stress and deformation-dependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces. As an illustrative example, an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated. The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.

  19. Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived from Terra MODIS Land Products

    Science.gov (United States)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.

  20. On-line surface inspection using cylindrical lens-based spectral domain low-coherence interferometry.

    Science.gov (United States)

    Tang, Dawei; Gao, Feng; Jiang, X

    2014-08-20

    We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.

  1. Spectral analysis of quasi-stationary sea surface topography from GRACE mission

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zizhan; LU Yang

    2005-01-01

    During the last two decades satellite altimetry has offered an abundance of measurements of the sea surface resulting in the improvement of global mean sea surface height (MSSH) and marine geoid determination. On the other hand, with the launching of new generation gravity satellites, some high accuracy long-wavelength gravity models are available. These breakthroughs give us a great opportunity for new estimation of quasi-stationary sea surface topography (QSST). In this paper, the new gravity model GGM01C derived from GRACE mission is briefly presented, and a new global high precision and high-resolution QSST is determined based on the GGM01C model and the global MSSH. The spectral features of the QSST estimated by GGM01C and EGM96 gravity model to degree/order 200 are discussed by spectral analysis. As a result, the QSST is mainly composed of long waves, medium waves partially and short waves scarcely, its power spectral structures are different between the zonal direction and the meridional direction, there are great differences between the two models, which maybe explain why the ocean currents derived from the two gravity models by Tapley show different patterns.

  2. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and direct aerosol forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-06-01

    Full Text Available This study develops an algorithm for the representation of large spectral variations of albedo over vegetation surfaces based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels centered at 0.47, 0.55, 0.67, 0.86, 1.24, 1.63, and 2.11 μm. The MODIS 7-channel observations miss several major features of vegetation albedo including the vegetation red edge near 0.7 μm and vegetation absorption features at 1.48 and 1.92 μm. We characterize these features by investigating aerosol forcing in different spectral ranges. We show that the correction at 0.7 μm is the most sensitive and important due to the presence of the red edge and strong solar radiation; the other two corrections are less sensitive due to the weaker solar radiation and strong atmospheric water absorption. Four traditional approaches for estimating the reflectance spectrum and the MODIS enhanced vegetation albedo (MEVA are tested against various vegetation types: dry grass, green grass, conifer, and deciduous from the John Hopkins University (JHU spectral library; aspens from the US Geological Survey (USGS digital spectral library; and Amazon vegetation types. Compared to traditional approaches, MEVA improves the accuracy of the outgoing flux at the top of the atmosphere by over 60 W m−2 and aerosol forcing by over 10 W m−2. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol forcing at equator at equinox by 3.7 W m−2 (about 70% of the aerosol forcing calculated with high spectral resolution surface reflectance. These improvements indicate that MEVA can contribute to vegetation covered regional climate studies, and help to improve understanding of climate processes and climate change.

  3. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  4. Phases of SU(3) Gauge Theories with Fundamental Quarks via Dirac Spectral Density

    CERN Document Server

    Alexandru, Andrei

    2015-01-01

    We suggest that gauge interactions of SU(3) gluons and fundamental quarks produce three distinct types of infrared behavior in Dirac spectral density $\\rho(\\lambda, V \\to \\infty)$ (Fig.1), effectively labeling three types of dynamical phases occurring in these theories. The two monotonic (standard) cases entail confinement with chiral symmetry breaking and the lack of both, respectively. The bimodal (anomalous) option signifies deconfined phase with broken chiral symmetry. This generalization rests on the following. $(\\alpha)$ We show, via numerical simulation, that previously observed bimodal behavior in N$_f$=0 theory past deconfinement temperature $T_c$ is stable with respect to both infrared and ultraviolet cutoffs, concluding that this prototypical anomalous phase indeed exists. The width of the anomalous peak while small (few MeV at $T/T_c=1.12$), is non-zero in the infinite-volume limit. $(\\beta)$ We show in detail that transition to bimodal $\\rho(\\lambda)$ in N$_f$=0 coincides with Z$_3$ deconfinement...

  5. Localized Donaldson-Thomas theory of surfaces

    DEFF Research Database (Denmark)

    Gholampour, Amin; Sheshmani, Artan; Yau, Shing-Tung

    2017-01-01

    Let S be a projective simply connected complex surface and  be a line bundle on S. We study the moduli space of stable compactly supported 2-dimensional sheaves on the total spaces of . The moduli space admits a ℂ∗-action induced by scaling the fibers of . We identify certain components of the......  is the canonical bundle of S, the Vafa-Witten invariants defined recently by Tanaka-Thomas, can be extracted from these localized DT invariants. VW invariants are expected to have modular properties as predicted by S-duality....

  6. Equilibrium fluctuations in the theory of surface processes on microparticles

    Science.gov (United States)

    Tovbin, Yu. K.

    2010-11-01

    The question of the role of equilibrium fluctuations in the adsorption theory and kinetics of surface processes occurring on the particles of the nanometer size range is discussed. Differences are put forward that need to be introduced to the fluctuation theory of surface processes on microparticles and that generalize Hill's approach to describing the thermodynamic properties of small systems. We show the importance of allowing for the discrete character of adsorption centers on the surfaces and their heterogeneity when describing adsorption isotherms and the rates of adsorption processes.

  7. Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect

    Science.gov (United States)

    Schumer, Rina; Taloni, Alessandro; Furbish, David Jon

    2017-03-01

    Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.

  8. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    Science.gov (United States)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore

  9. A Web-Interface for Data Interoperability: the Spectral Library of Mt Etna Volcanic Surfaces

    Science.gov (United States)

    Colini, L.; Doumaz, F.; Spinetti, C.; Mazzarini, F.; Favalli, M.; Isola, I.; Buongiorno, M. F.; Ananasso, C.

    2014-12-01

    In the frame of the future Italian Space Agency (ASI) Space Mission PRISMA (Precursore IperSpettrale della Missione Applicativa), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) coordinates the scientific project ASI-AGI (Analisi Sistemi Iperspettrali per le Applicazioni Geofisiche Integrate) aimed to study the hyperspectral volcanic applications and to identify and characterize a vicarious validation and calibration site for hyperspectral space missions. PRISMA is an Earth observation system with innovative electro-optical instrumentation which combines an hyperspectral sensor with a panchromatic medium-resolution camera. These instruments offer the scientific community and users many applications in the field of environmental monitoring, risk management, crop classification, pollution control, and Security. In this context Mt. Etna (Italy) has been choose as main site for testing the sensor capability to assess volcanic risk. The volcanic calibration and validation activities comprise the managing of a large amount of in situ hyperspectral data collected during the last 10 years. The usability and interoperability of these datasets represents a task of ASI-AGI project. For this purpose a database has been created to collect all the spectral signatures of the measured volcanic surfaces. This process has begun with the creation of the metadata structure compliant with those belonging to some standard spectral libraries such as USGS ones. Each spectral signature is described in a table containing ancillary data such as the location map of where it was collected, description of the target selected, etc. The relational database structure has been developed WOVOdat compliant. Specific tables have been formatted for each type of measurements, instruments and targets in order to query the database through a user-friendly web-interface. The interface has an upload area to populate the database and a visualization tool that allows downloading the ASCII spectral

  10. Spectral simulation of thermocapillary convection with a deformable free surface using boundary-fitted coordinates

    Science.gov (United States)

    Ahmed, Ikramuddin

    A Chebyshev-spectral collocation scheme has been developed to simulate thermocapillary convection processes in a differentially heated cavity with and without buoyancy effects. The time-dependent Navier- Stokes equations in primitive variables were solved with a semi-implicit scheme using the influence matrix technique. The deformable free surface was incorporated by means of a boundary-fitted coordinate (BFC) system. The BFC grid was generated by solving a system of elliptic equations. An iterative scheme based on finite difference methods was found to be sufficient for calculating a smooth distribution of grid-points for relatively low degrees of deformation of the free surface. The metrics of transformation, however, were calculated spectrally in order to achieve a high order of accuracy in the a posteriori mapping of the physical grid to the computational grid. The overall scheme was found to be efficient, economical, and capable of resolving the complex hydrodynamic and thermal structures in thermocapillarity driven flows with deformable free surfaces. The scheme was also modified to study problems with very high Marangoni numbers and non-deformable free surfaces, and later extended to three dimensions with periodic boundary conditions in order to explore the transitions to fully three dimensional phenomena that are anticipated in industrially relevant flow configurations.

  11. Spectral properties of Titan's impact craters imply chemical weathering of its surface

    Science.gov (United States)

    Barnes, J. W.; Sotin, C.; MacKenzie, S.; Soderblom, J. M.; Le Mouélic, S.; Kirk, R. L.; Stiles, B. W.; Malaska, M. J.; Le Gall, A.; Brown, R. H.; Baines, K. H.; Buratti, B.; Clark, R. N.; Nicholson, P. D.

    2015-01-01

    Abstract We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions. PMID:27656006

  12. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Larsén, Xiaoli Guo; Badger, Merete

    2013-01-01

    Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides...... a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested...... or lower. The lower power levels of coarser resolution wind products, particularly when comparing QuikSCAT to ENVISAT ASAR, strongly suggest that the effective resolution of the wind products should be high enough to resolve the spectral properties. Spectra computed from 87 wind maps are consistent...

  13. Group interpretation of the spectral parameter. The case of isothermic surfaces

    Science.gov (United States)

    Cieśliński, Jan L.; Kobus, Artur

    2017-03-01

    It is well known that in some cases the spectral parameter has a group interpretation. We discuss in detail the case of Gauss-Codazzi equations for isothermic surfaces immersed in E3. The algebra of Lie point symmetries is 4-dimensional and all these symmetries are also symmetries of the Gauss-Weingarten equations (which can be considered as so(3) -valued non-parametric linear problem). In order to obtain a non-removable spectral parameter one has to consider so(4 , 1) -valued linear problem which has a 3-dimensional algebra of Lie point symmetries. The missing symmetry introduces a non-removable parameter. In the second part of the paper we extend these results on the case of isothermic immersions in arbitrary multidimensional Euclidean spaces. In order to simplify calculations the problem was formulated in terms of a Clifford algebra.

  14. Teichmüller Theory of Bordered Surfaces

    Directory of Open Access Journals (Sweden)

    Leonid O. Chekhov

    2007-05-01

    Full Text Available We propose the graph description of Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces. Introducing new parameters, we formulate this theory in terms of hyperbolic geometry. We can then describe both classical and quantum theories having the proper number of Thurston variables (foliation-shear coordinates, mapping-class group invariance (both classical and quantum, Poisson and quantum algebra of geodesic functions, and classical and quantum braid-group relations. These new algebras can be defined on the double of the corresponding graph related (in a novel way to a double of the Riemann surface (which is a Riemann surface with holes, not a smooth Riemann surface. We enlarge the mapping class group allowing transformations relating different Teichmüller spaces of bordered surfaces of the same genus, same number of boundary components, and same total number of marked points but with arbitrary distributions of marked points among the boundary components. We describe the classical and quantum algebras and braid group relations for particular sets of geodesic functions corresponding to $A_n$ and $D_n$ algebras and discuss briefly the relation to the Thurston theory.

  15. Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries

    Science.gov (United States)

    Chen, Feng; Yang, Song; Su, Z.; Wang, Kai

    2016-04-01

    Land surface emissivity (LSE) is a prerequisite for retrieving land surface temperature (LST) through single channel methods. According to error model, a 0.01 (1%) uncertainty of LSE may result in a 0.5 K error in LST under a moderate condition, while an obvious error (approximately 1 K) is possible under a warmer and less humid situation. Significant emissivity variations are presented among the anthropogenic materials in three spectral libraries, which raise a critical question that whether urban LSE can be estimated accurately to meet the needs for LST retrieval. Methods widely used for urban LSE estimation are investigated, including the classification-based method, the spectral-index based method, and the linear spectral mixture model (LSMM). Results indicate that the classification-based method may not be effectively applicable for urban LSE estimation, due mainly to the insignificant relation between the short-wave multispectral reflectance and the long-wave thermal emissivity shown by the spectra. Compared with the classification-based method, the LSMM shows relatively more accurate predictions, whereas, the performance of the LSMM largely depends on the determination of endmembers. Obvious uncertainties in LSE estimation likely appear if endmembers are determined improperly. Increasing the spectra for endmembers is a practical and beneficial means for LSMM when there is not a priori knowledge, which emphasizes the necessity of building a comprehensive spectral library of urban materials. Furthermore, the LST retrieval from a single channel of Landsat 8 is more challenging as compared with the retrieval from the channels of its predecessors-Landsat 4/5/7.

  16. Surface Compositional Units on Mercury from Spectral Reflectance at Ultraviolet to Near-infrared Wavelengths

    Science.gov (United States)

    Izenberg, N. R.; Holsclaw, G. M.; Domingue, D. L.; McClintock, W. E.; Klima, R. L.; Blewett, D. T.; Helbert, J.; Head, J. W.; Sprague, A. L.; Vilas, F.; Solomon, S. C.

    2012-12-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has been acquiring reflectance spectra of Mercury's surface for over 16 months. The Visible and Infrared Spectrograph (VIRS) component of MASCS has accumulated a global data set of more than 2 million spectra over the wavelength range 300-1450 nm. We have derived a set of VIRS spectral units (VSUs) from the following spectral parameters: visible brightness (R575: reflectance at 575 nm); visible/near-infrared reflectance ratio (VISr: reflectance at 415 nm to that at 750 nm); and ultraviolet reflectance ratio (UVr: reflectance at 310 nm to that at 390 nm). Five broad, slightly overlapping VSUs may be distinguished from these parameters. "Average VSU" areas have spectral parameters close to mean global values. "Dark blue VSU" areas have spectra with low R575 and high UVr. "Red VSU" areas have spectra with low UVr and higher VISr and R575 than average. "Intermediate VSU" areas have spectra with higher VISr than VSU red, generally higher R575, and a wide range of UVr. "Bright VSU" areas have high R575 and VISr and intermediate UVr. Several units defined by morphological or multispectral criteria correspond to specific VSUs, including low-reflectance material (dark blue VSU), pyroclastic deposits (red VSU), and hollows (intermediate VSU), but these VSUs generally include other types of areas as well. VSU definitions are complementary to those obtained by unsupervised clustering analysis. The global distribution of VIRS spectral units provides new information on Mercury's geological evolution. Much of Mercury's northern volcanic plains show spectral properties ranging from those of average VSU to those of red VSU, as does a large region in the southern hemisphere centered near 50°S, 245°E. Dark blue VSU material is widely distributed, with concentrations south of the northern plains, around the Rembrandt and

  17. Thermal, spectral, and surface properties of LED light-polymerized bulk fill resin composites.

    Science.gov (United States)

    Pişkin, Mehmet Burçin; Atalı, Pınar Yılmaz; Figen, Aysel Kantürk

    2015-02-01

    The aim of this study was to evaluate the thermal, spectral, and surface properties of four different bulk fill materials – SureFil SDR (SDR, Dentsplay DETREY), QuixFil (QF, Dentsplay DETREY), X-tra base (XB, Voco) X-tra fil (XF, Voco) – polymerized by light-emitting diode (LED). Resin matrix, filler type, size and amount, and photoinitiator types influence the degree of conversion. LED-cured bulk fill composites achieved sufficient polymerization. Scanning electron microscope (SEM) analysis revealed different patterns of surface roughness, depending on the composite material. Bulk fill materials showed surface characteristics similar to those of nanohybrid composites. Based on the thermal analysis results, glass transition (T(g)) and initial degradation (T(i)) temperatures changed depending on the bulk fill resin composites.

  18. A theory of flexoelectricity with surface effect for elastic dielectrics

    Science.gov (United States)

    Shen, Shengping; Hu, Shuling

    2010-05-01

    The flexoelectric effect is very strong for nanosized dielectrics. Moreover, on the nanoscale, surface effects and the electrostatic force cannot be ignored. In this paper, an electric enthalpy variational principle for nanosized dielectrics is proposed concerning with the flexoelectric effect, the surface effects and the electrostatic force. Here, the surface effects contain the effects of both surface stress and surface polarization. From this variational principle, the governing equations and the generalized electromechanical Young-Laplace equations are derived and can account for the effects of flexoelectricity, surface and the electrostatic force. Moreover, based on this variational principle, both the generalized bulk and surface electrostatic stresses can be obtained and are composed of two parts: the Maxwell stress corresponding to the polarization and strain and the remainder relating to the polarization gradient and the strain gradient. The theory developed in this paper provides the underlying framework for the analyses and computational solutions of electromechanical problems in nanodielectrics.

  19. Spectral Gauss quadrature method with subspace interpolation for Kohn-Sham Density functional theory

    Science.gov (United States)

    Wang, Xin

    Algorithms with linear-scaling ( (N)) computational complexity for Kohn-Sham density functional theory (K-S DFT) is crucial for studying molecular systems beyond thousands of atoms. Of the  (N) methods that use a polynomial-based approximation of the density matrix, the linear-scaling spectral Gauss quadrature (LSSGQ) method (Suryanarayana et al., JMPS, 2013) has been shown to exhibit the fastest convergence. The LSSGQ method requires a Lanczos procedure at every node in a real-space mesh, leading to a large computational pre-factor. We propose a new interpolation scheme specific to the LSSGQ method that lift the need to perform a Lanczos procedure at every node in the real-mesh. This interpolation will be referred to as subspace interpolation. The key idea behind subspace interpolation is that there is a large overlap in the Krylov-subspaces produced by the Lanczos procedures of nodes that are close in real-space. The subspace interpolation scheme takes advantage of the block-Lanczos procedure to group the Krylov-subspaces from a few representative nodes to approximate the density matrix over a large collection of nodes. Subspace interpolation outperforms cubic-spline interpolation by several orders of magnitude.

  20. Very Singular Similarity Solutions and Hermitian Spectral Theory for Semilinear Odd-order PDEs

    Institute of Scientific and Technical Information of China (English)

    FERNANDES R. S.; GALAKTIONOV V. A.

    2011-01-01

    Asymptotic large- and short-time behavior of solutions of the linear dispersion equation ut =uxxx in (IR)×(IR)+,and its (2k+1)th-order extensions are studied.Such a refined scattering is based on a “Hermitian” spectral theory for a pair { B,B*}of non self-adjoint rescaled operators B=D3y+(1/3)yDy+(1/3)I,and the adjoint one B* =D3y-(1/3)yDy,with the discrete spectrum σ(B) =σ(B*) ={λl =-l/3,l =0,1,2,…} and eigenfunctions for B,{ ψl (y) =[(- 1)l / (∫l!)] DlyAi(y),l≥0},where Ai(y) is Airy's classic function.Eigenfunctions of B* are then generalized Hermite polynomials.Applications to very singular similarity solutions (VSSs) of the semilinear dispersion equation with absorption,us(x,t) t-(1/p-1)f( x/1):ut=uxxx-|u|p-1u in (IR)×(IR)+,p>1,and to its higher-order counterparts are presented.The goal is,by using various techniques,to show that there exists a countable sequence of critical exponents { pl =1 +3/(l + 1),l =0,1,2,…} such that,at each p =p l,a p-branch of VSSs bifurcates from the corresponding eigenfunction ψl of the linear operator B above.

  1. Spectral theory and nonlinear problems Théorie spectrale et problèmes non-linéaires

    Directory of Open Access Journals (Sweden)

    Ahmed Lesfari

    2010-06-01

    Full Text Available We present a Lie algebra theoretical schema leading to integrable systems, based on the Kostant-Kirillov coadjoint action. Many problems on Kostant-Kirillov coadjoint orbits in subalgebras of infinite dimensional Lie algebras (Kac-Moody Lie algebras yield large classes of extended Lax pairs. A general statement leading to such situations is given by the Adler-Kostant-Symes theorem and the van Moerbeke-Mumford linearization method provides an algebraic map from the complex invariant manifolds of these systems to the Jacobi variety (or some subabelian variety of it of the spectral curve. The complex flows generated by the constants of the motion are straight line motions on these varieties. We study the isospectral deformation of periodic Jacobi matrices and general difference operators from an algebraic geometrical point of view and their relation with the Kac-Moody extension of some algebras. We will present in detail the Griffith's aproach and his cohomological interpretation of linearization test for solving integrable systems without reference to Kac-Moody algebras. We will discuss several examples of integrable systems of relevance in mathematical physics.

  2. Classification of Clean and Dirty Pighouse Surfaces Based on Spectral Reflectance

    DEFF Research Database (Denmark)

    Blanke, Mogens; Braithwaite, Ian David; Zhang, Guo-Qiang

    2004-01-01

    Current pig house cleaning procedures are hazardous to the health of farm workers, and yet necessary if the spread of disease between batches of animals is to be satisfactorily controlled. Autonomous cleaning using robot technology offers salient benefits. This report addresses the feasibility...... of designing a vision based system to locate dirty areas and subsequently direct a cleaning robot to remove dirt. Novel results include the characterisation of the spectral reflectance of real surfaces and dirt in a pig house and the design of illumination to obtain discrimination of clean from dirty areas...

  3. Nonlocal Symmetries, Spectral Parameter and Minimal Surfaces in AdS/CFT

    CERN Document Server

    Klose, Thomas; Münkler, Hagen

    2016-01-01

    We give a general account of nonlocal symmetries in symmetric space models and their relation to the AdS/CFT correspondence. In particular, we study a master symmetry which generates the spectral parameter and acts as a level-raising operator on the classical Yangian generators. The master symmetry extends to an infinite tower of symmetries with nonlocal Casimir elements as associated conserved charges. We discuss the algebraic properties of these symmetries and establish their role in explaining the recently observed one-parameter deformation of holographic Wilson loops. Finally, we provide a numerical framework, in which discretized minimal surfaces and their master symmetry deformation can be calculated.

  4. Surface-enhanced Raman Spectral Measurements of 5-Fluorouracil in Saliva

    Directory of Open Access Journals (Sweden)

    John Murren

    2008-10-01

    Full Text Available The ability of surface-enhanced Raman spectroscopy (SERS to measure 5-fluorouracil (5-FU in saliva is presented. The approach is based on the capacity of Raman spectroscopy to provide a unique spectral signature for virtually every chemical, and the ability of SERS to provide μg/mL sensitivity. A simple sampling method, that employed 1-mm glass capillaries filled with silver-doped sol-gels, was developed to isolate 5-FU from potential interfering chemical components of saliva and simultaneously provide SERSactivity. The method involved treating a 1 mL saliva sample with 1 mL of acetic acid, drawing 10 μL of sample into a SERS-active capillary by syringe, and then measuring the SER spectrum. Quality SER spectra were obtained for samples containing as little as 2 μg of 5-FU in 1 mL saliva. The entire process, the acid pretreatment, extraction and spectral measurement, took less than 5 minutes. The SERS of 5-fluorouridine and 5-fluoro-2’-deoxyuridine, two major metabolites of 5-FU, were also measured and shown to have unique spectral peaks. These measurements suggest that disposable SERS-active capillaries could be used to measure 5-FU and metabolite concentrations in chemotherapy patient saliva, thereby providing metabolic data that would allow regulating dosage. Tentative vibrational mode assignments for 5-FU and its metabolites are also given.

  5. Asteroid surface archaeology: Identification of eroded impact structures by spectral properties on (4) Vesta

    Science.gov (United States)

    Hoffmann, M.; Nathues, A.; Schäfer, M.; Schmedemann, N.; Vincent, J.; Russell, C.

    2014-07-01

    Introduction: Vesta's surface material is characterized as a deep regolith [1,2], mobilized by countless impacts. The almost catastrophic impact near Vesta's south pole, which has created the Rheasilvia basin, and the partly overlapping older impact of similar size, Veneneia, have not only reshaped the areas of their interior (roughly 50 % of the Vesta surface), but also emplaced each time a huge ejecta blanket of similar size, thus covering the whole remaining surface. In this context, pristine and even younger morphologic features have been erased. However, the spectral signatures of the early differentiation and alteration products by impacts have partially remained in situ. While near the north pole several large old eroded impact features are visible, the equatorial zone close to the basin rims seems to be void of those. Since it is unlikely, that this zone has been entirely avoided by large projectiles, in this area the results of such impacts may have left morphologically not detectable remnants: Individual distribution of particle sizes and altered photometric properties, excavated layers, shock metamorphism, melt generation inside particles and on macroscopic scales, and emplacement of exogenous projectile material. An analysis by color ratio images and spatial profiles of diagnostic spectral parameters reveals such features. Results: Based on local spectroscopic evidence we have detected eroded impact features of three categories: 1) Small craters with diameters of a few kilometers, 2) Large craters or, if even larger, incipient impact basins, 3) Sub-global ejecta blankets. The eastern part of Feralia Planitia, diameter 140 km, has little evidence of a round outline in the shape model, but it features spectral gradients towards its center. A feature of similar size, centered north of Lucaria Tholus becomes only visible by a similar spectra gradient and a circular outline in specific spectral ratio mosaics. These features seem to be related to the

  6. Resolution of Digitized Conjugate Tooth-Face Surface Based on the Theory of Digitized Conjugate Surfaces

    Institute of Scientific and Technical Information of China (English)

    XIAO Lai-yuan; LIAO Dao-xun; YI Chuan-yun

    2004-01-01

    According to the principle of meshing engagement and the theory of the digitized conjugate surface, this paper applies the software Conjugater-l. 0 that is developed by ourselves to compute, respectivcly, the digitized conjugate curved surfaces of the straight-tooth surface and drum-tooth surface,which will establish the theoretical and technical foundation for digitized engaging analysis, simulation, and digitized manufacturing technology of the diversified gears.

  7. Characterizing Earthflow Surface Morphology With Statistical and Spectral Analyses of Airborne Laser Altimetry

    Science.gov (United States)

    McKean, J.; Roering, J.

    High-resolution laser altimetry can depict the topography of large landslides with un- precedented accuracy and allow better management of the hazards posed by such slides. The surface of most landslides is rougher, on a local scale of a few meters, than adjacent unfailed slopes. This characteristic can be exploited to automatically detect and map landslides in landscapes represented by high resolution DTMs. We have used laser altimetry measurements of local topographic roughness to identify and map the perimeter and internal features of a large earthflow in the South Island, New Zealand. Surface roughness was first quantified by statistically characterizing the local variabil- ity of ground surface orientations using both circular and spherical statistics. These measures included the circular resultant, standard deviation and dispersion, and the three-dimensional spherical resultant and ratios of the normalized eigenvalues of the direction cosines. The circular measures evaluate the amount of change in topographic aspect from pixel-to-pixel in the gridded data matrix. The spherical statistics assess both the aspect and steepness of each pixel. The standard deviation of the third di- rection cosine was also used alone to define the variability in just the steepness of each pixel. All of the statistical measures detect and clearly map the earthflow. Cir- cular statistics also emphasize small folds transverse to the movement in the most active zone of the slide. The spherical measures are more sensitive to the larger scale roughness in a portion of the slide that includes large intact limestone blocks. Power spectra of surface roughness were also calculated from two-dimensional Fourier transformations in local test areas. A small earthflow had a broad spectral peak at wavelengths between 10 and 30 meters. Shallower soil failures and surface erosion produced surfaces with a very sharp spectral peak at 12 meters wavelength. Unfailed slopes had an order of magnitude

  8. Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2014-11-01

    Full Text Available Compared to natural waters, mine waters represent an extreme water type that is frequently heavily polluted. Although they have been traditionally monitored by in situ measurements of point samples taken at regular intervals, the emergence of a new generation of multispectral and hyperspectral (HS sensors means that image spectroscopy has the potential to become a modern method for monitoring polluted surface waters. This paper describes an approach employing linear Spectral Unmixing (LSU for analysis of hyperspectral image data to map the relative abundances of mine water components (dissolved Fe—Fediss, dissolved organic carbon—DOC, undissolved particles. The ground truth data (8 monitored ponds were used to validate the results of spectral mapping. The same approach applied to HS data was tested using the image data resampled to WorldView2 (WV2 spectral resolution. A key aspect of the image data processing was to define the proper pure image end members for the fundamental water types. The highest correlations detected between the studied water parameters and the fractional images using the HyMap and the resampled WV2 data, respectively, were: dissolved Fe (R2 = 0.74 and R2vw2 = 0.6, undissolved particles (R2 = 0.57 and R2vw2 = 0.49 and DOC (R2 = 0.42 and R2vw2 < 0.40. These fractional images were further classified to create semi-quantitative maps. In conclusion, the classification still benefited from the higher spectral resolution of the HyMap data; however the WV2 reflectance data can be suitable for mapping specific inherent optical properties (SIOPs, which significantly differ from one another from an optical point of view (e.g., mineral suspension, dissolved Fe and phytoplankton, but it seems difficult to differentiate among diverse suspension particles, especially when the waters have more complex properties (e.g., mineral particles, DOC together with tripton or other particles, etc..

  9. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo

    Science.gov (United States)

    Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang

    2016-12-01

    The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation

  10. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  11. Wetting theory for small droplets on textured solid surfaces

    CERN Document Server

    Kim, Donggyu; Ryu, Seunghwa

    2016-01-01

    Conventional wetting theories on rough surfaces with Wenzel, Cassie-Baxter, and Penetrate modes suggest the possibility of tuning the contact angle by adjusting the surface texture. Despite decades of intensive study, there are still many experimental results that are not well understood because conventional wetting theory, which assume an infinite droplet size, has been used to explain measurements of finite-sized droplets. In this study, we suggest a wetting theory that is applicable to any droplet size based on the free energy landscape analysis of various wetting modes of finite-sized droplets on a 2D textured surface. The key finding of our study is that there are many quantized wetting angles with local free energy minima; the implication of this is remarkable. We find that the conventional theories can predict the contact angle at the global free energy minimum if the droplet size is 40 times or larger than the characteristic scale of the surface roughness. Furthermore, we confirm that the pinning orig...

  12. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  13. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  14. Design of structurally colored surfaces based on scalar diffraction theory

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole

    2014-01-01

    reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...

  15. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    Directory of Open Access Journals (Sweden)

    J. Delamere

    2011-09-01

    Full Text Available We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM facility at the Southern Great Plains (SGP site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs, four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated can be identified. A normalized difference vegetation index (NDVI is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  16. Universal Spectral Modulation Sensors:(Ⅰ)Theory and Structure①

    Institute of Scientific and Technical Information of China (English)

    SHJYongji

    1997-01-01

    A universal spectral modulation sensor with low cost,stable,reliable and accurate performances is presented.The optical measuring device using a universal spectral modulation sensor is immune to change the intensities of the light source and light transmission due to optical fiber bending and optical fiber connector loss.The spectral modulation sensor system can detect and measure various physical parameters such as pressure,temperature,gas density,and various chemical species.

  17. The approach to gravity as a theory of embedded surface

    CERN Document Server

    Sheykin, A A

    2014-01-01

    We study the approach to gravity in which our curved spacetime is considered as a surface in a flat ambient space of higher dimension (the embedding theory). The dynamical variable in this theory is not a metric but an embedding function. The Euler-Lagrange equations for this theory (Regge-Teitelboim equations) are more general than the Einstein equations, and admit "extra solutions" which do not correspond to any Einsteinian metric. The Regge-Teitelboim equations can be explicitly analyzed for the solutions with high symmetry. We show that symmetric embeddings of a static spherically symmetric asymptotically flat metrics in a 6-dimensional ambient space do not admit extra solutions of the vacuum Regge-Teitelboim equations. Therefore in the embedding theory the solutions with such properties correspond to the exterior Schwarzchild metric.

  18. Spectral locking in an extended area two-dimensional coherent grating surface emitting laser array

    Energy Technology Data Exchange (ETDEWEB)

    DeFreez, R.K.; Ximen, H.; Bossert, D.J.; Hunt, J.M.; Wilson, G.A.; Elliott, R.A.; Orloff, J. (Dept. of Applied Physics and Electrical Engineering, Oregon Graduate Center, Beaverton, OR (US)); Evans, G.A.; Carlson, N.W.; Lurie, M. (David Sarnoff Research Center, Princeton, NJ (US))

    1990-01-01

    The spectral properties of a monolithic pair of two-dimensional coherent grating surface emitting laser arrays optically coupled by means of total-internal-reflection (TIR) corner turning mirrors have been studied. Each of the pair consists of six groups of ten laterally {ital Y}-coupled, index-guided ridge lasers interspersed with second-order DBR grating sections in the longitudinal direction to provide feedback and surface emitting output coupling. The turning mirrors were formed by focused-ion-beam micromachining channels in the wafer angled at 45{degrees} to the laser waveguide. Locking of the emission spectra of the pair of GSE arrays and shifting of the spectrum of one of the pair by varying the drive current to one gain section in the other is demonstrated.

  19. Probing DNA-Protein Interactions on Surfaces Using Spectral Self-interference Fluorescence Microscopy

    Science.gov (United States)

    Dogan, Mehmet; Droge, Peter; Swan, Anna K.; Unlu, Selim; Goldberg, Bennett B.

    2007-03-01

    We are probing the interactions between double-stranded DNA and integration host factor (IHF) proteins [1] on surfaces using Spectral Self-interference Fluorescence Microscopy (SSFM) [2].The probing technique utilizes the spectral fringes produced by interference of direct and reflected emission from fluorescent molecules. The modified spectrum provides a unique signature of the axial position of the fluorophores. Using the SSFM technique, we probe the average location of the fluorescent markers attached to the DNA molecules to study the conformational changes in double-stranded DNA tethered to SiO2 surfaces. In the presence of IHF, a DNA bending protein, we observe reduction in the vertical position of fluorescent molecules suggesting the formation of IHF-DNA complex and IHF-induced DNA bending. We also discuss the results with different IHF strains and different binding conditions. [1] Q. Bao et. al., Gene, Vol.343 pp.99-106 (2004) [2] L.A. Moiseev et. al., Journal of Applied Physics, Vol.96, pp. 5311-5315 (2004)

  20. Detection of organic residues on food processing equipment surfaces by spectral imaging method

    Science.gov (United States)

    Qin, Jianwei; Jun, Won; Kim, Moon S.; Chao, Kaunglin

    2010-04-01

    Organic residues on equipment surfaces in poultry processing plants can generate cross contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of organic residues on poultry processing equipment surfaces. High-power blue LEDs with a spectral output at 410 nm were used as the excitation source for a line-scanning hyperspectral imaging system. Common chicken residue samples including fat, blood, and feces from ceca, colon, duodenum, and small intestine were prepared on stainless steel sheets. Fluorescence emission images were acquired from 120 samples (20 for each type of residue) in the wavelength range of 500-700 nm. LED-induced fluorescence characteristics of the tested samples were determined. PCA (principal component analysis) was performed to analyze fluorescence spectral data. Two SIMCA (soft independent modeling of class analogy) models were developed to differentiate organic residues and stainless steel samples. Classification accuracies using 2-class ('stainless steel' and 'organic residue') and 4-class ('stainless steel', 'fat', 'blood', and 'feces') SIMCA models were 100% and 97.5%, respectively. An optimal single-band and a band-pair that are promising for rapid residue detection were identified by correlation analysis. The single-band approach using the selected wavelength of 666 nm could generate false negative errors for chicken blood inspection. Two-band ratio images using 503 and 666 nm (F503/F666) have great potential for detecting various chicken residues on stainless steel surfaces. This wavelength pair can be adopted for developing a LED-based hand-held fluorescence imaging device for inspecting poultry processing equipment surfaces.

  1. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand.

    Science.gov (United States)

    Nolet, Corjan; Poortinga, Ate; Roosjen, Peter; Bartholomeus, Harm; Ruessink, Gerben

    2014-01-01

    Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength (λ) and surface moisture (θ) over the optical domain of 350-2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content θ 0.97), but underestimated reflectance for θ between 24-30% (R2 > 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well (R2 > 0.99) but is limited to 4% > θ < 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner (λ = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach.

  2. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand.

    Directory of Open Access Journals (Sweden)

    Corjan Nolet

    Full Text Available Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1 to measure and model reflectance under controlled laboratory conditions as function of wavelength (λ and surface moisture (θ over the optical domain of 350-2500 nm, and (2 to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content θ 0.97, but underestimated reflectance for θ between 24-30% (R2 > 0.92, most notable around the 1940 nm water absorption peak. The soil-physical model performed very well (R2 > 0.99 but is limited to 4% > θ < 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner (λ = 1550 nm can accurately relate surface moisture to reflectance (standard error 2.6%, demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach.

