WorldWideScience

Sample records for surfaces conversely cenb

  1. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  2. Tritiated hydrogen conversion on heated metallic surfaces

    International Nuclear Information System (INIS)

    Ionita, G.; Mihaila, V.; Purghel, L.; Rebigan, F.

    1995-01-01

    This work reports investigations on tritiated hydrogen conversion to tritiated water on heated metallic surfaces. The HT conversion process has been revealed for copper, aluminium and stainless steel W4541 surfaces in the temperature range 150 to 300 o C, in case of the static regime and in the range 250 to 400 o C for the dynamic case. The most significant catalytic activity was shown by the copper sample. Studies on this subject are used as input information for different nuclear accident scenarios implying tritium leakage

  3. An in situ study of zirconium-based conversion treatment on zinc surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, P. [Materials innovation institute (M2i), Elektronicaweg 25, 2628 XG Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Laha, P. [Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Terryn, H. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Mol, J.M.C., E-mail: J.M.C.Mol@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-11-30

    Highlights: • We investigated the deposition mechanism of zirconium conversion layer on zinc. • In situ FTIR and electrochemical measurements are conducted. • The initial hydroxyl fraction plays an important role in the deposition process. • Deposition starts with hydroxyl removal by fluoride ions. • An increase of alkalinity adjacent to the surface promotes deposition of Zr. - Abstract: This study is focused on the deposition process of zirconium-based conversion layers on Zn surfaces. The analysis approach is based on a Kretschmann configuration in which in situ ATR-FTIR spectroscopy is combined with open circuit potential (OCP) and near surface pH measurements. Differently pretreated Zn surfaces were subjected to conversion treatments, while the Zr-based deposition mechanism was probed in situ. It was found that the initial hydroxyl fraction promotes the overall Zr conversion process as the near surface pH values are influenced by the initial hydroxyl fraction. Kinetics of the early surface activation and the subsequent Zr-based conversion process are discussed and correlated to the initial hydroxyl fractions.

  4. Conversion of tritiated hydrogen to tritiated water on heated metal surfaces

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1993-05-01

    The conversion of tritium to tritiated water on metal surfaces was studied under conditions relevant to releases into a fusion reactor hall (metal temperatures between 473 K and 623 K, air or inert gas atmospheres). The rate constant of oxidation per unit geometric surface area was found to be about a factor of ten higher than the rate constant per unit gas adsorption surface area for H 2 to H 2 O conversion on metal oxides in excess oxygen, probably because of the roughness of the metal surfaces on a gas adsorption scale. Surface roughness and oxides were found to have a major influence on the reaction rate. The reaction exhibited a first-order dependence on Q 2 concentration. Changing the dew point of the atmosphere did not affect the rate significantly, and rate constants for most metals were independent of whether the atmosphere was argon or air. Coatings of hydrocarbon and silicone polymers did not significantly affect the reaction rate on carbon steel and ferrous metals and brass all had about the same conversion rate constant. Aluminum alloy gave about three times lower and copper in Ar gave ten times higher conversion rate constants. Based on these data, an accident scenario involving exposure of 1000 m 2 of stainless steel at 573 K to a 10 4 m 3 room would cause conversion of ca. 0.1% of the Q 2 present to Q 2 O in 24 hours, while air ingress to the torus without leakage of the tritium into the room would cause 1.2% conversion in that time. The rate values are only accurate within a multiplicative factor of three, so they should be applied cautiously in model calculations. (author). 27 refs., 4 tabs., 4 figs

  5. Surface effects on converse piezoelectricity of crystals.

    Science.gov (United States)

    Molayem, Mohammad; Springborg, Michael; Kirtman, Bernard

    2017-09-20

    The contribution of surface units to bulk properties are often neglected in theoretical and computational studies of crystalline systems. We demonstrate that this assumption has to be made with caution in the case of (electric field) polarization. As a generalization of an earlier work on quasi-one-dimensional systems [Springborg, et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 165442], it is shown that the polarization for 2D and 3D systems contains a surface contribution that can, in principle, take any value (within physical limits) and has consequences for converse piezoelectric responses. Subsequently, we determine the surface effects quantitatively for a group of ferroelectric perovskite structures. Our results indicate that such contributions can be substantial.

  6. Preparation of Trivalent Chromium and Rare Earth Composite Conversion Coating on Aluminum Alloy Surface

    Science.gov (United States)

    Huang, Jianzhen

    2018-01-01

    In this paper, the surface conversion film on 6063 aluminum alloy was prepared by chemical plating process with chromium sulfate, lanthanum sulfate and sodium phosphate as film forming agent. The corrosion resistance and surface morphology of the conversion film were analyzed by pitting corrosion test of copper sulfate and SEM. The results show that when Cr2(SO4)3 is 10 g/L, La2(SO4)3 is 2 g/L, Na3PO4 is 8 g/L, pH value is 3, temperature is 40 °C, reaction time is 10 min, the corrosion resistance of the surface conversion film is the best. The conversion coating is light green, composed of Cr, La, P, Al, O and other elements.

  7. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures

    International Nuclear Information System (INIS)

    Yucel, S.

    1989-01-01

    In order to explain the experimental results on Cu(100), Ag(111), Ag thin films, graphite, and H 2 bubbles in Cu, the ortho-para conversion rates of H 2 and D 2 adsorbed on metal and paramagnetic surfaces at low temperatures have been considered. The conversion rates due to magnetic dipole-dipole, Fermi contact, and spin-orbit interaction between the conduction electrons, and nuclear spins of H 2 (D 2 ) are calculated to elucidate the role of the metal surface. Although the rates on clean metal surfaces are found to be too slow to account for the observed rates on Ag, they may explain the catalytic conversion on H 2 bubble surfaces at 1.3 K. Additionally, effects of impurities and defects on the surface are investigated by calculating the conversion rate in two-dimensional solid D 2 (H 2 ) by emission of one (two) phonon(s). Fast conversion rates observed on Ag and graphite surfaces as well as on the surfaces of H 2 bubbles may be accounted for by paramagnetic impurities or defects. On Grafoil, both in (√3 x √3)R30 0 commensurate and incommensurate solid phase, a temperature-independent conversion rate is predicted if the mobility of the molecules is high enough to prevent concentration gradients

  8. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  9. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  10. Degree of conversion and surface hardness of resin cement cured with different curing units.

    Science.gov (United States)

    Ozturk, Nilgun; Usumez, Aslihan; Usumez, Serdar; Ozturk, Bora

    2005-01-01

    The aim of this study was to evaluate the degree of conversion and Vickers surface hardness of resin cement under a simulated ceramic restoration with 3 different curing units: a conventional halogen unit, a high-intensity halogen unit, and a light-emitting diode system. A conventional halogen curing unit (Hilux 550) (40 s), a high-intensity halogen curing unit used in conventional and ramp mode (Optilux 501) (10 s and 20 s, respectively), and a light-emitting diode system (Elipar FreeLight) (20 s, 40 s) were used in this study. The dual-curing resin cement (Variolink II) was cured under a simulated ceramic restoration (diameter 5 mm, height 2 mm), and the degree of conversion and Vickers surface hardness were measured. For degree of conversion measurement, 10 specimens were prepared for each group. The absorbance peaks were recorded using the diffuse-reflection mode of Fourier transformation infrared spectroscopy. For Vickers surface hardness measurement, 10 specimens were prepared for each group. A load of 200 N was applied for 15 seconds, and 3 evaluations of each of the samples were performed. Degree of conversion achieved with Optilux 501 (20 s) was significantly higher than those of Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). For Vickers surface hardness measurement, Optilux 501 (20 s) produced the highest surface hardness value. No significant differences were found among the Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). The high-intensity halogen curing unit used in ramp mode (20 s) produced harder resin cement surfaces than did the conventional halogen curing unit, high-intensity halogen curing unit used in conventional mode (10 s) and light-emitting diode system (20 s, 40 s), when cured through a simulated ceramic restoration.

  11. Mode conversion and its utilization of degenerating surface wave modes on a plasma column

    International Nuclear Information System (INIS)

    Nonaka, S.; Akao, Y.

    1983-01-01

    Both mode conversion at degenerating points of dispersion relations for surface wave modes on a discharge plasma column and the methods for their detection and utilization are presented. Mode conversions at three degenerating points become observable by using a surface wave resonator when an azimuthal inhomogeneity of plasma is produced by a static magnetic field of about 1 G applied perpendicular to the column axis. Two of the three detected degenerating points can be utilized for an easy and exact determination of the electron density and its distribution in the discharge tube

  12. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  13. Improving tribological and anti-bacterial properties of titanium external fixation pins through surface ceramic conversion.

    Science.gov (United States)

    Dong, Huan; Mukinay, Tatiana; Li, Maojun; Hood, Richard; Soo, Sein Leung; Cockshott, Simon; Sammons, Rachel; Li, Xiaoying

    2017-01-01

    In this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO 2 rutile layer (~2 μm in thickness) supported by an oxygen hardened case (~15 μm in thickness) with very good bonding due to the in-situ conversion nature. The maximum insertion force and temperature were reduced from 192N and 31.2 °C when using the untreated pins to 182N and 26.1 °C when the ceramic conversion treated pins were tested. This is mainly due to the significantly increased hardness (more than three times) and the effectively enhanced wear resistance of the cutting edge of the self-drilling Ti pins following the ceramic conversion treatment. The antibacterial tests also revealed that there was a significantly reduced number of bacteria isolated from the ceramic conversion treated pins compared to the untreated pins of around 50 % after 20 h incubation, P < 0.01 (0.0024). The results reported are encouraging and could pave the way towards high-performance anti-bacterial titanium external fixation pins with reduced pin-track infection and pin loosing.

  14. Type conversion, contacts, and surface effects in electroplated CdTe films

    International Nuclear Information System (INIS)

    Basol, B.M.; Ou, S.S.; Stafsudd, O.M.

    1985-01-01

    Efficient electroplated CdS/CdTe solar cells can be fabricated by heat treating and type-converting the n-CdTe films deposited on CdS layers. In this paper, various mechanisms which may give rise to the conversion of electroplated CdTe films from n to p type are investigated. It is concluded that Cd-vacancy generation is the main mechanism of type conversion. Possible effects of oxygen on this mechanism are also discussed. Evaporated Au contacts to electroplated p-CdTe films were studied. It was found that the Au contacts depleted the excess Te present on the surface of Br 2 -methanol etched p-CdTe films. Oxygen was found to affect the electrical characteristics of such contacts

  15. Conversion of time-varying Stokes coefficients into mass anomalies at the Earth's surface considering the Earth's oblateness

    Science.gov (United States)

    Ditmar, Pavel

    2018-02-01

    Time-varying Stokes coefficients estimated from GRACE satellite data are routinely converted into mass anomalies at the Earth's surface with the expression proposed for that purpose by Wahr et al. (J Geophys Res 103(B12):30,205-30,229, 1998). However, the results obtained with it represent mass transport at the spherical surface of 6378 km radius. We show that the accuracy of such conversion may be insufficient, especially if the target area is located in a polar region and the signal-to-noise ratio is high. For instance, the peak values of mean linear trends in 2003-2015 estimated over Greenland and Amundsen Sea embayment of West Antarctica may be underestimated in this way by about 15%. As a solution, we propose an updated expression for the conversion of Stokes coefficients into mass anomalies. This expression is based on the assumptions that: (i) mass transport takes place at the reference ellipsoid and (ii) at each point of interest, the ellipsoidal surface is approximated by the sphere with a radius equal to the current radial distance from the Earth's center ("locally spherical approximation"). The updated expression is nearly as simple as the traditionally used one but reduces the inaccuracies of the conversion procedure by an order of magnitude. In addition, we remind the reader that the conversion expressions are defined in spherical (geocentric) coordinates. We demonstrate that the difference between mass anomalies computed in spherical and ellipsoidal (geodetic) coordinates may not be negligible, so that a conversion of geodetic colatitudes into geocentric ones should not be omitted.

  16. Surface structural evolvement in the conversion of polyacrylonitrile precursors to carbon fibers

    International Nuclear Information System (INIS)

    Qian, Xin; Zou, Ruifen; OuYang, Qin; Wang, Xuefei; Zhang, Yonggang

    2015-01-01

    Highlights: • The characteristic striated topography of PAN precursors resulted from the wet spinning process could pass down to carbon fibers. • The ridges and grooves monitored became much more well-defined after the thermo-oxidation. • Both the depth and the width of longitudinal grooves decreased after the carbonization. • Carbon, nitrogen, oxygen and silicon were the governing elements on the fiber surface. - Abstract: Surface structural evolvement in the conversion of polyacrylonitrile (PAN) precursors to carbon fibers was investigated through scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). SEM results showed that the characteristic striated topography of PAN precursors resulted from the wet spinning process could pass down to carbon fibers. The fiber diameter gradually decreased from 11.3 μm to 5.5 μm and the corresponding density increased from 1.18 g/cm 3 to 1.80 g/cm 3 in the conversion of PAN precursors to carbon fibers. The ridges and grooves monitored by AFM became much more well-defined after the thermo-oxidation. However, the original longitudinal grooves were destroyed and both the depth and the width of longitudinal grooves decreased after the carbonization. XPS results revealed that carbon, nitrogen, oxygen and silicon were the governing elements on the fiber surface. The −C−C functional groups was the dominant groups and the relative contents of −C=O and −COO groups gradually increased in the process of thermo-oxidation and carbonization

  17. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  18. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  19. Development of a dc low pressure D- surface-conversion source using a 10-cm-diameter solid barium converter

    International Nuclear Information System (INIS)

    Kwan, J.W.; Anderson, O.A.; Chan, C.F.; Cooper, W.S.; deVries, G.J.; Kunkel, W.B.; Leung, K.N.; Lietzke, A.F.; Steele, W.F.; van Os, C.F.A.; Wells, R.P.; Williams, M.D.

    1991-09-01

    A D - surface-conversion source using a solid barium converter is designed for steady-state operation to produce 200 mA of D - . A similar ion source of twice the size as the one discussed here will meet the requirements set by the present US-ITER neutral beam injector design. Among the possible types of ion sources being considered for the US-ITER neutral beam design, the barium converter surface-conversion source is the only kind that does not use cesium in the discharge. This absence of cesium will minimize the number of accelerator breakdowns. 15 refs., 4 figs

  20. Plasma conversion of methane into higher hydrocarbons at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Kamath, V.A. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-12-31

    Natural gas is widely abundant, is easily withdrawn from reservoirs, is commonly produced as an associated gas along with crude oil production, and is found in many geologic settings as a resource separate from oil. A much larger fraction of the natural gas may be produced from a gas reservoir, as compared with a crude oil reservoir. However, natural gas is normally transported by pipeline, and the energy throughput of such a pipeline is perhaps only 20% to 30% of the throughput of an oil pipeline of the same size and cost. Gas is difficult to transport in moderate quantities at low cost, as it must either have a special pipeline or must be liquified into LNG, shipped in cryogenic LNG tankers, and regasified chemical stability of methane has made it difficult to convert it directly into conventional hydrocarbon fuel mixtures, and has also impeded its use as a feedstock for petrochemical production. Experiments are described in which a methane plasma is created, and the resulting methyl and hydrogen ions have been accelerated within a microchannel array so that they interact with neutral methane molecules on the inside surfaces of the microchannels. No catalysts are used, and the device operates at room temperature. Impact energies of the ions are in the range of 15 ev to greater than 100 ev, and the energy delivered in the interaction at the surfaces has caused the production of larger hydrocarbon molecules, such as C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}, along with C{sub 3}, C{sub 4}, C{sub 5}, C{sub 6}, C{sub 7}, and C{sub 8} molecules. Conversion effectiveness is greater at higher pressure, due to the increased ionic activity. The costs of production of the plasma conversion devices are projected to be quite low, and the technology appears to be commercially and economically feasible.

  1. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    International Nuclear Information System (INIS)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-01-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique

  2. 100 kWe lunar/Mars surface power utilizing the SP-100 reactor with dynamic conversion

    International Nuclear Information System (INIS)

    Harty, R.B.; Mason, L.S.

    1992-01-01

    This paper reports on an integration study which was performed coupling an SP-100 reactor with either a Brayton of Stirling power conversion subsystem. a power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. For the lunar environment, the reactor and primary coolant loop would be contained in a guard vessel to protect from a loss of primary loop containment. For the Mars environment, all refractory components including the reactor, primary coolant, and power conversion components would be contained in a vacuum vessel for protection against the CO 2 environment

  3. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    Science.gov (United States)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  4. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of 137Cs

    International Nuclear Information System (INIS)

    Yunoki, A.; Kawada, Y.; Yamada, T.; Unno, Y.; Sato, Y.; Hino, Y.

    2013-01-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of 137 Cs- 137 Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. - Highlights: • Counting efficiencies for internal conversion electrons from 137 Cs were measured, and compared with those for β-rays. • Electron-X coincidence technique was employed. • A thin NaI(Tl) scintillation detector was used for X-ray detection. • Backscattering fractions of electrons and beta particles were studied by similar experiments

  5. Highly Efficient Spin-to-Charge Current Conversion in Strained HgTe Surface States Protected by a HgCdTe Layer

    Science.gov (United States)

    Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.

    2018-04-01

    We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.

  6. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

  7. Modeling of H- surface conversion sources; binary (H-Ba) and ternary (H-Cs/W) converter arrangements

    International Nuclear Information System (INIS)

    van Os, C.F.A.; Kunkel, W.B.; Leguijt, C.; Los, J.

    1991-01-01

    The production process for the formation of H - ions in a surface conversion source is sputtering of hydrogen atoms from the converter surface layers by incident positive ions, followed by electron attachment via resonant charge exchange with the converter surface. The sputtering process is in direct relation to the converter surface composition. New experimental data led us to identify two different classes of converters: metallic converters, like solid barium(binary) and adlayer converters, like cesium on tungsten (ternary). For a binary converter the hydrogen in the surface layers is directly sputtered by the incoming ions. Consequently, the negative ion yield scales with the hydrogen concentration in the surface layers. In the cesium/tungsten system (ternary) the hydrogen at the surface is believed to be sandwiched between the cesium adlayer and the tungsten surface. Hence, the negative ion yield scales with the sputter coefficient of hydrogen on adsorbed cesium. This is experimentally confirmed

  8. Conversion chimique des surfaces d'alliages d'aluminium sans chrome hexavalent

    OpenAIRE

    Ely , Marion

    2016-01-01

    Conversion coatings are used in aerospace industry to protect the metal from corrosion and to promote paint adhesion. Currently, chromate conversion coatings are used, but chromate is toxic and carcinogenic and its use will be forbidden by the European REACh regulation. TCP (Trivalent Chromium Protection) conversion coatings, are considered as a promising alternative to replace chromate conversion coating. This work focuses on the characterisation of the TCP layer and considers each step of t...

  9. Study of Syngas Conversion to Light Olefins by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hossein Atashi

    2013-01-01

    Full Text Available The effect of adding MgO to a precipitated iron-cobalt-manganese based Fischer-Tropsch synthesis (FTS catalyst was investigated via response surface methodology. The catalytic performance of the catalysts was examined in a fixed bed microreactor at a total pressure of 1–7 bar, temperature of 280–380°C, MgO content of 5–25% and using a syngas having a H2 to CO ratio equal to 2.The dependence of the activity and product distribution on MgO content, temperature, and pressure was successfully correlated via full quadratic second-order polynomial equations. The statistical analysis and response surface demonstrations indicated that MgO significantly influences the CO conversion and chain growth probability as well as ethane, propane, propylene, butylene selectivity, and alkene/alkane ratio. A strong interaction between variables was also evidenced in some cases. The decreasing effect of pressure on alkene to alkane ratio is investigated through olefin readsorption effects and CO hydrogenation kinetics. Finally, a multiobjective optimization procedure was employed to calculate the best amount of MgO content in different reactor conditions.

  10. Study of electrochemical phosphate conversion coating of metallic surfaces

    International Nuclear Information System (INIS)

    Gougelin, Patrick

    1985-01-01

    After an overview on phosphate conversion coating processes, on models of iron electrochemical dissolution, on the passivation phenomenon, and on the phosphate conversion coating treatment, this research thesis reports a detailed study of this last process. The author presents the experimental method, reports the study of this process and of passivation under constant polarization. He reports the use of various techniques and conditions: chrono-amperometry, chrono-potentiometry, cyclic volt-amperometry

  11. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys

    Science.gov (United States)

    Cerezo, J.; Vandendael, I.; Posner, R.; de Wit, J. H. W.; Mol, J. M. C.; Terryn, H.

    2016-03-01

    This study investigates the effect of different alkaline, acidic and thermal pre-conditioning treatments applied to different Al alloy surfaces. The obtained results are compared to the characteristics of Zr-based conversion coatings that were subsequently generated on top of these substrates. Focus is laid on typical elemental distributions on the sample surfaces, in particular on the amount of precipitated functional additives such as Cu species that are present in the substrate matrix as well as in the conversion bath solutions. To this aim, Field Emission Auger Electron spectra, depth profiles and surface maps with superior local resolution were acquired and compared to scanning electron microscopy images of the sample. The results show how de-alloying processes, which occur at and around intermetallic particles in the Al matrix during typical industrial alkaline or acidic cleaning procedures, provide a significant source of crystallization cores for any following coating processes. This is in particular due for Cu-species, as the resulting local Cu structures on the surface strongly affect the film formation and compositions of state-of-the-art Zr-based films. The findings are highly relevant for industrial treatments of aluminium surfaces, especially for those that undergo corrosion protection and painting process steps prior to usage.

  12. Monomer conversion, dimensional stability, strength, modulus, surface apatite precipitation and wear of novel, reactive calcium phosphate and polylysine-containing dental composites.

    Directory of Open Access Journals (Sweden)

    Kanokrat Kangwankai

    Full Text Available The aim was to assess monomer conversion, dimensional stability, flexural strength / modulus, surface apatite precipitation and wear of mono / tri calcium phosphate (CaP and polylysine (PLS-containing dental composites. These were formulated using a new, high molecular weight, fluid monomer phase that requires no polymerisation activator.Urethane and Polypropylene Glycol Dimethacrylates were combined with low levels of an adhesion promoting monomer and a light activated initiator. This liquid was mixed with a hybrid glass containing either 10 wt% CaP and 1 wt% PLS (F1 or 20 wt% CaP and 2 wt% PLS (F2. Powder to liquid mass ratio was 5:1. Commercial controls included Gradia Direct Posterior (GD and Filtek Z250 (FZ. Monomer conversion and polymerisation shrinkage were calculated using Fourier Transform Infrared (FTIR. Subsequent volume increases in water over 7 weeks were determined using gravimetric studies. Biaxial flexural strength (BFS / modulus (BFM reduction and surface apatite precipitation upon 1 and 4 weeks immersion in water versus simulated body fluid (SBF were assessed using a mechanical testing frame and scanning electron microscope (SEM. Mass / volume loss and surface roughness (Ra following 7 weeks water immersion and subsequent accelerated tooth-brush abrasion were examined using gravimetric studies and profilometer.F1 and F2 exhibited much higher monomer conversion (72% than FZ (54% and low calculated polymerization shrinkage (2.2 vol%. Final hygroscopic expansions decreased in the order; F2 (3.5 vol% > F1 (1.8 vol% ~ Z250 (1.6 vol% > Gradia (1.0 vol%. BFS and BFM were unaffected by storage medium type. Average BFS / BFM upon 4 weeks immersion reduced from 144 MPa / 8 GPa to 107 MPa / 5 GPa for F1 and 105 MPa / 6 GPa to 82 MPa / 4 GPa for F2. Much of this change was observed in the first week of immersion when water sorption rate was high. Surface apatite layers were incomplete at 1 week, but around 2 and 15 micron thick for F1 and

  13. Condenser design for AMTEC power conversion

    Science.gov (United States)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  14. Role of volume and surface spontaneous parametric down-conversion in the generation of photon pairs in layered media

    Czech Academy of Sciences Publication Activity Database

    Javůrek, D.; Peřina ml., Jan

    2017-01-01

    Roč. 95, č. 4 (2017), s. 1-13, č. článku 043828. ISSN 2469-9926 Institutional support: RVO:68378271 Keywords : surface spontaneous * parametric down-conversion * photon pairs * layered media Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.925, year: 2016

  15. Observation of inner surface of flame-tower type reactor for uranium conversion

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Terai, Takayuki; Umetsu, Hiroshi

    2003-01-01

    A fluorination reactor, which has been used to convert uranium tetrafluoride (UF 4 ) into uranium hexafluoride (UF 6 ), was completed after approximately 6000 hours operation at the uranium conversion facility in Japan. The observation of its inner surface was carried out to understand its corrosive condition and mechanism. The main wall of the reactor is made of Monel Alloy and its operational temperature is approximately 450degC at external surface under gaseous fluorine atmosphere. A sampling was undertaken from the most corrosive part of the reactor wall, and its analysis was carried out to obtain the data for the condition of appearance, thickness, macro and micro structure, etc. The results of observation are as follows: (1) The thickness decreased evenly (average 3.9 mm/year); (2) The chemical composition of corrosive products as coating was mainly nickel fluoride (NiF 2 ), which suggested that the corrosion mechanism could have been caused by the high temperature gas corrosion; (3) The total amount of coating was lower than that of a loss in thickness. For some reason, some of coating would seem to become extinct on the surface of the wall. The deterioration of coating, which formed a protector on the wall due to excess heating of the wall, the sand erosion effect by UF 4 , etc. have contributed to this state of condition. (author)

  16. Conversion of ICRP male reference phantom to polygon-surface phantom

    International Nuclear Information System (INIS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-01-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  17. Corrosion and biofouling on the non-heat-exchanger surfaces of an ocean thermal energy conversion power plant: a survey

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, V.J. (ed.)

    1979-05-01

    Of the many foreseeable problems confronting economical ocean thermal energy conversion operation, two major items are the deterioration of the structural and functional components, which prevents efficient operation, and the biofouling of the surfaces, which adds excess weight to the floating ocean platform. The techniques required for effective long-term control of deterioration and corrosion have been investigated actively for many years, and successful solutions for most situations have been developed. For the most part, these solutions can be directly transferred to the ocean thermal energy conversion plant. The majority of problems in these areas are expected to be associated with scale-up and will require some advanced development due to the immensity of the ocean thermal energy conversion platform. Current antifouling control systems are not effective for long-term fouling prevention. Commercially available antifouling coatings are limited to a 3-year service life in temperate waters, and even shorter in tropical waters. However, underwater cleaning techniques and some fouling-control systems presently being used by conventional power plants may find utility on an ocean thermal energy conversion plant. In addition, some recent major advances in long-term antifouling coatings sponsored by the Navy may be applicable to ocean thermal energy conversion. 132 references.

  18. Superhydrophobic nanofluidic channels for enhanced electrokinetic conversion

    Science.gov (United States)

    Checco, Antonio; Al Hossain, Aktaruzzaman; Rahmani, Amir; Black, Charles; Doerk, Gregory; Colosqui, Carlos

    2017-11-01

    We present current efforts in the development of novel slit nanofluidic channels with superhydrophobic nanostructured surfaces designed to enhance hydrodynamic conductivity and improve selective transport and electrokinetic energy conversion efficiencies (mechanical-electrical energy conversion). The nanochannels are fabricated on silicon wafers using UV lithography, and their internal surface is patterned with conical nanostructures (feature size and spacing 30 nm) defined by block copolymer self-assembly and plasma etching. These nanostructures are rendered superhydrophobic by passivation with a hydrophobic silane monolayer. We experimentally characterize hydrodynamic conductivity, effective zeta potentials, and eletrokinetic flows for the patterned nanochannels, comparing against control channels with bare surfaces. Experimental observations are rationalized using both continuum-based modeling and molecular dynamics simulations. Scientific and technical knowledge produced by this work is particularly relevant for sustainable energy conversion and storage, separation processes and water treatment using nanoporous materials. The ONR Contract # N000141613178 and NSF-CBET award# 1605809.

  19. Surface type conversion of CuInSe2 with H2S plasma exposure: A photoemission investigation

    International Nuclear Information System (INIS)

    Nelson, A.J.; Frigo, S.P.; Rosenberg, R.

    1995-01-01

    Surface type conversion of CuInSe 2 by H 2 S plasma exposure was studied by synchrotron radiation soft x-ray photoemission spectroscopy. The low power H 2 S plasma was generated with a commercial electron cyclotron resonance plasma source using pure H 2 S with the plasma exposure being performed at 400 degree C. In situ photoemission measurements were acquired after each plasma exposure in order to observe changes in the valence band electronic structure as well as changes in the In 4d and Se 3d core lines. The results were correlated in order to relate changes in surface chemistry to the electronic structure. These measurements indicate that the H 2 S plasma exposure type converts the n-type CuInSe 2 surface to a p-type surface at this elevated temperature and that the magnitude of the band bending is 0.5 eV, resulting in a homojunction interface. copyright 1995 American Vacuum Society

  20. Determination of conversion factors and efficiency for GM detectors used in measurements of surface pollution

    International Nuclear Information System (INIS)

    Ayala G, J.; Alvarez R, J.T.

    1999-01-01

    One of the objectives of the Radiation protection, is to observe with the National and as International standardization referring to the ICRP dose limitation system (ICRP 26, ICRP 60). In this work it was treated the problem corresponding about how to determine the conversion factor of cpm/mR/h and the absolute efficiency ε, for a Geiger-Muller equipment with thin window. This equipment is used for the beta particle detection. Thus the correct use of calibration factors and the procedures to convert cpm in Bq is expedited and also to apply the ISO procedure for to evaluate contaminated surfaces. (Author)

  1. Pure and Nb2O5-doped TiO2 amorphous thin films grown by dc magnetron sputtering at room temperature: Surface and photo-induced hydrophilic conversion studies

    International Nuclear Information System (INIS)

    Suchea, M.; Christoulakis, S.; Tudose, I.V.; Vernardou, D.; Lygeraki, M.I.; Anastasiadis, S.H.; Kitsopoulos, T.; Kiriakidis, G.

    2007-01-01

    Photo-induced hydrophilicity of titanium dioxide makes this material one of the most suitable for various coating applications in antifogging mirrors and self-cleaning glasses. The field of functional titanium dioxide coatings is expanding rapidly not only in applications for glass but also in applications for polymer, metal and ceramic materials. The high hydrophilic surface of TiO 2 is interesting for understanding also the basic photon-related surface science of titanium dioxide. In doing so, it is inevitably necessary to understand the relationship between the photoreaction and the surface properties. In this work, photo-induced hydrophilic conversion was evaluated on amorphous pure and niobium oxide-doped titanium dioxide thin films on Corning 1737F glass grown by dc magnetron sputtering technique at room temperature. This study is focused on the influence of the Ar:O ratio during sputtering plasma deposition on thin film surface morphology and subsequent photo-induced hydrophilic conversion results. Structural characterization carried out by X-ray diffraction and atomic force microscopy (AFM) has shown that our films are amorphous and extremely smooth with a surface roughness bellow 1 nm. Contact angle measurements were performed on as-deposited and during/after 10 min UV exposure. We present evidence that the photo-induced hydrophilic conversion of film surface is directly correlated with surface morphology and can be controlled by growth conditions

  2. Conversion Factors for Predicting Unshielded Dose Rates in Shielded Waste

    International Nuclear Information System (INIS)

    Clapham, M.; Seamans Jr, J.V.; Arbon, R.E.

    2009-01-01

    This document describes the methodology developed and used by the Advanced Mixed Waste Treatment Project for determining the activity content and the unshielded surface dose rate for lead lined containers contaminated with transuranic waste. Several methods were investigated: - Direct measurement of the dose rate after removing the shielding. - Use of a MicroShield R derived dose conversion factor, (mRem/hr unshielded )/(mRem/hr shielded ), applied to the measured surface dose rate to estimate the unshielded surface dose rate. - Use of a MicroShield R derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. - Use of an empirically derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. The last approach proved to be the most efficacious by using a combination of nondestructive assay and empirically defined dose rate conversion factors. Empirically derived conversion factors were found to be highly dependent upon the matrix of the waste. Use of conversion factors relied on activity values corrected to address the presence of a lead liner. (authors)

  3. Adhesion and corrosion studies of a lithium based conversion coating film on the 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Castro, M.R.S.; Nogueira, J.C.; Thim, G.P.; Oliveira, M.A.S.

    2004-01-01

    AA2024-T3-aluminum alloy surfaces were coated using non-chromate and chromate conversion coatings. All coatings were painted with the 10P4-2-primer epoxy resin. Independent on the film formation process, films passed on the substrate/conversion coating wet tape adhesion test. However, only the chromate conversion coating passed on the conversion coating/primer epoxy resin adhesion test. Electrochemical corrosion measurements showed that non-chromate conversion coated surfaces present lower corrosion current density, bigger polarization resistance and less negative corrosion potential than chromate conversion coated surfaces

  4. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    Science.gov (United States)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent

  5. Formation of ZnSe/Bi2Se3 QDs by surface cation exchange and high photothermal conversion

    Directory of Open Access Journals (Sweden)

    Guozhi Jia

    2015-08-01

    Full Text Available Water-dispersed core/shell structure ZnSe/Bi2Se3 quantum dots were synthesized by ultrasonicwave-assisted cation exchange reaction. Only surface Zn ion can be replaced by Bi ion in ZnSe quantum dots, which lead to the ultrathin Bi2Se3 shell layer formed. It is significance to find to change the crystal of QDs due to the acting of ultrasonicwave. Cation exchange mechanism and excellent photothermal conversion properties are discussed in detail.

  6. Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers.

    Science.gov (United States)

    Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo

    2017-10-25

    Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.

  7. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  8. Linear mode conversion in a toroidal plasma

    International Nuclear Information System (INIS)

    Hellsten, T.

    1980-05-01

    Linear mode conversion at the perpendicular ion cyclotron resonance has been treated for an axially symmetric toroidal plasma. The mode conversion appears between a fast electromagnetic wave and a slow-quasi electrostatic wave, due to finite electron inertia. The problem reduces to the Orr-Sommerfeld equation where the coefficients determining the reflectron, transmission and conversion are functions of the arc length along a poloidal intersection of the resonance surface. These coefficients can be determined from eigenfunctions of an ordinary differential equation. (author)

  9. IMAGE CONVERSION FOR LASER PYROGRAPHY

    Directory of Open Access Journals (Sweden)

    Adrian PETRU

    2015-12-01

    Full Text Available All previous studies of pyrography have been focussed on colour obtained through modifying the work parameters. This paper analyses colour nuances obtained by laser woodworking by measuring colour changes digitally. The investigated parameter is colour reproduction by laser technology, using different image conversion methods (Halftone Round, Jarvis, and so on. The changes of image reproduction are analysed globally and colour by colour. The results show that the colour nuances are represented to a more and less degree, according to the conversion method selected. To evaluate the aesthetic changes, CIEL*a*b* colour measurements were applied. The results show that laser burning on wood surfaces has a great influence on wood colour. These findings will be useful to develop innovative design possibilities for wood surfaces for furniture and other products.