  3. Spectral Combination of Global and Regional Ionospheric Models Using Slepian Theory

    Science.gov (United States)

    Etemadfard, Hossein; Mashhadi Hossainali, Masoud

    2016-04-01

    This study suggests a new method for combining function-based regional and global ionospheric models, based on spherical Slepian theory. As the first step of this method, the Global Ionosphere Models (GIMs) of the International GNSS Service (IGS) are transformed to the Spherical Slepian Functions (SSFs), which are named modified GIMs. Then, the observations of the regional GPS networks are expanded in the same SSFs. The maximum degree of the regional model is 15, which is equal to the maximum degree of the GIMs. In the end, the modified GIM and the developed regional model are combined in the spectral domain. The new method is applied to the Arctic region. In the regional modeling, six GPS stations from the Canadian High Arctic Ionosphere Network (CHAIN) and four GPS station from the European Reference Frame (EUREF) network are used. The observation files belong to the day 334 in 2015. The models have been validated with three stations from the CHAIN and the EUREF as check stations. The check stations were used in neither the regional model nor the GIM. According to the obtained result, i the RMSE of GIM, modified GIM and the regional model are 3.7, 2.2 and 1.9 TECU (Total Electron Content Unit =1016electron/m2), respectively. However, the RMSE of the combined model is 1.4 TECU, which shows a significant improvement compare to the other models. The proposed method remarkably improves the quality of the ionospheric modeling in the Arctic region. This may lead to a better understanding of the ionospheric phenomena. Keywords: Regional Modeling, GIM, Spherical Slepian Functions

  4. Oxygen adsorption on pyrite (100) surface by density functional theory

    Institute of Scientific and Technical Information of China (English)

    孙伟; 胡岳华; 邱冠周; 覃文庆

    2004-01-01

    Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference.The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.

  5. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  6. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    Science.gov (United States)

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  7. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there has been significant progress in the development of methodology and instrumentation in the SFG-VS toolbox that has significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are to be discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  8. News on sputter theory: Molecular targets, nanoparticle desorption, rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.d [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Anders, Christian [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Rosandi, Yudi [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Department of Physics, Universitas Padjadjaran, Jatinangor, Sumedang 45363 (Indonesia)

    2011-05-01

    Sputtering theory has existed as a mature and well-understood field of physics since the theory of collision-cascade sputtering has been developed in the late 1960s. In this presentation we outline several directions, in which the basic understanding of sputter phenomena has been challenged and new insight has been obtained recently. Sputtering of molecular solids: after ion impact on a molecular solid, not all of the impact energy is available for inducing sputtering. Part of the energy is converted into internal (rotational and vibrational) excitation of the target molecules, and part is used for molecule dissociation. Furthermore, exothermic or endothermic chemical reactions may further change the energy balance in the irradiated target. Nanoparticle desorption: usually, the flux of sputtered particles is dominated by monatomics; in the case of a pronounced spike contribution to sputtering, the contribution of clusters in the sputtered flux may become considerable. Here, we discuss the situation that nanoparticles were present on the surface, and outline mechanisms of how these may be desorbed (more or less intact) by ion or cluster impact. Rough surfaces: real surfaces are rough and contain surface defects (adatoms, surface steps, etc.). For grazing ion incidence, these influence the energy input into the surface dramatically. For such incidence angles sputtering vanishes for a flat terrace; however, ion impact close to a defect may lead to sputter yields comparable to those at normal incidence. In such cases sputtering also exhibits a pronounced azimuth and temperature dependence.

  9. Spectral calibration for deriving surface mineralogy of Asteroid (25143) Itokawa from Hayabusa Near-Infrared Spectrometer (NIRS) Data

    CERN Document Server

    Bhatt, Megha; Corre, Lucille Le; Sanchez, Juan A; Dunn, Tasha; Izawa, Matthew R M; Li, Jian-Yang; Becker, Kris J; Weller, Lynn

    2015-01-01

    We present spectral calibration equations for determining mafic silicate composition of near-Earth asteroid (25143) Itokawa from visible/near-infrared spectra measured using the Near Infrared Spectrometer (NIRS), on board the Japanese Hayabusa spacecraft. Itokawa was the target of the Hayabusa sample return mission and has a surface composition similar to LL-type ordinary chondrites. Existing laboratory spectral calibrations use a spectral wavelength range that is wider (0.75-2.5 microns) than that of the NIRS instrument (0.85-2.1 microns) making them unfit for interpreting the Hayabusa spectral data currently archived in the Planetary Data System. We used laboratory measured near-infrared reflectance spectra of ordinary (H, L and LL) chondrites from the study of Dunn et al. (2010), which we resampled to the NIRS wavelength range. Using spectral parameters extracted from these resampled spectra we established a relationship between band parameters and their mafic silicate composition (olivine and low-Ca pyrox...

  10. Revisiting the Fermi Surface in Density Functional Theory

    Science.gov (United States)

    Das, Mukunda P.; Green, Frederick

    2016-06-01

    The Fermi surface is an abstract object in the reciprocal space of a crystal lattice, enclosing the set of all those electronic band states that are filled according to the Pauli principle. Its topology is dictated by the underlying lattice structure and its volume is the carrier density in the material. The Fermi surface is central to predictions of thermal, electrical, magnetic, optical and superconducting properties in metallic systems. Density functional theory is a first-principles method used to estimate the occupied-band energies and, in particular, the isoenergetic Fermi surface. In this review we survey several key facts about Fermi surfaces in complex systems, where a proper theoretical understanding is still lacking. We address some critical difficulties.

  11. Effective field theories for superconducting systems with multiple Fermi surfaces

    Science.gov (United States)

    Braga, P. R.; Granado, D. R.; Guimaraes, M. S.; Wotzasek, C.

    2016-11-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  12. Effective field theories for superconducting systems with multiple Fermi surfaces

    CERN Document Server

    Braga, P R; Guimaraes, M S; Wotzasek, C

    2016-01-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more the one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  13. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  14. Spectral Analysis of Surface Features of Subaquaeous Pyroclastic Flow Deposits Around Santorini Volcano, Greece

    Science.gov (United States)

    Croff, K. L.; Sigurdsson, H.; Carey, S.; Alexandri, M.; Sakellariou, D.; Nomikou, P.

    2006-12-01

    Multibeam bathymetry mapping and seismic airgun surveys of the submarine region around the Santorini volcanic field in the Hellenic Arc (Greece) have revealed regions of terraced or step-like topography. These features may be related to the transport and deposition of submarine pyroclastic flows from the last major eruption of this volcano (~3600yrs. B.P.). The uppermost sediment sequence identified in seismic records has an average thickness of approximately 29 meters and may represent the pyroclastic flow deposits from this eruption. These terraced or step-like features are mainly located in areas that are approximately five kilometers offshore and at depths in the range of 200 to 800 meters. The seafloor in these areas has slope ratios on the order of 1:20. Profiles of the seafloor topography were sampled from seismic profiles that radiate from the Sanotrini caldera in five regions of interest. Spectral analysis of seafloor topography has been carried out to determine spectral characteristics of these features, including power spectrum, periodicity and amplitude of the waveforms, variance, and roughness of topography. The results are compared to surface features of the subaqueous pyroclastic deposits from the 1883 explosive eruption of Krakatau (Indonesia) and other areas with similar environments, to determine the parameters that are characteristic of this new feature of submarine volcaniclastic deposits.

  15. The Theory of Surface Enhanced Hyper Raman Scattering

    CERN Document Server

    Chelibanov, V P

    2014-01-01

    The Dipole-Quadrupole theory of Surface Enhanced Hyper Raman Scattering (SEHRS), created by the authors is expounded in details. Peculiarities of the behavior of electromagnetic field on rough metal surfaces are considered. It is demonstrated that there is an enhancement of the dipole and quadrupole light-molecule interaction near the places with a large curvature. The expression for the SEHRS cross-section of symmetrical molecules, which consists of several contributions is obtained. Selection rules for the scattering contributions are obtained and a qualitative classification of the contributions after an enhancement degree is performed. Analysis of experimental spectra of pyrazine and phenazine, and also some another molecules is performed too. It is demonstrated a full coincidence of experimental regularities in these spectra with the theory suggested.

  16. The impact of grid and spectral nudging on the variance of the near-surface wind speed

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.

    2015-01-01

    variance in the Weather Research and Forecasting model is analyzed. Simulations are run on nested domains with horizontal grid spacing 15 and 5 km over the Baltic Sea region. For the 15 km domain, 36-hr simulations initialized each day are compared with 11-day simulations with either grid or spectral......Grid and spectral nudging are effective ways of preventing drift from large scale weather patterns in regional climate models. However, the effect of nudging on the wind-speed variance is unclear. In this study, the impact of grid and spectral nudging on near-surface and upper boundary layer wind...

  17. Spectral Analysis of Surface Wave for Empirical Elastic Design of Anchored Foundations

    Directory of Open Access Journals (Sweden)

    S. E. Chen

    2012-01-01

    Full Text Available Helical anchors are vital support components for power transmission lines. Failure of a single anchor can lead to the loss of an entire transmission line structure which results in the loss of power for downstream community. Despite being important, it is not practical to use conventional borehole method of subsurface exploration, which is labor intensive and costly, for estimating soil properties and anchor holding capacity. This paper describes the use of an empirical and elasticity-based design technique coupled with the spectral analysis of surface wave (SASW technique to provide subsurface information for anchor foundation designs. Based on small-strain wave propagation, SASW determines shear wave velocity profile which is then correlated to anchor holding capacity. A pilot project involving over 400 anchor installations has been performed and demonstrated that such technique is reliable and can be implemented into transmission line structure designs.

  18. A Mean-Field Theory for Coarsening Faceted Surfaces

    CERN Document Server

    Norris, Scott A

    2009-01-01

    A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory of Ostwald ripening in two-phase systems [1-3], but the mechanism of coarsening in faceted surfaces requires the addition of convolution terms recalling the work of Smoluchowski [4] and Schumann [5] on coalescence. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a framework for the investigation of faceted surfaces evolving under arbitrary dynamics. [1] I. Lifshitz, V. Slezov, Soviet Physics JETP 38 (1959) 331-339. [2] I. Lifshitz, V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50. [3] C. Wagner, Elektrochemie 65 (1961) 581-591. [4] M. von S...

  19. Spatial Downscaling Research of Satellite Land Surface Temperature Based on Spectral Normalization Index

    Directory of Open Access Journals (Sweden)

    LI Xiaojun

    2017-03-01

    Full Text Available Aiming at the problem that the spatial and temporal resolution of land surface temperature (LST have the contradiction with each other, a new downscaling model was put forward, based on the TsHARP(an algorithm for sharpening thermal imagery downscaling method, this research makes improvements by selecting the better correlation of spectral index(normalized difference vegetation index, NDVI; normalized difference build-up index, NDBI; modified normalized difference water index, MNDWI; enhanced bare soil index, EBSI with LST, i.e., replaces the original NDVI with new spectral index according to the different surface land-cover types, to assess the accuracy of each downscaling method based on qualitative and quantitative analysis with synchronous Landsat 8 TIRS LST data. The results show that both models could effectively enhance the spatial resolution while simultaneously preserving the characteristics and spatial distribution of the original 1 km MODIS LST image, and also eliminate the “mosaic” effect in the original 1 km image, both models were proved to be effective and applicable in our study area; global scale analysis shows that the new model (RMSE:1.635℃ is better than the TsHARP method (RMSE:2.736℃ in terms of the spatial variability and accuracy of the results; the different land-cover types of downscaling statistical analysis shows that the TsHARP method has poor downscaling results in the low vegetation coverage area, especially for the bare land and building-up area(|MBE|>3℃, the new model has obvious advantages in the description of the low vegetation coverage area. Seasonal analysis shows that the downscaling results of two models in summer and autumn are superior to those in spring and winter, the new model downscaling results are better than the TsHARP method in the four seasons, in which the spring and winter downscaling improvement is better than summer and autumn.

  20. Surface Plasmon-Assisted Excitation of Atomic Visible Light Spectral Lines in the Impact of Highly Charged Ions 126Xeq+ on Solid Surfaces

    Institute of Scientific and Technical Information of China (English)

    张小安; 赵永涛; 李福利; 杨治虎; 肖国青; 詹文龙

    2003-01-01

    We measured the visible light spectral lines of sputtering atoms from solid surfaces of Al, Ti, Ni, Ta and Au which are impacted by 150keV126Xeq+ (6≤q≤30). It is found that intensities of the light spectral lines are greatly and suddenly enhanced when the charge state of the ion is raised up to a critical value. If assuming that potential energy released from the incidention due to capturing one electron is enough to excite a surface plasmon, we can estimate the critical charge states and obtain the results very well consistent with the measurements for the above-mentioned target materials. This means that a surface plasmon induced by one electron capture can enhance the excitation of atomic visible light spectral lines in the impact of a highly charged ion on a solid surface.

  1. Structures and surface tensions of fluids near solid surfaces: an integral equation theory study.

    Science.gov (United States)

    Xu, Mengjin; Zhang, Chen; Du, Zhongjie; Mi, Jianguo

    2012-06-07

    In this work, integral equation theory is extended to describe the structures and surface tensions of confined fluids. To improve the accuracy of the equation, a bridge function based on the fundamental measure theory is introduced. The density profiles of the confined Lennard-Jones fluids and water are calculated, which are in good agreement with simulation data. On the basis of these density profiles, the grand potentials are then calculated using the density functional approach, and the corresponding surface tensions are predicted, which reproduce the simulation data well. In particular, the contact angles of water in contact with both hydrophilic and hydrophobic walls are evaluated.

  2. On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension

    Science.gov (United States)

    Pelinovsky, D. E.; Stefanov, A.

    2008-11-01

    Based on the recent work [Komech et al., "Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations," Appl. Anal. 85, 1487 (2006)] for compact potentials, we develop the spectral theory for the one-dimensional discrete Schrödinger operator, Hϕ =(-Δ+V)ϕ=-(ϕn +1+ϕn -1-2ϕn)+Vnϕn. We show that under appropriate decay conditions on the general potential (and a nonresonance condition at the spectral edges), the spectrum of H consists of finitely many eigenvalues of finite multiplicities and the essential (absolutely continuous) spectrum, while the resolvent satisfies the limiting absorption principle and the Puiseux expansions near the edges. These properties imply the dispersive estimates ||eitHPa.c.(H)||lσ2→l-σ2≲t-3/2 for any fixed σ >5/2 and any t >0, where Pa.c.(H) denotes the spectral projection to the absolutely continuous spectrum of H. In addition, based on the scattering theory for the discrete Jost solutions and the previous results by Stefanov and Kevrekidis ["Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein-Gordon equations," Nonlinearity 18, 1841 (2005)], we find new dispersive estimates ||eitH Pa.c.(H)||l1→l∞≲t-1/3, which are sharp for the discrete Schrödinger operators even for V =0.

  3. Transition State Theory for dissipative systems without a dividing surface

    CERN Document Server

    Revuelta, F; Benito, R M; Borondo, F

    2015-01-01

    Transition State Theory is a central cornerstone in reaction dynamics. Its key step is the identification of a dividing surface that is crossed only once by all reactive trajectories. This assumption is often badly violated, especially when the reactive system is coupled to an environment. The calculations made in this way then overestimate the reaction rate and the results depend critically on the choice of the dividing surface. In this Letter, we study the phase space of a stochastically driven system close to an energetic barrier in order to identify the geometric structure unambiguously determining the reactive trajectories, which is then incorporated in a simple rate formula for reactions in condensed phase that is both independent of the dividing surface and exact.

  4. Solvation of complex surfaces via molecular density functional theory

    CERN Document Server

    Levesque, Maximilien; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-01-01

    We show that classical molecular density functional theory (MDFT), here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular CLAYFF force field. Solvent energetics and structure are found to depend weakly upon ...

  5. Parabasal theory for plane-symmetric systems including freeform surfaces

    Science.gov (United States)

    Abd El-Maksoud, Rania H.; Hillenbrand, Matthias; Sinzinger, Stefan

    2014-03-01

    An extension of paraxial theory to systems with a single plane of symmetry is provided. This parabasal model is based on the evaluation of a differential region around the reference ray that is defined by the center of the object and the center of the stop. To include freeform surfaces in this model, the local curvatures at the intersection point of the reference ray and the surface are evaluated. As an application, a generalized Scheimpflug principle is presented. The validity of the derived formulas is tested for highly tilted surfaces and is in good agreement with the exact ray tracing results. The analytical expressions are used to provide a first-order layout design of a planar imaging system.

  6. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.

    Science.gov (United States)

    Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W

    2016-08-25

    Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and

  7. Bayesian inference of non-positive spectral functions in quantum field theory

    CERN Document Server

    Rothkopf, Alexander

    2016-01-01

    We present the generalization to non positive definite spectral functions of a recently proposed Bayesian deconvolution approach (BR method). The novel prior used here retains many of the beneficial analytic properties of the original method, in particular it allows us to integrate out the hyperparameter $\\alpha$ directly. To preserve the underlying axiom of scale invariance, we introduce a second default-model related function, whose role is discussed. Our reconstruction prescription is contrasted with existing direct methods, as well as with an approach where shift functions are introduced to compensate for negative spectral features. A mock spectrum analysis inspired by the study of gluon spectral functions in QCD illustrates the capabilities of this new approach.

  8. Spectral theory of operator pencils, Hermite-Biehler functions, and their applications

    CERN Document Server

    Möller, Manfred

    2015-01-01

    The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main f...

  9. Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway

    Science.gov (United States)

    Khan, Alia L.; Dierssen, Heidi; Schwarz, Joshua P.; Schmitt, Carl; Chlus, Adam; Hermanson, Mark; Painter, Thomas H.; McKnight, Diane M.

    2017-02-01

    Light-absorbing particles (LAPs) in snow such as dust and black carbon influence the radiative forcing at the Earth's surface, which has major implications for global climate models. LAPs also significantly influence the melting of glaciers, sea ice, and seasonal snow. Here we present an in situ study of surface snow near an active coal mine in the Norwegian Arctic. We couple measurements of spectral hemispherical directional reflectance factor (HDRF) with measurements of LAPs characterized in two ways, as refractory black carbon using a Single Particle Soot Photometer and the total light absorption of LAPs measured with the Light Absorption Heating Method. The Snow Ice and Aerosol Radiation model was constrained by LAP measurements. Results were compared to observed spectral albedo measurements. Modeled and observed albedos were similar at the cleaner and more remote sites. However, the modeled spectral albedos do not fully account for the low spectral albedo measured next to the mine. LAP measurements also showed a large variation in particle sizes (tenths to tens of microns) related to transport distance of the particles from the mine. Here we find that LAPs from coal dust reduce the spectral HDRF by up to 84% next to the mine and 55% 0.5 km downwind of the mine. The coupling of extreme LAP observations (1 ng g-1 to 4863 ng g-1) with HDRF measurements from 350 to 2500 nm has facilitated the development of spectral band pairs, which could be used in the future to remotely assess LAPs in Arctic snow.

  10. A spectral interpretation for the explicit formula in the theory of prime numbers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A spectral interpretation for the poles and zeros of the L-function of algebraic number fields is given by Meyer. As Meyer works with Schwartz spaces which are not Hilbert spaces, the information on the location of zeros of the L-function is lost. In 1999, A. Connes gave a spectral interpretation for the critical zeros the Riemann zeta function. He works with Hilbert spaces. In this paper, we show that a variant of Connes’ trace formula is essentially equal to the explicit formula of A. Weil.

  11. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    Science.gov (United States)

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  12. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators

    Directory of Open Access Journals (Sweden)

    Philipp Good

    2016-03-01

    Full Text Available The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300−2500 nm at incidence angles 15–60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0–60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350–1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article “Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators” in Solar Energy Materials and Solar Cells.

  13. Comparison of TOMS retrievals and UVMRP measurements of surface spectral UV radiation in the United States

    Directory of Open Access Journals (Sweden)

    M. Xu

    2010-09-01

    Full Text Available Surface noontime spectral ultraviolet (UV irradiances during May-September of 2000–2004 from the total ozone mapping spectrometer (TOMS satellite retrievals are systematically compared with the ground measurements at 27 climatological sites maintained by the USDA UV-B Monitoring and Research Program. The TOMS retrievals are evaluated by two cloud screening methods and local air quality conditions to determine their bias dependencies on spectral bands, cloudiness, aerosol loadings, and air pollution. Under clear-sky conditions, TOMS retrieval biases vary from −3.4% (underestimation to 23.6% (overestimation. Averaged over all sites, the relative mean biases for 305, 311, 325, and 368 nm are respectively 15.4, 7.9, 7.6, and 7.0% (overestimation. The bias enhancement for 305 nm by approximately twice that of other bands likely results from absorption by gaseous pollutants (SO2, O3, and aerosols that are not included in the TOMS algorithm. For all bands, strong positive correlations of the TOMS biases are identified with aerosol optical depth, which explains nearly 50% of the variances of TOMS biases. The more restrictive in-situ cloud screening method reduces the biases by 3.4–3.9% averaged over all sites. This suggests that the TOMS biases from the in-situ cloud contamination may account for approximately 25% for 305 nm and 50% for other bands of the total bias. The correlation coefficients between total-sky and clear-sky biases across 27 sites are 0.92, 0.89, 0.83, and 0.78 for 305, 311, 325, and 368 nm, respectively. The results show that the spatial characteristics of the TOMS retrieval biases are systematic, representative of both clear and total-sky conditions.

  14. Understanding the Theory and Practice of Molecular Spectroscopy: The Effects of Spectral Bandwidth

    Science.gov (United States)

    Hirayama, Satoshi; Steer, Ronald P.

    2010-01-01

    The near-UV spectrum of benzene is used to illustrate the effects of variations in instrument spectral bandwidth on absorbance and molar absorptivity measurements and on the independence of values of quantities such as the oscillator strength that are based on integrated absorptivity. Excel-based computer simulations are provided that help develop…

  15. Multi-Spectral Satellite Imagery and Land Surface Modeling Supporting Dust Detection and Forecasting

    Science.gov (United States)

    Molthan, A.; Case, J.; Zavodsky, B.; Naeger, A. R.; LaFontaine, F.; Smith, M. R.

    2014-12-01

    Current and future multi-spectral satellite sensors provide numerous means and methods for identifying hazards associated with polluting aerosols and dust. For over a decade, the NASA Short-term Prediction Research and Transition (SPoRT) Center at Marshall Space Flight Center in Huntsville has focused on developing new applications from near real-time data sources in support of the operational weather forecasting community. The SPoRT Center achieves these goals by matching appropriate analysis tools, modeling outputs, and other products to forecast challenges, along with appropriate training and end-user feedback to ensure a successful transition. As a spinoff of these capabilities, the SPoRT Center has recently focused on developing collaborations to address challenges with the public health community, specifically focused on the identification of hazards associated with dust and pollution aerosols. Using multispectral satellite data from the SEVIRI instrument on the Meteosat series, the SPoRT team has leveraged EUMETSAT techniques for identifying dust through false color (RGB) composites, which have been used by the National Hurricane Center and other meteorological centers to identify, monitor, and predict the movement of dust aloft. Similar products have also been developed from the MODIS and VIIRS instruments onboard the Terra and Aqua, and Suomi-NPP satellites, respectively, and transitioned for operational forecasting use by offices within NOAA's National Weather Service. In addition, the SPoRT Center incorporates satellite-derived vegetation information and land surface modeling to create high-resolution analyses of soil moisture and other land surface conditions relevant to the lofting of wind-blown dust and identification of other, possible public-health vectors. Examples of land surface modeling and relevant predictions are shown in the context of operational decision making by forecast centers with potential future applications to public health arenas.

  16. Steady, subsonic, lifting surface theory for wings with swept, partial span, trailing edge control surfaces

    Science.gov (United States)

    Medan, R. T.

    1973-01-01

    A method for computing the lifting pressure distribution on a wing with partial span, swept control surfaces is presented. This method is valid within the framework of linearized, steady, potential flow theory and consists of using conventional lifting surface theory in conjuction with a flap pressure mode. The cause of a numerical instability that can occur during the quadrature of the flap pressure mode is discussed, and an efficient technique to eliminate the instability is derived. This technique is valid for both the flap pressure mode and regular pressure modes and could be used to improve existing lifting surface methods. Examples of the use of the flap pressure mode and comparisons among this method, other theoretical methods, and experiments are given. Discrepancies with experiment are indicated and candidate causes are presented. It is concluded that the method can lead to an efficient and accurate solution of the mathematical problem when a partial span, trailing edge flap is involved.

  17. Model to explain the effects of halide ions on the increase in surface enhanced Raman spectral intensity over time

    Science.gov (United States)

    Cole, Michael A.

    Understanding the mechanisms responsible for the large increase in spectral intensity when molecules are adsorbed to nanoparticle surfaces such as occurs during surface enhanced Raman (SER) spectroscopy will allow scientists to probe ever smaller scales, even allowing single molecule detection. One particular scenario that increased the SER scattering efficiency was the addition of halide ions to Rhodamine 6G (R6G)-ethanol solution. This thesis presents a theoretical model explaining the effects of halide ions on the SER spectral intensity of the Rhodamine 6G (R6G) molecule when co-adsorbed to a silver nanoparticle surface. Glaspell et al. 2005, found a linear correlation between the increase in spectral intensities of selected vibrational normal modes of R6G over time and the polarizabilities of co-adsorbed halide ions. When the R6G molecule co-adsorbs to the silver nanoparticle surface with the halide ions, the molecule is exposed to three external electric fields that add vectorially, creating a total external electric field. Modelling the fields from the halide ions and the silver nanoparticles as electric dipole fields introduces the polarizability of the halide ion linearly into the Raman spectral intensity equation. This model also shows that there is a necessary interaction between the halide ions and the silver nanoparticle surface in order to see the effects as described by Glaspell et al. Furthermore, we will present experimental results that show that there is a necessary interaction between the halide ions and the nanoparticle surface. Without this interaction there was no increase in the SER spectral intensity of R6G or pyridine molecules in solution with the halide ions but without the silver nanoparticles.

  18. Spectral Methods

    CERN Document Server

    Shen, Jie; Wang, Li-Lian

    2011-01-01

    Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large

  19. On quantum-mechanical unified theories of collisional spectral line broadening

    NARCIS (Netherlands)

    Schuller, F.; Nienhuis, G.

    1982-01-01

    We compare the Baranger-type unified theory of line broadening with a quantum version of the binary-collision approach. For the simple model system of a two-state atom, where both treatments are well-defined, the binary-collision theory results only from the exact formalism after an inversion of an

  20. Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study

    Science.gov (United States)

    Wang, Wei; Yao, Xinfeng; Ji, Minhe

    2016-01-01

    Despite recent rapid advancement in remote sensing technology, accurate mapping of the urban landscape in China still faces a great challenge due to unusually high spectral complexity in many big cities. Much of this complication comes from severe spectral confusion of impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-step land cover decomposition method, which combines optical and thermal spectra from different seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture analysis was employed to generate fraction images for three preliminary endmembers (high albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature induced from thermal infrared spectra and coarse component fractions obtained from the first step was then used to reduce the confusion between impervious surfaces and nonimpervious materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of China's megacities. The results showed that the method was capable of consistently estimating impervious surfaces in highly complex urban environments with an accuracy of R2 greater than 0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This strategy seemed very promising for landscape mapping of complex urban areas.

  1. Theory and applications of surface energy transfer for 2-20 nm diameter metal nanoparticles

    Science.gov (United States)

    Riskowski, Ryan A.

    The development and experimental validation of a mathematical model for nanoparticle-based surface energy transfer (SET) between gold nanoparticles and fluorescent dye labels, has enabled biophysical studies of nucleic acid structure and function previously inaccessible by other methods. The main advantages of SET for optical distance measurements are that it can operate over longer distances than other similar methods, such as Forster Resonance Energy Transfer (FRET), thus enabling measurements across biological structures much larger than otherwise possible. This work discusses the fundamental theory for the SET interaction and expansion of SET theory to account for multiple interacting dye labels and demonstrated on DNA and RNA in order to allow 3D triangulation of labeled structures. SET theory has also been expanded to core shell structures which represent a new class of designer SET platforms with dramatically increased spectral windows; allowing for a multitude of dye labels to be used simultaneously over a broad range of wavelengths. Additionally, these designer nanostructures can incorporate the material properties of the core. So that , for example Ni Au, can provide a SET measurement platform coupled with a magnetic moment for sample purification and manipulation. These efforts to develop and establish optical SET methods lays a foundation of a powerful methodology for biophysical characterization, and allows researchers to study biological structures previously too large or complex to be easily studied, such as the unknown tertiary structures of large RNA elements.

  2. Solvation of complex surfaces via molecular density functional theory.

    Science.gov (United States)

    Levesque, Maximilien; Marry, Virginie; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-12-14

    We show that classical molecular density functional theory, here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational, and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular Clay Force Field (CLAYFF). Solvent energetics and structure are found to depend weakly upon the atomic charges distribution of the clay surface, even for a rather polar solvent. We conclude on the consequences of such findings for force-field development.

  3. Spectral reflectance and emittance of particulate materials. I - Theory. II - Application and results

    Science.gov (United States)

    Emslie, A. G.; Aronson, J. R.

    1973-01-01

    The sizes, shapes, and complex refractive indices of particles are calculated in a study of the IR spectral reflectance of a semiinfinite medium composed of irregular particles of different materials. Geometric optics techniques with corrections for additional absorption due to particle edges and asperities is used in scattering and absorption calculations for particles larger than the wavelength. A Lorentz-Lorenz model is used to derive the averaged complex index of the medium, assuming that its individual particles are ellipsoids. Experimental results obtained on a Michelson interferometer for the spectral emittance of particulate mineral materials are compared with theoretical results. Good agreement between the experimental and theoretical results suggests the applicability, in remote IR spectroscopy, of the theoretical concepts applied in this study.

  4. Evaluation of the Spectral Finite Element Method With the Theory of Phononic Crystals

    CERN Document Server

    Guarín-Zapata, Nicolás

    2014-01-01

    We evaluated the performance of the classical and spectral finite element method in the simulation of elastodynamic problems. We used as a quality measure their ability to capture the actual dispersive behavior of the material. Four different materials are studied: a homogeneous non-dispersive material, a bilayer material, and composite materials consisting of an aluminum matrix and brass inclusions or voids. To obtain the dispersion properties, spatial periodicity is assumed so the analysis is conducted using Floquet-Bloch principles. The effects in the dispersion properties of the lumping process for the mass matrices resulting from the classical finite element method are also investigated, since that is a common practice when the problem is solved with explicit time marching schemes. At high frequencies the predictions with the spectral technique exactly match the analytical dispersion curves, while the classical method does not. This occurs even at the same computational demands. At low frequencies howeve...

  5. Towards quantized number theory: spectral operators and an asymmetric criterion for the Riemann hypothesis.

    Science.gov (United States)

    Lapidus, Michel L

    2015-08-06

    This research expository article not only contains a survey of earlier work but also contains a main new result, which we first describe. Given c≥0, the spectral operator [Formula: see text] can be thought of intuitively as the operator which sends the geometry onto the spectrum of a fractal string of dimension not exceeding c. Rigorously, it turns out to coincide with a suitable quantization of the Riemann zeta function ζ=ζ(s): a=ζ(∂), where ∂=∂(c) is the infinitesimal shift of the real line acting on the weighted Hilbert space [Formula: see text]. In this paper, we establish a new asymmetric criterion for the Riemann hypothesis (RH), expressed in terms of the invertibility of the spectral operator for all values of the dimension parameter [Formula: see text] (i.e. for all c in the left half of the critical interval (0,1)). This corresponds (conditionally) to a mathematical (and perhaps also, physical) 'phase transition' occurring in the midfractal case when [Formula: see text]. Both the universality and the non-universality of ζ=ζ(s) in the right (resp., left) critical strip [Formula: see text] (resp., [Formula: see text]) play a key role in this context. These new results are presented here. We also briefly discuss earlier joint work on the complex dimensions of fractal strings, and we survey earlier related work of the author with Maier and with Herichi, respectively, in which were established symmetric criteria for the RH, expressed, respectively, in terms of a family of natural inverse spectral problems for fractal strings of Minkowski dimension D∈(0,1), with [Formula: see text], and of the quasi-invertibility of the family of spectral operators [Formula: see text] (with [Formula: see text]).

  6. Effect of spectral range in surface inactivation of Listeria innocua using broad-spectrum pulsed light.

    Science.gov (United States)

    Woodling, Sarah E; Moraru, Carmen I

    2007-04-01

    Pulsed light (PL) treatment is an alternative to traditional thermal treatment that has the potential to achieve several log-cycle reductions in the concentration of microorganisms. One issue that is still debated is related to what specifically causes cell death after PL treatments. The main objective of this work was to elucidate which portions of the PL range are responsible for bacterial inactivation. Stainless steel coupons with controlled surface properties were inoculated with a known concentration of Listeria innocua in the stationary growth phase and treated with 1 to 12 pulses of light at a pulse rate of 3 pulses per s and a pulse width of 360 micros. The effects of the full spectrum (lambda = 180 to 1,100 nm) were compared with the effects obtained when only certain regions of UV, visible, and near-infrared light were used. The effectiveness of the treatments was determined in parallel by the standard plate count and most-probable-number techniques. At a fluence of about 6 J/cm(2), the full-spectrum PL treatment resulted in a 4.08-log reduction of L. innocua on a Mill finish surface, the removal of lambda light resulted in no lethal effects on L. innocua. Overwhelmingly, the portions of the PL spectrum responsible for bacterial death are the UV-B and UV-C spectral ranges (X light (lambda > 400 nm). This work provides additional supporting evidence that cell death in PL treatment is due to exposure to UV light. Additionally, it was shown that even a minor modification of the light path or the UV light spectrum in PL treatments can have a significant negative impact on the treatment intensity and effectiveness.

  7. Study of land surface temperature and spectral emissivity using multi-sensor satellite data

    Indian Academy of Sciences (India)

    P K Srivastava; T J Majumdar; Amit K Bhattacharya

    2010-02-01

    In this study, an attempt has been made to estimate land surface temperatures (LST) and spectral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of about 6000 km2, is a part of Singhbhum–Orissa craton situated in the eastern part of India. TIR data from ASTER, MODIS and Landsat ETM+ have been used in the present study. Telatemp Model AG-42D Portable Infrared Thermometer was used for ground measurements to validate the results derived from satellite (MODIS/ASTER) data. LSTs derived using Landsat ETM+ data of two different dates have been compared with the satellite data (ASTER and MODIS) of those two dates. Various techniques, viz., temperature and emissivity separation (TES) algorithm, gray body adjustment approach in TES algorithm, Split-Window algorithms and Single Channel algorithm along with NDVI based emissivity approach have been used. LSTs derived from bands 31 and 32 of MODIS data using Split-Window algorithms with higher viewing angle (50°) (LST1 and LST2) are found to have closer agreement with ground temperature measurements (ground LST) over waterbody, Dalma forest and Simlipal forest, than that derived from ASTER data (TES with AST 13). However, over agriculture land, there is some uncertainty and difference between the measured and the estimated LSTs for both validation dates for all the derived LSTs. LST obtained using Single Channel algorithm with NDVI based emissivity method in channel 13 of ASTER data has yielded closer agreement with ground measurements recorded over vegetation and mixed lands of low spectral contrast. LST results obtained with TIR band 6 of Landsat ETM+ using Single Channel algorithm show close agreement over Dalma forest, Simlipal forest and waterbody with LSTs obtained using MODIS and ASTER data for a different date. Comparison of LSTs shows good agreement with ground measurements in thermally homogeneous area. However, results in agriculture area with less homogeneity show

  8. Spectral analysis of polynomial potentials and its relation with ABJ/M-type theories

    Energy Technology Data Exchange (ETDEWEB)

    Garcia del Moral, M.P., E-mail: garciamormaria@uniovi.e [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo 18, 33007 Oviedo (Spain); Martin, I., E-mail: isbeliam@usb.v [Departamento de Fisica, Universidad Simon Bolivar, Apartado 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Navarro, L., E-mail: lnavarro@ma.usb.v [Departamento de Matematicas, Universidad Simon Bolivar, Apartado 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Perez, A.J., E-mail: ajperez@ma.usb.v [Departamento de Matematicas, Universidad Simon Bolivar, Apartado 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Restuccia, A., E-mail: arestu@usb.v [Departamento de Fisica, Universidad Simon Bolivar, Apartado 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2010-11-01

    We obtain a general class of polynomial potentials for which the Schroedinger operator has a discrete spectrum. This class includes all the scalar potentials in membrane, 5-brane, p-branes, multiple M2 branes, BLG and ABJM theories. We provide a proof of the discreteness of the spectrum of the associated Schroedinger operators. This is the first step in order to analyze BLG and ABJM supersymmetric theories from a non-perturbative point of view.

  9. A New Approach to the Fundamental Theorem of Surface Theory

    Science.gov (United States)

    Ciarlet, Philippe G.; Gratie, Liliana; Mardare, Cristinel

    2008-06-01

    The fundamental theorem of surface theory classically asserts that, if a field of positive-definite symmetric matrices ( a αβ ) of order two and a field of symmetric matrices ( b αβ ) of order two together satisfy the Gauss and Codazzi-Mainardi equations in a simply connected open subset ω of {mathbb{R}}2 , then there exists an immersion {θ}:ω to {mathbb{R}}3 such that these fields are the first and second fundamental forms of the surface {θ}(ω) , and this surface is unique up to proper isometries in {mathbb{R}}^3 . The main purpose of this paper is to identify new compatibility conditions, expressed again in terms of the functions a αβ and b αβ , that likewise lead to a similar existence and uniqueness theorem. These conditions take the form of the matrix equation partial{A}_2-partial_2{A}_1+{A}_1{A}_2-{A}_2{A}_1={0} in ω, where A 1 and A 2 are antisymmetric matrix fields of order three that are functions of the fields ( a αβ ) and ( b αβ ), the field ( a αβ ) appearing in particular through the square root U of the matrix field {C} = left(begin{array}{lll} a_{11} & a_{12} & 0\\ a_{21} & a_{22} & 0\\ 0 & 0 & 1right). The main novelty in the proof of existence then lies in an explicit use of the rotation field R that appears in the polar factorization {nabla}{Θ}={RU} of the restriction to the unknown surface of the gradient of the canonical three-dimensional extension {Θ} of the unknown immersion {θ} . In this sense, the present approach is more “geometrical” than the classical one. As in the recent extension of the fundamental theorem of surface theory set out by S. M ardare [20 22], the unknown immersion {θ}: ω to {mathbb{R}}^3 is found in the present approach to exist in function spaces “with little regularity”, such as W^{2,p}_loc(ω;{mathbb{R}}^3), p > 2. This work also constitutes a first step towards the mathematical justification of models for nonlinearly elastic shells where rotation fields are introduced as bona fide

  10. Qudit surface codes and gauge theory with finite cyclic groups

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Stephen S [IDA Center for Computing Sciences, 17100 Science Drive, Bowie, MD 20715-4300 (United States); Brennen, Gavin K [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck (Austria)

    2007-03-30

    Surface codes describe quantum memory stored as a global property of interacting spins on a surface. The state space is fixed by a complete set of quasi-local stabilizer operators and the code dimension depends on the first homology group of the surface complex. These code states can be actively stabilized by measurements or, alternatively, can be prepared by cooling to the ground subspace of a quasi-local spin Hamiltonian. In the case of spin-1/2 (qubit) lattices, such ground states have been proposed as topologically protected memory for qubits. We extend these constructions to lattices or more generally cell complexes with qudits, either of prime level or of level d{sup l} for d prime and l {>=} 0, and therefore under tensor decomposition, to arbitrary finite levels. The Hamiltonian describes an exact Z/dZ gauge theory whose excitations correspond to Abelian anyons. We provide protocols for qudit storage and retrieval and propose an interferometric verification of topological order by measuring quasi-particle statistics.

  11. Fermi surface behavior in the ABJM M2-brane theory

    Science.gov (United States)

    DeWolfe, Oliver; Henriksson, Oscar; Rosen, Christopher

    2015-06-01

    We calculate fermionic Green's functions for states of the three-dimensional Aharony-Bergman-Jafferis-Maldacena M2-brane theory at large N using the gauge-gravity correspondence. We embed extremal black brane solutions in four-dimensional maximally supersymmetric gauged supergravity, obtain the linearized Dirac equations for each spin-1 /2 mode that cannot mix with a gravitino, and solve these equations with infalling boundary conditions to calculate retarded Green's functions. For generic values of the chemical potentials, we find Fermi surfaces with universally non-Fermi liquid behavior, matching the situation for four-dimensional N =4 super-Yang-Mills. Fermi surface singularities appear and disappear discontinuously at the point where all chemical potentials are equal, reminiscent of a quantum critical point. One limit of parameter space has zero entropy at zero temperature, and fermionic fluctuations are perfectly stable inside an energy region around the Fermi surface. An ambiguity in the quantization of the fermions is resolved by supersymmetry.

  12. Neutrality Versus Materiality: A Thermodynamic Theory of Neutral Surfaces

    Directory of Open Access Journals (Sweden)

    Rémi Tailleux

    2016-09-01

    Full Text Available In this paper, a theory for constructing quasi-neutral density variables γ directly in thermodynamic space is formulated, which is based on minimising the absolute value of a purely thermodynamic quantity J n . Physically, J n has a dual dynamic/thermodynamic interpretation as the quantity controlling the energy cost of adiabatic and isohaline parcel exchanges on material surfaces, as well as the dependence of in-situ density on spiciness, in a description of water masses based on γ, spiciness and pressure. Mathematically, minimising | J n | in thermodynamic space is showed to be equivalent to maximising neutrality in physical space. The physics of epineutral dispersion is also reviewed and discussed. It is argued, in particular, that epineutral dispersion is best understood as the aggregate effect of many individual non-neutral stirring events (being understood here as adiabatic and isohaline events with non-zero buoyancy, so that it is only the net displacement aggregated over many events that is approximately neutral. This new view resolves an apparent paradox between the focus in neutral density theory on zero-buoyancy motions and the overwhelming evidence that lateral dispersion in the ocean is primarily caused by non-zero buoyancy processes such as tides, residual currents and sheared internal waves. The efficiency by which a physical process contributes to lateral dispersion can be characterised by its energy signature, with those processes releasing available potential energy (negative energy cost being more efficient than purely neutral processes with zero energy cost. The latter mechanism occurs in the wedge of instability, and its source of energy is the coupling between baroclinicity, thermobaricity, and density compensated temperature/salinity anomalies. Such a mechanism, which can only exist in a salty ocean, is speculated to be important for dissipating spiciness anomalies and neutral helicity. The paper also discusses potential

  13. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2017-07-01

    Full Text Available Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here, we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during a 19-month period (June 2009–December 2010 by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm at the Department of Energy’s Atmospheric Radiation Measurement (ARM Mobile Facility (AMF site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS observations, and also a composite-based albedo. We demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04 than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.

  14. The Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System: Spectral Variation on Kuiper Belt Objects

    CERN Document Server

    Fraser, Wesley C; Glass, Florian

    2015-01-01

    Here we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System. 12 targets were re-observed with the Wide Field Camera 3 in optical and NIR wavebands designed to compliment those used during the first visit. Additionally, all observations originally presented by Fraser and Brown (2012) were reanalyzed through the same updated photometry pipeline. A reanalysis of the optical and NIR colour distribution reveals a bifurcated optical colour distribution and only two identifiable spectral classes, each of which occupies a broad range of colours and have correlated optical and NIR colours, in agreement with our previous findings. We report the detection of significant spectral variations on 5 targets which cannot be attributed to photometry errors, cosmic rays, point spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have ...

  15. A spectral scheme for Kohn–Sham density functional theory of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amartya S., E-mail: baner041@umn.edu; Elliott, Ryan S., E-mail: relliott@umn.edu; James, Richard D., E-mail: james@umn.edu

    2015-04-15

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  16. Analysis IV integration and spectral theory, harmonic analysis, the garden of modular delights

    CERN Document Server

    Godement, Roger

    2015-01-01

    Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be modern and classical, is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.

  17. Spectral Reflectance Characteristics of Different Snow and Snow-Covered Land Surface Objects and Mixed Spectrum Fitting

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-hua; ZHOU Zheng-ming; WANG Pei-juan; YAO Feng-mei; Liming Yang

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area.The result showed that for a pure snow spectrum,the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1 030 nm wavelength.Compared with fresh snow,the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1 300,1 700~1 800 and 2 200~2 300 nm,the lowest was from the compacted snow and frozen ice.For the vegetation and snow mixed spectral characteristics,it was indicated that the spectral reflectance increased for the snow-covered land types (including pine leaf with snow and pine leaf on snow background),due to the influence of snow background in the range of 350~1 300 nm.However,the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic.In the end,based on the spectrum analysis of snow,vegetation,and mixed snow/vegetation pixels,the mixed spectral fitting equations were established,and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones (correlation coefficient R2 =0.950 9).

  18. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting.

    Science.gov (United States)

    Zhang, Jia-Hua; Zhou, Zheng-Ming; Wang, Pei-Juan; Yao, Feng-Mei; Liming, Yang

    2011-09-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1 030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300-1 300, 1 700-1 800 and 2 200-2 300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types (including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350-1 300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones (correlation coefficient R2 = 0.950 9).

  19. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  20. Microscopic theory of the residual surface resistivity of Rashba electrons

    Science.gov (United States)

    Bouaziz, Juba; Lounis, Samir; Blügel, Stefan; Ishida, Hiroshi

    2016-07-01

    A microscopic expression of the residual electrical resistivity tensor is derived in linear response theory for Rashba electrons scattering at a magnetic impurity with cylindrical or noncylindrical potential. The behavior of the longitudinal and transversal residual resistivity is obtained analytically and computed for an Fe impurity at the Au(111) surface. We studied the evolution of the resistivity tensor elements as a function of the Rashba spin-orbit strength and the magnetization direction of the impurity. We found that the absolute values of longitudinal resistivity reduce with increasing spin-orbit strength of the substrate and that the scattering of the conduction electrons at magnetic impurities with magnetic moments pointing in directions not perpendicular to the surface plane produce a planar Hall effect and an anisotropic magnetoresistance even if the impurity carries no spin-orbit interaction. Functional forms are provided describing the anisotropy of the planar Hall effect and the anisotropic magnetoresistance with respect to the direction of the impurity moment. In the limit of no spin-orbit interaction and a nonmagnetic impurity of cylindrical symmetry, the expression of the residual resistivity of a two-dimensional electron gas has the same simplicity and form as for the three-dimensional electron gas [J. Friedel, J. Nuovo. Cim. 7, 287 (1958), 10.1007/BF02751483] and can also be expressed in terms of scattering phase shifts.

  1. Mending Milankovitch theory: obliquity amplification by surface feedbacks

    Directory of Open Access Journals (Sweden)

    C. R. Tabor

    2013-07-01

    Full Text Available Milankovitch theory states that orbitally induced changes in high-latitude summer insolation dictate the waxing and waning of ice-sheets. Accordingly, precession should dominate the ice-volume response because it most strongly modulates summer insolation intensity. However, Early Pleistocene (2.6–0.8 Ma ice-volume proxy records vary almost exclusively at the frequency of the obliquity cycle. To explore this paradox, we use an Earth system model coupled with a dynamic ice-sheet to separate the climate responses to idealized transient orbits of obliquity and precession that maximize insolation changes. Our results show that positive surface albedo feedbacks between high-latitude annual-mean insolation, ocean heat flux and sea-ice coverage, and boreal forest/tundra exchange enhance the ice-volume response to obliquity forcing relative to precession forcing. These surface feedbacks, in combination with modulation of the precession cycle power by eccentricity, may explain the dominantly 41 kyr cycles in global ice volume of the Early Pleistocene.

  2. Power spectral analysis of surface electromyography (EMG) at matched contraction levels of the first dorsal interosseous muscle in stroke survivors.

    Science.gov (United States)

    Li, Xiaoyan; Shin, Henry; Zhou, Ping; Niu, Xun; Liu, Jie; Rymer, William Zev

    2014-05-01

    The objective of this study was to help assess complex neural and muscular changes induced by stroke using power spectral analysis of surface electromyogram (EMG) signals. Fourteen stroke subjects participated in the study. They were instructed to perform isometric voluntary contractions by abducting the index finger. Surface EMG signals were collected from the paretic and contralateral first dorsal interosseous (FDI) muscles with forces ranging from 30% to 70% maximum voluntary contraction (MVC) of the paretic muscle. Power spectral analysis was performed to characterize features of the surface EMG in paretic and contralateral muscles at matched forces. A Linear Mixed Model was applied to identify the spectral changes in the hemiparetic muscle and to examine the relation between spectral parameters and contraction levels. Regression analysis was performed to examine the correlations between spectral characteristics and clinical features. Differences in power spectrum distribution patterns were observed in paretic muscles when compared with their contralateral pairs. Nine subjects showed increased mean power frequency (MPF) in the contralateral side (>15 Hz). No evident spectrum difference was observed in 3 subjects. Only 2 subjects had higher MPF in the paretic muscle than the contralateral muscle. Pooling all subjects' data, there was a significant reduction of MPF in the paretic muscle compared with the contralateral muscle (paretic: 168.7 ± 7.6 Hz, contralateral: 186.1 ± 8.7 Hz, mean ± standard error, F=36.56, ppower spectrum did not confirm a significant correlation between the MPF and contraction force in either hand (F=0.7, p>0.5). There was no correlation between spectrum difference and Fugl-Meyer or Chedoke scores, or ratio of paretic and contralateral MVC (p>0.2). There appears to be complex muscular and neural processes at work post stroke that may impact the surface EMG power spectrum. The majority of the tested stroke subjects had lower MPF in the

  3. Automated mapping of impervious surfaces in urban and suburban areas: Linear spectral unmixing of high spatial resolution imagery

    Science.gov (United States)

    Yang, Jian; He, Yuhong

    2017-02-01

    Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.

  4. Adaption of the MODIS aerosol retrieval algorithm by airborne spectral surface reflectance measurements over urban areas: a case study

    Directory of Open Access Journals (Sweden)

    E. Jäkel

    2015-07-01

    Full Text Available MODIS retrievals of the aerosol optical depth (AOD are biased over urban areas, where surface reflectance is not well characterized. Since the operational MODIS aerosol retrieval for dark targets assumes fixed spectral slopes to calculate the surface reflectance at 0.47 μm, the algorithm may fail in urban areas with different spectral characteristics of the surface reflectance. To investigate this bias we have implemented variable spectral slopes into the operational MODIS aerosol algorithms of Collection 5 (C5 and C6. The variation of slopes is based on airborne measurements of surface reflectances over the city of Zhongshan, China. AOD retrieval results of the operational and the modified algorithms were compared for a MODIS measurement over Zhongshan. For this case slightly lower AOD values were derived using the modified algorithm. The retrieval methods were additionally applied to MODIS data of the Beijing area for a period between 2010–2014 when also AERONET data were available. A reduction of the differences between the AOD retrieved using the modified C5 algorithm and AERONET was found, whereby the mean difference from 0.31 ± 0.11 for the operational C5 and 0.18 ± 0.12 for the operational C6 where reduced to a mean difference of 0.09 ± 0.18 by using the modified C5 retrieval. Furthermore, the sensitivity of the MODIS AOD retrieval for several surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectances were used as input for the retrieval methods. It is shown that the operational MODIS AOD retrieval over land reproduces the AOD reference input of 0.85 for dark surface types [retrieved AOD = 0.87 (C5]. An overestimation of AOD = 0.99 is found for urban surfaces, whereby the modified C5 algorithm shows a good performance with a retrieved value of AOD = 0.86.

  5. Zinc surface complexes on birnessite: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison

    2009-01-05

    Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.

  6. Spectral Equations-Of-State Theory for Dense, Partially Ionized Matter

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, A B

    2004-05-14

    The Schroedinger equation is solved in time and space to implement a finite-temperature equation-of-state theory for dense, partially ionized matter. The time-dependent calculation generates a spectrum of quantum states. Eigenfunctions are calculated from a knowledge of the spectrum and used to calculate the electronic pressure and energy. Results are given for LID and compared with results from the INFERNO model.

  7. Magneto-electroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    OpenAIRE

    Liu,Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-01-01

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magneto-electroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from th...

  8. Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions.

    Science.gov (United States)

    Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G

    2015-11-05

    Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.

  9. Spectral Analysis

    CERN Document Server

    Cecconi, Jaures

    2011-01-01

    G. Bottaro: Quelques resultats d'analyse spectrale pour des operateurs differentiels a coefficients constants sur des domaines non bornes.- L. Garding: Eigenfuction expansions.- C. Goulaouic: Valeurs propres de problemes aux limites irreguliers: applications.- G. Grubb: Essential spectra of elliptic systems on compact manifolds.- J.Cl. Guillot: Quelques resultats recents en Scattering.- N. Schechter: Theory of perturbations of partial differential operators.- C.H. Wilcox: Spectral analysis of the Laplacian with a discontinuous coefficient.

  10. Theory of magnetic transition metal nanoclusters on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lounis, S.

    2007-04-17

    This thesis is motivated by the quest for the understanding and the exploration of complex magnetism provided by atomic scale magnetic clusters deposited on surfaces or embedded in the bulk. Use is made of the density functional theory (DFT). Acting within this framework, we have developed and implemented the treatment of non-collinear magnetism into the Juelich version of the full-potential Korringa-Kohn-Rostoker Green Function (KKR-GF) method. Firstly, the method was applied to 3d transition-metal clusters on different ferromagnetic surfaces. Different types of magnetic clusters where selected. In order to investigate magnetic frustration due to competing interactions within the ad-cluster we considered a (001) oriented surface of fcc metals, a topology which usually does not lead to non-collinear magnetism. We tuned the strength of the magnetic coupling between the ad-clusters and the ferromagnetic surface by varying the substrate from the case of Ni(001) with a rather weak hybridization of the Ni d-states with the adatom d-states to the case of Fe{sub 3ML}/Cu(001) with a much stronger hybridization due to the larger extend of the Fe wavefunctions. On Ni(001), the interaction between the Cr- as well as the Mn-dimer adatoms is of antiferromagnetic nature, which is in competition with the interaction with the substrate atoms. After performing total energy calculations we find that for Cr-dimer the ground state is collinear whereas the Mn-dimer prefers the non-collinear configuration as ground state. Bigger clusters are found to be magnetically collinear. These calculations were extended to 3d multimers on Fe{sub 3ML}/Cu(001). All neighboring Cr(Mn) moments in the compact tetramer are antiferromagnetically aligned in-plane, with the directions slightly tilted towards (outwards from) the substrate to gain some exchange interaction energy. The second type of frustration was investigated employing a Ni(111) surface, a surface with a triangular lattice of atoms, were

  11. Vibrational spectral investigation, NBO, first hyperpolarizability and UV-Vis spectral analysis of 3,5-dichlorobenzonitrile and m-bromobenzonitrile by ab initio and density functional theory methods.

    Science.gov (United States)

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-05

    The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated.

  12. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.; Gan, Wei; Wang, Hong-Fei

    2016-11-10

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group has been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.

  13. Polyhedral oligomeric silsesquioxane trisilanols as pigment surface modifiers for fluoropolymer based thickness sensitive spectrally selective (TSSS) paint coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jerman, I.; Mihelcic, M.; Orel, B. [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Verhovsek, D. [Cinkarna - METALURSKO KEMICNA INDUSTRIJA CELJE, d.d. Kidriceva 26, 3001 Celje (Slovenia); Kovac, J. [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2011-02-15

    Thickness insensitive spectrally selective (TISS) paint coatings based on black pigment (PK 3060, Ferro Company) dispersed in a fluoropolymeric resin binder (Lumiflon, Asahi Company, Japan) have recently been made without added aluminium flakes and their properties have been reported for the first time. In this study we investigated in more detail the effect of trisilanol isobutyl (IB{sub 7} T{sub 7}(OH){sub 3}) polyhedral oligomeric silsesquioxane (trisilanol POSS) on the surface modification of PK 3060 pigment. Infrared spectral analysis of the surface modified pigment particles provided firm evidence for the formation of a POSS layer on the surface of the pigment particles, substantiated by the corresponding TEM and Energy Dispersive X-ray Spectroscopy (EDXS) measurements of functionalized and as-received pigments. SEM micrographs of the diluted dispersions in fluoropolymeric resin binder revealed uniform distribution of pigment particles with an average size of {proportional_to}300 nm and the beneficial effect of the pigment functionalization was assessed from the measured spectral selectivity of coatings of various thicknesses. (author)

  14. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  15. Blind Forensics of Successive Geometric Transformations in Digital Images Using Spectral Method: Theory and Applications.

    Science.gov (United States)

    Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing

    2017-06-01

    Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.

  16. Impact of environmental factors on the spectral characteristics of lava surfaces:field spectrometry of basaltic lava flows on Tenerife, Canary Islands, Spain

    OpenAIRE

    Long Li; Carmen Solana; Frank Canters; Jonathan C.-W. Chan; Matthieu Kervyn

    2015-01-01

    We report on spectral reflectance measurements of basaltic lava flows on Tenerife Island, Spain. Lava flow surfaces of different ages, surface roughness and elevations were systematically measured using a field spectroradiometer operating in the range of 350–2500 nm. Surface roughness, oxidation and lichen coverage were documented at each measured site. Spectral properties vary with age and morphology of lava. Pre-historical lavas with no biological coverage show a prominent increase in spect...

  17. Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2014-08-01

    Full Text Available We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1 spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (415, 500, 615, 673, and 870 nm; (2 tower-based measurements of local surface albedo at the same wavelengths; and (3 areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS observations. These integrated datasets cover both temporally long (2008–2013 and short (April–May 2010 periods at the Atmospheric Radiation Measurement (ARM Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE, defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE ≤ 0.015 and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated.

  18. Optimization of spectral sensitivities of mosaic five-band camera for estimating chromophore densities from skin images including shading and surface reflections

    Science.gov (United States)

    Hirose, Misa; Akaho, Rina; Maita, Chikashi; Sugawara, Mai; Tsumura, Norimichi

    2016-06-01

    In this paper, the spectral sensitivities of a mosaic five-band camera were optimized using a numerical skin phantom to perform the separation of chromophore densities, shading and surface reflection. To simulate the numerical skin phantom, the spectral reflectance of skin was first calculated by Monte Carlo simulation of photon migration for different concentrations of melanin, blood and oxygen saturation levels. The melanin and hemoglobin concentration distributions used in the numerical skin phantom were obtained from actual skin images by independent component analysis. The calculated components were assigned as concentration distributions. The spectral sensitivities of the camera were then optimized using a nonlinear technique to estimate the spectral reflectance for skin separation. In this optimization, the spectral sensitivities were assumed to be normally distributed, and the sensor arrangement was identical to that of a conventional mosaic five-band camera. Our findings demonstrated that spectral estimation could be significantly improved by optimizing the spectral sensitivities.

  19. Nonabelian Jacobian of smooth projective surfaces and representation theory

    CERN Document Server

    Reider, Igor

    2011-01-01

    The paper studies representation theoretic aspects of a nonabelian version of the Jacobian for a smooth complex projective surface $X$ introduced in [R1]. The sheaf of reductive Lie algebras $\\bf\\calG$ associated to the nonabelian Jacobian is determined and its Lie algebraic properties are explicitly related to the geometry of configurations of points on $X$. In particular, it is shown that the subsheaf of centers of $\\bf\\calG$ determines a distinguished decomposition of configurations into the disjoint union of subconfigurations. Furthermore, it is shown how to use $sl_2$-subalgebras associated to certain nilpotent elements of $\\bf\\calG$ to write equations defining con?figurations of $X$ in appropriate projective spaces. The same nilpotent elements are used to establish a relation of the nonabelian Jacobian with such fundamental objects in the representation theory as nilpotent orbits, Springer resolution and Springer fibres of simple Lie algebras of type $A_n$, for appropriate values of $n$. This leads to a...

  20. Spectral ratios of ambient noise based on the diffuse field theory: Improved inversion of H/V in layered media using analytical properties of Green functions

    Science.gov (United States)

    Sanchez-Sesma, F. J.; Perton, M.; Piña, J.; Luzón, F.; Garcia-Jerez, A.; Rodriguez-Castellanos, A.

    2013-12-01

    It is well know the popularity of H/V spectral ratio to extract the dominant frequency of soil sites for microzonation studies (Nakamura, 1989). It is relatively easy to make measurements as only one station is needed. Despite its success, this approach had not solid theoretical basis until a proposal to link ambient noise vibrations with diffuse field theory was made (Sánchez-Sesma et al, 2011a). Based on this theory the average spectral density of a given motion of a point, also called directional energy density (Perton et al, 2009), is proportional to the imaginary part of Green function precisely at the observation point. The proportionality implies that vector components are all multiplied by the current spectral level of the diffuse illumination. Appropriate normalization is crucial to make the experimental spectral ratios closer to the theoretical counterpart. According to this theory the square of H/V is twice the ratio of ImG11 and ImG33, where ImG11 and ImG33 are the imaginary part of Green functions at the load point for horizontal and vertical components, respectively. From ImG11 it could be possible through Fourier analysis to extract pseudo reflections and thus constrain the inversion of soil profile. We propose to assess ImG11 removing the influence of illumination spectrum using the H/V spectral ratio and an estimate of ImG33 (obtained from a priori model) by means of ImG11=0.5(H/V)2*ImG33. It has been found that ImG33 is less sensitive to details of stratigraphy. In fact, the most relevant property is the Poisson ratio of the uppermost layer which controls the slope in high frequency (Sánchez-Sesma et al, 2011b). Pseudo-reflection seismograms are thus obtained from Fourier transform, back to time domain, of i{ImG11-ImG11HSS}, where ImG11HSS is the imaginary part of Green functions at the load point for horizontal load at the surface of a half-space with the properties of the uppermost layer. With the obtained model ImG33 can be updated and the

  1. Initial analyses of surface spectral radiance between observations and Line-By-Line calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.D.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miller, N.E.; Shippert, T.R.; Turner, D.D. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1996-04-01

    The evaluation an improvement of radiative transfer calculations are essential to attain improved performance of general circulation models (GCMs) for climate change applications. A Quality Measurement Experiment (QME) is being conducted to analyze the spectral residuals between the downwelling longwave radiance measured by the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) and spectral radiance calculated by the Line-By-Line Radiative Transfer Model (LBLRTM). The three critical components of this study are (1) the assessment of the quality of the high resolution AERI measurements, (2) the assessment of the ability to define the atmospheric state in the radiating column, and (3) the evaluation of the capability of LBLRTM. Validations have been performed on spectral radiance data, obtained from April 1994 through July 1994, through the analysis of the spectral interval and physical process. The results are archived as a function of time, enabling the retrieval of specific data and facilitating investigations and diurnal effects, seasonal effects, and longer-term trends. While the initial focus is restricted to clear-sky analyses, efforts are under way to include the effects of clouds and aerosols. Plans are well formulated for the extension of the current approach to the shortwave. An overview of the concept of the QME is described by Miller et al. (1994), and a detailed description of this study is provided by Clough et al. (1994).

  2. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  3. Spectral re-distribution and surface loss effects in Swift XRT (XMM-Newton EPIC) MOS CCDs

    CERN Document Server

    Short, A D; Turner, M J L

    2002-01-01

    In the course of testing and selecting the EPIC MOS CCDs for the XMM-Newton observatory, the developed a Monte-Carlo model of the CCD response. Among other things, this model was used to investigate surface loss effects evident at low energies. By fitting laboratory data, these losses were characterised as a simple function of X-ray interaction depth and this result enabled the spectral re-distribution itself to be modelled as a simple analytical function. Subsequently, this analytical function has been used to generate the response matrix for the EPIC MOS instruments and will now be employed to model the spectral re-distribution for the Swift XRT CCD.

  4. Fusion of spectral and shape features for identification of urban surface cover types using reflective and thermal hyperspectral data

    Science.gov (United States)

    Segl, K.; Roessner, S.; Heiden, U.; Kaufmann, H.

    The urban environment is characterized by an intense multifunctional use of available spaces, where the preservation of open green spaces is of special importance. For this purpose, area-wide urban biotope mapping based on CIR aerial photographs has been carried out for the large cities in Germany during the last 10 years. Because of dynamic urban development and high mapping costs, the municipal authorities are interested in effective methods for mapping urban surface cover types, which can be used for evaluation of ecological conditions in urban structures and supporting updates of biotope maps. Against this background, airborne hyperspectral remote sensing data of the DAIS 7915 instrument have been analyzed for a test site in the city of Dresden (Germany) with regard to their potential for automated material-oriented identification of urban surface cover types. Previous investigations have shown that the high spectral and spatial variabilities of these data require the development of special methods, which are capable of dealing with the resulting mixed-pixel problem in its specific characteristics in urban areas. Earlier, methodological developments led to an approach based on a combination of spectral classification and pixel-oriented unmixing techniques to facilitate sensible endmember selection based on the reflective bands of the DAIS instrument. This approach is now extended by a shape-based classification technique including the thermal bands of the DAIS instrument to improve the detection of buildings during the process of identifying seedling pixels, which represent the starting points for linear spectral unmixing. This new approach increases the reliability of differentiation between buildings and open spaces, leading to more accurate results for the spatial distribution of surface cover types. Thus, the new approach significantly enhances the exploitation of the information potential of the hyperspectral DAIS 7915 data for an area-wide identification

  5. Second order classical perturbation theory for the sticking probability of heavy atoms scattered on surfaces.

    Science.gov (United States)

    Sahoo, Tapas; Pollak, Eli

    2015-08-14

    A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.

  6. Second order classical perturbation theory for the sticking probability of heavy atoms scattered on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Tapas; Pollak, Eli [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2015-08-14

    A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.

  7. [The design and implementation of the web typical surface object spectral information system in arid areas based on .NET and SuperMap].

    Science.gov (United States)

    Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang

    2011-07-01

    The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.

  8. On topological approach to local theory of surfaces in Calabi-Yau threefolds

    DEFF Research Database (Denmark)

    Gukov, Sergei; Liu, Chiu-Chu Melissa; Sheshmani, Artan

    2017-01-01

    We study the web of dualities relating various enumerative invariants, notably Gromov-Witten invariants and invariants that arise in topological gauge theory. In particular, we study Donaldson-Thomas gauge theory and its reductions to D=4 and D=2 which are relevant to the local theory of surfaces...

  9. On topological approach to local theory of surfaces in Calabi-Yau threefolds

    DEFF Research Database (Denmark)

    Gukov, Sergei; Liu, Chiu-Chu Melissa; Sheshmani, Artan;

    2016-01-01

    We study the web of dualities relating various enumerative invariants, notably Gromov-Witten invariants and invariants that arise in topological gauge theory. In particular, we study Donaldson-Thomas gauge theory and its reductions to D=4 and D=2 which are relevant to the local theory of surfaces...

  10. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    Science.gov (United States)

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand.

  11. Spectral analysis of atmospheric composition: application to surface ozone model-measurement comparisons

    Science.gov (United States)

    Bowdalo, Dene R.; Evans, Mathew J.; Sofen, Eric D.

    2016-07-01

    Models of atmospheric composition play an essential role in our scientific understanding of atmospheric processes and in providing policy strategies to deal with societally relevant problems such as climate change, air quality, and ecosystem degradation. The fidelity of these models needs to be assessed against observations to ensure that errors in model formulations are found and that model limitations are understood. A range of approaches are necessary for these comparisons. Here, we apply a spectral analysis methodology for this comparison. We use the Lomb-Scargle periodogram, a method similar to a Fourier transform, but better suited to deal with the gapped data sets typical of observational data. We apply this methodology to long-term hourly ozone observations and the equivalent model (GEOS-Chem) output. We show that the spectrally transformed observational data show a distinct power spectrum with regimes indicative of meteorological processes (weather, macroweather) and specific peaks observed at the daily and annual timescales together with corresponding harmonic peaks at one-half, one-third, etc., of these frequencies. Model output shows corresponding features. A comparison between the amplitude and phase of these peaks introduces a new comparison methodology between model and measurements. We focus on the amplitude and phase of diurnal and seasonal cycles and present observational/model comparisons and discuss model performance. We find large biases notably for the seasonal cycle in the mid-latitude Northern Hemisphere where the amplitudes are generally overestimated by up to 16 ppbv, and phases are too late on the order of 1-5 months. This spectral methodology can be applied to a range of model-measurement applications and is highly suitable for Multimodel Intercomparison Projects (MIPs).

  12. Program in C for studying characteristic properties of two-body interactions in the framework of spectral distribution theory

    CERN Document Server

    Launey, K D; Dytrych, T; Draayer, J P

    2014-01-01

    We present a program in C that employs spectral distribution theory for studies of characteristic properties of a many-particle quantum-mechanical system and the underlying few-body interaction. In particular, the program focuses on two-body nuclear interactions given in a JT-coupled harmonic oscillator basis and calculates correlation coefficients, a measure of similarity of any two interactions, as well as Hilbert-Schmidt norms specifying interaction strengths. An important feature of the program is its ability to identify the monopole part (centroid) of a 2-body interaction, as well as its 'density-dependent' one-body and two-body part, thereby providing key information on the evolution of shell gaps and binding energies for larger nuclear systems. As additional features, we provide statistical measures for 'density-dependent' interactions, as well as a mechanism to express an interaction in terms of two other interactions. This, in turn, allows one to identify, e.g., established features of the nuclear in...

  13. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    Science.gov (United States)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S.; Shirley, Eric L.; Prendergast, David

    2017-03-01

    Constrained-occupancy delta-self-consistent-field (Δ SCF ) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1 s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The Δ SCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle Δ SCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  14. Inferring planar disorder in close-packed structures via ε-machine spectral reconstruction theory: examples from simulated diffraction patterns.

    Science.gov (United States)

    Varn, D P; Canright, G S; Crutchfield, J P

    2013-07-01

    A previous paper detailed a novel algorithm, ε-machine spectral reconstruction theory (εMSR), that infers pattern and disorder in planar-faulted, close-packed structures directly from X-ray diffraction patterns [Varn et al. (2013). Acta Cryst. A69, 197-206]. Here εMSR is applied to simulated diffraction patterns from four close-packed crystals. It is found that, for stacking structures with a memory length of three or less, εMSR reproduces the statistics of the stacking structure; the result being in the form of a directed graph called an ε-machine. For stacking structures with a memory length larger than three, εMSR returns a model that captures many important features of the original stacking structure. These include multiple stacking faults and multiple crystal structures. Further, it is found that εMSR is able to discover stacking structure in even highly disordered crystals. In order to address issues concerning the long-range order observed in many classes of layered materials, several length parameters are defined, calculable from the ε-machine, and their relevance is discussed.

  15. Theory of optical excitation and relaxation phenomena at semiconductor surfaces: linking density functional and density matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N. [Technische Universitaet Berlin, Institut fuer Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Berlin (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Scheffler, M. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Kratzer, P. [Universitaet Duisburg-Essen, Fachbereich Physik - Theoretische Physik, Duisburg (Germany); Knorr, A. [Technische Universitaet Berlin, Institut fuer Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Berlin (Germany)

    2007-08-15

    A theory for the description of optical excitation and the subsequent phonon-induced relaxation dynamics of nonequilibrium electrons at semiconductor surfaces is presented. In the first part, the fundamental dynamical equations for electronic occupations and polarisations are derived using density matrix formalism (DMT) for a surface-bulk system including the interaction of electrons with the optical field and electron-phonon interactions. The matrix elements entering these equations are either determined empirically or by density functional theory (DFT) calculations. In the subsequent parts of the paper, the dynamics at two specific semiconductor surfaces are discussed in detail. The electron relaxation dynamics underlying a time-resolved two photon photoemission experiment at an InP surface is investigated in the limit of a parabolic four band model. Moreover, the electron relaxation dynamics at a Si(100) surface is analysed. Here, the coupling parameters and the band structure are obtained from an DFT calculations. (orig.)