  10. Electrical conductivity of chromate conversion coating on electrodeposited zinc

    International Nuclear Information System (INIS)

    Tencer, Michal

    2006-01-01

    For certain applications of galvanized steel protected with conversion coatings it is important that the surface is electrically conductive. This is especially important with mating surfaces for electromagnetic compatibility. This paper addresses electrical conductivity of chromate conversion coatings. A cross-matrix study using different zinc plating techniques by different labs showed that the main deciding factor is the type of zinc-plating bath used rather than the subsequent chromating process. Thus, chromated zinc plate electrodeposited from cyanide baths is non-conductive while that from alkaline (non-cyanide) and acid baths is conductive, even though the plate from all the bath types is conductive before conversion coating. The results correlate well with the microscopic structure of the surfaces as observed with scanning electron microscopy (SEM) and could be further corroborated and rationalized using EDX and Auger spectroscopies

  11. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  12. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  13. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    International Nuclear Information System (INIS)

    Liu, Shijie; Shao, Chen; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao

    2015-01-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml"−"1, compared with the free Ce6 value of 29.85 μg ml"−"1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects. (paper)

  14. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  15. Zr-based conversion coatings for multi-metal substrates

    NARCIS (Netherlands)

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of

  16. Is the bulk mode conversion important in high density helicon plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Isayama, Shogo; Hada, Tohru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Kohen, Kasuga, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tanikawa, Takao [Research Institute of Science and Technology, Tokai University 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-06-15

    In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included in the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.

  17. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1987-01-01

    Dose-rate conversion factors have been calculated for external exposure of the skin from electrons emitted by sources that are deposited uniformly on the body surface. The dose-rate factors are obtained from electron scaled point kernels developed by Berger. The dose-rate factors are calculated at depths of 4, 8, and 40 mg cm-2 below the body surface as recommended by Whitton, and at a depth of 7 mg cm-2 as recommended in ICRP Publication 26 (ICRP77). The dependence of the dose-rate factors at selected depths on the energy of the emitted electrons is displayed. The dose-rate factors for selected radionuclides of potential importance in radiological assessments are tabulated

  18. Effect of cerium conversion of A3xx.x/SiCp composites surfaces on salt fog corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Viejo, F.; Carboneras, M.; Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2004-07-01

    A study of the effect of cerium conversion treatment on surface of four composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) on their salt fog corrosion behaviour was performed. The conversion treatment was carried out using thermal activated full immersion in Ce(III) aqueous solutions. The matrix of A360/SiC/xxp composites is virtually free of Cu while the A380/SiC/xxp matrix contains 1.39-1.44 wt.%Ni and 3.13-3.45 wt.%Cu. Conversion performance was evaluated in neutral salt fog environment according to ASTM B117. The kinetics of the corrosion process were studied on the basis of gravimetric tests. The influence of SiCp proportion and matrix composition was evaluated and the nature of corrosion products was analysed by SEM and low angle XRD before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The Ce(III) precipitates on the cathodic sites, mainly on the intermetallic compounds, decreased both the cathodic current density and the corrosion rate of the composites tested. The presence of Cu in the matrix composition increased the corrosion rate, due to the galvanic couple Al/Cu. (authors)

  19. Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors

    Institute of Scientific and Technical Information of China (English)

    Yen-Chi Chen; Teng-Ming Chen

    2011-01-01

    The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle,which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response.In this study,the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the ncar-infiared spectral range.The short circuit current (Isc),open circuit voltage (Voc),and conversion efficiency (η) of spectral conversion cells were measured.Preliminary experimental results revealed that the light conversion efficiency of a 1.5%-2.7% increase in Si-based cell was achieved.

  20. Conversion of a Surface Model of a Structure of Interest into a Volume Model for Medical Image Retrieval

    Directory of Open Access Journals (Sweden)

    Sarmad ISTEPHAN

    2015-06-01

    Full Text Available Volumetric medical image datasets contain vital information for noninvasive diagnosis, treatment planning and prognosis. However, direct and unlimited query of such datasets is hindered due to the unstructured nature of the imaging data. This study is a step towards the unlimited query of medical image datasets by focusing on specific Structures of Interest (SOI. A requirement in achieving this objective is having both the surface and volume models of the SOI. However, typically, only the surface model is available. Therefore, this study focuses on creating a fast method to convert a surface model to a volume model. Three methods (1D, 2D and 3D are proposed and evaluated using simulated and real data of Deep Perisylvian Area (DPSA within the human brain. The 1D method takes 80 msec for DPSA model; about 4 times faster than 2D method and 7.4 fold faster than 3D method, with over 97% accuracy. The proposed 1D method is feasible for surface to volume conversion in computer aided diagnosis, treatment planning and prognosis systems containing large amounts of unstructured medical images.

  1. Laser-accelerated proton conversion efficiency thickness scaling

    International Nuclear Information System (INIS)

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-01-01

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10 19 W/cm 2 Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 μm, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 μm, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH 3 on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  2. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  3. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  4. Friction Modifier Using Adherent Metallic Multilayered or Mixed Element Layer Conversion Coatings

    Science.gov (United States)

    Schramm, Harry F. (Inventor); Defalco, Francis G. (Inventor); Starks, Lloyd L., Sr. (Inventor)

    2013-01-01

    A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, and one or more non-alkaline metals and/or one or more metalloids. The process comprises forming an aqueous solution of water, phosphoric acid or sulfuric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals and/or one or more metalloids. The aqueous solution forms an anti-friction multilayer conversion and/or mixed element coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly without the use of applied external electromotive force, or as an additive in lubricating fluids.

  5. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  6. The Non-Ergodic Nature of Internal Conversion

    DEFF Research Database (Denmark)

    Sølling, Theis I.; Kuhlman, Thomas Scheby; Stephansen, Anne B.

    2014-01-01

    The absorption of light by molecules can induce ultrafast dynamics and coupling of electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear motion—a concept of central importance in many aspects...... of chemical reaction dynamics. This Minireview focuses on the non-ergodic nature of internal conversion, that is, on the concept that the nuclear dynamics only sample a reduced phase space, potentially resulting in localization of the dynamics in real space. A series of results that highlight...... it takes to reach it. 2) Localization of energy into a single reactive mode, which is dictated by the internal conversion process. 3) Initiation of the internal conversion by activation of a single complex motion, which then specifically couples to a reactive mode. 4) Nonstatistical internal conversion...

  7. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, Alexandre; Monnier, Paul; Beaudoin, Grégoire; Sagnes, Isabelle; Raj, Rama [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Lenglé, Kevin; Gay, Mathilde; Bramerie, Laurent [Université Européenne de Bretagne (UEB), 5 Boulevard Laënnec, 35000 Rennes (France); CNRS-Foton Laboratory (UMR 6082), Enssat, BP 80518, 22305 Lannion Cedex (France); Braive, Rémy; Raineri, Fabrice, E-mail: fabrice.raineri@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Université Paris Diderot, Sorbonne Paris Cité, 75207 Paris Cedex 13 (France)

    2014-01-06

    Ultrafast switching with low energies is demonstrated using InP photonic crystal nanocavities embedding InGaAs surface quantum wells heterogeneously integrated to a silicon on insulator waveguide circuitry. Thanks to the engineered enhancement of surface non radiative recombination of carriers, switching time is obtained to be as fast as 10 ps. These hybrid nanostructures are shown to be capable of achieving systems level performance by demonstrating error free wavelength conversion at 10 Gbit/s with 6 mW switching powers.

  8. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  9. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  10. Analytical solutions for non-linear conversion of a porous solid particle in a gas–I. Isothermal conversion

    NARCIS (Netherlands)

    Brem, Gerrit; Brouwers, J.J.H.

    1990-01-01

    Analytical description are presented for non-linear heterogeneous conversion of a porous solid particle reacting with a surrounding gas. Account has been taken of a reaction rate of general order with respect to gas concentration, intrinsic reaction surface area and pore diffusion, which change with

  11. WO3 and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms.

    Science.gov (United States)

    Johnson, Nicholas R; George, Steven M

    2017-10-04

    The thermal atomic layer etching (ALE) of WO 3 and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO 3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl 3 ) and hydrogen fluoride (HF). BCl 3 converts the WO 3 surface to a B 2 O 3 layer while forming volatile WO x Cl y products. Subsequently, HF spontaneously etches the B 2 O 3 layer producing volatile BF 3 and H 2 O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl 3 and HF reactions were self-limiting versus exposure. The WO 3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl 3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO 3 layer using O 2 /O 3 . Subsequently, the WO 3 layer is etched with BCl 3 and HF. SE could simultaneously monitor the W and WO 3 thicknesses and conversion of W to WO 3 . SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl 3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

  12. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  13. Study on carbon dioxide conversion by radiation

    International Nuclear Information System (INIS)

    Cho, Young Hyun; Park, Geun Il; Cho, Il Hoon; Choi, Sang Do; Hong, Kwang Hee; Lee, Chang Woo

    1999-09-01

    This study was carried out to investigate the synergistic effects on the CO 2 conversion by the application of semiconductor in the field of gamma-ray. Gamma-ray irradiation was performed to examine the effects of semiconductor application on CO 2 conversion in water and the formation of organic material from carbonate solution. From experimental results it is clear that the supplication of semiconductor in the field of gamma-ray increases the efficiency for CO 2 conversion to organic matter. Based on the obtained experimental results it is obvious that the synergistic effects of semiconductor materials in the gamma-ray field leads to increase of the CO 2 conversion yield to organic matter up to 50 percent compared to the gamma-ray irradiation. The way of achieving higher activity is due to the catalytic action of semiconductor by gamma-ray irradiation. Zr-doped TiO 2 catalyst prepared by sol-gel method exhibits the higher efficiency for CO 2 conversion in aqueous solution and carbonate containing solution. This effect of Zr-doping can be explained by the formation of additional defects in surface of TiO 2 film. (author)

  14. The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys

    International Nuclear Information System (INIS)

    Chidambaram, Devicharan; Clayton, Clive R.; Halada, Gary P.

    2006-01-01

    Aluminum based surfaces are routinely coated with a chromate based layer that provides unparalleled corrosion protection. Widely used conversion coating treatment formulations contain hexafluorozirconate as a major constituent besides chromate, ferricyanide, fluoride, and fluoborate. The function of hexafluorozirconate is the subject of this study as its function is still largely unknown. Hydrophobicity, surface morphology, and the chemistry of the surface, resulting from treatment with hexafluorozirconate, were studied using contact angle measurements, scanning electron microscopy, and energy dispersive spectroscopy, respectively. X-ray photoelectron spectroscopy was extensively utilized to determine the chemistry of the surface resulting from the hexafluorozirconate pretreatment. Our results indicate that fluoride ion containing hexafluorozirconate complex does not attack the oxide film in a manner that uncomplexed simple fluoride ion does. Hexafluorozirconate is involved in the formation of an Al-Zr-O-F based hydrated layer that increases the hydrophilicity of the surface, activates the surface, and lowers the corrosion resistance. These factors enhance the interaction of chromate with the alloy surface to result in the formation of a uniform conversion coating. Based on these results, a new model has been proposed for the formation of chromate conversion coatings

  15. External dose conversion factor from canal water

    International Nuclear Information System (INIS)

    Bhargava, Pradeep; Chitra, S.; Mhatre, Arti S.; Singh, Kapil Deo

    2016-01-01

    External dose needs to be estimated for the radioactivity discharged into the canal, as it constitutes one of the pathways of exposure to the public. Two activities are considered here: i) a walk along the bank of the canal ii) and the walk on the bridge. A concentration of 1 Bq/l is assumed here for the gross beta activity for the estimation of the dose conversion factor. A canal of width 14.39 m and the depth of 2.5 m is considered for this study. Length of the canal is taken to be infinite. Canal side wall is assumed to be the 25 cm thick concrete. Two points are selected, one on the bank, and the second on a bridge 1 m above the top surface of canal water. Dose Conversion factors for the person moving on the Bridge (at one meter above the water surface) and standing on bank of canal is estimated by using the QAD CG code for 137 Cs. Dose conversion factors for the location mentioned above are found to be 1.11E-10 Sv/hr/(Bq/l) and 1.55 E-11 Sv/hr/(Bq/l) for bridge and bank of canal respectively. (author)

  16. Influences of bulk and surface recombinations on the power conversion efficiency of perovskite solar cells

    International Nuclear Information System (INIS)

    Xie, Ziang; Sun, Shuren; Yan, Yu; Wang, Wei; Qin, Laixiang; Qin, G G

    2016-01-01

    For a novel kind of solar cell (SC) material, it is critical to estimate how far the power conversion efficiencies (PCEs) of the SCs made of it can go. In 2010 Han and Chen proposed the equation for the ultimate efficiency of SCs without considering the carrier recombination η un . η un is capable of estimating the theoretical upper limits of the SC efficiencies and has attracted much attention. However, carrier recombination, which is one of the key factors influencing the PCEs of the SCs, is ignored in the equation for η un . In this paper, we develop a novel equation to calculate the ultimate efficiency for the SCs, η ur , which considers both the bulk and the surface carrier recombinations. The novel equation for η ur can estimate how much the bulk and the surface carrier recombinations influence the PCEs of the SCs. Moreover, with η ur we can estimate how much PCE improvement space can be gained only by reducing the influence of the carrier recombination to the least. The perovskite organometal trihalide SCs have attracted tremendous attention lately. For the planar CH 3 NH 3 PbI 3 SCs, in the material depth range from 31.25–2000 nm, we apply the equation of η ur to investigate how the bulk and the surface carrier recombinations affect PCE. From a typically reported PCE of 15% for the planar CH 3 NH 3 PbI 3 SC, using the equation of η ur , it is concluded that by reducing the influence of carrier recombination to the least the improvement of PCE is in the range of 17–30%. (paper)

  17. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode

    International Nuclear Information System (INIS)

    Jones, B.; Efthimion, P.C.; Taylor, G.; Munsat, T.; Wilson, J.R.; Hosea, J.C.; Kaita, R.; Majeski, R.; Maingi, R.; Shiraiwa, S.; Spaleta, J.

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  18. Anomalous ortho-para conversion of solid hydrogen in constrained geometries

    International Nuclear Information System (INIS)

    Rall, M.; Brison, J.P.; Sullivan, N.S.

    1991-01-01

    Using cw NMR techniques, we have measured the ortho-para conversion of solid hydrogen constrained to the interior of the molecular cages of zeolite. The conversion observed in the constrained geometry is very different from that of bulk solid hydrogen. Two distinct conversion rates were observed for short and long times. An apparently bimolecular conversion rate of 0.43% h -1 (one-fourth of the bulk value) dominates during the first 500 h, and the rate then increases to 2.2% h -1 . The initial slow rate is explained in terms of a reduced number of nearest neighbors and possible wall effects, and the fast rate is attributed to the formation of small ortho-H 2 Rclusters at later times. Surface effects due to magnetic impurities do not appear to determine the conversion rate in the samples studied

  19. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    Aluminium and its alloys are widely used in aerospace industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further be converted or transformed...... into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium is strictly...... regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms of aluminium oxide (γ-AlO(OH) , Al(OH)3...

  20. Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Yang Yuyun; Liu Erbao; Jin Guo; Zhong Jinggao; Li Qingfen

    2011-01-01

    In this paper, a non-toxic Ce-based conversion coating was obtained on the surface of bio-medical AZ31 magnesium alloys. The micro-morphology of the coating prepared with optimal technical parameters and immersed in physiological solution (Hank's solution) in different time was observed by scanning electron microscopy (SEM), composition of the cerium conversion coating and corrosion products in Hank's solution were characterized by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), respectively. In addition, the corrosion property in Hank's solution was studied by electrochemical experiment and immersion test. The results show that the dense Ce-based conversion coating is obtained on the surface of AZ31 magnesium alloys in optimal technical parameters and the conversion coating consists of a mass of trivalent and tetravalent cerium oxides. The cerium conversion coating can provide obvious protection of magnesium alloys and can effectively reduce the degradation speed in Hank's solution. Also the degradation products have little influence on human body.

  1. Front Surface Tandem Filters using Sapphire (Al2O3) Substrates for Spectral Control in thermophotovoltaic Energy Conversion Systems

    International Nuclear Information System (INIS)

    T Rahmlow, Jr.; J Lazo-Wasem; E Gratrix; P Fourspring; D DePoy

    2005-01-01

    Front surface filters provide an effective means of improving thermophotovoltaic (TPV) system efficiency through spectral control of incident radiant energy. A front surface filter reflects the below band gap photons that can not be converted by the TPV cell back towards the high temperature radiator and allows convertible above band gap photons to pass through the filter into the TPV cell for conversion to electricity. The best spectral control efficiency to date has been demonstrated by front surface, tandem filters that combine an interference filter and an InPAs layer (plasma filter) in series. The InPAs material is a highly doped, epitaxially grown layer on an InP substrate. These tandem filter designs have been fabricated with energy and angle weighted spectral efficiencies of 76% for TPV cells with a 2.08(micro)m (0.6eV) band gap [1]. An alternative to the InPAs layer on an InP substrate is an Al 2 O 3 (sapphire) substrate. The use of Al 2 O 3 may increase transmission of above band gap photons, increase the mechanical strength of the tandem filter, and lower the cost of the tandem filter, all at the expense of lower spectral efficiency. This study presents design and fabrication results for front surface tandem filters that use an Al 2 O 3 substrate for 2.08(micro)m band gap TPV cells

  2. Estimates of external dose-rate conversion factors and internal dose conversion factors for selected radionuclides released from fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu; Togawa, Orihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-11-01

    This report provides a tabulation of both external dose-rate conversion factors and internal dose conversion factors using radioactive decay data in the updated Evaluated Nuclear Structure Data File (ENSDF) for selected 26 radionuclides and all their daughter radionuclides of potential importance in safety assessments of fusion facilities. The external dose-rate conversion factors for 21 target organs are tabulated for three exposure modes that are immersion in contaminated air, irradiation at a height of 1 m above a contaminated ground surface and immersion contaminated water. For internal exposure, committed dose equivalents, based on the methodology of ICRP Publication 30, in the same target organs per intake of unit activity are given for the inhalation and ingestion exposure pathways. The data presented here is intended to be generally used for safety assessments of fusion reactors. Comparisons of external effective dose-rate conversion factors and committed effective dose equivalents are made with the previous data from the independent data bases to provide quality assurance on our calculated results. There is generally good agreement among data from the independent data bases. The differences in the values of both effective dose-rate and dose conversion factors appeared are primarily due to differences in calculational methodology, the use of different radioactive decay data, and compilation errors. (author)

  3. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    International Nuclear Information System (INIS)

    Wang Guixiang; Zhang Milin; Wu Ruizhi

    2012-01-01

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  4. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guixiang, E-mail: wgx0357@126.com [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang Milin; Wu Ruizhi [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-01-15

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  5. Environmental monitoring handbook for coal conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; DeCicco, S.G. (eds.)

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impacts during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.

  6. Derivation of pulse height to exposure rate conversion functions for aerial radiological surveys

    International Nuclear Information System (INIS)

    Artuso, J.F.

    1985-01-01

    A method is described for deriving conversion functions that can be used to convert pulse height spectra taken at altitude to the exposure rate at the 1-m level. An integral equation is set up which involves the integration of a calculated pulse height spectrum multiplied by an unknown conversion function and then set equal to the exposure rate at ground level. This equation is then solved for the conversion function by assuming as a solution a three-term polynomial. Conversion functions have been derived for various source distributions, including surface, uniform, and exponentially distributed sources. These conversion functions are independent of source energy, which means that a conversion can be made without any knowledge of the isotopic content of the source. In the case of a uniform distribution, these conversion functions provide conversions that agree to within 10% with ground truth measurements

  7. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode; TOPICAL

    International Nuclear Information System (INIS)

    B. Jones; P.C. Efthimion; G. Taylor; T. Munsat; J.R. Wilson; J.C. Hosea; R. Kaita; R. Majeski; R. Maingi; S. Shiraiwa; J. Spaleta

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  8. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  9. Unconventional fluoride conversion coating preparation and characterization

    Czech Academy of Sciences Publication Activity Database

    Drábiková, J.; Fintová, Stanislava; Tkacz, J.; Doležal, P.; Wasserbauer, J.

    2017-01-01

    Roč. 64, č. 6 (2017), s. 613-619 ISSN 0003-5599 Institutional support: RVO:68081723 Keywords : fluoride conversion coating * magnesium * corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 0.364, year: 2016 http://www.emeraldinsight.com/doi/abs/10.1108/ACMM-02-2017-1757

  10. Insight into the mechanism of methanol assistance with syngas conversion over partially hydroxylated γ-Al2O3(110D) surface in slurry bed.

    Science.gov (United States)

    Bai, Bing; Bai, Hui; Cao, Hao-Jie; Gao, Zhi-Hua; Zuo, Zhi-Jun; Huang, Wei

    2018-04-27

    Despite numerous studies devoted to the various properties of γ-Al2O3, the explorations of its catalytic activity remain scarce. In this study, density functional theory calculations are performed to study the elementary adsorption and reaction mechanisms for syngas conversion on partially hydroxylated γ-Al2O3(110D) surface in liquid paraffin. It is found that the partially hydroxylated γ-Al2O3(110D) surface with the hydroxyl coverage of 8.9 OH nm-2 is formed by two dissociative adsorptions of H2O on the dry γ-Al2O3(110D) surface. The hydroxyl coverage conditions play a key role in determining the dominant reaction mechanism on account of the existence of strong hydrogen bonds. The preferential pathway for syngas conversion with assistance of methanol over the partially hydroxylated γ-Al2O3(110D) surface in liquid paraffin has been proven to be CH3OH → CH3O + H → CH3 + OH, CH3 + CO → CH3CO. C2H5OH is then formed by successive hydrogenation via the pathway CH3CO + 3H → CH3CHO + 2H → CH3CH2O + H → C2H5OH. Here, CH3CHO formation by CH3CO hydrogenation is not inhibited. Actually, with the assistance of partially hydroxylated γ-Al2O3, CH3CHO has been synthesized with high selectivity in our previous experiment by the reaction of methanol and syngas, which provides favorable evidence for our results. The rate-limiting step is the formation of CH3O from CH3OH dehydrogenation with an activation barrier of 122.2 kJ mol-1. Moreover, the reaction barrier of CO insertion into the adsorbed CH3 group is at least 89.4 kJ mol-1, lower than those of CH4, C2H6, and CH3OCH3 formations. ADCH charge and ESP analyses indicate that the typical (Al, O) Lewis acid-base pair may have a significant effect upon the initial C-C chain formation. Thus, the present study provides a new approach for the rational tailoring and designing of new catalysts with superior reactivity involved in syngas conversion.

  11. Dedicated detectors for surface studies by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Bibicu, I.; Rogalski, M.S.; Nicolescu, G.

    2001-01-01

    Moessbauer spectroscopy is a nuclear resonance method largely utilized in solid state studies. Following resonant nuclear absorption, gamma radiations, conversion X-rays, conversion or Auger electrons are emitted. By detection of gamma radiations information about the sample as a whole are obtained while by detection of electrons or X radiation one obtains data on the surface layer. Our laboratory was among the firsts to produce and use flow gas proportional detectors for surface studies by Moessbauer spectroscopy. Four types of detectors were devised: - detectors for electron detection (90% He + 10% CH 4 ); - detectors for conversion X-ray detection (90% Ar + 10% CH 4 ); - detectors for electrons or internal conversion X rays; - detectors for simultaneous detection of electrons and conversion X rays emitted from the same source. All detectors allow simultaneous Moessbauer measurements both for surface and volume for a given sample. Details of construction are presented for the four types of detectors

  12. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rare earth conversion coating on Mg-8.5Li alloys

    International Nuclear Information System (INIS)

    Yang Xiaowei; Wang Guixiang; Dong Guojun; Gong Fan; Zhang Milin

    2009-01-01

    The conversion coating formed by immersion in a solution containing rare earth salt on Mg-8.5Li alloy was studied and the corrosion resistance was evaluated as well. The surface morphology was observed by scanning electron microscopy (SEM), and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). The corrosion behaviors of Mg-8.5Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves, electrochemical impedance spectra (EIS) and immersion tests. The experimental results indicated that the coating with cracked morphology was homogeneous. It was mainly composed of La 2 O 3 , CeO 2 , Mn 2 O 3 and MnO 2 as detected by XPS. The results of electrochemical measurements and immersion tests revealed that the rare earth conversion coating possessed better corrosion resistance than bare alloy and chromate conversion coating.

  14. Analytical solutions for non-linear conversion of a porous solid particle in a gas–II. Non-isothermal conversion and numerical verification

    NARCIS (Netherlands)

    Brem, Gerrit; Brouwers, J.J.H.

    1990-01-01

    In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid

  15. Analytical solutions for non-linear conversion of a porous solid particle in a gas : II. non-isothermal conversion and numerical verification

    NARCIS (Netherlands)

    Brem, G.; Brouwers, J.J.H.

    1990-01-01

    In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid

  16. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  17. Sexy gene conversions: locating gene conversions on the X-chromosome.

    Science.gov (United States)

    Lawson, Mark J; Zhang, Liqing

    2009-08-01

    Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.

  18. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corporation

    Energy Technology Data Exchange (ETDEWEB)

    EJ Brown; PF Baldasaro; SR Burger; LR Danielson; DM DePoy; JM Dolatowski; PM Fourspring; GJ Nichols; WF Topper; TD Rahmlow

    2004-07-29

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photocells which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. Our development efforts have concentrated on flat-plate geometries with greybody radiators, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match cell performance. Recently, we discontinued development of GaInAsSb quaternary cell semiconductor material in favor of ternary GaInAs material. In our last publication (Ref. 1), the authors reported conversion efficiencies of about 20% (radiator 950 C, cells 22 C) for small modules (1-4 cm{sup 2}) tested in a prototypic cavity test environment. Recently, we have achieved measured conversion efficiencies of about 12.5% in larger ({approx}100 cm{sup 2}) test arrays. The efficiency reduction in the larger arrays was probably due to quality and variation of the cells as well as non-uniform illumination from the hot radiator to the cold plate. Modules in these tests used GaInAsSb cells with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and the rationale for our technical decisions. It also describes the measurement techniques used to record these efficiencies.

  19. Titanium composite conversion coating formation on CRS In the presence of Mo and Ni ions: Electrochemical and microstructure characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Eivaz Mohammadloo, H.; Sarabi, A.A., E-mail: Sarabi@aut.ac.ir

    2016-11-30

    Highlights: • Eco-friendly protective thin films for covering the CRS substrates were presented. • Comprehensive analyses were performed to evaluate the surface characteristics. • Promising approach for the surface modification of CRS substrate by Ti-based conversion coatings. - Abstract: There have been an increasing interest in finding a replacement for the chromating process due to environmental and health concerns. Hence, in this study Chrome-free chemical conversion coatings were deposited on the surface of cold-rolled steel (CRS) on the basis of Titanium (TiCC), Titanium-Nickel (TiNiCC) and titanium-molybdate (TiMoCC) based conversion coating solutions. The surface characterization was performed by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measuring device. Also, the corrosion behavior was assessed by the means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. FESEM and AFM study show that the TiNiCC is denser and more uniform than that TiCC and TiMoCC since, TiMoCC conversion coating presents network feature, and there were abundant micro-cracks on the surface of the coating. XPS results confirmed the precipitation of Ti and Ni oxide/hydroxide, Mn dioxide/trioxide on the surface of different Ti-based conversion coatings. Electrochemical results revealed that all Ti-based conversion coatings have better anti-corrosion properties than bare CRS. Moreover, TiNiCC treatment inhibited the corrosion of CRS to a significant degree (polarization resistance (R{sub p}) = 5510 Ω cm{sup 2}) in comparison with TiCC (R{sub p} = 2705 Ω cm{sup 2}) and TiMoCC (R{sub p} = 805 Ω cm{sup 2}).

  20. Adaptability of solar energy conversion systems on ships

    Science.gov (United States)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  1. The Role of Conversation Policy in Carrying Out Agent Conversations

    International Nuclear Information System (INIS)

    Link, Hamilton E.; Phillips, Laurence R.

    1999-01-01

    Structured conversation diagrams, or conversation specifications, allow agents to have predictable interactions and achieve predefined information-based goals, but they lack the flexibility needed to function robustly in an unpredictable environment. We propose a mechanism that combines a typical conversation structure with a separately established policy to generate an actual conversation. The word ''policy'' connotes a high-level direction external to a specific planned interaction with the environment. Policies, which describe acceptable procedures and influence decisions, can be applied to broad sets of activity. Based on their observation of issues related to a policy, agents may dynamically adjust their communication patterns. The policy object describes limitations, constraints, and requirements that may affect the conversation in certain circumstances. Using this new mechanism of interaction simplifies the description of individual conversations and allows domain-specific issues to be brought to bear more easily during agent communication. By following the behavior of the conversation specification when possible and deferring to the policy to derive behavior in exceptional circumstances, an agent is able to function predictably under normal situations and still act rationally in abnormal situations. Different conversation policies applied to a given conversation specification can change the nature of the interaction without changing the specification

  2. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO₂, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C₁₂{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO₂, allene, C₂–C₆ olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water

  3. The prediction of BRDFs from surface profile measurements

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.; Leonard, T.A.

    1989-01-01

    This paper discusses methods of predicting the BRDF of smooth surfaces from profile measurements of their surface finish. The conversion of optical profile data to the BRDF at the same wavelength is essentially independent of scattering models, while the conversion of mechanical measurements, and wavelength scaling in general, are model dependent. Procedures are illustrated for several surfaces, including two from the recent HeNe BRDF round robin, and results are compared with measured data. Reasonable agreement is found except for surfaces which involve significant scattering from isolated surface defects which are poorly sampled in the profile data

  4. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide.

    Science.gov (United States)

    Hirakawa, Hiroaki; Hashimoto, Masaki; Shiraishi, Yasuhiro; Hirai, Takayuki

    2017-08-09

    Ammonia (NH 3 ) is an essential chemical in modern society. It is currently manufactured by the Haber-Bosch process using H 2 and N 2 under extremely high-pressure (>200 bar) and high-temperature (>673 K) conditions. Photocatalytic NH 3 production from water and N 2 at atmospheric pressure and room temperature is ideal. Several semiconductor photocatalysts have been proposed, but all suffer from low efficiency. Here we report that a commercially available TiO 2 with a large number of surface oxygen vacancies, when photoirradiated by UV light in pure water with N 2 , successfully produces NH 3 . The active sites for N 2 reduction are the Ti 3+ species on the oxygen vacancies. These species act as adsorption sites for N 2 and trapping sites for the photoformed conduction band electrons. These properties therefore promote efficient reduction of N 2 to NH 3 . The solar-to-chemical energy conversion efficiency is 0.02%, which is the highest efficiency among the early reported photocatalytic systems. This noble-metal-free TiO 2 system therefore shows a potential as a new artificial photosynthesis for green NH 3 production.

  5. Surface tension mediated conversion of light to work

    Science.gov (United States)

    Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J

    2014-12-02

    Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.

  6. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism

    International Nuclear Information System (INIS)

    Lostak, Thomas; Maljusch, Artjom; Klink, Björn; Krebs, Stefan; Kimpel, Matthias; Flock, Jörg; Schulz, Stephan; Schuhmann, Wolfgang

    2014-01-01

    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H 2 ZrF 6 ) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed

  7. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  8. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  9. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  10. Influence of acids on the zinc conversion process with molybdate

    International Nuclear Information System (INIS)

    Silva, Cosmelina Goncalves da; Margarit-Mattos, Isabel Cristina Pereira; Mattos, Oscar Rosa; Barcia, Oswaldo Esteves

    2010-01-01

    Molybdate conversion coatings have been evaluated as possible alternative to the chromate ones. The acid used in the pH adjustment of the conversion baths exerts great influence on the anti corrosive properties of these coatings. The aim of this work was to verify the role of phosphoric and sulfuric acids on the zinc conversion process with molybdate. The techniques used were: chronopotentiometry, electrochemical impedance spectroscopy (EIS) and interfacial pH measurements. The surface characterization was made with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The chronopotentiometry results have shown that the influence of the variation of the electrode rotation speed on the conversion process is acid-dependent: the acid influences the mass transport during the conversion. The EIS measures have suggested that the conversion mechanism does not change with the acid, being the coatings thicker when H_2SO_4 is used than the obtained with H_3PO_4. The pH interfacial results have shown a pH increase more significant for the bath with H_2SO_4, indicating a fastest kinetic of zinc dissolution. It was identified the presence of Mo in all analyzed coatings, for both acids, and P in those obtained with H_3PO_4. (author)

  11. Stannate conversion coatings on Mg-8Li alloy

    International Nuclear Information System (INIS)

    Yang Lihui; Zhang Milin; Li Junqing; Yu Xiang; Niu Zhongyi

    2009-01-01

    The stannate conversion coatings (SnCC) on Mg-8Li alloy were investigated by simple immersion method. The surface morphology and composition were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction spectroscopy (XRD) techniques. The corrosion resistance was assessed by means of potentiodynamic polarization measurements and electrochemical impedance spectra (EIS). The effects of time of a stannate bath on the quality of stannate conversion coatings were investigated by SEM and EIS. It was found that the coating particles were mainly composed of hemispherical particles MgSnO 3 .3H 2 O. A comparison of results revealed the coating treated for 60 min exhibited the most uniform, dense and corrosion-resistant

  12. Discourse analysis: Conversational analysis of the internal conversation in Oracle Corporation Malaysia

    Directory of Open Access Journals (Sweden)

    Marwa Marwa

    2017-07-01

    Full Text Available This study highlights the internal conversation which takes place in Oracle CorporationMalaysia. Through the study, it will be shown how conversational analysis is used toanalyze the transcription of a telephone conversation between Oracle staffs. The analysisof the transcriptions will apply a few basic concepts of conversational analysis; turntakingorganization, and the adjacency pair. The objective of the study is to find out howthe internal conversations takes place by focusing on the conversation itself, that is, theconversational structures spontaneously produced by people during talk ranging fromturn-taking strategies, how topics are introduced, conversation closings and so on. Bylooking in detail at such talk, we can gain a detailed understanding of how the staffs seethemselves in relation to the company that influence their daily lives.Keywords: conversational analysis, turn-taking, adjacency pairs

  13. Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector

    Science.gov (United States)

    Olawole, Olukunle C.; De, Dilip Kumar

    2018-01-01

    Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.

  14. Adhesion of epoxy primer to hydrotalcite conversion coated AA2024

    Science.gov (United States)

    Leggat, Robert Benton, III

    Hydrotalcite-based (HT) conversion coatings are being developed as an environmentally benign alternative to chromate conversion coatings (CCC). Accelerated exposure tests were conducted on epoxy primed, HT-modified AA2024 to gauge service performance. HT-based conversion coatings did not perform as well as the CCC when used with an epoxy primer. The current HT chemistries are optimized for stand-alone corrosion protection, however additional research into the primer/HT interactions is necessary before they can be implemented within a coating scheme. The relative contribution of mechanical and physico-chemical interactions in controlling adhesion has been investigated in this study. Practical adhesion tests were used to assess the dry and wet bond strength of epoxy primer on HT coatings using the pull-off tensile strength (POTS) as the figure of merit. The practical adhesion of HT coated samples generally fell between that observed for the CCC and bare AA2024. Laboratory testing was done to assess the physical and chemical properties of HT coatings. Contact angle measurements were performed using powders representative of different HT chemistries to evaluate the dispersive and acid-base character of the surface. The wet POTS correlated with the electrodynamic (dipole + dispersive) parameter of the surface tension. The HT surfaces were found to be predominantly basic. Given the basicity of epoxy, these results indicate that increasing the acidic character of HT coatings may increase the adhesion performance. This was supported by electrokinetic measurements in which the dry POTS was found to increase with decreasing conversion coating iso-electric point. The correlations with the dry and wet state adhesion are interpreted as indicating that dry state adhesion is optimized by minimizing unfavorable polar interactions between the basic epoxy and HT interfaces. Wet state adhesion, where polar interactions are disrupted, is dictated by non-polar bonding. FTIR

  15. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  16. Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO in the atmosphere?

    Directory of Open Access Journals (Sweden)

    R. Bröske

    2003-01-01

    Full Text Available The heterogeneous conversion of NO2 on different secondary organic aerosols (SOA was investigated with the focus on a possible formation of nitrous acid (HONO. In one set of experiments different organic aerosols were produced in the reactions of O3 with alpha-pinene, limonene or catechol and OH radicals with toluene or limonene, respectively. The aerosols were sampled on filters and exposed to humidified NO2  mixtures under atmospheric conditions. The estimated upper limits for the uptake coefficients of NO2  and the reactive uptake coefficients NO2  -> HONO are in the range of 10-6 and 10-7, respectively. The integrated HONO formation for 1 h reaction time was 13 cm-2 geometrical surface and 17 g-1 particle mass. In a second set of experiments the conversion of NO2 into HONO in the presence of organic particles was carried out in an aerosol flow tube under atmospheric conditions. In this case the aerosols were produced in the reaction of O3 with beta-pinene, limonene or catechol, respectively. The upper limits for the reactive uptake coefficients NO2 -> HONO were in the range of 7 x 10-7 - 9 x 10-6. The results from the present study show that heterogeneous formation of nitrous acid on secondary organic aerosols (SOA is unimportant for the atmosphere.

  17. A density functional theory study on the conversion of ethylene to carbon monomer on PdAu(1 0 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minhua; Yang, Bing [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The successive decomposition of ethylene on PdAu(1 0 0) was studied with DFT method. • The C−H, C−C bond scission and a hydrogen-shift process were investigated. • The alloying of Au with Pd affects the studied reactions on PdAu(1 0 0) greatly. - Abstract: Calculations based on the first-principles density functional theory (DFT) were performed to study the possible transformation pathways of ethylene on PdAu(1 0 0) surface to investigate the effect of Au atom alloying with Pd on the formation of CHx (x = 0–2), which may eventually form carbon monomer and lead to the deactivation of catalysts. The energetic properties of reactions including the scission of the C−H, C−C bond and a hydrogen-shift process were determined. The C−H bond scission is confirmed to be prone to happen on the studied surface, while it is difficult for the C−C bond scission to occur due to relatively high barriers, the values of which are as high as 2.72–4.62 eV. The activation barriers for all related reactions except for the dehydrogenation of vinyl, vinylidene and acetenyl demonstrate that it is harder for the conversion of ethylene to occur on PdAu(1 0 0) surface than on Pd(1 0 0) surface, especially for the C−C bond scission. All the results indicate that the alloying of Au atom with pure Pd catalyst can prevent the formation of carbon monomer, which may notably affect properties of catalysts.

  18. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Brunelli, Katya; Dabala, Manuele; Calliari, Irene; Magrini, Maurizio

    2005-01-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected

  19. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Itai, Takaaki; Takahashi, Yoshio; Uruga, Tomoya; Tanida, Hajime; Iida, Atsuo

    2008-01-01

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-μm scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO 2 and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 μm 2 ) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-μm scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction

  20. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)], E-mail: itai-epss@hiroshima-u.ac.jp; Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Uruga, Tomoya; Tanida, Hajime [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Iida, Atsuo [Photon Factory, National Laboratory for High Energy Physics, O-ho, Tsukuba, Ibaraki 305 (Japan)

    2008-09-15

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-{mu}m scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO{sub 2} and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 {mu}m{sup 2}) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-{mu}m scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction.

  1. Condensation of sodium on a micromachined surface for AMTEC

    International Nuclear Information System (INIS)

    Crowley, C.J.; Izenson, M.G.

    1993-01-01

    A novel condenser component is being developed to enable Alkali Metal Thermal to Electric Conversion (AMTEC) technology to achieve two critical goals: (1) optimization of conversion efficiency and (2) microgravity fluid management. The first goal is achieved by minimizing parasitic radiation heat transfer losses for condensers with a large view factor to the high-temperature β double-prime-alumina surface. The condenser geometry includes a specially designed, micromachined surface where large capillary forces are used to manage the fluid distribution to accomplish the second goal. We present and discuss the results of separate effects experiments investigating the wetting and condensation behavior of sodium on this capillary surface. Test results show that the micromachined surface maintains a smooth, high reflective film of liquid sodium on the surface, which implies reduced parasitic losses and increased conversion efficiencies in AMTEC cells. Accomplishing this in an adverse gravity gradient demonstrates the potential for management of the fluid even under spacecraft acceleration conditions

  2. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin

    2015-07-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  3. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-01-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  4. Metal supported on natural zeolite as catalysts for conversion of ethanol to gasoline

    Directory of Open Access Journals (Sweden)

    Kristiani Anis

    2017-01-01

    Full Text Available A various of metal supported into natural zeolite was prepared via wet impregnation method. The transition metals impregnated are nickel, cobalt, copper and zinc. The catalytic properties both of physical and chemical properties were characterized by X-ray Diffraction (XRD, Thermo Gravimetri Analysis (TGA-Differential Scanning Calorimetry (DSC, Surface Area Analyzer-Porositymeter and also gravimetry method for acidity measurement following by the adsorption of organic bases. The results showed that different metals impregnated into natural zeolite affected physical and chemical properties, i.e. crystalinity, surface area, pore size, pore volume and acidity. Their catalytic activity was tested for conversion ethanol to gasoline and showed high conversion up to 80-90% with the aromatics as major product.

  5. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.

    Science.gov (United States)

    Wang, Changlong; Astruc, Didier

    2014-01-01

    This review provides the basic concepts, an overall survey and the state-of-the art of plasmon-based nanogold photocatalysis using visible light including fundamental understanding and major applications to organic reactions and clean energy-conversion systems. First, the basic concepts of localized surface plasmon resonance (LSPR) are recalled, then the major preparation methods of AuNP-based plasmonic photocatalysts are reviewed. The major part of the review is dedicated to the latest progress in the application of nanogold plasmonic photocatalysis to organic transformations and energy conversions, and the proposed mechanisms are discussed. In conclusion, new challenges and perspectives are proposed and analyzed.

  6. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  7. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  8. NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING

    Science.gov (United States)

    Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...

  9. The influence of gas-to-particle conversion on measurements of ammonia exchange over forest

    NARCIS (Netherlands)

    Oss, R. van; Duyzer, J.; Wyers, P.

    1998-01-01

    Measurements of vertical gradients of ammonium nitrate aerosol and NH3 are used together with HNO3 concentrations to study the influence of gas-to-particle conversion (gtpc) on surface exchange processes above a forest. A numerical model of surface exchange, in which a description of gtpc was

  10. Effect of Cooling Methods on Methane Conversion via Dielectric-Barrier Discharges

    International Nuclear Information System (INIS)

    Wang Baowei; Yang Kuanhui; Xu Genhui

    2008-01-01

    Effects of cooling methods on stability and methane conversion rate using dielectric-barrier discharges (DBD) were systematically investigated in this article. The results showed that the methane conversion rate was as high as 44.43% in a pure methane system at a flow rate of 100 mL ± min -1 and an input power of 234.2 W with air cooling. A dark greenish and soft film-like carbon was deposited on the outer surface of quartz tube when the outer electrode was water-cooled, which decreased the methane conversion. With air cooling of inner electrode the selectivity of C 2 hydrocarbons was higher than that with other cooling methods, while the C 3 hydrocarbons had higher selectivity with flowing water cooling. Cooling the inner electrode could restrain the carbon deposition, but would decrease the methane conversion rate. The stability of both reaction and plasma operation can be improved through cooling the reactor. From thermodynamic analysis, it was found that the effective collisions frequency among the reactant molecules and free electrons (e - ) increased with temperature, which in turn led to a higher methane conversion rate and a change in the distribution of products.

  11. The formation of neodymium conversion coating and the influence of post-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui Xiufang [School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China); Jin Guo, E-mail: jg97721@yahoo.com.cn [Center for Biomedical Materials and Engineering, School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China); Yang Yuyun; Liu Erbao; Lin Lili; Zhong Jinggao [Center for Biomedical Materials and Engineering, School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China)

    2012-01-15

    In this paper, neodymium-based conversion coating is used as a substitute for toxic chromate conversion coating on AZ91D magnesium alloys. Its formation and growth were observed via SEM, EDS, XPS, electrochemical tests and weighting experiment. The influence of post-treatment on neodymium conversion coating was measured by FTIR and electrochemical experiments in terms of morphology, component, surface functional group and corrosion resistance. The dissolution of matrix and the deposition of neodymium/magnesium oxides compete with each other in initial time. Then the deposition of neodymium oxides dominates the process. Compact coating is obtained after 20 min immersion and it is mainly made of neodymium oxides and a small amount of magnesium oxides/hydroxides. The coating post-treated is rich in OH{sup -} and PO{sub 4}{sup 3+}. The post-treatment can improve the corrosion resistance of the neodymium conversion coating effectually examined by EIS.

  12. The formation of neodymium conversion coating and the influence of post-treatment

    International Nuclear Information System (INIS)

    Cui Xiufang; Jin Guo; Yang Yuyun; Liu Erbao; Lin Lili; Zhong Jinggao

    2012-01-01

    In this paper, neodymium-based conversion coating is used as a substitute for toxic chromate conversion coating on AZ91D magnesium alloys. Its formation and growth were observed via SEM, EDS, XPS, electrochemical tests and weighting experiment. The influence of post-treatment on neodymium conversion coating was measured by FTIR and electrochemical experiments in terms of morphology, component, surface functional group and corrosion resistance. The dissolution of matrix and the deposition of neodymium/magnesium oxides compete with each other in initial time. Then the deposition of neodymium oxides dominates the process. Compact coating is obtained after 20 min immersion and it is mainly made of neodymium oxides and a small amount of magnesium oxides/hydroxides. The coating post-treated is rich in OH - and PO 4 3+ . The post-treatment can improve the corrosion resistance of the neodymium conversion coating effectually examined by EIS.

  13. Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys

    Directory of Open Access Journals (Sweden)

    Palomino Luis Enrique M.

    2003-01-01

    Full Text Available Cerium conversion layers (CeCL have been investigated as a replacement for chromium conversion layers to protect Al alloys against corrosion. In this work the microstructure and the electrochemical behaviour of aluminium alloy 2024 with and without CeCL were investigated using, respectively, SEM-EDX and EIS. EDX results have shown that the presence of dispersed plated Cu particles on the alloy surface enhances the formation of the CeCL increasing the intensity of Ce peaks in the EDX spectra. EIS measurements on conversion-coated samples have shown that the presence of the layer increases the impedance, and that its presence is detected by the presence of a high frequency time constant. Results of potentiodynamic experiments have shown that the corrosion protection afforded by the conversion layer is due to the hindrance of the oxygen reduction reaction and that the pitting potential of the alloy is not changed.

  14. Technology transfer and design conversion of a dry spent fuel storage system in Ukraine

    International Nuclear Information System (INIS)

    Peacock, R.C.; Marcelli, D.G.

    1998-01-01

    A number of unique issues surfaced in the technology transfer and design conversion of a US dry spent fuel storage technology in Ukraine. Unique challenges were encountered in the areas of nuclear design conversion, technical codes and standards, material selection and qualification, fabrication, construction and testing, quality assurance, documentation, and translation and verification processes. Technology transfer and design conversion were undertaken for both concrete and steel components for the project. The overall effort presented significant technical and cultural challenges to both the US and Ukrainian side, but technical exchange and design improvements to achieve a common goal have been reached. (author)

  15. The measurement of internal conversion electrons of selected nuclei: A physics undergraduate laboratory experience

    International Nuclear Information System (INIS)

    Nagy, P.; Duggan, J.L.; Desmarais, D.

    1992-01-01

    Thin sources are now commercially available for a wide variety of isotopes that have measurable internal conversion coefficients. The authors have used standard surface barrier detectors, NIM electronics, and a personal computer analyzer to measure conversion electrons from a few of these sources. Conversion electrons energy and intensity were measured for 113 Sn, 133 Ba, 137 Cs, and 207 Bi. From the measured spectra the innershell binding energies of the K ampersand L Shell electrons from the daughter nuclei were determined and compared to theory. The relative conversion coefficients a k /a L and the K/L ration were also measured. The spin and parity change of the transitions will also be assigned based on the selection rules of the transitions

  16. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  17. The Non-Ergodic Nature of Internal Conversion

    DEFF Research Database (Denmark)

    Kuhlman, Thomas Scheby

    The absorption of light by molecules can induce ultrafast dynamics of coupled electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear dynamics – a concept of central importance in many aspects...... of chemical reaction dynamics. In this thesis, we focus on the non-ergodic nature of internal conversion, i.e. the concept that the nuclear dynamics only sample a reduced phase space potentially resulting in localization of the dynamics in real space. In essence, this is a consequence of vibrational energy...... cyclopentadienes and dithiane. In the case of the cycloketones, the rate of internal conversion varies by more than an order of magnitude between the molecules. This non-ergodic process was found to primarily involve ring-puckering motion, and the different timescales observed could be rationalized on the basis...

  18. Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance

    International Nuclear Information System (INIS)

    Wang Jun; Li Dandan; Liu Qi; Yin Xi; Zhang Ying; Jing Xiaoyan; Zhang Milin

    2010-01-01

    A hydrotalcite/hydromagnesite conversion coating with hierarchical structure has been fabricated on a Mg alloy substrate by in situ hydrothermal crystallization method. A MgO layer existing between the hydrotalcite/hydromagnesite film and the substrate was formed prior to the hydrotalcite/hydromagnesite film during the crystallization process. After surface treatment with silane coupling agent, the surface of conversion coating changes from hydrophilic to hydrophobic. Scanning electron microscopy (SEM) revealed that the silylated conversion coating with hierarchical structure maintains the original rough surface of which was composed of numerous micro-scale flakes and beautiful flower-like protrusions. Polarization measurements have shown that the hydrophobic conversion coating exhibited a low corrosion current density value of 0.432 μA/cm 2 , which means that the hydrophobic conversion coating can effectively protect Mg alloy from corrosion. Electrochemical impedance spectroscopy (EIS) showed that the impedance of the hydrophobic conversion coating was 9000 Ω. It means that the coating served as a passive layer with high charge transfer resistance.

  19. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  20. Conversion electron Moessbauer spectroscopic studies on the chemical states of surface layers of corroded tin plates and tin-coated iron plates

    International Nuclear Information System (INIS)

    Kato, Akinori; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    By means of the conversion electron Moessbauer spectroscopy (CEMS), we studied surface layers of ''tin'' plates and tin-coated iron plates corroded by various acids. Transmission Moessbauer spectra and X-ray diffraction patterns were also measured. Metastannic acid was formed, when the ''tin'' plate was corroded by nitric acid solution. In corrosion by phosphoric acid solution, the X-ray diffractometry revealed the formation of tin(IV) pyrophosphate. In corrosion by various organic acid solutions, the formation of oxides was identified by the 119 Sn CEMS, but not by the X-ray diffractometry because of the too thin corrosion layer. In corrosion of tin-coated iron plates, maleic acid, malonic acid, formic acid, and oxalic acid were used. It was determined by CEMS that the corrosion products caused by these acids were tin(IV) oxides, although they could not be identified by the X-ray diffractometry. CEMS also confirmed that the surface of uncorroded tin-coated iron plate was already oxidized by air. Colorimetric determinations of Sn and Fe dissolved from tin-coated iron plates to various acid solutions confirmed that maleic acid had the strongest corrosion effect among the organic acids studied. (author)

  1. Tribological characteristics of ceramic conversion treated NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Ju, X; Dong, H

    2007-01-01

    NiTi shape memory alloys are very attractive for medical implants and devices (such as orthopaedic and orthodontic implants) and various actuators. However, wear is a major concern for such applications and a novel surface engineering process, ceramic conversion treatment, has recently been developed to address this problem. In this study, the tribological characteristics of ceramic conversion treated NiTi alloy have been systematically investigated under dry unidirectional wear, reciprocating-corrosion wear and fretting-corrosion wear condition. Based on the experimental results, the wear behaviour under different conditions is compared and wear mechanisms involved are discussed

  2. Tribological characteristics of ceramic conversion treated NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ju, X; Dong, H [Department of Metallurgy and Materials, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2007-09-21

    NiTi shape memory alloys are very attractive for medical implants and devices (such as orthopaedic and orthodontic implants) and various actuators. However, wear is a major concern for such applications and a novel surface engineering process, ceramic conversion treatment, has recently been developed to address this problem. In this study, the tribological characteristics of ceramic conversion treated NiTi alloy have been systematically investigated under dry unidirectional wear, reciprocating-corrosion wear and fretting-corrosion wear condition. Based on the experimental results, the wear behaviour under different conditions is compared and wear mechanisms involved are discussed.

  3. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Toma, Andrea; Francardi, Marco; Malerba, Mario; Alabastri, Alessandro; Proietti Zaccaria, Remo; Stockman, Mark Mark; Di Fabrizio, Enzo M.

    2013-01-01

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  4. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea

    2013-10-20

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  5. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    Science.gov (United States)

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  6. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  7. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  8. Dose-rate conversion factors for external exposure to photon and electron radiation from radionuclides occurring in routine releases from nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1980-01-01

    Dose-rate conversion factors for external exposure to photon and electron radiation are calculated for 240 radionuclides of potential importance in routine releases from nuclear fuel cycle facilities. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each exposure mode, dose-rate conversion factors for photons and electrons are calculated for tissue-equivalent material at the body surface of an exposed individual. Dose-rate conversion factors for photons only are calculated for 22 body organs. (author)

  9. Thermoelectric energy conversion in layered structures with strained Ge quantum dots grown on Si surfaces

    Science.gov (United States)

    Korotchenkov, Oleg; Nadtochiy, Andriy; Kuryliuk, Vasyl; Wang, Chin-Chi; Li, Pei-Wen; Cantarero, Andres

    2014-03-01

    The efficiency of the energy conversion devices depends in many ways on the materials used and various emerging cost-effective nanomaterials have promised huge potentials in highly efficient energy conversion. Here we show that thermoelectric voltage can be enhanced by a factor of 3 using layer-cake growth of Ge quantum dots through thermal oxidation of SiGe layers stacked in SiO2/Si3N4 multilayer structure. The key to achieving this behavior has been to strain the Ge/Si interface by Ge dots migrating to Si substrate. Calculations taking into account the carrier trapping in the dot with a quantum transmission into the neighboring dot show satisfactory agreement with experiments above ≈200 K. The results may be of interest for improving the functionality of thermoelectric devices based on Ge/Si.

  10. Experiments on topographies lacking tidal conversion

    Science.gov (United States)

    Maas, Leo; Paci, Alexandre; Yuan, Bing

    2015-11-01

    In a stratified sea, internal tides are supposedly generated when the tide passes over irregular topography. It has been shown that for any given frequency in the internal wave band there are an infinite number of exceptions to this rule of thumb. This ``stealth-like'' property of the topography is due to a subtle annihilation of the internal waves generated during the surface tide's passage over the irregular bottom. We here demonstrate this in a lab-experiment. However, for any such topography, subsequently changing the surface tide's frequency does lead to tidal conversion. The upshot of this is that a tidal wave passing over an irregular bottom is for a substantial part trapped to this irregularity, and only partly converted into freely propagating internal tides. Financially supported by the European Community's 7th Framework Programme HYDRALAB IV.

  11. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  12. Unraveling the role of support surface hydroxyls and its effect on the selectivity of C{sub 2} species over Rh/γ-Al{sub 2}O{sub 3} catalyst in syngas conversion: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Riguang; Duan, Tian; Wang, Baojun, E-mail: wangbaojun@tyut.edu.cn; Ling, Lixia

    2016-08-30

    Highlights: • The selectivity toward CH{sub x} (x = 1–3) depends on γ-Al{sub 2}O{sub 3} support and its surface properties. • Rh/γ-Al{sub 2}O{sub 3} catalyst exhibits the higher selectivity toward CH{sub x} (x = 1,2) formation from syngas. • C{sub 2} species (C{sub 2}H{sub 2},CHCO,CH{sub 2}CHO) are the main products on Rh/γ-Al{sub 2}O{sub 3} catalyst. • γ-Al{sub 2}O{sub 3} surface hydroxyls affect the selectivity of C{sub 2} species over Rh/γ-Al{sub 2}O{sub 3} catalyst. - Abstract: The supported Rh-based catalysts exhibit the excellent catalytic performances for syngas conversion to C{sub 2} species. In this study, all possible elementary steps leading to C{sub 2} species from syngas have been explored to identify the role of support and its surface hydroxyls over Rh/γ-Al{sub 2}O{sub 3} catalyst; Here, the results are obtained using density functional theory (DFT) method. Two models: Rh4 cluster supported on the dry γ-Al{sub 2}O{sub 3}(110) surface, D(Rh4), and on the hydroxylated γ-Al{sub 2}O{sub 3}(110) surface, H(Rh4), have been used to model Rh/γ-Al{sub 2}O{sub 3} catalyst. Our results show that CO prefers to be hydrogenated to CHO, subsequently, starting from CHO species, CH and CH{sub 2} species are the dominate monomers among CH{sub x}(x = 1–3) species rather than CH{sub 3} and CH{sub 3}OH on D(Rh4) and H(Rh4) surfaces, suggesting that γ-Al{sub 2}O{sub 3}-supported Rh catalyst exhibits the high selectivity towards CH{sub x} formation compared to the pure Rh catalyst. On the other hand, D(Rh4) is more favorable for C{sub 2} hydrocarbon (C{sub 2}H{sub 2}) formation, whereas H(Rh4) surface easily produces C{sub 2} hydrocarbon (C{sub 2}H{sub 2}) and C{sub 2} oxygenates (CHCO,CH{sub 2}CHO), indicating that the surface hydroxyls of support can affect the selectivity of C{sub 2} species over Rh/γ-Al{sub 2}O{sub 3} catalyst in syngas conversion. Moreover, compared to the pure Rh(111) surface, Rh/γ-Al{sub 2}O{sub 3} catalyst can achieve the

  13. Sample Dilution and Bacterial Community Composition Influence Empirical Leucine-to-Carbon Conversion Factors in Surface Waters of the World's Oceans

    KAUST Repository

    Teira, Eva; Hernando-Morales, Ví ctor; Cornejo-Castillo, Francisco M.; Alonso-Sá ez, Laura; Sarmento, Hugo; Valencia-Vila, Joaquí n; Serrano Catalá , Teresa; Herná ndez-Ruiz, Marta; Varela, Marta M.; Ferrera, Isabel; Moran, Xose Anxelu G.; Gasol, Josep M.

    2015-01-01

    The transformation of leucine incorporation rates to prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawater manipulation experiments across the world's oceans, where the growth of the natural prokaryotic assemblages was promoted by filtration (i.e., removal of grazers [F treatment]) or filtration combined with dilution (i.e., also relieving resource competition [FD treatment]). The impact of sunlight exposure was also evaluated in the FD treatments, and we did not find a significant effect on the eCFs. The eCFs varied from 0.09 to 1.47 kg C mol Leu−1 and were significantly lower in the FD than in the F samples. Also, changes in bacterial community composition during the incubations, as assessed by automated ribosomal intergenic spacer analysis (ARISA), were more pronounced in the FD than in the F treatments, compared to unmanipulated controls. Thus, we discourage the common procedure of diluting samples (in addition to filtration) for eCF determination. The eCFs in the filtered treatment were negatively correlated with the initial chlorophyll a concentration, picocyanobacterial abundance (mostly Prochlorococcus), and the percentage of heterotrophic prokaryotes with high nucleic acid content (%HNA). The latter two variables explained 80% of the eCF variability in the F treatment, supporting the view that both Prochlorococcus and HNA prokaryotes incorporate leucine in substantial amounts, although this results in relatively low carbon production rates in the oligotrophic ocean.

  14. Sample Dilution and Bacterial Community Composition Influence Empirical Leucine-to-Carbon Conversion Factors in Surface Waters of the World's Oceans

    KAUST Repository

    Teira, Eva

    2015-09-25

    The transformation of leucine incorporation rates to prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawater manipulation experiments across the world\\'s oceans, where the growth of the natural prokaryotic assemblages was promoted by filtration (i.e., removal of grazers [F treatment]) or filtration combined with dilution (i.e., also relieving resource competition [FD treatment]). The impact of sunlight exposure was also evaluated in the FD treatments, and we did not find a significant effect on the eCFs. The eCFs varied from 0.09 to 1.47 kg C mol Leu−1 and were significantly lower in the FD than in the F samples. Also, changes in bacterial community composition during the incubations, as assessed by automated ribosomal intergenic spacer analysis (ARISA), were more pronounced in the FD than in the F treatments, compared to unmanipulated controls. Thus, we discourage the common procedure of diluting samples (in addition to filtration) for eCF determination. The eCFs in the filtered treatment were negatively correlated with the initial chlorophyll a concentration, picocyanobacterial abundance (mostly Prochlorococcus), and the percentage of heterotrophic prokaryotes with high nucleic acid content (%HNA). The latter two variables explained 80% of the eCF variability in the F treatment, supporting the view that both Prochlorococcus and HNA prokaryotes incorporate leucine in substantial amounts, although this results in relatively low carbon production rates in the oligotrophic ocean.

  15. Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid

    Science.gov (United States)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

  16. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelium 9, 040 01 Košice (Slovakia); Oriňak, A., E-mail: andrej.orinak@upjs.sk [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Oriňaková, R. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Lorinčík, J. [Research Center Rez, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Jerigová, M. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); Velič, D. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); International Laser Centre, Ilkovičová 3, 841 01 Bratislava (Slovakia); Mičušík, M. [Polymer institute, Slovak Academy of Sciences, Dubravská cesta 9, 84541 Bratislava (Slovakia); and others

    2017-02-28

    Highlights: • Zn/Cu/MWCNTs catalyst with good activity. • Methane conversion to hydrogen with high effectivity. • ZnO/Cu responsible for catalytic activity. - Abstract: Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  17. Electrochemical energy conversion: methanol fuel cell as example

    Directory of Open Access Journals (Sweden)

    Vielstich Wolf

    2003-01-01

    Full Text Available Thermodynamic and kinetic limitations of the electrochemical energy conversion are presented for the case of a methanol/oxygen fuel cell. The detection of intermediates and products is demonstrated using insitu FTIR spectroscopy and online mass spectrometry. The bifunctional catalysis of methanol oxydation by PtRu model surfaces is explained. The formation of HCOOH and HCHO via parallel reaction pathways is discussed. An example of DMFC system technology is presented.

  18. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  19. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  20. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  1. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  2. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...

  3. Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles

    International Nuclear Information System (INIS)

    Faria-Tischer, Paula C.S.; Tischer, Cesar A.; Heux, Laurent; Le Denmat, Simon; Picart, Catherine; Sierakowski, Maria-R.

    2015-01-01

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and III I (Cel III I ) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel III I was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel III I resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. - Highlights: • Description of a method to modify the allomorphic structure of bacterial cellulose films • Preparation of films with specific morphologies and hydrophobic/hydrophilic surface characters • First report on cellulose III films from bacterial cellulose under swelling conditions • Detailed characterization of cellulose II and III films with complementary techniques • Development of films with specific properties as potential support for cells, enzymes, and drugs

  4. Conversations on the plurality of worlds

    CERN Document Server

    de Fontenelle, Bernard le Bovier

    1990-01-01

    Surveying the night sky, a charming philosopher and his hostess, the Marquise, are considering thep ossibility of travelers from the moon. ""What if they were skillful enough to navigate on the outer surface of our air, and from there, through their curiosity to see us, they angled for us like fish? Would that please you?"" asks the philosopher. ""Why not?"" the Marquise replies. ""As for me, I'd put myself into their nets of my own volition just to have the pleasure of seeing those who caught me.""In this imaginary conversation of three hundred years ago, readers can share the exc

  5. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  6. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    Science.gov (United States)

    Lukowski, Michal L.

    Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I

  7. Evaluation of the conversion efficiency of ceramic and metallic three way catalytic converters

    International Nuclear Information System (INIS)

    Santos, H.; Costa, M.

    2008-01-01

    Ceramic and metallic three way catalytic converters have been compared to assess the influence of the substrate geometrical and physical parameters on the exhaust gas conversions for several vehicle operating conditions. Both catalysts were placed on a vehicle equipped with a 2.8 l DOHC V6 spark ignition engine that was tested on a chassis dynamometer under steady state conditions for several engine speeds and loads. The data obtained include exhaust gas species concentrations and temperature taken both upstream and downstream of the catalytic converter, as well as temperatures in various locations within the substrate of the catalysts. The experimental data revealed that: (i) at low space velocities, the ceramic substrate presents better conversions, particularly for HC and CO, as compared to the metallic substrate, possibly because of its lower thermal conductivity which facilitates local ignition; (ii) at high space velocities, the metallic substrate presents better conversions, as compared to the ceramic substrate, mainly because of its larger geometric surface area and lower transverse Peclet number; and (iii) in general, the HC conversion for small space velocities is kinetically controlled while for high space velocities it is mass transfer limited; both limitations are less pronounced for the CO conversion and insignificant for the NO x conversion

  8. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Four questions and a conversation: Can theory enrich conversation partner training?

    DEFF Research Database (Denmark)

    Pound, Carole; Ahlsén, Elisabeth; Simmons-Mackie, NIna

    Background and aimsConversation partner training (CPT) is an umbrella term for different approaches to intervention aiming to facilitate and improve communication between people with aphasia (PWA) and their conversation partners (CP). Some approaches are grounded in a bottom-up approach...... and interactions. Philosophically informed by existential-phenomenological perspectives, the humanisation framework encourages reflection on what practices can make people feel more (or less) human. Reviewing experiences of conversation against the eight suggested dimensions of what it means to be human may offer...

  10. Direct Conversion of Energy.

    Science.gov (United States)

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  11. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    Science.gov (United States)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  12. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    Science.gov (United States)

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.

    2018-01-01

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  13. Microwave-assisted synthesis of lanthanum conversion coating on Mg-Li alloy and its corrosion resistance

    International Nuclear Information System (INIS)

    Song Dalei; Jing Xiaoyan; Wang Jun; Lu Shanshan; Yang Piaoping; Wang Yanli; Zhang Milin

    2011-01-01

    Graphical abstract: Highlights: → The method of microwave is used to synthesize lanthanum conversion coating. → Lanthanum conversion coating on Mg-Li alloy was studied. → Different conditions between room temperature and microwave were compared. → The corrosion behavior of lanthanum conversion coatings was studied. → The corrosion mechanism of lanthanum conversion coatings was studied. - Abstract: Lanthanum-based conversion coating on Mg-Li alloy has been prepared by a microwave-assisted method. X-ray diffractions (XRD) indicate that the intermetallic compounds of lanthanum are formed on Mg-Li alloy surface. Scanning electron microscopy (SEM) images show that the coating has different morphologies and special structures. The corrosion resistance was assessed by means of potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The results indicate that this coating significantly reduces the corrosion rate of Mg-Li alloy in NaCl solution. A comparing experiment indicates that the coating prepared by microwave-assisted process has superior corrosion resistance to the coating obtained at room temperature.

  14. Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2016-09-01

    Full Text Available This study investigated the influence of cerium nitrate in vanadate solutions on the properties of Ce–V conversion coatings on AZ31 magnesium alloys, and evaluated the self-healing behavior of the Ce–V conversion coating for AZ31 magnesium alloy. The results showed that the additions of cerium nitrate prevented pentavalent vanadium from reducing to tetravalent vanadium in the coatings during conversion reaction process. Adding appropriate cerium nitrate to vanadate solution led to a thicker coating with a more compact CeVO4 layer. The corrosion behavior of the Ce–V conversion coating was investigated by the electrochemical tests and the scratch immersion test in 3.5 wt.% NaCl solution. The self-healing ability of the coating was confirmed from all tests. The surface analysis revealed that the self-healing effect of the Ce–V conversion coating was only provided by the release and migration of vanadium compounds.

  15. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  16. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  17. Freely flowing conversations

    DEFF Research Database (Denmark)

    Aakjær, Marie Kirstejn; Andrade, David; Dexters, Peter

    and in regards to rehabilitation efforts. In the context of prisons UDI is inspired by the complexity approach (Stacey 2005). We seek to facilitate freely flowing conversations between inmates, staff and managers – pushing the boundaries of existing norms, roles and beliefs. In the end however we rely...... relations by changing conversations. Through the theoretical framework of the complexity approach, we discuss how this may lead to organizational change. Finally we suggest that inviting inmates to take part in conversations about core organizational development may be a fundamental strategy in trying...

  18. Political conversations on Facebook

    DEFF Research Database (Denmark)

    Sørensen, Mads P.

    2016-01-01

    Political conversations are according to theories on deliberative democracy essential to well-functioning democracies. Traditionally these conversations have taken place in face-to-face settings, in e.g. party meetings and town meetings. However, social media such as Facebook and Twitter offers new...... possibilities for online political conversations between citizens and politicians. This paper examines the presence on Facebook and Twitter of Members of the Danish national Parliament, the Folketing, and focusses on a quantitative mapping of the political conversation activities taking place in the threads...... following Facebook posts from Danish Members of Parliament (MPs). The paper shows that, in comparison with previous findings from other countries, Danish MPs have a relatively high degree of engagement in political conversations with citizens on Facebook – and that a large number of citizens follow MPs...

  19. Sample dilution and bacterial community composition influence empirical leucine-to-carbon conversion factors in surface waters of the world's oceans.

    Science.gov (United States)

    Teira, Eva; Hernando-Morales, Víctor; Cornejo-Castillo, Francisco M; Alonso-Sáez, Laura; Sarmento, Hugo; Valencia-Vila, Joaquín; Serrano Catalá, Teresa; Hernández-Ruiz, Marta; Varela, Marta M; Ferrera, Isabel; Gutiérrez Morán, Xosé Anxelu; Gasol, Josep M

    2015-12-01

    The transformation of leucine incorporation rates to prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawater manipulation experiments across the world's oceans, where the growth of the natural prokaryotic assemblages was promoted by filtration (i.e., removal of grazers [F treatment]) or filtration combined with dilution (i.e., also relieving resource competition [FD treatment]). The impact of sunlight exposure was also evaluated in the FD treatments, and we did not find a significant effect on the eCFs. The eCFs varied from 0.09 to 1.47 kg C mol Leu(-1) and were significantly lower in the FD than in the F samples. Also, changes in bacterial community composition during the incubations, as assessed by automated ribosomal intergenic spacer analysis (ARISA), were more pronounced in the FD than in the F treatments, compared to unmanipulated controls. Thus, we discourage the common procedure of diluting samples (in addition to filtration) for eCF determination. The eCFs in the filtered treatment were negatively correlated with the initial chlorophyll a concentration, picocyanobacterial abundance (mostly Prochlorococcus), and the percentage of heterotrophic prokaryotes with high nucleic acid content (%HNA). The latter two variables explained 80% of the eCF variability in the F treatment, supporting the view that both Prochlorococcus and HNA prokaryotes incorporate leucine in substantial amounts, although this results in relatively low carbon production rates in the oligotrophic ocean. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. [Conversation analysis for improving nursing communication].