  16. Adaption of the MODIS aerosol retrieval algorithm using airborne spectral surface reflectance measurements over urban areas: a case study

    Science.gov (United States)

    Jäkel, E.; Mey, B.; Levy, R.; Gu, X.; Yu, T.; Li, Z.; Althausen, D.; Heese, B.; Wendisch, M.

    2015-12-01

    MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It

  17. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Kanayama, K.; Endo, N.; Koromohara, K.; Takayama, H. [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  18. Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries

    NARCIS (Netherlands)

    Chen, F.; Yang, S.; Su, Zhongbo; Wang, K.

    2016-01-01

    Land surface emissivity (LSE) is a prerequisite for retrieving land surface temperature (LST) through single channel methods. According to error model, a 0.01 (1%) uncertainty of LSE may result in a 0.5 K error in LST under a moderate condition, while an obvious error (approximately 1 K) is possible

  19. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand

    NARCIS (Netherlands)

    Nolet, Corjan; Poortinga, Ate; Roosjen, Peter; Bartholomeus, Harm; Ruessink, Gerben

    2014-01-01

    Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure

  20. Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-10-25

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (≤0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for “nearby” overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.

  1. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  2. Mapping Chemical and Structural Composition of Pharmaceutical and Biological Samples by Raman, Surface-Enhanced Raman and Fluorescence Spectral Imaging

    Science.gov (United States)

    Chourpa, Igor; Cohen-Jonathan, Simone; Dubois, Pierre

    Raman spectroscopy is an analytical technique recognised for its structural and conformational specificity. The efficient discrimination of molecular species by Raman is particularly potent for multidimensional microscopic imaging of complex biological environment, as demonstrated in the present book. The commonly admitted problem of Raman, low sensitivity, can often be circumvented due to high output instruments and via approaches like RRS (resonance Raman scattering), SERS (surface-enhanced Raman scattering), TERS (tip-enhanced Raman scattering) or CARS (coherent anti-Stokes Raman scattering). In contrast to the latter, RRS and SERS are realizable with less sophisticated set-up based on common Raman systems. Although more invasive than RRS, SERS provides better sensitivity and quenching of fluorescence. SERRS (surface-enhanced resonance Raman scattering) spectroscopy can be used in coupling with fluorescence and competes in selectivity and sensitivity with spectrofluorimetry. In the chapter below, we use recent applications made in our group to illustrate the use of Raman and SERRS spectral imaging for characterization of biological samples (animal subcutaneous tissue, human cancer cells) and pharmaceutical samples (microparticles for drug delivery, fibres for wound dressing). After a brief description of experimental details on spectral imaging, the chapter will focus on results concerning (i) biocompatible pharmaceutical materials made of alginates and (ii) anticancer drugs in pharmaceutical forms and in biological systems.

  3. Spectral Ranking

    CERN Document Server

    Vigna, Sebastiano

    2009-01-01

    This note tries to attempt a sketch of the history of spectral ranking, a general umbrella name for techniques that apply the theory of linear maps (in particular, eigenvalues and eigenvectors) to matrices that do not represent geometric transformations, but rather some kind of relationship between entities. Albeit recently made famous by the ample press coverage of Google's PageRank algorithm, spectral ranking was devised more than fifty years ago, almost exactly in the same terms, and has been studied in psychology and social sciences. I will try to describe it in precise and modern mathematical terms, highlighting along the way the contributions given by previous scholars.

  4. Modeling and Predicting the Effect of Surface Oxidation on the Normal Spectral Emissivity of Aluminum 5052 at 800 K to 910 K

    Science.gov (United States)

    Shi, Deheng; Zou, Fenghui; Zhu, Zunlue; Sun, Jinfeng

    2016-01-01

    In this study, we tried to develop a model to predict the effect of surface oxidization on the normal spectral emissivity of aluminum 5052 at a temperature range of 800 to 910 K and wavelength of 1.5 \\upmu m. In experiments, specimens were heated in air for 6 h at certain temperatures. Two platinum-rhodium thermocouples were symmetrically welded onto the front surface of the specimens near the measuring area for accurate monitoring of the temperature at the specimen surface. The temperatures measured by the two thermocouples had an uncertainty of 1 K. The normal spectral emissivity values were measured over the 6-h heating period at temperatures from 800 K to 910 K in increments of 10 K. Strong oscillations in the normal spectral emissivity were observed at each temperature. These oscillations were determined to form by the interference between the radiation stemming from the oxide layer and radiation from the substrate. The present measurements were compared with previous experimental results, and the variation in the normal spectral emissivity at given temperatures was evaluated. The uncertainty of the normal spectral emissivity caused only by the surface oxidization was found to be approximately 12.1 % to 21.8 %, and the corresponding uncertainty in the temperature caused only by the surface oxidization was approximately 9.1 K to 15.2 K. The model can reproduce the normal spectral emissivity well, including the strong oscillations that occur during the initial heating period.

  5. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Leila Hassan-Esfahani

    2015-03-01

    Full Text Available Many crop production management decisions can be informed using data from high-resolution aerial images that provide information about crop health as influenced by soil fertility and moisture. Surface soil moisture is a key component of soil water balance, which addresses water and energy exchanges at the surface/atmosphere interface; however, high-resolution remotely sensed data is rarely used to acquire soil moisture values. In this study, an artificial neural network (ANN model was developed to quantify the effectiveness of using spectral images to estimate surface soil moisture. The model produces acceptable estimations of surface soil moisture (root mean square error (RMSE = 2.0, mean absolute error (MAE = 1.8, coefficient of correlation (r = 0.88, coefficient of performance (e = 0.75 and coefficient of determination (R2 = 0.77 by combining field measurements with inexpensive and readily available remotely sensed inputs. The spatial data (visual spectrum, near infrared, infrared/thermal are produced by the AggieAir™ platform, which includes an unmanned aerial vehicle (UAV that enables users to gather aerial imagery at a low price and high spatial and temporal resolutions. This study reports the development of an ANN model that translates AggieAir™ imagery into estimates of surface soil moisture for a large field irrigated by a center pivot sprinkler system.

  6. Spectral luminescent properties of bacteriochlorin and aluminum phthalocyanine nanoparticles as hydroxyapatite implant surface coating

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The development and the spectral research of unique coating as crystalline nanoparticles of IR photosensitizers were performed for the creation of hydroxyapatite implants with photobactericidal properties. It has been proved that by the interaction of nanoparticles covering implant with the polar solvent, which simulates the interaction of the implant with the biocomponents in vivo (fast proliferating and with immunocompetent cells, photosensitizers nanoparticles change the spectroscopic properties, becoming fluorescent and phototoxic. Thus, the developed coating based on crystalline photosensitizer nanoparticles with studied specific properties should have antibacterial, anti-inflammatory effect by the photodynamic treatment in the near implant area. This research opens the prospect of the local prevention of inflammatory and autoimmune reactions in the area of implantation. The results of the study suggest a promising this technology in order to create implants with photobactericidal properties.

  7. Surface and interfacial tension measurement, theory, and applications

    CERN Document Server

    Hartland, Stanley

    2004-01-01

    This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such a

  8. Impact of Environmental Factors on the Spectral Characteristics of Lava Surfaces: Field Spectrometry of Basaltic Lava Flows on Tenerife, Canary Islands, Spain

    Directory of Open Access Journals (Sweden)

    Long Li

    2015-12-01

    Full Text Available We report on spectral reflectance measurements of basaltic lava flows on Tenerife Island, Spain. Lava flow surfaces of different ages, surface roughness and elevations were systematically measured using a field spectroradiometer operating in the range of 350–2500 nm. Surface roughness, oxidation and lichen coverage were documented at each measured site. Spectral properties vary with age and morphology of lava. Pre-historical lavas with no biological coverage show a prominent increase in spectral reflectance in the 400–760 nm range and a decrease in the 2140–2210 nm range. Pāhoehoe surfaces have higher reflectance values than ʻaʻā ones and attain a maximum reflectance at wavelengths < 760 nm. Lichen-covered lavas are characterized by multiple lichen-related absorption and reflection features. We demonstrate that oxidation and lichen growth are two major factors controlling spectra of Tenerife lava surfaces and, therefore, propose an oxidation index and a lichen index to quantify surface alterations of lava flows: (1 the oxidation index is based on the increase of the slope of the spectral profile from blue to red as the field-observed oxidation level strengthens; and (2 the lichen index is based on the spectral reflectance in the 1660–1725 nm range, which proves to be highly correlated with lichen coverage documented in the field. The two spectral indices are applied to Landsat ETM+ and Hyperion imagery of the study area for mapping oxidation and lichen coverage on lava surfaces, respectively. Hyperion is shown to be capable of discriminating different volcanic surfaces, i.e., tephra vs. lava and oxidized lava vs. lichen-covered lava. Our study highlights the value of field spectroscopic measurements to aid interpretation of lava flow characterization using satellite images and of the effects of environmental factors on lava surface evolution over time, and, therefore, has the potential to contribute to the mapping as well as dating

  9. Surface temperature measurement of the plasma facing components with the multi-spectral infrared thermography diagnostics in tokamaks

    Science.gov (United States)

    Zhang, C.; Gauthier, E.; Pocheau, C.; Balorin, C.; Pascal, J. Y.; Jouve, M.; Aumeunier, M. H.; Courtois, X.; Loarer, Th.; Houry, M.

    2017-03-01

    For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement. In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good

  10. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff

  11. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2017-09-01

    Full Text Available The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow. Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C.In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S, λ2 = 1650 nm (sensitive to τ, and λ3 = 2100 nm (sensitive to reff, C are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012 were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice

  12. Red-Edge Spectral Reflectance as an Indicator of Surface Moisture Content in an Alaskan Peatland Ecosystem

    Science.gov (United States)

    McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.

    2015-12-01

    Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.

  13. Real-time surface tracking system using common-path spectral domain optical coherence tomography

    Science.gov (United States)

    Kim, Keo-Sik; Park, Hyoung-Jun; Kang, Hyun Seo; Kang, Jin U.; Song, Chul-Gyu

    2012-11-01

    An enhanced surface tracking system based on optical coherence tomography (OCT) modality has been developed and tested for use in a surgical guidance system. A surface detection algorithm based on a Savitzky-Golay filter of A-scan data and thresholding was applied to real-time depth tracking. The algorithm output controlled a motorized stage to adjust the probe position according to the sample's topological variance in real-time. As a result, the root mean square error (RMSE: 4.2 μm) of our algorithm was relatively lower than the conventional method (RMSE: 16.6 μm). Also, OCT images obtained using the algorithm showed a significantly extended imaging range and active surface tracking in real time. Consequently, the devised method demonstrated potential for use in systems for guiding surgical robots and endoscopic OCT.

  14. Detection of small surface vessels in near, medium, and far infrared spectral bands

    Science.gov (United States)

    Dulski, R.; Milewski, S.; Kastek, M.; Trzaskawka, P.; Szustakowski, M.; Ciurapinski, W.; Zyczkowski, M.

    2011-11-01

    Protection of naval bases and harbors requires close co-operation between security and access control systems covering land areas and those monitoring sea approach routes. The typical location of naval bases and harbors - usually next to a large city - makes it difficult to detect and identify a threat in the dense regular traffic of various sea vessels (i.e. merchant ships, fishing boats, tourist ships). Due to the properties of vessel control systems, such as AIS (Automatic Identification System), and the effectiveness of radar and optoelectronic systems against different targets it seems that fast motor boats called RIB (Rigid Inflatable Boat) could be the most serious threat to ships and harbor infrastructure. In the paper the process and conditions for the detection and identification of high-speed boats in the areas of ports and naval bases in the near, medium and far infrared is presented. Based on the results of measurements and recorded thermal images the actual temperature contrast delta T (RIB / sea) will be determined, which will further allow to specify the theoretical ranges of detection and identification of the RIB-type targets for an operating security system. The data will also help to determine the possible advantages of image fusion where the component images are taken in different spectral ranges. This will increase the probability of identifying the object by the multi-sensor security system equipped additionally with the appropriate algorithms for detecting, tracking and performing the fusion of images from the visible and infrared cameras.

  15. 矩阵对角化在图谱理论中的应用%Application of Diagonalization of Matrices in Spectral Graph Theory

    Institute of Scientific and Technical Information of China (English)

    杜志斌

    2015-01-01

    矩阵对角化是高等代数中的一个重要内容,其在矩阵研究中起着非常重要的作用.图谱理论主要运用线性代数方法来研究图的各种性质.本文将给出矩阵对角化在图谱理论中的一个应用.%Diagonalization of matrices is an important part in higher algebra, which plays an important role in the research of matrices. Spectral graph theory mainly uses the methods related to linear algebra to study various properties of graphs. In this paper, we will present an application of diagonalization of matrices in spectral graph theory.

  16. Free-surface Multiples and full-waveform inversion spectral resolution

    NARCIS (Netherlands)

    Kazei, V.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2015-01-01

    Low frequencies play a crucial role in the convergence of full-waveform inversion to the correct model in most of its current implementations. However, the lower the frequencies, the bigger are the amplitudes of the surface waves, causing the inversion to be driven by the latter. If they are not bla

  17. High-conductivity silicon based spectrally selective plasmonic surfaces for sensing in the infrared region

    Science.gov (United States)

    Gorgulu, K.; Gok, A.; Yilmaz, M.; Topalli, K.; Okyay, A. K.

    2017-02-01

    Plasmonic perfect absorbers have found a wide range of applications in imaging, sensing, and light harvesting and emitting devices. Traditionally, metals are used to implement plasmonic structures. For sensing applications, it is desirable to integrate nanophotonic active surfaces with biasing and amplification circuitry to achieve monolithic low cost solutions. Commonly used plasmonic metals such as Au and Ag are not compatible with standard silicon complementary metal-oxide-semiconductor (CMOS) technology. Here we demonstrate plasmonic perfect absorbers based on high conductivity silicon. Standard optical lithography and reactive ion etching techniques were used for the patterning of the samples. We present computational and experimental results of surface plasmon resonances excited on a silicon surface at normal and oblique incidences. We experimentally demonstrate our absorbers as ultra-low cost, CMOS-compatible and efficient refractive index sensing surfaces. The experimental results reveal that the structure exhibits a sensitivity of around 11 000 nm/RIU and a figure of merit of up to 2.5. We also show that the sensing performance of the structure can be improved by increasing doping density.

  18. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts

    NARCIS (Netherlands)

    Jong, S.M. de; Addink, E.A.; Duijsing, D.; Beek, L.P.H. van

    2011-01-01

    Soil surface crusting and sealing are frequent but unfavorable processes in Mediterranean areas. Soil crust and seals form on bare soil subject to high-intensity rainfall, resulting in a hard, impenetrable layer that impedes infiltration and hampers the germination and establishment of plants. The a

  19. Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid-base titration

    Science.gov (United States)

    Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios

    2016-12-01

    Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.

  20. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  1. 基于三维重建理论的目标光谱散射特性研究%Research on the Spectral Scattering of Target Based on Three-Dimensional Reconstruction Theory

    Institute of Scientific and Technical Information of China (English)

    杨玉峰; 吴振森; 曹运华

    2012-01-01

    According to three-dimensional (3D) reconstruction theory,based on multi-angle images of the target,3D points cloud of the target surface is reconstructed. With the method of Delaunay triangulation and the principle of "visibility",the target surface and the normal vector of surface elements are gained. By the rough surface scattering theory and the target sample bidirectional reflectance distribution function (BRDF),associated with the spectral radiance of the background at some time and place calculated by Modtran,the spectral scattering radiance distribution of the target is obtained by numerical analysis method. Taking a car covered with car sewing as an example,the error of the reconstructed geometric 3D model is 4.11% ,and the spectral scattering radiance distributions of the target in three bands are obtained by numerical calculation. The method above can be applied to the research on spectral radiation and scattering of satellites and other spatial targets.%根据三维重建理论,基于目标的多角度视图,重建了目标表面的三维点云.利用德洛奈三角剖分法结合可见性原理,得到了目标的曲面和曲面面元的法线方向.根据粗糙面散射理论和目标表面的双向反射分布函数(BRDF),结合大气传输软件Modtran计算的某时间、地点的背景光谱辐射亮度,数值分析了目标光谱散射亮度分布特性.以覆盖车衣的汽车为例,重建的三维几何模型误差为4.11%,数值计算了目标在三个波段的光谱散射亮度分布.上述方法可以进一步用于卫星和其他空间目标的光谱辐射、散射特性研究.

  2. Study on Surface Properties for Non-polar Fluids with Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    吴畏; 陆九芳; 付东; 刘金晨; 李以圭

    2004-01-01

    The density functional theory, simplified by the local density approximation and mean-field approximation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used as the perturbation term. Three parameters, elk, d and ms, are regressed from the vapor-liquid equilibria, and the surface properties, including density profile, surface tension and local surface tension profile are predicted with these parameters.

  3. Surface-directed capillary system; theory, experiments and applications.

    Science.gov (United States)

    Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques

    2005-08-01

    We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.

  4. The spectral emittance and stability of coatings and textured surfaces for thermophotovoltaic (TPV) radiator applications

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.; Hollenbeck, J.L.

    2000-11-01

    Coatings or surface modifications are needed to improve the surface emissivity of materials under consideration for TPV radiator applications to a value of 0.8 or higher. Vacuum plasma spray coatings (ZrO{sub 2} + 18% TiO{sub 2} + 10% Y{sub 2}O{sub 3}, ZrC, Fe{sub 2}TiO{sub 5}, ZrTiO{sub 4}, ZrO{sub 2} + 8% Y{sub 2}O{sub 3} + 2% HfO{sub 2}, and Al{sub 2}O{sub 3} + TiO{sub 2}) and a chemical vapor deposited coating of rhenium whiskers were used to increase the surface emissivity of refractory metal and nickel-base materials. Emittance measurements following 4000 hours of vacuum annealing at 1100 C show that only the ZrO{sub 2} + 18% TiO{sub 2} + 10% Y{sub 2}O{sub 3}, ZrC, and Al{sub 2}O{sub 3} + TiO{sub 2} coatings have the desired thermal stability, and maintain emissivity values higher than 0.8. These coatings are graybody emitters, and provide a high emissivity value in the wavelength range that is relevant to the TPV cells. The highest emissivity values were observed for the Al{sub 2}O{sub 3} + TiO{sub 2} coatings, with post-anneal values higher than graphite.

  5. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Nevedomskiy, V. N. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Bugrov, V. E. [ITMO University (Russian Federation)

    2015-11-15

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  6. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  7. Resonance domain surface relief diffractive lens for the visible spectral region.

    Science.gov (United States)

    Barlev, Omri; Golub, Michael A

    2013-03-01

    Early expectations for a role of diffractive lenses were dramatically lessened by their high order overlapping foci, low optical powers, and competing advances in refractive micro-optics. By bringing the Bragg properties of volume holograms to diffractive lenses we got rid of ghost diffractive orders and the critical trade-off between diffraction efficiency, number of phase levels, and spatial feature-size. Binary off-axis resonance domain diffractive lens with high numerical aperture of 0.16 was designed with analytical effective grating theory, fabricated by direct e-beam writing, etched in fused silica and experimentally investigated. More than 81% measured diffraction efficiency exceeds twice the limits of thin binary optics.

  8. Estimate of Small Stiffness and Damping Ratio in Residual Soil Using Spectral Analysis of Surface Wave Method

    Directory of Open Access Journals (Sweden)

    Bawadi Nor Faizah

    2016-01-01

    Full Text Available Research in the important parameters for modeling the dynamic behavior of soils has led to rapid development of the small strain stiffness and damping ratio for use in the seismic method. It is because, the experimental determination of the damping ratio is problematic, especially for hard soils sample. Many researchers have proved that the surface wave method is a reliable tool to determine shear wave velocity and damping ratio profiles at a site with very small strains level. Surface wave methods based on Rayleigh waves propagation and the resulting attenuation curve can become erroneous when higher modes contribute to the soil’s response. In this study, two approaches has been used to determine the shear strain amplitude and damping ratio of residual soils at small strain level using Spectral Analysis of Surface Wave (SASW method. One is to derive shear strain amplitude from the frequency-response curve and the other is to derive damping ratio from travel-time data. Then, the results are compared to the conventional method.

  9. Fast Inversion of Air-Coupled Spectral Analysis of Surface Wave (SASW Using in situ Particle Displacement

    Directory of Open Access Journals (Sweden)

    Yifeng Lu

    2015-11-01

    Full Text Available Spectral Analysis of Surface Wave (SASW is widely used in nondestructive subsurface profiling for geological sites. The air-coupled SASW is an extension from conventional SASW methods by replacing ground-mounted accelerometers with non-contact microphones, which acquire a leaky surface wave instead of ground vibration. The air-coupled SASW is a good candidate for fast inspection in shallow geological studies. Especially for pavement maintenance, minimum traffic interference might be induced. One issue that restrains SASW from fast inspection is the traditional slow inversion which relies on guess-and-check iteration techniques including a forward analysis. In this article, a fast inversion analysis algorithm is proposed to estimate the shear velocity profile without performing conventional forward simulation. By investigating the attenuation of particle displacement along penetrating depths, a weighted combination relationship is derived to connect the dispersion curve with the shear velocity profile directly. Using this relationship, the shear velocity profile could be estimated from a given/measured dispersion curve. The proposed procedure allows the surface wave-based method to be fully automatic and even operated in real-time for geological site and pavement assessment. The method is verified by the forward analysis with stiffness matrix method. It is also proved by comparing with other published results using various inversion methods.

  10. Integration of Field and Laboratory Spectral Data with Multi-Resolution Remote Sensed Imagery for Asphalt Surface Differentiation

    Directory of Open Access Journals (Sweden)

    Alessandro Mei

    2014-03-01

    Full Text Available The ability to classify asphalt surfaces is an important goal for the selection of suitable non-variant targets as pseudo-invariant targets during the calibration/validation of remotely-sensed images. In addition, the possibility to recognize different types of asphalt surfaces on the images can help optimize road network management. This paper presents a multi-resolution study to improve asphalt surface differentiation using field spectroradiometric data, laboratory analysis and remote sensing imagery. Multispectral Infrared and Visible Imaging Spectrometer (MIVIS airborne data and multispectral images, such as Quickbird and Ikonos, were used. From scatter plots obtained by field data using λ = 460 and 740 nm, referring to MIVIS Bands 2 and 16 and Quickbird and Ikonos Bands 1 and 4, pixels corresponding to asphalt covering were identified, and the slope of their interpolation lines, assumed as asphalt lines, was calculated. These slopes, used as threshold values in the Spectral Angle Mapper (SAM classifier, obtained an overall accuracy of 95% for Ikonos, 98% for Quickbird and 93% for MIVIS. Laboratory investigations confirm the existence of the asphalt line also for new asphalts, too.

  11. Quantum theory of spontaneous and stimulated emission of surface plasmons

    CERN Document Server

    Archambault, Alexandre; Arnold, Christophe; Greffet, Jean-Jacques

    2010-01-01

    We introduce a quantization scheme that can be applied to surface waves propagating along a plane interface. An important result is the derivation of the energy of the surface wave for dispersive non-lossy media without invoking any specific model for the dielectric constant. Working in Coulomb's gauge, we use a modal representation of the fields. Each mode can be associated with a quantum harmonic oscillator. We have applied the formalism to derive quantum-mechanically the spontaneous emission rate of surface plasmon by a two-level system. The result is in very good agreement with Green's tensor approach in the non-lossy case. Green's approach allows also to account for losses, so that the limitations of a quantum approach of surface plasmons are clearly defined. Finally, the issue of stimulated versus spontaneous emission has been addressed. Because of the increasing density of states near the asymptote of the dispersion relation, it is quantitatively shown that the stimulated emission probability is too sm...

  12. Quantum theory of spontaneous and stimulated emission of surface plasmons

    Science.gov (United States)

    Archambault, Alexandre; Marquier, François; Greffet, Jean-Jacques; Arnold, Christophe

    2010-07-01

    We introduce a quantization scheme that can be applied to surface waves propagating along a plane interface. An important result is the derivation of the energy of the surface wave for dispersive nonlossy media without invoking any specific model for the dielectric constant. Working in Coulomb’s gauge, we use a modal representation of the fields. Each mode can be associated with a quantum harmonic oscillator. We have applied the formalism to derive quantum mechanically the spontaneous emission rate of surface plasmon by a two-level system. The result is in very good agreement with Green’s tensor approach in the nonlossy case. Green’s approach allows also to account for losses, so that the limitations of a quantum approach of surface plasmons are clearly defined. Finally, the issue of stimulated versus spontaneous emission has been addressed. Because of the increasing density of states near the asymptote of the dispersion relation, it is quantitatively shown that the stimulated emission probability is too small to obtain gain in this frequency region.

  13. Dynamic surface tension of surfactant TA: experiments and theory.

    Science.gov (United States)

    Otis, D R; Ingenito, E P; Kamm, R D; Johnson, M

    1994-12-01

    A bubble surfactometer was used to measure the surface tension of an aqueous suspension of surfactant TA as a function of bubble area over a range of cycling rates and surfactant bulk concentrations. Results of the surface tension-interfacial area loops exhibited a rich variety of phenomena, the character of which varied systematically with frequency and bulk concentration. A model was developed to interpret and explain these data and for use in describing the dynamics of surface layers under more general circumstances. Surfactant was modeled as a single component with surface tension taken to depend on only the interfacial surfactant concentration. Two distinct mechanisms were considered for the exchange of surfactant between the bulk phase and interface. The first is described by a simple kinetic relationship for adsorption and desorption that pertains only when the interfacial concentration is below its maximum equilibrium value. The second mechanism is "squeeze-out" by which surfactant molecules are expelled from an interface compressed past a maximum packing state. The model provided good agreement with experimental measurements for cycling rates from 1 to 100 cycles/min and for bulk concentrations between 0.0073 and 7.3 mg/ml.

  14. Focus variation microscope: linear theory and surface tilt sensitivity.

    Science.gov (United States)

    Nikolaev, Nikolay; Petzing, Jon; Coupland, Jeremy

    2016-05-01

    In a recent publication [3rd International Conference on Surface Metrology, Annecy, France, 2012, p. 1] it was shown that surface roughness measurements made using a focus variation microscope (FVM) are influenced by surface tilt. The effect appears to be most significant when the surface has microscale roughness (Ra≈50  nm) that is sufficient to provide a diffusely scattered signal that is comparable in magnitude to the specular component. This paper explores, from first principles, image formation using the focus variation method. With the assumption of incoherent scattering, it is shown that the process is linear and the 3D point spread characteristics and transfer characteristics of the instrument are well defined. It is argued that for the case of microscale roughness and through the objective illumination, the assumption of incoherence cannot be justified and more rigorous analysis is required. Using a foil model of surface scattering, the images that are recorded by a FVM have been calculated. It is shown that for the case of through-the-objective illumination at small tilt angles, the signal quality is degraded in a systematic manner. This is attributed to the mixing of specular and diffusely reflected components and leads to an asymmetry in the k-space representation of the output signals. It is shown that by using extra-aperture illumination or tilt angles greater than the acceptance angle of aperture (such that the specular component is lost), the incoherent assumption can be justified once again. The work highlights the importance of using ring-light illumination and/or polarizing optics, which are often available as options on commercial instruments, as a means to mitigate or prevent these effects.

  15. A simple theory of back surface field /BSF/ solar cells

    Science.gov (United States)

    Von Roos, O.

    1978-01-01

    A theory of an n-p-p/+/ junction is developed, entirely based on Shockley's depletion layer approximation. Under the further assumption of uniform doping the electrical characteristics of solar cells as a function of all relevant parameters (cell thickness, diffusion lengths, etc.) can quickly be ascertained with a minimum of computer time. Two effects contribute to the superior performance of a BSF cell (n-p-p/+/ junction) as compared to an ordinary solar cell (n-p junction). The sharing of the applied voltage among the two junctions (the n-p and the p-p/+/ junction) decreases the dark current and the reflection of minority carriers by the builtin electron field of the p-p/+/ junction increases the short-circuit current. The theory predicts an increase in the open-circuit voltage (Voc) with a decrease in cell thickness. Although the short-circuit current decreases at the same time, the efficiency of the cell is virtually unaltered in going from a thickness of 200 microns to a thickness of 50 microns. The importance of this fact for space missions where large power-to-weight ratios are required is obvious.

  16. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery

    Directory of Open Access Journals (Sweden)

    Fangfang Yao

    2015-09-01

    Full Text Available Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI. Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.

  17. Local control theory using trajectory surface hopping and linear-response time-dependent density functional theory.

    Science.gov (United States)

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-01-01

    The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.

  18. A spectral invariant representation of spectral reflectance

    Science.gov (United States)

    Ibrahim, Abdelhameed; Tominaga, Shoji; Horiuchi, Takahiko

    2011-03-01

    Spectral image acquisition as well as color image is affected by several illumination factors such as shading, gloss, and specular highlight. Spectral invariant representations for these factors were proposed for the standard dichromatic reflection model of inhomogeneous dielectric materials. However, these representations are inadequate for other characteristic materials like metal. This paper proposes a more general spectral invariant representation for obtaining reliable spectral reflectance images. Our invariant representation is derived from the standard dichromatic reflection model for dielectric materials and the extended dichromatic reflection model for metals. We proof that the invariant formulas for spectral images of natural objects preserve spectral information and are invariant to highlights, shading, surface geometry, and illumination intensity. It is proved that the conventional spectral invariant technique can be applied to metals in addition to dielectric objects. Experimental results show that the proposed spectral invariant representation is effective for image segmentation.

  19. Calculation of Surface Tensions of Polar Mixtures with a Simplified Gradient Theory Model

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    Key Words: Thermodynamics, Simplified Gradient Theory, Surface Tension, Equation of state, Influence Parameter.In this work, assuming that the number densities of each component in a mixture across the interface between the coexisting vapor and liquid phases are linearly distributed, we developed...... a simplified gradient theory (SGT) model for computing surface tensions. With this model, it is not required to solve the time-consuming density profile equations of the gradient theory model. The SRK EOS was applied to calculate the properties of the homogeneous fluid. First, the SGT model was used to predict...

  20. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  1. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces

    Science.gov (United States)

    Fornaro, Teresa; Brucato, John Robert; Pace, Emanuele; Guidi, Mariangela Cestelli; Branciamore, Sergio; Pucci, Amaranta

    2013-09-01

    The interaction between electromagnetic radiation and bio-molecules in heterogeneous environments is a prebiotically relevant process. Minerals may have a pivotal role in the prebiotic evolution of complex chemical systems, mediating the effects of electromagnetic radiation, influencing the photostability of bio-molecules, catalyzing important chemical reactions and/or protecting molecules against degradation. In particular, nucleobases are relevant bio-molecules to investigate both in the prebiotic context, because they are coding components of nucleic acids, and from the standpoint of the survival of biological systems in space conditions. Several studies on the photodynamics of nucleobases suggest that their structure could have been naturally selected for the ability to dissipate electronic energy through ultrafast photophysical decay. Considering the putative involvement of minerals in the prebiotic chemistry, it is necessary to study the photostability of nucleobases under space conditions in the presence of mineral matrices, to investigate both the prebiotic processes that might have had a role in the development of the first living entities on Earth and the physical and chemical processes occurring in extraterrestrial environments. We focused our study on the characterization of the nature of the interaction between nucleobases and the surface of the minerals magnesium oxide and forsterite by infrared vibrational spectroscopy. We observed that most of the characteristic bands of pure nucleobases vanished when adsorbed on magnesium oxide. On the contrary, in the case of adenine and uracil adsorbed on forsterite, very intense nucleobase absorption peaks appeared. This phenomenon pertains to the surface selection rules changes related to molecular orientation. Moreover, based on the vibrational shifts, we deduced the molecular interaction sites with the mineral surfaces. Furthermore, we investigated the photostability of nucleobases adsorbed on such minerals

  2. Microscopic theory of electron absorption by plasma-facing surfaces

    Science.gov (United States)

    Bronold, F. X.; Fehske, H.

    2017-01-01

    We describe a method for calculating the probability with which the wall of a plasma absorbs an electron at low energy. The method, based on an invariant embedding principle, expresses the electron absorption probability as the probability for transmission through the wall’s long-range surface potential times the probability to stay inside the wall despite of internal backscattering. To illustrate the approach we apply it to a SiO2 surface. Besides emission of optical phonons inside the wall we take elastic scattering at imperfections of the plasma-wall interface into account and obtain absorption probabilities significantly less than unity in accordance with available electron-beam scattering data but in disagreement with the widely used perfect absorber model.

  3. Deformation of surfaces, integrable systems, and Chern-Simons theory

    Science.gov (United States)

    Martina, L.; Myrzakul, Kur.; Myrzakulov, R.; Soliani, G.

    2001-03-01

    A few years ago, some of us devised a method to obtain integrable systems in (2+1)-dimensions from the classical non-Abelian pure Chern-Simons action via the reduction of the gauge connection in Hermitian symmetric spaces. In this article we show that the methods developed in studying classical non-Abelian pure Chern-Simons actions can be naturally implemented by means of a geometrical interpretation of such systems. The Chern-Simons equation of motion turns out to be related to time evolving two-dimensional surfaces in such a way that these deformations are both locally compatible with the Gauss-Mainardi-Codazzi equations and completely integrable. The properties of these relationships are investigated together with the most relevant consequences. Explicit examples of integrable surface deformations are displayed and discussed.

  4. Microscopic theory of electron absorption by plasma-facing surfaces

    CERN Document Server

    Bronold, Franz X

    2016-01-01

    We describe a method for calculating the probability with which the wall of a plasma absorbs an electron at low energy. The method, based on an invariant embedding principle, expresses the electron absorption probability as the probability for transmission through the wall's long-range surface potential times the probability to stay inside the wall despite of internal backscattering. To illustrate the approach we apply it to a \\SiOTwo\\ surface. Besides emission of optical phonons inside the wall we take elastic scattering at imperfections of the plasma-wall interface into account and obtain absorption probabilities significantly less than unity in accordance with available electron-beam scattering data but in disagreement with the widely used perfect absorber model.

  5. Coherence scanning interferometry: linear theory of surface measurement.

    Science.gov (United States)

    Coupland, Jeremy; Mandal, Rahul; Palodhi, Kanik; Leach, Richard

    2013-06-01

    The characterization of imaging methods as three-dimensional (3D) linear filtering operations provides a useful way to compare the 3D performance of optical surface topography measuring instruments, such as coherence scanning interferometry, confocal and structured light microscopy. In this way, the imaging system is defined in terms of the point spread function in the space domain or equivalently by the transfer function in the spatial frequency domain. The derivation of these characteristics usually involves making the Born approximation, which is strictly only applicable to weakly scattering objects; however, for the case of surface scattering, the system is linear if multiple scattering is assumed to be negligible and the Kirchhoff approximation is assumed. A difference between the filter characteristics derived in each case is found. However this paper discusses these differences and explains the equivalence of the two approaches when applied to a weakly scattering object.

  6. Avoided Crossing Patterns and Spectral Gaps of Surface Plasmon Modes in Gold Nano-Structures

    CERN Document Server

    Kolomenskii, Alexandre; Hembd, Jeshurun; Kolomenski, Andrei; Noel, John; Teizer, Winfried; Schuessler, Hans

    2010-01-01

    The transmission of ultrashort (7 fs) broadband laser pulses through periodic gold nano-structures is studied. The distribution of the transmitted light intensity over wavelength and angle shows an efficient coupling of the incident p-polarized light to two counter-propagating surface plasmon (SP) modes. As a result of the mode interaction, the avoided crossing patterns exhibit energy and momentum gaps, which depend on the configuration of the nano-structure and the wavelength. Variations of the widths of the SP resonances and an abrupt change of the mode interaction in the vicinity of the avoided crossing region are observed. These features are explained by the model of two coupled modes and a coupling change due to switching from the high frequency dark mode to the low frequency bright mode for increasing wavelength of the excitation light. PACS numbers: 73.20.Mf, 42.70.Qs, 42.25.-p,

  7. Spectral analysis of the low energy Auger emission from a (0 0 0 1) ruthenium surface

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, Jerzy J.; Krajniak, Janusz

    2003-04-30

    The low energy Auger emission from a Ru(0 0 0 1) surface have been analysed by means of a cylindrical mirror analyser (CMA) within the range of the electron energy (E) from 27 to 37 eV as a function of the primary electron energy (E{sub p}), which was set from 170 to 450 eV in 20 eV steps. Three Auger transitions at following energies: 31.7, 33.8 and 36.4 eV, have been found due to application of the backscattering generation factor idea. Obtained results for the Auger transitions were verified by means of XPS results published by Fuggle et al. [Surf. Sci. 52 (1975) 521].