    Science.gov (United States)

    Yi, Myungsun

    2007-08-01

    Nursing communication has become more important than ever before because quality of nursing services largely depends on the quality of communication in a very competitive health care environment. This article was to introduce ways to improve nursing communication using conversation analysis. This was a review study on conversation analysis, critically examining previous studies in nursing communication and interpersonal relationships. This study provided theoretical backgrounds and basic assumptions of conversation analysis which was influenced by ethnomethodology, phenomenology, and sociolinguistic. In addition, the characteristics and analysis methods of conversation analysis were illustrated in detail. Lastly, how conversation analysis could help improve communication was shown, by examining researches using conversation analysis not only for ordinary conversations but also for extraordinary or difficult conversations such as conversations between patients with dementia and their professional nurses. Conversation analysis can help in improving nursing communication by providing various structures and patterns as well as prototypes of conversation, and by suggesting specific problems and problem-solving strategies in communication.

  1. Multi-dimensional conversion to the ion-hybrid mode

    International Nuclear Information System (INIS)

    Tracy, E.R.; Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.

    1996-01-01

    We first demonstrate that the dispersion matrix for linear conversion of a magnetosonic wave to an ion-hybrid wave (as in a D-T plasma) can be congruently transformed to Friedland's normal form. As a result, this conversion can be represented as a two-step process of successive linear conversions in phase space. We then proceed to study the multi-dimensional case of tokamak geometry. After fourier transforming the toroidal dependence, we deal with the two-dimensional poloidal xy-plane and the two-dimensional k x k y -plane, forming a four-dimensional phase space. The dispersion manifolds for the magnetosonic wave [D M (x, k) = 0] and the ion-hybrid wave [D H (x, k) = 0] are each three-dimensional. (Their intersection, on which mode conversion occurs, is two-dimensional.) The incident magnetosonic wave (radiated by an antenna) is a two-dimensional set of rays (a lagrangian manifold): k(x) = ∇θ(x), with θ(x) the phase of the magnetosonic wave. When these rays pierce the ion-hybrid dispersion manifold, they convert to a set of ion-hybrid rays. Then, when those rays intersect the magnetosonic dispersion manifold, they convert to a set of open-quotes reflectedclose quotes magnetosonic rays. This set of rays is distinct from the set of incident rays that have been reflected by the inner surface of the tokamak plasma. As a result, the total destructive interference that can occur in the one-dimensional case may become only partial. We explore the implications of this startling phenomenon both analytically and geometrically

  2. Implementation of the Electron conversion Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Hernandez, Torres, D.; Noriega Scull, C.

    1996-01-01

    In the present work has been exposed the principles of the Conversion Moessbauer Electron Spectroscopy and its possibilities of application. Is also described the operation of the parallel plate avalanche detector made at the CEADEN starting from modifications done to the Gancedo's model and is exposed examples of the use of this detector in the characterization of corroded surfaces, with chemical cleaning and in samples of welded joints. The experiences obtained of this work were extended to the National Polytechnic Institute of Mexico where a similar detector, made in our center, was installed there

  3. A new type of Ce-Mo based conversion coatings for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Di; Li Guoqiang; Guo Baolan; Peng Mingxia [Coll. of Materials Science and Engineering, Beijing Univ. of Aeronautics and Astronautics, Beijing, BJ (China)

    2002-07-01

    A new type of process for forming Ce-Mo conversion coatings on Al-alloys has been developed. Conversion coatings about 3.6 {mu}m thickness were obtained by immersing Al-alloys for 20 minutes in boiling film forming solutions containing (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} 2.5 g/l, NaKC{sub 4}H{sub 4}O{sub 6}.4H{sub 2}O 2.5 g/l, Na{sub 2}CO{sub 3} 7.5 g/l and Na{sub 2}MoO{sub 4} 5.0 g/l. In the case of LF4 Al-alloy, polarization curves and immersion tests in 5% NaCl indicated that the conversion coatings exhibited more excellent resistance to localized corrosion than the conventional chromate conversion coatings. However, its resistance to localized corrosion was not satisfactory on LC4 Al alloy. Scanning electron microscopy (SEM) and energy dispersion analyzer of X-ray (EDAX) analysis revealed that the conversion coatings having complex surface microstructure on both LC4 and LF6 Al alloys consist mainly of O, Al and other alloying elements in addition to significant Ce and Mo. A mechanism of film formation was proposed to explain the experimental results. (orig.)

  4. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  5. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    Science.gov (United States)

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  6. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    Science.gov (United States)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  7. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-01-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H - ion beams in a filament-driven discharge. In this kind of an ion source the extracted H - beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H - converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H - ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H - ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H - production (main discharge) in order to further improve the brightness of extracted H - ion beams

  8. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting

    Science.gov (United States)

    Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen

    2018-01-01

    Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.

  9. Postoperative conversion disorder.

    Science.gov (United States)

    Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A

    2016-05-01

    Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Uranium conversion wastes

    International Nuclear Information System (INIS)

    Vicente, R.; Dellamano, J.C.

    1989-12-01

    A set of mathematical equations was developed and used to estimate the radiological significance of each radionuclide potentially present in the uranium refining industry effluents. The equations described the evolution in time of the radionuclides activities in the uranium fuel cycle, from mining and milling, through the yellowcake, till the conversion effluents. Some radionuclides that are not usually monitored in conversion effluents (e.g. Pa-231 and Ac-227) were found to be potentially relevant from the radiological point of view in conversion facilities, and are certainly relevant in mining and milling industry, at least in a few waste streams. (author) [pt

  11. 5 CFR 317.302 - Conversion procedures.

    Science.gov (United States)

    2010-01-01

    ... conversion. (2) Pay. Upon conversion to the Senior Executive Service, an employee's SES rate will be... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conversion procedures. 317.302 Section... IN THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.302 Conversion...

  12. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  13. Conversational flow promotes solidarity.

    Directory of Open Access Journals (Sweden)

    Namkje Koudenburg

    Full Text Available Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here. The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay. Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  14. Nuclear spin conversion in formaldehyde

    OpenAIRE

    Chapovsky, Pavel L.

    2000-01-01

    Theoretical model of the nuclear spin conversion in formaldehyde (H2CO) has been developed. The conversion is governed by the intramolecular spin-rotation mixing of molecular ortho and para states. The rate of conversion has been found equal 1.4*10^{-4}~1/s*Torr. Temperature dependence of the spin conversion has been predicted to be weak in the wide temperature range T=200-900 K.

  15. Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power

    Directory of Open Access Journals (Sweden)

    SK Manirul Haque

    2018-03-01

    Full Text Available Solar photoelectric energy converted into electricity requires large surface areas with incident light and flexible materials to capture these light emissions. Currently, sunlight rays are converted to electrical energy using silicon polymeric material with efficiency up to 22%. The majority of the energy is lost during conversion due to an energy gap between sunlight photons and polymer energy transformation. This energy conversion also depends on the morphology of present polymeric materials. Therefore, it is very important to construct mechanisms of highest energy occupied molecular orbitals (HOMOs and the lowest energy unoccupied molecular orbitals (LUMOs to increase the efficiency of conversion. The organic and inorganic solar cells used as dyes can absorb more photons from sunlight and the energy gap will be less for better conversion of energy to electricity than the conventional solar cells. This paper provides an up-to-date review on the performance, characterization, and reliability of different composite polymeric materials for energy conversion. Specific attention has been given to organic solar cells because of their several advantages over others, such as their low-energy payback time, conversion efficiency and greenhouse emissions. Finally, this paper provides the recent progress on the application of both organic and inorganic solar cells for electric power generations together with several challenges that are currently faced.

  16. Software engineering for the EBR-II data acquisition system conversion

    International Nuclear Information System (INIS)

    Schorzman, W.

    1988-01-01

    The purpose of this paper is to outline how EBR-II engineering approached the data acquisition system (DAS) software conversion project with the restraints of operational transparency and six weeks for final implementation and testing. Software engineering is a relatively new discipline that provides a structured philosopy for software conversion. The software life cycle is structured into six basic steps: 1) initiation, 2) requirements definition, 3) design, 4) programming, 5) testing, and 6) operations. These steps are loosely defined and can be altered to fit specific software applications. DAS software is encompassed from three sources: 1) custom software, 2) system software, and 3) in-house application software. A data flow structure is used to describe the DAS software. The categories are: 1) software used to bring signals into the central processer, 2) software that transforms the analog data to engineering units and then logs the data in the data store, and 3) software used to transport and display the data. The focus of this paper is to describe how the conversion team used a structured engineering approach and utilized the resources available to produce a quality system on time. Although successful, the conversion process provided some pit falls and stumbling blocks. Working through these obstacles enhanced our understanding and surfaced in the form of LESSONS LEARNED, which are gracefully shared in this paper

  17. Gene conversion in the rice genome

    DEFF Research Database (Denmark)

    Xu, Shuqing; Clark, Terry; Zheng, Hongkun

    2008-01-01

    -chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P ... is not tightly linked to natural selection in the rice genome. To assess the contribution of segmental duplication on gene conversion statistics, we determined locations of conversion partners with respect to inter-chromosomal segment duplication. The number of conversions associated with segmentation is less...... involved in conversion events. CONCLUSION: The evolution of gene families in the rice genome may have been accelerated by conversion with pseudogenes. Our analysis suggests a possible role for gene conversion in the evolution of pathogen-response genes....

  18. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    Science.gov (United States)

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  19. Preparation and properties of chrome-free colored Ti/Zr based conversion coating on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yi Aihua [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Li Wenfang, E-mail: mewfl@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Du Jun; Mu Songlin [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-06-01

    A golden conversion coating on the surface of aluminum alloy was prepared by adding tannic acid and coating-forming accelerator in the treatment solution containing titanium and zirconium ions. The growth process, main component and corrosion resistance of the conversion coating were characterized by EDS, SEM, XRD, XPS, FIIR and electrochemical workstation. The results showed that the main components of the conversion coating were Na{sub 3}AlF{sub 6} and the conversion coating owns a double-layer structure. The outer layer consists of metal-organic complex and the inner layer is mainly made up of Na{sub 3}AlF{sub 6}. The mechanism of the formation of the golden conversion coating can be deemed as nucleation, growth of Na{sub 3}AlF{sub 6} crystal and formation of metal-organic complex. In potentiodynamic polarization test, the corrosion current density decreases to 0.283 {mu}A cm{sup -2} from 5.894 {mu}A cm{sup -2}, which indicates an obvious improvement of corrosion resistance.

  20. Method of electroplating a conversion electron emitting source on implant

    Science.gov (United States)

    Srivastava, Suresh C [Setauket, NY; Gonzales, Gilbert R [New York, NY; Adzic, Radoslav [East Setauket, NY; Meinken, George E [Middle Island, NY

    2012-02-14

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  1. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    Science.gov (United States)

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion

  2. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  3. La conversion de Paul, regards croisés Paul’s conversion. Cross perspectives

    Directory of Open Access Journals (Sweden)

    Elian Cuvillier

    2009-09-01

    Full Text Available Au plan historique, les traditions relatives à la conversion de Paul, chutant de son cheval sur le chemin de Damas, confrontent l’exégète à trois problèmes importants : y avait-il un cheval, cela se passait-il sur le chemin de Damas et était-ce bien une conversion ? Entendues avec l’humour et la distance critique nécessaires, ces trois questions constituent les trois chapitres de cet article. Le premier « Y avait-il un cheval ? » s’intéresse à l’histoire de la réception de l’épisode de la conversion de Paul, en particulier dans la peinture et la littérature. Le second « Cela se passait-il sur le chemin de Damas ? » est consacrée au récit que l’auteur du livre des Actes propose de la conversion de Paul, récit qui constitue, bien souvent, la porte d’entrée exclusive pour aborder le thème. Le troisième « Etait-ce bien une conversion ? » analyse les témoignages de l’apôtre lui-même à travers deux passages clés de ses épîtres authentiques.Historically speaking, the traditions concerning the conversion of Paul, falling from his horse on the road to Damascus, confront the exegete with three important problems : was there a horse, did it happen on the road to Damacus and was it really a conversion ? These three questions, considered with humor and critical distance, constitute the three sections of this article. The first part « Was there a horse ? » considers the history of the reception of the episode of the conversion of Paul, particularly in art and literature. The second one « Did it happen on the road to Damascus ? » is devoted to the story of the conversion of Paul proposed by the author of the book of Acts, which is very often the exclusive entrance to the discussion of this theme. The third section « Was it really a conversion ? » analyzes the account given by the apostle himself in two key passages of his authentic epistles.

  4. Conversational Agents in E-Learning

    Science.gov (United States)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  5. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  6. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  7. Rise of nano effects in electrode during electrocatalytic CO2 conversion

    Science.gov (United States)

    Yang, Ki Dong; Lee, Chan Woo; Jang, Jun Ho; Ha, Tak Rae; Nam, Ki Tae

    2017-09-01

    The electrocatalytic conversion of CO2 into value-added fuels has received increasing attention as a promising way to mitigate the atmospheric CO2 concentration and close the broken carbon-cycle. Early studies, focused on polycrystalline metal electrodes, outlined in detail the overall trends in the catalytic activity and product selectivity of pure metals; however, several inherent limitations were found, such as low current density and high overpotential, which hindered electrocatalytic CO2 reduction from practical application. Fortunately, the recent development of precisely synthesized nanocatalysts has led to several breakthroughs in catalytic CO2 conversion. By carefully controlling the thermodynamic adsorption energies and flow dynamics of reaction intermediates, nanosized electrocatalysts afford more versatile and energetically efficient routes to convert CO2 into desired chemicals. In this article, we review the state-of-the-art nanocatalysts applied for CO2 conversion and discuss newly found phenomena at the local environment near the catalyst surface. The mechanistic understanding of these findings can provide insight into the future design of catalysts for the efficient and selective reduction of CO2.

  8. Preparation of micro/nano-fibrous brushite coating on titanium via chemical conversion for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Guo, Yong-yuan [Orthopedic Department, Qilu Hospital of Shandong University, Ji’nan, 250012 (China); Xiao, Gui-yong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Lu, Yu-peng, E-mail: biosdu@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China)

    2017-03-31

    Highlights: • A chemical conversion brushite coating was prepared on titanium. • The coating exhibits fibrous morphology in micro/nano-scale. • The surface of the coating shows high hydrophilicity and corrosion resistance in the simulated body fluid. • An improvement of cell response was observed on the surface of coated Ti compared to that of the uncoated. - Abstract: Calcium phosphate coatings have been applied on the surface of Ti implants to realize better osseointegration. The formation of dicalcium phosphate dihydrate (CaHPO{sub 4}·2H{sub 2}O), mineralogically named brushite on pure Ti substrate has been investigated via chemical conversion method. Coating composition and microstructure have been investigated by X-ray diffractometer, Fourier transform infrared spectrometer and field emission scanning electron microscope. The results reveal that the coatings are composed of high crystalline brushite with minor scholzite (CaZn{sub 2}(PO{sub 4}){sub 2}·2H{sub 2}O). A micro/nano-scaled fibrous morphology can be produced in the acidic chemical conversion bath with pH 5.00. The surface of the fibrous brushite coating exhibits high hydrophilicity and corrosion resistance in the simulated body fluid. The osteoblast cells grow and spread actively on the coated samples and the proliferation numbers and alkaline phosphate activities of the cells improve significantly compared to the uncoated Ti. It is suggested that the micro/nano-fibrous brushite coating can be a potential approach to improve the osteoinductivity and osteoconductivity of Ti implant, due to its similarity in morphology and dimension to inorganic components of biological hard tissues, and favorable responses to the osteoblasts.

  9. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  10. Influence of field and geometric configurations on the mode conversion characteristics of hybrid waves in a magnetoplasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2016-12-01

    Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.

  11. Influence of field and geometric configurations on the mode conversion characteristics of hybrid waves in a magnetoplasma slab

    International Nuclear Information System (INIS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-01-01

    Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.

  12. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir [Space Physics Group, Institute of Geophysics, University of Tehran (Iran, Islamic Republic of); Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp [Department of Geophysics, Graduate School of Science, Tohoku University (Japan)

    2016-07-15

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  13. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-01-01

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  14. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  15. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    Directory of Open Access Journals (Sweden)

    A. Datta

    2018-03-01

    Full Text Available We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love–Rayleigh coupling, but incidence of any mode and coupling to any (other mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git.

  16. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    Science.gov (United States)

    Datta, Arjun

    2018-03-01

    We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love-Rayleigh coupling, but incidence of any mode and coupling to any (other) mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git).

  17. Direct conversion of fusion energy

    International Nuclear Information System (INIS)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D- 3 He reaction and the p- 11 B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger βB 2 0 to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high β values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D- 3 He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D 3 He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D 3 He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion or liquid metal MHD conversion (LMMHD). For a D

  18. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  19. [Neuropsychological assessment in conversion disorder].

    Science.gov (United States)

    Demır, Süleyman; Çelıkel, Feryal Çam; Taycan, Serap Erdoğan; Etıkan, İlker

    2013-01-01

    Conversion disorder is characterized by functional impairment in motor, sensory, or neurovegetative systems that cannot be explained by a general medical condition. Diagnostic systems emphasize the absence of an organic basis for the dysfunction observed in conversion disorder. Nevertheless, there is a growing body of data on the specific functional brain correlates of conversion symptoms, particularly those obtained via neuroimaging and neurophysiological assessment. The present study aimed to determine if there are differences in measures of cognitive functioning between patients with conversion disorder and healthy controls. The hypothesis of the study was that the patients with conversion disorder would have poorer neurocognitive performance than the controls. The patient group included 43 patients diagnosed as conversion disorder and other psychiatric comorbidities according to DSM-IV-TR. Control group 1 included 44 patients diagnosed with similar psychiatric comorbidities, but not conversion diosorder, and control group 2 included 43 healthy individuals. All participants completed a sociodemographic questionnaire and were administered the SCID-I and a neuropsychological test battery of 6 tests, including the Serial Digit Learning Test (SDLT), Auditory Verbal Learning Test (AVLT), Wechsler Memory Scale, Stroop Color Word Interference Test, Benton Judgment of Line Orientation Test (BJLOT), and Cancellation Test. The patient group had significantly poorer performance on the SDLT, AVLT, Stroop Color Word Interference Test, and BJLOT than both control groups. The present findings highlight the differences between the groups in learning and memory, executive and visuospatial functions, and attention, which seemed to be specific to conversion disorder.

  20. Surface science and heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1980-05-01

    The catalytic reactions studied include hydrocarbon conversion over platinum, the transition metal-catalyzed hydrogenation of carbon monoxide, and the photocatalyzed dissociation of water over oxide surfaces. The method of combined surface science and catalytic studies is similar to those used in synthetic organic chemistry. The single-crystal models for the working catalyst are compared with real catalysts by comparing the rates of cyclopropane ring opening on platinum and the hydrogenation of carbon monoxide on rhodium single crystal surface with those on practical commercial catalyst systems. Excellent agreement was obtained for these reactions. This document reviews what was learned about heterogeneous catalysis from these surface science approaches over the past 15 years and present models of the active catalyst surface

  1. Changing the conversation: the influence of emotions on conversational valence and alcohol consumption.

    Science.gov (United States)

    Hendriks, Hanneke; van den Putte, Bas; de Bruijn, Gert-Jan

    2014-10-01

    Health campaign effects may be improved by taking interpersonal communication processes into account. The current study, which employed an experimental, pretest-posttest, randomized exposure design (N = 208), investigated whether the emotions induced by anti-alcohol messages influence conversational valence about alcohol and subsequent persuasion outcomes. The study produced three main findings. First, an increase in the emotion fear induced a negative conversational valence about alcohol. Second, fear was most strongly induced by a disgusting message, whereas a humorous appeal induced the least fear. Third, a negative conversational valence elicited healthier binge drinking attitudes, subjective norms, perceived behavioral control, intentions, and behaviors. Thus, health campaign planners and health researchers should pay special attention to the emotional characteristics of health messages and should focus on inducing a healthy conversational valence.

  2. A Hierarchically Micro-Meso-Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-11-01

    Full Text Available A hierarchical zeolite CaA with microporous, mesoporous and macroporous structure was hydrothermally synthesized by a ”Bond-Blocking” method using organo-functionalized mesoporous silica (MS as a silica source. The characterization by XRD, SEM/TEM and N2 adsorption/desorption techniques showed that the prepared material had well-crystalline zeolite Linde Type A (LTA topological structure, microspherical particle morphologies, and hierarchically intracrystalline micro-meso-macropores structure. With the Bond-Blocking principle, the external surface area and macro-mesoporosity of the hierarchical zeolite CaA can be adjusted by varying the organo-functionalized degree of the mesoporous silica surface. Similarly, the distribution of the micro-meso-macroporous structure in the zeolite CaA can be controlled purposely. Compared with the conventional microporous zeolite CaA, the hierarchical zeolite CaA as a catalyst in the conversion of methanol to dimethyl ether (DME, exhibited complete DME selectivity and stable catalytic activity with high methanol conversion. The catalytic performances of the hierarchical zeolite CaA results clearly from the micro-meso-macroporous structure, improving diffusion properties, favoring the access to the active surface and avoiding secondary reactions (no hydrocarbon products were detected after 3 h of reaction.

  3. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  4. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  5. Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface.

    Science.gov (United States)

    Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi

    2018-01-17

    Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.

  6. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  7. Surface characterization of modern resin composites: a multitechnique approach.

    Science.gov (United States)

    Silikas, Nick; Kavvadia, Katerina; Eliades, George; Watts, David

    2005-04-01

    To characterize the surface properties of some modern resin composites employing a series of physicochemical methods. Specimens from three microhybrid (Palfique Estellite-PE, Z250 Filtek-ZF, Tetric Ceram-TC) and one nanofilled (Supreme Filtek-SF) conventionally photo-cured resin composites polished with Soflex disks were studied for the following properties: Surface chemical composition and degree of C=C conversion (FTIR), surface energetics (contact angles), surface texture (AFM), surface roughness (AFM, stylus profilometry) and gloss (60 degrees-, 20 degrees-angle specular gloss). Polar and non polar molecular groups were identified in all products including NH and CONH (SF, ZF, TC). SF and ZF demonstrated higher conversion than PE and TC (P 0.05) were found in critical surface tension, total work of adhesion and its polar and dispersion components, the latter being the highest in all products. AFM showed the smoothest surface texture in PE. The ranking of Sa, Sq, Ra and Rz roughness parameters was PEgloss measurements (PE, SF>ZF>TC, PTC, Pgloss differences. A positive correlation was found between Sa and Ra and a negative one between Sa and 20 degree-angle gloss.

  8. Ownership conversions and nursing home performance.

    Science.gov (United States)

    Grabowski, David C; Stevenson, David G

    2008-08-01

    To examine the effects of ownership conversions on nursing home performance. Online Survey, Certification, and Reporting system data from 1993 to 2004, and the Minimum Data Set (MDS) facility reports from 1998 to 2004. Regression specification incorporating facility fixed effects, with terms to identify trends in the pre- and postconversion periods. The annual rate of nursing home conversions almost tripled between 1994 and 2004. Our regression results indicate converting facilities are generally different throughout the pre/postconversion years, suggesting little causal effect of ownership conversions on nursing home performance. Before and after conversion, nursing homes converting from nonprofit to for-profit status generally exhibit deterioration in their performance, while nursing homes converting from for-profit to nonprofit status generally exhibit improvement. Policy makers have expressed concern regarding the implications of ownership conversions for nursing home performance. Our results imply that regulators and policy makers should not only monitor the outcomes of nursing home conversions, but also the targets of these conversions.

  9. Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide

    Science.gov (United States)

    Stephen, Mark A. (Inventor)

    2018-01-01

    An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.

  10. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  11. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  12. Conserving Coherence and Storing Energy during Internal Conversion: Photoinduced Dynamics of cis- and trans-Azobenzene Radical Cations

    KAUST Repository

    Munkerup, Kristin

    2017-10-24

    Light harvesting via energy storage in azobenzene has been a key topic for decades, and the process of energy distribution over the molecular degrees of freedom following photoexcitation remains to be understood. Dynamics of a photoexcited system can exhibit high degrees of non-ergodicity when it is driven by just a few degrees of freedom. Typically, an internal conversion leads to the loss of such localization of dynamics, as the intramolecular energy becomes statistically redistributed over all molecular degrees of freedom. Here, we present a unique case where the excitation energy remains localized even subsequent to internal conversion. Strong-field ionization is used to prepare cis- and trans-azobenzene radical cations on the D1 surface with little excess energy, at the equilibrium neutral geometry. These D1 ions are preferably formed because in this case D1 and D0 switch place in the presence of the strong laser field. The post-ionization dynamics is dictated by the potential energy landscape. The D1 surface is steep downhill along the cis/trans isomerization coordinate and towards a common minimum shared by the two isomers in the region of D1/D0 conical intersection. Coherent cis/trans torsional motion along this coordinate is manifested in the ion transients by a cosine modulation. In this scenario, D0 becomes populated with molecules that are energized mainly along the cis-trans isomerization coordinate, with the kinetic energy above the cis-trans inter-conversion barrier. These activated azobenzene molecules easily cycle back and forth along the D0 surface, and give rise to several periods of modulated signal before coherence is lost. This persistent localization of the internal energy during internal conversion is provided by the steep downhill potential energy surface, small initial internal energy content, and a strong hole-lone pair interaction that drives the molecule along the cis-trans isomerization coordinate to facilitate the transition between

  13. Conversational Styles and Misunderstanding in Cross-Sex Conversations in He’s Just Not That into You Movie

    Directory of Open Access Journals (Sweden)

    Ayu Nyoman Aryani

    2017-01-01

    Full Text Available Conversation is a social interaction among societies. In this case, gender differences in daily communication lead to men’s and women’s different point of views in performing styles of the conversations. Misunderstanding is likely to occur in crosssex conversations when the idea or thought are understood differently by men and women. This study was intended to analyze the use of conversational styles by men and women and also investigate the misunderstanding phenomena that happened in cross-sex conversations. The researcher identified that the conversational styles used by Alex as a male character in the cross-sex conversations were qualifiers, controlling the topics, verbal fillers, intensifiers, swear words, compound requests, tag questions, questions, interruptions, overlapping, and talk domination. Meanwhile, Gigi, as a female character used qualifiers, controlling the topics, verbal fillers, intensifiers, swear words, tag questions, questions, interruptions, overlapping, talk domination, and silence. In answering the second question, the researcher discovered factors that affected the misunderstanding in the cross-sex conversations between Alex and Gigi were involvement versus independence and message versus metamessage.   DOI: https://doi.org/10.24071/llt.2016.190101

  14. Catalytical conversion from ortho-H2 to para-H2

    International Nuclear Information System (INIS)

    Corat, E.J.

    1984-01-01

    The classical theory of ortho to para-H 2 conversion is discussed, considering the catalytical action of an inhomogeneous magnetic field on a surface with magnetic particles. In particular, the use of charcoal as a catalyst at low temperatures (77 0 K) is considered and some results are presented. The development of a sensor for the determination of para-H 2 concentration in H 2 gas is studied. Experimental results with this sensor are also shown. (Author) [pt

  15. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  16. Inertial confinement fusion reaction chamber and power conversion system study

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li 2 O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li 2 O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li 2 O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive

  17. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  18. Optical analysis of down-conversion OLEDs

    Science.gov (United States)

    Krummacher, Benjamin; Klein, Markus; von Malm, Norwin; Winnacker, Albrecht

    2008-02-01

    Phosphor down-conversion of blue organic light-emitting diodes (OLEDs) is one approach to generate white light, which offers the possibility of easy color tuning, a simple device architecture and color stability over lifetime. In this article previous work on down-conversion devices in the field of organic solid state lighting is briefly reviewed. Further, bottom emitting down-conversion OLEDs are studied from an optical point of view. Therefore the physical processes occurring in the down-conversion layer are translated into a model which is implemented in a ray tracing simulation. By comparing its predictions to experimental results the model is confirmed. For the experiments a blue-emitting polymer OLED (PLED) panel optically coupled to a series of down-conversion layers is used. Based on results obtained from ray tracing simulation some of the implications of the model for the performance of down-conversion OLEDs are discussed. In particular it is analysed how the effective reflectance of the underlying blue OLED and the particle size distribution of the phosphor powder embedded in the matrix of the down-conversion layer influence extraction efficiency.

  19. Responsive turns in Indonesian informal conversation

    Directory of Open Access Journals (Sweden)

    M.J. van Naerssen

    2015-04-01

    Full Text Available People have all sorts of expectations about how interlocutors will and should behave linguistically when engaged in a conversation. These conversational norms are usually implicit and are sometimes difficult to master in a language that is new to you. This paper presents a model of different types of responses in informal conversation, illustrated with Indonesian examples. It builds upon the conversation analytic notion of preference; distinguishing preferred – or constructive – responses and dispreferred – or competitive – responses. The model is meant as a tool to cross-linguistically compare response behaviour to gain insight in language specific expectations about interaction in informal conversation.

  20. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  1. Conversations in African Philosophy

    African Journals Online (AJOL)

    JONATHAN

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  2. Predictability of Conversation Partners

    Science.gov (United States)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  3. Predictability of Conversation Partners

    Directory of Open Access Journals (Sweden)

    Taro Takaguchi

    2011-09-01

    Full Text Available Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song et al., Science 327, 1018 (2010SCIEAS0036-8075] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  4. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  5. Statistical thermodynamics foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion

    Science.gov (United States)

    Badescu, Viorel; Landsberg, Peter T.

    1995-08-01

    The general theory developed in part I was applied to build up two models of photovoltaic conversion. To this end two different systems were analyzed. The first system consists of the whole absorber (converter), for which the balance equations for energy and entropy are written and then used to derive an upper bound for solar energy conversion. The second system covers a part of the absorber (converter), namely the valence and conduction electronic bands. The balance of energy is used in this case to derive, under additional assumptions, another upper limit for the conversion efficiency. This second system deals with the real location where the power is generated. Both models take into consideration the radiation polarization and reflection, and the effects of concentration. The second model yields a more accurate upper bound for the conversion efficiency. A generalized solar cell equation is derived. It is proved that other previous theories are particular cases of the present more general formalism.

  6. Computer code conversion using HISTORIAN

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Kumakura, Toshimasa.

    1990-09-01

    When a computer program written for a computer A is converted for a computer B, in general, the A version source program is rewritten for B version. However, in this way of program conversion, the following inconvenient problems arise. 1) The original statements to be rewritten for B version are lost. 2) If the original statements of the A version rewritten for B version would remain as comment lines, the B version source program becomes quite large. 3) When update directives of the program are mailed from the organization which developed the program or when some modifications are needed for the program, it is difficult to point out the part to be updated or modified in the B version source program. To solve these problems, the conversion method using the general-purpose software management aid system, HISTORIAN, has been introduced. This conversion method makes a large computer code a easy-to-use program for use to update, modify or improve after the conversion. This report describes the planning and procedures of the conversion method and the MELPROG-PWR/MOD1 code conversion from the CRAY version to the JAERI FACOM version as an example. This report would provide useful information for those who develop or introduce large programs. (author)

  7. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  8. Overcoming difficult conversations in clinical supervision

    Directory of Open Access Journals (Sweden)

    Williams B

    2016-06-01

    Full Text Available Brett Williams,1 Christine King,1 Tanya Edlington,21Department of Community Emergency Health and Paramedic Practice, Monash University, Franskton, VIC, 2The Conversation Clinic Pty Ltd, Melbourne, VIC, Australia Background: Clinical supervisors are responsible for managing many facets of clinical learning and face a range of challenges when the need for "difficult" conversations arises, including the need to manage conflict and relationships. Methods: Spotlight on Conversations Workshop was developed to improve the capacity of clinical supervisors to engage in difficult conversations. They were designed to challenge the mindset of clinical supervisors about difficult conversations with students, the consequences of avoiding difficult conversations, and to offer activities for practicing difficult conversations. Preworkshop, postworkshop, and 4-month follow-up evaluations assessed improvements in knowledge, intent to improve, and confidence along with workshop satisfaction. Results: Nine workshops were delivered in a range of locations across Victoria, Australia, involving a total of 117 clinical supervisors. Preworkshop evaluations illustrated that more than half of the participants had avoided up to two difficult conversations in the last month in their workplace. Postworkshop evaluation at 4 months showed very high levels of satisfaction with the workshop's relevancy, content, and training, as well as participants' intention to apply knowledge and skills. Also shown were significant changes in participants' confidence to have difficult conversations not only with students but also with other peers and colleagues. In follow-up in-depth interviews with 20 of the 117 participants, 75% said they had made definite changes in their practice because of what they learned in the workshop and another 10% said they would make changes to their practice, but had not had the opportunity yet to do so. Conclusion: We conclude that the Spotlight on

  9. Paradoxical therapy in conversion disorder

    OpenAIRE

    ATAOĞLU, Ahmet

    1998-01-01

    Paradoxical therapy consists of suggesting that the patient intentionally engages in the unwanted behaviour, such as performing complusive ritual or bringing on a conversion attack. In this study paradoxical intention (PI) was used with to half of the patients with conversion disorders, while the other half were treated with diazepam in order to examine the efficiency of the PI versus diazepam in conversion disorder. Patients treated with PI appeared to have a greater improvement r...

  10. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation

    International Nuclear Information System (INIS)

    Qiu, R.; Li, J.; Zhang, Z.; Liu, L.; Bi, L.; Ren, L.

    2009-01-01

    A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface. (authors)

  11. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation.

    Science.gov (United States)

    Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li

    2009-02-01

    A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.

  12. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  13. Conversing as Metaphor of Human Thinking: Is Mind like a Conversation?

    Science.gov (United States)

    Sorsana, Christine; Trognon, Alain

    2018-06-01

    How can researchers shape their ideas so that they understand the mind better? This theoretical paper discusses the merits of the conversation metaphor as a means of analyzing the human mind. We will develop arguments concerning conversation as i) a situated and distributed activity, ii) a "product" in perpetual construction, and iii) the amount of credence and belief we afford it. Finally, we will advocate for metaphorical tools that promote a more dynamic conceptualization of human thinking.

  14. Active carbons from low temperature conversion chars

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Bayer, E.

    2002-05-01

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm 3 to 0.52 g.cm 3 . Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g -1 ), while O. martiana contained the highest lignin content (40.7 g.100g -1 ). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (V micro ) was between 0.33cm 3 .g -1 - 0.40cm 3 .g -1 , while the mesopore volume(V meso ) was between 0.05 cm 3 .g -1 - 0.07 cm 3 .g -1 . The BET specific surface exceeds 1000 m 2 .g -1 . All these values compared favourably with high grade commercial active carbons. (author)

  15. Conversational Styles and Misunderstanding in Cross-Sex Conversations in He’s Just Not That into You Movie

    OpenAIRE

    Ayu Nyoman Aryani

    2017-01-01

    Conversation is a social interaction among societies. In this case, gender differences in daily communication lead to men’s and women’s different point of views in performing styles of the conversations. Misunderstanding is likely to occur in crosssex conversations when the idea or thought are understood differently by men and women. This study was intended to analyze the use of conversational styles by men and women and also investigate the misunderstanding phenomena that happened in cross-s...