  8. LUBRICATION BASIS THEORY OF WORM PAIR AND TEMPERATURE DISTRIBUTION ON WORM GEAR SURFACE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The lubrication basis theory of worm pair is given. The lubrication state of worm gear is analyzed. It is found that the temperature distribution on the tooth surface of worm gear is closely related with the lubrication state and that the temperature on the tooth surface of worm gear is consistent with the characteristic term of mesh and motion of worm pair.

  9. Lubrication of textured surfaces: a general theory for flow and shear stress factors.

    Science.gov (United States)

    Scaraggi, Michele

    2012-08-01

    We report on a mean field theory of textured surface lubrication. We study the fluid flow dynamics occurring at the interface as a function of the texture characteristics, e.g. texture area density, shape and distribution of microstructures, and local slip lengths. The present results may be very important for the investigation of tailored microtextured surfaces for low-friction hydrodynamic applications.

  10. The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces

    CERN Document Server

    Driver, Bruce K; Hall, Brian C; Kemp, Todd

    2016-01-01

    We prove the Makeenko-Migdal equation for two-dimensional Euclidean Yang-Mills theory on an arbitrary compact surface, possibly with boundary. In particular, we show that two of the proofs given by the first, third, and fourth authors for the plane case extend essentially without change to compact surfaces.

  11. Theory of alkali-metal-induced reconstructions of fcc(100) surfaces

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel

    1992-01-01

    Calculations of missing-row reconstruction energies of the fcc(100) surfaces of the metals Al, Ni, Pd, Pt, Cu, Ag, and Au have been performed with the effective-medium theory with and without the presence of a potassium overlayer. It is shown that the tendency to reconstruct in the presence......-metal-induced reconstruction of fcc(110) surfaces are pointed out....

  12. Surface wave scattering theory : with applications to forward and inverse problems in seismology

    NARCIS (Netherlands)

    Snieder, R.K.

    1987-01-01

    Scattering of surface waves in a three dimensional layered elastic medium with embedded heterogeneities is described in this thesis with the Born approximation. The dyadic decomposition of the surface wave Green's function provides the crucial element for an efficient application of Born theory to s

  13. Surface spectral function of momentum-dependent pairing potentials in a topological insulator: application to CuxBi2Se3.

    Science.gov (United States)

    Chen, Liang; Wan, Shaolong

    2013-05-29

    We propose three possible momentum-dependent pairing potentials as candidates for topological superconductors (for example CuxBi2Se3), and calculate the surface spectral function and surface density of states with these pairing potentials. We find that the first two can give the same spectral functions as the fully gapped and node-contacted pairing potentials given by Fu and Berg (2010 Phys. Rev. Lett. 105 097001), and that the third one can obtain a topological non-trivial case in which there exists a flat Andreev bound state and which preserves the threefold rotation symmetry. We hope our proposals and results will be assessed by future experiment.

  14. The Surface Laplacian Technique in EEG: Theory and Methods

    CERN Document Server

    Carvalhaes, Claudio

    2014-01-01

    In this paper we review major theoretical and computational aspects of the surface Laplacian technique. Here we focus our attention on a few topics that are fundamental for a physical understanding of this technique and its efficient computational implementation. We highlight several issues that in our view deserve further research exploration, some of which we have attempted to address to the extent possible. We also included a set of approximations for the Laplacian on the border of a discrete grid and the description of an algorithm that accounts for the finite size of the measuring electrodes.

  15. Urban Surface Temperature Time Series Estimation at the Local Scale by Spatial-Spectral Unmixing of Satellite Observations

    Directory of Open Access Journals (Sweden)

    Zina Mitraka

    2015-04-01

    Full Text Available The study of urban climate requires frequent and accurate monitoring of land surface temperature (LST, at the local scale. Since currently, no space-borne sensor provides frequent thermal infrared imagery at high spatial resolution, the scientific community has focused on synergistic methods for retrieving LST that can be suitable for urban studies. Synergistic methods that combine the spatial structure of visible and near-infrared observations with the more frequent, but low-resolution surface temperature patterns derived by thermal infrared imagery provide excellent means for obtaining frequent LST estimates at the local scale in cities. In this study, a new approach based on spatial-spectral unmixing techniques was developed for improving the spatial resolution of thermal infrared observations and the subsequent LST estimation. The method was applied to an urban area in Crete, Greece, for the time period of one year. The results were evaluated against independent high-resolution LST datasets and found to be very promising, with RMSE less than 2 K in all cases. The developed approach has therefore a high potential to be operationally used in the near future, exploiting the Copernicus Sentinel (2 and 3 observations, to provide high spatio-temporal resolution LST estimates in cities.

  16. Electron dynamics in the normal state of cuprates: Spectral function, Fermi surface and ARPES data

    Science.gov (United States)

    Zubov, E. E.

    2016-11-01

    An influence of the electron-phonon interaction on excitation spectrum and damping in a narrow band electron subsystem of cuprates has been investigated. Within the framework of the t-J model an approach to solving a problem of account of both strong electron correlations and local electron-phonon binding with characteristic Einstein mode ω0 in the normal state has been presented. In approximation Hubbard-I it was found an exact solution for the polaron bands. We established that in the low-dimensional system with a pure kinematic part of Hamiltonian a complicated excitation spectrum is realized. It is determined mainly by peculiarities of the lattice Green's function. In the definite area of the electron concentration and hopping integrals a correlation gap may be possible on the Fermi level. Also, in specific cases it is observed a doping evolution of the Fermi surface. We found that the strong electron-phonon binding enforces a degree of coherence of electron-polaron excitations near the Fermi level and spectrum along the nodal direction depends on wave vector module weakly. It corresponds to ARPES data. A possible origin of the experimentally observed kink in the nodal direction of cuprates is explained by fine structure of the polaron band to be formed near the mode -ω0.

  17. The surface Laplacian technique in EEG: Theory and methods.

    Science.gov (United States)

    Carvalhaes, Claudio; de Barros, J Acacio

    2015-09-01

    This paper reviews the method of surface Laplacian differentiation to study EEG. We focus on topics that are helpful for a clear understanding of the underlying concepts and its efficient implementation, which is especially important for EEG researchers unfamiliar with the technique. The popular methods of finite difference and splines are reviewed in detail. The former has the advantage of simplicity and low computational cost, but its estimates are prone to a variety of errors due to discretization. The latter eliminates all issues related to discretization and incorporates a regularization mechanism to reduce spatial noise, but at the cost of increasing mathematical and computational complexity. These and several other issues deserving further development are highlighted, some of which we address to the extent possible. Here we develop a set of discrete approximations for Laplacian estimates at peripheral electrodes. We also provide the mathematical details of finite difference approximations that are missing in the literature, and discuss the problem of computational performance, which is particularly important in the context of EEG splines where data sets can be very large. Along this line, the matrix representation of the surface Laplacian operator is carefully discussed and some figures are given illustrating the advantages of this approach. In the final remarks, we briefly sketch a possible way to incorporate finite-size electrodes into Laplacian estimates that could guide further developments.

  18. Muscle fatigue in women with primary biliary cirrhosis: Spectral analysis of surface electromyography

    Institute of Scientific and Technical Information of China (English)

    Maria Rosa Biagini; Alessandro Tozzi; Antonello Grippo; Andrea Galli; Stefano Milani; Aldo Amantini

    2006-01-01

    AIM: To evaluate the myoelectric manifestations of peripheral fatigability in patients with primary biliary cirrhosis in comparison to healthy subjects. METHODS: Sixteen women with primary biliary cirrhosis without comorbidity and 13 healthy women matched for age and body mass index (BMI) completed the self reported questionnaire fatigue impact scale. All subjects underwent surface electromyography assessment of peripheral fatigability. Anterior tibial muscle isometric voluntary contraction was executed for 20 s at 80% of maximal voluntary isometric contraction. During the exercise electromyographic signal series were recorded and root mean square (expression of central drive) as well as mean and median of electromyographic signal frequency spectrum (estimates of muscle fatigability) were computed. Each subject executed the trial two times. EMG parameters were normalized, then linear regression was applied and slopes were calculated. RESULTS: Seven patients were fatigued (median fatigue impact scale score: 38, range: 26-66) and 9 were not fatigued (median fatigue impact scale score: 7, range: 0-17). The maximal voluntary isometric contraction was similar in patients (82, 54-115 N) and controls (87,74-101 N), and in patients with high (81, 54-115 N) and low fatigue impact scale scores (86, 65-106 N). Root mean square as well as mean and median of frequency spectrum slopes were compared with the Mann-Whitney U test, and no significant difference was found between fatigued and non-fatigued patients and controls. CONCLUSION: No instrumental evidence of peripheral fatigability can be found in women with primary biliary cirrhosis but no comorbidity, suggesting that fatigue in such patients may be of central origin.

  19. Mechanical theorem proving in differential geometry——Local theory of surfaces

    Institute of Scientific and Technical Information of China (English)

    李洪波

    1997-01-01

    An automated reasoning method, based on Wu’s method and calculus of differential forms, is proposed for mechanical theorem proving in local theory of space surfaces in differential geometry. The method has been used to simplify one of Chern’s theorems: "The non-trivial families of isometric surfaces having the same principal curvatures are W-surfaces." Some other theorems are also tested by this method. The proofs are generally simpler than those in differential geometry textbooks.

  20. Structure and energetics of high index Fe, Al, Cu and Ni surfaces using equivalent crystal theory

    Science.gov (United States)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Equivalent crystal theory (ECT) is applied to the study of multilayer relaxations and surface energies of high-index faces of Fe, Al, Ni, and Cu. Changes in interplanar spacing as well as registry of planes close to the surface and the ensuing surface energies changes are discussed in reference to available experimental data and other theoretical calculations. Since ECT is a semiempirical method, the dependence of the results on the variation of the input used was investigated.

  1. Using Coupled Nonnegative Matrix Factorization (cnmf) Un-Mixing for High Spectral and Spatial Resolution Data Fusion to Estimate Urban Impervious Surface and Urban Ecological Environment

    Science.gov (United States)

    Wang, T.; Zhang, H.; Lin, H.

    2017-09-01

    surfaces has increasingly roused widely interests of researchers in monitoring urban development and determining the overall environmental health of a watershed. However, studies on the impervious surface using multi-spectral imageries is insufficient and inaccurate due to the complexity of urban infrastructures base on the need to further recognize these impervious surface materials in a finer scale. Hyperspectral imageries have been proved to be sensitive to subtle spectral differences thus capable to exquisitely discriminate these similar materials while limited to the low spatial resolution. Coupled nonnegative matrix factorization (CNMF) unmixing method is one of the most physically straightforward and easily complemented hyperspectral pan-sharpening methods that could produce fused data with both high spectral and spatial resolution. This paper aimed to exploit the latent capacity and tentative validation of CNMF on the killer application of mapping urban impervious surfaces in complexed metropolitan environments like Hong Kong. Experiments showed that the fusion of high spectral and spatial resolution image could provide more accurate and comprehensive information on urban impervious surface estimation.

  2. Liquid-drop formalism and free-energy surfaces in binary homogeneous nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    Laaksonen, A. [Department of Applied Physics, University of Kuopio, P.O. Box 1627, 70211 Kuopio (Finland)]|[Department of Physics, P.O. Box 9, 00014 University of Helsinki, Helsinki (Finland); McGraw, R. [Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973 (United States); Vehkamaeki, H. [Department of Physics, P.O. Box 9, 00014 University of Helsinki, Helsinki (Finland)]|[University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom)

    1999-08-01

    Three different derivations of the classical binary nucleation theory are considered in detail. It is shown that the derivation originally presented by Wilemski [J. Chem. Phys. {bold 80}, 1370 (1984)] is consistent with more extensive derivations [Oxtoby and Kashchiev, J. Chem. Phys. {bold 100}, 7665 (1994)]; Debenedetti, {ital Metastable Liquids: Concepts and Principles} (Princeton University Press, Princeton, 1996) if and only if the assumption is made that the surface of tension of the binary nucleus coincides with the dividing surface specified by the surface condition {summation}n{sub si}v{sub li}=0, where the n{sub si} denote surface excess numbers of molecules of species {ital i}, and the v{close_quote}s are partial molecular volumes. From this condition, it follows that (1) the surface tension is curvature independent and (2) that the nucleus volume is V={summation}n{sub li}v{sub li}={summation}g{sub i}v{sub li}, where the n{sub li} are the numbers of molecules in the uniform liquid phase of the droplet model encompassed by the surface of tension, and the g{sub i} are the total molecular occupation numbers contained by the nucleus. We show, furthermore, that the above surface condition leads to explicit formulas for the surface excess numbers n{sub si} in the nucleus. Computations for the ethanol{endash}water system show that the surface number for water molecules (n{sub s,H{sub 2}O}) causes the negative occupation numbers (g{sub H{sub 2}O}) obtained earlier using the classical nucleation theory. The unphysical behavior produced by the classical theory for surface active systems is thus a direct consequence of the assumption of curvature independence of surface tension. Based on the explicit formulas for n{sub si}, we calculate the full free-energy surfaces for binary nucleation in the revised classical theory and compare these with the free-energy surfaces in the Doyle (unrevised classical) theory. Significant differences in nucleus size and composition

  3. Mathematical modelling of contact of ruled surfaces: theory and practical application

    Science.gov (United States)

    Panchuk, K. L.; Niteyskiy, A. S.

    2016-04-01

    In the theory of ruled surfaces there are well known researches of contact of ruled surfaces along their common generator line (Klein image is often used [1]). In this paper we propose a study of contact of non developable ruled surfaces via the dual vector calculus. The advantages of this method have been demonstrated by E. Study, W. Blaschke and D. N. Zeiliger in differential geometry studies of ruled surfaces in space R3 over the algebra of dual numbers. A practical use of contact is demonstrated by the example modeling of the working surface of the progressive tool for tillage.

  4. Atomic hydrogen adsorption and incipient hydrogenation of the Mg(0001) surface: a density-functional theory study.

    Science.gov (United States)

    Li, Yanfang; Zhang, Ping; Sun, Bo; Yang, Yu; Wei, Yinghui

    2009-07-21

    We investigate the atomic hydrogen adsorption on Mg(0001) by using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics is systematically studied for a wide range of coverage Theta [from 0.11 to 2.0 monolayers (ML)] and adsorption sites. In the coverage range 0 atomic hydrogen as well as the activation barriers for hydrogen penetration from the on-surface to the subsurface sites are also presented at low coverage. At high coverage of 1.0 < Theta < or = 2.0, it is found that the coadsorption configuration with 1.0 monolayer of H residing on the surface fcc sites and the remaining (Theta-1.0) monolayer of H occupying the subsurface tetra-I sites is most energetically favorable. The resultant H-Mg-H sandwich structure for this most stable coadsorption configuration displays similar spectral features to the bulk hydride MgH(2) in the density of states. The other properties of the H/Mg(0001) system including the charge distribution, the lattice relaxation, the work function, and the electronic density of states are also studied and discussed in detail. It is pointed out that the H-Mg chemical bonding during surface hydrogenation displays a mixed ionic/covalent character.

  5. Photoemission from Coated Surfaces A Comparison of Theory to Experiment

    CERN Document Server

    Jensen, K

    2005-01-01

    Photocathodes for FELs and accelerators will benefit from rugged and self-rejuvenating photocathodes with high QE at the longest possible wavelength. The needs of a high power FEL are not met at present by existing photocathode-drive laser combinations: requirements generally necessitate barrier-lowering coatings which are degraded by operation. We seek to develop a controlled porosity dispenser cathode, and shall report on our coordinated experimental and theoretical studies. Our models account for field, thermal, and surface effects of cesium monolayers on photoemission, and compare well with concurrent experiments examining the QE, patchiness, and evolution of the coatings. Field enhancement, thermal variation of specific heat and electron relaxation rates and their relation to high laser intensity and/or short pulse-to-pulse separation, variations in work function effects due to coating non-uniformity, and the dependence on the wavelength of the incident light are included. The status of methods by which ...

  6. Laser irradiation induced spectral evolution of the Laser irradiation induced spectral evolution of the surface-enhanced Raman scattering(SERS)of 4-tert-butylbenzylmercaptan on gold nanoparticles assembly

    Institute of Scientific and Technical Information of China (English)

    TONG LianMing; ZHU Tao; LIU ZhongFan

    2007-01-01

    The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan(4-tBBM)on gold nanopanlcles assembly under laser irradiation is reported.The reIative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time.Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance(SPR)induced heat in the gold nanoparticles assembly is the origin of the spectraI evolution.During the process of self-assembly,4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group.The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.

  7. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Sofía Ruiz de Gauna

    2016-01-01

    Full Text Available Background. Cardiopulmonary resuscitation (CPR feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin’s back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%. Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p<0.001. Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p<0.001. Median error in rate was 0.9 cpm (1.0%, with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces.

  8. Spectral functions of a time-periodically driven Falicov-Kimball model: Real-space Floquet dynamical mean-field theory study

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2017-08-01

    We present a systematic study of the spectral functions of a time-periodically driven Falicov-Kimball Hamiltonian. In the high-frequency limit, this system can be effectively described as a Harper-Hofstadter-Falicov-Kimball model. Using real-space Floquet dynamical mean-field theory (DMFT), we take into account the interaction effects and contributions from higher Floquet bands in a nonperturbative way. Our calculations show a high degree of similarity between the interacting driven system and its effective static counterpart with respect to spectral properties. However, as also illustrated by our results, one should bear in mind that Floquet DMFT describes a nonequilibrium steady state, while an effective static Hamiltonian describes an equilibrium state. We further demonstrate the possibility of using real-space Floquet DMFT to study edge states on a cylinder geometry.

  9. Laser irradiation induced spectral evolution of the surface-enhanced Raman scattering(SERS) of 4-tert-butylbenzylmercaptan on gold nanoparticles assembly

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan (4-tBBM) on gold nanoparticles assembly under laser irradiation is reported. The relative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time. Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance (SPR) induced heat in the gold nanoparticles assembly is the origin of the spectral evolution. During the process of self-assembly, 4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group. The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.

  10. Alterations in Spectral Attributes of Surface Electromyograms after Utilization of a Foot Drop Stimulator during Post-Stroke Gait

    Directory of Open Access Journals (Sweden)

    Rakesh Pilkar

    2017-08-01

    Full Text Available BackgroundA foot drop stimulator (FDS is a rehabilitation intervention that stimulates the common peroneal nerve to facilitate ankle dorsiflexion at the appropriate time during post-stroke hemiplegic gait. Time–frequency analysis (TFA of non-stationary surface electromyograms (EMG and spectral variables such as instantaneous mean frequency (IMNF can provide valuable information on the long-term effects of FDS intervention in terms of changes in the motor unit (MU recruitment during gait, secondary to improved dorsiflexion.ObjectiveThe aim of this study was to apply a wavelet-based TFA approach to assess the changes in neuromuscular activation of the tibialis anterior (TA, soleus (SOL, and gastrocnemius (GA muscles after utilization of an FDS during gait post-stroke.MethodsSurface EMG were collected bilaterally from the TA, SOL, and GA muscles from six participants (142.9 ± 103.3 months post-stroke while walking without the FDS at baseline and 6 months post-FDS utilization. Continuous wavelet transform was performed to get the averaged time–frequency distribution of band pass filtered (20–300 Hz EMGs during multiple walking trials. IMNFs were computed during normalized gait and were averaged during the stance and swing phases. Percent changes in the energies associated with each frequency band of 25 Hz between 25 and 300 Hz were computed and compared between visits.ResultsAveraged time–frequency representations of the affected TA, SOL, and GA EMG show altered spectral attributes post-FDS utilization during normalized gait. The mean IMNF values for the affected TA were significantly lower than the unaffected TA at baseline (p = 0.026 and follow-up (p = 0.038 during normalized stance. The mean IMNF values significantly increased (p = 0.017 for the affected GA at follow-up during normalized swing. The frequency band of 250–275 Hz significantly increased in the energies post-FDS utilization for all muscles

  11. Long-range Coulomb interactions in surface systems: a first-principles description within self-consistently combined GW and dynamical mean-field theory.

    Science.gov (United States)

    Hansmann, P; Ayral, T; Vaugier, L; Werner, P; Biermann, S

    2013-04-19

    Systems of adatoms on semiconductor surfaces display competing ground states and exotic spectral properties typical of two-dimensional correlated electron materials which are dominated by a complex interplay of spin and charge degrees of freedom. We report a fully ab initio derivation of low-energy Hamiltonians for the adatom systems Si(111):X, with X=Sn, Si, C, Pb, that we solve within self-consistently combined GW and dynamical mean-field theory. Calculated photoemission spectra are in agreement with available experimental data. We rationalize experimentally observed trends from Mott physics toward charge ordering along the series as resulting from substantial long-range interactions.

  12. Bi-directional four wave mixing in semiconductor amplifiers for mid-span spectral inversion: theory and experiment

    DEFF Research Database (Denmark)

    Bischoff, Svend; Buxens, Alvaro A.; Poulsen, Henrik Nørskov

    1999-01-01

    Summary form only given. We have developed a large signal model to theoretically assess the performance of a mid span spectral inversion (MSSI) transmission system. The large signal model has previously been used to successfully model the fast gain dynamics of semiconductor optical amplifiers....

  13. ADSORPTION OF ASSOCIATING FLUIDS AT ACTIVE SURFACES: A DENSITY FUNCTIONAL THEORY

    Directory of Open Access Journals (Sweden)

    S.Tripathi

    2003-01-01

    Full Text Available We present a density functional theory (DFT to describe adsorption in systems where molecules of associating fluids can bond (or associate with discrete, localized functional groups attached to the surfaces, in addition to other fluid molecules. For such systems as water adsorbing on activated carbon, silica, clay minerals etc. this is a realistic model to account for surface heterogeneity rather than using a continuous smeared surface-fluid potential employed in most of the theoretical works on adsorption on heterogeneous surfaces. Association is modelled within the framework of first order thermodynamic perturbation theory (TPT1. The new theory accurately predicts the distribution of bonded and non-bonded species and adsorption behavior under various conditions of bulk pressure, surface-fluid and fluid-fluid association strengths. Competition between the surface-fluid and fluid-fluid association is analyzed for fluids with multiple association sites and its impact on adsorption is discussed. The theory, supported by simulations demonstrates that the extent and the nature of adsorption (e.g. monolayer vary with the number of association sites on the fluid molecules.

  14. Classical stochastic theory for the sticking probability of atoms scattered on surfaces.

    Science.gov (United States)

    Pollak, Eli

    2011-06-30

    A stochastic theory is formulated for the sticking probability of a projectile scattered from a surface. The theory is then explored by applying it to a generalized Langevin equation model of the scattering dynamics. The theory succeeds in describing the known features of trapping on surfaces. At low energies sticking will occur only if there is an attractive interaction between the projectile and the surface. The probability of sticking at low energies is greater the lower the temperature and the deeper the attractive well of the particle as it approaches the surface. The sticking probability in the absence of horizontal friction tends to be lower as the stiffness of the surface increases. However, in the presence of horizontal friction, increased stiffness may lead to an increase in the sticking coefficient. A cos(2)(θ(i)) scaling is found only in the absence of corrugation and horizontal friction. The theory is then applied successfully to describe experimentally measured sticking probabilities for the scattering of Xe on a Pt(111) surface.

  15. Research on Principles for Features Matching Based on Spectral Graph Theory%基于谱图理论的特征匹配原理研究

    Institute of Scientific and Technical Information of China (English)

    于志鹏; 李晓明

    2012-01-01

    图像匹配是计算机视觉的重要研究领域,它们广泛应用于工业、农业、物体识别、遥感、生物医学以及军事等方面.基于谱图理论的图像匹配算法引起了人们越来越多的兴趣,该算法直接对图像中的特征进行处理,将高度复杂的经典算法转化为组合(离散)谱问题的简单求解,有效地降低了算法复杂度。文章对基于谱图理论的特征匹配算法进行了较为系统的探索,借助数学理论工具,对不同匹配算法中所用谱分解的原理和本质进行了研究。%Images matching is an important research area in computer vision eld,which is widely applied in industrial, agriculture, object recognition, remote sensing, biomedicine, military aair and many other elds. Recently, the algorithms for images matching based on spectral graph theory is the most popular research subject in the world. In the algorithm,features in images are processed directly, and the solution becomes rather simple. The algorithm reduces the complexity effectively. The systematic explore on the algorithm of features matching based on spectral graph theory is addressed in this dissertation. With the help of mathematical theory tools, the research on the principles and essence of the spectral decomposition in the dierent matching algorithms is addressed, too.

  16. Optical characterization of gold chains and steps on the vicinal Si(557) surface: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Physics and European Theoretical Spectroscopy Facility (ETSF), University of Rome ' ' Tor Vergata' ' , Via della Ricerca Scientifica 1, 00133 Rome (Italy); McAlinden, Niall; McGilp, John F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2012-06-15

    We present a joint experimental-theoretical study of the reflectance anisotropy of clean and gold-covered Si(557), a vicinal surface of Si(111) upon which gold forms quasi-one-dimensional (1D) chains parallel to the steps. By means of first-principles calculations, we analyse the close relationship between the various surface structural motifs and the optical properties. Good agreement is found between experimental and computed spectra of single-step models of both clean and Au-adsorbed surfaces. Spectral fingerprints of monoatomic gold chains and silicon step edges are identified. The role of spin-orbit coupling (SOC) on the surface optical properties is examined, and found to have little effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Simulation and Experiment of Dynamic Properties of Joint Surfaces Based on Fractal Theory

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2015-01-01

    Full Text Available Dynamic properties of joint surfaces are researched, micro behavior is also analyzed and a mathematical model based on fractal theory is built, and the relationships between normal dynamic characteristics of joints and surface pressure, surface roughness, and real contact area were simulated. The contact pressure in joint, equivalent stiffness, and damping in joint were nonstrict proportional relationship, higher surface quality of the contact joint surface, can increase normal stiffness and reduce normal damping in joint. Experiments are arranged according to the theoretical model in order to analyze the share of every major factor that affects dynamic properties of joint surfaces. Two common materials HT200 and 2Cr13 under different processing methods, surface roughness, and surface areas are used, and law curves were built between the dynamic behavior of fixed joints and preload, processing method of contact surface, surface roughness; the correctness of the theory simulation results was confirmed. A spring-damping element joints finite model was built based on the pressure distribution contours. Based on the experimental data, we simulated the model of HT200 specimen by ANSYS, at the same time, compared our model, traditional model, and experimental result, and proved that the spring-damping distribution model based on pressure has a better simulative precision.

  18. Spectral Networks and Snakes

    CERN Document Server

    Gaiotto, Davide; Neitzke, Andrew

    2012-01-01

    We apply and illustrate the techniques of spectral networks in a large collection of A_{K-1} theories of class S, which we call "lifted A_1 theories." Our construction makes contact with Fock and Goncharov's work on higher Teichmuller theory. In particular we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock-Goncharov coordinates. We show, moreover, how these techniques can be used to study the BPS spectra of lifted A_1 theories. In particular, we determine the spectrum generators for all the lifts of a simple superconformal field theory.

  19. The research of air pollution based on spectral features in leaf surface of Ficus microcarpa in Guangzhou, China.

    Science.gov (United States)

    Wang, Jie; Xu, Ruisong; Ma, Yueliang; Miao, Li; Cai, Rui; Chen, Yu

    2008-07-01

    Nowadays development of industry and traffic are the main contributor to city air pollution in the city of GuangZhou, China. Conventional methods for investigating atmosphere potentially harmful element pollution based on sampling and chemical analysis are time and labor consuming and relatively expensive. Reflectance spectroscopy within the visible-near-infrared region of vegetation in city has been widely used to predict atmosphere constituents due to its rapidity, convenience and accuracy. The objective of this study was to examine the possibility of using leaves reflectance spectra of vegetation as a rapid method to simultaneously assess pollutant (S, Cd, Cu, Hg, Pb, XCl, XF) in the atmosphere of the Guangzhou area. This article has studied the spectral features of polluted leaf surface of Ficus microcarpa in 1985 and 1998. According to the analysis, comprehensive assessment for the change of atmospheric condition and degrees of pollution were given. This conclusion was confirmed by the monitored data got from chemical analysis. Future study with real remote sensing data and field measurements were strongly recommended.

  20. High performance spectral-phase surface plasmon resonance biosensors based on single- and double-layer schemes

    Science.gov (United States)

    Wang, Cheng; Ho, Ho-Pui; Shum, Ping

    2013-03-01

    We have investigated the surface plasmon resonance (SPR) phase change across a range of excitation wavelengths (i.e. spectral-phase) using the Fresnel's equations and Transfer Matrix technique with emphasis on optimizing refractive index sensing performance. Having evaluated the phase change characteristics upon varying different sets of parameters, our results indicate the possibility of achieving extremely high resolution within a wide range of sample refractive index (1.3330-1.3505) at a fixed angle of incidence. We also demonstrate that the double-layer (silver/gold or copper/gold) configuration holds very promising characteristics for SPR sensing, and it is possible to achieve a detection limit of 7.9×10-9 RIU (refractive index unit) if one uses a phase measurement resolution of 2×10-4 rad. Among all the factors, material of the metal film and its thickness are found to affect performance most. This work provides a comprehensive analysis of the interplay between various system parameters.

  1. Sublimation of Ices Containing Organics and/or Minerals and Implications for Icy Bodies Surface Structure and Spectral Properties

    Science.gov (United States)

    Poch, O.; Pommerol, A.; Jost, B.; Yoldi, Z.; Carrasco, N.; Szopa, C.; Thomas, N.

    2015-12-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice either in pure form or mixed with minerals and/or organic molecules. Sublimation is a process responsible for shaping and changing the reflectance properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surfaces made of mixtures of water ice and non-volatile components (complex organic matter and silicates), as they undergo sublimation of the water ice under low temperature and pressure conditions (Poch et al., under review). We prepared icy surfaces which are potential analogues of ices found on comets, icy satellites or trans-neptunian objects (TNOs). The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol et al., 2015a). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit, or sublimation mantle, made of the non-volatiles at the top of the samples. The texture (porosity, internal cohesiveness etc.), the activity (outbursts and ejection of mantle fragments) and the spectro-photometric properties of this mantle are found to differ strongly depending on the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the volatile component and the dust/ice mass ratio. The results also indicate how the band depths of the sub-surface water ice evolve during the build-up of the sublimation mantle. These data provide useful references for interpreting remote-sensing observations of Rosetta (see Pommerol et al., 2015b), and also New Horizons. Poch, O., et al., under review in IcarusPommerol, A., et al., 2015a, Planet. Space Sci. 109-110, 106-122. http://dx.doi.org/10.1016/j.pss.2015.02.004Pommerol, A., et al., 2015b, Astronomy and Astrophysics, in press. http://dx.doi.org/10.1051/0004-6361/201525977

  2. String Theory on Thin Semiconductors: Holographic Realization of Fermi Points and Surfaces

    CERN Document Server

    Rey, Soo-Jong

    2009-01-01

    I make a novel contact between string theory and degenerate fermion dynamics in thin semiconductors. Utilizing AdS/CFT correspondence in string theory and tunability of coupling parameters in condensed matter systems, I focus on the possibilities testing string theory from tabletop experiments. I first discuss the observation that stability of Fermi surface is classifiable according to K-theory. I then elaborate two concrete realization of Fermi surfaces of zero and two dimensions. Both are realized by complex of D3-branes and D7-branes of relative codimension 6 and 4, respectively. The setup with Fermi point models gauge dynamics of multiply stacked graphenes at half-filling. I show that string theory predicts dynamical generation of mass gap and metal-insulator quantum phase transition at zero temperature. I emphasize that conformally invariant gauge theory dynamics of the setup plays a crucial role, leading to novel conformal phase transition. The setup with Fermi surface is in collaboration with Dongsu Ba...

  3. Calculation of Surface Tensions of Polar Mixtures with a Simplified Gradient Theory Model

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    Key Words: Thermodynamics, Simplified Gradient Theory, Surface Tension, Equation of state, Influence Parameter.In this work, assuming that the number densities of each component in a mixture across the interface between the coexisting vapor and liquid phases are linearly distributed, we developed...... surface tensions of 34 binary mixtures with an overall average absolute deviation of 3.46%. The results show good agreement between the predicted and experimental surface tensions. Next, the SGT model was applied to correlate surface tensions of binary mixtures containing alcohols, water or/and glycerol...

  4. Density functional theory calculations of tetracene on low index surfaces of copper crystal

    Institute of Scientific and Technical Information of China (English)

    Dou Wei-Dong; Zhang Han-Jie; Bao Shi-Ning

    2009-01-01

    This paper carries out the density functional theory calculations to study the adsorbate-substrate interaction between tetracene and Cu substrates (Cu (110) and Cu (100) surface). On each of the surfaces, two kinds of geometry are calculated, namely 'flat-lying' mode and 'upright standing' mode. For 'flat-lying' geometry, the molecule is found to be aligned with its longer molecular axis along close-packed direction of the substrata surfaces. For 'upright standing' geometry, the long axis of tetracene is found to be parallel to the surface normal of the substrate on Cu (110) surface. However, tetracene appears as 'tilted' mode on Cu (100) surface. Structures with 'flat-lying' mode have much larger adsorption energy and charge transfer upon adsorption than that with 'upright standing' mode, indicating the preference of 'flat-lying' geometry on both Cu (110) and Cu (100) surface.

  5. Phenomenological theory of surface effects in ferroelectrics and its relationship with transverse Ising model

    Institute of Scientific and Technical Information of China (English)

    钟维烈; 王玉国; 张沛霖; 曲保东

    1997-01-01

    The relationship between the transverse field Ising model and the Landau phenomenological theory for ferroelectrics is analyzed, and the Landau free energy expression for ferroelectrics having surfaces is derived. It is pointed out that the traditional expression in which the surface integral has only a term of the square polarization is valid only for special cases, in general a term of the polarization to the four should be included as well. By use of the newly derived free energy expression, the thickness-dependence of the spontaneous polarization and Curie temperature of ferroelectric films is calculated; thereby some experimental results incompatible with the traditional phenomenological theory are successfully explained.

  6. A collocation method for surface tension calculations with the density gradient theory

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M.

    2016-01-01

    Surface tension calculations are important in many industrial applications and over a wide range of temperatures, pressures and compositions. Empirical parachor methods are not suitable over a wide condition range and the combined use of density gradient theory with equations of state has been...... proposed in literature. Often, many millions of calculations are required in the gradient theory methods, which is computationally very intensive. In this work, we have developed an algorithm to calculate surface tensions an order of magnitude faster than the existing methods, with no loss of accuracy...

  7. Modularity and 4D-2D spectral equivalences for large-N gauge theories with adjoint matter

    CERN Document Server

    Başar, Gökçe; Dienes, Keith R; McGady, David A

    2015-01-01

    In recent work, we demonstrated that the confined-phase spectrum of non-supersymmetric pure Yang-Mills theory coincides with the spectrum of the chiral sector of a two-dimensional conformal field theory in the large-$N$ limit. This was done within the tractable setting in which the gauge theory is compactified on a three-sphere whose radius is small compared to the strong length scale. In this paper, we generalize these observations by demonstrating that similar results continue to hold even when massless adjoint matter fields are introduced. These results hold for both thermal and $(-1)^F$-twisted partition functions, and collectively suggest that the spectra of large-$N$ confining gauge theories are organized by the symmetries of two-dimensional conformal field theories.

  8. Empirical assessment of the validity limits of the surface wave full ray theory using realistic 3-D Earth models

    KAUST Repository

    Parisi, Laura

    2016-02-10

    The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ∼ 45–150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ∼ 45–150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ∼ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ∼20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ∼ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT\\'s phase errors are smaller, notably for the shortest wave periods considered (T

  9. Empirical assessment of the validity limits of the surface wave full ray theory using realistic 3-D Earth models

    Science.gov (United States)

    Parisi, Laura; Ferreira, Ana M. G.

    2016-04-01

    The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ˜ 45-150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ˜ 45-150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ˜ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ˜20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ˜ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT's phase errors are smaller, notably for the shortest wave periods considered (T ˜ 45 s and

  10. Cross-spectral study of the spatial relationships in the North Pacific sea-surface temperature anomaly field. Report No. 23

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, J.W.

    1980-03-01

    Cross-spectral analysis is used to examine the dependence of the temporal covariation of sea-surface temperature (SST) anomalies at pairs of spatially separated points in the North Pacific on (1) the time scale of the variations, (2) the relative displacement of the points and (3) their location within the North Pacific basin. Spatial scales considered here range from 1000 kilometers up to the width of the basin. The study focuses on cross-spectral estimates for the interannual frequency band, 0.125-0.75 yr/sup -1/ although estimates for three other bands spanning higher frequencies are also examined.

  11. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides

    Science.gov (United States)

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E.

    2016-06-01

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

  12. Spectral Geometry and Causality

    CERN Document Server

    Kopf, T

    1996-01-01

    For a physical interpretation of a theory of quantum gravity, it is necessary to recover classical spacetime, at least approximately. However, quantum gravity may eventually provide classical spacetimes by giving spectral data similar to those appearing in noncommutative geometry, rather than by giving directly a spacetime manifold. It is shown that a globally hyperbolic Lorentzian manifold can be given by spectral data. A new phenomenon in the context of spectral geometry is observed: causal relationships. The employment of the causal relationships of spectral data is shown to lead to a highly efficient description of Lorentzian manifolds, indicating the possible usefulness of this approach. Connections to free quantum field theory are discussed for both motivation and physical interpretation. It is conjectured that the necessary spectral data can be generically obtained from an effective field theory having the fundamental structures of generalized quantum mechanics: a decoherence functional and a choice of...

  13. Comparison between Spectral perturbation and Spectral relaxation approach for unsteady heat and mass transfer by MHD mixed convection flow over an impulsively stretched vertical surface with chemical reaction effect

    Directory of Open Access Journals (Sweden)

    T. M. Agbaje

    2015-06-01

    Full Text Available In this study, the spectral perturbation method (SPM is utilized to solve the momentum, heat and mass transfer equations describing the unsteady MHD mixed convection flow over an impulsively stretched vertical surface in the presence of chemical reaction effect. The governing partial differential equations are reduced into a set of coupled non similar equations and then solved numerically using the SPM. The SPM combines the standard perturbation method idea with the Chebyshev pseudo-spectral collocation method. In order to demonstrate the accuracy and efficiency of the proposed method, the spectral perturbation (SPM numerical results are compared with numerical results generated using the spectral relaxation method (SRM and a good agreement between the two methods is observed up to a minimum of eight decimal digits. Several simulation are conducted to ascertain the accuracy of the SPM and the SRM. The computational speed of the SPM is demonstrated by comparing the SPM computational time with the SRM computational time. A residual error analysis is also conducted for the SPM and the SRM in order to further assess the accuracy of the SPM. The study shows that the spectral perturbation method (SPM is more efficient in terms of computational speed when compared with the SRM. The study also shows that the SPM can be used as an efficient and reliable tool for solving strongly nonlinear boundary value partial differential equation problems that are defined under the Williams and Rhyne [3] transformation. In addition, the study shows that accurate results can be obtained using the perturbation method and thus, the conclusions earlier drawn by researchers regarding the accuracy of perturbation methods is corrected.

  14. The Spectral Shift Function and Spectral Flow

    Science.gov (United States)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  15. Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces.

    Science.gov (United States)

    Kumar, Santosh; Schelling, Patrick K

    2006-11-28

    We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces for 0.5 and 1.0 ML coverages using density functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at the stoichiometric ceria (111) surface. We find that single hydrogen bonds between the water and the oxide surface are favored in all cases. At stoichiometric surfaces, the water adsorption energy depends rather weakly on coverage. We predict that the observed coverage dependence of the water adsorption energy at stoichiometric surfaces is likely the result of dipole-dipole interactions between adsorbed water molecules. When oxygen vacancies are introduced in various surface layers, water molecules are attracted more strongly to the surface. We find that it is very slightly energetically favorable for adsorbed water to oxidized the reduced (111) surface with the evolution of H(2). In the event that water does not oxidize the surface, we predict that the effective attractive water-vacancy interaction will result in a significant enhancement of the vacancy concentration at the surface in agreement with experimental observations. Finally, we present our results in the context of recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface.

  16. A review of the findings and theories on surface size effects on visual attention.

    Science.gov (United States)

    Peschel, Anne O; Orquin, Jacob L

    2013-12-09

    That surface size has an impact on attention has been well-known in advertising research for almost a century; however, theoretical accounts of this effect have been sparse. To address this issue, we review studies on surface size effects on eye movements in this paper. While most studies find that large objects are more likely to be fixated, receive more fixations, and are fixated faster than small objects, a comprehensive explanation of this effect is still lacking. To bridge the theoretical gap, we relate the findings from this review to three theories of surface size effects suggested in the literature: a linear model based on the assumption of random fixations (Lohse, 1997), a theory of surface size as visual saliency (Pieters etal., 2007), and a theory based on competition for attention (CA; Janiszewski, 1998). We furthermore suggest a fourth model - demand for attention - which we derive from the theory of CA by revising the underlying model assumptions. In order to test the models against each other, we reanalyze data from an eye tracking study investigating surface size and saliency effects on attention. The reanalysis revealed little support for the first three theories while the demand for attention model showed a much better alignment with the data. We conclude that surface size effects may best be explained as an increase in object signal strength which depends on object size, number of objects in the visual scene, and object distance to the center of the scene. Our findings suggest that advertisers should take into account how objects in the visual scene interact in order to optimize attention to, for instance, brands and logos.

  17. A review of the findings and theories on surface size effects on visual attention

    Directory of Open Access Journals (Sweden)

    Anne Odile Peschel

    2013-12-01

    Full Text Available That surface size has an impact on attention has been well-known in advertising research for almost a century; however, theoretical accounts of this effect have been sparse. To address this issue, we review studies on surface size effects on eye movements in this paper. While most studies find that large objects are more likely to be fixated, receive more fixations, and are fixated faster than small objects, a comprehensive explanation of this effect is still lacking. To bridge the theoretical gap, we relate the findings from this review to three theories of surface size effects suggested in the literature: a linear model based on the assumption of random fixations (Lohse, 1997, a theory of surface size as visual saliency (Pieters et al., 2007, and a theory based on competition for attention (Janiszewski, 1998. We furthermore suggest a fourth model – demand for attention –which we derive from the theory of competition for attention by revising the underlying model assumptions. In order to test the models against each other, we reanalyse data from an eye tracking study investigating surface size and saliency effects on attention. The reanalysis revealed little support for the first three theories while the demand for attention model showed a much better alignment with the data. We conclude that surface size effects may best be explained as an increase in object signal strength which depends on object size, number of objects in the visual scene, and object distance to the centre of the scene. Our findings suggest that advertisers should take into account how objects in the visual scene interact in order to optimize attention to, for instance, brands and logos.

  18. Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory.

    Science.gov (United States)

    Welch, William R W; Kubelka, Jan; Keiderling, Timothy A

    2013-09-12

    Infrared (IR), Raman, and vibrational circular dichroism (VCD) spectral variations for different β-sheet structures were studied using simulations based on density functional theory (DFT) force field and intensity computations. The DFT vibrational parameters were obtained for β-sheet fragments containing nine-amides and constrained to a variety of conformations and strand arrangements. These were subsequently transferred onto corresponding larger β-sheet models, normally consisting of five strands with ten amides each, for spectral simulations. Further extension to fibril models composed of multiple stacked β-sheets was achieved by combining the transfer of DFT parameters for each sheet with dipole coupling methods for interactions between sheets. IR spectra of the amide I show different splitting patterns for parallel and antiparallel β-sheets, and their VCD, in the absence of intersheet stacking, have distinct sign variations. Isotopic labeling by (13)C of selected residues yields spectral shifts and intensity changes uniquely sensitive to relative alignment of strands (registry) for antiparallel sheets. Stacking of multiple planar sheets maintains the qualitative spectral character of the single sheet but evidences some reduction in the exciton splitting of the amide I mode. Rotating sheets with respect to each other leads to a significant VCD enhancement, whose sign pattern and intensity is dependent on the handedness and degree of rotation. For twisted β-sheets, a significant VCD enhancement is computed even for sheets stacked with either the same or opposite alignments and the inter-sheet rotation, depending on the sense, can either further increase or weaken the enhanced VCD intensity. In twisted, stacked structures (without rotation), similar VCD amide I patterns (positive couplets) are predicted for both parallel and antiparallel sheets, but different IR intensity distributions still enable their differentiation. Our simulation results prove useful

  19. Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory

    CERN Document Server

    Markovich, Tomer; Podgornik, Rudi

    2016-01-01

    We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.

  20. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  1. Bordered surfaces, off-shell amplitudes, sewing, and string field theory

    Science.gov (United States)

    Carlip, Steven

    1989-04-01

    These lectures will deal with the current status of the sewing problem. The rationale for this approach is that any nonperturbative string theory must reproduce the Polyakov path integral as a perturbation series. If our experience in ordinary field theory is a guide, and admittedly it may not be, the terms in such a perturbation series, like Feynman diagrams, are likely to be built up from simple vertices and propagators, which can themselves be represented as (off-shell) Polyakov amplitudes. Hence an understanding of how to put together simple components into more complicated world sheet amplitudes is likely to give us much-needed information about the structure of nonperturbative string theory. To understand sewing, we must first understand the building blocks, off-shell Polyakov amplitudes. This is the subject of my first lecture. Next, we will explore the sewing of conformal field theories at a fixed conformal structure, that is, the reconstruction of correlation functions for a fixed surface (Sigma) from those on a pair of surfaces (Sigma)(sub 1) and (Sigma)(sub 2) obtained by cutting (Sigma) along a closed curve. We will then look at the problem of sewing amplitudes, integrals of correlation functions over moduli space. This will necessitate an understanding of how to build the moduli space of a complicated surface from simpler moduli spaces. Finally, we will briefly examine vertices and string field theories.

  2. Spectral geometry of spacetime

    CERN Document Server

    Kopf, T

    2000-01-01

    Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.

  3. Cross-spectral analysis of physiological tremor and muscle activity; 1, Theory and application to unsynchronized EMG

    CERN Document Server

    Timmer, J; Pfleger, W; Deuschl, G

    1998-01-01

    We investigate the relationship between the extensor electromyogram (EMG) and tremor time series in physiological hand tremor by cross-spectral analysis. Special attention is directed to the phase spectrum and the effects of observational noise. We calculate the theoretical phase spectrum for a second order linear stochastic process and compare the results to measured tremor data recorded from subjects who did not show a synchronized EMG activity in the corresponding extensor muscle. The results show that physiological tremor is well described by the proposed model and that the measured EMG represents a Newtonian force by which the muscle acts on the hand.

  4. Spectral transfer functions of body waver propagating through a stratified medium. Part I: Basic theory by means of matrix propagators

    Energy Technology Data Exchange (ETDEWEB)

    Macia, R.; Correig, A.M.

    1987-01-01

    Seismic wave propagation is described by a second order differential equation for medium desplacement. By Fourier transforming with respect to time and space, wave equation transforms into a system of first order linear differential equations for the Fourier transform of displacement and stress. This systen of differential equations is solved by means of Matrx Propagator and applied to the propagation of body waves in stratified media. The matrix propagators corresponding to P-SV and SH waves in homogeneous medium are found as an intermediate step to obtain the spectral response of body waves propagating through a stratified medium with homogeneous layers. (Author)

  5. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas;

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  6. Density functional theory calculations of the stress of oxidised (110) silicon surfaces

    CERN Document Server

    Melis, C; Colombo, L; Mana, G

    2016-01-01

    The measurement of the lattice-parameter of silicon by x-ray interferometry assumes the use of strain-free crystals. This might not be the case because surface relaxation, reconstruction, and oxidation cause strains without the application of any external force. In a previous work, this intrinsic strain was estimated by a finite element analysis, where the surface stress was modeled by an elastic membrane having a 1 N/m tensile strength. The present paper quantities the surface stress by a density functional theory calculation. We found a value exceeding the nominal value used, which potentially affects the measurement accuracy.

  7. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2009-01-01

    A density functional theory (DFT)-based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous......, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active...

  8. Topologically Twisted $N=(2,2)$ Supersymmetric Yang-Mills Theory on Arbitrary Discretized Riemann Surface

    CERN Document Server

    Matsuura, So; Ohta, Kazutoshi

    2014-01-01

    We define supersymmetric Yang-Mills theory on an arbitrary two-dimensional lattice (polygon decomposition) with preserving one supercharge. When a smooth Riemann surface $\\Sigma_g$ with genus $g$ emerges as an appropriate continuum limit of the generic lattice, the discretized theory becomes topologically twisted $\\mathcal{N}=(2,2)$ supersymmetric Yang-Mills theory on $\\Sigma_g$. If we adopt the usual square lattice as a special case of the discretization, our formulation is identical with Sugino's lattice model. Although the tuning of parameters is generally required while taking the continuum limit, the number of the necessary parameters is at most two because of the gauge symmetry and the supersymmetry. In particular, we do not need any fine-tuning if we arrange the theory so as to possess an extra global $U(1)$ symmetry ($U(1)_{R}$ symmetry) which rotates the scalar fields.

  9. A conformal field theory of extrinsic geometry of 2-d surfaces

    CERN Document Server

    Viswanathan, K S; Viswanathan, K S; Parthasarathy, R

    1994-01-01

    In the description of the extrinsic geometry of the string world sheet regarded as a conformal immersion of a 2-d surface in R^3, it was previously shown that, restricting to surfaces with h\\surd{g}\\ =\\ 1, where h is the mean scalar curvature and g is the determinant of the induced metric on the surface, leads to Virasaro symmetry. An explicit form of the effective action on such surfaces is constructed in this article which is the extrinsic curvature analog of the WZNW action. This action turns out to be the gauge invariant combination of the actions encountered in 2-d intrinsic gravity theory in light-cone gauge and the geometric action appearing in the quantization of the Virasaro group. This action, besides exhibiting Virasaro symmetry in z-sector, has SL(2,C) conserved currents in the \\bar{z}-sector. This allows us to quantize this theory in the \\bar{z}-sector along the lines of the WZNW model. The quantum theory on h\\surd{g}\\ =\\ 1 surfaces in R^3 is shown to be in the same universality class as the intr...

  10. COSMO-RSC: Second-Order Quasi-Chemical Theory Recovering Local Surface Correlation Effects.

    Science.gov (United States)

    Klamt, A

    2016-03-31

    The conductor-like screening model for realistic solvation (COSMO-RS) was introduced 20 years ago and meanwhile has become an important tool for the prediction of fluid phase equilibrium properties. Starting from quantum chemical information about the surface polarity of solutes and solvents, it solves the statistical thermodynamics of molecules in liquid phases by the very efficient approximation of independently pairwise interacting surfaces, which meanwhile was shown to be equivalent to Guggenheim's quasi-chemical theory. One of the basic limitations of COSMO-RS, as of any quasi-chemical model, is the neglect of neighbor information, i.e., of local correlations of surface types on the molecular surface. In this paper we present the completely novel concept of using the first-order COSMO-RS contact probabilities for the construction of local surface correlation functions. These are fed as an entropic correction for the pair interactions into a second COSMO-RS self-consistency loop, which yields new contact probabilities, enthalpies, free energies and activity coefficients recovering much of the originally lost neighbor effects. By a novel analytic correction for concentration dependent interactions, the resulting activity coefficients remain exactly Gibbs-Duhem consistent. The theory is demonstrated on the example of a lattice Monte Carlo fluid of dimerizing pseudomolecules. In this showcase the strong deviations of the lattice Monte Carlo fluid from quasi-chemical theory are almost perfectly reproduced by COSMO-RSC.

  11. Incorporating Endmember Variability into Linear Unmixing of Coarse Resolution Imagery: Mapping Large-Scale Impervious Surface Abundance Using a Hierarchically Object-Based Spectral Mixture Analysis

    Directory of Open Access Journals (Sweden)

    Chengbin Deng

    2015-07-01

    Full Text Available As an important indicator of anthropogenic impacts on the Earth’s surface, it is of great necessity to accurately map large-scale urbanized areas for various science and policy applications. Although spectral mixture analysis (SMA can provide spatial distribution and quantitative fractions for better representations of urban areas, this technique is rarely explored with 1-km resolution imagery. This is due mainly to the absence of image endmembers associated with the mixed pixel problem. Consequently, as the most profound source of error in SMA, endmember variability has rarely been considered with coarse resolution imagery. These issues can be acute for fractional land cover mapping due to the significant spectral variations of numerous land covers across a large study area. To solve these two problems, a hierarchically object-based SMA (HOBSMA was developed (1 to extrapolate local endmembers for regional spectral library construction; and (2 to incorporate endmember variability into linear spectral unmixing of MODIS 1-km imagery for large-scale impervious surface abundance mapping. Results show that by integrating spatial constraints from object-based image segments and endmember extrapolation techniques into multiple endmember SMA (MESMA of coarse resolution imagery, HOBSMA improves the discriminations between urban impervious surfaces and other land covers with well-known spectral confusions (e.g., bare soil and water, and particularly provides satisfactory representations of urban fringe areas and small settlements. HOBSMA yields promising abundance results at the km-level scale with relatively high precision and small bias, which considerably outperforms the traditional simple mixing model and the aggregated MODIS land cover classification product.

  12. Density functional theory calculations on oxygen adsorption on the Cu{sub 2}O surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohu [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Zhang, Xuemei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); Tian, Xinxin [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Wang, Shengguang, E-mail: shengguang.wang@gmail.com [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Synfuels China Co., Ltd., Huairou, Beijing 101407 (China); Feng, Gang, E-mail: fengg.sshy@sinopec.com [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Shanghai Research Institute of Petrochemical Technology SINOPEC, Shanghai 201208 (China)

    2015-01-01

    Graphical abstract: - Highlights: • Atomic oxygen adsorption on Cu{sub 2}O(110) and Cu{sub 2}O(100) induces surface reconstruction. • Atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(100) surface is stronger than on the Cu{sub 2}O(111) surface. • Dissociative adsorption was found to be energetically favorable. • Atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(111) surface induces magnetism. - Abstract: In order to understand various surface properties such as corrosion and potential catalytic activity of Cu{sub 2}O surfaces in the presence of environmental gases, we report here spin-polarized density functional theory calculations of the adsorptions of atomic and molecular oxygen on three surface Cu{sub 2}O facets. Atomic oxygen adsorbs at the hollow site formed with copper atoms of Cu{sub 2}O(111), while its adsorption on the Cu{sub 2}O(110) and Cu{sub 2}O(100) induces surface reconstruction. Molecular oxygen adsorbs on one coordinated unsaturated surface copper atom and two coordinated saturated copper atoms of Cu{sub 2}O(111), on the top of two surface copper atoms of Cu{sub 2}O(110), and on four surface copper atoms on Cu{sub 2}O(100). It was found that atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(100) surface is stronger than on the Cu{sub 2}O(111) surface. Atomic O and molecular O{sub 2} adsorption on the surface of Cu{sub 2}O(111) induces magnetism. This is different from other systems previously known to exhibit point defect ferromagnetism. On all three surfaces, dissociative adsorption was found to be energetically favorable.

  13. Power spectral density function and spatial autocorrelation of the ambient vibration full-wavefield generated by a distribution of spatially correlated surface sources

    Science.gov (United States)

    Lunedei, Enrico; Albarello, Dario

    2016-03-01

    Synthetic dispersion curves are here computed in the frame of an ambient-vibration full-wavefield model, which relies on the description of both ambient-vibration ground displacement and its sources as stochastic fields defined on the Earth's surface, stationary in time and homogeneous in space. In this model, previously developed for computing synthetic Horizontal-to-Vertical Spectral Ratio curves, the power spectral density function and the spatial autocorrelation of the displacement are naturally described as functions of the power spectral density function of the generating forces and of the subsoil properties (via the relevant Green's function), by also accounting for spatial correlation of these forces. Dispersion curves are computed from the displacement power spectral density function and from the spatial autocorrelation according with the well-known f-k and SPAC techniques, respectively. Two examples illustrate the way this new ambient-vibration model works, showing its possible use in better understanding the role of the surface waves in forming the dispersion curves, as well as its capability to capture some remarkable experimental findings.

  14. Mass action expressions for bidentate adsorption in surface complexation modeling: theory and practice.

    Science.gov (United States)

    Wang, Zimeng; Giammar, Daniel E

    2013-05-07

    The inclusion of multidentate adsorption reactions has improved the ability of surface complexation models (SCM) to predict adsorption to mineral surfaces, but variation in the mass action expression for these reactions has caused persistent ambiguity and occasional mishandling. The principal differences are the exponent (α) for the activity of available surface sites and the inclusion of surface site activity on a molar concentration versus fraction basis. Exemplified by bidentate surface complexation, setting α at two within the molar-based framework will cause critical errors in developing a self-consistent model. Despite the publication of several theoretical discussions regarding appropriate approaches, mishandling and confusion has persisted in the model applications involving multidentate surface complexes. This review synthesizes the theory of modeling multidentate surface complexes in a style designed to enable improvements in SCM practice. The implications of selecting an approach for multidentate SCM are illustrated with a previously published data set on U(VI) adsorption to goethite. To improve the translation of theory into improved practice, the review concludes with suggestions for handling multidentate reactions and publishing results that can avoid ambiguity or confusion. Although most discussion is exemplified by the generic bidentate case, the general issues discussed are relevant to higher denticity adsorption.

  15. Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2017-01-01

    In this research, vibration characteristics of a flexoelectric nanobeam in contact with Winkler-Pasternak foundation is investigated based on the nonlocal elasticity theory considering surface effects. This nonclassical nanobeam model contains flexoelectric effect to capture coupling of strain gradients and electrical polarizations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, flexoelectric and surface effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying a Galerkin-based solution. Natural frequencies are verified with those of previous papers on nanobeams. It is illustrated that flexoelectricity, nonlocality, surface stresses, elastic foundation and boundary conditions affects considerably the vibration frequencies of piezoelectric nanobeams.

  16. Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model

    CERN Document Server

    Roan, Shi-shyr

    2013-01-01

    The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.

  17. Metal-surface reaction energetics. Theory and application to heterogeneous catalysis, chemisorption, and surface diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Shustorovich, E. (ed.)

    1991-01-01

    The title is esoteric. The subtitle is specialized. This is an edited book containing five chapters written by eight authors. It is not a book to read from beginning to end, but kept perusing this handsomely printed and well-edited volume, learned so much that he wishes to convey his message to a small but very successful group of chemists and chemical engineers in heterogeneous catalysis: there is a lot to learn in this book, not so much in theory but in the facts that the theorists who wrote the book are trying to explain today with the faint hope that tomorrow they will actually predict new chemistry in as yet unknown catalytic cycles.

  18. Automated Classification of Land Cover Using Landsat 8 Oli Surface Reflectance Product and Spectral Pattern Analysis Concept - Case Study in Hanoi, Vietnam

    Science.gov (United States)

    Nguyen Dinh, Duong

    2016-06-01

    Recently USGS released provisional Landsat 8 Surface Reflectance product, which allows conducting land cover mapping over large composed of number of image scenes without necessity of atmospheric correction. In this study, the authors present a new concept for automated classification of land cover. This concept is based on spectral patterns analysis of reflected bands and can be automated using predefined classification rule set constituted of spectral pattern shape, total reflected radiance index (TRRI) and ratios of spectral bands. Given a pixel vector B6 = {b1,b2,b3,b4,b5,b6} where b1, b2,...,b6 denote bands 2, 3, ...,7 of OLI sensor respectively. By using the pixel vector B6 we can construct spectral reflectance curve. Each spectral curve is featured by a shape, which can be described in simplified form of an analogue pattern, which is consisted of 15 digits of 0, 1 and 2 showing mutual relative position of spectral vertices. Value of comparison between band i and j is 2 if bj > bi, 1 if bj = bi and 0 if bj < bi. Simplified spectral pattern is defined by 15 digits as m1,2m1,3m1,4m1,5m1,6m2,3m2,4m2,5m2,6m3,4m3,5m3,6m4,5m4,6m5,6 where mi,j is result of comparison of reflectance between bi and bj and has values of 0, 1 and 2. After construction of SSP for each pixel in the input image, the original image will be decomposed to component images, which contain pixels with the same SRCS pattern. The decomposition can be written analytically by equation A = Σnk=1Ck where A stands for original image with 6 spectral bands, n is number of component images decomposed from A and Ck is component image. For this study, we use Landsat 8 OLI reflectance image LC81270452013352LGN00 and LC81270452015182LGN00. For the decomposition, we use only six reflective bands. Each land cover class is defined by SSP code, threshold values for TRRI and band ratios. Automated classification of land cover was realized with 8 classes: forest, shrub, grass, water, wetland, develop land, barren

  19. Compression of 1030-nm femtosecond pulses after nonlinear spectral broadening in Corning® HI 1060 fiber: Theory and experiment

    Directory of Open Access Journals (Sweden)

    Michael E. Reilly

    2015-12-01

    Full Text Available We present the design and implementation of femtosecond pulse compression at 1030 nm based on spectral broadening in single-mode fiber, followed by dispersion compensation using an optimized double-pass SF11 prism pair. The source laser produced 1030-nm 144-fs pulses which were coupled into Corning® HI 1060 fiber, whose length was chosen to be 40 cm by using a pulse propagation model based on solving the generalized nonlinear Schrödinger equation. A maximum broadening to 60-nm bandwidth was obtained, following which compression to 60 ± 3 fs duration was achieved by using a prism-pair separation of 1025 ± 5 mm.

  20. Bethe Ansatz and the Spectral Theory of affine Lie algebra--valued connections. The non simply--laced case

    CERN Document Server

    Masoero, Davide; Valeri, Daniele

    2015-01-01

    We assess the ODE/IM correspondence for the quantum $\\mathfrak{g}$-KdV model, for a non-simply laced Lie algebra $\\mathfrak{g}$. This is done by studying a meromorphic connection with values in the Langlands dual algebra of the affine Lie algebra ${\\mathfrak{g}}^{(1)}$, and constructing the relevant $\\Psi$-system among subdominant solutions. We then use the $\\Psi$-system to prove that the generalized spectral determinants satisfy the Bethe Ansatz equations of the quantum $\\mathfrak{g}$-KdV model. We also consider generalized Airy functions for twisted Kac--Moody algebras and we construct new explicit solutions to the Bethe Ansatz equations. The paper is a continuation of our previous work on the ODE/IM correspondence for simply-laced Lie algebras.

  1. Bethe Ansatz and the Spectral Theory of Affine Lie algebra-Valued Connections II: The Non Simply-Laced Case

    Science.gov (United States)

    Masoero, Davide; Raimondo, Andrea; Valeri, Daniele

    2016-09-01

    We assess the ODE/IM correspondence for the quantum g -KdV model, for a non-simply laced Lie algebra g. This is done by studying a meromorphic connection with values in the Langlands dual algebra of the affine Lie algebra g^{(1)} , and constructing the relevant {Ψ} -system among subdominant solutions. We then use the {Ψ} -system to prove that the generalized spectral determinants satisfy the Bethe Ansatz equations of the quantum g -KdV model. We also consider generalized Airy functions for twisted Kac-Moody algebras and we construct new explicit solutions to the Bethe Ansatz equations. The paper is a continuation of our previous work on the ODE/IM correspondence for simply-laced Lie algebras.

  2. The other spectral flow

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1995-01-01

    Recently we showed that the spectral flow acting on the N=2 twisted topological theories gives rise to a topological algebra automorphism. Here we point out that the untwisting of that automorphism leads to a spectral flow on the untwisted N=2 superconformal algebra which is different from the usual one. This "other" spectral flow does not interpolate between the chiral ring and the antichiral ring. In particular, it maps the chiral ring into the chiral ring and the antichiral ring into the antichiral ring. We discuss the similarities and differences between both spectral flows. We also analyze their action on null states.

  3. Incorporating Endmember Variability into Linear Unmixing of Coarse Resolution Imagery: Mapping Large-Scale Impervious Surface Abundance Using a Hierarchically Object-Based Spectral Mixture Analysis

    OpenAIRE

    Chengbin Deng

    2015-01-01

    As an important indicator of anthropogenic impacts on the Earth’s surface, it is of great necessity to accurately map large-scale urbanized areas for various science and policy applications. Although spectral mixture analysis (SMA) can provide spatial distribution and quantitative fractions for better representations of urban areas, this technique is rarely explored with 1-km resolution imagery. This is due mainly to the absence of image endmembers associated with the mixed pixel problem. Con...

  4. Singular equivariant spectral asymptotics of Schroedinger operators in R{sup n} and resonances of Schottky surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weich, Tobias

    2014-06-13

    This work consists of four self-containedly presented parts. In the first part we prove equivariant spectral asymptotics for h-pseudo-differential operators for compact orthogonal group actions generalizing results of El-Houakmi and Helffer (1991) and Cassanas (2006). Using recent results for certain oscillatory integrals with singular critical sets (Ramacher 2010) we can deduce a weak equivariant Weyl law. Furthermore, we can prove a complete asymptotic expansion for the Gutzwiller trace formula without any additional condition on the group action by a suitable generalization of the dynamical assumptions on the Hamilton flow. In the second and third part we study resonance chains which have been observed in many different physical and mathematical scattering problems. In the second part we present a mathematical rigorous study of the resonance chains on three funneled Schottky surfaces. We prove the analyticity of the generalized zeta function which provide the central mathematical tool for understanding the resonance chains. Furthermore we prove for a fixed ratio between the funnel lengths and in the limit of large lengths that after a suitable rescaling the resonances in a bounded domain align equidistantly along certain lines. The position of these lines is given by the zeros of an explicit polynomial which only depends on the ratio of the funnel lengths. In the third part we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for 3-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is

  5. A comparative analysis of in-medium spectral functions for $N(940)$ and $N^*(1535)$ in real-time thermal field theory

    CERN Document Server

    Ghosh, Sabyasachi

    2015-01-01

    In the real-time thermal field theory, the nucleon self-energy at finite temperature and density is evaluated where an extensive set of pion-baryon ($\\pi B$) loops are considered. On the other side the in-medium self-energy of $N^*(1535)$ for $\\pi N$ and $\\eta N$ loops is also determined in the same framework. The detail branch cut structures for these different $\\pi B$ loops for nucleon $N(940)$ and $\\pi N$, $\\eta N$ loops for $N^*(1535)$ are addressed. Using the total self-energy of $N(940)$ and $N^*(1535)$, which contain the contributions of their corresponding loop diagrams, the complete structures of their in-medium spectral functions have been obtained. The Landau and unitary cut contributions provide two separate peak structures in the nucleon spectral function while $N^*(1535)$ has single peak structure in its unitary cuts. At high temperature, the peak structures of both at their individual poles are attenuated while at high density Landau peak structure of nucleon is completely suppressed and its un...

  6. Excited state surfaces in density functional theory: a new twist on an old problem.

    Science.gov (United States)

    Wiggins, Paul; Williams, J A Gareth; Tozer, David J

    2009-09-07

    Excited state surfaces in density functional theory and the problem of charge transfer are considered from an orbital overlap perspective. For common density functional approximations, the accuracy of the surface will not be uniform if the spatial overlap between the occupied and virtual orbitals involved in the excitation has a strong conformational dependence; the excited state surface will collapse toward the ground state in regions where the overlap is very low. This characteristic is used to predict and to provide insight into the breakdown of excited state surfaces in the classic push-pull 4-(dimethylamino)benzonitrile molecule, as a function of twist angle. The breakdown is eliminated using a Coulomb-attenuated functional. Analogous situations will arise in many molecules.

  7. Comparative Research to Surface Aeration and Blasting Aeration System Based on LCC Theory

    Science.gov (United States)

    Liai, CHEN; Hongxun, HOU; Weibiao, FEI; Eryan, ZHAO

    2017-05-01

    It is difficult to select the suitable aeration system for the designers of wastewater treatment plant (WWTP). In this paper, taking two WWTPs with surface aeration systems and blasting aeration respectively for an example, LCC theory was adapted to analysis the cost of consumption and the environmental impact, which caused by the different aeration system. Research results showed that: (1) In the 20-year life cycle, the LCC mainly depended on the cost of energy consumption whatever blasting aeration system or surface aeration, while the LCC of blasting aeration system affected by the equipment maintenance cost, maintenance cost, economic losses caused by wastewater loss and environmental load in maintenance period. (2) The LCC of blasting aeration system was lower than the surface aeration in general, on the premise of the standard discharge; (3) the blasting aeration system estimated a saving of 60,0000RMB annually in costs compared with the surface aeration.

  8. Riemann surfaces and algebraic curves a first course in Hurwitz theory

    CERN Document Server

    Cavalieri, Renzo

    2016-01-01

    Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.

  9. Ice Nucleation on Carbon Surface Supports the Classical Theory for Heterogeneous Nucleation

    CERN Document Server

    Cabriolu, Raffaela

    2015-01-01

    The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model mW, we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the ...

  10. Unified theory of surface-plasmonic enhancement and extinction of light transmission through metallic nanoslit arrays.

    Science.gov (United States)

    Yoon, Jae Woong; Lee, Jun Hyung; Song, Seok Ho; Magnusson, Robert

    2014-07-14

    Metallic nanostructures are of immense scientific interest owing to unexpectedly strong interaction with light in deep subwavelength scales. Resonant excitations of surface and cavity plasmonic modes mediate strong light localization in nanoscale objects. Nevertheless, the role of surface plasmon-polaritons (SPP) in light transmission through a simple one-dimensional system with metallic nanoslits has been the subject of longstanding debates. Here, we propose a unified theory that consistently explains the controversial effects of SPPs in metallic nanoslit arrays. We show that the SPPs excited on the entrance and exit interfaces induce near-total internal reflection and abrupt phase change of the slit-guided mode. These fundamental effects quantitatively describe positive and negative effects of SPP excitation in a self-consistent manner. Importantly, the theory shows excellent agreement with rigorous numerical calculations while providing profound physical insight into the properties of nanoplasmonic systems.

  11. Effective grating theory for resonance domain surface-relief diffraction gratings.

    Science.gov (United States)

    Golub, Michael A; Friesem, Asher A

    2005-06-01

    An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.

  12. Abelian Yang-Mills Theory on Real Tori and Theta Divisors of Klein Surfaces

    Science.gov (United States)

    Okonek, Christian; Teleman, Andrei

    2013-11-01

    The purpose of this paper is to compute determinant index bundles of certain families of Real Dirac type operators on Klein surfaces as elements in the corresponding Grothendieck group of Real line bundles in the sense of Atiyah. On a Klein surface these determinant index bundles have a natural holomorphic description as theta line bundles. In particular we compute the first Stiefel-Whitney classes of the corresponding fixed point bundles on the real part of the Picard torus. The computation of these classes is important, because they control to a large extent the orientability of certain moduli spaces in Real gauge theory and Real algebraic geometry.

  13. Reexamination of Correlations for Nucleate Site Distribution on Boiling Surface by Fractal Theory

    Institute of Scientific and Technical Information of China (English)

    YangChunxin

    1997-01-01

    Nucleate site distribution plays an essential role in nucleate boiling process.In this paper,it is pointed out that the size and spatial distributioin density of nucleate sites presented on real boiling surface can be described by the normalized fractal distribution function,and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution function.It is further suggested that the surface micro geometry characteristics such as the shape of cavities should be described and analyzed qualitatively by using fractal theory.