  16. Conversational evidence in therapeutic dialogue.

    Science.gov (United States)

    Strong, Tom; Busch, Robbie; Couture, Shari

    2008-07-01

    Family therapists' participation in therapeutic dialogue with clients is typically informed by evidence of how such dialogue is developing. In this article, we propose that conversational evidence, the kind that can be empirically analyzed using discourse analyses, be considered a contribution to widening psychotherapy's evidence base. After some preliminaries about what we mean by conversational evidence, we provide a genealogy of evaluative practice in psychotherapy, and examine qualitative evaluation methods for their theoretical compatibilities with social constructionist approaches to family therapy. We then move on to examine the notion of accomplishment in therapeutic dialogue given how such accomplishments can be evaluated using conversation analysis. We conclude by considering a number of research and pedagogical implications we associate with conversational evidence.

  17. Effective communication during difficult conversations.

    Science.gov (United States)

    Polito, Jacquelyn M

    2013-06-01

    A strong interest and need exist in the workplace today to master the skills of conducting difficult conversations. Theories and strategies abound, yet none seem to have found the magic formula with universal appeal and success. If it is such an uncomfortable skill to master is it better to avoid or initiate such conversations with employees? Best practices and evidence-based management guide us to the decision that quality improvement dictates effective communication, even when difficult. This brief paper will offer some suggestions for strategies to manage difficult conversations with employees. Mastering the skills of conducting difficult conversations is clearly important to keeping lines of communication open and productive. Successful communication skills may actually help to avert confrontation through employee engagement, commitment and appropriate corresponding behavior

  18. 5 CFR 536.303 - Geographic conversion.

    Science.gov (United States)

    2010-01-01

    ... after geographic conversion is the employee's existing payable rate of basic pay in effect immediately before the action. (b) Geographic conversion when a retained rate employee's official worksite is changed... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Geographic conversion. 536.303 Section...

  19. 24 CFR 972.109 - Conversion of developments.

    Science.gov (United States)

    2010-04-01

    ... writing whether it has approved the conversion plan. Units that are vacant or vacated on or after the... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Conversion of developments. 972.109... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Required Conversion of Public Housing...

  20. [Management of patients with conversion disorder].

    Science.gov (United States)

    Vermeulen, Marinus; Hoekstra, Jan; Kuipers-van Kooten, Mariëtte J; van der Linden, Els A M

    2014-01-01

    The symptoms of conversion disorder are not due to conscious simulation. There should be no doubt that the symptoms of conversion disorder are genuine, even if scans do not reveal any abnormalities. The management of patients with conversion disorder starts with an explanation of the diagnosis. The essence of this explanation is that patients first hear about what the diagnosis actually means and only after this about what they do not have. When explaining the diagnosis it is a good idea to use metaphors. The treatment of patients with conversion disorder is carried out together with a physical therapist. The collaboration of healthcare professionals who are involved in the treatment of a patient with conversion disorder should preferably be coordinated by the patient's general practitioner.

  1. Nuclear reactor closed Brayton cycle power conversion system optimization trends for extra-terrestrial applications

    International Nuclear Information System (INIS)

    Ashe, T.L.; Baggenstoss, W.G.; Bons, R.

    1990-01-01

    Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kW e and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source

  2. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  3. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  4. Analysis of internal conversion coefficients

    International Nuclear Information System (INIS)

    Coursol, N.; Gorozhankin, V.M.; Yakushev, E.A.; Briancon, C.; Vylov, Ts.

    2000-01-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z=30 to Z=103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10≤Z≤104, Special Report of Leningrad Nuclear Physics Institute; Roesel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac-Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations

  5. [Hydroxylamine conversion by anammox enrichment].

    Science.gov (United States)

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway

  6. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  7. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  8. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  9. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  10. 5 CFR 534.506 - Conversion provisions.

    Science.gov (United States)

    2010-01-01

    ... conversion, other than to the minimum rate under 5 U.S.C. 5376, the increase must be approved by the head of... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conversion provisions. 534.506 Section... OTHER SYSTEMS Pay for Senior-Level and Scientific and Professional Positions § 534.506 Conversion...

  11. 47 CFR 80.761 - Conversion graphs.

    Science.gov (United States)

    2010-10-01

    ... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761...

  12. The Conversion of Wiswesser Line Notations to Ring Codes. I. The Conversion of Ring Systems

    Science.gov (United States)

    Granito, Charles E.; And Others

    1972-01-01

    The computerized conversion of Wiswesser Line Notations to Ring Codes, using a two-part approach, and the set of computer programs generated for the conversion of ring systems are described. (9 references) (Author)

  13. Modeling conversion of ammonium diuranate (ADU) into uranium dioxide (UO{sub 2}) powder

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Nguyen Trong; Thuan, Le Ba [Institute for Technology of Radioactive and Rare Elements (ITRRE), 48 Lang Ha, Dong Da, Ha Noi (Viet Nam); Khoai, Do Van [Institute for Technology of Radioactive and Rare Elements (ITRRE), 48 Lang Ha, Dong Da, Ha Noi (Viet Nam); Current Postdoctoral Fellow at Tokai Reprocessing Technology Development Center, Japan Atomic Energy Agency (JAEA), 4-33 Tokaimura, Nakagun, Ibaraki, 319-1194 (Japan); Lee, Jin-Young, E-mail: jylee@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132 (Korea, Republic of); Jyothi, Rajesh Kumar, E-mail: rkumarphd@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132 (Korea, Republic of)

    2016-10-15

    In the paper, Brandon mathematical model that describes the relationship between the essential fabrication parameters [reduction temperature (T{sub R}), calcination temperature (T{sub C}), calcination time (t{sub C}) and reduction time (t{sub R})] and specific surface area of ammonium diuranate (ADU)-derived UO{sub 2} powder products was established. The proposed models can be used to predict and control the specific surface area of UO{sub 2} powders prepared through ADU route. Suitable temperatures for conversion of ADU and ammonium uranyl carbonate (AUC) was examined with the proposed model through assessment of the sinterability of UO{sub 2} powders.

  14. The conversational interface talking to smart devices

    CERN Document Server

    McTear, Michael; Griol, David

    2016-01-01

    This book provides a comprehensive introduction to the conversational interface, which is becoming the main mode of interaction with virtual personal assistants, smart devices, various types of wearables, and social robots. The book consists of four parts: Part I presents the background to conversational interfaces, examining past and present work on spoken language interaction with computers; Part II covers the various technologies that are required to build a conversational interface along with practical chapters and exercises using open source tools; Part III looks at interactions with smart devices, wearables, and robots, and then goes on to discusses the role of emotion and personality in the conversational interface; Part IV examines methods for evaluating conversational interfaces and discusses future directions. · Presents a comprehensive overview of the various technologies that underlie conversational user interfaces; · Combines descriptions of conversational user interface technologies with a gui...

  15. Dose conversion factors

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1992-01-01

    The following is discussed in this report: concepts and quantities used in calculating radiation dose from internal and external exposure. Tabulations of dose conversion factor for internal and external exposure to radionuclides. Dose conversion factors give dose per unit intake (internal) or dose per unit concentration in environment (external). Intakes of radionuclides for internal exposure and concentrations of radionuclides in environment for external exposure are assumed to be known. Intakes and concentrations are obtained, e.g., from analyses of environmental transport and exposure pathways. differences between dosimetry methods for radionuclides and hazardous chemicals are highlighted

  16. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  17. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Science.gov (United States)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-10-01

    A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  18. Blind-date Conversation Joining

    Directory of Open Access Journals (Sweden)

    Luca Cesari

    2013-07-01

    Full Text Available We focus on a form of joining conversations among multiple parties in service-oriented applications where a client may asynchronously join an existing conversation without need to know in advance any information about it. More specifically, we show how the correlation mechanism provided by orchestration languages enables a form of conversation joining that is completely transparent to clients and that we call 'blind-date joining'. We provide an implementation of this strategy by using the standard orchestration language WS-BPEL. We then present its formal semantics by resorting to COWS, a process calculus specifically designed for modelling service-oriented applications. We illustrate our approach by means of a simple, but realistic, case study from the online games domain.

  19. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  20. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  1. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  2. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  3. Mechanisms of Ectopic Gene Conversion

    Directory of Open Access Journals (Sweden)

    P.J. Hastings

    2010-11-01

    Full Text Available Gene conversion (conversion, the unidirectional transfer of DNA sequence information, occurs as a byproduct of recombinational repair of broken or damaged DNA molecules. Whereas excision repair processes replace damaged DNA by copying the complementary sequence from the undamaged strand of duplex DNA, recombinational mechanisms copy similar sequence, usually in another molecule, to replace the damaged sequence. In mitotic cells the other molecule is usually a sister chromatid, and the repair does not lead to genetic change. Less often a homologous chromosome or homologous sequence in an ectopic position is used. Conversion results from repair in two ways. First, if there was a double-strand gap at the site of a break, homologous sequence will be used as the template for synthesis to fill the gap, thus transferring sequence information in both strands. Second, recombinational repair uses complementary base pairing, and the heteroduplex molecule so formed is a source of conversion, both as heteroduplex and when donor (undamaged template information is retained after correction of mismatched bases in heteroduplex. There are mechanisms that favour the use of sister molecules that must fail before ectopic homology can be used. Meiotic recombination events lead to the formation of crossovers required in meiosis for orderly segregation of pairs of homologous chromosomes. These events result from recombinational repair of programmed double-strand breaks, but in contrast with mitotic recombination, meiotic recombinational events occur predominantly between homologous chromosomes, so that transfer of sequence differences by conversion is very frequent. Transient recombination events that do not form crossovers form both between homologous chromosomes and between regions of ectopic homology, and leave their mark in the occurrence of frequent non-crossover conversion, including ectopic conversion.

  4. Conversion factors and oil statistics

    International Nuclear Information System (INIS)

    Karbuz, Sohbet

    2004-01-01

    World oil statistics, in scope and accuracy, are often far from perfect. They can easily lead to misguided conclusions regarding the state of market fundamentals. Without proper attention directed at statistic caveats, the ensuing interpretation of oil market data opens the door to unnecessary volatility, and can distort perception of market fundamentals. Among the numerous caveats associated with the compilation of oil statistics, conversion factors, used to produce aggregated data, play a significant role. Interestingly enough, little attention is paid to conversion factors, i.e. to the relation between different units of measurement for oil. Additionally, the underlying information regarding the choice of a specific factor when trying to produce measurements of aggregated data remains scant. The aim of this paper is to shed some light on the impact of conversion factors for two commonly encountered issues, mass to volume equivalencies (barrels to tonnes) and for broad energy measures encountered in world oil statistics. This paper will seek to demonstrate how inappropriate and misused conversion factors can yield wildly varying results and ultimately distort oil statistics. Examples will show that while discrepancies in commonly used conversion factors may seem trivial, their impact on the assessment of a world oil balance is far from negligible. A unified and harmonised convention for conversion factors is necessary to achieve accurate comparisons and aggregate oil statistics for the benefit of both end-users and policy makers

  5. Conversational AI: The Science Behind the Alexa Prize

    OpenAIRE

    Ram, Ashwin; Prasad, Rohit; Khatri, Chandra; Venkatesh, Anu; Gabriel, Raefer; Liu, Qing; Nunn, Jeff; Hedayatnia, Behnam; Cheng, Ming; Nagar, Ashish; King, Eric; Bland, Kate; Wartick, Amanda; Pan, Yi; Song, Han

    2018-01-01

    Conversational agents are exploding in popularity. However, much work remains in the area of social conversation as well as free-form conversation over a broad range of domains and topics. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million-dollar university competition where sixteen selected university teams were challenged to build conversational agents, known as socialbots, to converse coherently and engagingly with humans on popular topics ...

  6. Energy conversion at dipolarization fronts

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  7. Passenger and Cell Phone Conversations in Simulated Driving

    Science.gov (United States)

    Drews, Frank A.; Pasupathi, Monisha; Strayer, David L.

    2008-01-01

    This study examines how conversing with passengers in a vehicle differs from conversing on a cell phone while driving. We compared how well drivers were able to deal with the demands of driving when conversing on a cell phone, conversing with a passenger, and when driving without any distraction. In the conversation conditions, participants were…

  8. The Nanticoke conversion study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    A study was conducted to assess the conversion of the Nanticoke coal-fired power plant to cleaner burning natural gas combined-cycle gas turbines. The Nanticoke Generating Station on Lake Erie is responsible for more than 50 per cent of Ontario Power Generation's (OPG) coal-fired electricity production. The OPG is proposing to work towards compliance with the newly signed Ozone Annex to the 1991 Canada-United States Air Quality Agreement which will require fossil-fueled power plants in southern Ontario to reduce their smog-causing nitrogen oxides emissions by about 50 per cent by 2007. This study assessed the emission reduction benefits and financial costs of conversion compared to continuing to operate Nanticoke as a coal-fired plant. The analysis includes a base case set of data on fuel prices, retrofit costs, fuel efficiencies, annual capacity factors and other parameters. It was determined that conversion would cost the average household less than $3 per month on their electricity bill. Conversion would also reduce emissions nitrogen oxide, a major smog pollutant, by 83 per cent and the particulates that form the most health-threatening portion of smog would be reduced by 100 per cent. 15 tabs., 1 fig.

  9. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Bayram, E-mail: bkilic@yalova.edu.tr, E-mail: kbayramkilic@gmail.com [Department of Energy Systems Engineering, Faculty of Engineering, Yalova University, 77100 Yalova (Turkey); Telli, Hakan; Başaran, Ali; Pirge, Gursev [Turkish Air Force Academy, Institute of Aeronautics and Space Technologies, Istanbul (Turkey); Tüzemen, Sebahattin [Department of Physics, Faculty of Science, Ataturk University, Erzurum (Turkey)

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  10. Effect of impervious surface area and vegetation changes on mean surface temperature over Tshwane metropolis, Gauteng Province, South Africa

    CSIR Research Space (South Africa)

    Adeyemi, A

    2015-11-01

    Full Text Available The Tshwane Metropolis, Gauteng Province, South Africa, continues to experience rapid urbanization as a result of population growth. This has led to the conversion of natural lands into large man-made landscapes i.e., increase in impervious surfaces...

  11. Neurologists' understanding and management of conversion disorder.

    Science.gov (United States)

    Kanaan, Richard A; Armstrong, David; Wessely, Simon Charles

    2011-09-01

    Conversion disorder is largely managed by neurologists, for whom it presents great challenges to understanding and management. This study aimed to quantify these challenges, examining how neurologists understand conversion disorder, and what they tell their patients. A postal survey of all consultant neurologists in the UK registered with the Association of British Neurologists. 349 of 591 practising consultant neurologists completed the survey. They saw conversion disorder commonly. While they endorsed psychological models for conversion, they diagnosed it according to features of the clinical presentation, most importantly inconsistency and abnormal illness behaviour. Most of the respondents saw feigning as entangled with conversion disorder, with a minority seeing one as a variant of the other. They were quite willing to discuss psychological factors as long as the patient was receptive but were generally unwilling to discuss feigning even though they saw it as their responsibility. Those who favoured models in terms of feigning were older, while younger, female neurologists preferred psychological models, believed conversion would one day be understood neurologically and found communicating with their conversion patients easier than it had been in the past. Neurologists accept psychological models for conversion disorder but do not employ them in their diagnosis; they do not see conversion as clearly different from feigning. This may be changing as younger, female neurologists endorse psychological views more clearly and find it easier to discuss with their patients.

  12. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  13. Large-video-display-format conversion

    NARCIS (Netherlands)

    Haan, de G.

    2000-01-01

    High-quality video-format converters apply motion estimation and motion compensation to prevent jitter resulting from picture-rate conversion, and aliasing due to de-interlacing, in sequences with motion. Although initially considered as too expensive, high-quality conversion is now economically

  14. Teaching autistic children conversational speech using video modeling.

    Science.gov (United States)

    Charlop, M H; Milstein, J P

    1989-01-01

    We assessed the effects of video modeling on acquisition and generalization of conversational skills among autistic children. Three autistic boys observed videotaped conversations consisting of two people discussing specific toys. When criterion for learning was met, generalization of conversational skills was assessed with untrained topics of conversation; new stimuli (toys); unfamiliar persons, siblings, and autistic peers; and other settings. The results indicated that the children learned through video modeling, generalized their conversational skills, and maintained conversational speech over a 15-month period. Video modeling shows much promise as a rapid and effective procedure for teaching complex verbal skills such as conversational speech. PMID:2793634

  15. Neural network based method for conversion of solar radiation data

    International Nuclear Information System (INIS)

    Celik, Ali N.; Muneer, Tariq

    2013-01-01

    Highlights: ► Generalized regression neural network is used to predict the solar radiation on tilted surfaces. ► The above network, amongst many such as multilayer perceptron, is the most successful one. ► The present neural network returns a relative mean absolute error value of 9.1%. ► The present model leads to a mean absolute error value of estimate of 14.9 Wh/m 2 . - Abstract: The receiving ends of the solar energy conversion systems that generate heat or electricity from radiation is usually tilted at an optimum angle to increase the solar incident on the surface. Solar irradiation data measured on horizontal surfaces is readily available for many locations where such solar energy conversion systems are installed. Various equations have been developed to convert solar irradiation data measured on horizontal surface to that on tilted one. These equations constitute the conventional approach. In this article, an alternative approach, generalized regression type of neural network, is used to predict the solar irradiation on tilted surfaces, using the minimum number of variables involved in the physical process, namely the global solar irradiation on horizontal surface, declination and hour angles. Artificial neural networks have been successfully used in recent years for optimization, prediction and modeling in energy systems as alternative to conventional modeling approaches. To show the merit of the presently developed neural network, the solar irradiation data predicted from the novel model was compared to that from the conventional approach (isotropic and anisotropic models), with strict reference to the irradiation data measured in the same location. The present neural network model was found to provide closer solar irradiation values to the measured than the conventional approach, with a mean absolute error value of 14.9 Wh/m 2 . The other statistical values of coefficient of determination and relative mean absolute error also indicate the

  16. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Linwood Pendleton

    Full Text Available Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'. Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  17. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids.

    Science.gov (United States)

    Khan, Amir Sada; Man, Zakaria; Bustam, Mohamad Azmi; Nasrullah, Asma; Ullah, Zahoor; Sarwono, Ariyanti; Shah, Faiz Ullah; Muhammad, Nawshad

    2018-02-01

    In the present research work, dicationic ionic liquids, containing 1,4-bis(3-methylimidazolium-1-yl) butane ([C 4 (Mim) 2 ]) cation with counter anions [(2HSO 4 )(H 2 SO 4 ) 0 ], [(2HSO 4 )(H 2 SO 4 ) 2 ] and [(2HSO 4 )(H 2 SO 4 ) 4 ] were synthesised. ILs structures were confirmed using 1 H NMR spectroscopy. Thermal stability, Hammett acidity, density and viscosity of ILs were determined. Various types of lignocellulosic biomass such as rubber wood, palm oil frond, bamboo and rice husk were converted into levulinic acid (LA). Among the synthesized ionic liquids, [C 4 (Mim) 2 ][(2HSO 4 )(H 2 SO 4 ) 4 ] showed higher % yield of LA up to 47.52 from bamboo biomass at 110°C for 60min, which is the better yield at low temperature and short time compared to previous reports. Surface morphology, surface functional groups and thermal stability of bamboo before and after conversion into LA were studied using SEM, FTIR and TGA analysis, respectively. This one-pot production of LA from agro-waste will open new opportunity for the conversion of sustainable biomass resources into valuable chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Career conversations in vocational schools

    NARCIS (Netherlands)

    Mittendorff, K.M.; Brok, den P.J.; Beijaard, D.

    2010-01-01

    The purpose of this study was to examine career conversations between teachers and students in competence-based vocational education in the Netherlands. A total of 32 career conversations were observed and analysed with respect to four elements: content, teacher activities, student activities and

  19. Optimization theory for ballistic conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  20. Investigation on surface structure of potassium permanganate/nitric acid treated poly(tetrafluoroethylene)

    International Nuclear Information System (INIS)

    Fu, Congli; Liu, Shuling; Gong, Tianlong; Gu, Aiqun; Yu, Zili

    2014-01-01

    Highlights: • A new transformation (conversion) mechanism of PTFE surface from a hydrophobicity to a hydrophilicity was proposed through the treatment of KMnO 4 /HNO 3 . • Chemical reactions or defluorination of PTFE described in the reported paper was testified to be a misconceived conclusion by the combination of several testing measurements (IR, XPS, XRD and so on) in our present work. • Deposition of manganese oxide and/or manganese hydroxide on PTFE surface contributed to the hydrophilic property of the modified PTFE with KMnO 4 /HNO 3 treated. • The deposition thickness on the modified PTFE surface was about 5 μm, which was significantly helpful in enhancing the adhesive strength of PTFE with other materials. - Abstract: In the previous articles concerning the treatment of poly(tetrafluoroethylene) (PTFE) with potassium permanganate/nitric acid mixture, the conversion of a hydrophobic to a hydrophilic surface was partially assigned to the defluorination of PTFE and then the introduction of carbonyl and hydroxyl groups into the defluorinated sites. In the present work, PTFE sheets were treated with potassium permanganate/nitric acid, and the surfaces before and after treatment were comparatively characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface sediments of the treated PTFE were also determined by atomic absorption spectroscopy (AAS). The results indicate that the conversion of the hydrophobicity to the hydrophilicity on the modified PTFE surface is mainly due to the deposition of hydrophilic manganese oxides which covered the fluorocarbon surface, and no detectable chemical reactions of PTFE occur in the treating process

  1. Investigation on surface structure of potassium permanganate/nitric acid treated poly(tetrafluoroethylene)

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Congli; Liu, Shuling; Gong, Tianlong; Gu, Aiqun; Yu, Zili, E-mail: ziliyu@scu.edu.cn

    2014-10-30

    Highlights: • A new transformation (conversion) mechanism of PTFE surface from a hydrophobicity to a hydrophilicity was proposed through the treatment of KMnO{sub 4}/HNO{sub 3}. • Chemical reactions or defluorination of PTFE described in the reported paper was testified to be a misconceived conclusion by the combination of several testing measurements (IR, XPS, XRD and so on) in our present work. • Deposition of manganese oxide and/or manganese hydroxide on PTFE surface contributed to the hydrophilic property of the modified PTFE with KMnO{sub 4}/HNO{sub 3} treated. • The deposition thickness on the modified PTFE surface was about 5 μm, which was significantly helpful in enhancing the adhesive strength of PTFE with other materials. - Abstract: In the previous articles concerning the treatment of poly(tetrafluoroethylene) (PTFE) with potassium permanganate/nitric acid mixture, the conversion of a hydrophobic to a hydrophilic surface was partially assigned to the defluorination of PTFE and then the introduction of carbonyl and hydroxyl groups into the defluorinated sites. In the present work, PTFE sheets were treated with potassium permanganate/nitric acid, and the surfaces before and after treatment were comparatively characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface sediments of the treated PTFE were also determined by atomic absorption spectroscopy (AAS). The results indicate that the conversion of the hydrophobicity to the hydrophilicity on the modified PTFE surface is mainly due to the deposition of hydrophilic manganese oxides which covered the fluorocarbon surface, and no detectable chemical reactions of PTFE occur in the treating process.

  2. Conversion electrons in the SDC

    International Nuclear Information System (INIS)

    Wicklund, A.B.

    1991-01-01

    We summarize a preliminary analysis of the rates for conversion electrons in the SDC detector, relative to other interesting sources of prompt electrons. We have used Papageno V3.30, and other available NLO calculations to estimate inclusive rates in the central region (η less than 2.0), and we have cross checked these using CDF data at 1.8 TeV. We have considered three sources of ''isolated'' electrons, namely inclusive W/Z production; top quark (Mt=140); and QCD prompt photon production, followed by conversion in 10% XO. This value approximates the inner silicon detector at SDC. Additional conversions will occur in the outer tracking chamber, but the trigger and track reconstruction efficiency will be lower. We have also considered ''nonisolated'' leptons coming from inclusive bottom production, photon conversions resulting from π 0 ,η production in jets, and high pt hadrons faking electrons

  3. Hydrogen photoproduction by photoelectrochemical conversion

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The water-splitting reaction by photoelectrochemical processes has gained much more attention than any of many reactions proposed for solar generation of energy-rich molecules (fuels). The conversion efficiency of the photosystem is the key factor. The higher the efficiency, the more economically feasible will be the conversion scheme. The conversion efficiency is a function of the semiconductor properties, light intensity, spectral quality, properties of the electrolyte, counterelectrode, cell configuration, etc. The semiconductor parameters include band gap, absorption coefficient and diffusion length. The area and material used for a counterelectrode are important when considering polarization losses in a two-electrode system. Besides, the stability problem is also a very important one to meet the requirement for practical applications. This paper reviews some important issues on photoelectrochemical generation of hydrogen by water splitting. It includes energy conversion efficiency, market assessment and cost goal, state of the technology, and future directions for research

  4. evaluation of commercial FCC catalysts for hydrocarbon conversion. I. Physicochemical characterization and n-hexane conversion.

    NARCIS (Netherlands)

    Brait, A.; Brait, A.; Seshan, Kulathuiyer; Lercher, J.A.

    1998-01-01

    The physicochemical properties of six steam-stabilized, commercial FCC catalysts were compared in respect of their catalytic activity for n-hexane conversion. The conversion of n-hexane over these catalysts could be fully explained by three reaction pathways: protolytic cracking, protolytic

  5. Thermobaricity, cabbeling, and water-mass conversion

    Science.gov (United States)

    McDougall, Trevor J.

    1987-05-01

    The efficient mixing of heat and salt along neutral surfaces (by mesoscale eddies) is shown to lead to vertical advection through these neutral surfaces. This is due to the nonlinearities of the equation of state of seawater through terms like ∂2ρ/∂θ∂p (thermobaric effect) and ∂2ρ/∂ θ2 (cabbeling). Cabbeling always causes a sinking or downwelling of fluid through neutral surfaces, whereas thermobaricity can lead to a vertical velocity (relative to neutral surfaces) of either sign. In this paper it is shown that for reasonable values of the lateral scalar diffusivity (especially below a depth of 1000 m), these two processes cause vertical velocities of the order of 10-7 m s-1 through neutral surfaces (usually downward!) and cause water-mass conversion of a magnitude equal to that caused by a vertical diffusivity of 10-4 m2 s-1 (often equivalent to a negative diffusivity). Both thermobaricity and cabbeling can occur in the presence of any nonzero amount of small-scale turbulence and so will not be detected by microstructure measurements. The conservation equations for tracers are considered in a nonorthogonal coordinate frame that moves with neutral surfaces in the ocean. Since only mixing processes cause advection across neutral surfaces, it is useful to regard this vertical advection as a symptom of various mixing processes rather than as a separate physical process. It is possible to derive conservative equations for scalars that do not contain the vertical advective term explicity. In these conservation equations, the terms that represent mixing processes are substantially altered. It is argued that this form of the conservation equations is the most appropriate when considering water-mass transformation, and some examples are given of its application in the North Atlantic. It is shown that the variation of the vertical diffusivity with height does not cause water-mass transformation. Also, salt fingering is often 3-4 times more effective at

  6. ZrO2/bamboo leaves ash (BLA) Catalyst in Biodiesel Conversion of Rice Bran Oil

    Science.gov (United States)

    Fatimah, Is; Taushiyah, Ana; Badriatun Najah, Fitri; Azmi, Ulil

    2018-04-01

    Preparation, characterization and catalytic activity of ZrO2/bamboo leaves ash (BLA) catalyst for conversion of rice bran oil to biodiesel have been investigated. The catalyst was prepared by impregnation method of ZrOCl2 as ZrO2 precursor with BLA at a theoretical content of 20% wt. followed by calcination. The physicochemical properties of the catalyst material were characterized by x-ray diffraction (XRD), FTIR and surface acidity measurement. Activity test of materials in biodiesel conversion of rice bran oil was used by reflux method and microwave (MW) assisted method. Reaction variables studied in the investigation were the effect of catalyst weight and time of MW irradiation compared with the use reflux method. The results showed that ZrO2/BLA catalyst exhibited competitively effective and efficient processes for the production of biodiesel. The reflux method demonstrated an higher conversion (%) compared to MW method, however MW method showed the better reusable properties.

  7. Ortho-para-H2 conversion by hydrogen exchange: comparison of theory and experiment.

    Science.gov (United States)

    Lique, François; Honvault, Pascal; Faure, Alexandre

    2012-10-21

    We report fully-quantum time-independent calculations of cross sections and rate coefficients for the collisional (de)excitation of H(2) by H. Our calculations are based on the H(3) global potential energy surface of Mielke et al. [J. Chem. Phys. 116, 4142 (2002)]. The reactive hydrogen exchange channels are taken into account. We show that the ortho-para and para-ortho conversion of H(2) are significant processes at temperatures above ~300 K and for the last process we provide the first comparison with available experimental rate coefficients between 300 and 444 K. The good agreement between theory and experiment is a new illustration of our detailed understanding of the simplest chemical reaction. The importance of the ortho-para-H(2) conversion by hydrogen exchange in astrophysics is discussed.

  8. Active carbons from low temperature conversion chars

    Energy Technology Data Exchange (ETDEWEB)

    Adebowale, K O [Department of Chemistry, University of lbadan, lbadan (Nigeria); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Bayer, E [Universitaet Tuebingen, Institut fuer Organische Chemie, Forschungstelle Nukleinsaeure- und Peptidchemie, Tuebingen (Germany)

    2002-05-01

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm{sup 3} to 0.52 g.cm{sup 3}. Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g{sup -1}), while O. martiana contained the highest lignin content (40.7 g.100g{sup -1}). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (V{sub micro}) was between 0.33cm{sup 3}.g{sup -1} - 0.40cm{sup 3}.g{sup -1}, while the mesopore volume(V{sub meso}) was between 0.05 cm{sup 3}.g{sup -1} - 0.07 cm{sup 3}.g{sup -1}. The BET specific surface exceeds 1000 m{sup 2}.g{sup -1}. All these values compared favourably with high grade commercial active carbons. (author)

  9. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  10. Leadership is a conversation.

    Science.gov (United States)

    Groysberg, Boris; Slind, Michael

    2012-06-01

    Globalization and new technologies have sharply reduced the efficacy of command-and-control management and its accompanying forms of corporate communication. In the course of a recent research project, the authors concluded that by talking with employees, rather than simply issuing orders, leaders can promote operational flexibility, employee engagement, and tight strategic alignment. Groysberg and Slind have identified four elements of organizational conversation that reflect the essential attributes of interpersonal conversation: intimacy, interactivity, inclusion, and intentionality. Intimacy shifts the focus from a top-down distribution of information to a bottom-up exchange of ideas. Organizational conversation is less corporate in tone and more casual. And it's less about issuing and taking orders than about asking and answering questions. Interactivity entails shunning the simplicity of monologue and embracing the unpredictable vitality of dialogue. Traditional one-way media-print and broadcast, in particular-give way to social media buttressed by social thinking. Inclusion turns employees into full-fledged conversation partners, entitling them to provide their own ideas, often on company channels. They can create content and act as brand ambassadors, thought leaders, and storytellers. Intentionality enables leaders and employees to derive strategically relevant action from the push and pull of discussion and debate.

  11. Response inhibition in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  12. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    a renewable route to aromatics. The conversion of biomass by high temperature processes is a desirable prospect due to the high volumetric production rates which can be achieved, and the ability of these types of processes to convert a wide range of substrates. Current processes however typically have rather...... with the production of commodity chemicals from the most abundantly available renewable source of carbon, carbohydrates. The production of alkyl lactates by the Lewis acid catalyzed conversion of hexoses is an interesting alternative to current fermentation based processes. A range of stannosilicates were...... to be an efficient initial conversion step in the utilization of biomass for chemicals production. The shift from an oil based chemical industry to one based on renewable resources is bound to happen sooner or later, however the environmental problems associated with the burning of fossil resources means...

  13. Direct digital conversion detector technology

    Science.gov (United States)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  14. Conversion of autoimmune hypothyroidism to hyperthyroidism

    OpenAIRE

    Furqan, Saira; Haque, Naeem-ul; Islam, Najmul

    2014-01-01

    Background Graves’ disease and Hashimoto’s thyroiditis are the two autoimmune spectrum of thyroid disease. Cases of conversion from hyperthyroidism to hypothyroidism have been reported but conversion from hypothyroidism to hyperthyroidism is very rare. Although such cases have been reported rarely in the past we are now seeing such conversions from hypothyroidism to hyperthyroidism more frequently in clinical practice. Case presentation We are reporting three cases of middle aged Asian female...

  15. Conversation Analysis.

    Science.gov (United States)

    Schiffrin, Deborah

    1990-01-01

    Summarizes the current state of research in conversation analysis, referring primarily to six different perspectives that have developed from the philosophy, sociology, anthropology, and linguistics disciplines. These include pragmatics; speech act theory; interactional sociolinguistics; ethnomethodology; ethnography of communication; and…

  16. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  17. Persuasive Conversational Agent with Persuasion Tactics

    Science.gov (United States)

    Narita, Tatsuya; Kitamura, Yasuhiko

    Persuasive conversational agents persuade people to change their attitudes or behaviors through conversation, and are expected to be applied as virtual sales clerks in e-shopping sites. As an approach to create such an agent, we have developed a learning agent with the Wizard of Oz method in which a person called Wizard talks to the user pretending to be the agent. The agent observes the conversations between the Wizard and the user, and learns how to persuade people. In this method, the Wizard has to reply to most of the user's inputs at the beginning, but the burden gradually falls because the agent learns how to reply as the conversation model grows.

  18. Persuasion detection in conversation

    OpenAIRE

    Gilbert, Henry T.

    2010-01-01

    Approved for public release; distribution is unlimited In this thesis, we present a system for annotating persuasion in conversation based on a social-psychological model. We augmented the social model developed by James Cialdini with some of our own categories for annotators to label. The conversations consisted of 37 hostage negotiation transcripts from private and public sources, with all personal information removed from the private source transcripts. We evaluated the level of agre...

  19. Perspective on direct conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1963-10-15

    The objective of direct conversion is high electrical output for minimum total cost, and not always high conversion efficiency. The wide range of techniques embracing cryogenics and hot plasma derives from the special requirements of source, environment, and application. Sources include solar and other radiation, nuclear fission and fusion, chemical energy, and heat. Environments and applications range from space vehicles to submarines and from giant power networks to isolated buoys and pocket devices. (auth)

  20. Having "The Talk": Youth-Parent Climate Conversations

    Science.gov (United States)

    Anderson, R. K.; Flora, J. A.; Lertzman, R.; Saphir, M.

    2017-12-01

    Youth are concerned about climate change. Recent research conducted by the Alliance for Climate Education, in partnership with the Skoll Global Threats Fund, demonstrates that youth have agency within their families regarding climate relevant behaviors, particularly resulting from conversations that rely on listening. In this pilot project, we examined whether youth involved in a year-long climate action program will carry out climate related conversations with their parents, and whether youth who have engaged online with a climate education group, will carry out similar conversations with their parents when asked to do so via SMS. In study one, we used mixed methods to determine if youth participating in a training would carry out a climate conversation with their parents, adhere to guidelines such as reflective listening, and have positive experiences. Further, we investigated to what extent parents would experience the conversation as a positive and impactful event. Parents overall reported a positive experience, and were proud of their child's work. In study two, in a randomized controlled trial conducted entirely via SMS, we investigated whether youth would watch a brief instructional animated video, and have a conversation with a parent. Results showed the majority of youth reported gained confidence in conducting a climate conversation and intended to speak to relatives. Preliminary results indicate when youth can express their climate engagement to a parent using these techniques, they have positive experiences, gain confidence in future engagements and can influence family. The studies highlight the positive impact of climate conversations as well as the potential to scale climate conversations to reach more youth and families.