  14. Theory of the oxygen-induced restructuring of Cu(110) and Cu(100) surfaces

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1990-01-01

    A model calculation based on the effective-medium theory of the oxygen-induced reconstruction of the (110) and (100) surfaces of Cu is presented. Equilibrium structures are calculated from a minimization of the total energy of the system. Missing-row-type reconstructions are found to be most stab...... in both cases, and an analysis is presented, showing what the driving force is behind these reconstructions....

  15. Qubits from Black Holes in M-theory on K3 Surface

    CERN Document Server

    Belhaj, Adil; Sedra, Moulay Brahim; Segui, Antonio

    2016-01-01

    Using M-theory compactification, we develop a three factor separation for the scalar submanifold of N=2 seven dimensional supergravity associated with 2-cycles of the K3 surface. Concretely, we give an interplay between the three scalar submanifold factors and the extremal black holes obtained from M2-branes wrapping such 2-cycles. Then, we show that the corresponding black hole charges are linked to one, two and four qubit systems.

  16. An analytical stability theory for Faraday waves and the observation of the harmonic surface response

    CERN Document Server

    Müller, H W; Wagner, C; Albers, J; Knorr, K

    1996-01-01

    We present an analytical stability theory for the onset of the Faraday instability, applying over a wide frequency range between shallow water gravity and deep water capillary waves. For sufficiently thin fluid layers the surface is predicted to occur in harmonic rather than subharmonic resonance with the forcing. An experimental confirmation of this result is given. PACS: 47.20.Ma, 47.20.Gv, 47.15.Cb

  17. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    Science.gov (United States)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  18. Departure of some parameter-dependent spectral statistics of irregular quantum graphs from random matrix theory predictions.

    Science.gov (United States)

    Hul, Oleh; Seba, Petr; Sirko, Leszek

    2009-06-01

    Parameter-dependent statistical properties of spectra of totally connected irregular quantum graphs with Neumann boundary conditions are studied. The autocorrelation functions of level velocities c(x) and c[over ](omega,x) as well as the distributions of level curvatures and avoided crossing gaps are calculated. The numerical results are compared with the predictions of random matrix theory for Gaussian orthogonal ensemble (GOE) and for coupled GOE matrices. The application of coupled GOE matrices was justified by studying localization phenomena in graphs' wave functions Psi(x) using the inverse participation ratio and the amplitude distribution P(Psi(x)) .

  19. Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects

    Science.gov (United States)

    Saffari, Shahab; Hashemian, Mohammad; Toghraie, Davood

    2017-09-01

    Based on nonlocal Timoshenko beam theory, dynamic stability of functionally graded (FG) nanobeam under axial and thermal loading was investigated. Surface stress effects were implemented according to Gurtin-Murdoch continuum theory. Using power law distribution for FGM and von Karman geometric nonlinearity, governing equations were derived based on Hamilton's principle. The developed nonlocal models have the capability of interpreting small scale effects. Pasternak elastic medium was employed to represent the interaction of the FG nanobeam and the surrounding elastic medium. A parametric study was conducted to focus influences of the static load factor, temperature change, gradient index, nonlocal parameter, slenderness ratio, surface effect and springs constants of the elastic medium on the dynamic instability region (DIR) of the FG beam with simply-supported boundary conditions. It was found that differences between DIRs predicted by local and nonlocal beam theories are significant for beams with lower aspect ratio. Moreover, it was observed that in contrast to high temperature environments, at low temperatures, increasing the temperature change moves the origin of the DIR to higher excitation frequency zone and leads to further stability. Considering surface stress effects shifts the DIR of FG beam to higher frequency zone, also increasing the gradient index enhances the frequency of DIR.

  20. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  1. Surface Tension of Acid Solutions: Fluctuations beyond the Nonlinear Poisson-Boltzmann Theory.

    Science.gov (United States)

    Markovich, Tomer; Andelman, David; Podgornik, Rudi

    2017-01-10

    We extend our previous study of surface tension of ionic solutions and apply it to acids (and salts) with strong ion-surface interactions, as described by a single adhesivity parameter for the ionic species interacting with the interface. We derive the appropriate nonlinear boundary condition with an effective surface charge due to the adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero loop (mean field) corresponds of the full nonlinear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension and the one-loop contribution gives a generalization of the Onsager-Samaras result. Adhesivity significantly affects both contributions to the surface tension, as can be seen from the dependence of surface tension on salt concentration for strongly absorbing ions. Comparison with available experimental data on a wide range of different acids and salts allows the fitting of the adhesivity parameter. In addition, it identifies the regime(s) where the hypotheses on which the theory is based are outside their range of validity.

  2. Periodic Density Functional Theory Study of Water Adsorption on the a-Quartz (101) Surface.

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Kubicki, James D. [Pennsylvania State University; Sofo, Jorge O. [Pennsylvania State University

    2011-01-01

    Plane wave density functional theory (DFT) calculations have been performed to study the atomic structure, preferred H2O adsorption sites, adsorption energies, and vibrational frequencies for water adsorption on the R-quartz (101) surface. Surface energies and atomic displacements on the vacuum-reconstructed, hydrolyzed, and solvated surfaces have been calculated and compared with available experimental and theoretical data. By considering different initial positions of H2O molecules, the most stable structures of water adsorption at different coverages have been determined. Calculated H2O adsorption energies are in the range -55 to -65 kJ/mol, consistent with experimental data. The lowest and the highest O-H stretching vibrational bands may be attributed to different states of silanol groups on the watercovered surface. The dissociation energy of the silanol group on the surface covered by the adsorption monolayer is estimated to be 80 kJ/mol. The metastable states for the protonated surface bridging O atoms (Obr), which may lead to hydrolysis of siloxane bonds, have been investigated. The calculated formation energy of a Q2 center from a Q3 center on the (101) surface with 2/3 dense monolayer coverage is equal to 70 kJ/mol which is in the range of experimental activation energies for quartz dissolution.

  3. Comparing robust and physics-based sea surface temperature retrievals for high resolution, multi-spectral thermal sensors using one or multiple looks

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.B.; Szymanski, J.J.; Theiler, J.P.

    1999-04-04

    With the advent of multi-spectral thermal imagers such as EOS's ASTER high spatial resolution thermal imagery of the Earth's surface will soon be a reality. Previous high resolution sensors such as Landsat 5 had only one spectral channel in the thermal infrared and its utility to determine absolute sea surface temperatures was limited to 6-8 K for water warmer than 25 deg C. This inaccuracy resulted from insufficient knowledge of the atmospheric temperature and water vapor, inaccurate sensor calibration, and cooling effects of thin high cirrus clouds. The authors will present two studies of algorithms and compare their performance. The first algorithm they call robust since it retrieves sea surface temperatures accurately over a fairly wide range of atmospheric conditions using linear combinations of nadir and off-nadir brightness temperatures. The second they call physics-based because it relies on physics-based models of the atmosphere. It attempts to come up with a unique sea surface temperature which fits one set of atmospheric parameters.

  4. Marcus-Hush-Chidsey theory of electron transfer to and from species bound at a non-uniform electrode surface: Theory and experiment

    Science.gov (United States)

    Henstridge, Martin C.; Batchelor-McAuley, Christopher; Gusmão, Rui; Compton, Richard G.

    2011-11-01

    Two simple models of electrode surface inhomogeneity based on Marcus-Hush theory are considered; a distribution in formal potentials and a distribution in electron tunnelling distances. Cyclic voltammetry simulated using these models is compared with that simulated using Marcus-Hush theory for a flat, uniform and homogeneous electrode surface, with the two models of surface inhomogeneity yielding broadened peaks with decreased peak-currents. An edge-plane pyrolytic graphite electrode is covalently modified with ferrocene via 'click' chemistry and the resulting voltammetry compared with each of the three previously considered models. The distribution of formal potentials is seen to fit the experimental data most closely.

  5. A theory of static friction between homogeneous surfaces based on compressible elastic smooth microscopic inclines

    CERN Document Server

    Thun, Freeman Chee Siong; Chan, Kin Sung

    2014-01-01

    We develop a theory of static friction by modeling the homogeneous surfaces of contact as being composed of a regular array of compressible elastic smooth microscopic inclines. Static friction is thought of as the resistance due to having to push the load over these smooth microscopic inclines that share a common inclination angle. As the normal force between the surfaces increases, the microscopic inclines would be compressed elastically. Consequently, the coefficient of static friction does not remain constant but becomes smaller for a larger normal force, since the load would then only need to be pushed over smaller angles. However, a larger normal force would also increase the effective compressed area between the surfaces, as such the pressure is distributed over this larger effective compressed area. The relationship between the normal force and the common angle is therefore non-linear. Overall, static friction is shown to depend on the normal force, apparent contact area, Young's modulus, and the compr...

  6. Higher rank Brill-Noether theory on sections of K3 surfaces

    CERN Document Server

    Farkas, Gavril

    2011-01-01

    We discuss the role of K3 surfaces in the context of Mercat's conjecture in higher rank Brill-Noether theory. Using liftings of Koszul classes, we show that Mercat's conjecture in rank 2 fails for any number of sections and for any gonality stratum along a Noether-Lefschetz divisor inside the locus of curves lying on K3 surfaces. Then we show that Mercat's conjecture in rank 3 fails even for curves lying on K3 surfaces with Picard number 1. Finally, we provide a detailed proof of Mercat's conjecture in rank 2 for general curves of genus 11, and describe explicitly the action of the Fourier-Mukai involution on the moduli space M_{11}.

  7. A comparative study of atomic oxygen adsorption at Pd surfaces from Density Functional Theory

    Science.gov (United States)

    Bukas, Vanessa J.; Reuter, Karsten

    2017-04-01

    Based on density functional theory, we present a detailed investigation into the on-surface adsorption of atomic oxygen at all three low-index Pd facets in the low-coverage regime. Relying on one consistent computational framework allows for a systematic comparison with respect to surface symmetry, while discerning trends in the adsorption geometries, energies, work functions, and electron densities. We overall find a persisting degree of O-Pd hybridization that is accompanied by minimal charge transfer from the substrate to the adsorbate, thereby resulting in comparable binding energies and diffusion barriers at the three surfaces. Small differences in reactivity are nevertheless reflected in subtle variations of the underlying electronic structure which do not, however, follow the expected order according to atom packing density.

  8. Group Theory Analysis of Free Convective Boundary—Layer Behavior at a Stretching Surface

    Institute of Scientific and Technical Information of China (English)

    JunmeiShi; XueziXu; 等

    1995-01-01

    In the present study,free convection and heat transfer behavior of electrically conducting fluid in the boundary layer over a vertical continuously stretching surface is investigated.The effects of free convection,magnetic field,suction/blowing at the surface and the stretching speed of the surface on the flow and heat transfer characteristics are considered.By applying one-parametric group theory to analysis of the problem,a similarity solution is found.The governing equations of continuity,momentum and energy are solved numerically by a fourth-order Runge-Kutta scheme.The numerical results.which are obtained for the flow and heat transfer characteristics,reveal the influences of the parameters.

  9. Spectral characteristic of infrared radiations of some acupoint and non-acupoint areas in human arm surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using infrared spectrum detective device, we experiment onNeiguan, Laogong and Hegu acupoints of seven adult volunteers as well as contrastive points beside ones. We get 63 infrared spectrums. The experiment outcome tells us that the differences of the intensities among individuals are great, and so are the differences between acupoint and non-acupoint areas. However, the differences of spectral character are small, which indicates that infrared radiations of human body are based on the same biophysical fundament.

  10. Spectral function of the K/Si(1 1 1):B surface state: the bipolaronic CDW scenario

    Energy Technology Data Exchange (ETDEWEB)

    Tournier-Colletta, C., E-mail: tournier@lpm.u-nancy.f [Institut Jean Lamour, UMR 7198, Nancy Universite/CNRS, B.P. 239 F-54506, Vandoeuvre-les-Nancy (France); Cardenas, L.; Fagot-Revurat, Y.; Kierren, B.; Malterre, D. [Institut Jean Lamour, UMR 7198, Nancy Universite/CNRS, B.P. 239 F-54506, Vandoeuvre-les-Nancy (France)

    2010-07-15

    Very recently, new LEED, STM and ARPES measurements on the (1/3)ML K/Si(1 1 1):B interface have shed the light on the role of phonons and force to reconsider the nature of the ground state, formerly proposed to be a Mott insulator. In this paper, we present simulations of the one-electron spectral function A(E). These are based on the atomic Holstein-Hubbard model, which is relevant in the strong electron-phonon coupling limit. The exact spectral function has been analysed carefully with special attention on the gap behaviour as a function of the on-site repulsion. We show that the spectral funcion is the same for opposite values of the effective on-site repulsion. The observed reconstruction favours the negative-U{sub eff} case, which corresponds to a bipolaronic charge-ordered ground state. Finally, the ARPES lineshape is reproduced correctly with fitting parameters in agreement with the literature.

  11. Herschel / HIFI spectral line survey of the Orion Bar - Temperature and density differentiation near the PDR surface

    CERN Document Server

    Nagy, Z; Ossenkopf-Okada, V; van der Tak, F F S; Bergin, E A; Gerin, M; Joblin, C; Roellig, M; Simon, R; Stutzki, J

    2016-01-01

    Photon Dominated Regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage. A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument onboard the Herschel Space Observatory. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. About 120 lines ...

  12. Spectral analysis, vibrational assignments, NBO analysis, NMR, UV-Vis, hyperpolarizability analysis of 2-aminofluorene by density functional theory.

    Science.gov (United States)

    Jone Pradeepa, S; Sundaraganesan, N

    2014-05-05

    In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated.

  13. Reevaluating Surface Composition of Asteroid (4) Vesta by Comparing HED Spectral Data with Dawn Framing Camera (FC) Observations

    Science.gov (United States)

    Giebner, T.; Jaumann, R.; Schröder, S.

    2016-08-01

    This master's thesis project tries to reevaluate previous findings on asteroid (4) Vesta's surface composition by using DAWN FC Filter image ratios in a new way in order to identify HED (howardite, eucrite, diogenite) lithologies on the surface.

  14. Deposition of Colloidal Particles on Homogeneous Surfaces: Integral-Equation Theory and Monte Carlo Simulation

    Science.gov (United States)

    Danwanichakul, Panu

    2009-01-01

    Deposition of large particles such as colloidal or bio-particles on a solid surface is usually modeled by the random sequential adsorption (RSA). The model was previously described by the integral-equation theory whose validity was proved by Monte Carlo simulation. This work generalized the model to include the concentration effect of added particles on the surface. The fraction of particles inserted was varied by the reduced number density of 0.05, 0.1, and 0.2. It was found that the modified integral-equation theory yielded the results in good accordance with the simulation. Regarding colloidal particles as hard spheres, when the fraction of particles added was increased, the radial distribution function has higher peak, due to the cooperative and entropic effects. This work could bridge the gap between equilibrium adsorption, where all particles may be considered moving and RSA, where there is no moving particle on the surface. In addition, the effect of attractive interaction was also incorporated and it was found that increasing number of added particles at one time yields less values of the radial distribution function.

  15. Theoretical study of atomic oxygen on gold surface by Hückel theory and DFT calculations.

    Science.gov (United States)

    Sun, Keju; Kohyama, Masanori; Tanaka, Shingo; Takeda, Seiji

    2012-09-27

    It is fundamental to understand the behavior of atomic oxygen on gold surfaces so as to elucidate the mechanism of nano gold catalysts for low-temperature CO oxidation reactions since the atomic oxygen on gold system is an important intermediate involved in both the processes of O(2) dissociation and CO oxidation. We performed theoretical analysis of atomic oxygen adsorption on gold by using Hückel theory. It is found that formation of linear O-Au-O structure on Au surfaces greatly stabilizes the atomic oxygen adsorption due to stronger bond energy and bond order, which is confirmed subsequently by density functional theory (DFT) calculations. The linear O-Au-O structure may explain the surprising first order kinetics behavior of O(2) desorption from gold surfaces. This view of the linear O-Au-O structure as the natural adsorption status is quite different from the conventional view, which may lead to new understanding toward the reaction mechanism of low-temperature CO oxidation reaction on nano gold catalysts.

  16. Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group

    Science.gov (United States)

    Matone, Marco; Pasti, Paolo

    2015-06-01

    The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential operators representing the sl2(ℝ) generators, which in turn, generate, by exponentiation, the two-dimensional conformal transformations. A key point of our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorff formula. In particular, our covariantization receipt is quite general. This has a deep consequence since it means that the covariantization of the conformal group is always definite. Our covariantization receipt is quite general and apply in general situations, including AdS/CFT. Here we focus on the projective unitary representations of the fundamental group of a Riemann surface, which may include elliptic points and punctures, introduced in the framework of noncommutative Riemann surfaces. It turns out that the covariantized conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying a deep relationship between gauge theories on Riemann surfaces and Liouville theory.

  17. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering

    Science.gov (United States)

    McAnally, Michael O.; McMahon, Jeffrey M.; Van Duyne, Richard P.; Schatz, George C.

    2016-09-01

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gp u|2I m {" separators="χR(ω ) gst 2 }/I m {" separators="χR(ω ) }, where |gpu|2 is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  18. A theory of multilayer adsorption on rough surfaces in terms of clustering and melting BET piles

    Science.gov (United States)

    Cerofolini, G. F.; Meda, L.

    1998-10-01

    An equation is proposed on theoretical grounds for the description of equilibrium adsorption of vapours below their critical temperature on solid adsorbents. Like in the Brunauer-Emmett-Teller (BET) theory, each surface site is described as the origin of an adsorbed pile; differently from the BET theory, however, the piles are allowed to undergo a branching process when the equilibrium pressure is increased; vapour condensation is assumed to occur when all the available space is filled. This growth is described by an isotherm behaving as the BET equation in the monolayer region, as the Anderson or Brunauer-Skalny-Bodor extension of the BET equation just above the monolayer, and as the Frenkel-Halsey-Hill equation at higher coverage. For suitable choice of its free parameters, the proposed equation accounts for all isotherms of type I, II and III of Brunauer classification.

  19. Step density waves on growing vicinal crystal surfaces - Theory and experiment

    Science.gov (United States)

    Ranguelov, Bogdan; Müller, Pierre; Metois, Jean-Jacques; Stoyanov, Stoyan

    2017-01-01

    The Burton, Cabrera and Frank (BCF) theory plays a key conceptual role in understanding and modeling the crystal growth of vicinal surfaces. In BCF theory the adatom concentration on a vicinal surface obeys to a diffusion equation, generally solved within quasi-static approximation where the adatom concentration at a given distance x from a step has a steady state value n (x) . Recently, we show that going beyond this approximation (Ranguelov and Stoyanov, 2007) [6], for fast surface diffusion and slow attachment/detachment kinetics of adatoms at the steps, a train of fast-moving steps is unstable against the formation of steps density waves. More precisely, the step density waves are generated if the step velocity exceeds a critical value related to the strength of the step-step repulsion. This theoretical treatment corresponds to the case when the time to reach a steady state concentration of adatoms on a given terrace is comparable to the time for a non-negligible change of the step configuration leading to a terrace adatom concentration n (x , t) that depends not only on the terrace width, but also on its "past width". This formation of step density waves originates from the high velocity of step motion and has nothing to do with usual kinetic instabilities of step bunching induced by Ehrlich-Schwoebel effect, surface electromigration and/or the impact of impurities on the step rate. The so-predicted formation of step density waves is illustrated by numerical integration of the equations for step motion. In order to complete our previous theoretical treatment of the non-stationary BCF problem, we perform an in-situ reflection electron microscopy experiment at specific temperature interval and direction of the heating current, in which, for the first time, the step density waves instability is evidenced on Si(111) surface during highest possible Si adatoms deposition rates.

  20. Surface hopping outperforms secular Redfield theory when reorganization energies range from small to moderate (and nuclei are classical)

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Brian R., E-mail: landrybr@gmail.com; Subotnik, Joseph E. [Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-03-14

    We evaluate the accuracy of Tully’s surface hopping algorithm for the spin-boson model in the limit of small to moderate reorganization energy. We calculate transition rates between diabatic surfaces in the exciton basis and compare against exact results from the hierarchical equations of motion; we also compare against approximate rates from the secular Redfield equation and Ehrenfest dynamics. We show that decoherence-corrected surface hopping performs very well in this regime, agreeing with secular Redfield theory for very weak system-bath coupling and outperforming secular Redfield theory for moderate system-bath coupling. Surface hopping can also be extended beyond the Markovian limits of standard Redfield theory. Given previous work [B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012)] that establishes the accuracy of decoherence-corrected surface-hopping in the Marcus regime, this work suggests that surface hopping may well have a very wide range of applicability.

  1. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations

    Science.gov (United States)

    Wang, LiYa; Wang, FengChao; Yang, FuQian; Wu, HengAn

    2014-11-01

    A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces. The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces. The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations. The extended MKT slip model is validated by our MD simulations under various situations, by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid. This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow. Moreover, the slip velocity shear-rate dependence can be predicted using this slip model, since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.

  2. A density functional theory study on the acetylene cyclotrimerization on Pd-modified Au(111) surface

    Science.gov (United States)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2017-10-01

    Calculations based on the first-principle density functional theory were carried out to study the possible acetylene cyclotrimerization reactions on Pd-Au(111) surface and to investigate the effect of Au atom alloying with Pd. The adsorption of C2H2, C4H4, C6H6 and the PDOS of 4d orbitals of surface Pd and Au atoms were studied. The comparison of d-band center of Pd and Au atom before and after C2H2 or C4H4 adsorption suggests that these molecules affect the activity of Pd-Au(111) surface to some degree due to the high binding energy of the adsorption. In our study, the second neighboring Pd ensembles on Pd-Au(111) surface can adsorb two acetylene molecules on parallel-bridge site of two Au atoms and one Pd atom, respectively. Csbnd C bonds are parallel to each other and two acetylenes are adsorbed face to face to produce four-membered ring C4H4 firstly. The geometric effect and electronic effect of Pd-Au(111) surface with the second neighboring Pd ensembles both help to reduce this activation barrier.

  3. Adsorption properties of trifluoroacetic acid on anatase (101) and (001) surfaces: a density functional theory study.

    Science.gov (United States)

    Lamiel-Garcia, Oriol; Fernandez-Hevia, Daniel; Caballero, Amador C; Illas, Francesc

    2015-09-28

    The interaction of trifluoroacetic acid with anatase TiO2(101) and TiO2(001) surfaces has been studied by means of periodic density functional theory based calculations. On the former, the interaction is weak with the adsorbed molecules in a configuration almost indistinguishable from the gas phase structure. On the latter, the interaction is very strong; the molecule adsorbs as trifluoroacetate and releases a proton that binds an oxygen surface atom with a significant distortion of the substrate. The difference in adsorption the mode and strength can be understood from the different structural features of both surfaces and provides arguments to the role of trifluoroacetic as a morphological control agent in the solvothermal synthesis of TiO2 nanoparticles with predominant (001) facets. This, in turn, has a very significant impact on industrial production strategies of value-added TiO2 for photocatalytic applications. Analysis of calculated core level binding energies for F(1s) confirms the experimental assignment to F at the surface as F(-) at Ti surface sites and to F in -CF3 groups of the adsorbed molecule.

  4. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations

    Institute of Scientific and Technical Information of China (English)

    WANG LiYa; WANG FengChao; YANG FuQian; WU HengAn

    2014-01-01

    A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.

  5. Effect of the surface oxidization and nitridation on the normal spectral emissivity of titanium alloys Ti-6Al-4V at 800-1100 K at a wavelength of 1.5 μm

    Science.gov (United States)

    Zhu, Wenjie; Shi, Deheng; Zhu, Zunlue; Sun, Jinfeng

    2016-05-01

    This work strived to model the effect of surface oxidization and nitridation on the normal spectral emissivity of Ti-6Al-4V alloys at a temperature range of 800-1100 K and a wavelength of 1.5 μm. In experiments, the detector was as close to perpendicular to the surface of the specimens as possible so that only the normal spectral emissivity was measured. Two thermocouples were symmetrically welded near the measuring area for accurate measuring and monitoring of the temperature at the surface of the specimen. The specimens were heated for 6 h at a certain temperature. During this period, the normal spectral emissivity values were measured once every 1 min during the initial 180 min, and once every 2 min thereafter. The measurements were made at certain temperatures from 800 to 1100 K in intervals of 20 K. One strong oscillation in the normal spectral emissivity was observed at each temperature. The oscillations were formed by the interference between the radiation stemming from the oxidization and nitridation layer on the specimen surface and radiation from the substrate. The uncertainty in the normal spectral emissivity caused only by the surface oxidization and nitridation was found to be approximately 9.5-22.8%, and the corresponding uncertainty in the temperature generated only by the surface oxidization and nitridation was approximately 6.9-15.5 K. The model can reproduce well the normal spectral emissivity, including the strong oscillation that occurred during the initial heating period.

  6. A spectral method for retrieving cloud optical thickness and effective radius from surface-based transmittance measurements

    Directory of Open Access Journals (Sweden)

    P. J. McBride

    2011-01-01

    Full Text Available We introduce a new multispectral method for the retrieval of optical thickness and effective radius from cloud transmittance, which is less sensitive to effective radius than cloud reflectance. Based on data from the moderate spectral resolution observations of the Solar Spectral Flux Radiometer (SSFR and Shortwave Spectroradiometer (SWS, we use the spectral shape of transmitted radiance as a means of retrieving effective radius from cloud transmittance. The observations were taken during the International Chemistry Experiment in the Arctic Lower Troposphere and at the Southern Great Plains (SGP site of the Atmospheric Radiation Measurement (ARM Climate Research Facility. The spectral shape was quantified by fitting a slope to the normalized transmittance between 1565 nm and 1634 nm. The retrieval was performed by comparing the observed slope at 1565 nm and the transmittance at 515 nm with a pre-calculated library (lookup table. An estimate of the retrieval uncertainty was provided by propagating the uncertainty of the observations through the best-fit algorithm. We compare the new retrieval with an algorithm that uses transmittance at two wavelengths, a method often used with cloud reflectance. The liquid water path (LWP is derived from the retrieved optical thickness and effective radius, assuming a cloud with effective radius varying linearly with altitude above cloud base, and compared to the retrieved liquid water path from a microwave radiometer. Retrievals from two MODIS overpasses of the SGP were also compared. The data taken from the SGP was under thicker cloud than the case used from ICEALOT, with average optical thickness of 44 and 22, respectively. For the time period with the thicker clouds, the dual-wavelength method and the slope method retrieved nearly indistinguishable results. The dual-wavelength method, however, resulted in slightly higher average relative effective radius uncertainty of 12.9 μm±12.8%, as compared to 12.8

  7. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R B

    2001-04-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface

  8. Theory and Monte-Carlo simulation of adsorbates on corrugated surfaces

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    Phase transitions in systems of adsorbed molecules on corrugated surfaces are studied by means of Monte Carlo simulation. Particularly, we have studied the phase diagram of D2 on graphite as a function of coverage and temperature. We have demonstrated the existence of an intermediate gamma......-phase between the commensurate and incommensurate phase stabilized by defects. Special attention has been given to the study of the epitaxial rotation angles of the different phases. Available experimental data is in agreement with the simulations and with a general theory for the epitaxial rotation which takes...

  9. "General theory of a particle mechanics" arising from a fractal surface

    CERN Document Server

    Yefremov, Alexander P

    2016-01-01

    The logical line is traced of formulation of theory of mechanics founded on the basic correlations of mathematics of hypercomplex numbers and associated geometric images. Namely, it is shown that the physical equations of quantum, classical and relativistic mechanics can be regarded as mathematical consequences of a single condition of stability of exceptional algebras of real, complex and quaternion numbers under transformations of primitive constituents of their units and elements. In the course of the study a notion of basic fractal surface underlying the physical three-dimensional space is introduces, and an original geometric treatment (admitting visualization) of some formerly considered abstract functions (mechanical action, space-time interval) are suggested.

  10. Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Nanoantennas

    CERN Document Server

    Alonso-Gonzalez, P; Neubrech, F; Huck, Christian; Chen, J; Golmar, F; Casanova, F; Hueso, L E; Pucci, A; Aizpurua, J; Hillenbrand, R

    2013-01-01

    Theory predicts a distinct spectral shift between the near- and far-field optical responses of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy (SEIRS).

  11. Theory of the reaction dynamics of small molecules on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Bret [Univ. of Massachusetts, Amherst, MA (United States)

    2016-09-09

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H2, H2O and CH4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimental data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).

  12. Density functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces

    Science.gov (United States)

    Nosir, M. A.; Martin-Gondre, L.; Bocan, G. A.; Díez Muiño, R.

    2016-09-01

    We present Density functional theory (DFT) calculations for the investigation of the structural relaxation of Fe(1 1 1), as well as for the study of the interaction of nitrogen atoms and molecules with this surface. We perform spin polarized DFT calculations using VASP (Vienna Ab-initio Simulation Package) code. We use the supercell approach and up to 19 slab layers for the relaxation of the Fe(1 1 1) surface. We find a contraction of the first two interlayer distances with a relative value of Δ12 = - 7.8 % and Δ23 = - 21.7 % with respect to the bulk reference. The third interlayer distance is however expanded with a relative change of Δ34 = 9.7 % . Early experimental studies of the surface relaxation using Low Energy Electron Diffraction (LEED) and Medium Energy Ion Scattering (MEIS) showed contradictory results, even on the relaxation general trend. Our current theoretical results support the LEED conclusions and are consistent qualitatively with other recent theoretical calculations. In addition, we study the interaction energy of nitrogen atoms and molecules on the Fe(1 1 1) surface. The nitrogen atoms are adsorbed in the hollow site of the unit cell, with an adsorption energy consistent with the one found in previous studies. In addition, we find the three molecularly adsorbed states that are observed experimentally. Two of them correspond to the adsorbed molecule oriented normal to the surface and a third one corresponds to the molecule adsorbed parallel to the surface. We conclude that our results are accurate enough to be used to build a full six-dimensional potential energy surface for the N2 system.

  13. Irregular conformal block, spectral curve and flow equations

    CERN Document Server

    Choi, Sang Kwan; Zhang, Hong

    2015-01-01

    Irregular conformal block is motivated by the Argyres-Douglas type of N=2 super conformal gauge theory. We investigate the classical/NS limit of the irregular conformal block using spectral curve on a Riemann surface with irregular punctures, which is equivalent to the loop equation of irregular matrix model. The spectral curve is reduced to the second order (Virasoro symmetry, $SU(2)$ for the gauge theory) and third order ($W_3$ symmetry, $SU(3)$) differential equations of a polynomial with finite degree. The Virasoro and W symmetry generate flow equations in the spectral curve and determine the irregular conformal block, hence the partition function of the Argyres-Douglas theory ala AGT conjecture.

  14. Thermophotovoltaic Spectral Control

    Energy Technology Data Exchange (ETDEWEB)

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  15. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target

    Directory of Open Access Journals (Sweden)

    Chen Xiao-long

    2013-03-01

    Full Text Available Micro-Doppler is one of the target physical characteristics. The radar signature of target with micro-motion can make fine characterization of the shape, structure and moving state of target, which reflects the nonstationary property of radar signal. Hence, it has great superiority in the analysis of sea clutter and target detection in case of high sea state based on micro-Doppler theory. In this paper, modeling of scattering clutter from time-varying sea surface and analysis methods of sea clutter Doppler are firstly reviewed based on the principle and characteristic of micro-Doppler, which shows the necessity of micro-Doppler. Then, applications and technological approaches of micro-Doppler in the sea surface target detection are introduced from the aspects of the micro-motion target modeling and detection methods of micro-motion signature. In the end, future research interests are pointed out according to the problems of present study.

  16. A Comparative Numerical Study of the Spectral Theory Approach of Nishimura and the Roots Method Based on the Analysis of BDMMAP/G/1 Queue

    Directory of Open Access Journals (Sweden)

    Arunava Maity

    2015-01-01

    Full Text Available This paper considers an infinite-buffer queuing system with birth-death modulated Markovian arrival process (BDMMAP with arbitrary service time distribution. BDMMAP is an excellent representation of the arrival process, where the fractal behavior such as burstiness, correlation, and self-similarity is observed, for example, in ethernet LAN traffic systems. This model was first apprised by Nishimura (2003, and to analyze it, he proposed a twofold spectral theory approach. It seems from the investigations that Nishimura’s approach is tedious and difficult to employ for practical purposes. The objective of this paper is to analyze the same model with an alternative methodology proposed by Chaudhry et al. (2013 (to be referred to as CGG method. The CGG method appears to be rather simple, mathematically tractable, and easy to implement as compared to Nishimura’s approach. The Achilles tendon of the CGG method is the roots of the characteristic equation associated with the probability generating function (pgf of the queue length distribution, which absolves any eigenvalue algebra and iterative analysis. Both the methods are presented in stepwise manner for easy accessibility, followed by some illustrative examples in accordance with the context.

  17. Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces

    Science.gov (United States)

    Malyi, Oleksandr I.; Chen, Zhong; Kulish, Vadym V.; Bai, Kewu; Wu, Ping

    2013-01-01

    Reactions of hydrogen sulfide (H2S) with Nickel/Ytrria-doped zirconia (Ni/YDZ) anode materials might cause degradation of the performance of solid oxide fuel cells when S containing fuels are used. In this paper, we employ density functional theory to investigate S adsorption on metal (M)-doped and undoped Ni(0 0 1) and Ni(1 1 1) surfaces. Based on the performed calculations, we analyze the effects of 12 alloying additions (Ag, Au, Al, Bi, Cd, Co, Cu, Fe, Sn, Sb, V, and Zn) on the temperature of transition between clean (S atoms do not adsorb on the surfaces) and contaminated (S atoms can adsorb on the surfaces spontaneously) M-doped Ni surfaces for different concentrations of H2S in the fuel. Predicted results are consistent with many experimental studies relevant to S poisoning of both Ni/YDZ and M-doped Ni/YDZ anode materials. This study is important to understand S poisoning phenomena and to develop new S tolerant anode materials.

  18. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  19. Elastoplastic contact mechanics model of rough surface based on fractal theory

    Science.gov (United States)

    Yuan, Yuan; Gan, Li; Liu, Kai; Yang, Xiaohui

    2017-01-01

    Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ϕ, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces.

  20. Error estimates for density-functional theory predictions of surface energy and work function

    Science.gov (United States)

    De Waele, Sam; Lejaeghere, Kurt; Sluydts, Michael; Cottenier, Stefaan

    2016-12-01

    Density-functional theory (DFT) predictions of materials properties are becoming ever more widespread. With increased use comes the demand for estimates of the accuracy of DFT results. In view of the importance of reliable surface properties, this work calculates surface energies and work functions for a large and diverse test set of crystalline solids. They are compared to experimental values by performing a linear regression, which results in a measure of the predictable and material-specific error of the theoretical result. Two of the most prevalent functionals, the local density approximation (LDA) and the Perdew-Burke-Ernzerhof parametrization of the generalized gradient approximation (PBE-GGA), are evaluated and compared. Both LDA and GGA-PBE are found to yield accurate work functions with error bars below 0.3 eV, rivaling the experimental precision. LDA also provides satisfactory estimates for the surface energy with error bars smaller than 10%, but GGA-PBE significantly underestimates the surface energy for materials with a large correlation energy.

  1. Elastoplastic Contact Mechanics Model of Rough Surface Based on Fractal Theory

    Institute of Scientific and Technical Information of China (English)

    YUAN Yuan; GAN Li; LIU Kai; YANG Xiaohui

    2017-01-01

    Because the result of the MB fractal model contradicts with the classical contact mechanics,a revised elastoplastic contact model of a single asperity is developed based on fractal theory.The critical areas of a single asperity are scale dependent,with an increase in the contact load and contact area,a transition from elastic,elastoplastic to full plastic deformation takes place in this order.In considering the size distribution function,analytic expression between the total contact load and the real contact area on the contact surface is obtained.The elastic,elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity.The results show that a rough surface is firstly in elastic deformation.As the load increases,elastoplastic or full plastic deformation takes place.For constant characteristic length scale G,the slope of load-area relation is proportional to fractal dimension D.For constant fractal dimension D,the slope of load-area relation is inversely proportional to G.For constant D and G,the slope of load-area relation is inversely proportional to property of the material φ,namely with the same load,the material of rough surface is softer,and the total contact area is larger.The contact mechanics model provides a foundation for study of the friction,wear and seal performance of rough surfaces.