  1. Reflection during Portfolio-Based Conversations

    Science.gov (United States)

    Oosterbaan, Anne E.; van der Schaaf, Marieke F.; Baartman, Liesbeth K. J.; Stokking, Karel M.

    2010-01-01

    This study aims to explore the relationship between the occurrence of reflection (and non-reflection) and thinking activities (e.g., orientating, selecting, analysing) during portfolio-based conversations. Analysis of 21 transcripts of portfolio-based conversations revealed that 20% of the segments were made up of reflection (content reflection…

  2. Conversion Disorder- Mind versus Body: A Review.

    Science.gov (United States)

    Ali, Shahid; Jabeen, Shagufta; Pate, Rebecca J; Shahid, Marwah; Chinala, Sandhya; Nathani, Milankumar; Shah, Rida

    2015-01-01

    In this article, the authors accentuate the signs and symptoms of conversion disorder and the significance of clinical judgment and expertise in order to reach the right diagnosis. The authors review the literature and provide information on the etiology, prevalence, diagnostic criteria, and the treatment methods currently employed in the management of conversion disorder. Of note, the advancements of neuropsychology and brain imaging have led to emergence of a relatively sophisticated picture of the neuroscientific psychopathology of complex mental illnesses, including conversion disorder. The available evidence suggests new methods with which to test hypotheses about the neural circuits underlying conversion symptoms. In context of this, the authors also explore the neurobiological understanding of conversion disorder.

  3. Conversion Disorder— Mind versus Body: A Review

    Science.gov (United States)

    Jabeen, Shagufta; Pate, Rebecca J.; Shahid, Marwah; Chinala, Sandhya; Nathani, Milankumar; Shah, Rida

    2015-01-01

    In this article, the authors accentuate the signs and symptoms of conversion disorder and the significance of clinical judgment and expertise in order to reach the right diagnosis. The authors review the literature and provide information on the etiology, prevalence, diagnostic criteria, and the treatment methods currently employed in the management of conversion disorder. Of note, the advancements of neuropsychology and brain imaging have led to emergence of a relatively sophisticated picture of the neuroscientific psychopathology of complex mental illnesses, including conversion disorder. The available evidence suggests new methods with which to test hypotheses about the neural circuits underlying conversion symptoms. In context of this, the authors also explore the neurobiological understanding of conversion disorder. PMID:26155375

  4. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  5. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  6. La modified TiO{sub 2} photoanode and its effect on DSSC performance: A comparative study of doping and surface treatment on deep and surface charge trapping

    Energy Technology Data Exchange (ETDEWEB)

    Ako, Rajour Tanyi [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Ekanayake, Piyasiri, E-mail: piyasiri.ekanayake@ubd.edu.bn [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Centre for Advanced Material and Energy Sciences (CAMES), Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Tan, Ai Ling [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Young, David James [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558 (Australia); Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore)

    2016-04-01

    The effect of Lanthanum ions (La{sup 3+}) on charge trapping in dye-sensitized solar cell (DSSC) photoanodes has been investigated with doped and surface-treated TiO{sub 2} nanoparticles. Doped nanoparticles consisting of 0.5 mol.% Mg and La co-doped TiO{sub 2}, 0.5 mol.% Mg doped TiO{sub 2} and pure TiO{sub 2} were synthesized by the sol gel method. Surface-treated nanoparticles of Mg doped TiO{sub 2} and pure TiO{sub 2} were prepared by ball milling in 0.05 M aqueous La{sup 3+} solution. All materials were analyzed by XRD, XPS and UV–Vis DRS. Cell performance, surface free energy state changes and electron injection efficiency of DSSCs based on these nanoparticles were evaluated using current –voltage measurements, EIS and Incident photon to current conversion efficiency. Doped materials had La and Mg ions incorporated into the TiO{sub 2} lattice, while no lattice changes were observed for the surface-treated materials. Less visible light was absorbed by treated oxides compared with doped oxide samples. The overall power conversion efficiencies (PCE) of DSSC photoanodes based on doped materials were twice those of photoanodes fabricated from treated nanoparticles. Doping establishes deep traps that reduce the recombination of electron–hole (e–h) pairs. Conversely, the presence of absorbed oxygen in treated materials enhances e–h recombination with electrolyte at surface trap sites. - Highlights: • DSSC performance is investigated using photoanodes of doped and La{sup 3+} surface treated TiO{sub 2}. • TiO{sub 2} and Mg–TiO{sub 2} treated with La{sup 3+} absorbed less visible light. • A high concentration of absorbed oxygen on surface treated oxides reduced band bending. • Increased surface free energy in the modified DSSC anodes is caused more by Mg{sup 2+} at Ti{sup 4+} than by La{sup 3+} at the surfaces. • Near surface charge traps due to La{sup 3+} treatment promotes e–h recombination.

  7. Proinflammatory cytokine levels in patients with conversion disorder.

    Science.gov (United States)

    Tiyekli, Utkan; Calıyurt, Okan; Tiyekli, Nimet Dilek

    2013-06-01

    It was aimed to evaluate the relationship between proinflammatory cytokine levels and conversion disorder both commonly known as stress regulated. Baseline proinflammatory cytokine levels-[Tumour necrosis factor alpha (TNF-α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6)]-were evaluated with enzyme-linked immunosorbent assay in 35 conversion disorder patients and 30 healthy controls. Possible changes in proinflammatory cytokine levels were evaluated again, after their acute phase in conversion disorder patients. Statistically significant decreased serum TNF-α levels were obtained in acute phase of conversion disorder. Those levels increased after acute conversion phase. There were no statistically significant difference observed between groups in serum IL-1β and (IL-6) levels. Stress associated with conversion disorder may suppress immune function in acute conversion phase and may have diagnostic and therapeutic value.

  8. Growth of permanganate conversion coating on 2024-Al alloy

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Akhtar, A.S.; Wong, P.C.; Wong, K.C.; Mitchell, K.A.R.

    2007-01-01

    The growth of permanganate conversion coating on aluminum 2024-T3 alloy has been studied by characterizing, with scanning Auger microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy, the coatings formed by immersion of the alloy in the coating bath (containing KMnO 4 and Na 2 B 4 O 7 , pH 9.1) for different periods of time and at different temperatures. At room temperature, during the first 1-5 min of immersion, MnO 2 deposits are formed only on the second-phase intermetallic particles (of Al-Cu-Mg and Al-Cu-Fe-Mn types), but the coating starts to develop on the Al matrix surface after 5-10 min. The coating slows down and stops after about 150 min, with a thinner deposit over the alloy matrix. The process is accelerated at higher temperatures, for example at 68 deg. C it self-limits after about 3 min. The electrochemical growth process appears to follow that established for the chromate conversion coatings, although XPS does not detect significant MnO 4 - incorporation into the permanganate coatings

  9. Interrogative suggestibility in patients with conversion disorders.

    Science.gov (United States)

    Foong, J; Lucas, P A; Ron, M A

    1997-09-01

    We tested the hypothesis that increased interrogative suggestibility may contribute to the shaping and maintaining of conversions symptoms. Interrogative suggestibility was measured in 12 patients with conversion disorder and 10 control patients with confirmed neurological disease matched for age, premorbid intelligence, and as closely as possible in terms of their neurological symptoms to the patients with conversion disorder. Our observations do not support the contention that individual differences in interrogative suggestibility are of importance in the etiology of conversion disorders.

  10. Conversion of Abbandoned Military Areas

    Directory of Open Access Journals (Sweden)

    Daiva Marcinkevičiūtė

    2011-03-01

    Full Text Available The article analyses the situation of abandoned military sites, their value and significance of their conservation. It also reviews their impact on their environment and their potential in tourism, environmental, economic and social spheres. Further the positive experiences in military sites' conversion are studied. The importance of society's involvement in the conversions is discussed. The situation of XIX-XX age's military object's, the significance of their conservation and their potential in tourism market is separately analysed. The results of two researches are introduced, one of which inquires about the Lithuanian military objects' potential in tourism sphere, another one explores the possibilities of conversion. Article in Lithuanian

  11. Antecedents of hospital ownership conversions, mergers, and closures.

    Science.gov (United States)

    Sloan, Frank A; Ostermann, Jan; Conover, Christopher J

    2003-01-01

    This study assesses the determinants of conversions in hospital ownership from 1986 through 1996. To place such changes in context, we also analyze causes of hospital mergers and closures, which are often alternatives to hospital ownership conversion. A consistent result from our analysis is that an important antecedent of ownership conversions is a low profit margin. Conversions from private nonprofit or government ownership to for-profit status are preceded by chronically low margins and high debt-to-asset ratios. By contrast, conversions from for-profit ownership occur quickly following declines in margins. Many mergers seem motivated by a desire to increase market power--a consideration not evident for conversions.

  12. Mathematical Simulation of High-Conversion Binary Copolymerization

    Institute of Scientific and Technical Information of China (English)

    JiangWei; QinJiguang

    2005-01-01

    A new model for mathematical simulation of high-conversion binary copolymerization was established by combination of the concept of the three stage polymerization model (TSPM) proposed by Qin et al. for bulk free radical homopolymerization with the North equation to describe high-conversion copolymerization reaction exhibiting a strong gel effect, and the mathematical expressions of this new model were derived. Like TSPM, the new model also assmnes that the whole course of binary copolymerization can be divided into three different stages: low conversion, gel effect and glass effect stages. In addition, the reaction rate constants and the initiator efficiency at each copolymerization stage do not vary with conversion. Based on the expressions derived, a plot method for determining the overall rate constants and critical conversions was proposed. The literature data on conversion history for styrene (St)-methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA)-MMA copolymerizations were treated to examine the model, which shows that the model is satisfactory.

  13. Conversation in Place and About Place: Response to Chimakonam, “Conversational Philosophy as a New School of Thought in African Philosophy: A Conversation with Bruce Janz on the Concept of “Philosophical Space”

    Directory of Open Access Journals (Sweden)

    Bruce janz

    2016-12-01

    Full Text Available I respond to Jonathan Chimakonam’s paper in which he presents an approach to dialogue in philosophical space, and raises questions about my own approach. I raise four questions to his understanding of conversation. First, I ask him for more details on his conception of conversation. Second, what happens if not everyone cares to enter into conversation? Third, is conversation a prerequisite to philosophy, or a part of philosophy? And fourth, how does wonder fit into conversation in and about place?

  14. Electrodeposition and surface finishing fundamentals and applications

    CERN Document Server

    Djokic, Stojan

    2014-01-01

    This volume of Modern Aspects of Electrochemistry has contributions from significant individuals in electrochemistry. This 7 chapter book discusses electrodeposition and the characterization of alloys and composite materials, the mechanistic aspects of lead electrodeposition, electrophoretic deposition of ceramic materials onto metal surfaces and the fundamentals of metal oxides for energy conversion and storage technologies. This volume also has a chapter devoted to the anodization of aluminum, electrochemical aspects of chemical and mechanical polishing, and surface treatments prior to metal

  15. Mining Conversational Social Video

    OpenAIRE

    Biel, Joan-Isaac

    2013-01-01

    The ubiquity of social media in our daily life, the intense user participation, and the explo- sion of multimedia content have generated an extraordinary interest from computer and social scientists to investigate the traces left by users to understand human behavior online. From this perspective, YouTube can be seen as the largest collection of audiovisual human behavioral data, among which conversational video blogs (vlogs) are one of the basic formats. Conversational vlogs have evolved fro...

  16. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  17. Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process

    Science.gov (United States)

    Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu

    2017-08-01

    The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.

  18. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  19. Adaptive Feedback Improving Learningful Conversations at Workplace

    Science.gov (United States)

    Gaeta, Matteo; Mangione, Giuseppina Rita; Miranda, Sergio; Orciuoli, Francesco

    2013-01-01

    This work proposes the definition of an Adaptive Conversation-based Learning System (ACLS) able to foster computer-mediated tutorial dialogues at the workplace in order to increase the probability to generate meaningful learning during conversations. ACLS provides a virtual assistant selecting the best partner to involve in the conversation and…

  20. Methanol conversion to lower olefins over RHO type zeolite

    KAUST Repository

    Masih, Dilshad

    2013-07-01

    Eight-membered ring small-pore zeolite of RHO-type topology has been synthesized, characterized and tested for methanol-to-olefin (MTO) reaction. The zeolite was hydrothermally crystallized from the gel with Si/Al ratio of 5.0. It showed a high BET specific surface area (812 m2 g-1), micropore volume (0.429 cm3 g-1), and acid amount (2.53 mmol g-1). Scanning electron microscopy observations showed small crystallites of about 1 μm. The zeolite was active for MTO reaction with 100% methanol conversions at 623-723 K, whereas selectivity to lower olefins changed with time. © 2013 Elsevier B.V.

  1. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.

    Science.gov (United States)

    Varadhan, Purushothaman; Fu, Hui-Chun; Priante, Davide; Retamal, Jose Ramon Duran; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idirs; Mitra, Somak; Roqan, Iman S; Ooi, Boon S; He, Jr-Hau

    2017-03-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm 2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  2. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    International Nuclear Information System (INIS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS O pt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids

  3. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  4. Teaching Spanish Pragmatics Through Colloquial Conversations

    Directory of Open Access Journals (Sweden)

    Albelda Marco, Marta

    2017-11-01

    Full Text Available This paper focuses on the advantages of teaching and learning a foreign language with and through spoken discursive corpora, and especially colloquial and conversational ones. The benefits of developing oral competence and communicative skills in language learners using colloquial conversations will be exposed and discussed. In this paper, we characterise the colloquial conversation and the features that define this register and discursive genre. Being the most natural and original way to communicate among human beings, the colloquial conversation is the most common means to communicate, and therefore, this genre should have a greater presence in foreign-language classrooms. Secondly, we expound on the advantages of teaching using colloquial conversations corpora, particularly resulting from its contextualisation (the linguistic input is learnt in its real and authentic context and from its oral and conversational features (prosodic elements and interactional mechanisms. Thirdly, the paper provides a list of corpora of colloquial conversations that are available in Spanish, focusing on Val.Es.Co. colloquial corpus (peninsular Spanish oral corpus, Briz et al., 2002; Cabedo & Pons online, www.valesco.es. Finally, a set of pragmatic applications of corpora in foreign-language classroom is offered, in particular using the Val.Es.Co. colloquial corpus: functions of discourse markers and interjections (whose meanings change depending on the context, strategies of turn-takings, ways of introducing new topic in the dialogues, mechanisms of keeping or “stealing” the turn, devices to introduce direct speech, attitudes expressed by the falling and rising intonations, hedges and intensifiers, and so on. In general, this paper pretends to offer ideas, resources and materials to make the students more competent in communication using authentic discursive oral corpora.

  5. Isotopic abundance of 13 C and contribution of eucalyptus biomass to soil organic matter conversion

    Directory of Open Access Journals (Sweden)

    Fabiane Figueiredo Severo

    Full Text Available ABSTRACT: It has become possible to evaluate the conversion of soil organic matter (SOM in pastures and arboreal crops due to the difference between the photosynthetic cycles of Eucalyptus (C3 and most grasses (C4. The auto analyzer method coupled to the IRMS (Isotope Ratio Mass Spectrometer in the present study evaluated the 13C content in soil profiles of Eucalyptus plantations of different ages (2, 10 and 21 years, in natural regeneration areas and natural grazing fields, and estimated the SOM conversion of each crop type of. The initial management of all sampled areas was natural pasture. The following profile layers were evaluated: 0-5, 5-10, 10-20, 20-30, 30-40, 40-50, 50-70 and 70-90cm, and the contribution of Eucalyptus biomass over the years of farming was estimated in the SOM conversion process. After 2 years of planting Eucalyptus, the beginning of pasture carbon conversion process occurred in the surface layer (0-5cm. Ten years after planting, the process of converting organic matter by arboreal crops reached the layers up to 20cm. After 21 years of planting and in natural regeneration areas, the entire profile has already been changed by planting Eucalyptus and native tree species.

  6. Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution; Caracterizacion y comportamiento frente a la corrosion de recubrimientos de acido fitico, obtenidos por conversion quimica, sobre substratos de magnesio en solucion fisiologica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Alvarado, L. A.; Lomeli, M. A.; Hernandez, L. S.; Miranda, J. M.; Narvaez, L.; Diaz, I.; Garcia-Alonso, M. C.; Escudero, M. L.

    2014-10-01

    In order to improve the corrosion resistance of biodegradable magnesium and AZ31 magnesium alloy implants, a phytic acid coating has been applied on both substrates and their protective effect against corrosion has been assessed. The morphology and the chemical nature of the conversion coating were analyzed by SEM/EDX, XRD and FTIR. The spectra showed that the conversion coating was amorphous, and it was composed of Mg, O, and P on magnesium surface, along with Al, Zn and C on AZ31 alloy. The main coating components were chelate compounds formed by phytic acid and metallic ions. The corrosion resistance of bare and coated samples was evaluated by potentiodynamic polarization technique in Hank's solution at 37 degree centigrade. The results indicate that phytic acid conversion coatings provided a very effective protection to the magnesium substrates studied. (Author)

  7. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors

  8. Conversion electron spectroscopy in transfermium nuclei

    International Nuclear Information System (INIS)

    Herzberg, R.D.

    2003-01-01

    Conversion electron spectroscopy is an essential tool for the spectroscopy of heavy deformed nuclei. The conversion electron spectrometer SACRED has been used in conjunction with the gas-filled recoil separator RITU to study conversion electron cascades in 254 No. The spectra reveal the ground state rotational bands down to low spin. A detailed analysis of the background seen for 254 No shows that approximately 40% of the decay path goes via excited high K bands which may be built on an isomer. (orig.)

  9. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun; Liu, Junyao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China)

    2015-10-30

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V{sup 5+}, V{sup 4+} and Mg(OH){sub 2}. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  10. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-01-01

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V"5"+, V"4"+ and Mg(OH)_2. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  11. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  12. Measuring Online Dialogic Conversations: A Scale Development

    DEFF Research Database (Denmark)

    Romenti, Stefania; Valentini, Chiara; Murtarelli, Grazia

    2016-01-01

    Purpose: The scope of this paper is to develop and test a measurement scale for assessing the quality of dialogic conversations among companies and digital publics in social media. It is argued that dialogic conversations are the drivers of dialogic engagement and the result of dialogic...... interactivity. Dialogic conversations are defined as sequences of communicative actions and counteractions taken by social actors for different purposes based on specific linguistic choices and characterised by diverse communicative approaches and the role played by the involved parties. Design....../methodology/approach: A multidimensional scale for measuring dialogic conversations is developed from relevant literature concerning dialogue and public engagement in the fields of corporate communication, public relations, management studies and conversation analysis. The scale was pre-tested to redefine and purify it from irrelevant...

  13. 10 CFR Appendix J to Part 110 - Illustrative List of Uranium Conversion Plant Equipment and Plutonium Conversion Plant Equipment...

    Science.gov (United States)

    2010-01-01

    .... (2) Especially designed or prepared systems for plutonium metal production. This process usually... or UF6, conversion of UF4 to UF6, conversion of UF6 to UF4, conversion of UF4 to uranium metal, and... several segments of the chemical process industry, including furnaces, rotary kilns, fluidized bed...

  14. Tree value conversion standards revisited

    Science.gov (United States)

    Paul S. DeBald; Martin E. Dale; Martin E. Dale

    1991-01-01

    Updated tree value conversion standards (TVCS) are presented for 12 important hardwood species of the oak-hickory forest. These updated standards-developed for each species by butt-log grade, merchantable height, and diameter at breast height-reflect the changes in lumber prices and in conversion costs which have occurred since 1976 when the original TVCS were...

  15. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak, Malaysia and School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia); Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my [School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia); Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  16. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  17. SPOKEN-LANGUAGE FEATURES IN CASUAL CONVERSATION A Case of EFL Learners‘ Casual Conversation

    Directory of Open Access Journals (Sweden)

    Aris Novi

    2017-12-01

    Full Text Available Spoken text differs from written one in its features of context dependency, turn-taking organization, and dynamic structure. EFL learners; however, sometime find it difficult to produce typical characteristics of spoken language, particularly in casual talk. When they are asked to conduct a conversation, some of them tend to be script-based which is considered unnatural. Using the theory of Thornburry (2005, this paper aims to analyze characteristics of spoken language in casual conversation which cover spontaneity, interactivity, interpersonality, and coherence. This study used discourse analysis to reveal four features in turns and moves of three casual conversations. The findings indicate that not all sub-features used in the conversation. In this case, the spontaneity features were used 132 times; the interactivity features were used 1081 times; the interpersonality features were used 257 times; while the coherence features (negotiation features were used 526 times. Besides, the results also present that some participants seem to dominantly produce some sub-features naturally and vice versa. Therefore, this finding is expected to be beneficial to provide a model of how spoken interaction should be carried out. More importantly, it could raise English teachers or lecturers‘ awareness in teaching features of spoken language, so that, the students could develop their communicative competence as the native speakers of English do.

  18. Valproate in Conversion Disorder: A Case Report

    OpenAIRE

    Messina, Antonino; Fogliani, Anna Maria

    2010-01-01

    Few data are in literature about the pharmacological treatment of conversion disorder and there are not any studies about the use of Valproate extended release (ER) in treating conversion disorder. In this article, we are reporting a case of an Italian woman with a diagnosis of conversion disorder treated effectively and quickly by Valproate ER.

  19. Conversion of radius of curvature to power (and vice versa)

    Science.gov (United States)

    Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.

    2015-09-01

    Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.

  20. The differential equation of an arbitrary reflecting surface

    Science.gov (United States)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  1. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    Ion bombardment-induced modification of surfaces may be considered one of the significant scientific and technological developments of the last two decades. The understanding acquired concerning the underlying mechanisms of several phenomena occurring during ion-surface interactions has led to applications within different modern technologies. These include microelectronics, surface acoustical and optical technologies, solar energy conversion, thin film technology, ion implantation metallurgy, nuclear track technology, thermonuclear fusion, vacuum technology, cold welding technology, biomedicine (implantology). It has become clear that information on many relevant advances, regarding ion bombardment modification of surfaces is dispersed among journals involving fields sometimes not clearly related. This may result, in some cases, in a loss of the type of interdisciplinary exchange of ideas, which has proved to be so fruitful for the advancement of science and technology. This book has been planned in an attempt to collect at least some of today's relevant information about the experimental and theoretical knowledge related to surface modification and its application to technology. (Auth.)

  2. Primary vs Conversion Total Hip Arthroplasty: A Cost Analysis

    Science.gov (United States)

    Chin, Garwin; Wright, David J.; Snir, Nimrod; Schwarzkopf, Ran

    2018-01-01

    Introduction Increasing hip fracture incidence in the United States is leading to higher occurrences of conversion total hip arthroplasty (THA) for failed surgical treatment of the hip. In spite of studies showing higher complication rates in conversion THA, the Centers for Medicare and Medicaid services currently bundles conversion and primary THA under the same diagnosis-related group. We examined the cost of treatment of conversion THA compared with primary THA. Our hypothesis is that conversion THA will have higher cost and resource use than primary THA. Methods Fifty-one consecutive conversion THA patients (Current Procedure Terminology code 27132) and 105 matched primary THA patients (Current Procedure Terminology code 27130) were included in this study. The natural log-transformed costs for conversion and primary THA were compared using regression analysis. Age, gender, body mass index, American Society of Anesthesiologist, Charlson comorbidity score, and smoker status were controlled in the analysis. Conversion THA subgroups formed based on etiology were compared using analysis of variance analysis. Results Conversion and primary THAs were determined to be significantly different (P conversion THA has significantly greater cost and resource use than primary THA. In order to prevent disincentives for treating these complex surgical patients, reclassification of conversion THA is needed, as they do not fit together with primary THA. PMID:26387923

  3. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose.

    Science.gov (United States)

    Song, Yanliang; Zhang, Jingzhi; Zhang, Xu; Tan, Tianwei

    2015-10-01

    H2SO4, NaOH and H3PO4 were applied to decompose lignocellulose samples (giant reeds, pennisetum and cotton stalks) to investigate the correlation between cellulose allomorphs (cellulose I and II) and conversion of cellulose. The effect of removal of hemicellulose and lignin on the surface morphology, crystallinity index (CrI), cellulose allomorphs (cellulose I and II), and enzymatic hydrolysis under different pretreatments was also studied. CrI caused by H3PO4 pretreatment reached 11.19%, 24.93% and 8.15% for the three samples, respectively. Corn stalk showed highest conversion of cellulose among three samples, irrespective of the pretreatment used. This accounted for the widely use of corn stalk as the renewable crop substrate to synthesize biofuels like ethanol. CrI of cellulose I (CrI-I) negatively affects cellulose conversion but CrI of cellulose II (CrI-II) positively affects cellulose conversion. It contributes to make the strategy to transform cellulose I to cellulose II and enhancing enzymatic hydrolysis of lignocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Conversion Disorder Presenting As Neuritic Leprosy

    Directory of Open Access Journals (Sweden)

    Sayal SK

    2000-01-01

    Full Text Available Conversion disorder is not normally listed amongst the conditions in differential diagnosis of leprosy neuropathy. A case conversion reaction who was initially diagnosed as neuritic leprosy is reported. Patient responded to narcosuggestion and psychotherapy.

  5. Graphene-based photovoltaic cells for near-field thermal energy conversion.

    Science.gov (United States)

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat.

  6. Conversion electron Moessbauer and XPS study on the effect of polishing of a stainless steel sample

    International Nuclear Information System (INIS)

    Vertes, Cs.; Kuzmann, E.; Lakatos-Varsanyi, M.; Vertes, A.; Vass, G.; Romhanyi, K.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) and XPS has been used for the surface analysis of an 'X10CrNiTi 18/9 (DIN 1.7440)'-type stainless steel in order to determine the supposed structural and/or chemical changes in the surface layer caused by polishing. Both, CEMS and XPS results can be associated with the appearance of Fe nitride in the outer layer of steel samples after polishing, while no sing of nitrogen was detected in the bulk material. (author) 9 refs.; 3 figs.; 1 tab

  7. Pictorial Conversations.

    Science.gov (United States)

    Hooper, Kristina

    1982-01-01

    Provides the rationale for considering communication in a graphic domain and suggests a specific goal for designing work stations which provide graphic capabilities in educational settings. The central element of this recommendation is the "pictorial conversation", a highly interactive exchange that includes pictures as the central elements.…

  8. Does pedagogical documentation support maternal reminiscing conversations?

    Directory of Open Access Journals (Sweden)

    Bethany Fleck

    2015-12-01

    Full Text Available When parents talk with their children about lessons learned in school, they are participating in reminiscing of an unshared event. This study sought to understand if pedagogical documentation, from the Reggio Approach to early childhood education, would support and enhance the conversation. Mother–child dyads reminisced two separate times about preschool lessons, one time with documentation available to them and one time without. Transcripts were coded extracting variables indicative of high and low maternal reminiscing styles. Results indicate that mother and child conversation characteristics were more highly elaborative when documentation was present than when it was not. In addition, children added more information to the conversation supporting the notion that such conversations enhanced memory for lessons. Documentation could be used as a support tool for conversations and children’s memory about lessons learned in school.

  9. Shape-dependent conversion efficiency of Si nanowire solar cells with polygonal cross-sections

    International Nuclear Information System (INIS)

    He, Yan; Yu, Wangbing; Ouyang, Gang

    2016-01-01

    A deeper insight into shape-dependent power conversion efficiency (PCE) of Si nanowire (SiNW) solar cells with polygonal cross-sectional shapes, including trigon, tetragon, hexagon, and circle, has been explored based on the atomic-bond-relaxation approach and detailed balance principle. It has been found that the surface effect induced by the loss-coordination atoms located at edges and surfaces, as well as the thermal effect, plays the dominant roles for the band shift and PCE of SiNWs due to the lattice strain occurrence at the self-equilibrium state. Our predictions are consistent with the available evidences, providing an important advance in the development of Si-based nanostructures for the desirable applications.

  10. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting

    KAUST Repository

    Varadhan, Purushothaman; Fu, Hui-chun; Priante, Davide; Duran Retamal, Jose Ramon; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idris A.; Mitra, Somak; Roqan, Iman S.; Ooi, Boon S.; He, Jr-Hau

    2017-01-01

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of −31 mA/cm at −0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  11. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting

    KAUST Repository

    Varadhan, Purushothaman

    2017-02-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of −31 mA/cm at −0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  12. Factors determining conversion of laparoscopic to open cholecystectomy

    Directory of Open Access Journals (Sweden)

    Tapash Kumar Maitra

    2017-07-01

    Full Text Available Background and objectives:Laparoscopic cholecystectomy (LC has virtually replaced conventional open cholecystectomy (OC as the standard procedure of treatment for cholelithiasis and cholecystitis. However, OC sometimes becomes a necessity considering the feasibility and safety of the surgical procedure. But the factors that demand conversion from LC to OC differ widely. The present study aimed to determine the prevalence of conversion from LC to OC and to assess the causes of conversion and risk factors related to conversion. Methods: The study was conducted in a referral hospital – ‘Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorder (BIRDEM’ from September 2014 to September 2016. Cases of cholelithiasis with or without cholecystitis, and other gall bladder pathology were included in the study. A team of experienced surgeon performed LC of all selected cases. The causes of conversion to OC were systematically recorded by the surgical team and the risk factors (age, sex, obesity, history of previous abdominal surgery, gallbladder thickness related to conversion from LC to OC was investigated. Results: A total of 261 (M / F = 87 /174 patients were considered eligible for the study. The mean age of all patients was 43 (±1.75 years. For the male and female groups the mean ages were 44±1.9 and 42±1.6 years respectively. Of the total 261 cases, 210 (80.5% patients had cholelithiasis with chronic cholecystitis, 47 (18.0% had gallbladder stone plus acute cholecystitis and 4 (1.5% had gallbladder polyp. Open conversion was required in case of 19 patients. Thus, overall conversion rate was 7.3%. The common causes of conversion were a difficulty in defining Calot’s triangle (42.1%, b injury to cystic artery (21.1% and c injury to bile duct (15.8%. Both male and female had equal risk for conversion. The investigated risk factors like history of previous abdominal surgery, preoperative ERCP, acute

  13. Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4.

    Science.gov (United States)

    Ashengroph, Morahem; Nahvi, Iraj; Amini, Jahanshir

    2013-01-01

    For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi design was employed for screening the significant variables in the bioconversion medium. Sequentially, Box-Behnken design experiments under Response Surface Methodology (RSM) was used for further optimization. Four factors (isoeugenol, NaCl, biomass and tween 80 initial concentrations), which have significant effects on vanillin yield, were selected from ten variables by Taguchi experimental design. With the regression coefficient analysis in the Box-Behnken design, a relationship between vanillin production and four significant variables was obtained, and the optimum levels of the four variables were as follows: initial isoeugenol concentration 6.5 g/L, initial tween 80 concentration 0.89 g/L, initial NaCl concentration 113.2 g/L and initial biomass concentration 6.27 g/L. Under these optimized conditions, the maximum predicted concentration of vanillin was 2.25 g/L. These optimized values of the factors were validated in a triplicate shaking flask study and an average of 2.19 g/L for vanillin, which corresponded to a molar yield 36.3%, after a 24 h bioconversion was obtained. The present work is the first one reporting the application of Taguchi design and Response surface methodology for optimizing bioconversion of isoeugenol into vanillin under resting cell conditions.

  14. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  15. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.

    Science.gov (United States)

    Li, Changli; Cao, Qi; Wang, Faze; Xiao, Yequan; Li, Yanbo; Delaunay, Jean-Jacques; Zhu, Hongwei

    2018-05-08

    Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

  16. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  17. Conversation therapy with people with aphasia and conversation partners using video feedback: a group and case series investigation of changes in interaction.

    Directory of Open Access Journals (Sweden)

    Wendy Best

    2016-11-01

    Full Text Available Conversation therapies employing video for feedback and to facilitate outcome measurement are increasingly used with people with post-stroke aphasia and their conversation partners; however the evidence base for change in everyday interaction remains limited. We investigated the effect of Better Conversations with Aphasia, an intervention that is freely available online (https:// extend.ucl.ac.uk/. Eight people with chronic agrammatic aphasia, and their regular conversation partners participated in the tailored 8 week program involving significant video feedback. We explored changes in (i conversation facilitators (such as multi-modal turns by people with aphasia and (ii conversation barriers (such as use of test questions by conversation partners. The outcome of intervention was evaluated directly by measuring change in video-recorded everyday conversations. The study employed a pre-post design with multiple 5 minute samples of conversation before and after intervention, scored by trained raters blind to the point of data collection. Group level analysis showed no significant increase in conversation facilitators. There was, however, a significant reduction in the number of conversation barriers. The case series data revealed variability in conversation behaviors across occasions for the same dyad and between different dyads. Specifically, post-intervention there was a significant increase in facilitator behaviors for two dyads, a decrease for one and no significant change for five dyads. There was a significant decrease in barrier behaviors for five dyads and no significant change for three dyads. The reduction in barrier behaviors was considerable; on average change from over 8 to fewer than 3 barrier behaviors in 5 minutes conversation. The pre-post design has the limitation of no comparison group. However, change occurs in targeted conversational behaviors and in people with chronic aphasia and their partners. The findings suggest change

  18. Uncertainties of retrospective radon concentration measurements by multilayer surface trap detector

    International Nuclear Information System (INIS)

    Bastrikov, V.; Kruzhalov, A.; Zhukovsky, M.

    2006-01-01

    The detector for retrospective radon exposure measurements is developed. The detector consists of the multilayer package of solid-state nuclear track detectors LR-115 type. Nitrocellulose films works both as α-particle detector and as absorber decreasing the energy of α-particles. The uncertainties of implanted 210 Pb measurements by two- and three-layer detectors are assessed in dependence on surface 210 Po activity and gross background activity of the glass. The generalized compartment behavior model of radon decay products in the room atmosphere was developed and verified. It is shown that the most influencing parameters on the value of conversion coefficient from 210 Po surface activity to average radon concentration are aerosol particles concentration, deposition velocity of unattached 218 Po and air exchange rate. It is demonstrated that with the use of additional information on surface to volume room ratio, air exchange rate and aerosol particles concentration the systematic bias of conversion coefficient between surface activity of 210 Po and average radon concentration can be decreased up to 30 %. (N.C.)