  2. Electrolyte decomposition on Li-metal surfaces from first-principles theory

    Science.gov (United States)

    Ebadi, Mahsa; Brandell, Daniel; Araujo, C. Moyses

    2016-11-01

    An important feature in Li batteries is the formation of a solid electrolyte interphase (SEI) on the surface of the anode. This film can have a profound effect on the stability and the performance of the device. In this work, we have employed density functional theory combined with implicit solvation models to study the inner layer of SEI formation from the reduction of common organic carbonate electrolyte solvents (ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate) on a Li metal anode surface. Their stability and electronic structure on the Li surface have been investigated. It is found that the CO producing route is energetically more favorable for ethylene and propylene carbonate decomposition. For the two linear solvents, dimethyl and diethyl carbonates, no significant differences are observed between the two considered reduction pathways. Bader charge analyses indicate that 2 e- reductions take place in the decomposition of all studied solvents. The density of states calculations demonstrate correlations between the degrees of hybridization between the oxygen of adsorbed solvents and the upper Li atoms on the surface with the trend of the solvent adsorption energies.

  3. Changes in the spectral index of skin-surface laser Doppler signals of nude mice following the injection of CT26 tumor cells.

    Science.gov (United States)

    Liu, Ju-Chi; Hsiu, Hsin; Hsu, Yi-Ping; Tsai, Hung-Chi; Kuo, Chung-Hsien

    2016-01-01

    This study investigated microcirculatory-blood-flow responses in nude mice following the injection of CT26 tumor cells by analyzing the frequency content of skin blood-flow signals recorded on the skin surface. CT26 cells were injected subcutaneously (10^4/100 μl) into the right back flank of each 7-week-old mouse. Three-minute laser Doppler flowmetry (LDF) signals were measured in 60 nude mice. The data sequences were obtained at 1, 2, and 3 weeks after injecting CT26 cells. Mouse tissue samples were cut into sections and examined microscopically to determine the condition of cancer metastasis. Spectral analysis performed after 1 week revealed a significant decrease in the relative energy contribution of the endothelium-related frequency band, and significant increases in those of the myogenic and respiration-related frequency bands of the LDF signals in the metastasis group (n=12). To the best of our knowledge, this is the first study demonstrating the feasibility of evaluating metastasis in animal subjects based on changes in noninvasively measured LDF parameters. Changes in the LDF spectral indexes can be attributed to differences in the microcirculatory regulatory activities. The present measurements performed on the skin surface provide a noninvasive and real-time method for evaluating the microcirculatory responses induced by implanting CT26 tumor cells.

  4. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    Science.gov (United States)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-02-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and

  5. Configurational study of amino-functionalized silica surfaces: A density functional theory modeling.

    Science.gov (United States)

    Hozhabr Araghi, Samira; Entezari, Mohammad H; Sadeghi Googheri, Mohammad Sadegh

    2015-06-01

    Despite extensive studies of the amino-functionalized silica surfaces, a comprehensive investigation of the effects of configuration and hydrolysis of 3-aminopropyltriethoxysilan (APTES) molecules attached on silica has not been studied yet. Therefore, the methods of quantum mechanics were used for the study of configuration and hydrolysis forms of APTES molecules attached on the surface. For this purpose, five different categories based on the number of hydrolyzed ethoxy groups including 16 configurations were designed and analyzed by the density functional theory (DFT) method. The steric hindrance as an effective factor on the stability order was extracted from structural analysis. Other impressive parameters such as the effects of hydrogen bond and electron delocalization energy were obtained by using the atoms in molecules (AIM) and natural bond orbitals (NBO) theories. Consequently, it was found that the stability of configurations was attributed to steric effects, hydrogen bond numbers and electron delocalization energy. The maximum stability was achieved when at least two of these parameters cooperate with each other.

  6. Modeling 1D structures on semiconductor surfaces: synergy of theory and experiment.

    Science.gov (United States)

    Vanpoucke, Danny E P

    2014-04-02

    Atomic scale nanowires attract enormous interest in a wide range of fields. On the one hand, due to their quasi-one-dimensional nature, they can act as an experimental testbed for exotic physics: Peierls instability, charge density waves, and Luttinger liquid behavior. On the other hand, due to their small size, they are of interest not only for future device applications in the micro-electronics industry, but also for applications regarding molecular electronics. This versatile nature makes them interesting systems to produce and study, but their size and growth conditions push both experimental production and theoretical modeling to their limits. In this review, modeling of atomic scale nanowires on semiconductor surfaces is discussed, focusing on the interplay between theory and experiment. The current state of modeling efforts on Pt- and Au-induced nanowires on Ge(001) is presented, indicating their similarities and differences. Recently discovered nanowire systems (Ir, Co, Sr) on the Ge(001) surface are also touched upon. The importance of scanning tunneling microscopy as a tool for direct comparison of theoretical and experimental data is shown, as is the power of density functional theory as an atomistic simulation approach. It becomes clear that complementary strengths of theoretical and experimental investigations are required for successful modeling of the atomistic nanowires, due to their complexity.

  7. A new measuring method to determine material spectral emissivity

    Science.gov (United States)

    Smetana, W.; Reicher, R.

    1998-05-01

    Emissivity is a measure of how well a real surface can radiate energy as compared with a blackbody. This characteristic radiative number is usually determined by means of optical pyrometry. By contrast an indirect measurement method has been developed which enables the determination of the normal spectral emissivity of various materials at a specific wavelength. A heat flow induced in a test body by the absorbed irradiation of a laser beam may be correlated with the spectral emissivity of its surface. The theory of the measuring principle is discussed and the feasibility of the method evaluated by means of practical experiments utilizing a thermopile built up using a thick film technique.

  8. Spectral Analysis of Instantaneous Power in Single-phase and Three-phase Systems with Use of p-q-r Theory

    DEFF Research Database (Denmark)

    Kim, Hyosung; Blaabjerg, Frede; Bak-Jensen, Birgitte

    2002-01-01

    This paper proposes a novel power compensation algorithm in three-phase four-wire systems by using p-q-r theory. The p-q-r theory is compared with two previous instantaneous power theories, p-q theory and cross-vector theory. The p-q-r theory provides two-degrees of freedom to control the system...

  9. Hilbert-Huang spectral analysis for characterizing the intrinsic time-scales of variability in decennial time-series of surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2016-04-01

    An analysis of the variability of the surface solar irradiance (SSI) at different local time-scales is presented in this study. Since geophysical signals, such as long-term measurements of the SSI, are often produced by the non-linear interaction of deterministic physical processes that may also be under the influence of non-stationary external forcings, the Hilbert-Huang transform (HHT), an adaptive, noise-assisted, data-driven technique, is employed to extract locally - in time and in space - the embedded intrinsic scales at which a signal oscillates. The transform consists of two distinct steps. First, by means of the Empirical Mode Decomposition (EMD), the time-series is "de-constructed" into a finite number - often small - of zero-mean components that have distinct temporal scales of variability, termed hereinafter the Intrinsic Mode Functions (IMFs). The signal model of the components is an amplitude modulation - frequency modulation (AM - FM) one, and can also be thought of as an extension of a Fourier series having both time varying amplitude and frequency. Following the decomposition, Hilbert spectral analysis is then employed on the IMFs, yielding a time-frequency-energy representation that portrays changes in the spectral contents of the original data, with respect to time. As measurements of surface solar irradiance may possibly be contaminated by the manifestation of different type of stochastic processes (i.e. noise), the identification of real, physical processes from this background of random fluctuations is of interest. To this end, an adaptive background noise null hypothesis is assumed, based on the robust statistical properties of the EMD when applied to time-series of different classes of noise (e.g. white, red or fractional Gaussian). Since the algorithm acts as an efficient constant-Q dyadic, "wavelet-like", filter bank, the different noise inputs are decomposed into components having the same spectral shape, but that are translated to the

  10. Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank

    DEFF Research Database (Denmark)

    Christiansen, Torben; Bingham, Harry B.; Engsig-Karup, Allan Peter;

    2013-01-01

    A new hybrid-spectral solution strategy is proposed for the simulation of the fully nonlinear free surface equations based on potential flow theory. A Fourier collocation method is adopted horisontally for the discretization of the free surface equations. This is combined with a modal Chebyshev T...

  11. The Variability of Solar Spectral Irradiance and Solar Surface Indices Through the Solar Activity Cycles 21-23

    Science.gov (United States)

    Deniz Goker, Umit

    2016-07-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We developed a special software for extracting the data and reduced this data by using the MATLAB. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) emission lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar cycles (SCs) 23 and 24. We also compared our results with the ground-based telescopes as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal Data (KKL) and NGDC Homepage (Rome and Learmonth Solar Observatories). We studied the variations of total solar irradiance (TSI), magnetic field, sunspots/sunspot groups, Ca II K-flux, faculae and plage areas data with these ground-based telescopes, respectively. We reduced the selected data using the Phyton programming language and plot with the IDL programme. Therefore, we found that there was a decrease in the area of bright faculae and chromospheric plages while the percentage of dark faculae and plage decrease, as well. However, these decreases mainly occurred in small sunspots, contrary to this, these terms in large sunspot groups were comparable to previous SCs or even larger. Nevertheless, negative correlations between ISSN and SSI data indicate that these emissions are in close connection with the classes of sunspots/sunspot groups and "PLAGE" regions. Finally, we applied the time series of the chemical elements correspond to the wavelengths 121.5 nm-300.5 nm and compared with the ISSN data. We found an unexpected increasing in the 298.5 nm for the Fe II element. The variability of Fe II (298.5 nm) is in close connection with the plage regions and the sizes of the

  12. Study of CO adsorption on perfect and defective pyrite(100)surfaces by density functional theory

    Institute of Scientific and Technical Information of China (English)

    Yudong Du; Wenkai Chen; Yongfan Zhang; Xin Guo

    2011-01-01

    First-principles calculations based on density functional theory(DFT)and the generalized gradient approximation(GGA)have been used to study the adsorption of CO molecule on the perfect and defective FeS2(100)surfaces.The defective Fe2S(100)surfaces are caused by sulfur deficiencies.Slab geometry and periodic boundary conditions are employed with partial relaxations of atom positions in calculations.Two molecular orientations,C-and O-down,at various distinct sites have been considered.Total energy calculations indicated that no matter on perfect or deficient surfaces,the Fe position is relatively more favored than the S site with the predicted binding energies of 120.8 kJ/mol and 140.8 kJ/mol,respectively.Moreover,CO was found to be bound to Fe atom in vertical configuration.The analysis of density of states and vibrational frequencies before and after adsorption showed clear changes of the C-O bond.

  13. Crossing the dividing surface of transition state theory. III. Once and only once. Selecting reactive trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Lorquet, J. C., E-mail: jc.lorquet@ulg.ac.be [Department of Chemistry, University of Liège, Sart-Tilman (Bâtiment B6), B-4000 Liège 1 (Belgium)

    2015-09-14

    The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever returning to it. Local analytical equations of motion valid in the neighborhood of this planar surface have been derived as an expansion in Poisson brackets. We show that the mere presence of a saddle point implies that reactivity criteria can be quite simply formulated in terms of elements of this series, irrespective of the shape of the potential energy function. Some of these elements are demonstrated to be equal to a sum of squares and thus to be necessarily positive, which has a profound impact on the dynamics. The method is then applied to a three-dimensional model describing an atom-diatom interaction. A particular relation between initial conditions is shown to generate a bundle of reactive trajectories that form reactive cylinders (or conduits) in phase space. This relation considerably reduces the phase space volume of initial conditions that generate recrossing-free trajectories. Loci in phase space of reactive initial conditions are presented. Reactivity is influenced by symmetry, as shown by a comparative study of collinear and bent transition states. Finally, it is argued that the rules that have been derived to generate reactive trajectories in classical mechanics are also useful to build up a reactive wave packet.

  14. Generalized Free-Surface Effect and Random Vibration Theory: a new tool for computing moment magnitudes of small earthquakes using borehole data

    Science.gov (United States)

    Malagnini, Luca; Dreger, Douglas S.

    2016-07-01

    Although optimal, computing the moment tensor solution is not always a viable option for the calculation of the size of an earthquake, especially for small events (say, below Mw 2.0). Here we show an alternative approach to the calculation of the moment-rate spectra of small earthquakes, and thus of their scalar moments, that uses a network-based calibration of crustal wave propagation. The method works best when applied to a relatively small crustal volume containing both the seismic sources and the recording sites. In this study we present the calibration of the crustal volume monitored by the High-Resolution Seismic Network (HRSN), along the San Andreas Fault (SAF) at Parkfield. After the quantification of the attenuation parameters within the crustal volume under investigation, we proceed to the spectral correction of the observed Fourier amplitude spectra for the 100 largest events in our data set. Multiple estimates of seismic moment for the all events (1811 events total) are obtained by calculating the ratio of rms-averaged spectral quantities based on the peak values of the ground velocity in the time domain, as they are observed in narrowband-filtered time-series. The mathematical operations allowing the described spectral ratios are obtained from Random Vibration Theory (RVT). Due to the optimal conditions of the HRSN, in terms of signal-to-noise ratios, our network-based calibration allows the accurate calculation of seismic moments down to Mw < 0. However, because the HRSN is equipped only with borehole instruments, we define a frequency-dependent Generalized Free-Surface Effect (GFSE), to be used instead of the usual free-surface constant F = 2. Our spectral corrections at Parkfield need a different GFSE for each side of the SAF, which can be quantified by means of the analysis of synthetic seismograms. The importance of the GFSE of borehole instruments increases for decreasing earthquake's size because for smaller earthquakes the bandwidth available

  15. Surface Roughness and Critical Exponent Analyses of Boron-Doped Diamond Films Using Atomic Force Microscopy Imaging: Application of Autocorrelation and Power Spectral Density Functions

    Science.gov (United States)

    Gupta, S.; Vierkant, G. P.

    2014-09-01

    The evolution of the surface roughness of growing metal or semiconductor thin films provides much needed information about their growth kinetics and corresponding mechanism. While some systems show stages of nucleation, coalescence, and growth, others exhibit varying microstructures for different process conditions. In view of these classifications, we report herein detailed analyses based on atomic force microscopy (AFM) characterization to extract the surface roughness and growth kinetics exponents of relatively low boron-doped diamond (BDD) films by utilizing the analytical power spectral density (PSD) and autocorrelation function (ACF) as mathematical tools. The machining industry has applied PSD for a number of years for tool design and analysis of wear and machined surface quality. Herein, we present similar analyses at the mesoscale to study the surface morphology as well as quality of BDD films grown using the microwave plasma-assisted chemical vapor deposition technique. PSD spectra as a function of boron concentration (in gaseous phase) are compared with those for samples grown without boron. We find that relatively higher boron concentration yields higher amplitudes of the longer-wavelength power spectral lines, with amplitudes decreasing in an exponential or power-law fashion towards shorter wavelengths, determining the roughness exponent ( α ≈ 0.16 ± 0.03) and growth exponent ( β ≈ 0.54), albeit indirectly. A unique application of the ACF, which is widely used in signal processing, was also applied to one-dimensional or line analyses (i.e., along the x- and y-axes) of AFM images, revealing surface topology datasets with varying boron concentration. Here, the ACF was used to cancel random surface "noise" and identify any spatial periodicity via repetitive ACF peaks or spatially correlated noise. Periodicity at shorter spatial wavelengths was observed for no doping and low doping levels, while smaller correlations were observed for relatively

  16. Quarkonium Spectral Functions

    Energy Technology Data Exchange (ETDEWEB)

    Mocsy, Agnes [Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205 (United States)

    2009-11-01

    In this talk I summarize the progress achieved in recent years on the understanding of quarkonium properties at finite temperature. Theoretical studies from potential models, lattice QCD, and effective field theories are discussed. I also highlight a bridge from spectral functions to experiment.

  17. Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations.

    Science.gov (United States)

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo

    2012-04-01

    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

  18. A new look at the response surface method for reliability analysis using chaos theory

    Institute of Scientific and Technical Information of China (English)

    Ding Youliang; Li Aiqun; Deng Yang

    2008-01-01

    To overcome excessive computation errors and convergence failures encountered in an iterative calculation of the reliability index using the response surface method (RSM) for some nonlinear limit state functions, this study investigates an essential factor based on chaotic dynamics theory. The bifurcation diagrams of the reliability index are presented for some typical nonlinear limit state functions, and the computation results from the mapping functions due to the RSM iterations show the complicated dynamic phenomena such as the periodic oscillation, as well as bifurcation and chaos. From the numerical examples, it is concluded that the parameter of selection rangefplays an important role in the convergence of the RSM iteration, and an improved RSM iterative algorithm is proposed with regard to the incorporation of the iterative sequential function of selection ranger. The proposed method is shown to be efficient and to yield accurate results.

  19. Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces.

    Science.gov (United States)

    Ledesma-Aguilar, R; Hernández-Machado, A; Pagonabarraga, I

    2013-06-28

    We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultralow surface tension.

  20. Multidimensionally-constrained covariant density functional theories --- nuclear shapes and potential energy surfaces

    CERN Document Server

    Zhou, Shan-Gui

    2016-01-01

    The intrinsic nuclear shapes deviating from a sphere not only manifest themselves in nuclear collective states but also play important roles in determining nuclear potential energy surfaces (PES's) and fission barriers. In order to describe microscopically and self-consistently nuclear shapes and PES's with as many shape degrees of freedom as possible included, we developed multidimensionally-constrained covariant density functional theories (MDC-CDFTs). In MDC-CDFTs, the axial symmetry and the reflection symmetry are both broken and all deformations characterized by $\\beta_{\\lambda\\mu}$ with even $\\mu$ are considered. We have used the MDC-CDFTs to study PES's and fission barriers of actinides, the non-axial octupole $Y_{32}$ correlations in $N = 150$ isotones and shapes of hypernuclei. In this Review we will give briefly the formalism of MDC-CDFTs and present the applications to normal nuclei.

  1. Extended short-wavelength spectral response of organic/(silver nanoparticles/Si nanoholes nanocomposite films) hybrid solar cells due to localized surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixin [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Wengping; Ge, Zhaoyun; Xu, Jun [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Su, Weining; Yu, Yao [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2015-04-15

    Highlights: • The silver nanoparticles (AgNPs)/Si nanoholes (SiNHs) nanocomposite films were fabricated. • An enhancement of total absorption in the AgNPs/SiNHs nanocomposite films at the short wavelength was exhibited. • Prototype solar cell device with AgNPs exhibits an increase of the power conversion efficiency by a factor of 2–3. - Abstract: In this letter, we investigated spectral and opto-electronic conversion properties of the inorganic/organic hybrid cells by using silver nanoparticles (AgNPs)/Si nanoholes (SiNHs) nanocomposite films, which were fabricated by the modified metal-assisted electroless etching (EE) method. It was found that the optical absorption spectra of the films with AgNPs demonstrate a clear peak and show the enhancement of total absorption at the short wavelength. The results of current–voltage (I–V) measurements show that solar cells with AgNPs exhibit an increase of the power conversion efficiency by a factor of 2–3, in comparison with those of the samples without AgNPs. Moreover, higher external quantum efficiency (EQE) values in AgNPs-decorated solar cells were confirmed in the short-wavelength spectral region (400–700 nm), which were essential to achieve high-performance photovoltaic cells. We thought these were mainly attributed to the localized surface plasmon resonance (LSPR) effects and increased light scattering of AgNPs.

  2. Microcanonical unimolecular rate theory at surfaces. I. Dissociative chemisorption of methane on Pt(111)

    Science.gov (United States)

    Bukoski, A.; Blumling, D.; Harrison, I.

    2003-01-01

    A model of gas-surface reactivity is developed based on the ideas that (a) adsorbate chemistry is a local phenomenon, (b) the active system energy of an adsorbed molecule and a few immediately adjacent surface atoms suffices to fix microcanonical rate constants for surface kinetic processes such as desorption and dissociation, and (c) energy exchange between the local adsorbate-surface complexes and the surrounding substrate can be modeled via a Master equation to describe the system/heat reservoir coupling. The resulting microcanonical unimolecular rate theory (MURT) for analyzing and predicting both thermal equilibrium and nonequilibrium kinetics for surface reactions is applied to the dissociative chemisorption of methane on Pt(111). Energy exchange due to phonon-mediated energy transfer between the local adsorbate-surface complexes and the surface is explored and estimated to be insignificant for the reactive experimental conditions investigated here. Simulations of experimental molecular beam data indicate that the apparent threshold energy for CH4 dissociative chemisorption on Pt(111) is E0=0.61 eV (over a C-H stretch reaction coordinate), the local adsorbate-surface complex includes three surface oscillators, and the pooled energy from 16 active degrees of freedom is available to help surmount the dissociation barrier. For nonequilibrium molecular beam experiments, predictions are made for the initial methane dissociative sticking coefficient as a function of isotope, normal translational energy, molecular beam nozzle temperature, and surface temperature. MURT analysis of the thermal programmed desorption of CH4 physisorbed on Pt(111) finds the physisorption well depth is 0.16 eV. Thermal equilibrium dissociative sticking coefficients for methane on Pt(111) are predicted for the temperature range from 250-2000 K. Tolman relations for the activation energy under thermal equilibrium conditions and for a variety of "effective activation energies" under

  3. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  4. Analysis of surface segregation in polymer mixtures: A combination of mean field and statistical associated fluid theories

    Science.gov (United States)

    Krawczyk, Jaroslaw; Croce, Salvatore; Chakrabarti, Buddhapriya; Tasche, Jos

    The surface segregation in polymer mixtures remains a challenging problem for both academic exploration as well as industrial applications. Despite its ubiquity and several theoretical attempts a good agreement between computed and experimentally observed profiles has not yet been achieved. A simple theoretical model proposed in this context by Schmidt and Binder combines Flory-Huggins free energy of mixing with the square gradient theory of wetting of a wall by fluid. While the theory gives us a qualitative understanding of the surface induced segregation and the surface enrichment it lacks the quantitative comparison with the experiment. The statistical associating fluid theory (SAFT) allows us to calculate accurate free energy for a real polymeric materials. In an earlier work we had shown that increasing the bulk modulus of a polymer matrix through which small molecules migrate to the free surface causes reduction in the surface migrant fraction using Schmidt-Binder and self-consistent field theories. In this work we validate this idea by combining mean field theories and SAFT to identify parameter ranges where such an effect should be observable. Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.

  5. Manipulation of the surface density of states of Ag(111) by means of resonators: Experiment and theory

    Science.gov (United States)

    Fernández, J.; Moro-Lagares, María; Serrate, D.; Aligia, A. A.

    2016-08-01

    We show that the density of surface Shockley states of Ag(111) probed by the differential conductance G (V )=d I /d V by a scanning-tunneling microscope (STM) can be enhanced significantly at certain energies and positions introducing simple arrays of Co or Ag atoms on the surface, in contrast to other noble-metal surfaces. Specifically we have studied resonators consisting of two parallel walls of five atoms deposited on the clean Ag(111) surface. A simple model in which the effect of the adatoms is taken into account by an attractive local potential and a small hybridization between surface and bulk at the position of the adatoms explains the main features of the observed G (V ) and allows us to extract the proportion of surface and bulk states sensed by the STM tip. These results might be relevant to engineer the surface spectral density of states, to study the effects of surface states on the Kondo effect, and to separate bulk and surface contributions in STM studies of topological surface states.

  6. The spectrum of hyperbolic surfaces

    CERN Document Server

    Bergeron, Nicolas

    2016-01-01

    This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay...

  7. Effect of Surface Oxidization on the Spectral Normal Emissivity of Aluminum 3A21 at the Wavelength of 1.5 m Over the Temperature Range from 800 K to 910 K

    Science.gov (United States)

    Shi, Deheng; Zou, Fenghui; Wang, Shuai; Zhu, Zunlue; Sun, Jinfeng

    2015-04-01

    This study explores the dependence of the spectral emissivity on the temperature ranging from 800 K to 910 K for an oxidizing surface of aluminum 3A21. In this experiment, the infrared radiation stemming from the specimen is received by an InGaAs photodiode detector, which operates at the wavelength of 1.5 m with a bandwidth of about 20 nm. The temperature of the specimen surface is determined by averaging the two R-type platinum-rhodium thermocouples, which are tightly welded on the specimen surface. The spectral emissivity is reported before the first measurement over the temperature range from 800 K to 910 K. The variation of the spectral emissivity with the heating time is evaluated at a given temperature. The variation of the spectral emissivity with temperature is discussed for a given heating time. Oscillations of the spectral emissivity have been observed, which are affirmed to be connected with the thickness of the oxidization layer on the specimen surface, and formed by the interference effect between the radiation coming from the oxidization layer and the radiation stemming from the substrate. The effect of surface oxidization on the spectral emissivity of aluminum 3A21 is evaluated, and compared with that of SPHC steel. Analytical expressions of the spectral emissivity of aluminum 3A21 versus the temperature are derived at some given heating times. A conclusion is obtained that the experimental results obtained at a given heating time from 800 K to 910 K abide by the same functional form.

  8. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films.

    Science.gov (United States)

    Mirigian, Stephen; Schweizer, Kenneth S

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  9. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Ruberto, C.; Lundqvist, Bengt

    2010-01-01

    This study explores atomic and molecular adsorption on a number of early transition-metal carbides (TMCs) in NaCl structure by means of density-functional theory calculations. The investigated substrates are the TM-terminated TMC(111) surfaces, of interest because of the presence of different types......, surface relaxations, Bader charges, and surface-localized densities of states (DOSs). Detailed comparisons between surface and bulk DOSs reveal the existence of transition-metal localized SRs (TMSRs) in the pseudogap and of several C-localized SRs (CSRs) in the upper valence band on all considered TMC(111......C, delta-MoC, TaC, and WC (in NaCl structure) and the adsorbates H, B, C, N, O, F, NH, NH2, and NH3. Trends in adsorption strength are explained in terms of surface electronic factors, by correlating the calculated adsorption-energy values with the calculated surface electronic structures. The results...

  10. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis.

    Science.gov (United States)

    Raponi, A.; Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M. C.; Capria, M. T.; Barucci, M. A.; Longobardo, A.; Palomba, E.; Kappel, D.; Arnold, G.; Mottola, S.; Rousseau, B.; Rinaldi, G.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.

    2016-11-01

    Water ice-rich patches have been detected on the surface of comet 67P/Churyumov-Gerasimenko by the VIRTIS hyperspectral imager on-board the Rosetta spacecraft, since the orbital insertion in late August 2014. Among those, three icy patches have been selected, and VIRTIS data have been used to analyse their properties and temporal evolution while the comet was moving towards the Sun. We performed an extensive analysis of the spectral parameters, and we applied the Hapke radiative transfer model to retrieve the abundance and grain size of water ice, as well as the mixing modalities of water ice and the ubiquitous dark refractory terrains of the surface. Study of the spatial distribution of the spectral parameters within the ice-rich patches has revealed that water ice follows different patterns associated to a bimodal distribution of the grains: 50 μm sized and 2000 μm sized, respectively in intimate and areal mixture with the dark material. In all three cases we identified different stages of the evolution of abundance of ice in the selected patches after the first detections at about 3.5 AU heliocentric distance; the spatial extension and intensity of the water ice spectral features reached a maximum after 60-100 days at about 3.0 AU, was followed by an approximately equally timed decrease, and the features were no longer visible when observed again at about 2.2 AU, before perihelion. The exposure of deeper layers is consistent with their occurrence in "active" areas where falls or landslides could have caused the occasional exposure of water ice-rich layers. After the initial exposure of the ice, the activity of the affected area increases thus causing dust removal powered by sublimation, which provides a positive feedback on the exposure itself. The process develops as the solar flux increases, and it reaches a turning point when the exposure rate is outweighed by the sublimation rate, until the complete sublimation of the patch. It is interesting to note that

  11. Spectral recognition of graphs

    Directory of Open Access Journals (Sweden)

    Cvetković Dragoš

    2012-01-01

    Full Text Available At some time, in the childhood of spectral graph theory, it was conjectured that non-isomorphic graphs have different spectra, i.e. that graphs are characterized by their spectra. Very quickly this conjecture was refuted and numerous examples and families of non-isomorphic graphs with the same spectrum (cospectral graphs were found. Still some graphs are characterized by their spectra and several mathematical papers are devoted to this topic. In applications to computer sciences, spectral graph theory is considered as very strong. The benefit of using graph spectra in treating graphs is that eigenvalues and eigenvectors of several graph matrices can be quickly computed. Spectral graph parameters contain a lot of information on the graph structure (both global and local including some information on graph parameters that, in general, are computed by exponential algorithms. Moreover, in some applications in data mining, graph spectra are used to encode graphs themselves. The Euclidean distance between the eigenvalue sequences of two graphs on the same number of vertices is called the spectral distance of graphs. Some other spectral distances (also based on various graph matrices have been considered as well. Two graphs are considered as similar if their spectral distance is small. If two graphs are at zero distance, they are cospectral. In this sense, cospectral graphs are similar. Other spectrally based measures of similarity between networks (not necessarily having the same number of vertices have been used in Internet topology analysis, and in other areas. The notion of spectral distance enables the design of various meta-heuristic (e.g., tabu search, variable neighbourhood search algorithms for constructing graphs with a given spectrum (spectral graph reconstruction. Several spectrally based pattern recognition problems appear in many areas (e.g., image segmentation in computer vision, alignment of protein-protein interaction networks in bio

  12. More on dimension-4 proton decay problem in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hirotaka, E-mail: hirotakahayashi@hep-th.phys.s.u-tokyo.ac.j [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Kawano, Teruhiko; Tsuchiya, Yoichi [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Watari, Taizan [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwano-ha 5-1-5, 277-8583 (Japan)

    2010-11-21

    Factorized spectral surface scenario has been considered as one of solutions to the dimension-4 proton decay problem in supersymmetric compactifications of F-theory. It has been formulated in language of gauge theory on 7+1 dimensions, but the gauge theory descriptions can capture physics of geometry of F-theory compactification only approximately at best. Given the severe constraint on the renormalizable couplings that lead to proton decay, it is worth studying without an approximation whether or not the proton decay operators are removed completely in this scenario. We clarify how the behavior of spectral surface and discriminant locus are related, study monodromy of 2-cycles in a Calabi-Yau 4-fold geometry, and find that the proton decay operators are likely to be generated in a simple factorization limit of the spectral surface. A list of loopholes in this study, and hence a list of chances to save the factorized spectral surface scenario, is also presented.

  13. Effects of Rotation and Gravity Field on Surface Waves in Fibre-Reinforced Thermoelastic Media under Four Theories

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2013-01-01

    Full Text Available Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T, Lord-Shulman theory (L-S, Green-Lindsay theory (G-L, and the linearized (G-N theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.

  14. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study.

    Science.gov (United States)

    Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo

    2014-09-15

    In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets.

  15. Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds with Third Order Corrections to the Harmonic Potential Surface

    Science.gov (United States)

    Deblase, Andrew F.; Johnson, Mark A.; Lectka, Thomas; Wang, Xun; Jordan, Kenneth D.; McCoy, Anne B.

    2013-06-01

    Overtones and combination bands observed in vibrational predissociation spectra of cold ions can often be anticipated by expanding the potential energy surface to third order. This is achieved by relating the third derivatives to the matrix elements that couple the allowed and forbidden states in the harmonic basis. Such a strategy has been successful in predicting Fermi resonances in formic acid clusters and some charged H-bonded complexes. Furthermore, third order couplings have been used to develop a vibrational adiabatic model in which excitation of a bright state is distributed over a Franck-Condon envelop of a lower energy mode, such as a water rocking against triatomic domains of molecular anions. Previous applications include the analysis of long vibrational progressions of soft modes in the OH stretching region of the actetate-water binary complex. Here we explore to extent to which this order of correction captures the irregular patterns associated with intramolecular proton bonds.

  16. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N.

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  17. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    Science.gov (United States)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the

  18. [Research on the spectral feature and identification of the surface vegetation stressed by stored CO2 underground leakage].

    Science.gov (United States)

    Chen, Yun-Hao; Jiang, Jin-Bao; Steven, Michael D; Gong, A-Du; Li, Yi-Fan

    2012-07-01

    With the global climate warming, reducing greenhouse gas emissions becomes a focused problem for the world. The carbon capture and storage (CCS) techniques could mitigate CO2 into atmosphere, but there is a risk in case that the CO2 leaks from underground. The objective of this paper is to study the chlorophyll contents (SPAD value), relative water contents (RWC) and leaf spectra changing features of beetroot under CO2 leakage stress through field experiment. The result shows that the chlorophyll contents and RWC of beetroot under CO2 leakage stress become lower than the control beetroot', and the leaf reflectance increases in the 550 nm region and decreases in the 680nm region. A new vegetation index (R550/R680) was designed for identifying beetroot under CO2 leakage stress, and the result indicates that the vegetation index R550/R680 could identify the beetroots after CO2 leakage for 7 days. The index has strong sensitivity, stability and identification for monitoring the beetroots under CO2 stress. The result of this paper has very important meaning and application values for selecting spots of CCS project, monitoring and evaluating land-surface ecology under CO2 stress and monitoring the leakage spots by using remote sensing.

  19. Airborne Spectral BRDF of Various Surface Types (Ocean, Vegetation, Snow, Desert, Wetlands, Cloud Decks, Smoke Layers) for Remote Sensing Applications

    Science.gov (United States)

    Gatebe, Charles K.; King, Michael D.

    2016-01-01

    In this paper we describe measurements of the bidirectional reflectance-distribution function (BRDF) acquired over a 30-year period (1984-2014) by the National Aeronautics and Space Administration's (NASA's) Cloud Absorption Radiometer (CAR). Our BRDF database encompasses various natural surfaces that are representative of many land cover or ecosystem types found throughout the world. CAR's unique measurement geometry allows a comparison of measurements acquired from different satellite instruments with various geometrical configurations, none of which are capable of obtaining such a complete and nearly instantaneous BRDF. This database is therefore of great value in validating many satellite sensors and assessing corrections of reflectances for angular effects. These data can also be used to evaluate the ability of analytical models to reproduce the observed directional signatures, to develop BRDF models that are suitable for sub-kilometer-scale satellite observations over both homogeneous and heterogeneous landscape types, and to test future spaceborne sensors. All of these BRDF data are publicly available and accessible in hierarchical data format (http:car.gsfc.nasa.gov/).

  20. A spectral formalism for computing three-dimensional deformations due to surface loads. 2: Present-day glacial isostatic adjustment

    Science.gov (United States)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1994-01-01

    Using a spherically symmetric, self-gravitating, linear viscoelastic Earth model, we predict present-day three-dimensional surface deformation rates and baseline evolutions arising as a consequence of the late Pleistocene glacial cycles. In general, we use realistic models for the space-time geometry of the final late Pleistocene deglaciation event and incorporate a gravitationally self-consistent ocean meltwater redistribution. The predictions of horizontal velocity presented differ significantly, in both their amplitude and their spatial variation, from those presented in earlier analysis of others which adopted simplified models of both the late Pleistocene ice history and the Earth rheology. An important characteristic of our predicted velocity fields is that the melting of the Laurentide ice sheet over Canada is capable of contributing appreciably to the adjustment in Europe. The sensitivity of the predictions to variations in mantle rheology is investigated by considering a number of different Earth models, and by computing appropriate Frechet kernels. These calculations suggest that the sensitivity of the deformations to the Earth's rheology is significant and strongly dependent on the location of the site relative to the ancient ice sheet. The effects on the predictions of three-dimensional deformation rates of altering the ice history or adopting approximate models for the ocean meltwater redistribution have also been considered and found to be important (the former especially so). Finally, for a suite of Earth models we provide predictions of the velocity of a number of baselines in North America and Europe. We find that, in general, both radial and tangential motions contribute significantly to baseline length changes, and that these contributions are a strong function of the Earth model. We have, furthermore, found a set of Earth models which, together with the ICE-3G deglaciation chronology, produce predictions of baseline length changes that are