  19. Molecular surface science of heterogeneous catalysis. History and perspective

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1983-08-01

    A personal account is given of how the author became involved with modern surface science and how it was employed for studies of the chemistry of surfaces and heterogeneous catalysis. New techniques were developed for studying the properties of the surface monolayers: Auger electron spectroscopy, LEED, XPS, molecular beam surface scattering, etc. An apparatus was developed and used to study hydrocarbon conversion reactions on Pt, CO hydrogenation on Rh and Fe, and NH 3 synthesis on Fe. A model has been developed for the working Pt reforming catalyst. The three molecular ingredients that control catalytic properties are atomic surface structure, an active carbonaceous deposit, and the proper oxidation state of surface atoms. 40 references, 21 figures

  20. Molecular surface science of heterogeneous catalysis. History and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    1983-08-01

    A personal account is given of how the author became involved with modern surface science and how it was employed for studies of the chemistry of surfaces and heterogeneous catalysis. New techniques were developed for studying the properties of the surface monolayers: Auger electron spectroscopy, LEED, XPS, molecular beam surface scattering, etc. An apparatus was developed and used to study hydrocarbon conversion reactions on Pt, CO hydrogenation on Rh and Fe, and NH/sub 3/ synthesis on Fe. A model has been developed for the working Pt reforming catalyst. The three molecular ingredients that control catalytic properties are atomic surface structure, an active carbonaceous deposit, and the proper oxidation state of surface atoms. 40 references, 21 figures. (DLC)

  1. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  2. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  3. Effects of carboxyl and ester anchoring groups on solar conversion efficiencies of TiO2 dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrifard, A.; Stublla, A.; Haftchenary, S.; Chen, S.; Potvin, P.; Morin, S. [York Univ., Toronto, ON (Canada). Dept. of Chemistry

    2008-07-01

    This paper reported on a study in which 2 new Ruthenium (Ru(2)) dyes bearing different anchoring groups were applied to sensitize TiO2 for dye-sensitized solar cells (DSSCs). The solar conversion efficiencies were measured. Results for 2 of the dyes which carried ester and carboxyl anchoring groups were presented. The extent and nature of the surface binding was studied using electrochemical, UV-visible, fluorescence and FTIR measurements. Solar cell performance was discussed in terms of surface concentration of chemisorbed dyes, electronic properties of the photoanodes and electrochemical properties of adsorbed dyes. The study showed that carboxylic acid groups offer better dye adsorption than ester groups. However, sensitization with warm solutions improved the adsorption of the esterified dye, most likely through transesterification. It was concluded that this may be a useful means of improving solar conversion efficiencies of ester-bearing dyes. 6 refs., 1 tab., 2 figs.

  4. Alpha and conversion electron spectroscopy of {sup 238,239}Pu and {sup 241}Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P., E-mail: michael.dion@pnnl.gov; Miller, Brian W.; Warren, Glen A.

    2016-09-11

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of {sup 241}Am, {sup 238}Pu and {sup 239}Pu using a dual-stage peltier-cooled 25 mm{sup 2} silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for {sup 241}Am.

  5. Four-body conversion of atomic helium ions

    International Nuclear Information System (INIS)

    de Vries, C.P.; Oskam, H.J.

    1980-01-01

    The conversion of atomic helium ions into molecular ions was studied in pure helium and in helium-neon mixtures containing between 0.1 at. % and 50 at. % neon. The experiments showed that the termolecular conversion reaction, He + +2He → He 2 + +He, is augmented by the four-body conversion reaction He + +3He → products, where the products could include either He 2 + or He 3 + ions. Conversion rate coefficients of (5.7 +- 0.8) x 10 -32 cm 6 sec -1 and (2.6 +- 0.4) x 10 -49 cm 9 sec -1 were found for the termolecular and four-body conversion reactions, respectively. In addition, rate coefficients for the following Ne + conversion reactions were measured: Ne + +He+He → (HeNe) + +He, (2.3 +- 0.1) x 10 -32 cm 6 sec -1 ; Ne + +He+Ne → (HeNe) + +Ne or Ne 2 + +He, (8.0 +- 0.8) x 10 -32 cm 6 sec -1 ; and Ne + +Ne+Ne → Ne 2 + +Ne, (5.1 +- 0.3) x 10 -32 cm 6 sec -1 . All rate coefficients are at a gas temperature of 295 K

  6. A strong deletion bias in nonallelic gene conversion.

    Directory of Open Access Journals (Sweden)

    Raquel Assis

    Full Text Available Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic or paralogous (nonallelic genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs.

  7. The organization of digital conversation on MSN

    Directory of Open Access Journals (Sweden)

    Artarxerxes Tiago Tácito Modesto

    2012-02-01

    Full Text Available The emergence of the Internet has caused a revolution with regard to new forms of interaction between people, offering experiences of real-time communication in so-called virtual environments. Given this scenario, new textual genres emerge, making room for innumerous possibilities of analysis under various approaches. In this paper, we aim at analyzing digital conversations, trying to verify, at first, the extent to which they approach or move away from face-to-face conversations. We also seek to identify, describe and analyze some interactional strategies inherent in this new genre. We base our analyzes on Conversation Analysis theory and Interactional Sociolinguistics to define conversational strategies of the “spoken written text” on the Internet. The corpus used in this work consists of digital conversations coming from the MSN instant messaging software from Microsoft Corporation, chosen because of its wide use among people who use the internet for communication.

  8. In-beam conversion electron spectroscopy using the SACRED array

    International Nuclear Information System (INIS)

    Jones, P.M.; Cann, K.J.; Cocks, J.F.C.; Jones, G.D.; Julin, R.; Schulze, B.; Smith, J.F.; Wilson, A.N.

    1997-01-01

    Conversion electron studies of medium-heavy to heavy nuclear mass systems are important where the internal conversion process begins to dominate over gamma-ray emission. The use of a segmented detector array sensitive to conversion electrons has been used to study multiple conversion electron cascades from nuclear transitions. The application of the silicon array for conversion electron detection (SACRED) for in-beam measurements has successfully been implemented. (orig.). With 2 figs

  9. Non-linguistic analysis of call center conversations

    CERN Document Server

    Kopparapu, Sunil Kumar

    2014-01-01

    The book focuses on the part of the audio conversation not related to language such as speaking rate (in terms of number of syllables per unit time) and emotion centric features. This text examines using non-linguistics features to infer information from phone calls to call centers. The author analyzes 'how' the conversation happens and not 'what' the conversation is about by audio signal processing and analysis.

  10. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  11. Abnormal Parietal Function in Conversion Paresis

    NARCIS (Netherlands)

    van Beilen, Marije; de Jong, Bauke M.; Gieteling, Esther W.; Renken, Remco; Leenders, Klaus L.

    2011-01-01

    The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study

  12. InP/ZnS nanocrystals for colour conversion in white light emitting diodes

    DEFF Research Database (Denmark)

    Shirazi, Roza

    In this work a comprehensive study of a colloidal InP/ZnS nanocrystals (NC) as the colour conversion material for white light emitting diodes (WLED) is shown. Studied nanocrystals were synthesised by wet chemistry using one pot, hot injection method. A quantum efficiency (QE) of photoluminescence......, radiative and non-radiative recombination rates were determined and QE of 63% for the population of NCs that emit light was derived. A search for source of exciton losses in bright nanocrystals temperature resolved TRPL was studied and it revealed carrier trapping most likely at core-shell interface as well...... as at the surface and which competes with bright and dark exciton states. A presence of long-lived dark excitons and trapped charges lead to strong Auger recombination at high (relative to the trapping times) excitation. A colour conversion efficiency of the nanocrystals upon light absorption and in a process...

  13. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  14. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  15. Models of radionuclide distribution in the biosphere for radioactive waste storage safety assessment, collection of data and calculation of the biosphere dose conversion factors. Research report

    International Nuclear Information System (INIS)

    Landa, Jiri

    2008-12-01

    The core of the report is structured as follows: The biosphere dose conversion factor (BDCF); Foreign approaches (Sweden - SKB, USA - YMP, BIOPROTA); Definition and conversion factors for activity; Effective dose rate calculation (ingestion, inhalation, external irradiation); Analysis of the activity of the surface compartment, i.e. soil; Basic conceptual models of ecosystems; BDCF calculation/determination; and Systemization of the literature. (P.A.)

  16. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  17. Matched conversion sales in the nuclear fuel market

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1996-01-01

    The negotiations leading up to the Suspension Agreement with Russia focused solely on uranium and SWU, leaving conversion in its traditional role as the overlooked constituent of the fuel cycle. In fact, the initial agreement did not even distinguish U 3 O 8 from UF 6 ; it effectively ignored the conversion component contained in UF 6 and the possibility of matched conversion sales. After some criticism from ConverDyn and others, The US Department of Commerce issued a clarification, confirming that all three major components of the fuel cycle can be sold under matched sales agreements. However, matched conversion sales remain somewhat of an enigma as few have been done and the logistics are poorly understood. Nonetheless, in a conversion market where supply and demand are closely balanced, secondary supplies, including those from matched sales, will likely play an important role in the evolution of conversion prices

  18. Drivers of wetland conversion: a global meta-analysis.

    Science.gov (United States)

    van Asselen, Sanneke; Verburg, Peter H; Vermaat, Jan E; Janse, Jan H

    2013-01-01

    Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic

  19. Abnormal parietal function in conversion paresis.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms.

  20. Conversion disorder: towards a neurobiological understanding

    Science.gov (United States)

    Harvey, Samuel B; Stanton, Biba R; David, Anthony S

    2006-01-01

    Conversion disorders are a common cause of neurological disability, but the diagnosis remains controversial and the mechanism by which psychological stress can result in physical symptoms “unconsciously” is poorly understood. This review summarises research examining conversion disorder from a neurobiological perspective. Early observations suggesting a role for hemispheric specialization have not been replicated consistently. Patients with sensory conversion symptoms have normal evoked responses in primary and secondary somatosensory cortex but a reduction in the P300 potential, which is thought to reflect a lack of conscious processing of sensory stimuli. The emergence of functional imaging has provided the greatest opportunity for understanding the neural basis of conversion symptoms. Studies have been limited by small patient numbers and failure to control for confounding variables. The evidence available would suggest a broad hypothesis that frontal cortical and limbic activation associated with emotional stress may act via inhibitory basal ganglia–thalamocortical circuits to produce a deficit of conscious sensory or motor processing. The conceptual difficulties that have limited progress in this area are discussed. A better neuropsychiatric understanding of the mechanisms of conversion symptoms may improve our understanding of normal attention and volition and reduce the controversy surrounding this diagnosis. PMID:19412442

  1. TFTR power conversion and plasma feedback systems

    International Nuclear Information System (INIS)

    Neumeyer, C.

    1985-01-01

    Major components of the Tokamak Fusion Test Reactor (TFTR) power conversion system include 39 thyristor rectifier power supplies, 12 energy storage capacitor banks, and 6 ohmic heating interrupters. These components are connected in various series/parallel configurations to provide controlled pulses of current to the Toroidal Field (TF), Ohmic Heating (OH), Equilibrium (vertical) Field (EF), and Horizontal Field (HF) magnet coil systems. Real-time control of the power conversion system is accomplished by a centralized dedicated computer; local control is minimal. Power supply firing angles, capacitor bank charge and discharge commands, interrupter commands, etc., are all determined and issued by the central computer. Plasma Position and Current Control (PPCC) reference signals to power conversion (OH, EF, HF) are determined by separate analog electronics but invoked through the power conversion computer. Real-time fault sensing of plasma parameters, gas injection, neutral beams, etc., are monitored by a separate Discharge Fault System (DFS) but routed through the power conversion computer for pre-programmed shutdown response

  2. 24 CFR 972.203 - Definition of “conversion.”

    Science.gov (United States)

    2010-04-01

    ... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Voluntary Conversion of Public Housing Developments Purpose; Definition of Conversion § 972.203 Definition of “conversion.” For purposes of this subpart, the term “conversion” means the removal of public housing units from the inventory of a Public...

  3. Strong converse theorems using Rényi entropies

    Energy Technology Data Exchange (ETDEWEB)

    Leditzky, Felix; Datta, Nilanjana [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WB (United Kingdom); Wilde, Mark M. [Department of Physics and Astronomy, Center for Computation and Technology, Hearne Institute for Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-08-15

    We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint http://arxiv.org/abs/1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.

  4. Expertise in Everyday Nurse–Patient Conversations

    Directory of Open Access Journals (Sweden)

    Lindsay M. Macdonald

    2016-04-01

    Full Text Available A great deal of nursing activity is embedded in what is considered to be everyday conversation. These conversations are important to health professionals because communication can affect health outcomes, and they are important to patients who want to know they are being heard and cared for. How do nurses talk with patients and what are the features of effective communication in practice? In this exploratory study, two expert nurses recorded conversations with patients during domiciliary visits. Linguistic discourse analysis, informed by contextual knowledge of domiciliary nursing shows the nurses skillfully used small talk to support their clinical work. In their conversations, nurses elicit specific information, normalize unpleasant procedures, manage the flow of the interaction, and strengthen the therapeutic relationship. Small talk can be big talk in achieving nursing goals. Critically reflecting on recorded clinical interactions can be a useful method of professional development and a way of demonstrating nursing expertise.

  5. Method for conversion of .beta.-hydroxy carbonyl compounds

    Science.gov (United States)

    Lilga, Michael A.; White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Muzatko, Danielle S.; Orth, Rick J.

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  6. The national conversion pilot project

    International Nuclear Information System (INIS)

    Van Der Puy, M.; Francis, G.; Konczal, M.

    1994-01-01

    The Department of Energy is now faced with the prospect of terminating traditional defense production missions at several Department of Energy sites. Because of this, there is a critical need to develop a DOE process to convert former defense production facilities to private use so that underutilized workers and facilities may be used to minimize the impact on the United States economy. The purpose of the National Conversation Pilot Project (NCPP) at Rocky Flats near Denver, Colorado is to explore and demonstrate the feasibility of economic conversion of DOE facilities, in a manner consistent with ongoing site waste management and cleanup activities, and non-prejudicial to future land use planning decisions. The NCPP is divided into three stages: The first stage, now under way, is one of detailed planning for cleanup and building maintenance activities. The second stage involves building cleanup necessary to support the proposed industrial activities, maintenance of equipment and building infrastructure necessary to assure protection of human health and the environment, declassification work, and some small scale research and development activities. Stage III would involve DOE metals recycling. Specific approval from the DOE is required prior to each project stage. To ensure stakeholder involvement, a steering committee will advise the DOE on the desirability to proceed with the project from stage to stage. A key question in the conversion process is whether a competitive economic and regulatory environment can be created on a DOE facility, allowing an onsite conversion business to effectively compete with offsite businesses. If successful, the Rocky Flats project could become the model for economic conversion at other DOE facilities

  7. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  8. Information for Consumers about Alternative Fuel Conversions

    Science.gov (United States)

    Here are some factors to be aware of if you are considering fuel conversion, including background information on fuel conversion, instructions for demonstrating compliance, and other related information.

  9. Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Peng Liu; Cong-hua Zhou; Bing-chu Yang; Gang Liu; Run-sheng Wu; Chu-jun Zhang; Fang Wan; Shui-gen Li; Jun-liang Yang; Yong-li Gao

    2017-01-01

    Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices.Here,gold and silver dual nanoparticles were imported and embedded in the hole transport layer of perovskite solar cells.Due to the cooperative localized surface plasmon resonance of these two kinds of metal nanostructures,light harvest of perovskite material layer and the electrical performance of device were improved,which finally upgraded short circuit current density by 10.0%,and helped to increase power conversion efficiency from 10.4% to 11.6% under AM 1.5G illumination with intensity of 100 mW/cm2.In addition,we explored the influence of silver and gold nanoparticles on charge carrier generation,dissociation,recombination,and transportation inside perovskite solar cells.

  10. Jensen's operator inequality and its converses

    DEFF Research Database (Denmark)

    Hansen, Frank; Pecaric, Josip; Peric, Ivan

    2007-01-01

    We give a general formulation of Jensen's operator inequality for unital fields of positive linear mappings, and we consider different types of converse inequalities......We give a general formulation of Jensen's operator inequality for unital fields of positive linear mappings, and we consider different types of converse inequalities...

  11. Environmental effects of energy conversion

    International Nuclear Information System (INIS)

    Hansmeyer, K.H.; Fortak, H.; Knoepp, H.; Lindackers, K.H.; Schafhausen, F.; Schoedel, J.P.

    1984-01-01

    The article presents an analysis of energy conversion systems by the ''Council of Environmental Experts'' in order to correct the erroneous assumption that small energy conversion systems will also be small-scale and negligible emitters of pollutants. The additional pollution caused by Neurath power plant is considered to be low, at least in its immediate vicinity, owing to the implementation of the most recent technical developments. The environmental effects of energy conversion processes are discussed, including the waste heat problem and processes for water-cooling of power plants. General aspects of a new concept of energy taxation are discussed which is to reduce energy consumption. The problem of radioactive waste is discussed from spent fuel storage and reprocessing to the decommissioning of older power plants. The author points out that also new fossil-fuel technologies will pollute the environment. (orig.) [de

  12. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    OpenAIRE

    Yazdi, Fatemeh-Maleknejad; Moosavi, Horieh; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (?SBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% ...

  13. How gas-guzzler conversions can accelerate transportation electrification

    Energy Technology Data Exchange (ETDEWEB)

    Gremban, R. [California Cars Initiative, Palo Alto, CA (United States)

    2010-07-01

    This presentation discussed how plug-in hybrid electric vehicles (PHEV) can ramp up to accelerate greenhouse gas reductions. Specific topics that were presented included required battery manufacturing capacity; rapid conversion of light, medium, and heavy-duty ICE vehicles in the United States into battery electric vehicles and PHEVs; the low hanging fruits such as pickups, vans, larger vehicles, and those with defined drive cycles; the economics of gas guzzler conversions; and Canada and Japan policies on conversions. United States' measures supporting electric vehicle/(PHEV) conversions was also addressed. Some examples of converting vehicles to PHEVs were also outlined. The presentation concluded with some key themes to begin now for market penetration. It was concluded that without ICE conversions, market penetration was too slow. figs.

  14. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems. Final report

    International Nuclear Information System (INIS)

    Harty, R.B.; Durand, R.E.

    1993-03-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage

  15. Advances in Thermionic Energy Conversion through Single-Crystal n-Type Diamond

    Directory of Open Access Journals (Sweden)

    Franz A. M. Koeck

    2017-12-01

    Full Text Available Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e., electron emitter or cathode and collector or anode, are optimized for operation in the desired temperature range. These parameters can be defined through the law of Richardson–Dushman that quantifies the ability of a material to release an electron current at a certain temperature as a function of the emission barrier or work function and the emission or Richardson constant. Engineering materials to defined parameter values presents the key challenge in constructing practical thermionic converters. The elevated temperature regime of operation presents a constraint that eliminates most semiconductors and identifies diamond, a wide band-gap semiconductor, as a suitable thermionic material through its unique material properties. For its surface, a configuration can be established, the negative electron affinity, that shifts the vacuum level below the conduction band minimum eliminating the surface barrier for electron emission. In addition, its ability to accept impurities as donor states allows materials engineering to control the work function and the emission constant. Single-crystal diamond electrodes with nitrogen levels at 1.7 eV and phosphorus levels at 0.6 eV were prepared by plasma-enhanced chemical vapor deposition where the work function was controlled from 2.88 to 0.67 eV, one of the lowest thermionic work functions reported. This work function range was achieved through control of the doping concentration where a relation to the amount of band bending emerged. Upward band bending that contributed to the work function was attributed to

  16. Low Power High Dynamic Range A/D Conversion Channel

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Rombach, Pirmin

    in the conversion channel in order to avoid distortion for large input signals. In combination with a low resolution A/D converter (ADC) and a digital gain block, the adaptive A/D conversion channel achieves an extended dynamic range beyond that of the ADC. This in turn reduces the current consumption......This work concerns the analysis of an adaptive analog-to-digital (A/D) conversion channel for use with a micro electromechanical system (MEMS) microphone for audio applications. The adaptive A/D conversion channel uses an automatic gain control (AGC) for adjusting the analog preamplifier gain...... of the conversion channel in comparison to a static A/D conversion channel; this at the cost of a reduced peak signal-to-noise ratio (SNR). The adaptive A/D conversion channel compensates for the change in analog gain by a digital gain, thus achieving a constant channel gain in the full dynamic range. However...

  17. Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mössbauer spectroscopy

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Gunnlaugsson, H.P; Weyer, G.

    2005-01-01

    We have grown 4 nm thin films of Fe-57 on InAs(100) and InP(100) surfaces by use of MBE and studied the samples by Fe-57 conversion electron Mossbauer spectroscopy. In the case of InAs, the Mossbauer spectrum showed a sextet due to alpha-Fe and a further magnetically split component with slightly...

  18. MIL-HDBK-338: Environmental Conversion Table Correction

    Science.gov (United States)

    Hark, Frank; Novack, Steven

    2017-01-01

    In reliability analysis, especially for launch vehicles, limited data is frequently a problem. Component data from other environments must be used. MIL-HBK-338 has a matrix showing the conversation between environments. Due to round off the conversions are not commutative, converting from A to B will not equal converting from B to A. Agenda: Introduction to environment conversions; Original table; Original table with edits; How big is the problem?; First attempt at correction; Proposed solution.

  19. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...... their potential to find broad use in the conversion of biomass. In this perspective we review and discuss the developments that have taken place in the field of biomass conversion using zeolites. Emphasis is put on the conversion of lignocellulosic material to fuels using conventional zeolites as well...

  20. Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts

    International Nuclear Information System (INIS)

    Ranieri, Antonio; Di Rocco, Giulia; Millo, Diego; Battistuzzi, Gianantonio; Bortolotti, Carlo A.; Lancellotti, Lidia; Borsari, Marco; Sola, Marco

    2015-01-01

    Highlights: • Cytochrome c and its adduct with cardiolipin can be immobilized on a hydrophobic SAM. • Adsorbed cytochrome c and its adduct undergo extensive unfolding and axial ligand substitution. • An equilibrium between a six-coordinated and a five-coordinated form is observed in both cases. • The reduced five-coordinated form is stabilized by cardiolipin binding. • Immobilized cytochrome c exchanges electrons more slowly upon cardiolipin binding. - Abstract: Cytochrome c (cytc) and its adduct with cardiolipin (CL) were immobilized on a hydrophobic SAM-coated electrode surface yielding a construct which mimics the environment experienced by the complex at the inner mitochondrial membrane where it plays a role in cell apoptosis. Under these conditions, both species undergo an equilibrium between a six-coordinated His/His-ligated and a five-coordinated His/- ligated forms stable in the oxidized and in the reduced state, respectively. The thermodynamics of the oxidation-state dependent species conversion were determined by temperature-dependent diffusionless voltammetry experiments. CL binding stabilizes the immobilized reduced His/- ligated form of cytc which was found previously to catalytically reduce dioxygen. Here, this adduct is also found to show pseudoperoxidase activity, catalysing reduction of hydrogen peroxide. These effects would impart CL with an additional role in the cytc-mediated peroxidation leading to programmed cell death. Moreover, immobilized cytc exchanges electrons more slowly upon CL binding possibly due to changes in solvent reorganization effects at the protein-SAM interface

  1. Conversion of Deletions during Recombination in Pneumococcal Transformation

    Science.gov (United States)

    Lefevre, J. C.; Mostachfi, P.; Gasc, A. M.; Guillot, E.; Pasta, F.; Sicard, M.

    1989-01-01

    Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems. PMID:2599365

  2. Culture and conversion disorder: implications for DSM-5.

    Science.gov (United States)

    Brown, Richard J; Lewis-Fernández, Roberto

    2011-01-01

    The diagnostic criteria and related features of conversion disorder are under revision for DSM-5, including the requirement that psychological factors accompany the symptoms or deficits in question (Criterion B) and whether conversion disorder should be re-labeled as a dissociative, rather than a somatoform, condition. We examined the cross-cultural evidence on the prevalence, characteristics, and associated features of pseudoneurological symptoms more generally, and conversion disorder in particular, in order to inform the ongoing re-evaluation of the conversion disorder category. We also examined the relationship between these constructs and dissociative symptoms and disorders across cultural groups. Searches were conducted of the mental health literature, particularly since 1994, regarding culture, race, or ethnicity factors related to conversion disorder. Many proposed DSM-5 revisions were supported, such as the elimination of Criterion B. We also found cross-cultural variability in predominant symptoms, disorder prevalence, and relationship with cultural syndromes. Additional information that may contribute to DSM-5 includes the elevated rates across cultures of traumatic exposure and psychiatric comorbidity in conversion disorder. Cross-culturally, conversion disorder is associated strongly with both dissociative and somatoform presentations, revealing no clear basis on which to locate the disorder in DSM-5. Careful consideration should be given to the possible alternatives.

  3. Investigation of the conversion mechanism of nanosized CoF2

    International Nuclear Information System (INIS)

    Teng, Yin Ting; Pramana, Stevin S.; Ding, Junfeng; Wu, Tom; Yazami, Rachid

    2013-01-01

    Highlights: • First report on synthesis of nanosized cobalt fluoride via precipitation. • CoF x formation during recharging commences at the interface between cobalt and lithium fluoride. • Valance change of cobalt in cobalt fluoride electrode upon discharging and recharging is shown from EELS and XPS. • Lithiation of CoF 2 leads to formation of superparamagnetic nanosized cobalt particles. • Morphology of the conductive carbon addictives used plays a crucial factor in determining the capacity retention ability. -- Abstract: Nanoparticles (∼20 nm) of tetragonal (P42/mnm) cobalt fluoride (CoF 2 ) has been synthesized by precipitation using cobalt nitrate and ammonium fluoride solution at room temperature, followed by annealing at 400 °C under argon atmosphere. The morphology and structure have been studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The electrochemical lithiation of CoF 2 and its structural and valence changes during conversion have been investigated. Electrochemical measurements revealed a discharge specific capacity close to theoretical specific capacity of 553 mAh g −1 and charge specific capacities ranging from 250 to 450 mAh g −1 in the first cycle, depending on the type of conductive carbon addictive used. Lithiation of CoF 2 occurs without any intercalation, but via conversion reaction CoF 2 + 2Li + + 2e − → Co(0) + 2LiF. During lithiation, CoF 2 is fully reduced to Co(0) and breaks down into smaller particles of ∼2 nm. Upon recharging, CoF x is formed instead of CoF 2 . XPS and EELS studies show that only the surface of the electrode is reconverted back to CoF x during recharging. In addition, recharging to form CoF x commences at the interface between the cobalt and lithium fluoride. These results offer the experimental evidence explaining the lack of cycle stability of metal fluorides that undergo a conversion reaction with lithium such

  4. Low-energy hydrogen flux measurements at the TORTUR tokamak with negative ion conversion

    International Nuclear Information System (INIS)

    Toledo, Wiebo van.

    1990-01-01

    The interaction of a tokamak plasma with the vessel wall is one of the most important subjects in thermonuclear research. The information about this interaction is not complete without direct detection of the outward stream of low-energy, down to a few electronvolts, neutral hydrogen or deuterium atoms. The detection of these atoms is the subject of this thesis. An appropriate method to analyse the atoms which are emitted from the edge plasma is to use a time-of-flight analyser. This kind of apparatus selects particles according to their velocities with-out distinguishing between different masses. If these analysers use the Daly-method the lowest measurable energy of the hydrogen atoms is approximately 25 electronvolts. To increase the detection efficiency a new detection method was developed. This new method uses the conversion of hydrogen atoms into H- ions on a cesiated tungsten surface. By this conversion the lowest measurable energy is decreased down to 5 electron-volt. (author). 93 refs.; 44 figs.; 7 tabs

  5. Metal-Exchanged β Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Aurora J. Cruz-Cabeza

    2012-01-01

    Full Text Available Various metal-β zeolites have been synthesized under similar ion-exchange conditions. During the exchange process, the nature and acid strength of the used cations modified the composition and textural properties as well as the Brönsted and Lewis acidity of the final materials. Zeolites exchanged with divalent cations showed a clear decrease of their surface Brönsted acidity and an increase of their Lewis acidity. All materials were active as catalysts for the transformation of acetone into hydrocarbons. Although the protonic zeolite was the most active in the acetone conversion (96.8% conversion, the metal-exchanged zeolites showed varied selectivities towards different products of the reaction. In particular, we found the Cu-β to have a considerable selectivity towards the production of isobutene from acetone (over 31% yield compared to 7.5% of the protonic zeolite. We propose different reactions mechanisms in order to explain the final product distributions.

  6. 'Being appropriately unusual': a challenge for nurses in health-promoting conversations with families.

    Science.gov (United States)

    Benzein, Eva Gunilla; Hagberg, Margaretha; Saveman, Britt-Inger

    2008-06-01

    This study describes the theoretical assumptions and the application for health-promoting conversations, as a communication tool for nurses when talking to patients and their families. The conversations can be used on a promotional, preventive and healing level when working with family-focused nursing. They are based on a multiverse, salutogenetic, relational and reflecting approach, and acknowledge each person's experience as equally valid, and focus on families' resources, and the relationship between the family and its environment. By posing reflective questions, reflection is made possible for both the family and the nurses. Family members are invited to tell their story, and they can listen to and learn from each other. Nurses are challenged to build a co-creating partnership with families in order to acknowledge them as experts on how to lead their lives and to use their own expert knowledge in order to facilitate new meanings to surface. In this way, family health can be enhanced.

  7. Enhancing Classroom Conversation for All Students

    Science.gov (United States)

    Goldsmith, William

    2013-01-01

    The author, a 5th-grade teacher, offers strategies intended to assist and encourage ELL students to participate in academic conversations. They include insisting that children take part in conversations despite their apprehension and teaching them the language they need to communicate their ideas. One strategy is Think, Pair, Share--a simple…

  8. High PEC conversion efficiencies from CuSe film electrodes modified with metalloporphyrin/polyethylene matrices

    International Nuclear Information System (INIS)

    Zyoud, Ahed; Al-Kerm, Rola S.; Al-Kerm, Rana S.; Waseem, Mansur; Mohammed, H.S. Helal; Park, DaeHoon; Campet, Guy; Sabli, Nordin; Hilal, Hikmat S.

    2015-01-01

    Enhancement of hole-transfer across CuSe electrode/liquid junction can be facilitated by coating with metalloporphyrin complexes embedded inside polyethylene matrices. - Highlights: • CuSe films were electrochemically deposited onto FTO/Glass • Annealing CuSe film electrodes enhanced PEC characteristics • PEC characteristics were further enhanced by metalloporphyrin/polyethylene matrices, yielding ∼15% efficiency • Matrix behavior as charge transfer mediator enhanced electrode conversion efficiency and stability - Abstract: Electrodeposited CuSe film electrodes have been prepared onto FTO/glass by a facile method based on earlier methods described for other systems. The films were characterized, modified by annealing and further characterized. The films were then modified by coating with tetra(-4-pyridyl) pophyrinato-manganese (MnTPyP) complexes embedded inside commercial polyethylene (PE) matrices. The effects of modifications on different film properties, such as X-ray diffraction (XRD) patterns, surface morphology, photoluminescence (PL) spectra and electronic absorption spectra were investigated. Compared with other thin film electrode systems, very high photoelectrochemical (PEC) conversion efficiency values have been observed here. Pre-annealing the CuSe films at 150°C for 2 h, followed by attaching the MnTPyP/PE matrices remarkably enhanced their PEC characteristics. The conversion efficiency was significantly enhanced, from less than 1.0% to more than 15%. Fill factor (FF) was also enhanced from ∼30% to ∼80%. Values of open-circuit potential (V OC ) and short-circuit current (J SC ) were significantly enhanced. While annealing affects uniformity, particle inter-connection and surface texture of the CuSe films, the MnTPyP complex species behaves as an additional charge-transfer mediator across the film/electrolyte junction. Optimization of PEC characteristics, using different deposition times, different annealing temperatures, different

  9. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  10. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    International Nuclear Information System (INIS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J.; Lapeña, N.

    2015-01-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  11. Development of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Yamashita, Jun-ichi; Mochida, Takaaki; Uchikawa, Sadao.

    1988-01-01

    It is expected that the period of LWRs being the main source of electric power supply becomes long, therefore, the development of next generation LWRs placing emphasis on the effective utilization of uranium resources and the improvement of economical efficiency is necessary. In this paper, as the next generation BWRs subsequent to ABWRs, the concept of the core of high conversion type BWRs is reported, in which emphasis is placed on the saving of natural uranium resources by raising the rate of conversion to plutonium. This core is that of realizing the high rate of conversion by utilizing the void in the core, which is the feature of BWRs, and the case of making the change of the core structure relatively small by using cross type control rods and the case of changing the core structure for further heightening the rate of conversion and making control rods into cluster type are described. In order to meet the demand like this, Hitachi Ltd. has engaged in the development of the concept of the core of next generation LWRs. In the high conversion type BWRs, there is not large change in the reactor system and turbine system from the current BWRs. The features and the concept of the core of high conversion type BWRs are described. (Kako, I.)

  12. Optimization of renewable levulinic acid production from glucose conversion catalyzed by Fe/HY zeolite catalyst in aqueous medium

    International Nuclear Information System (INIS)

    Ramli, Nur Aainaa Syahirah; Amin, Nor Aishah Saidina

    2015-01-01

    Highlights: • Dehydration of glucose as model compound to LA over Fe/HY zeolite catalyst. • RSM coupled with BBD for optimization of LA yield from glucose. • Optimization involving evaluation of four parameters gave 61.8% of optimum LA yield. • Direct conversion of OPF over Fe/HY zeolite yielded 17.6% LA with 54.8% efficiency. • Reusability of Fe/HY zeolite catalyst was tested for five successive cycles. - Abstract: Levulinic acid (LA) is a versatile chemical with numerous applications. In this study, the conversions of glucose and oil palm fronds (OPF) to LA have been conducted over 10% Fe/HY zeolite catalyst. The optimization of LA yield from glucose conversion using Box–Behnken design and response surface methodology reported 61.8% yield, which can be achieved at temperature 173.4 °C, reaction time 3.3 h, 0.93 g of glucose and 0.89 g 10% Fe/HY zeolite. The LA yield from OPF conversion conducted at the optimum conditions was 17.6% with 54.8% process efficiency. It was also observed that Fe leaching from 10% Fe/HY zeolite was insignificant and recycled 10% Fe/HY zeolite gave sufficient performance for five successive cycles. This study emphasizes the potential of Fe/HY zeolite catalyst for catalytic conversion of lignocellulosic biomass to LA

  13. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    Science.gov (United States)

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  14. The dialogues conversations about the nature of the Universe

    CERN Document Server

    Johnson, Clifford V

    2017-01-01

    A series of conversations about science in graphic form, on subjects that range from the science of cooking to the multiverse. Physicist Clifford Johnson thinks that we should have more conversations about science. Science should be on our daily conversation menu, along with topics like politics, books, sports, or the latest prestige cable drama. Conversations about science, he tells us, shouldn't be left to the experts. In The Dialogues, Johnson invites us to eavesdrop on a series of nine conversations, in graphic-novel form -- written and drawn by Johnson -- about "the nature of the universe." The conversations take place all over the world, in museums, on trains, in restaurants, in what may or may not be Freud's favorite coffeehouse. The conversationalists are men, women, children, experts, and amateur science buffs. The topics of their conversations range from the science of cooking to the multiverse and string theory. The graphic form is especially suited for physics; one drawing can show what it would ...

  15. Conversation therapy for aphasia: a qualitative review of the literature.

    Science.gov (United States)

    Simmons-Mackie, Nina; Savage, Meghan C; Worrall, Linda

    2014-01-01

    A diverse literature addresses elements of conversation therapy in aphasia including intervention rooted in conversation analysis, partner training, group therapy and behavioural intervention. Currently there is no resource for clinicians or researchers that defines and organizes this information into a coherent synopsis describing various conversation therapy practices. To organize information from varied sources into a descriptive overview of conversation therapy for aphasia. Academic search engines were employed to identify research articles published between 1950 and September 2013 reporting on conversation therapy for aphasia. Thirty articles met criteria for review and were identified as primary sources for the qualitative review. Using qualitative methodology, relevant data were extracted from articles and categories were identified to create a descriptive taxonomy of conversation therapy for aphasia. Conversation interventions were divided into descriptive categories including: treatment participants (person with aphasia, partner, dyad), primary guiding orientation (conversation analysis, social model, behavioural, relationship centred), service delivery (individual, group), focus of intervention (generic/individualized; problem/solution oriented; compensatory), training methods (explicit/implicit; external/embedded), activities or tasks, and outcomes measured. Finally, articles were categorized by research design. There was marked variation in conversation therapy approaches and outcome measures reported and a notable gap in information about one-on-one conversation therapy for individuals with aphasia. This review provides a description of various conversation therapy approaches and identified gaps in the existing literature. Valid measures of natural conversation, research on one-on-one conversation approaches for individuals with aphasia, and a systematic body of evidence consisting of high quality research are needed. © 2014 Royal College of Speech

  16. Catalytic properties of pure and K+-doped Cu O/Mg O system towards 2-propanol conversion

    International Nuclear Information System (INIS)

    El-Molla, S. A.; Amin, N. H.; Hammed, M. N.; Sultan, S. N.; El-Shobaky, G. A.

    2013-01-01

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K + species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N 2 at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu 2 O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K + -doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K + -doping increased the catalytic activity and catalytic durability. (Author)

  17. Electrochemical, interfacial, and surface studies of the conversion of carbon dioxide to liquid fuels on tin electrodes

    Science.gov (United States)

    Wu, Jingjie

    The electrochemical reduction of carbon dioxide (CO2) into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic CO2 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not substantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. An efficient catalyst for the electrochemical conversion of CO2 to fuels must be capable of mediating a proton-coupled electron transfer reaction at low overpotentials, reducing CO2 in the presence of water, selectively converting CO 2 to desirable chemicals, and sustaining long-term operations (Chapter 1). My Ph.D. research was an investigation of the electroreduction of CO2 on tin-based electrodes and development of an electrochemical cell to convert CO2 to liquid fuels. The initial study focused on understanding the CO2 reduction reaction chemistry in the electrical double layer with an emphasis on the effects of electrostatic adsorption of cations, specific adsorption of anion and electrolyte concentration on the potential and proton concentration at outer Helmholtz plane at which reduction reaction occurs. The variation of potential and proton concentration at outer Helmholtz plane accounts for the difference in activity and selectivity towards CO2 reduction when using different electrolytes (Chapter 2). Central to the highly efficient CO2 reduction is an optimum microstructure of catalyst layer in the Sn gas diffusion electrode (GDE) consisting of 100 nm Sn nanoparticles to facilitate gas diffusion and charge transfer. This microstructure in terms of the proton conductor fraction and catalyst layer thickness was optimized to

  18. General Conversion for Obtaining Strongly Existentially Unforgeable Signatures

    Science.gov (United States)

    Teranishi, Isamu; Oyama, Takuro; Ogata, Wakaha

    We say that a signature scheme is strongly existentially unforgeable (SEU) if no adversary, given message/signature pairs adaptively, can generate a signature on a new message or a new signature on a previously signed message. We propose a general and efficient conversion in the standard model that transforms a secure signature scheme to SEU signature scheme. In order to construct that conversion, we use a chameleon commitment scheme. Here a chameleon commitment scheme is a variant of commitment scheme such that one can change the committed value after publishing the commitment if one knows the secret key. We define the chosen message security notion for the chameleon commitment scheme, and show that the signature scheme transformed by our proposed conversion satisfies the SEU property if the chameleon commitment scheme is chosen message secure. By modifying the proposed conversion, we also give a general and efficient conversion in the random oracle model, that transforms a secure signature scheme into a SEU signature scheme. This second conversion also uses a chameleon commitment scheme but only requires the key only attack security for it.

  19. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  20. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  1. Exergy conversion in the Japanese society

    International Nuclear Information System (INIS)

    Wall, G.

    1989-01-01

    In this paper exergy concept is reviewed as a tool for resource accounting. Conversions of energy and material resources in the Japanese society are described in terms of exergy. Necessary concepts and conventions are introduced. Exergy losses in transformations of material resources and in conversions of various forms of energy are described in some detail

  2. Conversion Disorder in Australian Pediatric Practice

    Science.gov (United States)

    Kozlowska, Kasia; Nunn, Kenneth P.; Rose, Donna; Morris, Anne; Ouvrier, Robert A.; Varghese, John

    2007-01-01

    Objectives: To describe the incidence and clinical features of children presenting to Australian child health specialists with conversion disorder. Method: Active, national surveillance of conversion disorder in children younger than 16 years of age during 2002 and 2003. Results: A total of 194 children were reported on. The average age was 11.8…

  3. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  5. NUMERICAL SIMULATIONS OF CONVERSION TO ALFVÉN WAVES IN SUNSPOTS

    International Nuclear Information System (INIS)

    Khomenko, E.; Cally, P. S.

    2012-01-01

    We study the conversion of fast magnetoacoustic waves to Alfvén waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfvén/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfvén speed gradient, but around and above this reflection height it partially converts to Alfvén waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfvén waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfvén waves. We find that the conversion to Alfvén waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90° the generated Alfvén waves continue upward, but above 90° downgoing Alfvén waves are preferentially produced. This yields negative Alfvén energy flux for azimuths between 90° and 180°. Alfvén energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.

  6. Frontiers of Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2014-09-01

    Full Text Available This special issue of Inorganics features a Forum for novel materials and approaches for electrochemical energy storage and conversion. Diminishing non-renewable fossil fuels and the resulting unattainability of environment have made us search new sustainable energy resources and develop technology for efficient utilization of such resources. Green energy sources, such as solar, hydroelectric, thermal and wind energy are partially replacing fossil fuels as means to generate power. Inorganic (solid state materials are key in the development of advanced devices for the efficient storage and conversion of energy. The grand challenge facing the inorganic chemist is to discover, design rationally and utilize advanced technological materials made from earth-abound elements for these energy storage and conversion processes. Recent spectacular progress in inorganic materials synthesis, characterization, and computational screening has greatly advanced this field, which drove us to edit this issue to provide a window to view the development of this field for the community. This special issue comprises research articles, which highlights some of the most recent advances in new materials for energy storage and conversion. [...

  7. Problematic topic transitions in dysarthric conversation.

    Science.gov (United States)

    Bloch, Steven; Saldert, Charlotta; Ferm, Ulrika

    2015-01-01

    This study examined the nature of topic transition problems associated with acquired progressive dysarthric speech in the everyday conversation of people with motor neurone disease. Using conversation analytic methods, a video collection of five naturally occurring problematic topic transitions was identified, transcribed and analysed. These were extracted from a main collection of over 200 other-initiated repair sequences and a sub-set of 15 problematic topic transition sequences. The sequences were analysed with reference to how the participants both identified and resolved the problems. Analysis revealed that topic transition by people with dysarthria can prove problematic. Conversation partners may find transitions problematic not only because of speech intelligibility but also because of a sequential disjuncture between the dysarthric speech turn and whatever topic has come prior. In addition the treatment of problematic topic transition as a complaint reveals the potential vulnerability of people with dysarthria to judgements of competence. These findings have implications for how dysarthria is conceptualized and how specific actions in conversation, such as topic transition, might be suitable targets for clinical intervention.

  8. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  9. One-step electrochemical synthesis and photoelectric conversion of a ZnO/Se/RGO composite

    International Nuclear Information System (INIS)

    Wang, Lei; Zhang, Chunyan; Zhang, Shengyi; Niu, Helin; Song, Jiming; Mao, Changjie; Jin, Baokang; Tian, Yupeng

    2015-01-01

    Using Zn(NO 3 ) 2 , H 2 SeO 3 and graphene oxide as precursors, the zinc oxide/selenium/reduced graphene oxide (ZnO/Se/RGO) composite was facilely electrodeposited on the surface of indium tin oxide glass. The conditions for electrochemical synthesis such as electrodeposition potential and electrolyte composition were studied. The morphology and crystallization of the products as-prepared were characterized using scanning electron microscopy (SEM) and x-ray diffractometry (XRD) respectively. The light absorption and conductivity of the products were studied by UV-visible spectroscopy (UV-vis) and electrochemical impedance spectroscopy (EIS). Based on a series of experimental results, the photoelectrical conversion mechanism and effect factors of the products were explored. By means of synergistic action of n-type ZnO, p-type Se and conductive RGO, the ZnO/Se/RGO composite showed excellent photoelectric conversion under visible light irradiation. (paper)

  10. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing

  11. ICRF Mode Conversion Current Drive for Plasma Stability Control in Tokamaks

    International Nuclear Information System (INIS)

    Grekov, D.; Kock, R.; Lyssoivan, A.; Noterdaeme, J. M.; Ongena, J.

    2007-01-01

    There is a substantial incentive for the International Thermonuclear Experimental Reactor (ITER) to operate at the highest attainable beta (plasma pressure normalized to magnetic pressure), a point emphasized by requirements of attractive economics in a reactor. Recent experiments aiming at stationary high beta discharges in tokamak plasmas have shown that maximum achievable beta value is often limited by the onset of instabilities at rational magnetic surfaces (neoclassical tearing modes). So, methods of effective control of these instabilities have to be developed. One possible way for neoclassical tearing modes control is an external current drive in the island to locally replace the missing bootstrap current and thus to suppress the instability. Also, a significant control of the sawtooth behaviour was demonstrated when the magnetic shear was modified by driven current at the magnetic surface where safety factor equals to 1. In the ion cyclotron range of frequencies (ICRF), the mode conversion regime can be used to drive the local external current near the position of the fast-to-slow wave conversion layer, thus providing an efficient means of plasma stability control. The slow wave energy is effectively absorbed in the vicinity of mode conversion layer by electrons with such parallel to confining magnetic field velocities that the Landau resonance condition is satisfied. For parameters of present day tokamaks and for ITER parameters the slow wave phase velocity is rather low, so the large ratio of momentum to energy content would yield high current drive efficiency. In order to achieve noticeable current drive effect, it is necessary to create asymmetry in the ICRF power absorption between top and bottom parts of the plasma minor cross-section. Such asymmetric electron heating may be realized using: - shifted from the torus midplane ICRF antenna in TEXTOR tokamak; - plasma displacement in vertical direction that is feasible in ASDEX-Upgrade; - the

  12. Revisiting non-degenerate parametric down-conversion

    Indian Academy of Sciences (India)

    conversion process is studied by recasting the time evolution equations for the basic op- erators in an equivalent ... We consider a model of non-degenerate parametric down-conversion process com- posed of two coupled ..... e−iωat and eiωbt have been left out in writing down the final results in ref. [4], even though these ...

  13. 6 -V C A NWEKE-FT-4-2-2015-CONVERSATIONS

    African Journals Online (AJOL)

    JONATHAN

    Filosofia Theoretica: Journal of African Philosophy, Culture and Religions. P age. 9. 3. CONVERSATIONS: Conversational thinking is articulated as the new approach to philosophical inquiry. It has two strands: conversational philosophy and interrogatory theory with conversationalism and interrogationism as their ...

  14. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  15. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    Science.gov (United States)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  16. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  17. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  18. Conversion total hip arthroplasty: Primary or revision total hip arthroplasty

    Science.gov (United States)

    Schwarzkopf, Ran; Baghoolizadeh, Mahta

    2015-01-01

    Total hip arthroplasty (THA) is an increasingly common procedure among elderly individuals. Although conversion THA is currently bundled in a diagnosis related group (DRG) with primary THA, there is a lack of literature supporting this classification and it has yet to be identified whether conversion THA better resembles primary or revision THA. This editorial analyzed the intraoperative and postoperative factors and functional outcomes following conversion THA, primary THA, and revision THA to understand whether the characteristics of conversion THA resemble one procedure or the other, or are possibly somewhere in between. The analysis revealed that conversion THA requires more resources both intraoperatively and postoperatively than primary THA. Furthermore, patients undergoing conversion THA present with poorer functional outcomes in the long run. Patients undergoing conversion THA better resemble revision THA patients than primary THA patients. As such, patients undergoing conversion THA should not be likened to patients undergoing primary THA when determining risk stratification and reimbursement rates. Conversion THA procedures should be planned accordingly with proper anticipation of the greater needs both in the operating room, and for in-patient and follow-up care. We suggest that conversion THA be reclassified in the same DRG with revision THA as opposed to primary THA as a step towards better allocation of healthcare resources for conversion hip arthroplasties. PMID:26601055

  19. Characterizing Pedophile Conversations on the Internet using Online Grooming

    OpenAIRE

    Gupta, Aditi; Kumaraguru, Ponnurangam; Sureka, Ashish

    2012-01-01

    Cyber-crime targeting children such as online pedophile activity are a major and a growing concern to society. A deep understanding of predatory chat conversations on the Internet has implications in designing effective solutions to automatically identify malicious conversations from regular conversations. We believe that a deeper understanding of the pedophile conversation can result in more sophisticated and robust surveillance systems than majority of the current systems relying only on sh...

  20. Les contextes de la conversion à l’époque de la Réforme Contexts of conversion at time of Reform

    Directory of Open Access Journals (Sweden)

    Raymond Mentzer

    2010-03-01

    Full Text Available La conversion – le passage d’une affiliation religieuse à une autre - est un processus à la fois émouvant et ardu, même dans le cas où elle est estimée correcte du point de vue théologique avec la promesse du salut éternel. A l’époque de la Réforme, des hommes aussi bien que des femmes nous en ont donné la preuve. Pour examiner les questions autour du thème des contextes de la conversion et les protestants français, cet article divise le problème en trois parties. D'abord, il traite de la conversion au niveau de la communauté. Il s’agit des structures politiques, professionnelles et économiques qui favorisaient la conversion. Deuxièmement, la famille, qui conversions souvent les plus fortes et les plus durables. Enfin, et c'est le troisième point, tous protestants français ont été obligés eux-mêmes de se convertir au catholicisme en 1685 quand le Roi Soleil révoqua l’édit de Nantes. Comment ont-ils soumis à l’obligation de se convertir, et en même temps quelle stratégie ont-ils mis en place pour maintenir leur foi réformée, sauvegarder leurs familles, et d’essayer d’éviter la menace d’une monarchie catholique et ses alliés ecclésiastiques ?Conversion – the passage from one faith to another – was a challenging and painful process, even when it was deemed theologically correct and held the promise of eternal salvation. The men and women of the Reformation era offer poignant testimony. In its assessment investigation of the various question concerning conversion and Protestantism in early modern France, this article takes up three main themes. To begin, it examines conversion within the context of the community. What were the political, professional and economic structures that encouraged conversion? Secondly, the family, beyond any doubt a fundamental institution in pre-industrial society, was the site of the strongest and more enduring conversions. Finally, Protestants throughout France were

  1. Advanced conversion technology review panel report

    International Nuclear Information System (INIS)

    Frazier, T.A.

    1998-01-01

    The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) established a DOE lead management team and an Advanced Conversion Technology Review Panel. The panel was tasked with providing the management team with an assessment and ranking of the three advanced conversion technologies. The three advanced conversion technologies were alkali metal thermal to electric converter (AMTEC), Stirling engine converter (SEC), and thermophotovoltaic (TPV). To rate and rank these three technologies, five criteria were developed: (1) Performance, (2) Development and Cost/Production and Cost/Schedule Risk, (3) Spacecraft Interface and Operations, (4) Ability to Scale Conversion, and (5) Safety. Discussed are the relative importance of each of these criteria and the rankings of the three advanced conversion technologies. It was the conclusion of the panel that the technology decision should be based on the risk that DOE and NASA are willing to accept. SEC is the most mature technology and would provide the lowest risk option. However, if more risk is acceptable, AMTEC not only provides benefits in the spacecraft interface but is also predicted to outperform the SEC. It was proposed that if AMTEC were selected, funding should be provided at a reasonable level to support back-up technology to be developed in a parallel fashion until AMTEC has proven its capability. The panel report and conclusion were provided to DOE in February 1997

  2. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  3. Distributed secondary gas injection via a fractal injector : A nature-inspired approach to improving conversion in fluidized bed reactors

    NARCIS (Netherlands)

    Christensen, D.O.

    2008-01-01

    The conversion in bubbling fluidized bed reactors is suppressed because the interphase mass transfer and gas-solid contact in bubbling fluidized bed reactors are often poor. Most of the gas is present in the form of bubbles, which have low surface-to-volume ratios and are nearly devoid of catalyst

  4. Inverse spinel transition metal oxides for lithium-ion storage with different discharge/charge conversion mechanisms

    International Nuclear Information System (INIS)

    Wang, Jiawei; Ren, Yurong; Huang, Xiaobing; Ding, Jianning

    2016-01-01

    Highlights: • Inverse spinel structure relieves the irreversible phase transition of electrodes. • Anodes with the same structure show different discharge/charge conversion mechanisms. • High reversible capacity confirms the potential feasibility of composites. - Abstract: Inverse spinel transition metal oxides (Fe 3 O 4 , MnFe 2 O 4 , Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide) are prepared by a facile ethylene-glycol-assisted hydrothermal method. The stability of inverse spinel structure and the high specific surface area of nanoscale provide transition metal oxides with high specific capacity. And the surface modification with reduced graphene oxide improves the poor conductivity of pristine transition metal oxides. Pristine Fe 3 O 4 and MnFe 2 O 4 deliver the high initial discharge capacity of 1137.1 and 1088.9 mAh g −1 , respectively. Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide get the reversible capacity of 645.8 and 720 mAh g −1 , respectively, even after 55 cycles. The different discharge/charge conversion mechanisms make them different capacity stability. The great electrochemical performances of composites offer electrodes with suitable characteristics for high-performance energy storage application.

  5. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  6. Conversations with Miss Jane

    Directory of Open Access Journals (Sweden)

    Geneviève Fabre

    2006-05-01

    Full Text Available Considering the wide range of conversations in the autobiography, this essay will attempt to appraise the importance of these verbal exchanges in relation to the overall narrative structure of the book and to the prevalent oral tradition in Louisiana culture, as both an individual and communal expression. The variety of circumstances, the setting and staging, the interlocutors , and the complex intersection of time and place, of stories and History, will be examined; in these conversations with Miss Jane many actors participate, from  the interviewer-narrator, to most characters; even the reader becomes involved.Speaking, hearing, listening, keeping silent is an elaborate ritual that performs many functions; besides conveying news or rumors, it imparts information on the times and on the life of a “representative” woman whose existence - spanning a whole century- is both singular and emblematic. Most importantly this essay will analyse the resonance of an eventful and often dramatic era on her sensibility and conversely show how her evolving sensibility informs that history and draws attention to aspects that might have passed unnoticed or be forever silenced. Jane’s desire for liberty and justice is often challenged as she faces the possibilities of life or death.Conversations build up a complex, often contradictory, but compelling portrait: torn between silence and vehemence, between memories and the urge to meet the future, Jane summons body and mind to find her way through the maze of a fast changing world; self-willed and obstinate she claims her right to speak, to express with wit and wisdom her firm belief in the word, in the ability to express deep seated convictions and faith and a whole array of feelings and emotions.

  7. Influence of e-Beam Irradiation on the Performance of Energy Storage and Conversion Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baeok, Sung Hyeon; Jo, Won Jun; Lee, Duwon; Lee, Myung An [Inha Univ., Incheon (Korea, Republic of); Shin, Joong Hyeok; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    Electron beam irradiation was known as an effective method to improve the stability and performance of electrodes by varying the chemical and physical properties. It has been reported that surface morphology, oxidation state, optical properties, and electrochemical properties can be modified by e-beam irradiation. In this work, influence of electron beam irradiation on the performance of electrode was studied for the applications in energy storage and conversion, such as secondary battery, supercapacitor, and fuel cell. Changes in physical and chemical properties of electrodes before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states were determined by X-ray photoelectron spectroscopy. Scanning electron microscopy was utilized to examine surface morphology. Crystallinity, surface morphology, and oxidation state were significantly changed by electron beam irradiation, and were found to be strongly dependent on irradiation time.

  8. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  9. Trends and Challenges in Catalytic Biomass Conversion

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup; Egeblad, Kresten; Taarning, Esben

    2013-01-01

    The conversion of biomass to the plethora of chemicals used in modern society is one of the major challenges of the 21st century. Due to the significant differences between biomass resources and the current feedstock, crude oil, new technologies need to be developed encompassing all steps...... in the value chain, from pretreatment to purification. Heterogeneous catalysis is at the heart of the petrochemical refinery and will likely play an equally important role in the future biomass-based chemical industry. Three potentially important routes to chemicals from biomass are highlighted in this chapter....... The conversion of biomass-derived substrates, such as glycerol, by hydrogenolysis to the important chemicals ethylene glycol and propane diols. Secondly, the conversion of carbohydrates by Lewis acidic zeolites to yield alkyl lactates, and finally the conversion of lignin, an abundant low value source of biomass...

  10. Synthesis of f metal coordination polymers: properties and conversion into inorganic solids

    International Nuclear Information System (INIS)

    Demars, Thomas

    2012-01-01

    Coordination polymers (CP) are of great academic and industrial interest due to flexible structure and composition and offer prospects for original chemical (catalysis, soft-hard materials conversion..) and physical properties (magnetism, optics..). The major interest of these studies is to check the transfer of the structure, meso-structure and composition from the CP to the ceramic via a thermal treatment. In this context, this thesis describes studies on conversion of coordination polymers obtained by self-assembly of 4f and 5f metal ions with 2,5-dihydroxy-1,4-benzoquinone (DHBQ). Aqueous and anhydrous synthetic ways were developed, which yielded different kinds of CPs (4f, 4f-4f, 4f-5f); solid solutions were obtained with the mixed compounds. The products were characterized and their behaviour under thermal treatment was studied. The main results show that the DHBQ-based precursors obtained by aqueous way have a micrometric meso-structure, formed by the assembly of micro-crystalline subunits which all posses the same crystallographic structure. The study of the assembly of the meso-structure allowed controlling the morphology of the elementary grain (cylinder, cube, disk...) with very good size distribution. The implementation of anhydrous systems in a controlled atmosphere allowed yielded a wider range of micro-structural parameters (surface area, porosity...). For all CP-type compounds, the thermal conversion to ceramic has barely altered the morphology of the materials. The microstructural aspects could be controlled via the method of synthesis. (author) [fr

  11. Calibration of the isomer shift of {sup 133}Cs from internal conversion measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Hiroko; Tanaka, Eiji; Muramatsu, Hisakazu [Shinshu Univ., Matsumoto, Nagano (Japan)] [and others

    1997-03-01

    In this study, for 81 KeV transition of 133-Cs which is one of Moessbauer nuclides belonged to alkaline element and can be useful probe on study of binding state in a compound with high ionic boundability specific to alkaline element, an experiment to obtain {Delta}R/R was conducted by measurement of Moessbauer isomer shift and of internal conversion intensity of outer shell electron, using an internal conversion method, one of obtaining methods of {Delta} at the most accuracy. 133-Xe was buried at shallow surface of a host metal, reduced energy loss of internal conversion electron to realize high resolution and aimed to separate O-shell from P-shell to reduce injected ionic spaced and prepare a source. In range measurement of various energy to confirm actual speed reduction of ion, transmittance of 133-Xe on Cu layer vapor-deposited 2 to 10 micro g/sq cm thick on an Ni-foil was conducted. As a result, mean ranges of each energy were 5:2.2, 10:3.7, 15:4.8, and 20:5.6 micro g/sq cm, respectively. It was thought to be proved that speed reduction was certainly conducted by facts that the range increased with increase of the incident energy which showed good agreement with calculation results due to TRIM-95 code. (G.K.)

  12. Ortho-para conversion in the solid hydrogens at high pressures

    International Nuclear Information System (INIS)

    Strzhemechny; Hemley, R.J.

    2003-01-01

    At low pressures the ortho-para conversion in H 2 and D 2 is a slow process governed by the magnetic dipole interaction of nuclear magnetic moments, phonons being the main energy sink. As the pressure is raised to a few GPa and the Debye temperature increases substantially, the conversion energy finds itself in an area where phonon states are depleted and conversion slows down. The recent Raman and NMR experiments showed that the conversion rate in H 2 after an initial slowdown predicted by theory increases immensely. As for solid D 2 , conversion rates have apparently not yet been directly measured under pressure. In order to explain the anomaly observed in H 2 , we have suggested a new conversion mechanism, in which the basic conversion-producing interaction only initiates conversion whereas the energy is removed by rotational excitations via the stronger electric quadrupole-quadrupole interaction. Estimated conversion rates are in good qualitative agreement with available experimental observations. Here we extend the theory to solid D 2 taking into account the differences between H 2 and D 2 in the molecular and solid-state parameters. The new libron-mediated channel is predicted to result for D 2 in conversion rates under pressure that are by an order of magnitude larger than at P = 0

  13. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  14. Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis

    International Nuclear Information System (INIS)

    Işıtan, Seçil; Ceylan, Selim; Topcu, Yıldıray; Hintz, Chloe; Tefft, Juliann; Chellappa, Thiago; Guo, Jicheng; Goldfarb, Jillian L.

    2016-01-01

    Highlights: • Pyrolysis temperature key variable in manipulating biofuel quality. • Pyrolysis temperature does not impact activated biochar surface area. • Activation temperature key variable to optimize surface area of pistachio biochar. • Statistical model accurately predicts surface area of biochar, especially above 600 m"2/g. - Abstract: An economically viable transition to a renewable, sustainable energy future hinges on the ability to simultaneously produce multiple high value products from biomass precursors. Though there is considerable literature on the thermochemical conversion of biomass to biofuels and biochars, there are few holistic examinations that seek to understand trade-offs between biofuel quality and the associated pyrolysis conditions on activated carbons made from the resulting biochars. Using an Ordinary Least Squares regression analysis, this study probes the impact of pyrolysis and activation temperature on surface areas and pore volumes for 28 carbon dioxide-activated carbons. Activation temperature has the largest single impact of any other variable; increasing the temperature from 800 to 900 °C leads to an increase in surface area of more than 300 m"2/g. Contrary to some prior results, pyrolysis temperature has minimal effect on the resulting surface area and pore volume, suggesting that optimizing the temperature at which biofuels are extracted will have little impact on carbon dioxide-activated carbons. Increasing pyrolysis temperature increases methane formation but decreases gaseous hydrocarbons. Bio-oil obtained at lower pyrolysis temperatures shows fewer oxygenated compounds, indicating a greater stability, but higher pyrolysis temperatures maximize production of key biorefinery intermediaries such as furans. By analyzing data in such a holistic manner, it may be possible to optimize the production of biofuels and activated carbons from biomass by minimizing the amount of raw materials and energy necessary to maximize

  15. Conversation and research

    NARCIS (Netherlands)

    Schuurman, Jan Gerrit; Veermans, K.H.

    2001-01-01

    Gordon Pask’s conversation theory was created in the 1970s. The theory encompasses a high-level framework for studying interactions between actors in artificial situations where people co-operate, have conflicts, follow rules, negotiate outcomes, invent new rules together, etc. Sadly, the theory is

  16. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...... interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices...

  17. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  18. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    Science.gov (United States)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  19. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  20. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  1. Conversion of spin current into charge current in a topological insulator: Role of the interface

    Science.gov (United States)

    Dey, Rik; Prasad, Nitin; Register, Leonard F.; Banerjee, Sanjay K.

    2018-05-01

    Three-dimensional spin current density injected onto the surface of a topological insulator (TI) produces a two-dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect (IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined to be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016), 10.1103/PhysRevB.94.184423]. However, we find that the transmission rate across the interface gives a nonzero contribution to the transport relaxation rate in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization effects), and the IEE length is always less than the original mean free path in the TI without the interface. We show that both the IEE relaxation time and the transport relaxation time in the TI are modified by the interface transmission time. The correction becomes significant when the transmission time across the interface becomes comparable to or less than the original momentum scattering time in the TI. This correction is similar to experimental results in Rashba electron systems in which the IEE relaxation time was found shorter in the case of direct interface with metal in which the interface transmission rate will be much higher, compared to interfaces incorporating insulating oxides. Our results indicate the continued importance of the interface to obtain a better spin-to-charge current conversion and a limitation to the conversion efficiency due to the quality of the interface.

  2. Thermodynamic limit for coherence-limited solar power conversion

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-09-01

    The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.

  3. Predictive models for conversion of prediabetes to diabetes.

    Science.gov (United States)

    Yokota, N; Miyakoshi, T; Sato, Y; Nakasone, Y; Yamashita, K; Imai, T; Hirabayashi, K; Koike, H; Yamauchi, K; Aizawa, T

    2017-08-01

    To clarify the natural course of prediabetes and develop predictive models for conversion to diabetes. A retrospective longitudinal study of 2105 adults with prediabetes was carried out with a mean observation period of 4.7years. Models were developed using multivariate logistic regression analysis and verified by 10-fold cross-validation. The relationship between [final BMI minus baseline BMI] (δBMI) and incident diabetes was analyzed post hoc by comparing the diabetes conversion rate for low (Prediabetes conversion to diabetes could be predicted with accuracy, and weight reduction during the observation was associated with lowered conversion rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Coherent and incoherent (μ-, e-) conversion in nuclei

    International Nuclear Information System (INIS)

    Chiang, H.C.; Oset, E.; Kosmas, T.S.; Faessler, A.; Vergados, J.D.

    1993-01-01

    Coherent and incoherent (μ - , e - ) conversion in nuclei is studied within the framework of several theories which violate flavour lepton number. A useful approach is followed which allows a factorization of the conversion widths into nuclear factors and other factors which depend only on the elementary process. The nuclear factors are evaluated in a wide range of nuclei allowing simple calculations of the conversion rates throughout the periodic table for a given theory with a minimum of work in the elementary sector. The coherent conversion is found to dominate the process. The results obtained modify appreciable previous results in the literature, particularly in the incoherent process. (orig.)

  5. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi Golru, S., E-mail: samanesharifi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Ramezanzadeh, B. [Department of Surface Coating and Corrosion, Institute for Color Science and Technology, No. 59,Vafamanesh St, Hosainabad Sq, Lavizan, Tehran (Iran, Islamic Republic of)

    2015-08-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  6. Experimental investigation of slow-positron emission from 4H-SiC and 6H-SiC surfaces

    International Nuclear Information System (INIS)

    Ling, C.C.; Beling, C.D.; Fung, S.; Weng, H.M.

    2002-01-01

    Slow-positron emission from the surfaces of as-grown n-type 4H-SiC and 6H-SiC (silicon carbide) with a conversion efficiency of ∼10 -4 has been observed. After 30 min of 1000 deg. C annealing in forming gas, the conversion efficiency of the n-type 6H-SiC sample was observed to be enhanced by 75% to 1.9x10 -4 , but it then dropped to ∼10 -5 upon a further 30 min annealing at 1400 deg. C. The positron work function of the n-type 6H-SiC was found to increase by 29% upon 1000 deg. C annealing. For both p-type 4H-SiC and p-type 6H-SiC materials, the conversion efficiency was of the order of ∼10 -5 , some ten times lower than that for the n-type materials. This was attributed to the band bending at the p-type material surface which caused positrons to drift away from the positron emitting surface. (author)

  7. Conversion of U3O8 to UF6

    International Nuclear Information System (INIS)

    Bodu, R.L.

    1975-01-01

    Three main processes for the production of UF 6 from the uranium ores (yellow cake) is described. The economic aspects of the conversion - capital cost, operating costs and conversion market and the future of conversion - capacity and prices - are discussed. (HPH) [de

  8. GaAs nanopillar-array solar cells employing in situ surface passivation

    Science.gov (United States)

    Mariani, Giacomo; Scofield, Adam C.; Hung, Chung-Hong; Huffaker, Diana L.

    2013-01-01

    Arrays of III–V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p–n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm−2 and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode. PMID:23422665

  9. Engineering the surface of rutile TiO2 nanoparticles with quantum pits towards excellent lithium storage

    DEFF Research Database (Denmark)

    Huang, Jinglu; Fang, Fang; Huang, Guoyong

    2016-01-01

    Engineering the surface structure of nanomaterials is of great importance for applications in energy conversion and storage. Herein, unique rutile TiO2 nanoparticles have been successfully synthesized by a facile solution and subsequent thermal annealing method. Each particle surface has been...

  10. Effect of inversion layer at iron pyrite surface on photovoltaic device

    Science.gov (United States)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  11. Conversational Memory Employing Cued and Free Recall.

    Science.gov (United States)

    Benoit, Pamela J.; Benoit, William L.

    1988-01-01

    Tests two hypotheses: (1) that cued recall elicits significantly more conversational information than free recall; and (2) that conversational interactants recall more of their partner's utterances than their own. Finds cued recall produced significantly higher amounts of remembering than free recall. (MS)

  12. Hypnotic susceptibility in patients with conversion disorder

    NARCIS (Netherlands)

    Roelofs, K.; Hoogduin, C.A.L.; Keijsers, G.P.J.; Näring, G.W.B.; Moene, F.C.; Sandijck, P.

    2002-01-01

    Conversion disorder has been associated with hypnotic susceptibility for over a century and is currently still believed to be a form of autohypnosis. There is, however. little empirical evidence for the relation between hypnotic susceptibility and conversion symptoms. The authors compared 50

  13. Spontaneous conversion of first onset atrial fibrillation

    DEFF Research Database (Denmark)

    Lindberg, Søren Østergaard; Hansen, Sidsel; Nielsen, Tonny

    2011-01-01

    Background  We studied all patients admitted to hospital with first onset atrial fibrillation (AF) to determine the probability of spontaneous conversion to sinus rhythm and to identify factors predictive of such a conversion. Methods and Results  We retrospectively reviewed charts of 438...

  14. Teaching communication aid use in everyday conversation

    DEFF Research Database (Denmark)

    Pilesjö, Maja Sigurd; Norén, Niklas

    2017-01-01

    This Conversation Analysis study investigated how a speech and language therapist (SLT) created opportunities for communication aid use in multiparty conversation. An SLT interacted with a child with multiple disabilities and her grandparents in a home setting, using a bliss board. The analyses...

  15. Predicting AD conversion

    DEFF Research Database (Denmark)

    Liu, Yawu; Mattila, Jussi; Ruiz, Miguel �ngel Mu�oz

    2013-01-01

    To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal type and visual assessment of medial temporal lobe atrophy (MTA) on MRI...

  16. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    Science.gov (United States)

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  17. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  18. Quantum conversion

    OpenAIRE

    Mazilu, Michael

    2015-01-01

    ICOAM 2015 The electromagnetic momentum transferred transferred to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ℏk does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the tran...

  19. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  20. Improved picture rate conversion using classification based LMS-filters.

    NARCIS (Netherlands)

    An, L.; Heinrich, A.; Cordes, C.N.; Haan, de G.; Rabbani, Majid

    2009-01-01

    Due to the recent explosion of multimedia formats and the need to convert between them, more attention is drawn to picture rate conversion. Moreover, growing demands on video motion portrayal without judder or blur requires improved format conversion. The simplest conversion repeats the latest